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Abstract

While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic
architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses
in most environments and in association with diverse hosts. In particular, circular ssDNA viruses
encoding a homologous replication-associated protein (Rep) have been identified in the
majority of eukaryotic supergroups, generating interest in the ecological effects and
evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review
surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic
groups over the last decade, highlights similarities between the well-studied geminiviruses and
circoviruses with newly identified groups known only through their genome sequences,
discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future
research horizons.
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Defining CRESS DNA viruses

The term CRESS DNA viruses was coined in 2012 to refer to a group of single-stranded DNA
(ssDNA) viruses encoding a replication-associated protein (Rep) that appears to be descended
from a common ancestor. CRESS DNA stands for circular, Rep-encoding ssDNA and
encompasses both prokaryotic and eukaryotic viruses, although the Reps of each of these
groups have distinct characteristics (Koonin and llyina, 1993). Most ssDNA viruses are CRESS
DNA viruses. Eleven out of thirteen ssDNA virus families established by the International
Committee on the Taxonomy of Viruses (ICTV, http://ictv.global/report) contain circular
genomes, with Parvoviridae and Bidnaviridae being the only exceptions. Seven of these eleven
circular ssDNA virus families infect eukaryotic organisms (see Confirmed and potential host
range and pathogenesis of eukaryotic CRESS DNA viruses, below), and among these only
members of the Anelloviridae family do not encode a homologous Rep. The Rep of the six
families of eukaryotic CRESS DNA viruses (Table 1; Bacilladnaviridae, Circoviridae,
Geminiviridae, Genomoviridae, Nanoviridae, Smacoviridae) is distantly related to the Rep of
bacterial (Microviridae and Inoviridae) and archaeal (Pleolipoviridae) CRESS DNA viruses;
however, the Reps of these groups have distinct evolutionary histories (Koonin and llyina, 1993,
Krupovic, 2013, Koonin et al., 2015, Rosario et al., 2012b). This review focuses on eukaryotic
CRESS DNA viruses, for which an unforeseen diversity and distribution has been recognized and
continues to expand.

Discovery of eukaryotic CRESS DNA viruses

Although the first eukaryotic CRESS DNA viruses were only identified as such in the 1970's,
symptoms consistent with CRESS DNA viral infection were described over a millennium ago. The
common yellowing symptom of CRESS DNA viral infection of euphorbia leaves was the
inspiration for a Japanese poet in 752AD (Saunders et al., 2003), though the symptoms are not
distinct enough for a definitive retrospective diagnosis. More definitively, plants with symptoms
caused by geminiviruses were first observed more than 100 years ago. Abutilon mosaic virus is
now known to be the cause of a pleasing mosaic pattern on the ornamental abutilon plant
(Figure 1), which was highly coveted in Europe in the mid-1800s (reviewed in Wege et al.,
2000). In animal hosts, the symptoms of psittacine beak and feather disease (now known to be
caused by a circovirus) may have first been observed in Australia in 1888. An avid birder
described parakeets which failed to grow back their feathers after their molt, leading to bizarre-
looking, bald birds (Ashby, 1921). Eukaryotic CRESS DNA viruses very likely originated much
longer ago than these human recordings imply, as several CRESS DNA viral genes have been
found in the germ line of eukaryotic lineages that diverged at least a million years ago (see
endogenized CRESS DNA viruses, below). Therefore, both historical records and modern
molecular analyses support the ancient origin of eukaryotic CRESS DNA viruses.

Throughout history, the effects of viral infection were observed long before humans could
isolate and identify the etiological agent, and CRESS DNA viruses were no exception. It wasn’t
until 1977 that scientists identified the first eukaryotic virus containing a circular ssDNA



genome, bean golden mosaic virus (Geminiviridae, Goodman, 1977a). Despite the earlier
discovery of ssDNA viruses infecting bacteria (Sertic and Bulgakov, 1935) and mammals
(Crawford, 1966), the overwhelming majority of DNA viruses were considered to be double-
stranded at the time. Five years after the description of geminiviruses, porcine circovirus was
the first animal-infecting circular ssDNA virus described (Tischer et al., 1982). Following these
findings, the known diversity of geminiviruses rapidly increased, with 63 species identified by
1995 (Murphy et al., 1995). Largely these efforts were the result of pathologists determining
the causative agent of economically important crop diseases. In contrast to the geminiviruses,
awareness of other groups of eukaryotic CRESS DNA viruses did not expand significantly in
terms of either diversity or detection until the 2000s -- only 3 circovirus species and 4 nanovirus
species were recognized by 1999 (Regenmortel et al., 2000). Due to their lack of affiliation with
human disease, CRESS DNA viruses were largely ignored by biomedical funding agencies, which
instead directed efforts towards known pathogenic dsDNA, RNA, and retro-transcribing viruses.
As a result, eukaryotic CRESS DNA viruses only recently gained recognition commensurate with
their ubiquity, diversity, and impact.

The application of phi29 DNA polymerase and random hexamers (rolling circle amplification;
RCA) for whole genome amplification of circular DNA templates (Dean et al., 2001) represented
a turning point in the study of CRESS DNA viruses (reviewed in Rosario et al., 2012b). This
method was so efficient that it was quickly adapted to clone and sequence complete
geminivirus genomes, revolutionizing methodological approaches for detection of plant
pathogens ( Haible et al., 2006, Inoue-Nagata et al., 2004, Wyant et al., 2012). During this same
time period, RCA was also being utilized in both clinical and environmental settings to obtain
sufficient DNA concentrations for next-generation sequencing (Angly et al., 2006, Breitbart and
Rohwer, 2005, Lasken and Egholm, 2003). Although the discovery of circular ssDNA viruses was
not the intention of these endeavors, application of this method serendipitously resulted in the
detection of a diversity of CRESS DNA viruses in unsuspected organisms and disparate
environments (reviewed in Rosario et al., 2012b). Since RCA leads to a gross overrepresentation
of viruses with circular genomes, this method cannot be used for quantitative analyses of viral
communities (Kim and Bae, 2011, Roux et al., 2016). RCA is currently used in two distinct ways
for discovering viruses with small circular genomes. The incorporation of RCA into standard
metagenomics pipelines enables assembly of complete CRESS DNA genomes from both
individual organisms and complex environmental communities ( Li et al., 2010a, Rosario et al.,
2009). However, caution must be used with assembly-based methods since RCA may lead to
chimeric sequences (Tu et al., 2015). To verify assembled genomes, inverse PCR with abutting
primers is recommended (Rosario et al., 2009). Alternatively, numerous studies have directly
recovered unit length CRESS DNA viral genomes by applying RCA followed by restriction enzyme
digestion, circumventing potential assembly errors ( Inoue-Nagata et al., 2004, Rosario et al.,
2012).

RCA has been instrumental in the recognition of the ubiquity and diversity of CRESS DNA
viruses. The number of CRESS DNA viruses identified using this technique now far exceeds the
number of well-characterized viral isolates obtained using classical methods. This is in stark
contrast to historical situations where symptoms of viral infection were recognized long before



the etiological agent was identified. The explosion of CRESS DNA viral discovery through
sequence-based methods has divorced viral sequences from much of their ecological context,
including fundamental aspects such as host range.

We have now passed through the looking glass, where we are increasingly aware of the
existence of incredible numbers of distinct viral species, without having any sense of the impact
of these viruses.

Unity and diversity

While some eukaryotic CRESS DNA viruses have up to 10 open reading frames (ORFs), even the
most compact genomes have two ORFs: one encoding the Rep and one encoding a capsid
protein (CP). The conserved Rep serves as the anchor for this group of viruses, but the CP is
highly divergent. Beyond the Rep and CP, protein content differs dramatically among CRESS
DNA viruses.

Molecular biology of Rep

All eukaryotic CRESS DNA viruses encode a distinctive homologous Rep that is presumably
conserved due to its essential function in viral genome replication through rolling circle
replication (RCR). In fact, the Rep is often the only gene with homology among the divergent
eukaryotic CRESS DNA viruses, and thus has been used extensively for phylogenetic analyses
and higher-level taxonomic classification (Simmonds et al., 2017). The RCR mechanism (Figure
2) employed by eukaryotic CRESS DNA viruses (reviewed in Rosario et al., 2012b) has been
elucidated based on in vitro studies performed with members representing only three of the
eukaryotic CRESS DNA viral families, including the Geminiviridae ( Hanley-Bowdoin et al., 2013,
Jeske et al., 2001, Laufs et al., 1995), Circoviridae ( Faurez et al., 2009, Steinfeldt et al., 2006),
and Nanoviridae (Timchenko et al., 2000, Timchenko et al., 1999). In addition, the structure of
several representative Reps from these three families has also been solved (Campos-Olivas et
al., 2002, Vega-Rocha et al., 2007a, Vega-Rocha et al., 2007b). Briefly, the Rep binds to iterative
sequences near an origin of replication (ori) distinguished by a conserved nonanucleotide motif
at the apex of a hairpin structure. The Rep then nicks the covalently closed virion strand of the
double-stranded replicative form of the viral genome within the nonanucleotide motif. After
the exposed 3’-OH end is primed by a host polymerase, leading-strand synthesis proceeds until
the Rep rejoins the virion strand at the initial nicking site.

The Reps of established and metagenomically identified eukaryotic CRESS DNA viruses stably
contain a distinctive two functional domain organization, containing a HUH endonuclease
domain towards the N-terminus and superfamily 3 (SF3) helicase domain at the C-terminus
(llyina and Koonin, 1992, Koonin, 1993). Each of the eukaryotic CRESS DNA viral Rep domains is
characterized by conserved motifs important for RCR (reviewed by (Rosario et al., 2017). The
HUH endonuclease domain is characterized by RCR motifs | through Ill, which are important for
RCR initiation and termination. The SF3 helicase domain contains Walker A, Walker B and motif
C motifs that presumably allow the Rep to act as replicative helicase during RCR elongation
(Gorbalenya et al., 1990, Gorbalenya and Koonin, 1993). A fourth motif corresponding to a



catalytic arginine finger conserved in various AAA+ family ATPases that may fuel helicase
activity (Nagy et al., 2016) is also commonly found in the Rep SF3 helicase domain (Kazlauskas
et al., 2017). This arginine finger has been identified in Reps encoded by members of
Bacilladnaviridae, Circoviridae, Nanoviridae, and Smacoviridae, but not in Geminiviridae and
Genomoviridae (Kazlauskas et al., 2017).

Intron-containing Reps

Many eukaryotic CRESS DNA viruses are known or predicted to express both spliced and non-
spliced forms of the Rep. In mastreviruses (Geminiviridae), RepA (non-spliced form) and Rep
(spliced form) are identical for the first ~200 N-terminal residues and are multifunctional
proteins involved in virus genome replication, transcription, and gene regulation (Hefferon et
al., 2006, Mufioz-Martin et al., 2003, Fondong, 2013). RepA has also been identified in other
geminivirus genera including, Becurtovirus, Capulavirus and Grablovirus (Varsani et al., 2014,
Varsani et al., 2017). The majority of the genomes representing the newly denoted family
Genomoviridae also contain both RepA and the spliced Rep (Conceicao-Neto et al., 2015, Steel
et al., 2016). Some members of the family Circoviridae, specifically porcine circoviruses (PCV),
contain Rep and Rep’, which is a spliced isoform of Rep with the C-terminus truncated and
expressed in a different frame (Steinfeldt et al., 2006). Both proteins perform the nicking and
joining activities during RCR and have sequence similarity to geminivirus and nanovirus Reps.
One proposed mechanism for first appearance of spliced Reps in eukaryotic CRESS DNA viruses
involves the endonuclease function of the Rep itself: site-specific endonucleases have been
found in intron homing processes (Belfort and Perlman, 1995), implying that the Rep protein
may have been involved in the acquisition of an intron (Gibbs et al., 2006).

Capsid proteins

All CRESS DNA virus groups that have been visualized by electron microscopy have icosahedral
capsids, which are encoded by a capsid protein (CP). The CP protects the genome and is needed
for the virus to move between individual hosts. The known capsids of CRESS DNA viruses vary in
size (Table 1), and in the case of Geminiviridae in shape: the geminiviruses derive their name
from their twinned icosahedral capsid (Figure 3), which packages a single genomic segment
(Goodman, 1977b, Harrison et al., 1977).

There is evidence for recombination among CRESS DNA viral CPs (e.g., the genus Curtovirus
contains viruses descended from a recombinant begomovirus with a CP from a mastrevirus,
which changed the vector specificity, Rybicki, 1994); however, some CP genes appear to have
evolutionary linkages to those of RNA viruses (Kazlauskas et al., 2017, Krupovic et al., 2009,
Lefeuvre et al., 2009, Roux et al., 2013). The capsid proteins of geminiviruses are structurally
similar to that of a ssRNA plant virus, satellite tobacco necrosis virus, which is suggestive of a
shared evolutionary history (Krupovic et al., 2009). The Bacilladnaviridae capsids are also
suggested to be structurally similar to another group of ssRNA viruses, the nodaviruses
(Kazlauskas et al., 2017) and the Circoviridae capsid proteins may have yet another common
ancestor with capsids of RNA viruses (Gibbs and Weiller, 1999). In 2012, a RNA-DNA hybrid
virus (RDHV) encoding a eukaryotic CRESS DNA viral Rep and a CP from unclassified ssRNA
viruses similar to Tombusviridae was discovered from Boiling Spring Lake (Diemer and Stedman,



2012). This unique CRESS DNA virus group, named the cruciviruses (Quaiser et al., 2016), has
been growing steadily since its initial discovery ( Bistolas et al., 2017a, Dayaram et al., 2016,
Hewson et al., 2013, Krupovic et al., 2015, Steel et al., 2016). The frequency of discovery of
these viruses with a seeming RNA-DNA hybrid evolutionary history suggests that these
recombination events are not vanishingly rare, and the mechanisms that could create these
hybrids will continue to be explored in the coming years (Stedman, 2015). Capsid protein
sequence diversity has not only come from RNA viruses, newly sequenced eukaryotic CRESS
DNA viral genomes have shown to carry capsid protein sequences similar to ORF1, the putative
capsid protein coding gene) of the ssDNA Anelloviridae (Lamberto et al., 2014).

In contrast to the homologous Rep protein shared among the eukaryotic CRESS DNA viruses,
the CP can be highly divergent and is sometimes even unrecognizable by sequence similarity
(e.g., Yoon et al., 2011). In public databases, some researchers have annotated the non-Rep-
encoding ORF of CRESS DNA viruses as a CP by default; however, caution should be applied in
interpreting and propagating these annotations without independent evidence that the ORF
actually represents a capsid. One useful tool for identifying structural proteins within novel
CRESS DNA viral genomes is the prediction of disorder patterns, which are conserved among
CRESS DNA viral capsid proteins and can be used to complement similarity-based searches
(Rosario et al., 2015a). While great strides have been made in understanding the evolution of
eukaryotic CRESS DNA viruses based on the unifying Rep, deciphering the evolutionary histories
of the CPs is clearly a more complex task that needs to be the subject of future studies.

Current taxonomy

Prior to 2015, the ICTV recognized three families of CRESS DNA viruses, namely Geminiviridae
(approved in 1993), Circoviridae (approved in 1993), and Nanoviridae (approved in 2002). The
number of CRESS DNA viral families has recently doubled with the addition of Genomoviridae
(approved in 2015), Bacilladnaviridae (approved in 2017), and Smacoviridae (approved in 2017).
The number of CRESS DNA viral genera increased more than five-fold (from 6 to 31) during the
past five years and is currently distributed as follows (Table 2): Geminiviridae (9 genera),
Circoviridae (2 genera), Nanoviridae (2 genera), Genomoviridae (9 genera), Smacoviridae (6
genera), and Bacilladnaviridae (3 genera). The majority of this increase is due to the advances in
viral metagenomics (Simmonds et al., 2017), and one of the six families (Smacoviridae) has no
cultured representatives. An exemplary geminivirus case study in this volume highlights the
revolutionary changes metagenomics research has had on CRESS DNA virology (Claverie et al.,
2018).

Geminiviridae

Geminiviruses are a group of plant-infecting viruses, encapsidated in twinned icosahedral
capsids -- the structural feature that gave them the name gemini (Hanley-Bowdoin et al., 2013).
Geminiviridae is currently the most speciose family of all viruses. Members of this viral family
infect monocotyledons (monocots) and dicotyledons (dicots). Geminiviruses encompass both
monopartite (six ORFs) and bipartite genomes (one segment, DNA-A, with five ORFs which is
homologous to the monopartite genome, the other, DNA-B, with 2 ORFs, Rey et al., 2012). The
monopartite genomes and DNA-As both encode a coat protein (CP) in the sense orientation and



four ORFs in anti-sense: the replication-associated protein (Rep), the replication-enhancer
protein (REN) and transactivating protein (TraP) and an overlapping C4 protein which affects
virulence (Hanley-Bowdoin et al., 2013). Monopartite genomes also encode a partially
overlapping pre-coat protein which functions as a movement protein within the plant; bipartite
geminiviruses have a DNA-B encoding a movement protein and a nuclear shuttle protein (Ho et
al., 2014). Bipartite begomoviruses typically dominate in the New World (the Americas), while
monopartite begomoviruses are the vast majority in the Old World (Ho et al., 2014); however,
there are an increasing number of exceptions to this trend (e.g., Inoue-Nagata et al., 2016,
Rosario et al., 2015b).

The largest genus within Geminiviridae is Begomovirus, which contains over three quarters of
the current classified geminivirus species. Begomoviruses infect dicots and are transmitted by
the whitefly Bemisia tabaci. B. tabaci is phloem-feeding and some biotypes have a very broad
plant host range, including ornamental, vegetable, grain, legume, and cotton plants (De Barro
et al., 2011). Possibly due to the very large number of identified species of begomoviruses, they
comprise 90% of the viruses known to be transmitted by whiteflies (Jones, 2003). Species
belonging to the second largest genus, Mastrevirus, are transmitted by leafhoppers (order
Hemiptera, family Cicadellidae) and infect both monocot and dicot plants. The geminiviruses
are usually transmitted by the vectors in a circulative, persistent and non-propagative manner
(Blanc et al., 2014) — there is very little evidence that they replicate in their vectors despite
being capable of transmission long after their initial acquisition (Czosnek et al., 2017). The long
residence time of geminiviruses in their vectors has facilitated discovery efforts, as researchers
have targeted insect vectors and their predators as a method for surveying viral diversity
circulating among plants in a given region (vector-enabled metagenomics, (Dayaram et al.,
2013b, Ng et al., 201143, Rosario et al., 2012a).

Recent revisions to Geminiviridae family established the new genera Becurtovirus, Eragrovirus,
Turncurtovirus (Varsani et al., 2014), Capulavirus and Grablovirus (Varsani et al., 2017).
Geminiviruses are well studied in molecular virology because of the devastating effects of the
well-characterized genera in important crops across temperate and tropic regions (Seal et al.,
2006b). Frequent emergence and re-emergence of this geminiviruses in crops have attracted
much research focus (Anderson et al., 2004), and the threat of unidentified geminiviruses
emerging in crops is ever imminent (Claverie et al., 2018). Geminiviruses, as eukaryotic CRESS
DNA viruses, have several evolutionary advantages that favor emergence (see Evolution,
below), but a key ecological factor in the spread of begomoviruses specifically is the spread and
abundance of their vectors (Seal et al., 2006a). Climate change and the increase of international
trade have given rise to the expansion and invasion of vector populations to previously naive
parts of the world (for begomoviruses, the polyphagous B. tabaci Middle East-Asia minor 1),
which both transport viruses to new areas and promote virus transmission in their invaded
range (Varma et al., 2011).

Circoviridae
The family Circoviridae is notable because it contains the smallest known animal viruses, with
nearly all members having genome sizes under 2kb. Prior to the recent taxonomic revisions of



the eukaryotic CRESS DNA viruses, Circoviridae was the catch-all for the animal infecting circular
ssDNA viruses — including viruses affecting birds and mammals. As more and more diverse
CRESS DNA sequences were identified, some of the sequences initially thought to represent
circoviruses or ‘circo-like’ viruses based on low amino acid level similarities to the Rep of
members of the Circoviridae, were assigned to other new CRESS DNA viral families. Notably,
taxa without a Rep ORF were reassigned Anelloviridae (Rosario et al., 2017). Despite this culling,
there is still tremendous diversity associated with Circoviridae, which is now composed of the
genera Circovirus (established 1993) and Cyclovirus (established 2015). Members of the
Circoviridae have been found in numerous vertebrate and invertebrate organisms (e.g., birds,
fish, mammal, insects). Interestingly, members from the genus Circovirus seem to be mainly
restricted to vertebrate hosts, whereas cycloviruses have been identified in both vertebrates
and invertebrates (Rosario et al., 2017).

Although cycloviruses have been only identified through molecular analysis and no definitive
host has not been identified for this genus, some members of Circovirus are well-recognized
pathogens in animals. Porcine circovirus 2 causes porcine circovirus-associated disease (PCAD).
This PCAD includes post-weaning multisystemic wasting syndrome, which causes devastating
economical losses in the commercial hog industry, prompting widespread vaccination against a
dominant strain of porcine circovirus 2 (Alarcon et al., 2013, Allan et al., 2012, Meng, 2013).
Other circoviruses are known to infect livestock or human companion animals, for example,
beak and feather disease virus (Harkins et al., 2014), and canine circovirus (Kapoor et al., 2012) .

Each genus in the family Circoviridae is distinguished by the genome organization. All genomes
in the genus Circovirus encode the Rep protein in virion sense (positive sense), and CP in anti-
sense, while the genomes in Cyclovirus have the flipped orientation: encoding the Rep in anti-
sense and the CP in the virion sense predicted strands. The replication and transcription
processes are thought to differ between two genera of Circoviridae due their difference in
genome organization (Rosario et al., 2017). While all genomes contain these two ORFs, a third,
overlapping ORF has been experimentally verified in some species, and others have potential
additional ORFs (Bassami et al., 1998, Hamel et al., 1998).

Cycloviruses are found in a diverse range of samples: squirrels (Sato et al., 2015), cats (Zhang et
al., 2014), humans (Li et al., 2010a), goats (Li et al., 2011), horses (Li et al., 2015a), bats (Wu et
al., 2016), cows (Li et al., 2011), sheep (Li et al., 2010a), chickens (Li et al., 2011), cockroaches
(Padilla-Rodriguez et al., 2013) and dragonflies (Rosario et al., 2012a). However, these are the
hosts found in association with these viral sequences, the host range of all members of the
genus remains unresolved without definitive experiments. Even the Dragonfly cyclovirus, which
researchers are nearly certain infects an insect, may not infect the dragonflies from which it
was isolated — the virus was present in the dragonfly gut, and dragonflies eat a variety of insects
and the virus could have been infecting an insect the dragonfly had eaten (Rosario et al., 2011).
Among eukaryotic CRESS DNA viruses, cycloviruses had seemed uniquely associated with
invertebrates (Tijssen et al., 2016), but more recent work has shown that Rep sequences similar
to members of the Smacoviridae and Genomoviridae are also associated with invertebrates
(Rosario et al., 2018). Further complicating establishing definitive host range, phylogenetic



analysis of cycloviruses do not show sequences clustering according to their host of isolation,
making inferences about host use unproductive (Rosario et al., 2017).

Nanoviridae

Family Nanoviridae contains two genera: Babuvirus and Nanovirus. All viruses in this family are
multipartite, meaning they maintain their genomes in multiple segments of circular positive
sense ssDNA that independently package into multiple, separate capsids. Genus Babuvirus
contain three species, with either six or nine segments to their genome, that are known to
infect tropical crops including bananas, abaca, taro and cardamom (Stainton et al., 2015).
Genus Nanovirus contains eight species, seven of which have eight segments in their genomes,
except for Subterranean clover stunt virus, which has six segments. All species from genus
Nanovirus naturally infect legumes. Individual genomic segments are around 1 kb in size,
usually carrying one identifiable ORF per segment (Sharman et al., 2008, Sicard et al., 2013).
Similar to ORFs maintained in begomoviruses, nanoviruses usually encode a replication-
associated protein, a capsid protein, a movement protein, a replication enhancer protein, and a
nuclear shuttle protein, as well as one or more proteins of unknown function (Sicard et al.,
2013). Nanoviruses are transmitted by aphids, usually causing stunt symptoms in infected
plants, leading to agricultural losses throughout the tropics. Like the other plant infecting
eukaryotic CRESS DNA virus family, Geminiviridae, the nanoviruses are also transmitted in a
persistent, circulative and non-propagative manner (Blanc et al., 2014).

The intriguing genomic compartmentalization of multipartite viruses has motivated scientists to
study the cost of maintaining such a lifestyle. Due to their independent packaging, each
segment must be independently transmitted to a new host for successful infection, and
bottlenecks both in movement within plants and in aphid transmission pose obstacles to
efficient infection of new hosts (Gallet et al., 2018). Further, instead of observing all segments
at equal frequency, which is theoretically most efficient, researchers found that each virus
maintains different segments at different frequencies, named the setpoint genome formula.
Moreover, this setpoint genome formula varies with different hosts and has been proposed to
be potentially beneficial for multipartite viruses (Sicard et al., 2013).

Genomoviridae

The first member of what would eventually be described as the family Genomoviridae is
Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 (SsSHADV-1), isolated in 2010 (Yu
et al., 2010). The genetic similarity between geminiviruses and SsSHADV-1 was obvious from its
isolation, and the family derives its name from ‘geminivirus-like with no movement protein’.
SsHADV-1 is the first and only known fungal infecting ssDNA virus (i.e., mycovirus), with all
other identified mycoviruses containing double-stranded or single-stranded RNA genomes (Yu
et al., 2010). In contrast to geminiviruses, SSHADV-1 purified virions and viral DNA, both dsDNA
and ssDNA, are infectious to the fungal host (Yu et al., 2013). The virus-host pair SSHADV-1 and
S. sclerotiorum have been proposed as a potential tool for genetic studies because of easy
manipulation in PEG-mediated protoplast transfection assays (Yu et al., 2013). If its host range
can be widened experimentally, SSHADV-1 may also be applicable as a biological control
measure in inducing hypovirulence plant pathogenic fungi (Yu et al., 2010).



The classification of Genomoviridae viral genomes was done by maximum likelihood
phylogenetic analysis on the Rep protein sequence alone. Five clades and 4 single branches
were displayed in the phylogenetic tree — the group with SsSDHAV-1 and eight other genera
(Varsani and Krupovic, 2017). As SSHADV-1 has been characterized in the lab, it serves as the
type species for genus Gemycircularvirus, which is named for Gemini-like myco-infecting
circular virus (Rosario et al., 2012a). It currently contains 43 species, with other sequences
assigned to Gemycircularvirus found associated with mammals, birds, insects, plants, fungus,
sediments and sewage samples, but without definitive hosts (Steel et al., 2016, Sikorski et al.,
2013c, Dayaram et al., 2012, Dayaram et al., 2015b, Male et al., 2015, Kraberger et al., 2013, Yu
et al., 2010, Kraberger et al., 2015a). The established tradition for geminiviruses is to create
genus names from abbreviations of the type species of each genus, and its host and symptoms
—as in Bean golden mosaic virus - Begomovirus. Lacking this information, genomovirus genera
all use the “gemy” prefix (Gemini-like, myco-infecting) with words from different languages to
emphasize the circularity of the genomes (Table 2).

Smacoviridae

Another novel family discovered largely through metagenomics sequencing is Smacoviridae
(smaco stands for small circular, Varsani and Krupovic, 2018). Although no member of this
family has been cultured and smacoviruses have only been identified in fecal matter or
dragonflies, the genomes of classified species have all been verified through PCR and Sanger
sequencing. Smacovirus genera were established based on Rep phylogenetic analysis, with
>40% Rep protein sequence identity required for members of the same genus. Smacoviridae is
divided into six genera: Bovismacovirus, Drosmacovirus, Huchismacovirus, Porprismacovirus,
Cosmacovirus, and Dragsmacovirus. The CPs of Smacoviridae are shared within the family, but
not related to other CRESS DNA viruses (Varsani and Krupovic, 2018).

Bacilladnaviridae

Bacilladnaviridae contains 3 genera: Protobacilladnavirus, Diatodnavirus, and Kieseladnavirus.
The first officially classified member of the Bacilladnaviridae family is the Chaetoceros
salsugineum DNA virus 01 (CsalDNAVO01), the first diatom-infecting DNA virus and only the
second known diatom-infecting virus (the first was Rhizosolenia setigera RNA virus, Nagasaki et
al., 2005). The sediment samples containing CsaDNAVO1 were collected in 2003, but in the
following years, another ten CRESS DNA viruses that infected other abundant Chaetoceros
species and Thalassionema species were identified (Kimura and Tomaru, 2013, Kimura and
Tomaru, 2015, Tomaru et al., 2008, Tomaru et al., 2011a, Tomaru et al., 2011b, Tomaru et al.,
2012, Tomaru et al., 2013). Several characterized Bacilladnaviridae viruses have double-
stranded DNA genomic segments of varying size and location, the properties of which are
unknown (Kimura and Tomaru, 2015, Tomaru et al., 2013), which is unique thus far among
eukaryotic CRESS DNA viruses.

The CPs of bacilladnaviruses show sequence and structure similarity to the CPs of nodaviruses,
a group of ssRNA virus. Bacilladnaviruses have larger genomes sizes than other eukaryotic
CRESS DNA viruses (~4.5-6kb, Kimura and Tomaru, 2015), but similar to the genome size of



nodaviruses. This larger genome size requires larger internal volume and the virion particle size
(33-38 nm) of the nodavirus capsid structure accommodates the genome size (Kazlauskas et al.,
2017).

As diatoms are an important player in marine and freshwater ecology, these host-virus systems
are expected to provide insights into diatom-blooming dynamics, and should be more
intensively researched in the coming years.

Evolutionary relationships among the eukaryotic CRESS DNA viral families

The homologous Rep protein of all eukaryotic CRESS DNA viruses allows for a straightforward
analysis of the evolutionary history of this one ORF among all the diverse families mentioned
above. However, ssDNA viruses frequently recombine, which interferes with accurate
resolution of phylogenetic relationships (Martin et al., 2011). A recent publication accounted
for the pervasive recombination in the Rep gene among unclassified eukaryotic CRESS DNA
viruses, producing a dataset free of detectable recombination to build a robust Rep genealogy
(Kazlauskas et al., 2018). Figure 4 shows our own analysis conducted with that recombinant-
free dataset, which showed the same broad patterns as the publication. It reaffirms that the
Genomoviridae Rep is closely related to that of Geminiviridae, and shows their reciprocal
monophyly. Nanoviridae sequences form a clade with Reps from a group of satellites (discussed
in Confirmed and potential pathogenesis of eukaryotic CRESS DNA viruses, below). This clade
forms a larger monophyletic group with the Smacoviridae (and some unclassified Rep
sequences), indicating that nanovirus Reps are the closest classified relatives to the
smacoviruses. The recently established Bacilladnaviridae is roughly equally distant from all
other named families of eukaryotic CRESS DNA viruses, foiling attempts to speculate with which
other group of eukaryotic CRESS viruses it might share a recent common ancestor. Indeed,
Bacilladnaviridae is fairly distant even from the black unclassified Rep sequences, suggesting
either its sister taxon has yet to be sampled or that its closer relatives were unsuccessful over
evolutionary time. Finally, it is important to note the preponderance of black taxa on the tree,
and the groups they assemble into. While Rep similarity is not the sole determinant of
eukaryotic CRESS DNA viral taxonomy, this is an indication that there are further cohesively
evolving groups to be systematized within eukaryotic CRESS DNA viruses. These candidate
groups have been given working names for the time being (see (Kazlauskas et al., 2018)). The
diversity of these pathogens may not be completely sampled, but we know that the six named
families cover just over half of the Rep diversity we do know about.

Ecology of eukaryotic CRESS DNA viruses

Distribution and sampling

We are not sure how close to the tip of the iceberg virologists are in terms of uncovering CRESS
DNA viral diversity, but recent global efforts have doubled the number of eukaryotic CRESS DNA
viral species in GenBank over the last 10 years (let alone the new strain sequences which add to
our appreciation of the diversity within some eukaryotic CRESS DNA viral species). These
abundant sequences come from a huge range of hosts and environments, and include both
opportunistic sampling and intentional surveys.



While we have tried to be comprehensive in our survey of hosts and environments where
researchers have identified eukaryotic CRESS DNA viral genomes (Table 3), our summary will be
out of date soon after publication as further genomes are detected. Additionally, a list of places
where eukaryotic CRESS DNA viruses have been detected suffers from the bias of not having a
companion list of environments where researchers tried and failed to detect eukaryotic CRESS
genomes. While the literature truly makes these viruses appear ubiquitous, the difficulty of
proving a negative result means that a lack of CRESS DNA viruses would be hard to report.
However, we note that there is a strong place in eukaryotic CRESS DNA viral discovery for
negative controls; sequencing-based studies can be compromised by contaminated reagents
(Salter et al., 2014) and CRESS DNA viral genomes have been found in commercially available
DNA isolation spin columns (Naccache et al., 2013).

These many references evince the immerse efforts that virologists worldwide have made to
sample and identify the potential eukaryotic CRESS DNA virus genomes. While the earth’s
virome may still be largely unknown, these efforts have better defined eukaryotic CRESS DNA
viral diversity and prevalence, leading to improved systematics and a sense of their relatedness
(see Figure 4, above). However, it has been increasingly frustrating that as genetic knowledge of
these viruses increase, we lack commensurate information about these viruses’ phenotype.

Confirmed and potential host range and pathogenesis of eukaryotic CRESS DNA viruses

The three oldest families of eukaryotic CRESS DNA viruses contain well-studied pathogens of
plants and animals, though not all members of these families cause disease in all (or any) of the
hosts they productively infect. Geminiviruses and nanoviruses infect plants, while circoviruses
infect both vertebrates (mammals and birds) and invertebrates.

Plant infections

The speciose family Geminiviridae has members that can infect a wide range of plant hosts,
from many plant families including Acanthaceae (e.g., Chinese violet), Amaranthaceae (e.g.,
sugar beet), Apocynaceae (e.g., golden trumpet), Asteraceae (e.g. zinnia), Bignoniaceae (e.g.,
yellow trumpetbush), Brassicaceae (e.g., cabbage), Capparaceae (e.g., spider flower),
Caprifoliaceae (e.g., honeysuckle), Caricaceae (e.g. papaya), Convolvulaceae (e.g., sweet
potato), Cucurbitaceae (e.g., squash), Cyperaceae (e.g., Nees weeping lovegrass),
Dioscoreaceae (e.g., yam), Euphorbiaceae (e.g., cassava), Fabaceae (e.g., soybean),
Gentianaceae (e.g., lisianthus), Lamiaceae (e.g., mint), Linderniaceae (e.g., false pimpernel),
Malvaceae (e.g., cotton), Meliaceae (e.g., chinaberry tree), Moraceae (e.g., mulberry),
Nyctaginaceae (e.g., red boerhavia), Oleaceae (e.g., Arabian jasmine), Onagraceae (e.g.,
Mexican primrose-willow), Oxalidaceae (e.g., pink woodsorrel), Papaveraceae (e.g., opium
poppy), Passifloraceae (e.g., passionfruit), Phyllanthaceae (e.g., star gooseberry),
Plantaginaceae (e.g., ribwort plaintain), Poaceae (e. g., maize), Polygalaceae (e.g., dainty
butterfly bush), Rosaceae (e.g., rose), Rubiaceae (e.g., Hedyotis uncinella), Rutaceae (e.g.,
lemon), Sapindaceae (e.g., Deinbollia borbonica), Solanaceae (e.g, tomato), Urticaceae (e.g.,
ramie), Verbenaceae (e.g., pigeon berry), and Vitaceae (e.g., grapevine). The true host range of
geminiviruses may be even larger, since there has been a sampling bias towards identifying



crop viruses and families without cultivated species that attract geminivirus insect vectors may
also be susceptible to infection.

When infections are symptomatic, geminivirus cause yellowing of leaves (streaking, mosaicism
(Figure 1), mottling) and distortions of the leaves (crumpling, curling, stunting, etc.), both of
which interfere with the host plant’s ability to conduct photosynthesis (Inoue-Nagata et al.,
2016). Characterized geminiviruses are named for their plant host of isolation and symptoms,
although many of these viruses infect more than one host and pose a series of symptoms, such
that the species name may not reflect its predominant host or most typical symptoms in nature
(Brown et al., 2015). Many affected plant species are economically and agriculturally important
crops, so geminivirus infections can lead to economic losses and famine. For example, cassava
is the third most important staple food for people living in the tropics, and more than 800
million people in Africa, Asia and Latin America depend on this plant for food and income (Legg
et al., 2015). Cassava can withstand unfavorable soil conditions and drought, ensuring food
security in marginal agricultural areas (Thresh and Cooter, 2005). In sub-Saharan Africa, cassava
production is limited by a number of begomoviruses that cause cassava mosaic disease — the
yellowing and distortion of the plant leaves prevents efficient starch production, and stunted
tubers have sharply reduced yield compared to uninfected cassava (Alabi et al., 2011). The
routine concern of cassava mosaic disease can worsen when the viruses evolve quickly (see
Evolution, below), for instance when a recombinant between African cassava mosaic virus and
East African mosaic virus (EACMV-UG) emerged, causing >90% crop loss in Uganda in 1997,
leading some to starve in the resulting famine (Zhou et al., 1997).

Eighty-eight percent of classified geminiviruses are begomoviruses (Table 2), leading to an
understandable bias in the literature towards this genus. Much of the work on geminivirus
pathogenicity has been done in begomovirus-dicot host systems, including the model
Arabidopsis (Hanley-Bowdoin et al., 2013), but many discoveries have also been made through
field surveys. For instance, the symptoms of geminivirus infections can be altered by the
presence of satellites. To date, four groups geminivirus associated satellites have been
described, including alphasatellites, betasatellites, gammasatellites, and deltasatellites. The
majority of described satellite species are found in association with monopartite
begomoviruses (Zerbini et al., 2017). However, alphasatellites, betasatellites, and deltasatellites
have been found with bipartite begomoviruses ( Fiallo-Olivé et al., 2012, Lozano et al., 2016).
Notably, alphasatellites have also been found with mastreviruses (Kumar et al., 2014), and thus
geminivirus associated satellites are not limited to members of the genus Begomovirus. All four
kinds of satellites are circular ssDNA with a stem-loop origin of replication (see Molecular
biology of Rep, above).

The protein-coding alphasatellites and betasatellites are the best studied geminivirus-
associated satellites. Alphasatellites are ~1300 nt, roughly half the length of a geminivirus
genome (or genomic segment in the case of the bipartite begomoviruses). They encode their
own Rep protein and autonomously replicate. Their Rep protein is closely related to that of
nanoviruses, and the nonanucleotide in their stem-loop origin of replication matches that of
nanoviruses as well (Rosario et al., 2012b). However, when coinfecting with either a geminivirus



or nanovirus, an alphasatellite can be encapsidated and transmitted. The roles that
alphasatellites play in the infection dynamics have not been definitively determined, with some
research suggesting they reduce begomovirus titer, thus prolonging the length of infection
(Idris et al., 2011), while others suggest they help suppress silencing (Nawaz-ul-Rehman et al.,
2010). Recently alphasatellites have been classified in to a virus family, Alphasatellitidae
(included with Nanoviridae in Figure 4), with two genera reflecting their associated hosts:
Geminialphasatellitinae and Nanoalphasatellitinae (Briddon et al., 2018). The most frequently
encountered satellites, at least in the Old World, are betasatellites, which hijack both the
capsids and replication initiation processes of their coinfecting geminiviruses (Sattar et al.,
2013). A betasatellite is also usually half the size of a geminivirus genome (~1300nt) and has a
stem-loop that is recognized by a geminivirus Rep (they encode the predominant begomovirus
nonanucleotide (Rosario et al., 2016). It encodes a single protein, bC1, which can affect
symptom severity and affect host silencing (functions thoroughly reviewed/listed in (Sattar et
al., 2013, Zhou, 2013)). Geminivirus betasatellites are currently classified within the

family Tolecusatellitidae, genus Betasatellite.

The remaining two groups of satellites are comparatively poorly studied and encompass non-
protein encoding satellite molecules. Gammasatellites and deltasatellites are smaller (~700nt)
than alphasatellites and betasatellites and seem to be largely restricted to the New World
(Fiallo-Olivé et al., 2012, Fiallo-Olivé et al., 2016, Lozano et al., 2016, Rosario et al., 2016).
Deltasatellites have been isolated from plants infected with either monopartite or bipartite
begomoviruses (Fiallo-Olivé et al., 2012, Lozano et al., 2016). On the other hand,
gammasatellites were discovered from the begomovirus whitefly vector through molecular
analysis and, thus, have not been associated with a particular geminivirus (Rosario et al., 2016).
The effects of these non-protein coding satellites on begomovirus infection are not yet known,
though deltasatellites may decrease begomovirus accumulation in the host plant (Fiallo-Olivé et
al., 2016). The nonanucleotide in the origin of replication for all identified gammasatellites and
deltasatellites matches that of the begomoviruses (Fiallo-Olivé et al., 2016, Rosario et al., 2016).
Gammasatellites were named based on the Greek alphabetical order since they were
discovered after alpha and betasatellites. However, the first report of deltasatellites was almost
simultaneous to that of gammasatellites and their name comes from their apparent derivation
from betasatellites (delta, in the sense of a change from betasatellites). Currently there is no
formal taxonomic classification for either gammasatellites or deltasatellites. Since both groups
refer to small, non-protein coding satellites, it remains to be determined if both groups will be
merged or will remain separate. Further phylogenetic analyses and biological characterization
of these small satellites should shed light on this issue.

Nanovirus pathogenicity has been understudied compared to geminiviruses. They are known to
infect a smaller number of plant families: Arecaceae (coconut), Caricaceae (papaya), Fabaceae
(cow vetch, fava bean, pea, sophora root, subterranean clover), Musaceae (abaca, banana),
Solanaceae (tobacco) and Zingiberaceae (cardamom), though they have been found to be most
problematic in leguminous hosts (Fabaceae). This known host range has the same caveat that
symptomatic crops have disproportionately been sampled and uncultivated plants may also be
susceptible to nanoviruses. The most pronounced symptoms of nanovirus infection are



stunting, yellowing and leaf rolling, sometimes followed by necrosis (Abraham et al., 2012).
Members of genus Nanovirus are transmitted by two aphid vectors, Aphis craccivora (Koch) and
Acyrthosiphou pisian (Harris, and alphasatellites can associate with their already multipartite
genomes (Kraberger et al., 2018). Nanoviruses have been reported in countries throughout
North and Eastern Africa, Europe, the Middle East, China, Japan and Australia (Abraham et al.,
2010, Abraham et al., 2012, Babin et al., 2000, Gaafar et al., 2017, Grigoras et al., 2010a,
Grigoras et al., 2014, Kraberger et al., 2018, Kumari et al., 2009, Makkouk and Kumari, 2009,
Vetten, 2008).

The symptoms of banana bunchy top virus, the type species of genus Babuvirus was first
reported in Fiji in 1889 (Magee, 1927, Stover, 1972) and has been recognized as a pathogen
that affects banana production worldwide (Dale, 1987) transmitted by the banana aphid
(Pentalonia nigronervosa, Magee, 1927). Infected plants show significant reduction in size, and
produce stunted fruits or fail to fruit (Hooks et al., 2008). Efforts to control banana bunchy top
virus are complicated by asymptomatic infections, the virus’ ability to infect other uncultivated
hosts and long incubation periods, but molecular surveillance has helped earlier identification
of infected plants (Allen, 1978, Dale and Harding, 1998, Hooks et al., 2008).

Animal infections

The family Circoviridae, genus Circovirus contains well-studied pathogens like porcine circovirus
2 (PCV2) and beak and feather disease virus (BFDV). Since cycloviruses are largely known only
from metagenomics efforts, and their hosts are unknown, it is premature to discuss their
pathogenicity. The host-virus interactions of porcine circoviruses in particular are well studied,
starting with PCV1. Although PCV1 is not pathogenic in its typical porcine hosts, it was
characterized as contaminant in a pig kidney cell line (PK-15) and studied for its unusual
genomic architecture (Tischer et al., 1974). PCV2 contributes to several virulent diseases of pigs,
notably post-weaning multisystemic wasting syndrome in piglets — a fatal disease that became
epidemic in the late 1990s (Allan et al., 1999, Harding and Clark, 1997, Nayar et al., 1997).
Retrospective studies found PCV2-antibodies in serum from Belgium as early as 1969 (Sanchez
et al., 2001). Subsequently it was recognized that PCV2 is the leading causative agent for a
collection of syndromes known as porcine circovirus associated disease (PCAD), including
respiratory diseases, enteric diseases (porcine dermatitis and nephropathy syndrome) and
reproductive problems (Opriessnig et al., 2007). PCV efficiently spreads horizontally through
contact with respiratory, oral, urinary secretions and feces Magar et al., 2000, (Gillespie et al.,
2009, Rose et al., 2012), and in rare cases, can transmit vertically from mother to piglets
(Maldonado et al., 2005, Shen et al., 2010). PCV2 infects components of the immune system
(Choi and Chae, 1999, Vincent et al., 2003), leading to depleted levels of lymphocytes in
infected animals. PCV2 is now endemic globally and antibodies are found in up to 100% of pigs
(Walker et al., 2000), but a much smaller percentage show symptoms of PCAD. This is likely
because PCAD seems polymicrobial, and requires co-infection by PCV2 and another microbe —
an RNA virus, another ssDNA virus (including porcine parvovirus, which has a linear genome), or
even a bacterial infection (Rose et al., 2012).The initial epidemics of PCV2 were caused by one
strain (PCV2a) and widespread vaccination was implemented to prevent piglets from
succumbing to PCAD. In the wake of this successful intervention, the prevalent genotype shifted



to PCV2b, which is thought to be less virulent (Rose et al., 2012). Vaccination against PCV2b has
led to another strain replacement, with PCV2d (Opriessnig et al., 2017).

The etiological agent for psittacine beak and feather disease is BFDV. Infected birds can exhibit
many kinds of symptoms: peracute, acute, chronic and subclinical, depending on their age.
Neonates and fledglings (young birds) typically show peracute and acute symptoms with high
mortality rates (Doneley, 2003, Ritchie et al., 1989, Schoemaker et al., 2000). In chronic cases in
more mature birds, beak and feather deformities are observed (Figure 5) and most birds
become immunocompromised and become susceptible to secondary infections (Pass and Perry,
1984, Ritchie et al., 1989). Chronic symptoms include lethargy, depression, and diarrhea, which
helps shed BFDV virions (Fogell et al., 2016). There is currently no cure, treatment or vaccine
available for psittacine beak and feather disease ( Regnard et al., 2017, Robino et al., 2014). Just
as for PCV, BFDV can transmit horizontally through contact with infected secretions, for
instance on nesting material (Gerlach, 1994, Ritchie et al., 2003b), and rarely transmit vertically
(Rahaus et al., 2008, Todd, 2004). BFDV is endemic to Australia and has become a global
concern due to legal and illegal trades of psittacine species (parrots, cockatoos, parakeets,
Raidal et al., 2015). Phylogenetic analyses have confirmed the historical record, and shown that
BFDV originated from Australia and then spread to the rest of the world (Harkins et al., 2014,
Pass and Perry, 1984, Raidal et al., 2015). BFDV can infect at least 60 species within the order
Psittaciformes (Harkins et al., 2014), and it is considered capable of emerging in other parrot
species, including many “exotic” endangered species ( Raidal et al., 2015, Sarker et al., 2015b,
Sarker et al., 2015a).

Potential pathogens

Because of the lack of biological characterization among the newly identified CRESS DNA
viruses, it is difficult to identify their roles in the biosphere. While viruses must use host
resources to replicate, not all viruses significantly impact the fitness of their hosts, and the
effects of some viral infections help their hosts survive and reproduce (Roossinck, 2011).
Therefore, even if a eukaryotic CRESS DNA virus found in association with a host truly infects
that host, it may not cause detectable disease symptoms. Indeed, one of the consequences of
sequencing-based surveys of ecosystems is that a large number and diversity of viruses are
uncovered in healthy plants — the methods are ideal for detecting benign or latent viruses
(Roossinck et al., 2010).

It is nevertheless intriguing to many researchers that sequenced eukaryotic CRESS DNA viruses
may have an impact on disease, especially in humans. There are several human diarrhea cases
associated CRESS DNA viral discoveries, though these viruses may be present in human waste
because they infect food ingested by the study subjects (Table 3). Others have found eukaryotic
CRESS DNA viral genomes isolated from human cerebrospinal fluids. The tentatively named
cyclovirus-Vietnam (CyCV-VN) was first found in patients with acute central nervous system
infections in Vietnam, but was then also detected in fecal samples from humans, pigs and
poultry (Tan et al., 2013). That same year, human cyclovirus VS5700009 (closely related to
CyCV-VN (Sasaki et al., 2015)) was independently found in the cerebrospinal fluid of patients
with unexplained paraplegia in Malawi (Smits et al., 2013). Others have subsequently screened



for CyCV-VN in cerebrospinal fluid of diseased patients without finding it: in northern Vietnam,
Cambodia, Nepal and The Netherlands (Le et al., 2014). CyCV-VN still exists in association with
humans — it was found in healthy children’s feces and pig feces in Africa (Garigliany et al., 2014)
and in the blood but not cerebrospinal fluid samples of immunodeficient Italian men (Macera et
al., 2016). There is still a lack of evidence for any disease-causing properties and follow up
studies concerning CyCV-VN, and many aspects of Koch’s postulates remain unfulfilled for this
potential human pathogen.

Outside of looking for human (and other animal) pathogens, researchers would like to
understand the current role and potential of eukaryotic CRESS DNA viruses in our ecosystems,
such as the ocean. As some eukaryotic CRESS DNA viruses can infect diatoms, they could
possibly be used as biological control agents to stop the onset of some algal blooms. A number
of bacilladnaviruses were found infecting the most abundant genus of diatoms, Chaetoceros

( Kimura and Tomaru, 2013, Kimura and Tomaru, 2015, Nagasaki et al., 2005, Tomaru et al.,
2008, Tomaru et al., 2011a, Tomaru et al., 2011b, Toyoda et al., 2012, Tomaru et al., 2013),
which means these viruses could potentially be used worldwide to cure locations of toxic,
anoxic algal overgrowth. Since so many eukaryotic CRESS DNA viruses have been discovered in
association with aquatic invertebrates (ctenophores, sea stars, sea urchins, etc.), these viruses
may play important roles in food web dynamics and biogeochemistry in aquatic systems
(Rosario et al., 2015a).

Endogenized eukaryotic CRESS DNA viruses

Viruses have played many roles in eukaryotic evolution, but the age of genomic sequencing has
revealed that eukaryotic genomes have more, and more diverse endogenized viral sequences
than previously thought. Some viral genomic architectures lend themselves to frequent
endogenization, such as retroviruses, which comprise ~8% of the human genome. Human
endogenized retroviruses are genomic fossils, which have evolved at the slower rate of human
evolution since their integration, and thus provide good information on the deep evolutionary
history of retroviruses. Genomic fossils provide information on host jumps, host-virus
interactions and even can indicate that arms races took place with the host (Hayward and
Katzourakis, 2015). There have been some documented benefits to endogenized retroviruses as
well, as eukaryotes have incorporated the viral genes and proteins into their functional
systems. The best known example of an endogenized retroviral protein evolving to serve a
critical function for the host would be the cooption of syncitin for host placenta
morphogenesis, something that has occurred multiple independent times in the evolution of
mammals (Mi et al., 2000). While some viruses routinely integrate into their hosts’ genomes,
and their occasional invasion of the germ line would be mechanistically understandable
(retroviruses, some large DNA viruses), genomic fossils are being discovered in eukaryotes that
are related to all types of lytic viruses, including RNA and ssDNA viruses. These sequences stand
in opposition to our current understanding of these viruses’ replication and inability to
integrate into host genomes. Regardless they exist, even if they are the product of very small
chance events (see several hypothetical mechanisms in (Krupovic and Forterre, 2015)), given
many chances over the long arc of evolutionary time. The study of endogenized viruses
comprises a major part of paleovirology, which not only allow us to know more about the origin



and evolutionary history of viruses, but also how virus integration may affected the
evolutionary history of their hosts (Feschotte and Gilbert, 2012).

Many endogenized partial eukaryotic CRESS DNA viral genomes (most often a sequence with
homology to Rep) have been founds in all eukaryotic supergroups (Kryukov et al., 2018). One of
the earliest examples was a geminivirus Rep homolog in several tobacco species genomes,
suggesting an integration event in a common ancestor more than a million years ago (Bejarano
et al., 1996, Ashby et al., 1997). Other groups have found multiple cases of circovirus-like
sequences in animal host genomes (Belyi et al., 2010, Malik et al., 2010, Katzourakis and
Gifford, 2010). Comprehensive searches in eukaryotic genomes have found endogenized CRESS
DNA virus-like sequences inside genomes of plants, fungi, animals and protists, suggesting
these may have been hosts for eukaryotic CRESS DNA viruses in the past (Liu et al., 2011). More
recent studies have found many endogenized circovirus-like elements inside host genomes
(Dennis et al., 2018a). A thorough scan of ~4000 eukaryotic genomes with all non-retroviral
virus sequences found sequences homologous to ssDNA viruses endogenized in all eukaryotic
supergroups, but nearly half of the hits were in plant genomes (Kryukov et al., 2018). It is not
yet known how active these virus-like sequences are within their hosts, and if they affect their
hosts’ fitness. Some of the more conserved sequences suggest that either the endogenization
event was relatively recent, or selection has maintained the function of the sequence (Filloux et
al., 2015). One study has reported geminivirus-like endogenized sequences in yam that are
active, producing small RNA transcripts (Filloux et al., 2015).

Since so many eukaryotic CRESS DNA viruses do not have a definitive host, endogenized
homologous sequences can give researchers an idea of what kind of host these viruses used to
or could still infect (Aiewsakun and Katzourakis, 2015). These genomic fossils may point
researchers towards fruitful hosts for isolating viruses that can be brought into the lab and
characterized. This has already begun for those studying endogenous circoviral elements
(Dennis et al., 2018b). Researchers have found endogenous sequences in host genomes cluster
with exogenous contemporary viruses infecting similar hosts such as birds compared to
mammals or fish (Dennis et al., 2018a). Endogenized cyclovirus elements have further
confirmed their potential infectivity of insects, as endogenous sequences are similar to those
found associated with dragonflies abdomen and larvae samples (Dayaram et al., 2013b,
Dayaram et al., 2014, Rosario et al., 2011, Rosario et al., 2012a).

In addition to informing host use, these genomic fossils help provide depth to evolutionary
studies of eukaryotic CRESS DNA viruses. The integrated Rep sequence in tobacco plants, for
instance, indicates that geminivirus-like viruses were present in South America (where the
tobacco plants diversified) at least 1.8 million years ago (Lefeuvre et al., 2011). This contradicts
what researchers assumed from the modern distribution of whitefly-transmitted geminiviruses,
where the begomoviruses in the New World appear descended from the more diverse Old
World begomoviruses (Nawaz-ul-Rehman and Fauquet, 2009). These genomic fossils can inform
where and when the ancestors of all circulating related viruses existed, even if the fast
evolution of eukaryotic CRESS DNA viruses and coalescence have eliminated all traces of that
history from their current sequences. As more eukaryotic genomes are sequenced, the greater



the opportunity will be to identify more endogenized eukaryotic CRESS DNA virus-like elements,
and eukaryotic CRESS DNA paleovirology is likely to grow in the upcoming decade.

Evolution

Eukaryotic CRESS DNA viruses evolve quickly

Evolutionary study of eukaryotic CRESS DNA viruses is not restricted to paleovirology and
untangling the deep phylogenetic relationships among families. Some eukaryotic CRESS DNA
viruses are emergent pathogens, and the year-to-year evolution of these viruses impacts food
security. For instance, novel begomoviruses have been a persistent emerging problem in crops
including tomato (Ribeiro et al., 2003). Like emergent RNA viruses, eukaryotic CRESS DNA
viruses have been shown to evolve quickly, and to do so even in datasets that remove
statistically detectable recombination (the effects of recombination are discussed below).
Representative lineages have been measured evolving quickly over a period of years:
Geminiviridae: Tomato yellow leaf curl virus (TYLCV, Duffy and Holmes, 2009), Maize streak
virus (MSV, van der Walt et al., 2008) and Sugarcane streak Reunion virus (Harkins et al.,
2009a), Nanoviridae: Faba bean yellow necrotic virus (Grigoras et al., 2010b). Many more
species have been able to have their rates of evolution estimated by computational methods,
including members of Circoviridae (Firth et al., 2009, Kundu et al., 2012) and Geminiviridae
(Duffy and Holmes, 2008, Harkins et al., 2009b). These high substitution rates do not cause
commensurate change in protein-coding genes over long periods of evolutionary time. This is
expected as part of the generalizable time-dependence of substitution rates — selection to
retain function and saturation, especially of third codon positions, affect the measurable
substitution rate over longer timespans (Aiewsakun and Katzourakis, 2016). This time
dependence explains how mastreviruses may have diverged with their hosts, despite
substitution rates calculated from that are orders of magnitude slower than observable
mastrevirus evolution (Wu et al., 2008).

What is less understandable is how eukaryotic CRESS DNA viruses achieve these high, RNA
virus-like substitution rates. RNA virus mutation rates drive their high substitution rates, but
ssDNA viruses replicate with their host polymerases that are not thought to have high error
rates (Duffy et al., 2008). As it is easier to measure the mutation rate of CRESS DNA viruses of
bacteria than of eukaryotes (due to difficulty knowing and controlling generation times), no
rigorous mutation rates have been measured for eukaryotic CRESS DNA viruses. Phages
phiX174 and M13 have both been shown to mutate more rapidly than that of the Escherichia
coli DNA polymerase that replicate their genomes (Cuevas et al., 2009, Sanjuéan et al., 2010),
and phiX174 avoids host DNA repair (Cuevas et al., 2011), but their ssDNA virus mutation rates
are still 10 to 100-fold lower than the RNA virus mutation rates that explain their high
substitution rates. Eukaryotic CRESS DNA viruses may have similar mutation rates to their
phage counterparts, but the lack of mechanistic insight with phage offers nothing to assist in
understanding how eukaryotic CRESS DNA viruses achieve the mutation rates necessary for
their fast rates of evolution.



Circovirus researchers had noted fifteen years ago that unpaired single-stranded DNA bases
could be oxidatively damaged, leading to high rates of transition for cytosines and adenines,
which could bolster the baseline mutation rate of BFDV (Ritchie et al., 2003a). Phylogenetic and
experimental studies of geminiviruses confirmed that cytosine to thymine transitions were
elevated compared to the other kinds of transitions (Tomato yellow leaf curl China virus, Ge et
al., 2007), TYLCV (Duffy and Holmes, 2008), East African cassava mosaic virus (EACMV, Duffy
and Holmes, 2009), Sugarcane streak Reunion virus (Harkins et al., 2009a)), but other
substitution biases with the potential to be due to oxidative damage (i.e., guanine to thymine
transversions) were more frequently observed than the predicted adenine transitions (TYLCV
(Duffy and Holmes, 2008), EACMV (Duffy and Holmes, 2009), MSV (van der Walt et al., 2008)).
In begomoviruses, these substitution biases are strand-specific, indicating that the oxidative
damage might occur while eukaryotic CRESS DNA viruses are encapsidated. That the cytosine
transitions occur on the packaged, virion strand was cleanly demonstrated by an examination
of begomovirus codon usage, which is biased towards thymine-ending codons in the mRNA for
virion sense CP, but adenine-ending codons for antisense Rep, which correspond to thymines in
the virion complement of the Rep gene (Cardinale et al., 2013). While it seems likely that
oxidative damage contributes to higher CRESS DNA virus mutation rates, it does not appear that
it explains all of the difference between expected mutation rates and measured substitution
rates. This open question would benefit greatly from accurate measurement of mutation rate
within eukaryotic hosts. Data indicate that geminivirus mutation rates might be very high in
plants (Arguello-Astorga et al., 2007), and eukaryotic CRESS DNA viruses have highly diverse
populations within single hosts ( Sdnchez-Campos et al., 2018, Sarker et al., 2014). It would be
helpful if technological advances helped the field move from high mutation frequencies to
accurately measured mutation rates.

Recombination

Long before high mutation rates were implied in eukaryotic CRESS DNA viruses, they were
known to be capable of frequent recombination, and successful recombinant viruses were
often isolated (Lefeuvre and Moriones, 2015). Even in the small, 1 kb segments of nanoviruses,
statistically detectable recombination is found ( Grigoras et al., 2014, Hyder et al., 2011).
Recombination can bring more genetic change into a genome at once than a point mutation,
which can cause large, swift phenotypic changes. As mentioned earlier, the genus Curtovirus
was the result of a successful recombination between ancestors with a begomovirus-like Rep
and a mastrevirus-like CP (Rybicki, 1994) — this caused a change in vector from whitefly to
leafhopper, a phenotype that could not be conferred with a point mutation. A similar whole-
gene recombination birthed the recently emerged porcine circovirus 3, which has a PCV Rep
and an avian circovirus CP (Franzo et al., 2018). In chunks of whole genes (or more than one
gene) or smaller portions of the genome, statistically detectable recombination is prevalent in
eukaryotic CRESS DNA viruses. Undetectable recombination between nearly identical viruses
also likely occurs as well, making the frequent recombination observed a conservative estimate
of its occurrence.

Both mutation and recombination are known to occur more often in hot spots, and beyond
their non-random occurrence, natural selection purges most mutations (and products of



recombination) such that surviving sequences show clear signals of regions where
recombination is well-tolerated (Lefeuvre et al., 2007). For instance, across eukaryotic CRESS
DNA viruses, recombination in intergenic regions is favored compared to recombination within
a protein-coding gene. The canalization of recombination hot spots is more pronounced within
family and genus. Despite nucleotide dissimilarity, the same regions are recombination hot
spots within Geminiviridae (Lefeuvre et al., 2009), and separately, within Circovirus (Stenzel et
al., 2014). The ambisense nature of many eukaryotic CRESS DNA viruses may be one reason for
frequent recombination. When a gene is simultaneously replicated and transcribed, the
interaction of the enzymes causes a pausing, and paused polymerases are associated with
template switching recombination events (Martin et al., 2011). The best data that supports this
idea is that there are more recombination breakpoints detected in the antisense genes in
ambisense genomes — the orientation where it would be easiest to have replication and
transcription approach each other from opposite directions (Martin et al., 2011). While
eukaryotic CRESS DNA viruses are able to recombine quite often, mutation still accounts for
most of the diversity seen in begomovirus populations worldwide (Lima et al., 2017a).

The multipartite plant CRESS DNA viruses also can experience reassortment (previously called
pseudorecombination), wherein a segment from one virus can be used in a successful infection
of another. The sequence similarity of the origin of replication in the Rep-encoding segment
and the reasserted segment determines whether the segments can productively infect the host
—the Rep protein must still be able to recognize the new segment’s intergenic region including
its stem-loop origin and nonanucleotide (Martin et al., 2011).

Migration

Researchers have studied the epidemiology of eukaryotic CRESS DNA virus spread around the
globe to understand the current patterns of infection and to help prevent pathogens from
moving into key agricultural areas. The Old World-New World biogeography of begomoviruses
means that it has been easy to see when a virus from the Old World (Tomato yellow leaf curl
virus, TYLCV) has migrated into the Americas, as it did to Hispaniola the early 1990s (Mabvakure
et al., 2016). From there, it spread throughout the Caribbean, into Central and North America
and at the same time was re-introduced to the west coast of Mexico from Asia (Duffy and
Holmes, 2007). The only New World begomovirus that has successfully migrated out of the
Americas is Squash leaf curl virus, which is now a problem in Cucurbit production throughout
Asia Minor (Lapidot et al., 2014).

Modern phylogenetic software packages have made it possible to examine the likely pathways
viruses take as they spread worldwide. Phylogeographic analyses have been conducted for
members of the three most well-characterized families with a focus in the geminiviruses MSV
and Panicum streak virus (Varsani et al., 2009), TYLCV (Lefeuvre et al., 2010, Mabvakure et al.,
2016), East African cassava mosaic virus (De Bruyn et al., 2012), and Sweet potato leaf curl virus
(Kim et al., 2018). Livestock trading among countries has been shown to be significant in PCV2
phylogeography (Firth et al., 2009, Vidigal et al., 2012), and the pet trade undoubtedly helped
the spread of BFDV out of Australia (Harkins et al., 2014), but banana bunchy top virus (BBTV)
has appeared to rarely move long distances, suggesting the modern banana trade is not



responsible for the current distribution of BBTV (Stainton et al., 2015). As increased sampling
reveals more about the location of related eukaryotic CRESS DNA viruses that are not
associated with diseases, some of these same techniques might be applied to viruses that are
not necessarily pathogens, but for now the largest datasets that cover the longest periods of
sampling are all from pathogens in Geminiviridae, Circoviridae and Nanoviridae.

Conclusions

Eukaryotic CRESS DNA viruses have been on the vanguard of the transition from detailed,
molecular characterization of novel viruses to taxonomy by sequence similarity alone. Their
small genome size, prevalence and affinity for rolling-circle replication allow easy molecular
surveillance and high return on sampling effort. Virologists can now appreciate their incredible
sequence diversity: varied genomic organization, divergence of the homologous Rep protein
and novel viral proteins, which are sometimes unlike anything else previously sequenced (part
of viral “dark matter,” Krishnamurthy and Wang, 2017). There is also no sign that the diversity
of eukaryotic CRESS DNA viruses has been thoroughly explored, and there is the strong
potential for even more novel species, genera and families to be discovered with increased
sampling.

The burgeoning number of families of eukaryotic CRESS DNA viruses reflects some of the extant
diversity of this widespread group of viruses. While each of these families (and genera) have
important idiosyncrasies, the shared evolutionary of their Rep protein provides important unity
within this group that is deserving of recognition by ICTV as a higher level of taxonomy.

The sharp, recent expansion of our knowledge of eukaryotic CRESS DNA viral diversity was
partially a function of how little attention was paid to this genomic architecture for several
decades. The diversity of all viral groups will likely expand as more affordable sequencing
facilitates larger surveys. However, CRESS DNA viruses have served as the canaries in the
metagenomics mine for how cheap sequencing and expensive molecular virology skews our
understanding of viruses towards bioinformatics and away from host-virus interactions and
ecology. Without dedicated effort to cultivate and study representatives of these families in the
laboratory, virologists will still know comparatively less about this widespread, diverse and
intriguing viral group.
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