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Throughput Fairness-Aware Optimization of

Cognitive Backscatter Networks with Finite

Alphabet Inputs
Xiaona Gao, Yinghui Ye, Guangyue Lu, Haijian Sun

Abstract—Cognitive backscatter network (CBN) is a promis-
ing paradigm for energy-constrained IoT networks, in which
backscatter devices (BDs) harvest energy from the primary
signals and backscatter information to a cooperative receiver.
Traditional resource allocation schemes maximizing the through-
put are based on the impractical Gaussian inputs and energy
harvesting (EH) model, which leads to performance degradation.
Taking the above factors into account, this paper focuses on the
fairness-aware resource allocation scheme for multiuser CBN
with finite-alphabet inputs and nonlinear EH model. We for-
mulate a max-min throughput maximization problem to ensure
the fairness among BDs, subject to the quality-of-service (QoS)
of primary user and energy-causality constraints of BDs. As
the formulated joint optimization problem is non-convex, we
use the approximation, slack and auxiliary variables methods
to transform it into a convex problem and propose an iterative
algorithm to solve it. Simulation results are provided to verify
the effectiveness of the proposed algorithm.

Index Terms—cognitive backscatter network, resource alloca-
tion, finite-alphabet inputs, energy harvesting, fairness.

I. INTRODUCTION

With an explosive number of Internet of Things (IoT)

devices wirelessly connected to Internet, the energy-efficient

communication technologies are urgently required to support

the massive connectivity. Ambient backscatter communication

(AmBC), which achieves ultra-low power transmission, is a

promising candidate for energy-efficient IoT. The main feature

of AmBCs is using the existing RF signals to harvest energy

and transmit information by adjusting the load impedance

of the antenna. In such way, there is no need to generate

dedicated carrier signal, which removes the power-consuming

RF components and greatly reduces the power consumption

[1]–[3]. However, due to the inherent nature of spectrum

sharing, AmBC suffers from a direct link interference (DLI),

leading to performance degradation [3].

Cognitive backscatter network (CBN) has recently attracted

lots of research interests. In CBN, the primary user provides

vast RF signals and the backscatter device (BD) is allowed

This work was supported in part by the Young Talent Fund of University
Association for Science and Technology in Shaanxi under Grant20210121,
in part by the Shaanxi Provincial Education Department through Scientific
Research Program under Grant 21JK0914, in part by the China Railway
First Survey and Design Institute Group Co., LTD. Research Program under
Grant 2022KY52ZD(ZNXT)-03, and in part by the Postgraduate Innovation
Fund of Xi’an University of Posts and Telecommunications under Grant
CXJJYL2021064. (Corresponding author: Yinghui Ye)

Xiaona Gao, Yinghui Ye, and Guangyue Lu are with the Shaanxi Infor-
mation Communication Network and Security Laboratory, Xi’an Universi-
ty of Posts and Telecommunications, Xi’an 710121, China (email: xiaon-
a gao@stu.xupt.edu.cn, connectyyh@126.com, tonylugy@163.com).

Haijian Sun is with the School of Electrical and Computer Engineering,
University of Georgia, Athens, GA, USA (email: hsun@uga.edu).

to leverage the RF signals to transmit information on the

premise of ensuring primary user’s communication quality.

As such, the spectral efficiency is also enhanced. Compared

to traditional AmBC, BD achieves reliable communications

to suppress the DLI by cooperative receiver (CRx) in CBN,

which is more efficient for future IoT [4].

In [5], the authors maximized the capacity of a single BD vi-

a jointly optimizing the transmit power of the primary user and

the reflection coefficient in CBN. The authors of [6] considered

the full-duplex-enabled CBN with multiple BDs and maxi-

mized the sum throughput of BDs via the joint optimization

of time scheduling, transmit power allocation, and reflection

coefficient adjustment while guaranteeing the QoS of the

primary system. In [6], a joint power allocation and reflection

coefficient adjustment method was proposed to maximize the

sum rate of BDs for cognitive backscatter NOMA networks.

In [7], [8], and [9], the authors investigated the hybrid harvest-

then-transmit and backscatter transmission strategy to improve

BD’s transmission rate. However, the above resource allocation

schemes were designed based on the Gaussian inputs assump-

tion. Instead, the practical communication systems employ the

finite-alphabet signal sets, such as pulse amplitude modulation

(PAM), quadrature amplitude modulation (QAM), and phase

shift keying (PSK) modulation. Another aspect is the ideal

assumption of linear energy harvesting (EH) model, which

does not correspond to the practical nonlinear circuits. The

considerable difference between Gaussian signals and finite-

alphabet signals, and between linear and nonlinear EH model

results in performance degradation when the above resource

allocation schemes applied in practical systems [10], [11].

In this paper, we consider the multi-BD CBN and propose

a resource allocation scheme based on max-min criterion to

ensure the fairness among BDs. Specifically, we formulate

a problem to maximize the max-min throughput of BDs by

jointly optimizing the transmit power of primary transmitter

(PT), the reflection coefficient and time scheduling for each

BD. Different from the above works, the resource allocation

scheme relies on the realistic finite-alphabet inputs and prac-

tical nonlinear EH model at BD, which increases the com-

plexity of objective function and constraints and poses a more

challenging non-convex optimization problem. To solve the

non-convex problem, we approximate the subjective function

and introduce the slack and auxiliary variables to transform

the problem into a convex one. However, the transformed

convex problem cannot be directly solved by CVX tool due to

the unrecognizable fractional form in some constraints. Then

we propose an iterative algorithm based on block coordinate

descent to solve the problem and verify the convergence.
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Fig. 1: System model.

II. SYSTEM MODEL AND WORKING FLOW

We consider the multiuser CBN that includes a PT, K BDs

and a CRx, as depicted in Fig. 1. The PT transmits primary

signals to CRx, and BD can harvest energy from the primary

signals, and modulate its data on primary signals to convey

information. The CRx jointly decode the information from

PT and BD. All devices are equipped with single antenna.

Assume that the channel coefficients remain constant in one

transmission block, but may change from one to another, and

the channel coefficients are known to the receiver. We denote

g, h1k, h2k channel coefficients for the link from PT-CRx,

PT- the k-th BD, and the k-th BD-CRx, respectively. As

depicted in Fig.2, the time division multiple access protocol

is performed in backscatter transmission, where each time

block contains two phases, i.e., EH phase and backscatter

communication (Backcom) phase. In EH phase τ0, all BDs

harvest energy from the primary signals. In Backcom phase,

the time block are divided into K slots, i.e., {τ1, τ2, ..., τK},

where BDs take turns to backscatter information and the non-

backscattering BDs keep harvesting energy.

In τ0, the received signal at the k-th BD the is described as

y =
√
Ph1kxe, (1)

where P is the transmit power of PT, xe satisfying E

[

|xe|2
]

=

1, is the transmit signal from PT. The additive noise is ignored

at BD since the circuits only consists of passive components.

In τ0, the harvested energy at the k-th BD subject to the

non-linear EH model in [11], which is given by

Eτ0
k =

(

aP |h1k|2 + b

P |h1k|2 + c
− b

c

)

τ0, (2)

where a, b and c denote the related coefficients in EH model.

In τk, the received signal at the k-th BD is split into

two parts by the reflection coefficient αk: the αk portion for

information transmitting, the (1− αk) portion for EH. Thus,

in τk, the received signals at CRx is

yR = g
√
Pxe

︸ ︷︷ ︸

the first term

+h1kh2k

√

αkPxeck
︸ ︷︷ ︸

the second term

+n, (3)

where the first term denotes the primary signal from PT and the

second term denotes the backscatter signal from the k-th BD,

ck is the transmitted signal by the k-th BD, which is selected

from the equiprobable discrete constellation C denoted by

C = {c1, c2, ..., cM} with cardinality M ; n is the received

During      , BD k backscatters its information, the 
other BDs  keep harvesting energy

                        ... ...

EH Phase

All BDs harvest 
energy

Backcom Phase

k

0 1 k K

Fig. 2: Time scheduling structure.

additive Gaussian white noise at the CRx with mean zero and

variance σ2.

The achievable rate of the k-th BD from information-

theoretical perspective is written as [12]

Rk =
log2M

2
− 1

2M

M∑

i=1

En

⎛

⎝log2

⎛

⎝

M∑

j

exp

(−dij,k

σ2

)
⎞

⎠

⎞

⎠,

(4)

where dij,k =
∣
∣h1kh2k

√
αkPxe (ci − cj) + n

∣
∣
2 − |n|2, En

denotes the expectation function about n, ci and cj represent

the i-th and j-th possible signal taken from the constellation

C. The achievable throughput is derived by

Ik (P, τk, αk) = τkRk. (5)

In τk, the harvested energy at k-th BD is modeled as

Eτk
k =

(

a|h1k|2 (1− αk)P + b

|h1k|2 (1− αk)P + c
− b

c

)

τk. (6)

Based on the above working flow, the total harvested energy

in the transmission block at the k-th BD is expressed as

Etotal
k =

(
a|h1k|2(1−αk)P+b

|h1k|2(1−αk)P+c
− b

c

)

τk

+
(

aP |h1k|2+b

P |h1k|2+c
− b

c

) K∑

i=0,i �=k

τi.
(7)

III. FAIRNESS-AWARE RESOURCE ALLOCATION

In this section, we propose the fairness-aware resource

allocation scheme. Firstly, we formulate an joint optimization

problem to maximize the throughput of BDs based on the max-

min criterion, while satisfying the QoS requirement of PT and

the energy-causality constraints of BDs. Then we transform

the non-convex problem into a convex one and propose to

solve it with an iterative algorithm.

A. Problem formulation

The max-min throughput based optimization problem is

modeled as

P1 : max
τ0,P,αk,τk

min
k

Ik

s.t. C1 : 0 ≤ αk ≤ 1, ∀k

C2 :
K∑

i=0

τi ≤ 1,

C3 :
(

a|h1k|2(1−αk)P+b

|h1k|2(1−αk)P+c
− b

c

)

τk

+
(

aP |h1k|2+b

P |h1k|2+c
− b

c

) K∑

i=0,i �=k

τi ≥ pc,kτk, ∀k

C4 : |g|2P
αkP |h1kh2k|2+σ2

≥ γth, ∀k
C5 : 0 ≤ P ≤ Pmax,

(8)
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where γth denotes the minimum QoS requirement of PT, pc,k
denotes the circuit energy consumption of the k-th BD.

In P1, C1 and C2 are practical constraints for reflection

coefficients and time slots. C3 denotes the energy causality-

constraints for BDs. C4 guarantees the PT’s QoS require-

ment. The optimization problem is non-convex due to the

challenging subjective function and the coupled variables in

constraints. In what follows, we attempt to transform the non-

convex problem into convex and solve it.

B. Problem transformation

In P1, the subjective function Ik involves the expectation

over n, which implies computationally intensive integral op-

erations. Therefore, we approximate Ik as

Ik(1) =
1
2τklog2M − 1

2M τk∗(
M∑

i=1

log2
M∑

j=1

exp

(
−|h1kh2k

√
αkP (ci−cj)|2
2σ2

))

,
(9)

which is an accurate approximation proposed in [13] to reduce

the computational complexity.

For the non-convex objective function, we introduce a slack

variable θ = min
k∈K

Ik to transform it into linear one as follows.

P2 : max
τ0,P,αk,τk

θ

s.t. C1 ∼ C5,
C6 :Imin

k(1) ≥ θ, ∀k,
(10)

where Imin
k(1) is the minimum throughput of the k-th BD, and

C6 ensures the communication quality of BDs.

The problem P2 with linear objective function is still non-

convex because the variables P , αk and τk are coupled in

constraints. To cope with this, we first introduce the following

Theorem 1 to transform the problem.

Theorem 1. The optimal P that maximizes the minimum

throughput, denoted by P ∗, is given by P ∗ = Pmax.

Proof. From P2, we can observe that the variable P exists

in C3, C4, C5 and C6. In C3, the energy harvested function

is an incremental function on P , which means a larger P

should have a higher probability to satisfy the energy-causality

constraints. Similarly, from C4, it is easy to conclude that a

larger P can lead to better QoS conditions for PT. Lastly in

C6, the log2
∑

exp (−a3P ) decreases with the increased P ,

where a3 =
|h1kh2k

√
αk(ci−cj)|2
2σ2 . Thus Ik(1) increases with the

increasing P . Put the above together with C5 and the optimal

P can be determined by Pmax.

With Theorem 1, P2 can be rewritten as

P3 : max
τ0,αk,τk

θ

s.t. C1,C2,

C3− 1 :
(

a|h1k|2(1−αk)Pmax+b

|h1k|2(1−αk)Pmax+c
− b

c

)

τk

+
(

aPmax|h1k|2+b

Pmax|h1k|2+c
− b

c

) K∑

i=0,i �=k

τi ≥ pc,kτk, ∀k

C4− 1 : |g|2Pmax

αkPmax|h1kh2k|2+σ2
≥ γth, ∀k

C6− 1 : 12τklog2M − 1
2M τk∗(

M∑

i=1

log2
M∑

j=1

exp

(
−|h1kh2k

√
αkPmax(ci−cj)|2
2σ2

))

≥ θ, ∀k.

(11)

Compared to P2, P3 has a less number of optimization

variables and is more simple. However, it is still a non-convex

problem since the variable αk and τk are coupled. To resolve

this, the auxiliary variables Xk = αkτk are constructed. By

using Xk

τk
to replace αk in P3, the optimization problem is

converted to

P4 : max
τ0,Xk,τk

θ

s.t. C1− 1 : 0 ≤ Xk ≤ τk,

C2 :
K∑

i=0

τi ≤ 1, ∀k,

C3− 2 :

(
a|h1k|2

(

1−Xk
τk

)

Pmax+b

|h1k|2
(

1−Xk
τk

)

Pmax+c
− b

c

)

τk

+
(

aPmax|h1k|2+ b

Pmax|h1k|2+c
− b

c

) K∑

i=0,i �=k

τi ≥ pc,kτk, ∀k,

C4− 2 : Xk ≤
(

|g|2
|h1kh2k|2γth

− σ2

P |h1kh2k|2
)

τk, ∀k,
C6− 2 : 1

2τklog2M − 1
2M ∗ τk(

M∑

i=1

log2
M∑

j=1

exp
(

−PmaxXk|h1kh2k(ci−cj)|2
2σ2τk

)
)

≥ θ, ∀k.

(12)

Theorem 2. P4 is convex.

Proof. Please see Appendix A.

Although the problem P4 is convex, the fractional form in

constraints C3− 2 and C6− 2 can not be directly recognized

due to the rigorous form of CVX [14]. Therefore, we propose

an iterative algorithm based on the block coordinate descent

(BCD) technique to solve the problem.

For a given X
(l)
k , the time duration τo and τk can be

obtained by solving the following problem.

P5 : max
τ0,τk

θ

s.t. C1− 1 : 0 ≤ X
(l)
k ≤ τk,C2,

C3− 3 : Etotal′

k

(

X
(l)
k , τk, τ0

)

≥ pc,kτk, ∀k
C4− 3 :X

(l)
k ≤

(
|g|2

|h1kh2k|2γth

− σ2

P |h1kh2k|2
)

τk, ∀k,
C6− 3 :Ik(1)

(

X
(l)
k , τk

)

≥ θ, ∀k.
(13)

For a given τ
(l)
k , the reflection coefficient αk can be obtained

by solving P6.

P6 : max
Xk

θ

s.t. C1,C2− 1 :
K∑

i=0

τ
(l)
i ≤ 1,

C3− 4 : Etotal′

k

(

Xk, τ
(l)
k , τ0

)

≥ pc,kτ
(l)
k , ∀k

C4− 4 :Xk ≤
(

|g|2
|h1kh2k|2γth

− σ2

P |h1kh2k|2
)

τ
(l)
k , ∀k,

C6− 4 :Ik(1)

(

Xk, τ
(l)
k

)

≥ θ, ∀k.
(14)

P5 and P6 are convex problems which can be directly

solved by CVX, and the convergence of the proposed iterative

algorithm is guaranteed [15]. The BCD-based procedure is

summarized in Algorithm 1 as shown at the top of the next

page.
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Algorithm 1 The BCD-based algorithm for resource allocation

scheme

Input: K BDs;

Output: τ∗0 , τ∗k , α∗
k;

1: Initialize the reflection coefficients X
(l)
k ; Set the conver-

gence precision δ;

2: Let l=0;

3: Repeat;

4: Solve P5 for given X
(l)
k and obtain the optimal τ

(l+1)
0 ,

τ
(l+1)
k by using CVX tools;

5: Solve P6 for given τ
(l)
k and obtain the optimal X

(l+1)
k by

using CVX tools;

6: Update the iteration number l = l + 1;

7: Until θl+1 − θl < δ;

8: return τ∗0 = τ l0, τ∗k = τ lk and α∗
k =

Xl
k

τ l
k

;
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Fig. 3: Convergence of Algorithm 1. (a) Pmax=1dBm; (b)

Pmax=2dBm.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify the

performance of the proposed resource allocation scheme and

investigate the influence by related parameters. Assume that

small-scale fading is Rayleigh fading with unit variance and

large-scale fading is distance exponential fading with the path

loss exponential υ, the channel gains is modeled as |g|2dp−υ ,

|h1k|2d1k−υ and |h2k|2d2k−υ , in which dp and d1k are the

distance from PT to CRx and the k-th BD, and d2k is the

distance from the k-th BD to CRx respectively. We assume

the input follows 2-symbol equip probable discrete distribution

since BD always performs simple modulation in practice. For

ease of description, the circuit power consumption are assumed

same for each BD, i.e., pc,k = pc. Unless otherwise specified,

the other parameters are set as a=2.463, b=1.735, c=0.826,

δ = 10−3, υ = 2, K = 2, γth = 3dB, pc = 0.05mv, σ2 =
−10dBm, dp = 0.6m, d11 = 0.8m, d12 = 0.9m, d21 = 1.1m,

d22 = 0.9m.

Fig. 3 verifies the convergence of Algorithm 1 in different

PT’s transmit power cases. We can see that the algorithm

converges very fast in few times both in the case Pmax=1dBm

and Pmax=2dBm, which demonstrates the well convergence

performance and generality of the Algorithm 1.

Fig. 4 shows the max-min throughput versus the optimal

transmit power of PT under the different PT’s QoS require-

ment. As can be observed, the max-min throughput increases

with the increasing Pmax and gradually achieves the upper

throughput limit for any γth. This is because the throughput

based on the discrete alphabet input distribution exists the

1 2 3 4 5 6 7 8 9 10
Pmax (dBm)

0
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0.25

M
ax

-m
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 th
ro

ug
hp

ut
 (b

it/
H

z)
  

th=2dB

th=3dB

th=4dB

Fig. 4: Max-min throughput versus the optimal transmit power

of the PT Pmax for different interference thresholds γth.
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d=0.4m
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Fig. 5: Max-min throughput versus the minimum power con-

sumption of the BD pc for different channel gains.

upper bound 1
2τklog2M shown in eq.(9). It can also be seen

that PT with higher interference threshold leads a lower max-

min throughput of BD for given Pmax before the upper

bound. For example, the max-min throughput with γth = 4dB

decreased 20% and 28% compared with the cases γth=2dB

and 3dB for Pmax=3dBm, respectively. This is because the

higher interference threshold means lower tolerance for BDs’

communication, resulting in the decreased BDs’ throughput.

Fig. 5 shows the max-min throughput versus the minimum

power consumption of the BD pc for different distance from

PT to BD. During the curve down period with the increasing

of pc, BD has to reduce the αk portion to transmit infor-

mation, while keeps a larger portion to fulfill the circuit

power consumption, which deteriorates the BD’s performance.

Additionally, we can see that the larger distance from PT to

BD creates the max-min throughput degradation for given pc.

This is due to the fact that the large distance brings a worse

channel gain and lower harvested energy to BD.

Take the sum throughput maximization scheme for compar-

ison. Fig. 6 shows the comparison of the proposed max-min

scheme with the max-sum scheme. For a given number of

BDs, the left bars show the proposed max-min scheme, while

the right bars show the max-sum scheme. The different colors

denote the throughput of different BDs. We can observe that

the max-sum scheme tends to allocate more resources to BD

with better channel conditions to maximize the sum through-

put, resulting in unfair throughput performance. For the max-
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Fig. 6: Throughput versus the number of BDs K for

Pmax=5dBm.

min scheme, the resources are allocated in fair manner that

all K BDs achieve identical throughput to guarantee fairness.

The reason is that the max-min scheme aims to maximize the

throughput of BD with the worst channel condition, which

drives the allocated resources for each BD to be as balanced

as possible to ensure fairness.

V. CONCLUSIONS

In this paper, we proposed a fairness-aware resource allo-

cation scheme for CBN with multiple BDs under the practical

finite-alphabet inputs and energy harvesting model assump-

tions. In particularly, we formulated an optimization problem

to maximize the minimum throughput by jointly optimizing

the transmit power of PT, reflection coefficients and time

scheduling of BDs to guarantee the fairness among BDs. To

solve the non-convex optimization problem, we proposed a

BCD-based iterative algorithm. Numerical simulation results

were presented to verify the convergence performance of

the proposed algorithm. In addition, our proposed max-min

scheme was found to be more efficient than the max-sum

scheme in terms of fairness.

APPENDIX A

PROOF OF THE THEOREM 2

In P4 , the objective function and the constraints C1-1, C2

and C4-2 are all linear, which means that the convexity of the

P4 is determined by whether the C3-2 and C6-2 are convex

constraints or not. Then we prove the convexity for C3-2 and

C6-2.

In C3-2, the second term of the left side is lin-

ear, the convexity of the second term f (Xk, τk) =
(

a|h1k|2
(

1−Xk
τk

)

Pmax+b

|h1k|2
(

1−Xk
τk

)

Pmax+c
− b

c

)

τk is the same as f (Xk) =

a|h1k|2(1−Xk)Pmax+b

|h1k|2(1−Xk)Pmax+c
by using the perspective function with

convexity preserving property. We note that the f (Xk) have

the same functional form and convexity with f (x) = ax+b
x+c

− b
c
,

where x denotes the input power. The second-order derivative

of f (x) can be written as

∂2f

∂x2
=

2 (b− ac)

(x+ c)
3 . (15)

It can be seen from eq.(13), the convexity of f (x) relies on

b− ac and c. For a non-linear energy harvester, one we can

obtained is that it exists a non-negative saturation threshold,

i.e., lim
x→∞

ax+b
x+c

− b
c
> 0, thus a − b

c
> 0. The other is that

the harvested energy is always greater than 0, i.e., f (x) =
b−ac
x+c

− b−ac
c

> 0, thus c > 0 and b − ac < 0. To sum up,
∂2f
∂x2 < 0, f (x) is a concave function with respect to x.

In C6-2, by using the perspective function,

τk
2M

(
M∑

i=1

log2
M∑

j=1

exp
(

−PmaxXk|h1kh2k(ci−cj)|2
2σ2τk

)
)

have

the same convexity with its perspective function

1
2M

(
M∑

i=1

log2
M∑

j=1

exp
(

−PmaxXk|h1kh2k(ci−cj)|2
2σ2

)
)

which

is proved convex in [16]. Therefore, C6− 2 is convex.

The objective function and all constraints in P4 are convex.

Therefore, P4 is a convex problem. The proof is complete.
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