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A  B  S  T  R  A  C  T  
 

The Chesapeake Bay Bridge-Tunnel (CBBT) was designed in the early 1960s and first opened on April 15, 1964. It 
is a 28.3-km bridge-tunnel system that crosses the mouth of Chesapeake Bay. Because there is a lack of reliable 
long-term observations of surface waves near the Chesapeake Bay entrance, accurate forecasts and hindcasts of 
wave conditions are essential for maintaining and expanding the bridge-tunnel infrastructure. To estimate wave 
parameters and energy spectra near the CBBT, novel composite data-driven models were developed using the 
wind, water level, and offshore wave data as input. The developed models provide satisfactory predictions of 
both integral wave parameters and energy density spectra of sea and swell waves at the Chesapeake Bay 
entrance. The developed models can rapidly hindcast the wave characteristics and spectra during an extreme 
event (i.e., the Halloween storm in 1991). This paper provides a novel framework for developing surrogate 
models to predict wave spectra in the frequency domain and hindcast historical wave climate, which can be 
applied to other sea-crossing bridges and/or tunnel sites near bay entrances. The data-driven models, based on 
deep neural networks, allow for estimating waves without a high demand for computational resources, and thus 
serve as a useful tool for the characterization and simulation of the complex wave environment at the interface of 
estuary and ocean. 

 
 

 
 

1. Introduction 
 

Chesapeake Bay is the largest tidal estuary in the United States and 
the third-largest estuary in the world. The bay is approximately 320 km 
long between the northern headwaters in Havre de Grace, Maryland and 
the southern end in Norfolk, Virginia (Basco, 2020). The bay mouth is 
about 27 km wide from the City of Virginia Beach, Virginia, to the 
Eastern Shore of Virginia. The vehicle ferry services, which operated 
between the 1930s and early 1960s, carried travelers between the 
Norfolk/Virginia Beach area and Virginia’s Eastern Shore. However, the 
ferries were time-consuming and impractical for the long-term needs of 
the region on the East Coast of the United States. Thus, the Chesapeake 
Bay Bridge-Tunnel (CBBT) was designed and constructed in the early 
1960s. It first opened on April 15, 1964, which connects Virginia with 
Delaware and reduces 153 km of travel distance between these two 
states. The bridges sit above the water surface, and the tunnels are at the 
main shipping channels so that large vessels can efficiently go through 
the Chesapeake Bay entrance. 

 
After more than half a century, The CBBT has become insufficient for 

the growing demand these days. As of 2020, the CBBT system consists of 
two tunnels, four artificial islands, and four bridges with lengthy 
causeways at both approaches (Designing buildings, 2020). Later ex- 
pansions are planned to increase the tunnels and bridges’ capacity 
(Designing buildings, 2020). To determine the design wave conditions 
for the maintenance and expansion of CBBT subject to the impact of 
global climate change, statistical analyses of long-term wave climate 
need to be performed. Although a program was launched to collect 
meteorological, oceanographic, and water-quality data through 
deploying buoys in Chesapeake Bay by the U.S. National Oceanic and 
Atmospheric Administration (NOAA) in 2007, there is still a lack of 
reliable long-term observations of surface waves in the Bay (Ti et al., 
2022). Moreover, the wave system at the entrance of Chesapeake Bay is 
very complex because waves generated in the estuary and the Atlantic 
Ocean co-exist and transform over complex topography and strong tidal 
currents. Therefore, accurate modeling of future and historical wave 
characteristics is desirable. 
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Fig. 1. (a) A map showing the Chesapeake Bay and locations of NDBC stations involved in this study. (b) A map showing the bay entrance and the locations of the 
NDBC stations 44,099 and 44,087 relative to the CBBT (marked as gray lines). 

 

Wave characteristics are required in many engineering applications, 
such as designing sea-crossing bridges and tunnels, offshore wind farms, 
and pipelines, for the response, load, and fatigue calculations (Christa- 
kos et al., 2022). Normally, integral wave parameters, such as significant 
wave height, peak wave period, and mean wave direction, are used to 
characterize the sea state. Although the integral wave parameters are 
useful for describing trends in a series of observations, these quantities 
can smear the essential attributes of a wave field. They can be 
misleading when the wave conditions are complex with different wave 
systems propagating through a given area (Hanson and Phillips, 2001). 
On the other hand, wave energy density spectra can provide a more 
comprehensive way to describe the wave field, reveal more accurate 
information about waves from different origins, and help us better un- 
derstand the surface wave conditions in coastal and estuarine areas. 

In-situ measurement is often used to obtain wave spectra. However, 
field measurements are usually time-consuming to collect and spatially 
and temporally sparse because of high costs (e.g., Wang et al., 2022b; Ti 
et al., 2022). Therefore, physics-based wave models, such as SWAN 
(Booij et al., 1999), MIKE21 SW (DHI, 2017), and WAVEWATCH (Tol- 
man and others, 2009), have been employed to simulate spatial and 
temporal evolutions of wave spectra in the ocean, coastal, and estuarine 
waters. Although numerical models can generate satisfactory estima- 
tions of waves in general, the direct application of these models to es- 
timate wave spectra can have some drawbacks. For example, the 
simulation of localized wave and flow fields may require nested 
computational domains and/or coupled ocean circulation model and 
wave model, which can be extremely computationally expensive and not 
practical for a long-term assessment (e.g., yearly to multi-decadal). 
Additionally, some numerical approximations in these physics-based 
models, such as the approximate solutions to the quadruplet 
wave-wave interactions and triad interactions, may introduce errors in 
the model results (Song and Jiang, 2022). Alternatively, data-driven 
models can be used as surrogates to simulate wave spectra without a 
high demand for computational resources, and they can handle strong 
nonlinearity and high dimensionality (Wang et al., 2022a). 

During the last two decades, many data-driven models have been 
developed to study nonlinear relationships between input features and 
labels for coastal and ocean engineering applications, such as artificial 
neural networks (ANN), decision trees, Bayesian networks, support 
vector machines, and long short-term memory (LSTM) (e.g., Deo and 
Naidu, 1998; Yagci and Kitsikoudis, 2015; Cornejo-Bueno et al., 2016; 
Sadeghifar et al., 2017; Oh and Suh, 2018; James et al., 2018; Stringari 
et al., 2019; Zheng et al., 2020; Callens et al., 2020; Mohaghegh et al., 
2021; Tang and Adcock, 2021; Wei, 2021; Lee et al., 2021; Miky et al., 
2021; Jo¨rges et al., 2021; Elbisy and Elbisy, 2021; Bento et al., 2021; 
Huang et al., 2022; Bai et al., 2022; Wei and Davison, 2022). For 
instance, Zilong et al. (2022) proposed a novel data-driven model for 
efficient spatial-temporal significant wave height forecast in West Pa- 
cific using the LSTM method. Their model showed promising accuracy 
for wave height forecast and had higher computational efficiency than 
physics-based numerical models. Sakhare and Deo (2009) and Namekar 
and Deo (2006) applied support vector regression (SVR), model tree 
(MT), and ANN to obtain the wave spectra using significant wave height 
and wave period as input. Their results indicated that data-driven 
models could estimate the wave spectral shapes better than commonly 
used theoretical spectra, including Pierson-Moskowitz, JONSWAP, and 
Scotts. Song and Jiang (2022) established a deep neural network to es- 
timate directional wave spectra using local and remote wind fields as 
input. They found that the model can predict the local wave spectra with 
low computational cost and perform well in predicting spectral shape. 
These data-driven models provide a new method to solve wave predic- 
tion problems in coastal and estuarine areas. 

This paper is dedicated to estimating integral wave parameters and 
energy density spectra near the CBBT at the Chesapeake Bay entrance 
using advanced scientific machine learning (ML) techniques. Specif- 
ically, we focus on predicting the desired wave properties at the Na- 
tional Data Buoy Center (NDBC) station 44,087, 5 km west of the CBBT. 
Unlike previous works which used integral wave parameters or winds as 
input features (i.e., Sakhare and Deo (2009), Namekar and Deo (2006), 
and Song and Jiang (2022)), wind, water level, and offshore wave data 
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Table 1 
Wind, water level, and wave buoy stations involved in this study. 

 
 

Type Station name 
 

 

Wind station (NDBC) TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHYV2 
Water level station (NOAA) 8638,610 at Sewells Point, VA 
Wave buoy station (NDBC) 44,087 and 44,099 

 

 
 

were used as input features for developing novel composite ANN models 
for wave spectral predictions in this study. To resolve the complex wave 
field at the bay entrance, we separated the wave fields at the two NDBC 
stations into bay waves (generated in the bay) and ocean waves (coming 
from the ocean) based on the two-dimensional (2D) wave spectra in the 
frequency and directional spaces. The developed models were then 
applied to hindcast the wave characteristics and spectra at the study site 
during the Halloween storm in 1991. The models allow for estimating 
waves without a high demand for computational resources. This paper 
presents a novel framework as a surrogate to estimate wave spectra in 
the frequency domain and hindcast historical waves. This framework 
can be applied to other sea-crossing sites near a bay entrance. 

The rest of the paper is organized as follows. Section 2 presents the 
model development, including model input, output, and model setup. 
Section 3 examines the performance of the ML models in estimating 
integral wave parameters and energy density spectra for both bay and 
ocean waves by comparing the model outputs with the field measure- 
ments. The wave hindcast at the study site during the Halloween storm, 
or the so-called “perfect storm” in 1991, is also presented in this section. 
The influence of wind fields and offshore waves on the accuracy of 
hindcasted waves during the Halloween storm is discussed in Section 4. 
A representativeness test of the training data is also conducted to ensure 
the predicted wave spectra and characteristics during the Halloween 
storm are reasonable. Finally, Section 5 concludes the paper with re- 
marks on this study. 

2. Methods 
 

2.1. Study area 
 

The study site is near the mouth of Chesapeake Bay (Fig. 1). The 
NDBC buoy station 44,087 is located roughly 5 km west of the CBBT, and 
thus the wave field at buoy 44,087 is pragmatically used to represent the 
wave field around the CBBT. The NDBC buoy station 44,099, located 
approximately 26 km southeast of the bay entrance (Fig. 1(b)), provides 
representative offshore wave fields out of the bay. As there is a lack of 
reliable long-term (multi-decadal) wave observations in Chesapeake Bay 
(Ti et al., 2022), an accurate forecast of upcoming or hindcast of his- 
torical wave conditions at buoy 44,087 can be very useful for structural 
design and assessment purposes. Four artificial islands connecting the 
bridges and tunnels were built with 10-ton armor stones, which are 
relatively stable and have survived many tropical cyclones since 1964 
(Basco, 2020). However, severe damage to the revetment was observed 
at one location on the south CBBT island on October 31, 1991, during 
the Halloween storm, a severe Nor’easter storm. 

 
 

2.2. Wind, water level, and wave measurements 
 

This study used the wind, water level, and offshore wave measure- 
ments as input features to develop ML models for estimating wave pa- 
rameters and spectra near the entrance of Chesapeake Bay (Fig. 1, 
Table 1). The water level data were obtained from NOAA 8638,610 at 
Sewells Point, VA. It is well known that the growth of waves in an es- 
tuary is influenced by water depth (i.e., wave height is limited in the 
finite depth condition). The wind data were achieved from six NDBC 
stations scattered over the bay (i.e., TPLM2, RPLV2, YKRV2, KPTV2, 
WDSV2, and CHYV2), and more details can be found in Section 2.2.1. 
The 2D wave spectra data at the buoys 44,099 and 44,087 were obtained 

 

 
 

Fig. 2. Wind roses at NDBC Stations TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHYV2 based on measurements from 2020 to 2021. 
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Fig. 3. Example of separating bay and ocean energy from the 2D wave spectra at the buoys 44,087 and 44,099. The shaded areas represent the energy of ocean 
waves. The rest of the energy is associated with bay waves. 

 

from the Coastal Data Information Program (CDIP). The buoys 44,099 
and 44,087 were deployed on 07/23/2008 and 08/06/2018, respec- 
tively. Wave data at buoy 44,087 are unavailable prior to its deployment 
(i.e., 08/06/2018). The developed composite ANN models can help es- 
timate a longer history of wave characteristics at buoy 44,087. Also, this 
model can provide a hindcast of wave characteristics during the 
Halloween storm in 1991, which facilitates the assessment of wave 
impact on the CBBT during extreme events. 

 
2.2.1. Spatial variation of winds in Chesapeake Bay 

Wind is the main driving force of surface waves. To account for the 
large variability of wind speed and direction in the bay area (Mariotti 
et al., 2018), wind measurements from six NDBC stations scattered over 
the bay (i.e., TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHYV2 in 
Fig. 1(a)) were collected. These stations were selected considering their 
locations and data availability. The wind roses based on the measure- 
ments at these six stations indicate tremendous spatial variations of 
wind fields inside Chesapeake Bay (Fig. 2). More details of model inputs 
regarding wind data can be found in Sections 2.3.1 and 2.3.2. 

 
2.2.2. Partition of bay and ocean waves 

In this study, the waves at NDBC Stations 44,099 (denoted as the 
offshore buoy) and 44,087 (denoted as the bay buoy) were partitioned 
into bay and ocean waves based on the 2D wave spectra in the frequency 
and directional spaces. Considering the locations of both buoys and the 
shoreline of the Chesapeake Bay entrance (Fig. 1(b)), the wave energy 

coming from 50∘-180∘ and 0∘-180∘ (0∘ is the true north) was set as ocean 
waves (coming from the ocean) for the bay buoy 44,087 and offshore 
buoy 44,099, respectively. The rest of the energy was identified as bay 
waves (generated in the bay). Fig. 3 presents an example showing how to 
separate the 2D spectra into bay and ocean waves at both buoys. 

 
 

2.3. Data-driven models 
 

To determine the wave characteristics and energy density spectra at 
bay buoy 44,087, we developed two data-driven models based on deep 
neural networks for predicting bay and ocean waves separately using 
wind, water level, and offshore waves at offshore buoy 44,099 as input 
features. Then the developed ANN models were used to estimate waves 
at the bay buoy during the Halloween storm in 1991, when the recorded 
waves were unavailable. Based on Karimpour et al. (2017), there is a 
strong relation between wave height, water depth, and wave period. All 
three parameters are related. Therefore, composite models were devel- 
oped with the total loss function defined as the sum of the error func- 
tions of each target (i.e., Hm0, Tp, Dir, and E). Although independent 
networks could also be utilized to predict Hm0, Tp, Dir, and E separately, 
they were not used in this work because of the error propagation from 
one network to another (Wang et al., 2022). Table 2 lists the input 
features and labels for estimating bay and ocean waves at bay buoy 44, 
087. Fig. 4 sketches the architecture of the composite neural networks. 
For the bay wave prediction, the measured hourly u- and v-wind 

speed components and water level were used as input features to esti- 



N. Wang et al. Applied Ocean Research 135 (2023) 103537 

5 

 

 

 

Table 2 
Input features and labels for predicting integral wave parameters and spectral 
energy in the frequency domain for bay and ocean waves at buoy 44,087. Hm0, in, 
Tp, in, Dir in, and E in represent the wave parameters and spectra values at NDBC 
station 44,087. Hm0, out and Tp, out represent the wave parameters at NDBC sta- 
tion 44,099. 

 
 

Prediction Input features Labels 
 

 

determined with the wind, water level, Hm0, and Tp applied as the input 
features. The total loss function for predicting bay waves was defined as 
the sum of error functions of Hm0, Tp, Dir, and E. Note that sin(Dir) and 
cos(Dir) were employed to represent the wave direction Dir in the neural 
networks (Dir = 0∘ and 360∘ are the same). For ocean wave estimation at 
bay buoy 44,087, we included Hm0 and Tp of ocean waves measured at 
the offshore buoy 44,099 as input, since ocean waves measured at buoys 

Bay 
waves 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ocean 
waves 

Hm0, in u- and v-wind speed data at TPLM2, 
RPLV2, YKRV2, KPTV2, WDSV2, 
and CHYV2, water level data at 
Sewells Point 

Tp, in u- and v-wind speed data at TPLM2, 
RPLV2, YKRV2, KPTV2, WDSV2, 
and CHYV2, water level data at 
Sewells Point, predicted Hm0,in 

 
Dir in u- and v-wind speed data at TPLM2, 

RPLV2, YKRV2, KPTV2, WDSV2, 
and CHYV2, water level data at 
Sewells Point, predicted Hm0,in 

E in u- and v-wind speed data at TPLM2, 
RPLV2, YKRV2, KPTV2, WDSV2, 
and CHYV2, water level data at 
Sewells Point, predicted Hm0,in and 
Tp,in 

 
Hm0, in u- and v-wind speed data at KPTV2 

and CHYV2, water level data at 
Sewells Point, measured Hm0,out and 
Tp, out 

Tp, in u- and v-wind speed data at KPTV2 
and CHYV2, water level data at 
Sewells Point, measured Hm0,out and 
Tp, out, predicted Hm0,in 

E in u- and v-wind speed data at KPTV2 
and CHYV2, water level data at 
Sewells Point, measured Hm0,out and 
Tp, out, predicted Hm0,in 

Measured Hm0,in 

 
 
 

Measured Tp,in 

 
 
 
 

Measured 
sin(Dirin ) and 
cos(Dirin ) 

Measured Ein 
 
 
 
 
 

Measured Hm0,in 

 
 
 

Measured Tp,in 

 
 
 

Measured Ein 

44,099 and 44,087 were correlated. The prediction of ocean wave di- 
rections was not included in this study, because the ocean wave di- 
rections are within a narrow range due to the wave refraction and 
shoreline sheltering effects (Section 2.3.2). Thus, the corresponding loss 
function for estimating ocean waves at the bay buoy location was 
determined as the sum of error functions of Hm0, Tp, and E. The defini- 
tions of Hm0, Tp, Dir, and E can be found in Table A1 in Appendix. 

The 2D wave spectra in frequency and direction spaces at NDBC 
buoys 44,099 and 44,087 were estimated from the first-five Fourier 
coefficients with spectral reconstruction methods (Earle et al., 1999). 
However, the reconstructed 2D spectra through these methods can be 
noisy at different frequency and direction bins (Song and Jiang, 2022). 
To develop an ANN model with better performance for estimating the 
spectral energy values for both bay and ocean waves, we smoothed the 
frequency spectra with a sliding window size of 6. The sensitivity of the 
integral parameters to the smoothed frequency spectra was examined. 
The results show that the integral wave parameters Hm0 and Tp derived 
from the original and smoothed spectra are very close (Fig. A1). Thus, 
the smoothed frequency spectra at buoys 44,087 and 44,099 were 
employed to develop composite ANN models for predicting integral 
wave parameters and spectra of bay and ocean waves at bay buoy 44, 
087. 

Because the network structure can largely influence the prediction 
performance of ANNs, a total of 1164 structures (2–5 hidden layers with 
10–300 nodes per layer) were examined to identify the optimal network 
structures for simulating integral parameters and spectra of bay and 
ocean waves (Wang et al., 2022c). The number of hidden layers and 

mate the zero-moment wave height Hm0. As Hm0 interrelates with the 
peak wave period Tp and mean wave direction Dir, Hm0 was further used 
as an input together with the wind and water level for simulating Tp and 
Dir. The spectral wave energy values in the frequency domain (E) were 

nodes for networks to simulate Hm0, Tp, Dir, and E was kept the same. 
The total composite performance score (TCPS) was evaluated based on 
error matrices, including bias, SI, and R2, so that the prediction per- 
formance of different structures can be quantified (Table A2). 

 

 
 

Fig. 4. Schematic architecture of the composite neural networks for predicting Hm0, Tp, Dir, and E of (a) bay waves and (b) ocean waves at buoy 44,087. Hm0,in, Tp, in, 
Dir in, and E in represent the wave parameters and spectral energy at NDBC station 44,087. Hm0,out and Tp, out represent the wave parameters at NDBC station 44,099. 
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Fig. 5. The probability density plot for measured ocean wave directions at 
buoy 44,087 from 2018 to 2021. 

 
2.3.1. Prediction of bay waves 

In this study, a composite wave model was trained and validated to 
estimate Hm0, Tp, Dir, and E of bay waves based on the measured integral 
wave parameters and spectra at bay buoy 44,087 from August 2018 to 
December 2021. The testing and validation data contained continuous 
hourly datasets from 09/01/2021 to 11/01/2021 and 06/01/2021 to 
08/01/2021, respectively. The training data were the rest of the dataset 
from 2018 to 2021. Because bay waves are essentially locally generated 
wind waves in Chesapeake Bay, small, swell-like waves with Hm0 < 20 
cm and Tp > 6 s were excluded from the training data. 

Pytorch (https://pytorch.org/) was applied to develop the composite 
network to estimate bay waves in this study. Hyperbolic Tangent was 
used as the activation function. The mean square error (MSE) of pre- 
dicted parameters and maximum learning epoch were employed to 
control the training procedure. Specifically, the training procedure was 
stopped once the iteration number reached 2000 or one of the MSEs of 
Hm0, Tp, Dir, and E stopped to decrease. To avoid the negative effect of 
the large difference between various parameters, we applied normali- 
zation to keep inputs and outputs between -1 and 1. The initial biases in 
each layer were all set to zero, and the initial weights were set to follow 
Xavier normal distribution (Glorot and Bengio, 2010). The initial 
learning rate was 0.01 and then decreased to 0.001 after 500 iterations. 
The training was conducted on an Intel Core i9 CPU with 32 GB memory, 
and the training time was approximately 60 s. 

 
2.3.2. Prediction of ocean waves 

Compared to the ANN model setup for estimating bay waves, the 
main difference of the deep neural network for ocean waves is that wave 
direction is not one of the outputs. This is because ocean wave directions 
are within a narrow range (100∘ to 130∘) due to the wave refraction and 
shoreline sheltering effects. Fig. 5 shows that about 76% of ocean waves 
came from a direction within the range of 100–130 ◦. Additionally, only 
the wind data from the nearby two stations (i.e., KPTV2 and CHYV2) 
were included in the input features, because the other stations may not 
well represent the wind coming from the ocean to the study site. 
Moreover, the waves measured at the offshore buoy 44,099 outside the 
bay have close correlations with the ocean wave components measured 
at the bay buoy 44,087. Therefore, the wave parameters, including Hm0 
and Tp at the offshore buoy 44,099, were applied as input features as 
well. The testing, validation, training data, and other model setups for 
developing the ANN model for ocean waves were kept the same as the 
ones used in the ANN model for bay waves. 

 
2.3.3. Hindcasting waves during the Halloween storm in 1991 

The Halloween storm was a devasting Nor’easter that initially 
developed off the coast of Atlantic Canada on October 28 and fully 
dissipated late on November 2, 1991. In this study, the validated models 

Fig. 6. The TCPSs generated by the composite wave models for bay wave 
predictions using different network structures. 

 
were applied to hindcast waves during this storm. As mentioned in 
Section 2.3, the wind data measured at six NDBC stations were 
employed to develop the composite ANN model to predict bay waves at 
the study site. As the NDBC wind data in 1991 are unavailable, we 
collected the wind data from the National Centers for Environmental 
Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (Saha 
et al., 2010b, 2014). The CFSR was designed and executed as a global, 
high-resolution, coupled atmosphere-ocean-land surface-sea ice system, 
providing estimates of the state of coupled domains from 1979 to 2009. 
The spatial resolution of CFSR is approximately 38 km, and the CFSR 
atmospheric, oceanic, and land surface output products are available 
hourly. Therefore, we selected the nearest grids to the NDBC stations for 
extracting the wind data in 1991 from the CFSR datasets (Saha et al., 
2010a). The water level data in 1991 are available at NOAA station 
8638,610. 

The offshore wave data at station 44,099 in 1991 is required to 
hindcast ocean waves during the Halloween storm. As the measured 
wave data at station 44,099 are unavailable in 1991, we used the dataset 
of WAVEWATCH III® 30-year Hindcast Phase 2 (WWIII), which also 
applies the NECP CFSR wind as model input and covers the time period 
from 1979 through 2009. The output from the WWIII buoy files contains 
the hindcasted wave spectra at the offshore buoy 44,099. The WWIII 
spectra have different resolutions of frequency and direction domains 
compared to the measured wave spectra at buoy 44,099. Thus, the 
WWIII spectra were firstly interpolated to obtain the same resolutions in 
frequency and direction spaces as those measured. Then, the developed 
model was applied to hindcast ocean waves at bay buoy 44,087 based on 
the CFSR wind data and WWIII wave data in 1991 and beyond. 

 
3. Results 

 
3.1. Integral wave parameter predictions of bay and ocean waves 

 
A total of 1164 structures (2–5 hidden layers with 10–300 nodes per 

layer) were examined to identify the optimal network structures for 
simulating integral parameters and spectra. Fig. 6 shows an example of 
TCPSs generated by selected composite wave models using various 
network structures (2–5 hidden layers with 8, 16, 32, 64, 128, and 256 
nodes per layer) for bay wave predictions. It can be observed that the 
model skills are similar when the networks have 2 or 3 hidden layers 
(Fig. 6). Overfitting patterns can be observed when the structure has 3 or 
4 layers with more than 160 nodes per layer. The optimal structures for 
simulating bay and ocean waves were determined as 3 layers of 20 nodes 
and 3 layers of 36 nodes, respectively (the highest TCPSs for bay and 
ocean waves are 0.85 and 0.79, respectively). 

The comparisons between the simulated and measured Hm0, Tp, and 
Dir during the testing phase are shown in Fig. 7(a). The composite wave 
model shows a high prediction skill for estimating Hm0 of bay waves at 
the bay buoy 44,087, with an R2 value of about 0.87 and a root mean 
square error (RMSE) of about 0.08 m. The simulation accuracy of Tp of 
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Fig. 7. Comparison between the measured and simulated Hm0, Tp, and Dir of bay waves at the bay buoy 44,087. (a) Scatter plots and (b) time series (only contain the 
testing data). sin(Dir) and cos(Dir) were employed to represent the wave direction Dir in the neural networks (Dir=0◦ and 360◦ are the same). The third panel in (b) 
shows the comparison between the measured and simulated Dir converted from sin(Dir) and cos(Dir). 

 

bay waves is slightly lower, with R2 values around 0.63 and RMSE 
around 0.42 s. Notice that most of the existing data-driven wave models 
were only focused on significant wave height prediction because of the 
difficulty in predicting peak wave periods. Our proposed composite 
model also shows a good performance in predicting the bay wave di- 
rection. For ocean wave prediction, the composite deep neural networks 
produce satisfactory results for simulating both Hm0 and Tp at the bay 
buoy 44,087 (Fig. 8(a)), with R2 values around 0.90 and 0.72, respec- 
tively. The time series of the predicted and observed wave parameters of 
the bay and ocean waves during the testing phase are presented in Figs. 7 
(b) and 8(b). Good agreement between the modeled and measured Hm0, 
Tp, and bay wave Dir is achieved. Thus, the composite ANN models can 
be used to forecast or hindcast integral wave parameters with sufficient 
accuracy for both bay and ocean waves at the study site. 

 

3.2. Predictions of energy density spectra of bay and ocean waves 
 

The composite networks also provide estimations of wave spectra in 
frequency space. Fig. 9 presents the comparisons between the simulated 
and measured spectral energy density values of bay and ocean waves at 
buoy 44,087. The model results show good agreement with the field 
measurements, with RSEM around 0.034 and 0.029 m2/Hz for bay and 
ocean waves, respectively. Fig. 10 depicts six examples of the estimated 

and measured wave spectra of bay and ocean waves. It is seen that the 
composite models can capture the shapes of wave spectra. To further 
investigate the model performance, two additional parameters were 
calculated to determine the differences between the observed and pre- 
dicted wave spectra, including the peak energy density (Emax) and 
spectral width (Swidth). Emax is defined as the maximum spectral energy 
density in the frequency domain (Dabbi et al., 2015). Swidth represents 
the narrowness of a wave energy density spectrum (if this parameter is 
closer to one, the spectrum is narrower) (Rogers and Van Vledder, 
2013). More details of the definitions of these two parameters can be 
found in Table A1. Fig. 11 shows the time series of the simulated and 
measured Emax, Swidth, and the corresponding Hm0. Overall, the good 
model-data agreement further demonstrates the composite models are 
capable of predicting wave spectra of both bay and ocean waves with 
high accuracy. 

 

3.3. Hindcast of wave spectra during the Halloween storm (1991) 
 

This section demonstrates an application of the composite models to 
assess the damages from the Halloween storm (1991) to the CBBT. We 
estimated the wave spectra of both bay and ocean waves at bay buoy 
44,087 during the storm using the developed composite ANN models. 
Time series of the estimated Hm0 and Tp of bay and ocean waves are 
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Fig. 8. Comparison between the measured and simulated Hm0 and Tp of ocean waves at the bay buoy 44,087 (a) Scatter plots and (b) time series (only contain the 
testing data). 

 

shown in Fig. 12. The model results indicate that the maximum Hm0 of 
ocean waves was about 1.4 m during the storm, which was about twice 
larger than that of the bay waves (occurred on October 29, 1991, 03:00). 
We also found that Tp and Hm0 of ocean waves did not reach their peak 
values simultaneously, and the predicted ocean wave Tp reached its peak 
value at 06:00 on October 31, 1991. Three examples of the hindcasted 
wave spectra of bay and ocean waves are shown in Fig. 13. It can be 
observed that the energy of ocean waves was much higher than that of 
bay waves, indicating that the devastating wave energy near the CBBT 
mostly came from the Atlantic Ocean during the storm. This finding is 
consistent with the fact that the Nor’easter wind blowing from the 

northeast does not generate large bay waves considering the geometry 
and dimension of Chesapeake Bay. 

 
4. Discussion 

 
4.1. Representativeness test for training data 

 
One of the drawbacks of ANN models is the inability to do extrapo- 

lation (cannot generalize to estimate scenarios that are unseen in the 
training dataset). Therefore, we examined whether the offshore waves at 
buoy 44,099 and wind conditions from August 2018 to December 2021 
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Fig. 9. The comparison between the observed and simulated wave spectra for (a) bay and (b) ocean waves at the buoy inside the bay (only contain the testing data). 
 
 

 

 

 

 
 

                  
 

 
 

 

 

 

 
 

                  
 

 

Fig. 10. Comparisons between the measured and simulated bay and ocean wave spectra at selected times during the testing phase at buoy 44,087. 
 

(the data we used to develop ANN models) can represent the ones during 
the storms in October and November 1991. It was found that the largest 
measured Hm0 at buoy 44,099 (4.64 m) during the training period is 
higher than the one from WWIII (2.8 m) during the Halloween storm in 
1991, and there were about 0.7% of the training data with Hm0 values 
larger than 2.8 m. 

For the wind fields, we compared the wind conditions from August 
2018 to December 2021 (41 months) and the ones from October to 
November 1991 (during the Halloween storm). The following steps were 
taken to quantify the representativeness of the forcing of wave genera- 
tion during the storm (Wang et al., 2022c). Firstly, the hourly datasets of 
wind direction and wind speed during the two months in 1991 and from 

August 2018 to December 2021 were uniformly divided into 36 direc- 
tional bins at 10∘ intervals (i.e., 0◦-10◦, …,350◦-360◦) and 60 speed 
bins at 0.5 m/s intervals (i.e., 0–0.5, …, 29.5–30 m/s), respectively 
(Fig. 14). The two groups of bins were then combined into 2160 di- 
visions (i.e., 36 × 60 = 2160). A wind forcing was considered repre- 
sentable by the 41-month forcings if that specific data fell into one of the 
divisions that were also taken by the 41-month data. The results show 
that during the two months in 1991, the average percentage of winds 
that could be represented by the data from 2018 to 2021 is about 97.6% 
at the six wind stations (Table 3). As the offshore waves and wind 
conditions in Chesapeake Bay from August 2018 to December 2021 
could largely represent the ones during the Halloween storm, it can be 
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Fig. 11. Time series of simulated and measured Swidth, Emax, and Hm0 of (a) bay and (b) ocean waves at bay buoy 44,087. 
 

4.2. Potential hindcast errors during the Halloween storm 
 

 
 
 
 
 
 
 

 
 

 

 
Fig. 12. The time series of ANN-predicted Hm0 and Tp at bay buoy 44,087 in 
October and November 1991. 

 
expected that the composite ANN models are capable of hindcasting 
wave parameters and spectra with sufficient accuracy at the bay buoy 
44,087 during the 1991 storm if the input CFSR winds and WWIII waves 
were accurate. 

In this study, the developed ANN models were utilized to estimate 
the integral wave parameters and energy density spectra at bay buoy 
44,087 during the Halloween storm in 1991. According to Basco (2020), 
very long period swell waves were observed during the storm. For 
example, Hm0 = 2.6 m and Tp = 23 s were measured at the Virginia 
Beach wave gage (VA001), and Hm0 = 4.6 m and Tp = 22 s were reported 
at the U.S. Army Corps of Engineers, Field Research Facility (FRF) at 
Duck, North Carolina. However, the largest values of estimated Hm0 and 
Tp of ocean waves hindcasted by the developed ANN models are 1.4 m 
and 12.7 s, respectively, which are lower than the estimates inferred 
from the CBBT armor unit damage in Basco (2020). The difference be- 
tween the inferred wave height and the hindcast can be explained by the 
following reasons. 

Firstly, the ANN models were developed with the wind data 
measured at the NDBC stations. Because the NDBC wind and wave data 
at the offshore buoy 44,099 were unavailable in 1991, the CFSR rean- 
alysis wind data and the WWIII hindcast were utilized as input to 
hindcast the wave conditions during the storm. Although the wind data 
at the nearest grids to the NDBC stations were used as input to hindcast 
bay and ocean waves, the wind forcings extracted from CFSR may not 
well represent the real wind conditions at the locations of NDBC sta- 
tions. This mainly affected the bay wave prediction. Secondly, the 
WWIII hindcasted wave spectra used as input for ocean wave predictions 
may also contain errors. For instance, the longest wave period output 
from WWIII is about 16.7 s during the storm, much shorter than the 

 
   

 

 

 

Fig. 13. Examples of the hindcasted bay and ocean wave spectra during the Halloween storm in 1991 using composite ANN models. 
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Fig. 14. Wind direction and wind speed at different stations in October and November 1991 versus August 2018 to December 2021. 
 
 

Table 3 
Percentages of wind data at different CFSR grids in October and November 1991 
that can be represented by the NDBC wind data from August 2018 to December 
2021. 

days. To determine the design wave heights for maintenance, upgrade, 
and expansion, statistical analyses of long-term wave climates are 
needed. However, there is a lack of reliable long-term wave observations 
in Chesapeake Bay. Thus, an accurate forecast/hindcast of wave spectra 
and integral wave parameters must be carried out to fill the data gap. 

Station TPLM2 RPLV2 YKRV2 KPTV2 WDSV2 CHYV2 In this study, we developed two composite ANN models for pre- 
Percentage 100.0% 99.7% 99.8% 95.6% 99.9% 90.9% dicting bay and ocean waves at buoy station 44,087 using wind data 

from six NDBC stations sparsely located in the bay area, water level from 
       a nearby NOAA tidal station, and offshore wave data from the NDBC 
measurements at the VB gage VA001 and the FRF. Thus, the uncertainty 
in the CFSR and WWIII results can induce simulation errors in the 
hindcast of the bay and ocean waves at bay buoy 44,087 during the 
storm. Thirdly, the spatial variability of the wave field near the bay 
entrance and along the coast could be substantial due to the strong 
variations in bathymetry and currents. Notice that the study site at bay 
buoy 44,087 is about 5 km northwest of the CBBT (Fig. 1). The four 
artificial islands and bathymetric variation could also affect the wave 
field. Therefore, the real wave height at bay buoy 44,087 is likely 
different from the measurements at VB gage VA001 and the FRF during 
the storm. 

 
5. Summary and conclusions 

 
Chesapeake Bay is the largest tidal estuary in the United States, with 

the bay mouth width of about 27 km from the City of Virginia Beach to 
the Eastern Shore of Virginia. To reduce the travel distance between the 
states of Virginia and Delaware, the CBBT was designed and constructed 
in the early 1960s and first opened on April 15, 1964. The CBBT system 
consists of two tunnels, four artificial islands, and four bridges with 
lengthy causeways at both approaches as of 2020. Later expansions are 
expected to be carried out to increase the capacity of the tunnels and 
bridges, because CBBT becomes insufficient for growing demand these 

buoy station 44,099 located out of the bay. Because of the close distance 
between the CBBT and the buoy station 44,087, the simulated integral 
wave parameters and wave spectra at this buoy station can represent the 
wave fields near the CBBT. Based on the directional spectral wave data 
from buoys 44,099 and 44,087, we partitioned the complex wave field 
into bay waves generated in the estuary and ocean waves generated in 
the Atlantic Ocean according to the wave directions. For bay wave 
predictions, the results show a high prediction skill for estimating Hm0 
and wave direction, with the R2 values around 0.87 and 0.86, respec- 
tively. The modeling accuracy of Tp is slightly lower, but the R2 and 
RMSE values can still reach 0.63 and 0.42 s, respectively. For ocean 
wave predictions, the composite deep neural networks provide satis- 
factory results for simulating both Hm0 and Tp at the bay buoy 44,087, 
with the R2 values around 0.90 and 0.72, respectively. Furthermore, the 
simulated wave spectra are in good agreement with measurements, with 
RSEM around 0.034 and 0.029 m2/Hz for bay and ocean waves, 
respectively. Overall, the model-data comparisons show that the 
developed data-driven models are able to predict integral wave pa- 
rameters and wave energy density spectra for both bay and ocean waves. 
One application of the developed models is to hindcast the wave spectra 
at buoy 44,087 during the Halloween storm in 1991. Our composite 
ANN models hindcast that the maximum Hm0 of ocean waves reached 
1.4 m at bay buoy 44,087 during the Halloween storm, which is about 
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twice larger than that of bay waves. Moreover, model results show that 
the energy of ocean waves was much higher than that of bay waves, 
indicating that the wave energy near the CBBT mostly came from the 
Atlantic Ocean during the storm. However, because of the large fetch of 
Chesapeake Bay, bay waves generated by strong northwesterly wind 
could have wave height comparable to that of ocean waves at the study 
site, albeit much shorter wave periods and at a different time. This 
suggests that the bridge and tunnel system needs to consider waves 
generated from both the estuary and the ocean. 

Overall, this study provides a novel framework for developing sur- 
rogate models to estimate wave spectra in the frequency domain and 
predict integral wave parameters, including Hm0, Tp, and Dir. The ap- 
proaches shown in this study can be employed to provide fast estima- 
tions of wave spectra or downscaling of ocean wave model results when 
location-specific predictions are required, serving as a useful tool for the 
characterization and simulation of the wave environment. Note that the 
input features (e.g., wind and offshore waves) should be long enough so 
that the training data can be representative of the wave climates in 
different years. In closing, the information about the wave spectra and 
parameter estimates in this study can be useful for maintaining and 
expanding the CBBT system. Also, the novel framework for predicting 
wave spectra in the frequency domain and integral wave parameters can 
be applied to other coasts and estuaries. 
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Appendix 

 
The definitions of wave parameters applied in this study are as 

follows. 

 

 
 

  
 

Fig. A1. Comparison between the wave parameters derived from the original frequency spectra and smoothed spectra at buoy 44,087. 
 
 
 
 

Table A1 
List of wave parameters used in this study. 

Parameter Definition 

Hm0 Hm0 = 4√m
̅̅̅̅
0
̅̅
 

mn is the nth moment of the frequency wave spectrum (Sverdrup and Munk, 1947), calculated as mn = 

domain and f is the discretized frequency. 
Tp Period corresponding to the peak spectral frequency, fp 

f E f 5df 
fp = ∫ 

[E(f)]5 df 

 
 
 
 
 
 
 
 
 
 

∞ 

fnE(f)df, where E is the spectral energy density in the frequency 
0 

 
 

Dir Mean direction from which energy is coming at the peak period. 
Emax Maximum spectral energy density in the frequency domain. 
Swidth The narrowness of the spectrum 

Swidth = 
Tm,0,2  

2
 

Tm,-1,0 
, where Tm,0,2 = 

√
∫̅̅̅
∫̅̅̅
E
̅̅̅
(
̅̅
f
̅̅
)
̅̅
d
̅̅
f
̅̅̅̅ 

and Tm 1 0 =
 f-1E f df 

∫ 
E(f)df 

 

which reduces the errors associated with the estimate of fp from the spectrum which is evaluated only at discrete values of frequency (Young and Verhagen, 1996). 

∫ 

f2 E(f)df ,- 
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Table A2 
Statistical measures used in this study to evaluate the performance of the 
developed models. 

 

James, S.C., Zhang, Y., O’Donncha, F., 2018. A machine learning framework to forecast 
wave conditions. Coast. Eng. 137 https://doi.org/10.1016/j. 
coastaleng.2018.03.004. 

Jo¨rges, C., Berkenbrink, C., Stumpe, B., 2021. Prediction and reconstruction of ocean 

MSE: 
 
 

RMSE: 

MSE = 

 
RMSE = 

N 2 
  i  

N 
√∑̅̅
̅̅̅̅
N
̅̅
(
̅̅
y
̅̅̅
i

̅̅
-
̅̅̅̅̅

y
̅̂̅

i

̅̅
)
̅̅
2
̅̅ 

 

wave heights based on bathymetric data using LSTM neural networks. Ocean Eng. 
232, 109046. 

Karimpour, A., Chen, Q., Twilley, R.R., 2017. Wind wave behavior in fetch and depth 
limited estuaries. Sci. Rep. 7, 40654. 

Lee, J.-.W., Irish, J.L., Bensi, M.T., Marcy, D.C., 2021. Rapid prediction of peak storm 
surge from tropical cyclone track time series using machine learning. Coast. Eng. 

SI: SI  RMSE 
 y 

bias: bias = 
1 ∑N 

ŷ - y 

170, 104024. 
Mariotti, G., Huang, H., Xue, Z., Li, B., Justic, D., Zang, Z., 2018. Biased wind 

measurements in estuarine waters. J. Geophys. Res. Ocean. 123, 3577–3587. 

R2: 
 
 

Normalized SI performance: 

Normalized bias performance: 

 
Composite Performance Score: 

2 
N 2 

R2 = ⎝√̅̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅̅̅
̅̅

 ⎠ 
 

 

 

SI = 1 - SI 
abs bias 

Bias = 1 - 

R2  SI  bias CPS = 

Cascade-Neural network-nonlinear autoregressive networks with exogenous inputs 
(NARX) approach for long-term time-series prediction of wave height based on wave 
characteristics measurements. Ocean Eng 240, 109958. 

Mohaghegh, F., Murthy, J., Alam, M.-.R., 2021. Rapid phase-resolved prediction of 
nonlinear dispersive waves using machine learning. Appl. Ocean Res. 117, 102920. 

Namekar, S., Deo, M.C., 2006. Application of artificial neural network model in 
estimation of wave spectra. J. Waterw. Port, Coastal, Ocean Eng. 132, 415–418. 

Oh, J., Suh, K.-.D., 2018. Real-time forecasting of wave heights using 
EOF–wavelet–neural network hybrid model. Ocean Eng 150, 48–59. 

Total composite performance score: TCPS = 
3 

1 (CPSE + CPSH + CPST ) 
Rogers, W.E., Van Vledder, G.P., 2013. Frequency width in predictions of windsea 

spectra and the role of the nonlinear solver. Ocean Model 70, 52–61. 
3 s p 

 
in which N is the number of samples, y is the estimated values, and y is the true 

Sadeghifar, T., Nouri Motlagh, M., Torabi Azad, M., Mohammad Mahdizadeh, M., 2017. 
Coastal wave height prediction using recurrent neural networks (RNNs) in the South 
Caspian Sea. Mar. Geod. 40 https://doi.org/10.1080/01490419.2017.1359220. 
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