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is a 28.3-km bridge-tunnel system that crosses the mouth of Chesapeake Bay. Because there is a lack of reliable
long-term observations of surface waves near the Chesapeake Bay entrance, accurate forecasts and hindcasts of
wave conditions are essential for maintaining and expanding the bridge-tunnel infrastructure. To estimate wave
parameters and energy spectra near the CBBT, novel composite data-driven models were developed using the
wind, water level, and offshore wave data as input. The developed models provide satisfactory predictions of
both integral wave parameters and energy density spectra of sea and swell waves at the Chesapeake Bay
entrance. The developed models can rapidly hindcast the wave characteristics and spectra during an extreme
event (i.e., the Halloween storm in 1991). This paper provides a novel framework for developing surrogate
models to predict wave spectra in the frequency domain and hindcast historical wave climate, which can be
applied to other sea-crossing bridges and/or tunnel sites near bay entrances. The data-driven models, based on
deep neural networks, allow for estimating waves without a high demand for computational resources, and thus
serve as a useful tool for the characterization and simulation of the complex wave environment at the interface of

estuary and ocean.

1. Introduction

Chesapeake Bay is the largest tidal estuary in the United States and
the third-largest estuary in the world. The bay is approximately 320 km
long between the northern headwaters in Havre de Grace, Maryland and
the southern end in Norfolk, Virginia (Basco, 2020). The bay mouth is
about 27 km wide from the City of Virginia Beach, Virginia, to the
Eastern Shore of Virginia. The vehicle ferry services, which operated
between the 1930s and early 1960s, carried travelers between the
Norfolk/Virginia Beach area and Virginia’s Eastern Shore. However, the
ferries were time-consuming and impractical for the long-term needs of
the region on the East Coast of the United States. Thus, the Chesapeake
Bay Bridge-Tunnel (CBBT) was designed and constructed in the early
1960s. It first opened on April 15, 1964, which connects Virginia with
Delaware and reduces 153 km of travel distance between these two
states. The bridges sit above the water surface, and the tunnels are at the
main shipping channels so that large vessels can efficiently go through
the Chesapeake Bay entrance.
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After more than half a century, The CBBT has become insufficient for
the growing demand these days. As of 2020, the CBBT system consists of
two tunnels, four artificial islands, and four bridges with lengthy
causeways at both approaches (Designing buildings, 2020). Later ex-
pansions are planned to increase the tunnels and bridges’ capacity
(Designing buildings, 2020). To determine the design wave conditions
for the maintenance and expansion of CBBT subject to the impact of
global climate change, statistical analyses of long-term wave climate
need to be performed. Although a program was launched to collect
meteorological, oceanographic, and water-quality data through
deploying buoys in Chesapeake Bay by the U.S. National Oceanic and
Atmospheric Administration (NOAA) in 2007, there is still a lack of
reliable long-term observations of surface waves in the Bay (Ti et al.,
2022). Moreover, the wave system at the entrance of Chesapeake Bay is
very complex because waves generated in the estuary and the Atlantic
Ocean co-exist and transform over complex topography and strong tidal
currents. Therefore, accurate modeling of future and historical wave
characteristics is desirable.
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Fig. 1. (a) A map showing the Chesapeake Bay and locations of NDBC stations involved in this study. (b) A map showing the bay entrance and the locations of the

NDBC stations 44,099 and 44,087 relative to the CBBT (marked as gray lines).

Wave characteristics are required in many engineering applications,
such as designing sea-crossing bridges and tunnels, offshore wind farms,
and pipelines, for the response, load, and fatigue calculations (Christa-
kos et al., 2022). Normally, integral wave parameters, such as significant
wave height, peak wave period, and mean wave direction, are used to
characterize the sea state. Although the integral wave parameters are
useful for describing trends in a series of observations, these quantities
can smear the essential attributes of a wave field. They can be
misleading when the wave conditions are complex with different wave
systems propagating through a given area (Hanson and Phillips, 2001).
On the other hand, wave energy density spectra can provide a more
comprehensive way to describe the wave field, reveal more accurate
information about waves from different origins, and help us better un-
derstand the surface wave conditions in coastal and estuarine areas.

In-situ measurement is often used to obtain wave spectra. However,
field measurements are usually time-consuming to collect and spatially
and temporally sparse because of high costs (e.g., Wang et al., 2022b; Ti
et al., 2022). Therefore, physics-based wave models, such as SWAN
(Booij et al., 1999), MIKE21 SW (DHI, 2017), and WAVEWATCH (Tol-
man and others, 2009), have been employed to simulate spatial and
temporal evolutions of wave spectra in the ocean, coastal, and estuarine
waters. Although numerical models can generate satisfactory estima-
tions of waves in general, the direct application of these models to es-
timate wave spectra can have some drawbacks. For example, the
simulation of localized wave and flow fields may require nested
computational domains and/or coupled ocean circulation model and
wave model, which can be extremely computationally expensive and not
practical for a long-term assessment (e.g., yearly to multi-decadal).
Additionally, some numerical approximations in these physics-based
models, such as the approximate solutions to the quadruplet
wave-wave interactions and triad interactions, may introduce errors in
the model results (Song and Jiang, 2022). Alternatively, data-driven
models can be used as surrogates to simulate wave spectra without a
high demand for computational resources, and they can handle strong
nonlinearity and high dimensionality (Wang et al., 2022a).

During the last two decades, many data-driven models have been
developed to study nonlinear relationships between input features and
labels for coastal and ocean engineering applications, such as artificial
neural networks (ANN), decision trees, Bayesian networks, support
vector machines, and long short-term memory (LSTM) (e.g., Deo and
Naidu, 1998; Yagci and Kitsikoudis, 2015; Cornejo-Bueno et al., 2016;
Sadeghifar et al., 2017; Oh and Suh, 2018; James et al., 2018; Stringari
et al., 2019; Zheng et al., 2020; Callens et al., 2020; Mohaghegh et al.,
2021; Tang and Adcock, 2021; Wei, 2021; Lee et al., 2021; Miky et al.,
2021; Jo 'rges et al., 2021; Elbisy and Elbisy, 2021; Bento et al., 2021;
Huang et al., 2022; Bai et al., 2022; Wei and Davison, 2022). For
instance, Zilong et al. (2022) proposed a novel data-driven model for
efficient spatial-temporal significant wave height forecast in West Pa-
cific using the LSTM method. Their model showed promising accuracy
for wave height forecast and had higher computational efficiency than
physics-based numerical models. Sakhare and Deo (2009) and Namekar
and Deo (2006) applied support vector regression (SVR), model tree
(MT), and ANN to obtain the wave spectra using significant wave height
and wave period as input. Their results indicated that data-driven
models could estimate the wave spectral shapes better than commonly
used theoretical spectra, including Pierson-Moskowitz, JONSWAP, and
Scotts. Song and Jiang (2022) established a deep neural network to es-
timate directional wave spectra using local and remote wind fields as
input. They found that the model can predict the local wave spectra with
low computational cost and perform well in predicting spectral shape.
These data-driven models provide a new method to solve wave predic-
tion problems in coastal and estuarine areas.

This paper is dedicated to estimating integral wave parameters and
energy density spectra near the CBBT at the Chesapeake Bay entrance
using advanced scientific machine learning (ML) techniques. Specif-
ically, we focus on predicting the desired wave properties at the Na-
tional Data Buoy Center (NDBC) station 44,087, 5 km west of the CBBT.
Unlike previous works which used integral wave parameters or winds as
input features (i.e., Sakhare and Deo (2009), Namekar and Deo (20006),
and Song and Jiang (2022)), wind, water level, and offshore wave data
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Table 1
Wind, water level, and wave buoy stations involved in this study.

Type Station name

‘Wind station (NDBC)
Water level station (NOAA)
‘Wave buoy station (NDBC)

TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHYV2
8638,610 at Sewells Point, VA
44,087 and 44,099

were used as input features for developing novel composite ANN models
for wave spectral predictions in this study. To resolve the complex wave
field at the bay entrance, we separated the wave fields at the two NDBC
stations into bay waves (generated in the bay) and ocean waves (coming
from the ocean) based on the two-dimensional (2D) wave spectra in the
frequency and directional spaces. The developed models were then
applied to hindcast the wave characteristics and spectra at the study site
during the Halloween storm in 1991. The models allow for estimating
waves without a high demand for computational resources. This paper
presents a novel framework as a surrogate to estimate wave spectra in
the frequency domain and hindcast historical waves. This framework
can be applied to other sea-crossing sites near a bay entrance.

The rest of the paper is organized as follows. Section 2 presents the
model development, including model input, output, and model setup.
Section 3 examines the performance of the ML models in estimating
integral wave parameters and energy density spectra for both bay and
ocean waves by comparing the model outputs with the field measure-
ments. The wave hindcast at the study site during the Halloween storm,
or the so-called “perfect storm” in 1991, is also presented in this section.
The influence of wind fields and offshore waves on the accuracy of
hindcasted waves during the Halloween storm is discussed in Section 4.
A representativeness test of the training data is also conducted to ensure
the predicted wave spectra and characteristics during the Halloween
storm are reasonable. Finally, Section 5 concludes the paper with re-
marks on this study.
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2. Methods
2.1. Study area

The study site is near the mouth of Chesapeake Bay (Fig. 1). The
NDBC buoy station 44,087 is located roughly 5 km west of the CBBT, and
thus the wave field at buoy 44,087 is pragmatically used to represent the
wave field around the CBBT. The NDBC buoy station 44,099, located
approximately 26 km southeast of the bay entrance (Fig. 1(b)), provides
representative offshore wave fields out of the bay. As there is a lack of
reliable long-term (multi-decadal) wave observations in Chesapeake Bay
(Ti et al., 2022), an accurate forecast of upcoming or hindcast of his-
torical wave conditions at buoy 44,087 can be very useful for structural
design and assessment purposes. Four artificial islands connecting the
bridges and tunnels were built with 10-ton armor stones, which are
relatively stable and have survived many tropical cyclones since 1964
(Basco, 2020). However, severe damage to the revetment was observed
at one location on the south CBBT island on October 31, 1991, during
the Halloween storm, a severe Nor’easter storm.

2.2. Wind, water level, and wave measurements

This study used the wind, water level, and offshore wave measure-
ments as input features to develop ML models for estimating wave pa-
rameters and spectra near the entrance of Chesapeake Bay (Fig. 1,
Table 1). The water level data were obtained from NOAA 8638,610 at
Sewells Point, VA. It is well known that the growth of waves in an es-
tuary is influenced by water depth (i.e., wave height is limited in the
finite depth condition). The wind data were achieved from six NDBC
stations scattered over the bay (i.e., TPLM2, RPLV2, YKRV2, KPTV2,
WDSV2, and CHYV2), and more details can be found in Section 2.2.1.
The 2D wave spectra data at the buoys 44,099 and 44,087 were obtained
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Fig. 2. Wind roses at NDBC Stations TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHY V2 based on measurements from 2020 to 2021.
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Fig. 3. Example of separating bay and ocean energy from the 2D wave spectra at the buoys 44,087 and 44,099. The shaded areas represent the energy of ocean

waves. The rest of the energy is associated with bay waves.

from the Coastal Data Information Program (CDIP). The buoys 44,099
and 44,087 were deployed on 07/23/2008 and 08/06/2018, respec-
tively. Wave data at buoy 44,087 are unavailable prior to its deployment
(i.e., 08/06/2018). The developed composite ANN models can help es-
timate a longer history of wave characteristics at buoy 44,087. Also, this
model can provide a hindcast of wave characteristics during the
Halloween storm in 1991, which facilitates the assessment of wave
impact on the CBBT during extreme events.

2.2.1. Spatial variation of winds in Chesapeake Bay

Wind is the main driving force of surface waves. To account for the
large variability of wind speed and direction in the bay area (Mariotti
etal., 2018), wind measurements from six NDBC stations scattered over
the bay (i.e., TPLM2, RPLV2, YKRV2, KPTV2, WDSV2, and CHYV2 in
Fig. 1(a)) were collected. These stations were selected considering their
locations and data availability. The wind roses based on the measure-
ments at these six stations indicate tremendous spatial variations of
wind fields inside Chesapeake Bay (Fig. 2). More details of model inputs
regarding wind data can be found in Sections 2.3.1 and 2.3.2.

2.2.2. Partition of bay and ocean waves

In this study, the waves at NDBC Stations 44,099 (denoted as the
offshore buoy) and 44,087 (denoted as the bay buoy) were partitioned
into bay and ocean waves based on the 2D wave spectra in the frequency
and directional spaces. Considering the locations of both buoys and the
shoreline of the Chesapeake Bay entrance (Fig. 1(b)), the wave energy

coming from 50°-180° and 0°-180° (0° is the true north) was set as ocean
waves (coming from the ocean) for the bay buoy 44,087 and offshore
buoy 44,099, respectively. The rest of the energy was identified as bay
waves (generated in the bay). Fig. 3 presents an example showing how to
separate the 2D spectra into bay and ocean waves at both buoys.

2.3. Data-driven models

To determine the wave characteristics and energy density spectra at
bay buoy 44,087, we developed two data-driven models based on deep
neural networks for predicting bay and ocean waves separately using
wind, water level, and offshore waves at offshore buoy 44,099 as input
features. Then the developed ANN models were used to estimate waves
at the bay buoy during the Halloween storm in 1991, when the recorded
waves were unavailable. Based on Karimpour et al. (2017), there is a
strong relation between wave height, water depth, and wave period. All
three parameters are related. Therefore, composite models were devel-
oped with the total loss function defined as the sum of the error func-
tions of each target (i.e., Hmo, Tp, Dir, and E). Although independent
networks could also be utilized to predict Hmo, Ty, Dir, and E separately,
they were not used in this work because of the error propagation from
one network to another (Wang et al., 2022). Table 2 lists the input
features and labels for estimating bay and ocean waves at bay buoy 44,

087. Fig. 4 sketches the architecture of the composite neural networks.
For the bay wave prediction, the measured hourly u- and v-wind
speed components and water level were used as input features to esti-
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Table 2

Input features and labels for predicting integral wave parameters and spectral
energy in the frequency domain for bay and ocean waves at buoy 44,087. Hno, in,

Tp, in, Dir in, and E i» represent the wave parameters and spectra values at NDBC

station 44,087. Hmo, ow and T, ou represent the wave parameters at NDBC sta-

tion 44,099.

Prediction

Input features

Labels

Bay
waves

Ocean
waves

Hmo, in

Ty, in

Dir in

Hmo, in

TP, in

Ein

u- and v-wind speed data at TPLM2,
RPLV2, YKRV2, KPTV2, WDSV2,
and CHY V2, water level data at
Sewells Point

u- and v-wind speed data at TPLM2,
RPLV2, YKRV2, KPTV2, WDSV2,
and CHY V2, water level data at
Sewells Point, predicted Hmo,in

u- and v-wind speed data at TPLM2,
RPLV2, YKRV2, KPTV2, WDSV2,
and CHY V2, water level data at
Sewells Point, predicted Hmo,in

u- and v-wind speed data at TPLM2,
RPLV2, YKRV2, KPTV2, WDSV2,
and CHY V2, water level data at
Sewells Point, predicted Hmo,in and

Tp,in

u- and v-wind speed data at KPTV2
and CHY V2, water level data at
Sewells Point, measured Hmo,out and
Tp. out

u- and v-wind speed data at KPTV2
and CHY V2, water level data at
Sewells Point, measured Hmo,out and
Tp, out, predicted Himo,in

u- and v-wind speed data at KPTV2
and CHYV2, water level data at
Sewells Point, measured Hmo,out and
Tp, out, predicted Himo,in

Measured Hmo,in

Measured Tp,in

Measured
sin(Dir;,) and

cos(Diry,)

Measured Ej,

Measured Hmo,in

Measured Tpin

Measured Ej,

mate the zero-moment wave height Hmo. As Hmo interrelates with the
peak wave period 7, and mean wave direction Dir, Hmo was further used
as an input together with the wind and water level for simulating 7, and
Dir. The spectral wave energy values in the frequency domain (£) were
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determined with the wind, water level, Hmo, and 7}, applied as the input
features. The total loss function for predicting bay waves was defined as
the sum of error functions of Hmo, Tp, Dir, and E. Note that sin(Dir) and
cos(Dir) were employed to represent the wave direction Dir in the neural
networks (Dir = 0° and 360° are the same). For ocean wave estimation at
bay buoy 44,087, we included Hmo and 7, of ocean waves measured at
the offshore buoy 44,099 as input, since ocean waves measured at buoys
44,099 and 44,087 were correlated. The prediction of ocean wave di-
rections was not included in this study, because the ocean wave di-
rections are within a narrow range due to the wave refraction and
shoreline sheltering effects (Section 2.3.2). Thus, the corresponding loss
function for estimating ocean waves at the bay buoy location was
determined as the sum of error functions of Hmo, Ty, and E. The defini-
tions of Hmo, Tp, Dir, and E can be found in Table Al in Appendix.

The 2D wave spectra in frequency and direction spaces at NDBC
buoys 44,099 and 44,087 were estimated from the first-five Fourier
coefficients with spectral reconstruction methods (Earle et al., 1999).
However, the reconstructed 2D spectra through these methods can be
noisy at different frequency and direction bins (Song and Jiang, 2022).
To develop an ANN model with better performance for estimating the
spectral energy values for both bay and ocean waves, we smoothed the
frequency spectra with a sliding window size of 6. The sensitivity of the
integral parameters to the smoothed frequency spectra was examined.
The results show that the integral wave parameters Hmo and 7} derived
from the original and smoothed spectra are very close (Fig. Al). Thus,
the smoothed frequency spectra at buoys 44,087 and 44,099 were
employed to develop composite ANN models for predicting integral
wave parameters and spectra of bay and ocean waves at bay buoy 44,
087.

Because the network structure can largely influence the prediction
performance of ANNSs, a total of 1164 structures (2-5 hidden layers with
10-300 nodes per layer) were examined to identify the optimal network
structures for simulating integral parameters and spectra of bay and
ocean waves (Wang et al., 2022c¢). The number of hidden layers and
nodes for networks to simulate Hmo, 7p, Dir, and E was kept the same.
The total composite performance score (TCPS) was evaluated based on
error matrices, including bias, SI, and R?, so that the prediction per-
formance of different structures can be quantified (Table A2).
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Fig. 4. Schematic architecture of the composite neural networks for predicting Hmo, Tp, Dir, and E of (a) bay waves and (b) ocean waves at buoy 44,087. Huo,in, Tp, in,

Dir i, and E i, represent the wave parameters and spectral energy at NDBC station 44,087. Huo,0u and Ty, ou represent the wave parameters at NDBC station 44,099.
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Fig. 5. The probability density plot for measured ocean wave directions at
buoy 44,087 from 2018 to 2021.

2.3.1. Prediction of bay waves

In this study, a composite wave model was trained and validated to
estimate Hmo, Tp, Dir, and E of bay waves based on the measured integral
wave parameters and spectra at bay buoy 44,087 from August 2018 to
December 2021. The testing and validation data contained continuous
hourly datasets from 09/01/2021 to 11/01/2021 and 06/01/2021 to
08/01/2021, respectively. The training data were the rest of the dataset
from 2018 to 2021. Because bay waves are essentially locally generated
wind waves in Chesapeake Bay, small, swell-like waves with Hmo < 20
cmand 7, > 6 s were excluded from the training data.

Pytorch (https://pytorch.org/) was applied to develop the composite
network to estimate bay waves in this study. Hyperbolic Tangent was
used as the activation function. The mean square error (MSE) of pre-
dicted parameters and maximum learning epoch were employed to
control the training procedure. Specifically, the training procedure was
stopped once the iteration number reached 2000 or one of the MSEs of
Hmo, Ty, Dir, and E stopped to decrease. To avoid the negative effect of
the large difference between various parameters, we applied normali-
zation to keep inputs and outputs between —1 and 1. The initial biases in
each layer were all set to zero, and the initial weights were set to follow
Xavier normal distribution (Glorot and Bengio, 2010). The initial
learning rate was 0.01 and then decreased to 0.001 after 500 iterations.
The training was conducted on an Intel Core 19 CPU with 32 GB memory,
and the training time was approximately 60 s.

2.3.2. Prediction of ocean waves

Compared to the ANN model setup for estimating bay waves, the
main difference of the deep neural network for ocean waves is that wave
direction is not one of the outputs. This is because ocean wave directions
are within a narrow range (100° to 130°) due to the wave refraction and
shoreline sheltering effects. Fig. 5 shows that about 76% of ocean waves
came from a direction within the range of 100-130 °. Additionally, only
the wind data from the nearby two stations (i.e., KPTV2 and CHYV2)
were included in the input features, because the other stations may not
well represent the wind coming from the ocean to the study site.
Moreover, the waves measured at the offshore buoy 44,099 outside the
bay have close correlations with the ocean wave components measured
at the bay buoy 44,087. Therefore, the wave parameters, including Hmo
and 7, at the offshore buoy 44,099, were applied as input features as
well. The testing, validation, training data, and other model setups for
developing the ANN model for ocean waves were kept the same as the
ones used in the ANN model for bay waves.

2.3.3. Hindcasting waves during the Halloween storm in 1991

The Halloween storm was a devasting Nor'easter that initially
developed off the coast of Atlantic Canada on October 28 and fully
dissipated late on November 2, 1991. In this study, the validated models
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Fig. 6. The TCPSs generated by the composite wave models for bay wave
predictions using different network structures.

were applied to hindcast waves during this storm. As mentioned in
Section 2.3, the wind data measured at six NDBC stations were
employed to develop the composite ANN model to predict bay waves at
the study site. As the NDBC wind data in 1991 are unavailable, we
collected the wind data from the National Centers for Environmental
Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (Saha
etal., 2010b, 2014). The CFSR was designed and executed as a global,
high-resolution, coupled atmosphere-ocean-land surface-sea ice system,
providing estimates of the state of coupled domains from 1979 to 2009.
The spatial resolution of CFSR is approximately 38 km, and the CFSR
atmospheric, oceanic, and land surface output products are available
hourly. Therefore, we selected the nearest grids to the NDBC stations for
extracting the wind data in 1991 from the CFSR datasets (Saha et al.,
2010a). The water level data in 1991 are available at NOAA station
8638,610.

The offshore wave data at station 44,099 in 1991 is required to
hindcast ocean waves during the Halloween storm. As the measured
wave data at station 44,099 are unavailable in 1991, we used the dataset
of WAVEWATCH II® 30-year Hindcast Phase 2 (WWIII), which also
applies the NECP CFSR wind as model input and covers the time period
from 1979 through 2009. The output from the WWIII buoy files contains
the hindcasted wave spectra at the offshore buoy 44,099. The WWIII
spectra have different resolutions of frequency and direction domains
compared to the measured wave spectra at buoy 44,099. Thus, the
WWIII spectra were firstly interpolated to obtain the same resolutions in
frequency and direction spaces as those measured. Then, the developed
model was applied to hindcast ocean waves at bay buoy 44,087 based on
the CFSR wind data and WWIII wave data in 1991 and beyond.

3. Results
3.1. Integral wave parameter predictions of bay and ocean waves

A total of 1164 structures (2-5 hidden layers with 10-300 nodes per
layer) were examined to identify the optimal network structures for
simulating integral parameters and spectra. Fig. 6 shows an example of
TCPSs generated by selected composite wave models using various
network structures (2-5 hidden layers with 8, 16, 32, 64, 128, and 256
nodes per layer) for bay wave predictions. It can be observed that the
model skills are similar when the networks have 2 or 3 hidden layers
(Fig. 6). Overfitting patterns can be observed when the structure has 3 or
4 layers with more than 160 nodes per layer. The optimal structures for
simulating bay and ocean waves were determined as 3 layers of 20 nodes
and 3 layers of 36 nodes, respectively (the highest TCPSs for bay and
ocean waves are 0.85 and 0.79, respectively).

The comparisons between the simulated and measured Hmo, 7p, and
Dir during the testing phase are shown in Fig. 7(a). The composite wave
model shows a high prediction skill for estimating Hm, of bay waves at
the bay buoy 44,087, with an R? value of about 0.87 and a root mean
square error (RMSE) of about 0.08 m. The simulation accuracy of 7} of
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bay waves is slightly lower, with R? values around 0.63 and RMSE
around 0.42 s. Notice that most of the existing data-driven wave models
were only focused on significant wave height prediction because of the
difficulty in predicting peak wave periods. Our proposed composite
model also shows a good performance in predicting the bay wave di-
rection. For ocean wave prediction, the composite deep neural networks
produce satisfactory results for simulating both Hm and 7, at the bay
buoy 44,087 (Fig. 8(a)), with R? values around 0.90 and 0.72, respec-
tively. The time series of the predicted and observed wave parameters of
the bay and ocean waves during the testing phase are presented in Figs. 7

(b) and 8(b). Good agreement between the modeled and measured Hmo,
Ty, and bay wave Dir is achieved. Thus, the composite ANN models can
be used to forecast or hindcast integral wave parameters with sufficient
accuracy for both bay and ocean waves at the study site.

3.2. Predictions of energy density spectra of bay and ocean waves

The composite networks also provide estimations of wave spectra in
frequency space. Fig. 9 presents the comparisons between the simulated
and measured spectral energy density values of bay and ocean waves at
buoy 44,087. The model results show good agreement with the field
measurements, with RSEM around 0.034 and 0.029 m?*/Hz for bay and
ocean waves, respectively. Fig. 10 depicts six examples of the estimated

and measured wave spectra of bay and ocean waves. It is seen that the
composite models can capture the shapes of wave spectra. To further
investigate the model performance, two additional parameters were
calculated to determine the differences between the observed and pre-
dicted wave spectra, including the peak energy density (Em.x) and
spectral width (Swiam). Emax 1s defined as the maximum spectral energy
density in the frequency domain (Dabbi et al., 2015). Syian represents
the narrowness of a wave energy density spectrum (if this parameter is
closer to one, the spectrum is narrower) (Rogers and Van Vledder,
2013). More details of the definitions of these two parameters can be
found in Table Al. Fig. 11 shows the time series of the simulated and
measured Enmax, Swiam, and the corresponding Hm. Overall, the good
model-data agreement further demonstrates the composite models are
capable of predicting wave spectra of both bay and ocean waves with
high accuracy.

3.3. Hindcast of wave spectra during the Halloween storm (1991)

This section demonstrates an application of the composite models to
assess the damages from the Halloween storm (1991) to the CBBT. We
estimated the wave spectra of both bay and ocean waves at bay buoy
44,087 during the storm using the developed composite ANN models.
Time series of the estimated Hmo and 7} of bay and ocean waves are
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shown in Fig. 12. The model results indicate that the maximum Hmo of
ocean waves was about 1.4 m during the storm, which was about twice
larger than that of the bay waves (occurred on October 29, 1991, 03:00).
We also found that 7, and Hmo of ocean waves did not reach their peak
values simultaneously, and the predicted ocean wave 7, reached its peak
value at 06:00 on October 31, 1991. Three examples of the hindcasted
wave spectra of bay and ocean waves are shown in Fig. 13. It can be
observed that the energy of ocean waves was much higher than that of
bay waves, indicating that the devastating wave energy near the CBBT
mostly came from the Atlantic Ocean during the storm. This finding is
consistent with the fact that the Nor'easter wind blowing from the

northeast does not generate large bay waves considering the geometry
and dimension of Chesapeake Bay.

4. Discussion
4.1. Representativeness test for training data

One of the drawbacks of ANN models is the inability to do extrapo-
lation (cannot generalize to estimate scenarios that are unseen in the

training dataset). Therefore, we examined whether the offshore waves at
buoy 44,099 and wind conditions from August 2018 to December 2021
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Fig. 10. Comparisons between the measured and simulated bay and ocean wave spectra at selected times during the testing phase at buoy 44,087.

(the data we used to develop ANN models) can represent the ones during
the storms in October and November 1991. It was found that the largest
measured Hmo at buoy 44,099 (4.64 m) during the training period is
higher than the one from WWIII (2.8 m) during the Halloween storm in
1991, and there were about 0.7% of the training data with Hmo values
larger than 2.8 m.

For the wind fields, we compared the wind conditions from August
2018 to December 2021 (41 months) and the ones from October to
November 1991 (during the Halloween storm). The following steps were
taken to quantify the representativeness of the forcing of wave genera-
tion during the storm (Wang et al., 2022c). Firstly, the hourly datasets of
wind direction and wind speed during the two months in 1991 and from

August 2018 to December 2021 were uniformly divided into 36 direc-
tional bins at 10° intervals (i.e., 0°=10°, ...,.350°-360°) and 60 speed
bins at 0.5 m/s intervals (i.e., 0-0.5, ..., 29.5-30 m/s), respectively
(Fig. 14). The two groups of bins were then combined into 2160 di-
visions (i.e., 36 X 60 = 2160). A wind forcing was considered repre-
sentable by the 41-month forcings if that specific data fell into one of the

divisions that were also taken by the 41-month data. The results show
that during the two months in 1991, the average percentage of winds
that could be represented by the data from 2018 to 2021 is about 97.6%
at the six wind stations (Table 3). As the offshore waves and wind
conditions in Chesapeake Bay from August 2018 to December 2021
could largely represent the ones during the Halloween storm, it can be
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expected that the composite ANN models are capable of hindcasting
wave parameters and spectra with sufficient accuracy at the bay buoy
44,087 during the 1991 storm if the input CFSR winds and WWIII waves
were accurate.

4.2. Potential hindcast errors during the Halloween storm

In this study, the developed ANN models were utilized to estimate
the integral wave parameters and energy density spectra at bay buoy
44,087 during the Halloween storm in 1991. According to Basco (2020),
very long period swell waves were observed during the storm. For
example, Amo = 2.6 m and 7, = 23 s were measured at the Virginia
Beach wave gage (VA001), and Hmo = 4.6 m and 7, = 22 s were reported
at the U.S. Army Corps of Engineers, Field Research Facility (FRF) at
Duck, North Carolina. However, the largest values of estimated Hmo and
Ty of ocean waves hindcasted by the developed ANN models are 1.4 m
and 12.7 s, respectively, which are lower than the estimates inferred
from the CBBT armor unit damage in Basco (2020). The difference be-
tween the inferred wave height and the hindcast can be explained by the
following reasons.

Firstly, the ANN models were developed with the wind data
measured at the NDBC stations. Because the NDBC wind and wave data
at the offshore buoy 44,099 were unavailable in 1991, the CFSR rean-
alysis wind data and the WWIII hindcast were utilized as input to
hindcast the wave conditions during the storm. Although the wind data
at the nearest grids to the NDBC stations were used as input to hindcast
bay and ocean waves, the wind forcings extracted from CFSR may not
well represent the real wind conditions at the locations of NDBC sta-
tions. This mainly affected the bay wave prediction. Secondly, the
WWIII hindcasted wave spectra used as input for ocean wave predictions
may also contain errors. For instance, the longest wave period output
from WWIII is about 16.7 s during the storm, much shorter than the
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Table 3

Percentages of wind data at different CFSR grids in October and November 1991
that can be represented by the NDBC wind data from August 2018 to December
2021.

Station TPLM2 RPLV2 YKRV2 KPTV2 WDSV2 CHYV2

Percentage 100.0% 99.7% 99.8% 95.6% 99.9% 90.9%

measurements at the VB gage VA0OI and the FRF. Thus, the uncertainty
in the CFSR and WWIII results can induce simulation errors in the
hindcast of the bay and ocean waves at bay buoy 44,087 during the
storm. Thirdly, the spatial variability of the wave field near the bay
entrance and along the coast could be substantial due to the strong
variations in bathymetry and currents. Notice that the study site at bay
buoy 44,087 is about 5 km northwest of the CBBT (Fig. 1). The four
artificial islands and bathymetric variation could also affect the wave
field. Therefore, the real wave height at bay buoy 44,087 is likely
different from the measurements at VB gage VA0OOI and the FRF during
the storm.

5. Summary and conclusions

Chesapeake Bay is the largest tidal estuary in the United States, with
the bay mouth width of about 27 km from the City of Virginia Beach to
the Eastern Shore of Virginia. To reduce the travel distance between the
states of Virginia and Delaware, the CBBT was designed and constructed
in the early 1960s and first opened on April 15, 1964. The CBBT system
consists of two tunnels, four artificial islands, and four bridges with
lengthy causeways at both approaches as of 2020. Later expansions are
expected to be carried out to increase the capacity of the tunnels and
bridges, because CBBT becomes insufficient for growing demand these

11

days. To determine the design wave heights for maintenance, upgrade,
and expansion, statistical analyses of long-term wave climates are
needed. However, there is a lack of reliable long-term wave observations
in Chesapeake Bay. Thus, an accurate forecast/hindcast of wave spectra
and integral wave parameters must be carried out to fill the data gap.

In this study, we developed two composite ANN models for pre-
dicting bay and ocean waves at buoy station 44,087 using wind data
from six NDBC stations sparsely located in the bay area, water level from
a nearby NOAA tidal station, and offshore wave data from the NDBC
buoy station 44,099 located out of the bay. Because of the close distance
between the CBBT and the buoy station 44,087, the simulated integral
wave parameters and wave spectra at this buoy station can represent the
wave fields near the CBBT. Based on the directional spectral wave data
from buoys 44,099 and 44,087, we partitioned the complex wave field
into bay waves generated in the estuary and ocean waves generated in
the Atlantic Ocean according to the wave directions. For bay wave
predictions, the results show a high prediction skill for estimating Hmo
and wave direction, with the R? values around 0.87 and 0.86, respec-
tively. The modeling accuracy of T} is slightly lower, but the R? and
RMSE values can still reach 0.63 and 0.42 s, respectively. For ocean
wave predictions, the composite deep neural networks provide satis-
factory results for simulating both Hmo and 7}, at the bay buoy 44,087,
with the R? values around 0.90 and 0.72, respectively. Furthermore, the
simulated wave spectra are in good agreement with measurements, with
RSEM around 0.034 and 0.029 m%*Hz for bay and ocean waves,
respectively. Overall, the model-data comparisons show that the
developed data-driven models are able to predict integral wave pa-
rameters and wave energy density spectra for both bay and ocean waves.
One application of the developed models is to hindcast the wave spectra
at buoy 44,087 during the Halloween storm in 1991. Our composite
ANN models hindcast that the maximum FHm¢ of ocean waves reached
1.4 m at bay buoy 44,087 during the Halloween storm, which is about
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twice larger than that of bay waves. Moreover, model results show that
the energy of ocean waves was much higher than that of bay waves,
indicating that the wave energy near the CBBT mostly came from the
Atlantic Ocean during the storm. However, because of the large fetch of
Chesapeake Bay, bay waves generated by strong northwesterly wind
could have wave height comparable to that of ocean waves at the study
site, albeit much shorter wave periods and at a different time. This
suggests that the bridge and tunnel system needs to consider waves
generated from both the estuary and the ocean.

Overall, this study provides a novel framework for developing sur-
rogate models to estimate wave spectra in the frequency domain and
predict integral wave parameters, including Hmo, Tp, and Dir. The ap-
proaches shown in this study can be employed to provide fast estima-
tions of wave spectra or downscaling of ocean wave model results when
location-specific predictions are required, serving as a useful tool for the
characterization and simulation of the wave environment. Note that the
input features (e.g., wind and offshore waves) should be long enough so
that the training data can be representative of the wave climates in
different years. In closing, the information about the wave spectra and
parameter estimates in this study can be useful for maintaining and
expanding the CBBT system. Also, the novel framework for predicting
wave spectra in the frequency domain and integral wave parameters can
be applied to other coasts and estuaries.
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Appendix

The definitions of wave parameters applied in this study are as
follows.

20
1500
15 | .
= 1000 5
% 10 # | 3
a c
- s8]
| 500
5
0" 0
0 5 10 15 20

Tp(s)

Fig. Al. Comparison between the wave parameters derived from the original frequency spectra and smoothed spectra at buoy 44,087.

Table Al
List of wave parameters used in this study.

Parameter Definition
Hmo Hio = 4" mo
|0
m,, is the n'™ moment of the frequency wave spectrum (Sverdrup and Munk, 1947), calculated as m,, =  f"E(f)df, where E is the spectral energy density in the frequency

domain and f is the discretized frequency.

0

Whic?l reduces the errors associated with the estimate of £, from the spectrum which is evaluated only at discrete values of frequency (Young and Verhagen, 1996).

T Period corresponding to the peak spectral frequency, f,

JE( *df

1 EQF ar
Dir Mean direction from which energy is coming at the peak period.
Epmax Maximum spectral energy density in the frequency domain.
Swidth The narrowness of the spectrum o

([ o Tpeea
Swidih = , where Ty 00 = F 10 =
Tin,-10 P EG)d - NEG
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Table A2
Statistical measures used in this study to evaluate the performance of the
developed models.

. > A
MSE: s — ?\(Yi -5 2
__N
RMSE: Ef
N
SI:
bias: 12y
-y
R 2
O =54)
Yor-3p? Mon=n?
Normalized SI performance: ST =1-57
Normalized bias performance: abs ibias
Bias = 1- J;—
Composite Performance Score: cps = R? +SI+' bias
3
Total composite performance score: 7CPS = l(CPSE + CPSy + CPSy)
3 ; »

in which N is the number of samples, y is the estimated values, and y is the true
i i

value.
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