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Abstract

Gross primary production (GPP) is a fundamental measure of the terrestrial carbon cycle critical to our
understanding of ecosystem function under the changing climate and land use. Remote sensing enables
access to continuous spatial coverage, but remains challenged in heterogeneous croplands. Coarse
resolution products, like MOD17A (500 m), may aggregate fragmented land cover types commonly found
in heavily managed landscapes and misrepresent their respective contribution to carbon production.
Consequently, this study demonstrates the capability of fine-resolution imagery (20-30 m) and available
red-edge vegetation indices to characterize GPP across seven Midwest cropping systems. Four sites were
established on a 22-year-old USDA Conservation Reserve Program (CRP); and the other three on land
conventionally farmed with corn-soybean-wheat rotation (AGR). We compare in situ GPP estimates from
eddy-covariance towers with ten satellite models: eight variants of the vegetation photosynthesis models
(VPM), of which five include a red-edge vegetation index, as well as conventional products Landsat
CONUS GPP (30 m) and MOD17A2H V6 (500 m). Daily and cumulative fine-resolution imagery
integrated within VPM generally agreed with tower-based GPP in heterogencous landscapes more than
those from MODIS 500 m VPM or conventional GPP products from MOD17AH V6 or Landsat 8
CONUS. Replacing EVI2 with red-edge indices NDRE2, NDREI, and MTCI in Sentinel 2 VPMs notably
improved explanation of variance and estimation of cumulative GPP. While existing methods using
MODIS- and Landsat-derived GPP are important baselines for regional and global studies, future research

may benefit from the higher spatial, temporal, and radiometric resolution.

Keywords: LUE; GPP; Carbon; Croplands; Remote sensing; Ecosystem function
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Abbreviations:

EC: Eddy covariance

CRP: Conservation Reserve Program

GPP: Gross primary production

GPPrower: GPP estimate from eddy covariance towers

GPPropis: MOD17AH V6 GPP

GPPconus: Landsat CONUS GPP

GPPvpvivionis: Vegetation photosynthesis model with MODIS data (500 m)

GPPvrarss: Vegetation photosynthesis model with Landsat 8 data (30 m)

GPPvruisa: Vegetation photosynthesis model with Sentinel-2 data (20 m)

NLCD: National Land Cover Database

LUE: Light use efficiency

LSWI: Land surface water index

PPFD: Photosynthetic photon flux density

VI: Vegetation Index

VPM: Vegetation photosynthesis model

VPMs». 1. Vegetation photosynthesis model with Sentinel-2 (20 m) green chlorophyll index (Clg)

VPMs» e Vegetation photosynthesis model with Sentinel-2 (20 m) red-edge chlorophyll index (Clr)

VPMs:norei: Vegetation photosynthesis model with Sentinel-2 (20 m) normalized difference red-
edge index 1 (NDREI)

VPMs:-xore2: Vegetation photosynthesis model with Sentinel-2 (20 m) normalized difference red-
edge index 2 (NDRE2)

VPMs:2vrer: Vegetation photosynthesis model with Sentinel-2 (20 m) MERIS terrestrial red-edge

chlorophyll index (MTCI)
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1. Introduction

Rising demands for food, biofuel, and other commodities across the globe are driving increases in
cropland cover and productivity (Godfray et al., 2010; Potapov et al., 2022; Tilman et al., 2011). This
intensity increases greenhouse gas (GHG) emissions and threatens ecosystem health through
fragmentation and loss of habitat (Houghton et al., 2012; USGCRP, 2018; Zabel et al., 2019). Cropland
and managed grasslands are the dominant land cover types of many industrial, newly industrializing as
well as developing countries (Bondeau et al., 2007; Foley et al., 2005), totaling 38% of the global land
surface (Ramankutty et al., 2008) and ~30% of global net primary production appropriated by humans
(Haberl et al., 2007). Given the association between cropland intensification, rising GHG emissions, and
threat to biodiversity and ecosystem functions, the United Nations Sustainable Development Goals
(SDGs) call for economies to become carbon (C) neutral by 2030 as well as to prioritize food security and
ecological resource protection (United Nations, 2015). To aid our understanding of how ecosystem
functions respond to changing climate, particularly where cropland is dominant, accurate C estimations
are essential.

Terrestrial GPP is the major driver of land C sequestration and vital to the global C balance, but is
highly variable in croplands due to land management practices (¢.g., crop rotation, irrigation,
abandonment, etc.). As intensification continues, croplands will also experience an increase in terrestrial
gross primary production (GPP), the amount of carbon dioxide ‘fixed” as organic material through
photosynthesis. In addition to physical influences and disturbances (i.c., climate, geomorphology, land
cover change, wildfires, floods), the magnitude and dynamics of GPP are also driven by anthropogenic
activities that alter land use and land cover dynamics, as well as biogeochemical cycles (Abraha et al
2018; Anav et al., 2015; Hibbard et al., 2017; Lei et al., 2021; Piao et al., 2009; Sciusco et al., 2020).
Therefore, it is challenging to generate specific C balance estimates within croplands (Gelybo et al.,
2013).

While GPP cannot be directly measured, it can be modeled using the eddy-covariance (EC) method,
which partitions net ecosystem exchange (NEE) into GPP and ecosystem respiration (Aubinet et al., 2012;

4
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Baldocchi et al., 2012; Lasslop et al., 2010; Papale et al., 2006; Reichstein et al., 2005). Eddy covariance
field-scale measures of C, water and energy cycles have provided detailed knowledge on cropland and
grassland contributions to GHG exchanges, C budgets and opportunities for natural climate solutions
(Abrahaetal., 2019; Chen et al., 2018; Hemes et al., 2021; Shao et al., 2017). At regional to global scales,
many studies have scaled EC tower observations using data-driven, process based models (Beer et al.,
2010; Jung et al., 2009) and found meteorological data have little impact on upscaled GPP with high-
quality satellite data (Joiner & Yoshida, 2020). Measures are scaled by evaluating the relationships
between tower-based GPP estimates and satellite-based, gridded and reanalysis data of climate,
meteorological, and surface-reflectance estimates to constrain and calibrate models that monitor
vegetation health and yield (Cai et al., 2021; Kumar & Mutanga, 2017; Lin et al., 2019; Wolanin et al.,
2019; Xiao etal., 2011). Scaling and extrapolation to regional or global representativeness should be
exercised with caution as it can increase uncertainty (Beer et al., 2010; Chu et al., 2017). This can be
understood as the Modifiable Areal Unit Problem (MAUP) that includes (1) the “scale problem”, when
arcal data is aggregated into several sets of larger units; and (2) the “zoning problem”, when a given set of
areal units are recombined into zones that are of the same size but located differently. Both problems
result in variation in data values and subsequently different conclusions (Jelinski & Wu, 1996).

Similarly, the choice of model and spatial resolution may either inflate or underestimate GPP in
heterogencous croplands. Model comparison is necessary, as it identifies variations that could help
identify shortcomings and areas for future improvement (Morales et al., 2005). Comparison is also a
prerequisite for analyzing spatiotemporal biosphere-atmosphere fluxes as it reveals effects from different
model structures (i.¢., structural uncertainty) (Wang et al., 2011; Zhao et al., 2012), parameter values,
meteorological input data, and vegetation and soil C pools (Anav, 2015). Therefore, examination of
various GPP models and their spatial and temporal variations in croplands is necessary to advance our
understanding of land management and land use effects on the global C budget.

Integration of EC and remote sensing methods have greatly advanced our ability to estimate GPP.

However, due to the intense fragmentation, there can be a mismatch between small patches and
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conventional remote sensing spatial resolution (Ustin & Middleton, 2021). For example, global products,
like the highly utilized 8-day Moderate-Resolution Imaging Spectroradiometer (MODIS) MOD17A2/A3
and MYD17A2/A3 GPP products (1 km—500 m), can be challenging if used in the context of land cover
arcas with complex vegetation or mixed pixels (Running & Zhao, 2015). In fact, coarse remote sensing
models may aggregate nearby land cover patches within the same estimate of land cover GPP
productivity, introducing a mischaracterization of landscape processes (Reeves et al., 2005; F. Zhang et
al., 2012). To estimate GPP within fragmented landscapes under various management practices, remote
sensing offers several approaches to estimate GPP using measurements of optical parameters directly
related to vegetation activity (Damm et al., 2015; Myneni & Ross, 2012). Advancements in optical
sensors, such as those carried aboard Landsat-8 (2013-now) and -9 (202 1-now), offer 30 m spatial
resolution whereas Sentinel-2 A and B (2015/2017-now) offer 10-20 m spatial resolution and narrow red-
edge bands—enabling phenology studies and parametrization at a much higher resolution than previously
possible (Li & Roy, 2017).

Of the primary remote-sensing based models, the most common are light use efficiency (LUE) based
estimates that are built on function convergence theory (Field et al., 1995; Monteith, 1972, 1977), which
states that plant canopies will harvest the most light to fix C given the constraints from the environment
(Goetz et al., 2000). Following this framework are the production efficiency models (PEMs), where GPP
is estimated as a product of the fraction of the photosynthetically active radiation (f/PAR) absorbed by the
canopy (e.g., Goetz et al., 1999; Ruimy et al., 1999; Running et al., 2004). For example, the Landsat
conterminous United States (CONUS) GPP product captures fine spatial scale (30 m) variability in GPP
production with biome-specific inputs and provides ready-to-use product covering croplands, forests,
grasslands and shrublands (Robinson et al., 2018). The vegetation photosynthesis model (VPM) similarly
estimates GPP in various ecosystems, and its performance aligns well with EC GPP (John et al., 2013; Li
etal., 2007; Wagle et al, 2015; Xiao et al., 2004a; Xiao et al., 2004b; Zhang et al., 2016).

Further, many remote sensing-based GPP models, such as VPM, rely on vegetation indices (V1) as

input variables that serve as a proxy of fPAR and associated nutrient and absorption characteristics. Red-
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edge bands offered from the Sentinel-2A and B satellites offer additional VIs capable of estimating GPP,
as vegetation red-edge (680-780 nm) captures the absorption of chlorophyll at 680 nm and higher
absorption at 780 nm, detecting both moderate-to-high values (Gates, D. M., Keegan, H. J, Schleter, J.
C., & Weidner, 1965; Gitelson & Merzlyak, 1996; Horler et al., 1983). This is significant as chlorophyll
has demonstrated a high sensitivity to seasonal changes and a strong relationship to GPP in croplands
(Clevers & Gitelson, 2013; Lin et al., 2019; Wu et al., 2008) . In addition, fine spatial resolution of the
Sentinel-2 data provides temporally detailed information for characterizing spatially heterogeneous GPP
best in croplands and grasslands compared to forest sites (Lin et al., 2019). Across grassland sites in
southeast Australia, Sentinel-2 red-edge data estimates of GPP agreed well with EC GPP (R? = 0.77 and
RMSE =0.81 g Cm*day") (Lin et al., 2019). Sentinel-2 and Landsat 8 data have also been used to
estimate a neural network GPP model on five crop fields (four in the USA and one in Germany) (R? =
0.92 and RMSE = 1.38 ¢ C m % day ') (Wolanin et al., 2019). EVI2-derived GPP from MODIS (500m,
250m) and Sentinel-2 (10m) and EC-derived were evaluated in eight sites in the Nordic region (R* 0.69-
0.91 and RMSE 0.49-2.19 ¢ C m* day ') (Cai etal., 2021). Few studies, however, cross-compare
product resolutions in VPM to investigate changes across scales within the same cover type; or have
tested red-edge VIs. More commonly, VPM is cross-evaluated with other GPP products, such as MOD17,
a temperature and greenness model, a greenness and radiation model, and the EC-LUE model (F. Lietal.,
2013; Chaoyang Wu etal., 2011). Therefore, red-edge VIs from Sentinel-2 integrated into the VPM may
enhance our ability to estimate GPP in heterogeneous croplands (Chen et al., 2011; Turner et al., 2003).
In this study, we evaluate whether GPP estimates derived using higher spatial resolution of satellite
data is advantageous to conventional remote sensing products in managed croplands. We ask the
following questions: (1) Can fine resolution GPP products built with red-edge Vs effectively capture
significant differences at field-scale? (2) Are they significantly different from the conventionally used
models—MOD17A2H V6 (500m) and Landsat-8 CONUS (30m)? and (3) How consistent are GPP
anomalies across models within each site? While coarse resolution GPP products are reasonable for
studies of large spatial extents, like global and regional (Running & Zhao, 2015), local-scale estimates of
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GPP are needed for local-scale management, estimates of C sequestration, and for C accounting. We
generate site-specific LUE coefficients and model GPP, utilizing the VPM across MODIS (500 m),
Landsat-8 (30 m), and Sentinel-2 (20 m) resolutions. By comparing multiple possible approaches to

estimating GPP, we show which products are the most accurate in our managed cropping systems.

Methods

2.1. Study sites

Our study sites are located within the northeast portion ofthe US Midwest Com Belt in southwest
Michigan, USA, at the Great Uakes Bioenergy Research Center (GUBRC) ofthe W. K. Kellogg
Biological Station (KBS) Uong-Term Ecological Research (LTER) sites (42°24' N, 85°24' W, 288m a.s.l.;
Figure 1, Table SI). The sites are in a humid continental temperate climate with mean annual air
temperature 9.9 °C and mean total annual precipitation 1027 mm (Michigan State Climatologist's Office,
2013). Soils are Typic Hapludalfs, well-drained sandy loams (Bhardwa;j et al., 2011; Thoen, 1990). From
May through September, roughly representing the growing season, mean air temperature and total
precipitation are 19.7°C and 523 mm, respectively, with highest temperatures in July (Abraha et al.,
2018). Our study period spans March through November (DOY 60-334), including the growing season as
well as its onset and offset, for years 2018 and 2019. Precipitation, air temperature, and photosynthetic
photon flux density (PPFD) a nearby meteorological stations (http://Iter.kbs.msu.edu/datatables. accessed
June 2020). Seasonal dynamics of GPP are driven by PPFD and temperature in these temperate croplands,
where GPP lowers to near-zero in the winter season — DOY 335-59 (December through February) —
due to near absence ofphotosynthetic activity caused by snow cover, harvest as well as low PPFD and

temperatures.



190
191

192

193

194

195

196

197

198

199

200

201

202

203

AGR-SW
CRP-REF
CRP-SW
AGR-PR
CRP-PR
CRP-C
CaA~~ B 88° W 86° W B4 W 82° W A Tower
46° N [ I MODIS pixel
— Landsat 8 pixel
a8 45°N Sentinel 2 pixel
OwenS.
3 Field Extent
— 44°N
A =
43« N Milwaukee  Grand Rapids .
Lansing
A A
0 0.23 0.46 0.92km 42°N " Chicago 0 100 200 km

[ I | | '

Figure 1. Location ofeddy-covariance (EC) flux towers used in this study, where (A) are
individual field extents and individual pixels for MODIS, Landsat-8, and Sentinel-2; and
(B) is the location the towers at Kellogg Biological Station, Michigan, USA.

We consider seven study sites that are named according to their land cover history prior to 2009 and
present land cover after land use conversion (i.e., names are interpreted as HISTORIC-PRESENT, Fig. 1).
Two distinct land use histories—agriculturally cultivated land (i.e., AGR-) and Conservation Reserve
Program grassland (i.e., CRP-)—were used. In one group, three fields were managed as CRP grasslands
for 22 years with smooth bromegrass (Bromus inermis Levss)—a cool season C3 grass of Eurasian
origin—as the dominant vegetation (Abraha et al., 2016). The second set ofthree fields included
conventionally-tilled corn-soybean rotations (AGR) cultivated as such for decades prior to this study.
Both groups were converted to their present land cover types in 2009. Therefore, CRP sites include: (1)
no-till com (CRP-C); (2) restored prairie (CRP-PR); and (3) switchgrass (CRP-SW); and AGR sites

include (4) no-till com (AGR-C); (5) switchgrass (AGR-SW); and (6) restored prairie (AGR-PR); and (7)
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historically preserved CRP land (CRP-REF) (Fig. 1, Table S1). Upon conversion, the former CRP fields
held significantly higher soil organic C and nitrogen (N) concentrations than the former AGR fields
within its top 0.25m of soil (Abraha et al., 2018b; Zenone et al., 2011). The fields restored to prairic were
planted with a mixture of 19 species (Abraha et al., 2016). During the study period, planting dates for
AGR-C was May 7, 2018 (DOY 127) and May 11, 2019 (DOY 131); whereas for CRP-C it occurred on

May 2, 2018 (DOY 122) and May 6, 2019 (DOY 126).

2.2. Eddy covariance

All EC systems included a LI-7500 open-path infrared gas analyzer (IRGA, LI-COR Bioscience, Lincoln,
NE) for CO, and water (H.0) concentration and a CSAT3 three-dimensional sonic anemometer
(Campbell Scientific Inc. CSI, Logan, UT) for wind speed and direction measurements. Half-hourly
meteorological measurements of incoming and outgoing radiation (CNR1, Kipp & Zonen, Delft, The
Netherlands) and air temperature and relative humidity (HMP45C, CSI) were also measured at each site.
All EC instruments are mounted 1.5-2.0 m above the vegetation and logged at 10Hz using a Campbell
CR5000 datalogger. Half-hourly fluxes were processed in EdiRe for screening out-of-range data due to
bad weather, sensors, and/or logger malfunction as well as de-spiking. For full data quality control details,
please see Abrahaef al. (2015).

Gapfilling and flux partitioning was completed in the standardized FLUXNET gap-filling algorithm
from REddyProc (Wutzler et al., 2018). Gap-filling included a Ustar correction with thresholds estimated
using the Moving Point Test (Papale et al., 2006), bootstrap uncertainty within the year, and flux
partitioning by daytime (Lasslop et al., 2010). We used quality control flags (“/gc”) of 0-3 in this study,
where least reliable (i.e., fgc=3) estimates comprised less than 0.54% of any site-year, and values outside
of three standard deviations were linearly interpolated with the package “seismicRoll” (Callahan et al.,
2020) in RStudio 1.3.1056 (R Core Team, 2019). We present GPP uncertainty across aggregated values

due to estimation of the Ustar threshold, as well as the percent NEE gap-filled prior to partitioning.

2.3. Satellite products and indices

10
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We obtained GPP (kg C m™?) from the MODIS MOD17A2H V6 product (8-day revisit time and 500 m
resolution; hereafter GPPyviopis) and the Landsat 8 CONUS product (16-day revisit time and 30 m
resolution; hereafter GPPconus) (Robinson et al., 2018). Both GPPyopis and GPPconus were retrieved
from Google Earth Engine (GEE) platform (Gorelick et al., 2017) using point sampling to select the
nearest pixel to the site’s tower location. We considered only pixels nearby each tower, which brought us
to consider 1 (500x500 m) MODIS pixel and 3x3 Landsat-8 (30x30 m) and Sentinel-2 (20x20 m) pixels.
The models used to calculate GPPyoprs and GPPconus are based on the LUE model (Running et al.,
2004). However GPPuopis retrieves climate, land cover, /PAR and LAI parameters from GMAO/NASA
(0.5%), MODI12Q1 (500 m), and MODI15A2H (500 m), respectively, whereas GPPconus retrieves these
parameters from Idaho Metdata (4 km), National Land Cover Database (NLCD; 30 m), and MOD09Q1
(250 m), respectively. To derive daily estimates, composite images GPPyoprs and GPPeonus were divided
by 8 and 16, respectively, and multiplied by 1000 to convert from kg C to g C, with final GPP units being
expressed asg Cm=d".

For VPM (Section 2.4), we used surface reflectance from MODIS, Landsat-8 and Sentinel-2
(acquisition details below) to calculate vegetation indices (VIs). The VIs include (1) the enhanced
vegetation index 2 (EVI2) (Jiang et al., 2008) to account for moisture sensitivity; (2) the land surface
water index (LSWI) (Xiao et al., 2004b), which is based on the shortwave-infrared (SWIR) and represents
vegetation water content and soil moisture. In place of EVI2, we also test Vs including (3) the green
Chlorophyll Index (Clg) and red-edge (4) Chlorophyll Index (Clr) (Gitelson et al., 2003, 2006); the (5)
normal deviation index of the red edge 1 (NDRE1) (Sims & Gamon, 2002) and (6) normal deviation
index of the red edge 2 (NDRE2) (Barnes et al., 2000); as well as the (7) medium-resolution imaging
spectrometer, MERIS, terrestrial chlorophyll index (MTCI) (Dash & Curran, 2004). Surface reflectance
and land surface temperature layers were quality checked and linearly interpolated for a representative
time series.

The MODIS MODO09A1 v006 product provides surface reflectance at 500 m resolution every 8 days
and it was used to calculate VIs using red (620-670 nm), near-infrared (NIR; 841-875 nm) and SWIR

11
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(1628-1652 nm) bands. MODIS Terra has an overpass at 10:30 AM local time. Data was acquired using
the USGS AppEEARS online tool (https://Ipdaac.usgs.gov/tools/appeears/, accessed January 2021) and
screened for cloud cover and artefacts using QA/QC bits and 500m state flags, as instructed by the
MODIS User Guide Tables 10 and 13, to select the best quality data (Vermote et al., 2015). Gaps due to
poor quality were linearly interpolated. USGS Landsat 8 surface reflectance (Tier 1) provided 30 m
resolution imagery every 16 days to calculate VIs EVI2 (Eq. 4) and LSWI (Eq. 6) using red (636-673
nm), NIR (851-879 nm), and SWIR (1566-1651 nm). As for GPPyss.ven, we acquired Landsat 8 data
using GEE, and we used the pixel quality band "QA_ PIXEL" to identify cloud and cloud shadow pixels

The Sentinel-2 is a constellation of two polar-orbiting satellites in the same sun-synchronous orbit.
Surface reflectance over the study area provides a high revisit time of 10 days at the equator for a single
and 5 days when 2 satellites under cloud-free conditions, which results in 2-3 days at mid-latitudes.
Overpass for Sentinel-2 is 10:30 AM local time and is a compromise for illumination and least potential
cloud cover, similar to the overpass time of Landsat and MODIS. Sentinel-2A spatial resolution is offered
at 10, 20, and 60 m with a total of 12 multispectral bands; of which, three are red edge bands. Bands used
(and their center wavelength) for EVI2 and LSWI include NIR (B8, 842 nm; 20 m spatial resolution), red
(665; 10 m spatial resolution), and SWIR (1610 nm; 20 m spatial resolution), respectively. For red-edge
indices (Egs. 5-9), we also included the following: B3 (green, 560 nm), B5 (red-edge, 705 nm), B6 (red-
edge, 740 nm), and B7 (red-edge, 783 nm).

The red band was resampled to 20 m resolution to match that of NIR and SWIR. Images were
obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed
February 2021) of the European Space Agency. We downloaded images as level 2A (ie., surface
reflectance) over the study area. Where level 2A was not available, we downloaded level 1C top-of-
atmosphere (TOA) images that were then atmospherically corrected to obtain surface reflectance by using
the default settings of the Sen2Cor (v. 2.5.5) algorithm (Miiller-Wilm et al., 2018). We performed the
cloud mask in RStudio by using the cloud mask probability band “MSK CLDPRB”, to identify cloud
pixels, and the scene classification map band “SCL”, to identify water pixels. We then used a NIR
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thresholds to identify potential cloud shadow pixels (for more info, see
https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless). We employed
ArcMap (v. 10.6) to rescale the surface reflectance to 0-1.

Lastly, to understand how heterogeneous systems can benefit from fine-resolution imagery, we

estimate the composition (30 m) ofland cover type within each ofthe remote sensing pixels employed to

estimate GPP, described above, within ArcGIS Pro (v. 2.9). We acquired land cover from the USGS
National Land Cover Database 2019 via GEE (Dewitz & Survey, 2021). Land cover estimates included
cropland, water, wetland, grassland, wetlands, developed and forest; where grassland includes pasture,
hay, grassland, shrub/scrub, wetlands include woody wetlands and emergent herbaceous wetlands,
developed includes open space, and low, middle and high intensity developed areas, and forest includes

evergreen, deciduous and mixed forests.

2.4. Vegetation photosynthesis model (VPM)
The VPM model is built similarly to the GPPmobis equation (Xiao et al., 2004a; Xiao et ah, 2004b),
however the difference lies in the creation of LUE (eg Eq. 2) from remote sensing and meteorological
inputs rather than the use ofa look up table, where:

VPM = §x (/PAR) x (PAR), (1)

sg =Smaxx Tscalar x Wscalar x Pscalar 2)
Here, VPMrepresents Sentinel-2, Landsat-8 and MODIS VPMs, hereafter GPPVpm-s2 , GPPvPM-Lss, and
GPPvrMm-MODIs, respectively; /PAR is the fraction of photosynthetically active radiation absorbed by
chlorophyll, PAR is photosynthetically active radiation (pmol m 1 s 1) acquired from nearby a weather
station (http://Iter.kbs.msu.edu/datatables. accessed June 2020), %is the LUE — the rate of CO: uptake
(pmol CO2 PARYI). The value ofemax is maximum LUE estimated from a nonlinear hyperbolic
Michaelis-Menten model (Wang et ah, 2010), and Tscalar, Wscalar and Pscalar are the scaling

regulators for the effects ofair temperature, water and leafphenology, respectively, on the vegetation.
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Common in LUE models, including PEMs, is the application of /PAR as a function of the normalized

difference vegetation index (NDVI) (Tucker, 1979). It is well acknowledged that NDVI is constrained by

sensitivity to soil moisture and saturates at high leaf densities (Huete et al., 2002). To address this, VPM

applies EVI as a function of /PAR for an enhanced characterization of vegetation at the global scale

(Huete et al., 2006; Jiang et al., 2008; Xiao et al., 2004a). To calculate fPAR, EVI can act as a linear

function and the coefficient a is setto 1.0 (Xiao et al., 2005; Xiao et al., 2004b). In this study, we apply

EVI2 to avoid high signal to noise ratios from atmospheric interference (e.g., acrosol or residual clouds)

common in blue band wavelengths (Jiang et al., 2008).

fPAR =ax (EVI2)

NIR—RED
" NIR+2.4RED+1

EVI2=25

3)
“4)

To evaluate the potential for red-edge bands available from Sentinel-2 to advance the VPM’s

applications, we chose to replace EVI2 with one of five red-edge VIs, Clg, Clr, NDRE1, NDRE2 and

MTCI, calculated as:

Clg= =1

_ B7_
CIr= e 1

NDRE] = B6—B5
B6+B5
NDRE2 = ==
B8+B5
MTCI = 22>
B5—B4

®)

(6)

(M

®)

©)

where the center of each Sentinel-2 band is as follows: B3 (560 nm), B4 (665 nm), B5 (705 nm), B6 (740

nm), B7 (783 nm), B8 (842 nm).

Down regulation scalars Wscalar, Tscalar, Pscalar demonstrate the effects of water, temperature,

and leaf phenology respectively on the vegetation’s LUE. Wscalar is estimated as:

Wscalar =

LSWI=

1+LSWI
1+(LSWID)max

NIR-SWIR
NIR+SWIR

(10)

(11
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where (LSWI)max is the maximum LSWI during the growing season. Tscalar measures the sensitivity of
photosynthesis to temperature, calculated at each time step using the equation developed for the

Terrestrial Ecosystem Model (Raich et al., 1991):

(T—-Tmin)(T—-Tmax)
[(T-Tmin)(T-Tmax)]-(T-Topt)2

Tscalar = (12)

where Tmin, Tmax, and Topt are the photosynthesis minimum, maximum, and optimal temperatures (°C),
respectively (Raich et al., 1991) (Table S2). If air temperature falls below 7min, Tscalar is set to zero.
Pscalar accounts for the effects of leaf phenology on photosynthesis at the canopy level. Calculation of
Pscalar is dependent on the life expectancy of the leaves. Pscalar has two phases when a canopy is
dominated by leaves with a life expectancy of one year (i.¢., growing season) without replacement. From

bud burst to full leaf expansion, Pscalar is calculated as:

1+LSWI

Pscalar =

(13)
whereas following expansion, the Pscalar is set to 1 with no alteration for senescence. Grassland systems
such as prairie and switchgrass are set to 1 throughout the study period (Wang et al., 2010; Xiao et al.,

2004a).

2.5. Statistical analysis and uncertainty
To understand how tower GPP estimates relate to either NDVI or EVI2, we performed sensitivity tests of
both indices to GPPrower acquired from MODIS, Landsat-8 and Sentinel-2 for each site-year using a
procedure outlined in Gitelson (2004):

S=[d(EVI2)/d(NDVI) « [A(EVI2)/ A (NDVI)]! (14)
where d(EVI2) and d(NDVI) are the first derivatives of the indices with respect to GPPrower and A(EVI2)
and A(NDVI) are the differences between the maximum and minimum index, respectively. The function S
tracks the sensitivity of EVI2 and NDVI to changes in GPPrower. Values of S <1 can be interpreted where
NDVI is more sensitive than EVI2 to GPPr,w.r, and values S >1 as indicate that EVI2 was more sensitive

than NDVI to GPPrower. When S'= 1, NDVI and EVI2 are assumed to be equally sensitive. We
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acknowledge that S does not account for estimate errors of d(EVI2)/d(NDVI), which may bias sensitivity
evaluations

We evaluated seasonal dynamics of PPFD, air temperature, precipitation, as well as EVI2 and NDVI
from MODIS, Landsat-8 and Sentinel-2 in a time series alongside GPPTower for each site-year. A
comparison of GPP sums during the study period (March—November) and growing season (June, July,
August) evaluates differences between GPPuionis, GPPyveuvivonts, GPP vevirss, GPPypvis2, GPPeonus, and
GPPrower. Days without estimates from the VPM model or other products (i.¢., days in-between
acquisitions) were linearly interpolated within the R package “zoo” to generate cumulative GPP estimates
(Zeileis & Grothendieck, 2005).

Three metrics were used to evaluate the performance of GPP satellite estimates in comparison with
GPProver, including the coefficient of determination (adjusted R?, hereafter R?), root mean square error
(RMSE), and Spearman’s Rho (p), which is a non-parametric test that estimates the model’s ability to
increase or decrease in a similar trend to observed values. Estimates closer to 1 indicate a positive
relationship and those closer to -1 indicate a negative relationship. In the lincar models, we only included
original acquisition days (i.¢., days corresponding to satellite acquisitions) that paired tower estimates. To
assess model implications on GPP estimates, and by proxy the resolution implications, we tested for
significant difference in GPP models among sites with the Kruskal-Wallis test and Dunn post-hoc test in
the R packages “stats” and “dunn.test” (Dinno, 2017; Dunn, 1964; Kruskal & Wallis, 1952; R Core
Team, 2019). The Kruskal-Wallis test extends from the Wilcoxon Rank test that is used for two samples
(Vargha & Delaney, 1998), and determines if there is a significant difference (p-value <0.05) in the
median GPP estimate between models. It replaces a one-way analysis of variance (ANOVA) when data is
not normally distributed. The result of the Kruskal-Wallis is A, which is interpreted as chi-square; and z is
result of the Dunn’s Test for multiple comparisons.

Since our study area has strong seasonal changes of temperate zones, our data and predictions

violate the statistical assumptions that they are independent and identically distributed. We address this
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concern of temporal autocorrelation in a second regression analysis by removing interannual and seasonal
variation from each time series. We estimated zero-centered daily GPP anomalies and evaluated how
these anomalies vary by GPP model and site-year. To generate average GPP seasonality (GPPS) on a
daily time step (t) for each site (x) we averaged the daily GPP estimates from the different approaches for
cach year then smoothed the result with a Gaussian blur of 15 days to remove noise using the R package
“smoother” (Hamilton, 2015). To remove interannual differences, we calculated GPP,,: as the site-year
annual mean of all GPP models. GPP anomalies (GPPA) were thus calculated as:

GPPA,.= GPP,, — GPPS,; — GPP, ,, (15)

Therefore, when an anomaly estimate is near-zero it has a small difference from the average,
zero-centered seasonal pattern. Once we calculated daily GPPA (Eq. 15), we only included estimates that
coincide with model acquisition dates to avoid inflation in our analysis. In the linear regression of
anomalies, models agreeing well with GPPrower will express similar values (i.e., differences from the
mean) with GPPrower. In the linear regression of anomalies, models agreeing well with GPProwe will

express similar values (i.¢., differences from the mean) with GPProye.

3. Results

3.1. Seasonal changes of climate, vegetation indices and tower GPP

Seasonal changes in air temperature, precipitation and PPFD at the LTER/KBS (i.c., study arca) revealed
that 2018 was on average warmer and drier than 2019 during the study period (March-November) (Fig.
S1). For the study arca in 2018, there was an average air temperature of 10.59 °C and a cumulative 796
mm of precipitation; whereas 2019 had an average air temperature of 9.25 °C and cumulative 896 mm of
precipitation. We found GPPrower increased sharply in May of both years at in all site-years (Fig. 2) due to
the temperature increase, where the study area’s monthly average air temperature from April to May
increased from 4.49 "Cto 18.18 “C in 2018, and 8.47 "Cto 13.97 °C in 2019. We also found the study
arca in 2019 had notably higher cumulative monthly and average daily precipitation in spring months

reaching 114(2.8), 92(2.97), and 173(5.77) mm in April, May and June; whereas 2018 had 63(2.1),
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220(7.10), and 80(2.67) mm, respectively. GPPTower uncertainty due to Ustar filtering for all site-years
was < 3% (0.81-2.97%), with <28% (16.16-27.51%) of NEE identified for gapfilling (Table S4).

We found that MODIS 500 m pixels do not well represent each study site and include large
aggregations of neighboring land covers (Table S3). One MODIS pixel including a tower may overlap
two fields or nearby forest and marshland (Fig. 1). Conversely, the resolution of Sentinel-2 and Landsat 8
(20 m and 30 m, respectively) results in homogeneous pixels at each of the seven sites. Therefore,
reflectance and vegetation indices from Landsat 8 and Sentinel 2 are more likely to represent the land
cover of interest and minimize influence from neighboring vegetation. Monthly variability in GPPrower
during the growing season coincided well with the variations in precipitation, temperature, PPFD and
EVI2/red-edge Vls. The GPProyer during the growing season peaked in late July (DOY 185-217), which
closely coincides with peak PPFD and temperature in the study area (Fig. S1). Peak dates of daily GPP at
AGR-C and CRP-C from 2018 were delayed by approximately 20 days in 2019; whereas AGR-PR
experienced a 15-day delay, and remaining sites peaked within 11 days (Fig 2).

The interannual seasonal dynamics of EVI2 differs in amplitude across sites and between satellites
(Fig. 2). Maximum EVI2 for Sentinel-2 across sites ranged 0.65-0.86, whereas Landsat-8 and MODIS
ranged 0.55-0.80 and 0.59-0.68, respectively. Sentinel-2 best captured the onset, offset, and volatility of
the growing season. MODIS and, to a lesser extent, Landsat-8 EVI2 trends often exhibited lower
estimates near the growing season peak. Notably, MODIS EVI2 increased before GPProye, in the onset of
the growing season and lags in the offset, particularly in AGR-C, CRP-C, AGR-PR and CRP-REF.
Interannual seasonal dynamics of red-edge Vs capture peak growing season GPP well, particularly in
com systems, and reach higher peaks than EVI2 in CRP-PR and CRP-REF sites (Fig. 3). Red-edge VIs
also demonstrate a similar trend as GPP during spring and fall in all sites.

MODIS EVI2 is more sensitive to variations in GPPrower; whereas for Landsat-8 and Sentinel-2, EVI2
and NDVI have similar sensitivity (i.e., 0.00 £ 0.10) (Table 1). MODIS EVI2 is more sensitive to

GPPrower in all site years except CRP-SW in 2018. We note that historical cropland sites AGR-C, AGR-
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PR and AGR-SW as well as CRP-REF and CRP-C have higher sensitivities to MODIS EVI2. For

Landsat-8, AGR-C, AGR-PR, CRP-PR and CRP-REF ¢xhibit sensitivitics to both NDVI and EVI2 in

different years, with CRP-C, AGR-SW and CRP-SW demonstrating higher sensitivitics to NDVI in both

years. Similarly, Sentinel-2 saw sensitivities change between years, but exhibited slightly higher
sensitivity to NDVI in AGR-C, AGR-PR and CRP-SW. Overall, we found Landsat-8 sensitivities

remained within £0.10 of 1.00 (i.c., equal sensitivity) for 9:14 (i.e., 9 out of 14) site-years, respectively;

whereas Sentinel-2 exhibited sensitivities £0.10 of 1.00 within 12:14 site-years.

Table 1. The relative sensitivity of EVI2 to NDVI. Values of S < 1 indicate that NDVI is more
sensitive than EVI2, sensitivities are considered to be equal when S = 1, and values of S > 1

indicate EVI2 having a greater sensitivity than NDVI.

Site MODIS Landsat-8 Sentinel-2
2018 2019 2018 2019 2018 2019
AGR-C 1.31 1.33 1.08 0.99 0.90 0.96
AGR-PR 1.32 1.26 0.94 1.00 0.77 0.94
AGR-SW 1.30 1.22 0.94 0.92 0.99 1.01
CRP-C 1.11 1.13 0.77 0.99 0.78 1.00
CRP-PR 1.07 1.18 1.04 0.86 1.04 0.93
CRP-REF 1.20 1.21 1.22 0.81 1.01 0.91
CRP-SW 0.77 1.08 0.97 0.57 0.95 0.94

Differences between sensitivities of EVI2 and red-edge VIs to GPProywer vary (Table 2). In most

cases, NDRE] is near similar in sensitivity to EVI2 in all sites except CRP-C, where NDRE] is more

sensitive. Between NDRE2 and EVI2, most sites had near-equal sensitivities, except for AGR-SW 2018

where EVI2 has higher sensitivity. Both Clg and Clr show a lower sensitivity than EVI2 in all site-years

except in CRP-C. Lastly, sensitivities of MTCI and EVI2 were near equal in all site years except AGR-

SW 2018, where EVI2 has higher sensitivity. Overall, NDRE1 and NDRE2 have 8:14, Clg and Clr have

2:14, and MTCI 5:14 site years with higher sensitivity than EVI2 to GPPrower.
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Table 2. The relative sensitivity of EVI2 to Sentinel-2 red-edge bands NDRE1, NDRE2, Clg, Clr,
and MTCI. Values of S <1 indicate that the red-edge index is more sensitive than EVI2,
sensitivities are considered to be equal when S = 1, and values of S > 1 indicate EVI2 having a

greater sensitivity than the respective red-edge index.

Site NDREI1 NDRE2 Clg Clr MTCI
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
AGR-C 0.88 092 0387 0.93 1.19 113 1.14 1.15 098 1.05
AGR-PR 1.08 1.06 1.08 1.09 143 127 134 1.25 1.05 1.06
AGR-SW 1.32 095 140 1.02 16l 1.14 1.59 1.12 126 1.00
CRP-C 0.73 074  0.74 0.75 094 0389 097 0.89 0.90 0.86
CRP-PR 0.96 0.93 0.93 0.93 126 1.08 1.16 1.08 1.05 099
CRP-REF 1.00 1.00 1.12 1.02 134 120 1.14 1.09 093 1.12
CRP-SW 0.96 0.91 096 094 1.12 113  1.26 1.18 1.13  1.04

In both years, GPPvpnis2 explains more variability and is statistically significant in the linear
regression analysis with GPPrower during the study period (Table S5). GPPvpais2 demonstrates visibly
higher peaks in the growing season than other models, but occasionally over estimates in 2018 (AGR-C,
AGR-PR, CRP-C, CRP-PR, CRP-REF) and in 2019 (CRP-C, CRP-REF). MODIS products generally
underestimate these amplitudes (Figs. 4, 5). MODIS products largely underestimate corn and switchgrass
systems where GPPvps: captured GPP dynamics. In addition, VPMs coincide with GPPrower peaks and
variations more than GPPyoprs and GPPconus, particularly in corn systems. Average daily GPProyer is
higher in 2018 compared to 2019; where in 2018, the most productive sites (CRP-SW, AGR-C, and
AGR-PR) reached 5.66-6.27 ¢ C m? d”! compared to the most productive sites in 2019 (CRP-PR, CRP-C,
and CRP-SW) with a range of 5.73-5.78 g C m~* d"'. Corn systems have the highest daily productivity in
both years but experienced the greatest shift in peak dates between 2018 and 2019. In both years, the
highest daily sum recorded were in sites CRP-C, AGR-C, and CRP-SW while the lowest was observed in
CRP-REF.

When exchanging EVI2 for a red-edge VI in the Sentinel-2 VPM, there is a significant improvement
across site-years. Particularly, NDRE1 and NDRE2 improve the Sentinel-2 VPM in eight out of 14 site-
years compared to other red-edge VIs. In 2018, NDRE2 improves AGR-C, CRP-C, and CRP-SW by
improving explanation of variation by 8%, 11% and 4%, respectively; whereas in 2019, it improves
AGR-C, AGR-PR, AGR-SW, CRP-C, and CRP-SW by 7%, 4%, 3%, 16% and 4%, respectively (Table
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468 S5). NDRE! also improves AGR-C in both years and CRP-C in 2018 by the same explanation ofvariance

469 as NDRE2. While GPPvPM-LSS is better than GPPVPM-S2 in both CRP-C site-years, but with NDRE?2 the

470  VPM improves by 11% and 16% in 2018 and 2019, respectively. Red-edge Vis NDREI1, Clr and Clg do

471 not improve the Sentinel-2 VPM beyond that of NDRE2. While MTCI does improve the Sentinel-2 VPM

472 in CRP-REF and explains 4% more variation and is the leading GPP model for both site-years, it still

473 overestimates during the peak growing like GPPvPM-S2 and VPM vem-cig (Fig. 5)
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Figure 2. Daily GPPiower estimates (g C m"2 d"1) as well as MODIS, Landsat-8, and Sentinel-2

EVI2 at (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (¢) CRP-PR, (f),CRP-SW, and (g)

CRP-REF sites 2018-2019.
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Figure 3. Daily GPPiower estimates (g C m"2 d"1) as well as Sentinel-2 red edge vegetation indices

Clg, Clr, NDREI, NDRE2, and MTCI at (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (e)

CRP-PR, (f),CRP-SW, and (g) CRP-REEF sites 2018-2019.

22



30

20

10

30

20

10

=5 30

20

10

30

20

Figure
resolut

CRP-P

(a)AGR-C (b)AGR-PR
(c)AGR-SW (d) CRP-C
(e) CRP-PR (f) CRP-SW
i
YAl
1 1 |
= 5 3 8
(g) CRP-REF N I A=
2018
CPPr...
GPPCONUS

GPPVPM-LS8

2019 Date

sp
<

Mar-
Apr -
Jun -

2019

GPPMODIS

GPPVPM-MODIS

. Temporal changes in GPPiower, conventional and VPMs including CONUS and MODIS

ms 2018-2019 for the seven study sites: (a) AGR-C, (b) AGR-PR, (¢c) AGR-SW, (d) CRP-C, (¢)

, (), CRP-SW, and (g) CRP-REF.

23



30

20

10

3

S

20

10

30

20

10

30

20

10

(@) AGR-C  f

(c)AGR-SW

(e) CRP-PRH

(g) CRP-REF

2018

Ills

2019

(b)AGR-PR
(d) CRP-C
(f) CRP-SW T
J— ' 1 | 1 1 | | 1
= > a > 19} ée — %
S 52224252178
2018 2019
— GPPTW, — VPMg g
VPM 92 -*m AP/ $2-NDRE2
0 APAGMTa ~ VPMA
VPM $2 clg

Figure 5. Temporal changes in GPPiower and Sentinel-2 VPM RS models 2018-2019 for the seven
study sites: (a) AGR-C, (b) AGR-PR, (¢c) AGR-SW, (d) CRP-C, (e) CRP-PR, (f) CRP-SW, and
(g) CRP-REF.

24



493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

During the study period, GPPvey.s: estimated 5:14 site-year sums at £10% that of GPPrower sums,
whereas GPPypnrss had 3:14, GPPypyvivionts 2:14, GPPyopis had 0:14, and GPPconus 3:14 (Table 3). When
using red-edge VIs, VPMs,.nore1 models estimated 1:14, VPMs,worez 3:14, VPMsoaurer 6:14, VPMso.cig
4:14, and VPMs:.cr-had 2:14 site-year sums at £10% that of GPPrower. Overall, Sentinel-2 VPMs were
closer to the study-period sums of GPPrower than other models. Cumulative satellite GPP estimates by site-
year had difference of ~9-800 ¢ C m™ from GPProwe, with an average difference of 229.69 ¢ C m?2.
Models that had a site within +10% of GPProwe: in both 2018 and 2019 included GPP ypurss , VPMso.
worE2, VPMso orr for sites CRP-REF, CRP-C, and CRP-REF, respectively. Model VPMsaarer remained
within £10% of GPPrower more often than other models including by site-year and cumulative annual GPP
during the study period. GPPriopis and VPMs2aore: underestimated all site-years, but other models
overestimated occasionally, including GPPveairss (5:14), GPPvenvmonrs (2:14),GPPconus (4:14), VPMs,.
~ore2 (1:14), VPMsawrer (5:14), VPMsa.cig (2:14), and VPMsa.crr (2:14).

Cumulative GPP for the peak growing season (June, July, and August) indicate that VPMs: npre2 and
VPMszarrer best matched GPPrower, with 8:14 site-years within £10% tower sums (Table 4). Non-red-edge
model GPPypyrs: closely followed with 7:14 site-years. When estimated by GPPypyrss and GPPypyis2in
2018 and by GPPypuis2 in 2019, cumulative GPP of all sites in the study area was within +£10% of that
estimated by GPPrower. When considering red-edge models, however, VPMsaxprzz, VPMs2 cie, and
VPMs:.cr all estimated both 2018 and 2019 cumulative GPP within +£10% tower sums. However, VPMs..
worE1L, VPMsonorez, VPMszarer, VPMsa.clg, and VPMs:.crr overestimated 1:14, 3:14, 9:14, 6:14, and 5:14
site-years, respectively. Compared to other models, VPMs: nore2 reliably estimated peak growing season

cumulative GPP at individual and collective fields.
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Table 3. March-November cumulative GPP (g C nr?) as estimated from GPPTower, conventional products GPPMoDIS and GPPCONUS,

and VPM models GPPvrMm-MoDIS, GPPVPM-LSS, GPPVPM-S2, VPM $2-NDREI, VPMS2-NDRE2, VPM s2-MTCI, VPM s2-cig, VPM s2-cir. Values in

bold indicate £10% oftotal GPPiower.

Year

2018

2019

SITE

AGR-C
AGR-PR
AGR-SW
CRP-C
CRP-PR
CRP-REF
CRP-SW
Total
AGR-C
AGR-PR
AGR-SW
CRP-C
CRP-PR
CRP-REF
CRP-SW
Total

GPPiower

1598.83
1554.91
1501.52
1417.42
1469.99
1327.21
1725.24
70595.72
1340.88
1465.36
1366.86
1596.14
1574.03
1265.02
1567.16
70775.45

GPPMoODIS

1092.38
1165.29
1108.52
1122.50
1147.00
1173.51
1171.74
7980.95
1084.37
1128.72
1091.51
1082.76
1077.00
1118.37
1128.18
7770.90

GPPcONUS

797.32
1649.75
1729.91

776.11

967.75

971.53
1009.05
7907.42
1331.38
1717.36
1838 63
1437.37

975.83

986.77
1025.81
9373.74

A/OD78
1649.99
1802.58
1241.52
1206.72
1349.28
1088 91
1152.18
9497.78
1120.08
1032.44

795.20
1305.52
1004.45
1010.13
1257.41
7525.22

GPPVPM-
7,38
1254.12
1612.87
1161.16
1701.10
1979.34
1341.41
1326.74
10376.75
1075.59
853 29
1019.06
2031.73
1233.13
1227.60
1341.75
8782.76

S2
1340.96
1529.12
1276.53
1184.19
1439.21
1122.34
1464.69
9357.03
1043.42
1013.46
89923
1456.51
1314.00
1328.91
1453.05
8508.59

AD77E7
1226.33
1124.71

822.97
1146.05
1001.07

741.01
1243.94
7306.07

993 81

794.34

635 01
1446.59

965 03

846.67
1195.85
6877.37

ADT77E2
1577.21
1476.40
1097.84
1484.45
1289.68
1008.62
1519.22
9-/53.-72
1242.04
1002.62
847.33
1777.44
1225.00
1109.47
1488.37
869226

VPMss-
ATTC7
1597.10
1786.66
1522.17
1346.03
1592.61
1425.93
1495.99
10766.50
1111.09
1109.12
1141.78
1888.23
1401.90
1420.46
1443.98
9516.56

Clg
1369 89
1503.21
1305.52
1340.52
1270.01
1343.52
1443.48
9576.15
94438
1079.95
968 39
1844.54
1407.05
1521.20
1436.62
9202.13

Clr
1335.42
1345.71
1218.87
1129.04
1300.73
1216.46
1293.13
8839.37
948.55
907.22
942.40
1773.22
1324.88
1357.44
1260.02
8573.73
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Table 4. June-August cumulative GPP (g C m2) as estimated from GPPiower, conventional products GPPmobis and GPPconus, and VPM models

GPPvPM-MODIS, GPPVPM-LSS, GPPVPM-52, VPMSs2-NDREIL, VPMSs2-NDRE2, VPM 52-MTCl, VPM s2-cig, VPM s2-cir- Values in bold indicate £10% oftotal

GPPiower.

Year

2018

2019

SITE

AGR-C
AGR-PR
AGR-SW
CRP-C
CRP-PR
CRP-REF
CRP-SW
Total
AGR-C
AGR-PR
AGR-SW
CRP-C
CRP-PR
CRP-REF
CRP-SW
Total

GPPiower

1391.29
1184.43
1128.22
1209.67

904.32

729.02
1277.66
7824.67
1054.59
1166.85
1043.18
1198.79
1092 92

770.39
1263.43
7590.75

GPPMoDIS

738.58
724.16
709.44
722.41
732.37
763.76
726 96
5777.68
721.68
711.91
710.13
677.43
699 95
722.25
735.01
4978.57

GPPcoNUs

554.12
1039.64
1099.14

539.37

540.12

534.06

622.25
4928.77

975.09
1067.32
1148.15
1052.35

561.12

545.17

637.43
5986.63

A70D78
1275.75

1272.96
908 67
880 98
985.65
776.52
799 60

6900.73
816.75
765.72
575.12
887.20
724.21
723.68
911.20

5403.88

GPPvPM-

TA8
1087.65

1278.57
892 78
1392.21
1513.78
952.55
915.50
8033.04
904.75
694.01
78809
1542.26
883.75
878.22
889 86
6580.95

S2
1131.24

1261.86
1022.95
1005.68
1117.23
785.15
1211.05
7535.16
959.19
883 87
771.31
1344.60
1047.35
964.54
1226.98
7197.8-1

ADT77A7
1065.48

902 85
629 49
998 37
807.45
520.92
1008.55
5933.77
844.38
689 71
549.22
1218.03
780.58
605.65
1024.97
577254

ADT77E2
1311.99

1121.71
802.30
1232.87
1010.78
685.25
1191.43
7356.32
1034.79
830 63
694.11
1466.30
943 20
767.94
1214.15
6951.12

VPMss-

ATTCT
1460.64

1505.76
1221.38
1231.34
1293.86

986 70
1259.59
8959.27
976.78

980 70
1008.74
1630.16
1170.22

991.55
1293.07
8051.22

cig
1225.44
1192.06
99142
1185.96
1115.91
928.80
1280.42
7922.01
827.65
937.14
87431
1567.92
1143.78
1054.68
1245.41
7650.90

Clr
1237.59

1173.15
983 67
1042.77
1144.93
876.51
1146.39
7605.01
826.75
82134
85193
1519.85
1148.72
985 61
1138.83
7297.05

rsj
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In all site years, the finer resolution GPPvpuis2 and GPPypuirss out-performed GPPuoprs, GPPconus and
GPPvrvinvonts (Fig. 6, Table S5) and agreed the best with GPPrower. Each model had a significant (p<0.05)
and strong positive trend with GPProwe in 2018 and 2019. The largest variation in model estimates were
found in corn systems for both years and prairie systems in 2018. GPPvprevonis, GPPuvonis and GPPeonus
models generally underestimated; and GPPvpuis2 and GPPypuirss models aligned best with the 1:1 slope,
with the exception of GPPvruisz and GPPypvirss overestimation of CRP-C 2019 and CRP-PR 2018. In
CRP-REF, all models were in close agreement with GPPrower. In both years, GPPyops and GPPconus had
the highest RMSE in corn and switchgrass systems, as well as AGR-PR. In all sites, VPM models had
lower RMSE than conventional products GPPuiopis and GPP conus with the exception of CRP-REF (both
years) and CRP-PR (2018) (Fig. 8). Compared to GPPyru.s2, RMSE at corn sites was lower for GPPyp
1ss for both years and lower for GPPypvavonis in 3:4 site-years.

When considering enhancements from red-edge VIs in VPM, the NDRE1 and NDRE2 VIs
increase explanation of variability in eight out of fourteen site-years (Fig. 7). While RMSE values of red-
edge VPMs were often higher in 2018 than that of the EVI2-based GPPvpuis2, they were near equal in
2019 (Table S5, Fig.8). Sites that benefitted in both years from red-edge VPMs included AGR-C, CRP-C,
and CRP-SW; whereas AGR-PR and AGR-SW only saw benefits in 2019. While both NDREI and
NDRE2 improve AGR-C in both years and CRP-C in 2018 by the same explanation of variance, NDRE1

has a lower RMSE in all three site-years and a closer 1:1 slope in two of three site years.
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AGR-C, 2018 AGR-C, 2019 AGR-PR, 2018 AGR-PR, 2019

AGR-SW, 2018 AGR-SW, 2019 CRP-C, 2018 CRP-C, 2019

Figure 6. Comparison ofdaily GPPtOwer with daily Lss, GPPvpMm-MoDIs, GPPMmobis, and

GPPconus by site-year. Solid black linedepicts a 1:1 relationship.
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AGR-SW, 2018

CRP-PR, 2018

CRP-SW, 2018

Figure 7. Comparison of daily GPPtower with daily VPMS2-mtc1, VPMS2-cig, VPMS2-cir,

VPMS2-NDRE1, and VPMS2-NDRE2 by site-year. Solid black line depicts a 1:1 relationship.
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AGR-SW, 2019

CRP-SW, 2019
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Figure 8. Comparison model RMSE (g C m"2 d"l) of daily GPPiower with daily remote sensing GPP

models across the seven land cover types in (a) 2018 and (b) 2019.

GPP estimates are significantly different between models at all sites, except CRP-PR, according to
the Kruskal-Wallis rank sum test (p < 0.05) (Fig. 9). A pair-wise post-hoc Dunn test demonstrated that in
site AGR-C, significant differences were found between pairs GPPMODIS: VPMS2-(IT and GPPMoDis:VPMs2-cig
(z= 3.92. /;=0.004: z= 3.66. /;=0.01. respectively); while CRP-C had differences between GPPmobIs: VPMs2-
cir(z= 3.62,"»=0.01). In sites CRP-PR, CRP-REF, CRP-SW, AGR-PRand AGR-SW, there were no

significant (p < 0.05) differences between model pairs.
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AGR-C AGR-PR AGR-SW CRP-C

H=18.76* H=20.33* H=23.19*
CRP-PR CRI'-SW
H=15.89 H=16.49*
-~ GPpMoDls  MIGPPveMMoDIS "VPMy =+ VPM Slcfr ~1 VPM s:NDRE2

$ GPPconus  *GPPwpmlss  ~VPMSMg =5 S2-XDRE! == VPMQMIC,

Figure 9. Box-plot comparisons of GPP models by land cover type during 2018-2019. Inside the
boxplot, a black diamond indicates the mean, error bars are mean standard error, and a black
horizontal line depicts the median; outside the boxplot, whiskers indicate the maximum and minimum
values and points indicate outliers. Results ofthe Kruskal-Wallis include A, which is interpreted as
chi-square. A significant/>value <0.05 is indicated with an *.
3.4. GPP anomaly estimates
We evaluated anomalies generated from each GPP model from seasonal means and found large anomalies
existed in the peak growing seasons (June-August) (Figs. 10,11). GPPiower anomalies in regression
analysis demonstrated that GPPvem-s2 exhibited the highest positive trend out of conventional models,
with a significant relationship (p<0.05) in switchgrass and prairie systems but was second to GPPvPM-Lss
at the com systems. CRP-REF anomalies did not match well with any model, evidenced by insignificant,

positive trends (Fig. S2, S3 Table S6). In red-edge VPMs, we found that most anomalies occurred during

peak growing season due to models VPMS2-mtc1, VPMS2-cir, and VPMS2-cig, which overestimated GPP in
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2018 site-years and in CRP-C 2019. Generally, VPMs;npre1 and VPMs;.nore: did not overestimate, with

the exception of CRP-C 2019, and had more outliers that underestimated.
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"igure 10. Anomalies of GPP (g C nrld"l) from GPPmobis, GPPconus, GPPveM-MoDIs and GPPvPM
,ss over time for the seven study sites: (a) AGR-C, (b) AGR-PR, (¢) AGR-SW, (d) CRP-C, (e)
:RP-PR, (f) CRP-REF, and (g) CRP-SW.
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"igure 11. Anomalies of GPP (g C m"2d"l) from GPPvpm-s2, VPMS2-cig, VPMS2-cir, VPMS2-NDREI,
2PMS2-NDRE2, VPMsz-mTcr overtime for the seven study sites: (a) AGR-C, (b) AGR-PR, (c) AGR-
SW, (d) CRP-C, (e) CRP-PR, (f) CRP-REF, and (g) CRP-SW.
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Anomalies exhibited both positive and negative trends compared to GPPiower, with fine-resolution
VPMs outperforming conventional models. Red-edge VPMs had strong, positive trend at the exception of
sites AGR-SW (vPMs2-NprED) and CRP-REF (VPMs2-cig, VPMs2-NDRE2). GPPvem-Lss exhibited the
strongest, positive trend and the lowest RMSE in com sites between conventional models and GPPvpPm-s2;
whereas GPPvem-s2 exhibited this for remaining sites, except CRP-REF (Fig. 12). In red-edge models, the
lowest RMSE was VPMs2-mtc1 in AGR-C, AGR-PR, and AGR-SW; and variable in remaining sites. Sites,
AGR-C, CRP-C and CRP-SW tend to have higher RMSEs. Conventional GPPconus and GPPmobis had
negative trends, except for GPPmobis in CRP-PR (p=0.30) and GPPvem-s? in AGR-SW (p=0.02) and CRP-
REF (p=0.40)) Similarly, GPPvem-mobis had a negative or zero trend in all sites except for AGR-PR

(p=0.20).

Figure 12. Comparison ofanomaly model RMSE (g C m"2d"l) and Spearman's Rho
(p) coefficients of daily GPPtlwer with daily GPP from all remote sensing models across the seven

land cover types 2018-2019.
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Figure 13. Box-plot comparisons of GPP (g C nv1d"l) anomalies by model at seven land cover
type during 2018-2019. Inside the boxplot, a black circle indicates the mean, error bars are mean
standard error, and a black horizontal line depicts the median; outside the boxplot, whiskers
indicate the maximum and minimum values and points indicate outliers. Results ofthe Kruskal-
Wallis include A, which is interpreted as chi-square, and significance />value «0.05 is indicated

with an asterisk (*).

Significant differences exist between anomaly GPP models at each site, according to the Kruskal-
Wallis rank test (Fig. 13). The site with greatest variance from the mean was CRP-C. From the pairwise
comparison Dunn test (Table 5), we also observed that a significant difference in anomaly medians
between GPPiower and GPPvem 2 exist in five sites, including AGR-C, AGR-PR, AGR-SW, CRP-PR, and
CRP-SW. Significant differences also existed between GPPiower and GPPvem Lss at AGR-PR and AGR-
SW, as well as between GPPvemLss and GPPvem-ss in CRP-C. The fewest differences between red-edge
VPMs and GPPiower were with VPMsrNprer (AGR-PR, AGR-SW, CRP-PR, CRP-REF) and VPMs: mrcr

(AGR-C, AGR-SW, CRP-PR, CRP-REF); and the highest was with VPMs2-cir, which was significantly
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different in seven sites. VPMsz nprez and VPMs: vrer also had the fewest differences between other

models.
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Table 5. Dunn test pairwise comparison of significant differences (p<0.05) between models at

each site 2018-2019 for GPP anomalies.

GPP GPP GPP GPP GPP VPM VPM VPM VPM VPM GPP
CONUS  MODIS VPM- VPM-LSE  VPM-S2  S2-Clg S2-Clr s2- s2- S2-MTCI  Tower
MODIS NDREL NDRE2
GPP - - - - - - - - - - -
CONUS
GPP oo - - - - - - - - - -
MODIS
GPP oo - - - - - - - - -
VPM-
MODIS
GPP #0 - - - - - - - -
VPM-LS8
GPP #*0 AA A - - - - - - -
VPM-$2
VPM #0 A A - - - - - -
S2-Clg
VPM A0 A A Amo - - - - -
S2-Clr
VPM #04 Axom  Axom OAme  Omé Oomé ¢ - - - -
S2- L4 *
NDRE1
VPM #0 Ao Ao Ameo - - -
s2-
NDRE2
VPM #0 A Oomé - -
S2-MTCI
GPP EONO E4ORm OomoO  *0O Axom  Axom A0 A#xOm  *0Omé AOmo -
Tower 40 mo O A #0 o Ameo 40
mo

Sites: 0: AGR-SW, o: CRP-SW, ¢: CRP-REF, m: CRP-PR, *: AGR-PR, A: AGR-C, A: CRP-C

4. Discussion

While VPM developed using MODIS products still provides a valuable product that is widely available

spatially and temporally, complex and heterogeneous land cover types such as managed agricultural-

prairie landscapes benefit from the use of finer spatial resolution imagery (Chen et al., 2019). Fine spatial

resolution reflectance indices from Sentinel-2 and Landsat-8 increased the accuracy of VPM models in

our study. Particularly, when red-edge VIs replace EVI2 in Sentinel 2 VPMs, we found improvements in

model validation, cumulative GPP estimates, and fewer differences between GPPrower medians than that

Of GPPVPM_S2.
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Sensitivity of VIs EVI2 and NDVI to GPProw.r differed greatly between MODIS (500 m) and the
finer resolutions of Landsat-8 (30 m) or Sentinel-2 (20 m). If selecting between the two in agricultural-
prairie systems, it is prudent to use EVI2. For finer resolution VPMs, NDVI may be suitable upon further
study. MODIS had high sensitivity to EVI2 in 13:14 site years than NDVI, of which only 2:14 site-years
had sensitivity £0.10 of 1.00 (i.¢., near equal sensitivity). We find this supports similar research on
MODIS LUE-based GPP models, where the ability to capture GPP variations is closely tied to the
accuracy of /PAR and that 8-day MODIS data do not consistently capture fall and spring’s rapid changes
in phenology, likely introducing error to annual GPP estimates (Verma et al., 2014). Conversely, near-
equal sensitivity was apparent in Landsat-8 and Sentinel-2, with 9:14 and 12:14 site-years with
sensitivities £0.10 of 1, respectively. Given EVI2 and NDVI uses the same two bands (i.c., NIR, Red), the
differences between satellite products could arise from differences in radiometric resolution (i.¢.,
bandwidth), spatial resolution and sampling frequency. In fact, the wavelength ranges of MODIS,
Landsat-8, and Sentinel-2 red bands (nm) are 620-670, 636-673, 650-680, respectively; while the NIR
bands are 841-875, 851-879, and 855-875, respectively. These slight differences in bandwidth, along with
differences in sampling dates and spatial resolution from Landsat-8 and Sentinel-2, may have resulted in
substantial differences in GPP estimates. We found that NDRE1 and NDRE2 were slightly more sensitive
than EVI2 to GPProwe, with 8:14 site years, that MTCI was near-equal sensitive, and that EVI2 was
generally more sensitive to GPPrower than Clr and Clg. Both sensitivities of pairs (1) NDRE1 and NDRE2;
and (2) Clr and Clg were similar, respectively, as the equations are similar and the difference within each
pair is minimal (Egs. 4-7).

GPP estimates in our study area, and many other Midwestern cropland regions, are notably
underestimated by MODIS products, likely due to mixed pixels (Wang et al., 2015; Zhang et al., 2016).
We found that land cover (NLCD, 30 m) within a single MODIS 500 m pixel overlapped cropland,
developed areas, forests, grasslands and wetlands (Table S3). Our results demonstrated that GPPvpyinvonis

underestimated, particularly in the peak growing season, at all sites, more than other GPP models. The
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least to underestimate cumulative GPP includes VPMsa.vter during the study period (9:14) and peak
growing season (5:14), and VPMs: ¢z in the peak growing season (8:14). When comparing conventional
and non-red-edge VPMs, finer resolution VPM models are closer to daily and cumulative GPProy.,, with
GPPvpvss capturing the variation in corn systems best and GPPves: best capturing grassland systems.
Additionally, a heavy rainfall in the spring of 2019 (wet year) may have affected GPP production in some
sites. Peak growing season (June-August) is also best reflected in GPPvpvs: compared to other
conventional GPP products and GPPypurss. While over- and underestimation can interfere with scaled-up
estimates (Jelinski & Wu, 1996) we found finer resolution (30 m and 20 m) GPP products demonstrated
the capacity to improve GPP estimates across various corn and grassland systems.

Our anomaly analysis of covariance further enhanced our ability to evaluate interannual variation and
identify significant differences between model estimates. In a similar study, covariance between
interannual anomalies in MODIS products did not significantly correlate with GPPrower in croplands;
however, few MODIS products except VPM and MOD17A did explain substantial variance in grasslands
because they include finer meteorological inputs and account for rapid development and senescence
(Verma et al., 2014). Our results reflect this, as GPPyopis and GPPyveyvvoprs did not significantly correlate
with GPPrower anomalies. We found significant differences in medians between GPPypi.s;, GPPvpvrss and
GPPrower anomalies existed, indicating that one model simply over- or underestimated more often than its
counterpart. While significant differences between medians in high-resolution and red-edge VPMs and
GPPrower exist, we do not believe this undermines their demonstrated accuracy in regression analysis and
in seasonal summations. Particularly, anomalies of GPProwe also have significant differences from
GPPropis and GPPyvevivionts medians at three sites, and significant differences with GPPypviss and
GPPconus at two sites; whereas it has significant differences with VPMsaxpre2 and VPMsaarer at four
sites. Understanding that MODIS products largely underestimate GPP (Tables 3, 4) and aggregate nearby
land covers, we recommend Landsat-8 and Sentinel-2 GPP products. More so, Sentinel-2 VPMs

demonstrate greater ability than Landsat-8 products to remain within +0.10% of both cumulative study
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period and peak growing season GPPrower ; with red-edge VPMszamre2 and VPMsa.vter equal to or out
performing GPPyp.so, respectively.

From both regression analyses in this study, GPPvpy.1ss still agreed strongest with corn systems
compared to GPPyriso, which performed better in grassland systems with its largest anomalies during the
peak growing season. However, when incorporating NDRE2 into the Sentinel-2 VPM, it could
outperform GPPvr.rss in CRP-C site-years; demonstrating a potential to use red-edge VI with high-
resolution imagery in both corn and grassland covers. The only site years where GPPypy.s: still
outperforms all other models, including red-edge VI VPMs, was in AGR-SW 2018 and in CRP-PR 2018
and 2019, where there are narrow differences (Table S5). We conclude that red-edge Vs, particularly
NDRE2, may significantly improve the VPM’s ability to estimate variations in GPP when used as an
alternative to EVI2.

While our study area benefitted from finer resolution models, this may not stand true in all landscapes
and elsewhere. In Nordic eddy covariance flux measurement sites, modelled GPP with linear regression
and EVI2 and various environmental inputs detected a minimal difference with a consistent estimate
across MODIS (500 m and 250 m) and Sentinel-2 (10 m) resolutions (Cai et al., 2021). An additional
consideration for future studies is GPP production from cover crops, which is a common practice that
may influence variability in annual estimates. Ultimately, the choice of GPP product depends on the
intended application. Here, we advocate for fine-resolution imagery and the consideration of red-edge in
GPP models to capture details at a local-scale that reflects land management and activities in
heterogencous cropland. However, Landsat provides data since 1972 and offers great historical detail far
bevond what Sentinel 2 can offer, and may be more suitable for investigations of long-term change.
Additionally, further consideration may be placed on temporal resolution, which imparts its own effect on
aggregation of disturbance or land management useful for scaling investigations. Differences between
Landsat and MODIS data lies in the acquisition and data retrieval, where Landsat is instantancous and at
higher risk of acquiring poor /PAR or LAI due to atmospheric effects and cloud cover and MODIS is a
composite taking the best image from an 8-day span (Robinson et al., 2018). Future investigations on
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resolution and GPP estimates may consider utilizing the newly released MOD17A3HGF v061product,
which may provide different results due to its updated protocol that cleans poor-quality inputs from 8-day
LAI/fPAR based on pixel quality control labels. Additionally, the MODIS GPP product FluxSat v2.0
offers daily estimates of GPP using FLUXNET eddy covariance tower site data and coincident satellite
data (Joiner & Yoshida, 2021).

While EC methods provide direct and suitable estimates of CO- fluxes at the local scale useful to both
calibration and validation of remote sensing GPP models, we acknowledge they are also subject to error
and uncertainty that are important to validation of remote sensing models and interannual analysis (Wang
etal., 2015). Recent studies show that the flux tower footprint, used in validation and site-specific
measurements, often extends beyond the target ecosystem, depending on time and atmospheric conditions
(e.g., wind speed and direction) (Chu et al., 2021; Giannico et al., 2018). Consequently, in highly
heterogencous landscapes, multiple EC towers may be required to capture spatial representativeness
necessary for validating global scale model grids (Wang et al., 2015). Our results support this, as
GPPrioois and GPPyvpvivionts underestimated cumulative GPP as well as daily estimates during the study
period and growing season (June, July, August).

Evaluation and monitoring of GPP with Landsat-8 and Sentinel-2 reveals how terrestrial C responds
to land management, climate mitigation policies, and disturbance in heterogencous cropland systems. It
also supports cost-effective land management programs and increases the understanding of anthropogenic
disturbances to ecosystem functions. Both Landsat-8 and Sentinel-2 are available freely online and easily
accessible via Google Earth Engine, greatly improving their employability in policy and stakeholder
programs. For example, the economic benefit of management and incentive programs attract farmers to
convert low-producing corn for ethanol to perennial grasses, such as switchgrass, produce co-benefits,
such as C sequestration (Kreig et al., 2021). Future applications with red-edge imagery from Sentinel 2
will benefit from high spatial and temporal resolution data, paving a way towards near real-time

monitoring of GPP.
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5. Conclusion

Fine-resolution (30 m and 20 m) satellite imagery and red-edge Vs integrated within VPM generally
agree with daily and cumulative GPPrower in field sites more so than coarse resolution imagery in VPM or
conventional GPP products (¢.g., GPPyopis or GPPeoxts) do. A substitution of a red-edge VI for EVI2 in
the Sentinel 2 VPMs demonstrated improved explanations of variation and cumulative GPP estimates,
compared to EVI2-based GPPvpuis2.

We found that vegetation indices of EVI2 and NDVI express different sensitivities by satellite
origin, where MODIS-derived EVI2 had higher sensitivity than NDVI to GPProwerin all but one site; and
Landsat-8 and Sentinel-2 EVI2 and NDVI had near equal sensitivity in most site-years. Compared to
EVI2, red-edge VIs NDRE1 and NDRE2 were slightly more sensitive to GPPrower. Seasonal GPP
amplitude and growing season peaks are best captured by Sentinel-2 VPMs, followed by GPPvpaiiss,
whereas conventional products underestimate growing season peaks. Overall, Sentinel-2 VPMs
demonstrate greater ability than Landsat-8 and MODIS products to remain within +£0.10% of both
cumulative study period and peak growing season GPPrower; with red-edge VPMs>aorez2 and VPMszavrer
equal to or out performing GPPypy.s, respectively. Red-edge Sentinel 2 VPMs collectively outperformed
conventional GPP models and Landsat 8 products, when considering cumulative GPP estimates, model
validations and significant differences between anomaly medians. We conclude that red-edge Vs,
particularly NDRE2, may significantly improve our ability to estimate variations in GPP when used as an
alternative to EVI2 in GPP models.

As many croplands are composed of areas less than 500 m, MODIS derived scalars may be
composed of a mix of land cover types and therefore incorrectly estimate GPP. We demonstrated the
capability of using GPPvpniiss, GPPyeas: and red-edge VPMsa.cir, VPMsa c1e, VPMsonorz1, VPMs2amre2,
VPMszarerin highly heterogeneous cropland, including corn, switchgrass, and restored prairie systems,
in both historical cropland and recently converted (i.c., 2009) CRP land. We found that our fine
resolution GPP products (30 m and 20 m), and particularly red-edge Sentinel 2 VPMs, agreed best with
GPPrower and are significantly different than MODIS products in multiple cropland sites with differing
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746  land use history. While existing methods using MODIS-derived GPP models serve as an important
747  baseline for studies with large spatial extents, future endeavors to estimate GPP in managed landscapes
748  with greater frequency and improved accuracy are accessible and affordable at 30 m and 20 m

749 resolutions.
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