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Abstract

Gross primary production (GPP) is a fundamental measure of the terrestrial carbon cycle critical to our 

understanding of ecosystem function under the changing climate and land use. Remote sensing enables 

access to continuous spatial coverage, but remains challenged in heterogeneous croplands. Coarse 

resolution products, like MOD17A (500 m), may aggregate fragmented land cover types commonly found 

in heavily managed landscapes and misrepresent their respective contribution to carbon production. 

Consequently, this study demonstrates the capability of fine-resolution imagery (20-30 m) and available 

red-edge vegetation indices to characterize GPP across seven Midwest cropping systems. Four sites were 

established on a 22-year-old USDA Conservation Reserve Program (CRP); and the other three on land 

conventionally farmed with corn-soybean-wheat rotation (AGR). We compare in situ GPP estimates from 

eddy-covariance towers with ten satellite models: eight variants of the vegetation photosynthesis models 

(VPM), of which five include a red-edge vegetation index, as well as conventional products Landsat 

CONUS GPP (30 m) and MOD17A2H V6 (500 m). Daily and cumulative fine-resolution imagery 

integrated within VPM generally agreed with tower-based GPP in heterogeneous landscapes more than 

those from MODIS 500 m VPM or conventional GPP products from MOD17AH V6 or Landsat 8 

CONUS. Replacing EVI2 with red-edge indices NDRE2, NDRE1, and MTCI in Sentinel 2 VPMs notably 

improved explanation of variance and estimation of cumulative GPP. While existing methods using 

MODIS- and Landsat-derived GPP are important baselines for regional and global studies, future research 

may benefit from the higher spatial, temporal, and radiometric resolution.

Keywords: LUE; GPP; Carbon; Croplands; Remote sensing; Ecosystem function
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Abbreviations:

EC: Eddy covariance

CRP: Conservation Reserve Program

GPP: Gross primary production

GPPTower: GPP estimate from eddy covariance towers

GPPmodis: MOD17AH V6 GPP

GPPCONUS: Landsat CONUS GPP

GPPVPM-MODIS: Vegetation photosynthesis model with MODIS data (500 m)

GPPVPM-LS8: Vegetation photosynthesis model with Landsat 8 data (30 m)

GPPVPM-S2: Vegetation photosynthesis model with Sentinel-2 data (20 m)

NLCD: National Land Cover Database

LUE: Light use efficiency

LSWI: Land surface water index

PPFD: Photosynthetic photon flux density

VI: Vegetation Index

VPM: Vegetation photosynthesis model

VPMs2-Clg: Vegetation photosynthesis model with Sentinel-2 (20 m) green chlorophyll index (CIg) 

VPMs2-Clr: Vegetation photosynthesis model with Sentinel-2 (20 m) red-edge chlorophyll index (Clr) 

VPMs2-ndre1 : Vegetation photosynthesis model with Sentinel-2 (20 m) normalized difference red- 

edge index 1 (NDRE1)

VPMs2- NDRE2: Vegetation photosynthesis model with Sentinel-2 (20 m) normalized difference red- 

edge index 2 (NDRE2)

VPMs2-mtci: Vegetation photosynthesis model with Sentinel-2 (20 m) MERIS terrestrial red-edge 

chlorophyll index (MTCI)
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1. Introduction

Rising demands for food, biofuel, and other commodities across the globe are driving increases in 

cropland cover and productivity (Godfray et al., 2010; Potapov et al., 2022; Tilman et al., 2011). This 

intensity increases greenhouse gas (GHG) emissions and threatens ecosystem health through 

fragmentation and loss of habitat (Houghton et al., 2012; USGCRP, 2018; Zabel et al., 2019). Cropland 

and managed grasslands are the dominant land cover types of many industrial, newly industrializing as 

well as developing countries (Bondeau et al., 2007; Foley et al., 2005), totaling 38% of the global land 

surface (Ramankutty et al., 2008) and ~30% of global net primary production appropriated by humans 

(Haberl et al., 2007). Given the association between cropland intensification, rising GHG emissions, and 

threat to biodiversity and ecosystem functions, the United Nations Sustainable Development Goals 

(SDGs) call for economies to become carbon (C) neutral by 2030 as well as to prioritize food security and 

ecological resource protection (United Nations, 2015). To aid our understanding of how ecosystem 

functions respond to changing climate, particularly where cropland is dominant, accurate C estimations 

are essential.

Terrestrial GPP is the major driver of land C sequestration and vital to the global C balance, but is 

highly variable in croplands due to land management practices (e.g., crop rotation, irrigation, 

abandonment, etc.). As intensification continues, croplands will also experience an increase in terrestrial 

gross primary production (GPP), the amount of carbon dioxide ‘fixed’ as organic material through 

photosynthesis. In addition to physical influences and disturbances (i.e., climate, geomorphology, land 

cover change, wildfires, floods), the magnitude and dynamics of GPP are also driven by anthropogenic 

activities that alter land use and land cover dynamics, as well as biogeochemical cycles (Abraha et al., 

2018; Anav et al., 2015; Hibbard et al., 2017; Lei et al., 2021; Piao et al., 2009; Sciusco et al., 2020). 

Therefore, it is challenging to generate specific C balance estimates within croplands (Gelybo et al.,

2013).

While GPP cannot be directly measured, it can be modeled using the eddy-covariance (EC) method, 

which partitions net ecosystem exchange (NEE) into GPP and ecosystem respiration (Aubinet et al., 2012;
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Baldocchi et al., 2012; Lasslop et al., 2010; Papale et al., 2006; Reichstein et al., 2005). Eddy covariance 

field-scale measures of C, water and energy cycles have provided detailed knowledge on cropland and 

grassland contributions to GHG exchanges, C budgets and opportunities for natural climate solutions 

(Abraha et al., 2019; Chen et al., 2018; Hemes et al., 2021; Shao et al., 2017). At regional to global scales, 

many studies have scaled EC tower observations using data-driven, process based models (Beer et al., 

2010; Jung et al., 2009) and found meteorological data have little impact on upscaled GPP with high- 

quality satellite data (Joiner & Yoshida, 2020). Measures are scaled by evaluating the relationships 

between tower-based GPP estimates and satellite-based, gridded and reanalysis data of climate, 

meteorological, and surface-reflectance estimates to constrain and calibrate models that monitor 

vegetation health and yield (Cai et al., 2021; Kumar & Mutanga, 2017; Lin et al., 2019; Wolanin et al., 

2019; Xiao et al., 2011). Scaling and extrapolation to regional or global representativeness should be 

exercised with caution as it can increase uncertainty (Beer et al., 2010; Chu et al., 2017). This can be 

understood as the Modifiable Areal Unit Problem (MAUP) that includes (1) the “scale problem”, when 

areal data is aggregated into several sets of larger units; and (2) the “zoning problem”, when a given set of 

areal units are recombined into zones that are of the same size but located differently. Both problems 

result in variation in data values and subsequently different conclusions (Jelinski & Wu, 1996).

Similarly, the choice of model and spatial resolution may either inflate or underestimate GPP in 

heterogeneous croplands. Model comparison is necessary, as it identifies variations that could help 

identify shortcomings and areas for future improvement (Morales et al., 2005). Comparison is also a 

prerequisite for analyzing spatiotemporal biosphere-atmosphere fluxes as it reveals effects from different 

model structures (i.e., structural uncertainty) (Wang et al., 2011; Zhao et al., 2012), parameter values, 

meteorological input data, and vegetation and soil C pools (Anav, 2015). Therefore, examination of 

various GPP models and their spatial and temporal variations in croplands is necessary to advance our 

understanding of land management and land use effects on the global C budget.

Integration of EC and remote sensing methods have greatly advanced our ability to estimate GPP. 

However, due to the intense fragmentation, there can be a mismatch between small patches and
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conventional remote sensing spatial resolution (Ustin & Middleton, 2021). For example, global products, 

like the highly utilized 8-day Moderate -Re solution Imaging Spectroradiometer (MODIS) MOD17A2/A3 

and MYD17A2/A3 GPP products (1 km-500 m), can be challenging if used in the context of land cover 

areas with complex vegetation or mixed pixels (Running & Zhao, 2015). In fact, coarse remote sensing 

models may aggregate nearby land cover patches within the same estimate of land cover GPP 

productivity, introducing a mischaracterization of landscape processes (Reeves et al., 2005; F. Zhang et 

al., 2012). To estimate GPP within fragmented landscapes under various management practices, remote 

sensing offers several approaches to estimate GPP using measurements of optical parameters directly 

related to vegetation activity (Damm et al., 2015; Myneni & Ross, 2012). Advancements in optical 

sensors, such as those carried aboard Landsat-8 (2013-now) and -9 (2021-now), offer 30 m spatial 

resolution whereas Sentinel-2 A and B (2015/2017-now) offer 10-20 m spatial resolution and narrow red- 

edge bands—enabling phenology studies and parametrization at a much higher resolution than previously 

possible (Li & Roy, 2017).

Of the primary remote-sensing based models, the most common are light use efficiency (LUE) based 

estimates that are built on function convergence theory (Field et al., 1995; Monteith, 1972, 1977), which 

states that plant canopies will harvest the most light to fix C given the constraints from the environment 

(Goetz et al., 2000). Following this framework are the production efficiency models (PEMs), where GPP 

is estimated as a product of the fraction of the photosynthetically active radiation (/PAR) absorbed by the 

canopy (e.g., Goetz et al., 1999; Ruimy et al., 1999; Running et al., 2004). For example, the Landsat 

conterminous United States (CONUS) GPP product captures fine spatial scale (30 m) variability in GPP 

production with biome-specific inputs and provides ready-to-use product covering croplands, forests, 

grasslands and shrublands (Robinson et al., 2018). The vegetation photosynthesis model (VPM) similarly 

estimates GPP in various ecosystems, and its performance aligns well with EC GPP (John et al., 2013; Li 

et al., 2007; Wagle et al., 2015; Xiao et al., 2004a; Xiao et al., 2004b; Zhang et al., 2016).

Further, many remote sensing-based GPP models, such as VPM, rely on vegetation indices (VI) as 

input variables that serve as a proxy of/PAR and associated nutrient and absorption characteristics. Red-
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edge bands offered from the Sentinel-2A and B satellites offer additional VIs capable of estimating GPP, 

as vegetation red-edge (680-780 nm) captures the absorption of chlorophyll at 680 nm and higher 

absorption at 780 nm, detecting both moderate -to-high values (Gates, D. M., Keegan, H. J., Schleter, J.

C., & Weidner, 1965; Gitelson & Merzlyak, 1996; Horler et al., 1983). This is significant as chlorophyll 

has demonstrated a high sensitivity to seasonal changes and a strong relationship to GPP in croplands 

(Clevers & Gitelson, 2013; Lin et al., 2019; Wu et al., 2008) . In addition, fine spatial resolution of the 

Sentinel-2 data provides temporally detailed information for characterizing spatially heterogeneous GPP 

best in croplands and grasslands compared to forest sites (Lin et al., 2019). Across grassland sites in 

southeast Australia, Sentinel-2 red-edge data estimates of GPP agreed well with EC GPP (R2 = 0.77 and 

RMSE = 0.81 g C m-2 day-1) (Lin et al., 2019). Sentinel-2 and Landsat 8 data have also been used to 

estimate a neural network GPP model on five crop fields (four in the USA and one in Germany) (R2 = 

0.92 and RMSE = 1.38 g C m-2 day-1) (Wolanin et al., 2019). EVI2-derived GPP from MODIS (500m, 

250m) and Sentinel-2 (10m) and EC-derived were evaluated in eight sites in the Nordic region (R2 0.69­

0.91 and RMSE 0.49-2.19 g C m-2 day-1) (Cai et al., 2021). Few studies, however, cross-compare 

product resolutions in VPM to investigate changes across scales within the same cover type; or have 

tested red-edge VIs. More commonly, VPM is cross-evaluated with other GPP products, such as MOD17, 

a temperature and greenness model, a greenness and radiation model, and the EC-LUE model (F. Li et al., 

2013; Chaoyang Wu et al., 2011). Therefore, red-edge VIs from Sentinel-2 integrated into the VPM may 

enhance our ability to estimate GPP in heterogeneous croplands (Chen et al., 2011; Turner et al., 2003).

In this study, we evaluate whether GPP estimates derived using higher spatial resolution of satellite 

data is advantageous to conventional remote sensing products in managed croplands. We ask the 

following questions: (1) Can fine resolution GPP products built with red-edge VIs effectively capture 

significant differences at field-scale? (2) Are they significantly different from the conventionally used 

models—MOD17A2H V6 (500m) and Landsat-8 CONUS (30m)? and (3) How consistent are GPP 

anomalies across models within each site? While coarse resolution GPP products are reasonable for 

studies of large spatial extents, like global and regional (Running & Zhao, 2015), local-scale estimates of
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GPP are needed for local-scale management, estimates of C sequestration, and for C accounting. We 

generate site-specific LUE coefficients and model GPP, utilizing the VPM across MODIS (500 m), 

Landsat-8 (30 m), and Sentinel-2 (20 m) resolutions. By comparing multiple possible approaches to 

estimating GPP, we show which products are the most accurate in our managed cropping systems.

Methods

2.1. Study sites

Our study sites are located within the northeast portion of the US Midwest Com Belt in southwest 

Michigan, USA, at the Great Uakes Bioenergy Research Center (GUBRC) of the W. K. Kellogg 

Biological Station (KBS) Uong-Term Ecological Research (LTER) sites (42°24' N, 85°24' W, 288m a.s.l.; 

Figure 1, Table SI). The sites are in a humid continental temperate climate with mean annual air 

temperature 9.9 °C and mean total annual precipitation 1027 mm (Michigan State Climatologist's Office, 

2013). Soils are Typic Hapludalfs, well-drained sandy loams (Bhardwaj et al., 2011; Thoen, 1990). From 

May through September, roughly representing the growing season, mean air temperature and total 

precipitation are 19.7°C and 523 mm, respectively, with highest temperatures in July (Abraha et al.,

2018). Our study period spans March through November (DOY 60-334), including the growing season as 

well as its onset and offset, for years 2018 and 2019. Precipitation, air temperature, and photosynthetic 

photon flux density (PPFD) a nearby meteorological stations (http://lter.kbs.msu.edu/datatables. accessed 

June 2020). Seasonal dynamics of GPP are driven by PPFD and temperature in these temperate croplands, 

where GPP lowers to near-zero in the winter season — DOY 335-59 (December through February) — 

due to near absence of photosynthetic activity caused by snow cover, harvest as well as low PPFD and 

temperatures.

8



190
191

192

193

194

195

196

197

198

199

200

201

202

203

AGR-SW
CRP-REF

CRP-SW
AGR-PR

CRP-PR

CRP-C

A

(dV

■
1

1i

0
1 l

0.23
1

0.46 0.92km
J 1 1 1 1 1

B 88° W 86° W B4° W 82° W

46° N

45° N
OwenS.

44° N

43“ N Milwaukee Grand Rapids
Lansing

A

•

A
42° N Chicago 0

1_____

100 200 km
■ '_____

a Tower 

I I MODIS pixel 

Landsat 8 pixel 

Sentinel 2 pixel 
3 Field Extent

Figure 1. Location of eddy-covariance (EC) flux towers used in this study, where (A) are 

individual field extents and individual pixels for MODIS, Landsat-8, and Sentinel-2; and 

(B) is the location the towers at Kellogg Biological Station, Michigan, USA.

We consider seven study sites that are named according to their land cover history prior to 2009 and 

present land cover after land use conversion (i.e., names are interpreted as HISTORIC-PRESENT, Fig. 1). 

Two distinct land use histories—agriculturally cultivated land (i.e., AGR-) and Conservation Reserve 

Program grassland (i.e., CRP-)—were used. In one group, three fields were managed as CRP grasslands 

for 22 years with smooth bromegrass (Bromus inermis Levss)—a cool season C3 grass of Eurasian 

origin—as the dominant vegetation (Abraha et al., 2016). The second set of three fields included 

conventionally-tilled corn-soybean rotations (AGR) cultivated as such for decades prior to this study.

Both groups were converted to their present land cover types in 2009. Therefore, CRP sites include: (1) 

no-till com (CRP-C); (2) restored prairie (CRP-PR); and (3) switchgrass (CRP-SW); and AGR sites 

include (4) no-till com (AGR-C); (5) switchgrass (AGR-SW); and (6) restored prairie (AGR-PR); and (7)
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historically preserved CRP land (CRP-REF) (Fig. 1, Table S1). Upon conversion, the former CRP fields 

held significantly higher soil organic C and nitrogen (N) concentrations than the former AGR fields 

within its top 0.25m of soil (Abraha et al., 2018b; Zenone et al., 2011). The fields restored to prairie were 

planted with a mixture of 19 species (Abraha et al., 2016). During the study period, planting dates for 

AGR-C was May 7, 2018 (DOY 127) and May 11, 2019 (DOY 131); whereas for CRP-C it occurred on 

May 2, 2018 (DOY 122) and May 6, 2019 (DOY 126).

2.2. Eddy covariance

All EC systems included a LI-7500 open-path infrared gas analyzer (IRGA, LI-COR Bioscience, Lincoln, 

NE) for CO2 and water (H2O) concentration and a CSAT3 three-dimensional sonic anemometer 

(Campbell Scientific Inc. CSI, Logan, UT) for wind speed and direction measurements. Half-hourly 

meteorological measurements of incoming and outgoing radiation (CNR1, Kipp & Zonen, Delft, The 

Netherlands) and air temperature and relative humidity (HMP45C, CSI) were also measured at each site. 

All EC instruments are mounted 1.5-2.0 m above the vegetation and logged at 10Hz using a Campbell 

CR5000 datalogger. Half-hourly fluxes were processed in EdiRe for screening out-of-range data due to 

bad weather, sensors, and/or logger malfunction as well as de-spiking. For full data quality control details, 

please see Abraha et al. (2015).

Gapfilling and flux partitioning was completed in the standardized FLUXNET gap-filling algorithm 

from REddyProc (Wutzler et al., 2018). Gap-filling included a Ustar correction with thresholds estimated 

using the Moving Point Test (Papale et al., 2006), bootstrap uncertainty within the year, and flux 

partitioning by daytime (Lasslop et al., 2010). We used quality control flags Cfqc") of 0-3 in this study, 

where least reliable (i.e., fqc=3) estimates comprised less than 0.54% of any site-year, and values outside 

of three standard deviations were linearly interpolated with the package “seismicRolF (Callahan et al., 

2020) in RStudio 1.3.1056 (R Core Team, 2019). We present GPP uncertainty across aggregated values 

due to estimation of the Ustar threshold, as well as the percent NEE gap-filled prior to partitioning.

2.3. Satellite products and indices
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We obtained GPP (kg C m-2) from the MODIS MOD17A2H V6 product (8-day revisit time and 500 m 

resolution; hereafter GPPmodis) and the Landsat 8 CONUS product (16-day revisit time and 30 m 

resolution; hereafter GPPconus) (Robinson et al., 2018). Both GPPmodis and GPPconus were retrieved 

from Google Earth Engine (GEE) platform (Gorelick et al., 2017) using point sampling to select the 

nearest pixel to the site’s tower location. We considered only pixels nearby each tower, which brought us 

to consider 1 (500x500 m) MODIS pixel and 3x3 Landsat-8 (30x30 m) and Sentinel-2 (20x20 m) pixels. 

The models used to calculate GPPmodis and GPPconus are based on the LUE model (Running et al.,

2004). However GPPmodis retrieves climate, land cover, fPAR and LAI parameters from GMAO/NASA 

(0.5°), MOD12Q1 (500 m), and MOD15A2H (500 m), respectively, whereas GPPconus retrieves these 

parameters from Idaho Metdata (4 km), National Land Cover Database (NLCD; 30 m), and MOD09Q1 

(250 m), respectively. To derive daily estimates, composite images GPPmodis and GPPconus were divided 

by 8 and 16, respectively, and multiplied by 1000 to convert from kg C to g C, with final GPP units being

expressed as g C m-2 d-1.

For VPM (Section 2.4), we used surface reflectance from MODIS, Landsat-8 and Sentinel-2 

(acquisition details below) to calculate vegetation indices (VIs). The VIs include (1) the enhanced 

vegetation index 2 (EVI2) (Jiang et al., 2008) to account for moisture sensitivity; (2) the land surface 

water index (LSWI) (Xiao et al., 2004b), which is based on the shortwave-infrared (SWIR) and represents 

vegetation water content and soil moisture. In place of EVI2, we also test VIs including (3) the green 

Chlorophyll Index (CIg) and red-edge (4) Chlorophyll Index (CIr) (Gitelson et al., 2003, 2006); the (5) 

normal deviation index of the red edge 1 (NDRE1) (Sims & Gamon, 2002) and (6) normal deviation 

index of the red edge 2 (NDRE2) (Barnes et al., 2000); as well as the (7) medium-resolution imaging 

spectrometer, MERIS, terrestrial chlorophyll index (MTCI) (Dash & Curran, 2004). Surface reflectance 

and land surface temperature layers were quality checked and linearly interpolated for a representative 

time series.

The MODIS MOD09A1 v006 product provides surface reflectance at 500 m resolution every 8 days 

and it was used to calculate VIs using red (620-670 nm), near-infrared (NIR; 841-875 nm) and SWIR
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(1628-1652 nm) bands. MODIS Terra has an overpass at 10:30 AM local time. Data was acquired using 

the USGS AppEEARS online tool (https://lpdaac.usgs.gov/tools/appeears/, accessed January 2021) and 

screened for cloud cover and artefacts using QA/QC bits and 500m state flags, as instructed by the 

MODIS User Guide Tables 10 and 13, to select the best quality data (Vermote et al., 2015). Gaps due to 

poor quality were linearly interpolated. USGS Landsat 8 surface reflectance (Tier 1) provided 30 m 

resolution imagery every 16 days to calculate VIs EVI2 (Eq. 4) and LSWI (Eq. 6) using red (636-673 

nm), NIR (851-879 nm), and SWIR (1566-1651 nm). As for GPPlss-vpm, we acquired Landsat 8 data 

using GEE, and we used the pixel quality band "QA_PIXEL" to identify cloud and cloud shadow pixels

The Sentinel-2 is a constellation of two polar-orbiting satellites in the same sun-synchronous orbit. 

Surface reflectance over the study area provides a high revisit time of 10 days at the equator for a single 

and 5 days when 2 satellites under cloud-free conditions, which results in 2-3 days at mid-latitudes. 

Overpass for Sentinel-2 is 10:30 AM local time and is a compromise for illumination and least potential 

cloud cover, similar to the overpass time of Landsat and MODIS. Sentinel-2A spatial resolution is offered 

at 10, 20, and 60 m with a total of 12 multispectral bands; of which, three are red edge bands. Bands used 

(and their center wavelength) for EVI2 and LSWI include NIR (B8, 842 nm; 20 m spatial resolution), red 

(665; 10 m spatial resolution), and SWIR (1610 nm; 20 m spatial resolution), respectively. For red-edge 

indices (Eqs. 5-9), we also included the following: B3 (green, 560 nm), B5 (red-edge, 705 nm), B6 (red- 

edge, 740 nm), and B7 (red-edge, 783 nm).

The red band was resampled to 20 m resolution to match that of NIR and SWIR. Images were 

obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed 

February 2021) of the European Space Agency. We downloaded images as level 2A (i.e., surface 

reflectance) over the study area. Where level 2A was not available, we downloaded level 1C top-of- 

atmosphere (TOA) images that were then atmospherically corrected to obtain surface reflectance by using 

the default settings of the Sen2Cor (v. 2.5.5) algorithm (Muller-Wilm et al., 2018). We performed the 

cloud mask in RStudio by using the cloud mask probability band “MSKCLDPRB”, to identify cloud 

pixels, and the scene classification map band “SCL”, to identify water pixels. We then used a NIR

12
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thresholds to identify potential cloud shadow pixels (for more info, see

https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless). We employed 

ArcMap (v. 10.6) to rescale the surface reflectance to 0-1.

Lastly, to understand how heterogeneous systems can benefit from fine-resolution imagery, we 

estimate the composition (30 m) of land cover type within each of the remote sensing pixels employed to 

estimate GPP, described above, within ArcGIS Pro (v. 2.9). We acquired land cover from the USGS 

National Land Cover Database 2019 via GEE (Dewitz & Survey, 2021). Land cover estimates included 

cropland, water, wetland, grassland, wetlands, developed and forest; where grassland includes pasture, 

hay, grassland, shrub/scrub, wetlands include woody wetlands and emergent herbaceous wetlands, 

developed includes open space, and low, middle and high intensity developed areas, and forest includes 

evergreen, deciduous and mixed forests.

2.4. Vegetation photosynthesis model (VPM)

The VPM model is built similarly to the GPPmodis equation (Xiao et al., 2004a; Xiao et ah, 2004b), 

however the difference lies in the creation of LUE (eg Eq. 2) from remote sensing and meteorological 

inputs rather than the use of a look up table, where:

VPM = 8g x (/PAR) x (PAR), (1)

sg = Smax x Tscalar x Wscalar x Pscalar (2)

Here, VPM represents Sentinel-2, Landsat-8 and MODIS VPMs, hereafter GPPVpm-s2 , GPPvpm-lss, and 

GPPvpm-modis, respectively; /PAR is the fraction of photosynthetically active radiation absorbed by 

chlorophyll, PAR is photosynthetically active radiation (pmol m 2 s 1) acquired from nearby a weather 

station (http://lter.kbs.msu.edu/datatables. accessed June 2020), %is the LUE — the rate of CO2 uptake 

(pmol CO2 PAR1). The value of emax is maximum LUE estimated from a nonlinear hyperbolic 

Michaelis-Menten model (Wang et ah, 2010), and Tscalar, Wscalar and Pscalar are the scaling 

regulators for the effects of air temperature, water and leaf phenology, respectively, on the vegetation.
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Common in LUE models, including PEMs, is the application of/PAR as a function of the normalized 

difference vegetation index (NDVI) (Tucker, 1979). It is well acknowledged that NDVI is constrained by 

sensitivity to soil moisture and saturates at high leaf densities (Huete et al., 2002). To address this, VPM

applies EVI as a function of/PAR for an enhanced characterization of vegetation at the global scale 

(Huete et al., 2006; Jiang et al., 2008; Xiao et al., 2004a). To calculate /PAR, EVI can act as a linear 

function and the coefficient a is set to 1.0 (Xiao et al., 2005; Xiao et al., 2004b). In this study, we apply 

EVI2 to avoid high signal to noise ratios from atmospheric interference (e.g., aerosol or residual clouds) 

common in blue band wavelengths (Jiang et al., 2008).

/PAR = a x (EVI2) (3)

(4)EVI2 - 2 5.5 NIR+2.4RED + 1

To evaluate the potential for red-edge bands available from Sentinel-2 to advance the VPM’s 

applications, we chose to replace EVI2 with one of five red-edge VIs, CIg, CIr, NDRE1, NDRE2 and

MTCI, calculated as:

CIg - 1 (5)

cIr = £ - > (6)

NDREI - HZ (7)

ndre2 - ::: (8)

MTCI - ZH (9)

where the center of each Sentinel-2 band is as follows: B3 (560 nm), B4 (665 nm), B5 (705 nm), B6 (740 

nm), B7 (783 nm), B8 (842 nm).

Down regulation scalars Wscalar, Tscalar, Pscalar demonstrate the effects of water, temperature,

and leaf phenology respectively on the vegetation’s LUE. Wscalar is estimated as:

Wscalar l+LSWI 
1+(LSWI)max (10)

LSWI = NIR SWIR
NIR+SWIR (11)
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where (LSWI)max is the maximum LSWI during the growing season. Tscalar measures the sensitivity of 

photosynthesis to temperature, calculated at each time step using the equation developed for the 

Terrestrial Ecosystem Model (Raich et al., 1991):

Tscalar - (T-Tmin)(T-Tmax)
[(T-Tmin)(T-Tmax)]-(T-Topt)2 (12)

where Tmin, Tmax, and Topt are the photosynthesis minimum, maximum, and optimal temperatures (°C), 

respectively (Raich et al., 1991) (Table S2). If air temperature falls below Tmin, Tscalar is set to zero. 

Pscalar accounts for the effects of leaf phenology on photosynthesis at the canopy level. Calculation of 

Pscalar is dependent on the life expectancy of the leaves. Pscalar has two phases when a canopy is 

dominated by leaves with a life expectancy of one year (i.e., growing season) without replacement. From 

bud burst to full leaf expansion, Pscalar is calculated as:

Pscalar - l+LSWI (13)

whereas following expansion, the Pscalar is set to 1 with no alteration for senescence. Grassland systems 

such as prairie and switchgrass are set to 1 throughout the study period (Wang et al., 2010; Xiao et al.,

2

2004a).

2.5. Statistical analysis and uncertainty

To understand how tower GPP estimates relate to either NDVI or EVI2, we performed sensitivity tests of 

both indices to GPPiower acquired from MODIS, Landsat-8 and Sentinel-2 for each site-year using a 

procedure outlined in Gitelson (2004):

S - [d(EVI2)/d(NDVI) • [A(EVI2)/ A (NDVI)]-1 (14)

where d(EVI2) and d(NDVI) are the first derivatives of the indices with respect to GPPiower and A(EVI2) 

and A(NDVI) are the differences between the maximum and minimum index, respectively. The function S 

tracks the sensitivity of EVI2 and NDVI to changes in GPPiower. Values of S <1 can be interpreted where 

NDVI is more sensitive than EVI2 to GPPiower, and values S >1 as indicate that EVI2 was more sensitive 

than NDVI to GPPTower. When S - 1, NDVI and EVI2 are assumed to be equally sensitive. We
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acknowledge that S does not account for estimate errors of d(EVI2)/d(NDVI), which may bias sensitivity 

evaluations

We evaluated seasonal dynamics of PPFD, air temperature, precipitation, as well as EVI2 and NDVI 

from MODIS, Landsat-8 and Sentinel-2 in a time series alongside GPPTower for each site-year. A 

comparison of GPP sums during the study period (March-November) and growing season (June, July, 

August) evaluates differences between GPPmodis, GPPvpm-modis, GPP vpm-lss, GPPvpm-s2, GPPconus, and 

GPPTower. Days without estimates from the VPM model or other products (i.e., days in-between 

acquisitions) were linearly interpolated within the R package “zoo” to generate cumulative GPP estimates 

(Zeileis & Grothendieck, 2005).

Three metrics were used to evaluate the performance of GPP satellite estimates in comparison with 

GPPTower, including the coefficient of determination (adjusted R2, hereafter R2), root mean square error 

(RMSE), and Spearman’s Rho (p), which is a non-parametric test that estimates the model’s ability to 

increase or decrease in a similar trend to observed values. Estimates closer to 1 indicate a positive 

relationship and those closer to -1 indicate a negative relationship. In the linear models, we only included 

original acquisition days (i.e., days corresponding to satellite acquisitions) that paired tower estimates. To 

assess model implications on GPP estimates, and by proxy the resolution implications, we tested for 

significant difference in GPP models among sites with the Kruskal-Wallis test and Dunn post-hoc test in 

the R packages “stats” and “dunn.test” (Dinno, 2017; Dunn, 1964; Kruskal & Wallis, 1952; R Core 

Team, 2019). The Kruskal-Wallis test extends from the Wilcoxon Rank test that is used for two samples 

(Vargha & Delaney, 1998), and determines if there is a significant difference (p-value <0.05) in the 

median GPP estimate between models. It replaces a one-way analysis of variance (ANOVA) when data is 

not normally distributed. The result of the Kruskal-Wallis is H, which is interpreted as chi-square; and z is 

result of the Dunn’s Test for multiple comparisons.

Since our study area has strong seasonal changes of temperate zones, our data and predictions 

violate the statistical assumptions that they are independent and identically distributed. We address this
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concern of temporal autocorrelation in a second regression analysis by removing interannual and seasonal 

variation from each time series. We estimated zero-centered daily GPP anomalies and evaluated how 

these anomalies vary by GPP model and site-year. To generate average GPP seasonality (GPPS) on a 

daily time step (t) for each site (x) we averaged the daily GPP estimates from the different approaches for 

each year then smoothed the result with a Gaussian blur of 15 days to remove noise using the R package 

“smoother” (Hamilton, 2015). To remove interannual differences, we calculated GPPx,yr as the site-year 

annual mean of all GPP models. GPP anomalies (GPPA) were thus calculated as:

GPPAxt = GPPxt — GPPSxt — GPPxyr (15)

Therefore, when an anomaly estimate is near-zero it has a small difference from the average, 

zero-centered seasonal pattern. Once we calculated daily GPPA (Eq. 15), we only included estimates that 

coincide with model acquisition dates to avoid inflation in our analysis. In the linear regression of 

anomalies, models agreeing well with GPP^wer will express similar values (i.e., differences from the 

mean) with GPPTower. In the linear regression of anomalies, models agreeing well with GPPt™ will 

express similar values (i.e., differences from the mean) with GPPTower.

3. Results

3.1. Seasonal changes of climate, vegetation indices and tower GPP

Seasonal changes in air temperature, precipitation and PPFD at the LTER/KBS (i.e., study area) revealed 

that 2018 was on average warmer and drier than 2019 during the study period (March-November) (Fig. 

S1). For the study area in 2018, there was an average air temperature of 10.59 °C and a cumulative 796 

mm of precipitation; whereas 2019 had an average air temperature of 9.25 °C and cumulative 896 mm of 

precipitation. We found GPPTower increased sharply in May of both years at in all site-years (Fig. 2) due to 

the temperature increase, where the study area’s monthly average air temperature from April to May 

increased from 4.49 °C to 18.18 °C in 2018, and 8.47 °C to 13.97 °C in 2019. We also found the study 

area in 2019 had notably higher cumulative monthly and average daily precipitation in spring months 

reaching 114(2.8), 92(2.97), and 173(5.77) mm in April, May and June; whereas 2018 had 63(2.1),
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220(7.10), and 80(2.67) mm, respectively. GPPTower uncertainty due to Ustar filtering for all site-years 

was < 3% (0.81-2.97%), with <28% (16.16-27.51%) of NEE identified for gapfilling (Table S4).

We found that MODIS 500 m pixels do not well represent each study site and include large 

aggregations of neighboring land covers (Table S3). One MODIS pixel including a tower may overlap 

two fields or nearby forest and marshland (Fig. 1). Conversely, the resolution of Sentinel-2 and Landsat 8 

(20 m and 30 m, respectively) results in homogeneous pixels at each of the seven sites. Therefore, 

reflectance and vegetation indices from Landsat 8 and Sentinel 2 are more likely to represent the land 

cover of interest and minimize influence from neighboring vegetation. Monthly variability in GPPTower 

during the growing season coincided well with the variations in precipitation, temperature, PPFD and 

EVI2/red-edge VIs. The GPPTower during the growing season peaked in late July (DOY 185-217), which 

closely coincides with peak PPFD and temperature in the study area (Fig. S1). Peak dates of daily GPP at 

AGR-C and CRP-C from 2018 were delayed by approximately 20 days in 2019; whereas AGR-PR 

experienced a 15-day delay, and remaining sites peaked within 11 days (Fig 2).

The interannual seasonal dynamics of EVI2 differs in amplitude across sites and between satellites 

(Fig. 2). Maximum EVI2 for Sentinel-2 across sites ranged 0.65-0.86, whereas Landsat-8 and MODIS 

ranged 0.55-0.80 and 0.59-0.68, respectively. Sentinel-2 best captured the onset, offset, and volatility of 

the growing season. MODIS and, to a lesser extent, Landsat-8 EVI2 trends often exhibited lower 

estimates near the growing season peak. Notably, MODIS EVI2 increased before GPPTower in the onset of 

the growing season and lags in the offset, particularly in AGR-C, CRP-C, AGR-PR and CRP-REF. 

Interannual seasonal dynamics of red-edge VIs capture peak growing season GPP well, particularly in 

corn systems, and reach higher peaks than EVI2 in CRP-PR and CRP-REF sites (Fig. 3). Red-edge VIs 

also demonstrate a similar trend as GPP during spring and fall in all sites.

MODIS EVI2 is more sensitive to variations in GPPTower; whereas for Landsat-8 and Sentinel-2, EVI2 

and NDVI have similar sensitivity (i.e., 0.00 ± 0.10) (Table 1). MODIS EVI2 is more sensitive to 

GPPTower in all site years except CRP-SW in 2018. We note that historical cropland sites AGR-C, AGR-
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PR and AGR-SW as well as CRP-REF and CRP-C have higher sensitivities to MODIS EVI2. For 

Landsat-8, AGR-C, AGR-PR, CRP-PR and CRP-REF exhibit sensitivities to both NDVI and EVI2 in 

different years, with CRP-C, AGR-SW and CRP-SW demonstrating higher sensitivities to NDVI in both 

years. Similarly, Sentinel-2 saw sensitivities change between years, but exhibited slightly higher 

sensitivity to NDVI in AGR-C, AGR-PR and CRP-SW. Overall, we found Landsat-8 sensitivities 

remained within ±0.10 of 1.00 (i.e., equal sensitivity) for 9:14 (i.e., 9 out of 14) site-years, respectively; 

whereas Sentinel-2 exhibited sensitivities ±0.10 of 1.00 within 12:14 site-years.

Table 1. The relative sensitivity of EVI2 to NDVI. Values of S < 1 indicate that NDVI is more 

sensitive than EVI2, sensitivities are considered to be equal when S = 1, and values of S > 1 

indicate EVI2 having a greater sensitivity than NDVI.

Site MODIS
2078 2079

Landsat-8
2078 2079

Sentinel-2
2078 2079

AGR-C 1.31 1.33 1.08 0.99 0.90 0.96
AGR-PR 1.32 1.26 0.94 1.00 0.77 0.94
AGR-SW 1.30 1.22 0.94 0.92 0.99 1.01
CRP-C 1.11 1.13 0.77 0.99 0.78 1.00
CRP-PR 1.07 1.18 1.04 0.86 1.04 0.93
CRP-REF 1.20 1.21 1.22 0.81 1.01 0.91
CRP-SW 0.77 1.08 0.97 0.57 0.95 0.94

Differences between sensitivities of EVI2 and red-edge VIs to GPPTower vary (Table 2). In most 

cases, NDRE1 is near similar in sensitivity to EVI2 in all sites except CRP-C, where NDRE1 is more

sensitive. Between NDRE2 and EVI2, most sites had near-equal sensitivities, except for AGR-SW 2018

where EVI2 has higher sensitivity. Both Clg and Clr show a lower sensitivity than EVI2 in all site-years 

except in CRP-C. Lastly, sensitivities of MTCI and EVI2 were near equal in all site years except AGR- 

SW 2018, where EVI2 has higher sensitivity. Overall, NDRE1 and NDRE2 have 8:14, Clg and Clr have

2:14, and MTCI 5:14 site years with higher sensitivity than EVI2 to GPPTower.
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Table 2. The relative sensitivity of EVI2 to Sentinel-2 red-edge bands NDRE1, NDRE2, Clg, Clr, 

and MTCI. Values of S < 1 indicate that the red-edge index is more sensitive than EVI2, 

sensitivities are considered to be equal when S = 1, and values of S > 1 indicate EVI2 having a

greater sensitivity than the respective red-edge index.

Site NDRE1
2078 2079

NDRE2
2078 2079

Clg
2078 2079 2078

Clr
2079

MTCI
2078 2079

AGR-C 0.88 0.92 0.87 0.93 1.19 1.13 1.14 1.15 0.98 1.05
AGR-PR 1.08 1.06 1.08 1.09 1.43 1.27 1.34 1.25 1.05 1.06
AGR-SW 1.32 0.95 1.40 1.02 1.61 1.14 1.59 1.12 1.26 1.00
CRP-C 0.73 0.74 0.74 0.75 0.94 0.89 0.97 0.89 0.90 0.86
CRP-PR 0.96 0.93 0.93 0.93 1.26 1.08 1.16 1.08 1.05 0.99
CRP-REF 1.00 1.00 1.12 1.02 1.34 1.20 1.14 1.09 0.93 1.12
CRP-SW 0.96 0.91 0.96 0.94 1.12 1.13 1.26 1.18 1.13 1.04

In both years, GPPVPM-S2 explains more variability and is statistically significant in the linear 

regression analysis with GPPt,™ during the study period (Table S5). GPPvpm-s2 demonstrates visibly 

higher peaks in the growing season than other models, but occasionally over estimates in 2018 (AGR-C, 

AGR-PR, CRP-C, CRP-PR, CRP-REF) and in 2019 (CRP-C, CRP-REF). MODIS products generally 

underestimate these amplitudes (Figs. 4, 5). MODIS products largely underestimate corn and switchgrass 

systems where GPPVPM-S2 captured GPP dynamics. In addition, VPMs coincide with GPPTower peaks and 

variations more than GPPmodis and GPPconus, particularly in corn systems. Average daily GPPTower is 

higher in 2018 compared to 2019; where in 2018, the most productive sites (CRP-SW, AGR-C, and 

AGR-PR) reached 5.66-6.27 g C m-2 d-1 compared to the most productive sites in 2019 (CRP-PR, CRP-C, 

and CRP-SW) with a range of 5.73-5.78 g C m-2 d-1. Corn systems have the highest daily productivity in 

both years but experienced the greatest shift in peak dates between 2018 and 2019. In both years, the 

highest daily sum recorded were in sites CRP-C, AGR-C, and CRP-SW while the lowest was observed in

CRP-REF.

When exchanging EVI2 for a red-edge VI in the Sentinel-2 VPM, there is a significant improvement 

across site-years. Particularly, NDRE1 and NDRE2 improve the Sentinel-2 VPM in eight out of 14 site- 

years compared to other red-edge VIs. In 2018, NDRE2 improves AGR-C, CRP-C, and CRP-SW by 

improving explanation of variation by 8%, 11% and 4%, respectively; whereas in 2019, it improves 

AGR-C, AGR-PR, AGR-SW, CRP-C, and CRP-SW by 7%, 4%, 3%, 16% and 4%, respectively (Table
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468 S5). NDRE1 also improves AGR-C in both years and CRP-C in 2018 by the same explanation of variance

469 as NDRE2. While GPPvpm-lss is better than GPPvpm-s2 in both CRP-C site-years, but with NDRE2 the

470 VPM improves by 11% and 16% in 2018 and 2019, respectively. Red-edge Vis NDRE1, Clr and Clg do

471 not improve the Sentinel-2 VPM beyond that of NDRE2. While MTCI does improve the Sentinel-2 VPM

472 in CRP-REF and explains 4% more variation and is the leading GPP model for both site-years, it still

473 overestimates during the peak growing like GPPvpm-s2 and VPM VPM-cig (Fig. 5)
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Figure 2. Daily GPPiower estimates (g C m"2 d"1) as well as MODIS, Landsat-8, and Sentinel-2 

EVI2 at (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (e) CRP-PR, (f),CRP-SW, and (g) 

CRP-REF sites 2018-2019.
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Figure 3. Daily GPPiower estimates (g C m"2 d"1) as well as Sentinel-2 red edge vegetation indices 

Clg, Clr, NDRE1, NDRE2, and MTCI at (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (e) 

CRP-PR, (f),CRP-SW, and (g) CRP-REF sites 2018-2019.
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Figure 5. Temporal changes in GPPiower and Sentinel-2 VPM RS models 2018-2019 for the seven 

study sites: (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (e) CRP-PR, (f) CRP-SW, and 

(g) CRP-REF.
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During the study period, GPPvpm-s2 estimated 5:14 site-year sums at ±10% that of OPPiower sums, 

whereas GPPvpm-lsb had 3:14, GPPvpm-modis 2:14, GPPmodis had 0:14, and GPPconus 3:14 (Table 3). When 

using red-edge VIs, VPMs2-ndre1 models estimated 1:14, VPMs2-ndre2 5:14, VPMs2-mtci 6:14, VPMs2-cig 

4:14, and VPMs2-cirhad 2:14 site-year sums at ±10% that of OPPiower. Overall, Sentinel-2 VPMs were 

closer to the study-period sums of OPPiower than other models. Cumulative satellite GPP estimates by site- 

year had difference of ~9-800 g C m-2 from OPPiower, with an average difference of 229.69 g C m-2. 

Models that had a site within ±10% of OPPiower in both 2018 and 2019 included GPP vpm-ls8 , VPMs2- 

ndre2, VPMs2-clr for sites CRP-REF, CRP-C, and CRP-REF, respectively. Model VPMs2-mici remained 

within ±10% of OPPiower more often than other models including by site-year and cumulative annual GPP 

during the study period. GPPmodis and VPMs2-ndre1 underestimated all site-years, but other models 

overestimated occasionally, including GPPvpm-ls8 (5:14), GPPvpm-modis (2:14),GPPconus (4:14), VPMs2- 

ndre2 (1:14), VPMs2-mtci (5:14), VPMs2-clg (2:14), and VPMs2-clr (2:14).

Cumulative GPP for the peak growing season (June, July, and August) indicate that VPMs2-ndre2 and 

VPMs2-mtci best matched OPPiower, with 8:14 site-years within ±10% tower sums (Table 4). Non-red-edge 

model GPPvpm-s2 closely followed with 7:14 site-years. When estimated by GPPvpm-ls8 and GPPvpm-s2 in 

2018 and by GPPvpm-s2 in 2019, cumulative GPP of all sites in the study area was within ±10% of that 

estimated by OPPiower. When considering red-edge models, however, VPMs2-ndre2, VPMs2-clg, and 

VPMs2-clr all estimated both 2018 and 2019 cumulative GPP within ±10% tower sums. However, VPMs2- 

ndre1, VPMS2-NDRE2, VPMs2-mtci, VPMs2-clg, and VPMS2-Clr overestimated 1:14, 3:14, 9:14, 6:14, and 5:14 

site-years, respectively. Compared to other models, VPMs2-ndre2 reliably estimated peak growing season 

cumulative GPP at individual and collective fields.
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Table 3. March-November cumulative GPP (g C nr2) as estimated from GPPTower, conventional products GPPmodis and GPPconus,

and VPM models GPPvpm-modis, GPPvpm-lss, GPPvpm-s2, VPM s2-ndrei, VPMs2-ndre2, VPM s2-mtci, VPM s2-cig, VPM s2-cir. Values in 

bold indicate ±10% of total GPPiower.

Year SITE GPPiower GPPmodis GPPconus

A/OD78
GPPvpm-
7,38 S2 AD77E7 AD77E2

VPMss-
A7TC7 Clg Clr

AGR-C 1598.83 1092.38 797.32 1649.99 1254.12 1340.96 1226.33 1577.21 1597.10 1369 89 1335.42
AGR-PR 1554.91 1165.29 1649.75 1802.58 1612.87 1529.12 1124.71 1476.40 1786.66 1503.21 1345.71

2018 AGR-SW 1501.52 1108.52 1729.91 1241.52 1161.16 1276.53 822.97 1097.84 1522.17 1305.52 1218.87
CRP-C 1417.42 1122.50 776.11 1206.72 1701.10 1184.19 1146.05 1484.45 1346.03 1340.52 1129.04
CRP-PR 1469.99 1147.00 967.75 1349.28 1979.34 1439.21 1001.07 1289.68 1592.61 1270.01 1300.73
CRP-REF 1327.21 1173.51 977.53 1088 91 1341.41 1122.34 741.01 1008.62 1425.93 1343.52 1216.46
CRP-SW 1725.24 1171.74 1009.05 1152.18 1326.74 1464.69 1243.94 1519.22 1495.99 1443.48 1293.13
Total 70595.72 7980.95 7907.42 9497.78 10376.75 9357.03 7306.07 9-/53.-Z2 10766.50 9576.15 8839.37
AGR-C 1340.88 1084.37 1331.38 1120.08 1075.59 1043.42 993 81 1242.04 1111.09 944.38 948.55
AGR-PR 1465.36 1128.72 1717.36 1032.44 853 29 1013.46 794.34 1002.62 1109.12 1079.95 907.22
AGR-SW 1366.86 1091.51 1838 63 795.20 1019.06 89923 635 01 847.33 1141.78 968 39 942.40

2019 CRP-C 1596.14 1082.76 1437.37 1305.52 2031.73 1456.51 1446.59 1777.44 1888.23 1844.54 1773.22
CRP-PR 1574.03 1077.00 975.83 1004.45 1233.13 1314.00 965 03 1225.00 1401.90 1407.05 1324.88
CRP-REF 1265.02 1118.37 986.77 1010.13 1227.60 1328.91 846.67 1109.47 1420.46 1521.20 1357.44
CRP-SW 1567.16 1128.18 1025.81 1257.41 1341.75 1453.05 1195.85 1488.37 1443.98 1436.62 1260.02
Total 707 75.45 7770.90 9373.74 7525.22 8782.76 8508.59 6877.37 869226 9516.56 9202.13 8573.73

51
4



51
5 

3.
2.

 M
o

l
r^
rsj

Table 4. June-August cumulative GPP (g C m2) as estimated from GPPiower, conventional products GPPmodis and GPPconus, and VPM models

GPPvpm-modis, GPPvpm-lss, GPPvpm-s2, VPMs2-ndrei, VPMs2-ndre2, VPM S2-MTCI, VPM s2-cig, VPM s2-cir- Values in bold indicate ±10% of total 

GPPiower.

Year SITE GPPiower GPPmodis GPPconus
A70D78

GPPvpm-
7A8 S2 AD77A7 AD77E2

VPMss-
A7TC7 cig Clr

AGR-C 1391.29 738.58 554.12 1275.75 1087.65 1131.24 1065.48 1311.99 1460.64 1225.44 1237.59
AGR-PR 1184.43 724.16 1039.64 1272.96 1278.57 1261.86 902 85 1121.71 1505.76 1192.06 1173.15

2018 AGR-SW 1128.22 709.44 1099.14 908 67 892 78 1022.95 629 49 802.30 1221.38 99142 983 67
CRP-C 1209.67 722.41 539.37 880 98 1392.21 1005.68 998 37 1232.87 1231.34 1185.96 1042.77

CRP-PR 904.32 732.37 540.12 985.65 1513.78 1117.23 807.45 1010.78 1293.86 1115.91 1144.93
CRP-REF 729.02 763.76 534.06 776.52 952.55 785.15 520.92 685.25 986 70 928.80 876.51
CRP-SW 1277.66 726 96 622.25 799 60 915.50 1211.05 1008.55 1191.43 1259.59 1280.42 1146.39
Total 7824.67 5777.68 4928.77 6900.73 8033.04 7535.16 5933.77 7356.32 8959.27 7922.01 7605.01

AGR-C 1054.59 721.68 975.09 816.75 904.75 959.19 844.38 1034.79 976.78 827.65 826.75
AGR-PR 1166.85 711.91 1067.32 765.72 694.01 883 87 689 71 830 63 980 70 937.14 82134
AGR-SW 1043.18 710.13 1148.15 575.12 78809 771.31 549.22 694.11 1008.74 874.31 85193

2019 CRP-C 1198.79 677.43 1052.35 887.20 1542.26 1344.60 1218.03 1466.30 1630.16 1567.92 1519.85
CRP-PR 1092 92 699 95 561.12 724.21 883.75 1047.35 780.58 943 20 1170.22 1143.78 1148.72
CRP-REF 770.39 722.25 545.17 723.68 878.22 964.54 605.65 767.94 991.55 1054.68 985 61
CRP-SW 1263.43 735.01 637.43 911.20 889 86 1226.98 1024.97 1214.15 1293.07 1245.41 1138.83
Total 7590.75 4978.57 5986.63 5403.88 6580.95 7197.8-1 577254 6951.12 8051.22 7650.90 7297.05
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In all site years, the finer resolution GPPvpm-s2 and GPPvpm-lss out-performed GPPmodis, GPPconus and 

GPPvpm-modis (Fig. 6, Table S5) and agreed the best with GPPpower. Each model had a significant (p<0.05) 

and strong positive trend with GPP^wer in 2018 and 2019. The largest variation in model estimates were 

found in corn systems for both years and prairie systems in 2018. GPPvpm-modis, GPPmodis and GPPconus 

models generally underestimated; and GPPvpm-s2 and GPPvpm-ls8 models aligned best with the 1:1 slope, 

with the exception of GPPvpm-s2 and GPPvpm-ls8 overestimation of CRP-C 2019 and CRP-PR 2018. In 

CRP-REF, all models were in close agreement with GPPTower. In both years, GPPmodis and GPPconus had 

the highest RMSE in corn and switchgrass systems, as well as AGR-PR. In all sites, VPM models had 

lower RMSE than conventional products GPPmodis and GPP conus with the exception of CRP-REF (both 

years) and CRP-PR (2018) (Fig. 8). Compared to GPPvpm-s2, RMSE at corn sites was lower for GPPvpm- 

ls8 for both years and lower for GPPvpm-modis in 3:4 site-years.

When considering enhancements from red-edge VIs in VPM, the NDRE1 and NDRE2 VIs 

increase explanation of variability in eight out of fourteen site-years (Fig. 7). While RMSE values of red- 

edge VPMs were often higher in 2018 than that of the EVI2-based GPPvpm-s2, they were near equal in 

2019 (Table S5, Fig.8). Sites that benefitted in both years from red-edge VPMs included AGR-C, CRP-C, 

and CRP-SW; whereas AGR-PR and AGR-SW only saw benefits in 2019. While both NDRE1 and 

NDRE2 improve AGR-C in both years and CRP-C in 2018 by the same explanation of variance, NDRE1 

has a lower RMSE in all three site-years and a closer 1:1 slope in two of three site years.
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535

536

537

AGR-SW, 2018 AGR-SW, 2019 CRP-C, 2018 CRP-C, 2019

Figure 6. Comparison of daily GPPt0wer with daily lss, GPPvpm-modis, GPPmodis, and 

GPPconus by site-year. Solid black linedepicts a 1:1 relationship.

29



AGR-C, 2018 AGR-C, 2019 AGR-PR, 2018 AOR-PR, 2019

538
539

540

AGR-SW, 2018

CRP-PR, 2018

CRP-SW, 2018

AGR-SW, 2019 CRP-C, 2019

CRP-REF, 2018 CRP-REF, 2019

CRP-SW, 2019 10 20 30 6 10 20

—M— VPM s2 VPM S2-NDRE1

-o-
S2-MTCI VPM S2-NDRE2

VPM S2-Clr

-2. K

Figure 7. Comparison of daily GPPt0wer with daily VPMS2-mtci, VPMS2-cig, VPMS2-cir, 

VPMS2-NDRE1, and VPMS2-ndre2 by site-year. Solid black line depicts a 1:1 relationship.
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543
544 Figure 8. Comparison model RMSE (g C m"2 d"1) of daily GPPiower with daily remote sensing GPP

545 models across the seven land cover types in (a) 2018 and (b) 2019.

546 GPP estimates are significantly different between models at all sites, except CRP-PR, according to

547 the Kruskal-Wallis rank sum test (p < 0.05) (Fig. 9). A pair-wise post-hoc Dunn test demonstrated that in

548 site AGR-C, significant differences were found between pairs GPPmodis:VPMs2-cit and GPPMoDis:VPMs2-cig

549 (z= 3.92. /;=0.004: z= 3.66. /;=0.01. respectively); while CRP-C had differences between GPPmodis:VPMs2-

550 cir(z= 3.62,^»=0.01). In sites CRP-PR, CRP-REF, CRP-SW, AGR-PRand AGR-SW, there were no

551 significant (p < 0.05) differences between model pairs.
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AGR-C AGR-PR AGR-SW CRP-C

H=23.I9*H=20.33*H=18.76*

CRP-PR CRl’-SW

H=16.49*H=15.89

^ GPpmodis ^IGPPvpm.modis ^VPMy 4 VPM S2_c|r ^1 VPM s:NDRE2

$ GPP conus *GPPvpm.LS8 ^VPMSMg 4 S2-XDRE1 *VPMS2.MTC,

Figure 9. Box-plot comparisons of GPP models by land cover type during 2018-2019. Inside the 

boxplot, a black diamond indicates the mean, error bars are mean standard error, and a black 

horizontal line depicts the median; outside the boxplot, whiskers indicate the maximum and minimum 

values and points indicate outliers. Results of the Kruskal-Wallis include H, which is interpreted as 

chi-square. A significant/>value <0.05 is indicated with an *.

3.4. GPP anomaly estimates

We evaluated anomalies generated from each GPP model from seasonal means and found large anomalies 

existed in the peak growing seasons (June-August) (Figs. 10,11). GPPiower anomalies in regression 

analysis demonstrated that GPPvpm-s2 exhibited the highest positive trend out of conventional models, 

with a significant relationship (p<0.05) in switchgrass and prairie systems but was second to GPPvpm-lss 

at the com systems. CRP-REF anomalies did not match well with any model, evidenced by insignificant, 

positive trends (Fig. S2, S3 Table S6). In red-edge VPMs, we found that most anomalies occurred during 

peak growing season due to models VPMS2-mtci, VPMS2-cir, and VPMS2-cig, which overestimated GPP in
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566 2018 site-years and in CRP-C 2019. Generally, VPMs2-ndrei and VPMs2-ndre2 did not overestimate, with

567 the exception of CRP-C 2019, and had more outliers that underestimated.
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"igure 10. Anomalies of GPP (g C nr2 d"1) from GPPmodis, GPPconus, GPPvpm-modis and GPPvpm 

,ss over time for the seven study sites: (a) AGR-C, (b) AGR-PR, (c) AGR-SW, (d) CRP-C, (e) 

:RP-PR, (f) CRP-REF, and (g) CRP-SW.
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"igure 11. Anomalies of GPP (g C m"2 d"1) from GPPvpm-s2 , VPMS2-cig, VPMS2-cir, VPMS2-ndrei, 

V2PMs2-ndre2, VPMs2-mtci overtime for the seven study sites: (a) AGR-C, (b) AGR-PR, (c) AGR- 

SW, (d) CRP-C, (e) CRP-PR, (f) CRP-REF, and (g) CRP-SW.
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Anomalies exhibited both positive and negative trends compared to GPPiower, with fine-re solution 

VPMs outperforming conventional models. Red-edge VPMs had strong, positive trend at the exception of

sites AGR-SW (VPMs2-ndrei) and CRP-REF (VPMs2-cig, VPMs2-ndre2). GPPvpm-lss exhibited the 

strongest, positive trend and the lowest RMSE in com sites between conventional models and GPPvpm-s2; 

whereas GPPvpm-s2 exhibited this for remaining sites, except CRP-REF (Fig. 12). In red-edge models, the 

lowest RMSE was VPMs2-mtci in AGR-C, AGR-PR, and AGR-SW; and variable in remaining sites. Sites, 

AGR-C, CRP-C and CRP-SW tend to have higher RMSEs. Conventional GPPconus and GPPmodis had 

negative trends, except for GPPmodis in CRP-PR (p=0.30) and GPPvpm-s2 in AGR-SW (p=0.02) and CRP- 

REF (p=0.40)) Similarly, GPPvpm-modis had a negative or zero trend in all sites except for AGR-PR

(p=0.20).

Figure 12. Comparison of anomaly model RMSE (g C m"2 d"1) and Spearman's Rho

(p) coefficients of daily GPPt0wer with daily GPP from all remote sensing models across the seven

land cover types 2018-2019.
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Figure 13. Box-plot comparisons of GPP (g C nv2 d"1) anomalies by model at seven land cover 

type during 2018-2019. Inside the boxplot, a black circle indicates the mean, error bars are mean 

standard error, and a black horizontal line depicts the median; outside the boxplot, whiskers 

indicate the maximum and minimum values and points indicate outliers. Results of the Kruskal- 

Wallis include H, which is interpreted as chi-square, and significance />value «0.05 is indicated 

with an asterisk (*).

Significant differences exist between anomaly GPP models at each site, according to the Kruskal- 

Wallis rank test (Fig. 13). The site with greatest variance from the mean was CRP-C. From the pairwise 

comparison Dunn test (Table 5), we also observed that a significant difference in anomaly medians 

between GPPiower and GPPvpm S2 exist in five sites, including AGR-C, AGR-PR, AGR-SW, CRP-PR, and 

CRP-SW. Significant differences also existed between GPPiower and GPPvpm lss at AGR-PR and AGR- 

SW, as well as between GPPvpm lss and GPPvpm-ss in CRP-C. The fewest differences between red-edge 

VPMs and GPPiower were with VPMsi-ndrei (AGR-PR, AGR-SW, CRP-PR, CRP-REF) and VPMS2 mtci 

(AGR-C, AGR-SW, CRP-PR, CRP-REF); and the highest was with VPMs2-cir, which was significantly
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606 different in seven sites. VPMs2-ndre2 and VPMs2-mtci also had the fewest differences between other

607 models.
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Table 5. Dunn test pairwise comparison of significant differences (p<0.05) between models at 

each site 2018-2019 for GPP anomalies.

GPP GPP GPP GPP GPP vpm vpm vpm vpm vpm GPP
CONUS MODIS vpm- VPM-LS8 VPM-S2 S2-Clg S2-Clr S2- S2- S2-MTCI Tower

MODIS NDRE1 NDRE2
GPP - - - - - - - - - - -
CONUS
GPP □□ - - - - - - - - - -
MODIS
GPP □□ - - - - - - - - -
vpm-
MODIS
GPP - - - - - - - -
VPM-LS8
GPP *□ ▲▲ A - - - - - - -
VPM-S2
vpm ▲ ▲♦ - - - - - -
S2-Clg
vpm ▲ «□ ▲ * ▲ * A^o - - - - -
S2-Clr
vpm «□♦ ▲ *□■ ▲ *□■ □ A^ □■♦ □■♦ ♦ - - - -
S2- ♦ ♦
NDRE1
vpm ▲♦ ▲ o ▲ ■♦ - - -
S2-
NDRE2
vpm ▲ □■♦ - -
S2-MTCI
GPP ■ ■ ■♦ ■ □ ■o^ ▲ *□■ ▲ *□■ ▲ «□ ▲ *□■ «□■♦ ▲ □■ -
Tower ♦o ■ o^«^ o A^o ♦o

■
Sites: □: AGR-SW, o: CRP-SW, ♦: CRP-REF, ■: CRP-PR, «: AGR-PR, ▲: AGR-C, A: CRP-C

4. Discussion

While VPM developed using MODIS products still provides a valuable product that is widely available 

spatially and temporally, complex and heterogeneous land cover types such as managed agricultural- 

prairie landscapes benefit from the use of finer spatial resolution imagery (Chen et al., 2019). Fine spatial 

resolution reflectance indices from Sentinel-2 and Landsat-8 increased the accuracy of VPM models in 

our study. Particularly, when red-edge VIs replace EVI2 in Sentinel 2 VPMs, we found improvements in 

model validation, cumulative GPP estimates, and fewer differences between GPPt.™ medians than that 

of GPPvpm-s2.
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Sensitivity of VIs EVI2 and NDVI to OFFt.™ differed greatly between MODIS (500 m) and the 

finer resolutions of Landsat-8 (30 m) or Sentinel-2 (20 m). If selecting between the two in agricultural- 

prairie systems, it is prudent to use EVI2. For finer resolution VFMs, NDVI may be suitable upon further 

study. MODIS had high sensitivity to EVI2 in 13:14 site years than NDVI, of which only 2:14 site-years 

had sensitivity ±0.10 of 1.00 (i.e., near equal sensitivity). We find this supports similar research on 

MODIS LUE-based OFF models, where the ability to capture OFF variations is closely tied to the 

accuracy of/FAR and that 8-day MODIS data do not consistently capture fall and spring’s rapid changes 

in phenology, likely introducing error to annual OFF estimates (Verma et al., 2014). Conversely, near­

equal sensitivity was apparent in Landsat-8 and Sentinel-2, with 9:14 and 12:14 site-years with 

sensitivities ±0.10 of 1, respectively. Given EVI2 and NDVI uses the same two bands (i.e., NIR, Red), the 

differences between satellite products could arise from differences in radiometric resolution (i.e., 

bandwidth), spatial resolution and sampling frequency. In fact, the wavelength ranges of MODIS, 

Landsat-8, and Sentinel-2 red bands (nm) are 620-670, 636-673, 650-680, respectively; while the NIR 

bands are 841-875, 851-879, and 855-875, respectively. These slight differences in bandwidth, along with 

differences in sampling dates and spatial resolution from Landsat-8 and Sentinel-2, may have resulted in 

substantial differences in OFF estimates. We found that NDRE1 and NDRE2 were slightly more sensitive 

than EVI2 to OFFt,™, with 8:14 site years, that MTCI was near-equal sensitive, and that EVI2 was 

generally more sensitive to GPPTower than Clr and Clg. Both sensitivities of pairs (1) NDRE1 and NDRE2; 

and (2) Clr and Clg were similar, respectively, as the equations are similar and the difference within each 

pair is minimal (Eqs. 4-7).

OFF estimates in our study area, and many other Midwestern cropland regions, are notably 

underestimated by MODIS products, likely due to mixed pixels (Wang et al., 2015; Zhang et al., 2016). 

We found that land cover (NLCD, 30 m) within a single MODIS 500 m pixel overlapped cropland, 

developed areas, forests, grasslands and wetlands (Table S3). Our results demonstrated that GPPvpm-modis 

underestimated, particularly in the peak growing season, at all sites, more than other OFF models. The
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least to underestimate cumulative OFF includes VPMs2-mtci during the study period (9:14) and peak 

growing season (5:14), and VPMs2-clgin the peak growing season (8:14). When comparing conventional 

and non-red-edge VPMs, finer resolution VPM models are closer to daily and cumulative GPPTower, with 

GPPvpm-ls8 capturing the variation in corn systems best and GPPvpm-s2 best capturing grassland systems. 

Additionally, a heavy rainfall in the spring of 2019 (wet year) may have affected OFF production in some 

sites. Peak growing season (June-August) is also best reflected in GPPvpm-s2 compared to other 

conventional OFF products and GPPvpm-lsb. While over- and underestimation can interfere with scaled-up 

estimates (Jelinski & Wu, 1996) we found finer resolution (30 m and 20 m) OFF products demonstrated 

the capacity to improve OFF estimates across various corn and grassland systems.

Our anomaly analysis of covariance further enhanced our ability to evaluate interannual variation and 

identify significant differences between model estimates. In a similar study, covariance between 

interannual anomalies in MODIS products did not significantly correlate with OFFt.™ in croplands; 

however, few MODIS products except VPM and MOD17A did explain substantial variance in grasslands 

because they include finer meteorological inputs and account for rapid development and senescence 

(Verma et al., 2014). Our results reflect this, as GPPmodis and GPPvpm-modis did not significantly correlate 

with GPPTower anomalies. We found significant differences in medians between GPPvpm-s2, GPPvpm-lsb and 

GPPTower anomalies existed, indicating that one model simply over- or underestimated more often than its 

counterpart. While significant differences between medians in high-resolution and red-edge VPMs and 

GPPTower exist, we do not believe this undermines their demonstrated accuracy in regression analysis and 

in seasonal summations. Particularly, anomalies of GPPTower also have significant differences from 

GPPmodis and GPPvpm-modis medians at three sites, and significant differences with GPPvpm-lss and 

GPPconus at two sites; whereas it has significant differences with VPMs2-ndre2 and VPMs2-mtci at four 

sites. Understanding that MODIS products largely underestimate OFF (Tables 3, 4) and aggregate nearby 

land covers, we recommend Landsat-8 and Sentinel-2 OFF products. More so, Sentinel-2 VPMs 

demonstrate greater ability than Landsat-8 products to remain within ±0.10% of both cumulative study
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period and peak growing season OFFt,™ ; with red-edge VFMs2-ndre2 and VFMs2-mtci equal to or out 

performing GPPvpm-s2, respectively.

From both regression analyses in this study, GPPvpm-lss still agreed strongest with corn systems 

compared to GPPvpm-s2, which performed better in grassland systems with its largest anomalies during the 

peak growing season. However, when incorporating NDRE2 into the Sentinel-2 VPM, it could 

outperform GPPvpm-lsb in CRP-C site-years; demonstrating a potential to use red-edge VI with high- 

resolution imagery in both corn and grassland covers. The only site years where GPPvpm-s2 still 

outperforms all other models, including red-edge VI VPMs, was in AGR-SW 2018 and in CRP-PR 2018 

and 2019, where there are narrow differences (Table S5). We conclude that red-edge VIs, particularly 

NDRE2, may significantly improve the VPM’s ability to estimate variations in OFF when used as an 

alternative to EVI2.

While our study area benefited from finer resolution models, this may not stand true in all landscapes 

and elsewhere. In Nordic eddy covariance flux measurement sites, modelled OFF with linear regression 

and EVI2 and various environmental inputs detected a minimal difference with a consistent estimate 

across MODIS (500 m and 250 m) and Sentinel-2 (10 m) resolutions (Cai et al., 2021). An additional 

consideration for future studies is OFF production from cover crops, which is a common practice that 

may influence variability in annual estimates. Ultimately, the choice of OFF product depends on the 

intended application. Here, we advocate for fine-resolution imagery and the consideration of red-edge in 

OFF models to capture details at a local-scale that reflects land management and activities in 

heterogeneous cropland. However, Landsat provides data since 1972 and offers great historical detail far 

beyond what Sentinel 2 can offer, and may be more suitable for investigations of long-term change. 

Additionally, further consideration may be placed on temporal resolution, which imparts its own effect on 

aggregation of disturbance or land management useful for scaling investigations. Differences between 

Landsat and MODIS data lies in the acquisition and data retrieval, where Landsat is instantaneous and at 

higher risk of acquiring poor /PAR or LAI due to atmospheric effects and cloud cover and MODIS is a 

composite taking the best image from an 8-day span (Robinson et al., 2018). Future investigations on
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resolution and OFF estimates may consider utilizing the newly released MOD17A3HGF v061product, 

which may provide different results due to its updated protocol that cleans poor-quality inputs from 8-day 

LAI/fPAR based on pixel quality control labels. Additionally, the MODIS OFF product FluxSat v2.0 

offers daily estimates of GPP using FLUXNET eddy covariance tower site data and coincident satellite 

data (Joiner & Yoshida, 2021).

While EC methods provide direct and suitable estimates of CO2 fluxes at the local scale useful to both 

calibration and validation of remote sensing GPP models, we acknowledge they are also subject to error 

and uncertainty that are important to validation of remote sensing models and interannual analysis (Wang 

et al., 2015). Recent studies show that the flux tower footprint, used in validation and site-specific 

measurements, often extends beyond the target ecosystem, depending on time and atmospheric conditions 

(e.g., wind speed and direction) (Chu et al., 2021; Giannico et al., 2018). Consequently, in highly 

heterogeneous landscapes, multiple EC towers may be required to capture spatial representativeness 

necessary for validating global scale model grids (Wang et al., 2015). Our results support this, as 

GPPmodis and GPPvpm-modis underestimated cumulative GPP as well as daily estimates during the study 

period and growing season (June, July, August).

Evaluation and monitoring of GPP with Landsat-8 and Sentinel-2 reveals how terrestrial C responds 

to land management, climate mitigation policies, and disturbance in heterogeneous cropland systems. It 

also supports cost-effective land management programs and increases the understanding of anthropogenic 

disturbances to ecosystem functions. Both Landsat-8 and Sentinel-2 are available freely online and easily 

accessible via Google Earth Engine, greatly improving their employability in policy and stakeholder 

programs. For example, the economic benefit of management and incentive programs attract farmers to 

convert low-producing corn for ethanol to perennial grasses, such as switchgrass, produce co-benefits, 

such as C sequestration (Kreig et al., 2021). Future applications with red-edge imagery from Sentinel 2 

will benefit from high spatial and temporal resolution data, paving a way towards near real-time 

monitoring of GPP.
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5. Conclusion

Fine-resolution (30 m and 20 m) satellite imagery and red-edge VIs integrated within VPM generally 

agree with daily and cumulative GPPTower in field sites more so than coarse resolution imagery in VPM or 

conventional GPP products (e.g., GPPmodis or OFFconus) do. A substitution of a red-edge VI for EVI2 in 

the Sentinel 2 VPMs demonstrated improved explanations of variation and cumulative GPP estimates, 

compared to EVI2-based GPPvpm-s2.

We found that vegetation indices of EVI2 and NDVI express different sensitivities by satellite 

origin, where MODIS-derived EVI2 had higher sensitivity than NDVI to GPPTower in all but one site; and 

Landsat-8 and Sentinel-2 EVI2 and NDVI had near equal sensitivity in most site-years. Compared to 

EVI2, red-edge VIs NDRE1 and NDRE2 were slightly more sensitive to GPPTower. Seasonal GPP 

amplitude and growing season peaks are best captured by Sentinel-2 VPMs, followed by GPPvpm-lss, 

whereas conventional products underestimate growing season peaks. Overall, Sentinel-2 VPMs 

demonstrate greater ability than Landsat-8 and MODIS products to remain within ±0.10% of both 

cumulative study period and peak growing season GPPTower; with red-edge VPMs2-ndre2 and VPMs2-mtci 

equal to or out performing GPPvpm-s2, respectively. Red-edge Sentinel 2 VPMs collectively outperformed 

conventional GPP models and Landsat 8 products, when considering cumulative GPP estimates, model 

validations and significant differences between anomaly medians. We conclude that red-edge VIs, 

particularly NDRE2, may significantly improve our ability to estimate variations in GPP when used as an 

alternative to EVI2 in GPP models.

As many croplands are composed of areas less than 500 m, MODIS derived scalars may be 

composed of a mix of land cover types and therefore incorrectly estimate GPP. We demonstrated the 

capability of using GPPvpm-lss, GPPvpm-s2 and red-edge VPMs2-clr, VPMs2-clg, VPMs2-ndre1, VPMs2-ndre2, 

VPMs2-mtci in highly heterogeneous cropland, including corn, switchgrass, and restored prairie systems, 

in both historical cropland and recently converted (i.e., 2009) CRP land. We found that our fine 

resolution GPP products (30 m and 20 m), and particularly red-edge Sentinel 2 VPMs, agreed best with 

GPPTower and are significantly different than MODIS products in multiple cropland sites with differing
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land use history. While existing methods using MODIS-derived GPP models serve as an important 

baseline for studies with large spatial extents, future endeavors to estimate GPP in managed landscapes 

with greater frequency and improved accuracy are accessible and affordable at 30 m and 20 m 

resolutions.
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