Adversarial Weight Perturbation Improves Generalization
in Graph Neural Networks

Yihan Wu!, Aleksandar Bojchevski’, Heng Huang'

! Electrical and Computer Engineering, University of Pittsburgh, PA, USA
2 CISPA Helmholtz Center for Information Security
yiw 154 @pitt.edu, bojchevski @cispa.de, henghuanghh @ gmail.com

Abstract

A lot of theoretical and empirical evidence shows that the
flatter local minima tend to improve generalization. Adversar-
ial Weight Perturbation (AWP) is an emerging technique to
efficiently and effectively find such minima. In AWP we mini-
mize the loss w.r.t. a bounded worst-case perturbation of the
model parameters thereby favoring local minima with a small
loss in a neighborhood around them. The benefits of AWP, and
more generally the connections between flatness and general-
ization, have been extensively studied for i.i.d. data such as
images. In this paper, we extensively study this phenomenon
for graph data. Along the way, we first derive a generalization
bound for non-i.i.d. node classification tasks. Then we identify
a vanishing-gradient issue with all existing formulations of
AWP and we propose a new Weighted Truncated AWP (WT-
AWP) to alleviate this issue. We show that regularizing graph
neural networks with WT-AWP consistently improves both
natural and robust generalization across many different graph
learning tasks and models.

1 Introduction

Simply minimizing the standard cross-entropy loss for highly
non-convex and non-linear models such as (deep) neural
networks is not guaranteed to obtain solutions that generalize
well, especially for today’s overparamatrized networks. The
key underlying issue is that these models have many different
local minima which can have wildly different generalization
properties despite having nearly the same performance on
training and validation data. Naturally, there is a rich litera-
ture that studies the properties of well-behaving local minima,
as well as the design choices that improve our chances of
finding them (Stutz, Hein, and Schiele 2021). The notion
of flatness which measure how quickly the loss changes in
a neighbourhood around a given local minimum has been
empirically shown to correlate with generalization among a
variety of different measures (Jiang et al. 2019). In addition,
generalization bounds based on the PAC-Bayes framework
(McAllester 1999; Foret et al. 2021) provide theoretical
insights that corroborate the mounting empirical data. Since
the evidence implies that flatter minima tend to generalize
better, the obvious question is how to efficiently find them.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Not only do flat minima improve generalization to unseen
test data, i.e. the clean accuracy (Foret et al. 2021; Zheng,
Zhang, and Mao 2021; Xu and Huang 2022; Kwon et al.
2021; Xu et al. 2022), but they also improve generalization to
adversarial examples, i.e. the robust accuracy (Wu, Xia, and
Wang 2020; Stutz, Hein, and Schiele 2021; Wu et al. 2022).
Improving adversarial robustness is important, especially
for models deployed in safety-critical domains, since most
standard (undefended) models are vulnerable to adversarial
attacks. Attackers can easily craft deliberate and unnoticeable
input perturbations that change the prediction of the classifier
(Sun et al. 2018).

Flat minima show higher resistance to adversarially per-
turbed inputs while maintaining good clean accuracy (Stutz,
Hein, and Schiele 2021). Among the variety of techniques for
finding flat minima Adversarial Weight Perturbation (AWP)
(Wu, Xia, and Wang 2020), and the closely-related (adaptive)
sharpness-aware minimization (Foret et al. 2021; Kwon et al.
2021) and adversarial model perturbation (Zheng, Zhang,
and Mao 2021), seems to be quite effective in practice. The
key idea is to minimize the loss w.r.t. a bounded worst-case
perturbation of the model parameters, i.e. minimize a local
notion of sharpness. The benefits of this approach, and more
generally the correlation between flatness and (clean/robust)
generalization, have been extensively studied for i.i.d. data
such as images. In this paper we study this phenomenon for
graph data. Concretely, we analyze and improve the gen-
eralization of Graph Neural Networks (GNNs) which are a
fundamental building block (in addition to CNNs and RNNs).

Blindly applying existing weight perturbation techniques
to GNNs is unfortunately not effective in practice due to
a vanishing-gradient issue. Intuitively, the adversarially per-
turbed weights tend to have a higher norm which in turn leads
to a saturation in the last layer where that logits for one class
are on a significantly larger scale compared to the rest. Even
though this limitation plagues all formulations of AWP, for
both GNNs and other models (e.g. ResNets), it has gone un-
noticed so far. To address it we propose Weighted Truncated
Adversarial Weight Perturbation (WT-AWP) where rather
than directly minimizing the (robust) AWP loss we use it as
a regularizer in addition to the standard cross-entropy loss.
Moreover, we propose to abstain from perturbation in the last
layer(s) of the network for a more fine-grained control of the
training dynamics. These two modifications are simple, but

necessary and effective. With our resulting formulation the
models can obtain useful gradient signals for training even
when the perturbed weights have a high norm, mitigating the
gradient-vanishing issue. Furthermore, we theoretically study
the AWP learning objective and show its invariance for local
extrema. We can summarize our contributions as follows:

* We provide a theoretical analysis of AWP on non-i.i.d.
tasks and identify a vanishing-gradient issue that plagues
all previous AWP variants. Based on this analysis we pro-
pose Weighted Truncated Adversarial Weight Perturbation
(WT-AWP) that mitigates this issue.

* We study the connections between flatness and general-
ization for Graph Neural Networks. We show that GNN’s
trained with our WT-AWP formulation have simultane-
ously improved natural and robust generalization. The
improvement is statistically significant and consistent
across tasks (node-level and graph-level classification)
and across models (standard and robustness-aware GNNSs),
at a negligible computational cost.

2 Background and Related Work

Adversarial Weight Perturbation for Images. AWP is mo-
tivated by the connection between the flatness of the loss
landscape and model generalization. Given a learning objec-
tive L(-) and an image classification model with parameters
0, the generalization gap (Wu, Xia, and Wang 2020), also
named the sharpness term (Foret et al. 2021), which measures
the worst-case flatness of the loss landscape, is defined by
[max|5)|<, L(0 + 6) — L(0)]. This gap is known to control
a PAC-Bayes generalization bound (Neyshabur et al. 2017),
with a smaller gap implying better generalization. The AWP
objective simultaneously minimizes the loss function and the
generalization gap via ming[L(0) + (max)5)|<, L(60 +) —
L(0))] = ming max|5)|<, L(6 + J). Providing further theo-
retical justification for the effectiveness of the AWP, (Zheng,
Zhang, and Mao 2021) prove that this objective favors so-
lutions corresponding to flatter local minima assuming that
the loss surface can be approximated as an inverted Gaus-
sian surface. Relatedly, they show that AWP penalizes the
gradient-norm.

In some cases we can rescale the weights to achieve
arbitrarily sharp minima that also generalize well (Dinh et al.
2017). We can mitigate this issue using a scale-invariant
definition of sharpness (Kwon et al. 2021). Since in our
experiments such adaptive sharpness was not beneficial we
present the non-adaptive case for simplicity but all results
can be trivially extended. Keskar et al. (2016) show that large-
batch training may reach sharp minima, however, this does
not affect GNNs since they tend to use a small batch size.
GNNs, Graph attacks, and Graph defenses. Graph Neural
Networks (GNNs) are emerging as a fundamental building
block. They have achieved spectacular results on a variety
of graph learning tasks across many high-impact domains
(see survey (Wu et al. 2020)). Despite their success, it has
been demonstrated that GNNs suffer from evasion attacks
at test time (Ziigner, Akbarnejad, and Giinnemann 2018) and
poisoning attacks at training time (Ziigner and Gilinnemann
2019). Meanwhile, a series of methods have been developed

to improve their robustness. For example, GCNJaccard (Wu
et al. 2019) drops dissimilar edges in the graph, as it found
that attackers tend to add edges between nodes with different
features. GCNSVD (Entezari et al. 2020) replaces the
adjacency matrix with its low-rank approximation motivated
by the observation that mostly the high frequency spectrum
of the graph is affected by the adversarial perturbations.
We also have provable defenses that provide robustness
certificates (Bojchevski, Klicpera, and Giinnemann 2020).
Both heuristic defenses (e.g. GCNJaccard and GCNSVD)
and certificates are improved with our WT-AWP. For an
overview of attacks and defenses see Sun et al. (2018).

3 Adversarial Weight Perturbation on GNNs

To simplify the exposition we focus on the semi-supervised
node classification task. Nonetheless, in Sec. ?? we show
that AWP also improves graph-level classification. Let
G = (A,X) be a given (attributed) graph where A is
the adjacency matrix and X contains the node attributes.
Let V be the set of all nodes. In semi-supervised node
classification problem we have access to the entire graph,
the features and neighbors for all nodes V, but we only
have labels for a (small) subset of V (usually 10%). Nor-
mally we optimize ming Liin(0; A, X), where Ly, =
> veve, ((fo(A, X),yu), f is a GNN parametrized by
weights 8 = (04, ...,0%), y, is the ground-truth label for
node v, and [is some loss function (e.g. cross-entropy) ap-
plied to each node in the training set Vip,in C V.

In AWP we first find the worst-case weight perturbation
6*(0) that maximizes the loss. Then we minimize the loss
with the perturbed weights. The worst-case perturbation for
a given 6 is defined as

0%(0) :=arg max Liin(0 + 8; A, X) (1
[18]12<p
where p is the strength of perturbation. The AWP learning
objective is then ming max||5/|<, Liain(0 4 0; A, X)), or

mein Liain(0 +67(0); A, X). 2)

Since the PAC-Bayes bound proposed by McAllester (1999)
only holds for i.i.d. data and semi-supervised node classifica-
tion is a non-i.i.d. task, the analyses in Wu, Xia, and Wang
(2020) and Foret et al. (2021) cannot be directly extended
to node classification. Thus, we derive a new generalization
bound for node classification (with GNNs) based on a recent
sub-group generalization bound (Ma, Deng, and Mei 2021).
Theorem 1 (Generalization bound of AWP loss). Let
L.i(6; A, X) be the loss on all nodes, for any set of training
nodes Viin from V, Ym > Vd, with probability at least 1 — 6,
we have

Ly(0; A, X) < max [Lyin(0 + 05 A, X)]

~18ll2<p
2 2119112
m” w2 /o 1 m=16]]3
— — |1 +dlog(l + ———=
+(de) +2TV0 + dlog(1+ a2)
3 1
In—-+-+6(K- .
+m(“5+4+ (ea”))

(€)

where d is the number of parameters in the GNN, K is the
number of groundtruth labels, €, is a fixed constant w.r.t. V,
Ny is the volume of Viin, and p is the perturbation strength
on the weights.

The details of the proof are in Sec. A. We can rewrite Eq. 3
into the following simplified version

Lu(6; A, X) < IIgIIIa}é Lyain(0 + 6; A, X) + h(||0\|g/p2)
25p
4

where h(-) is a monotonously increasing function depending
on the perturbation strength p(6).

This bound justifies the use of AWP since the perturbed
loss on training nodes bounds the standard loss on all nodes.
Moreover, as h(||6||3/p?) is monotonically decreasing with
p, increasing the perturbation strength p can make the bound
in Eq. 4 sharper, i.e. the resulting AWP objective should lead
to better generalization. In practice we perturb the weights
0, of each layer separately, and this bound still holds if we
setp = Zle p(0;) where p(0;) is the perturbation strength
for layer i. We derived a similar result for graph-level tasks
in Sec. C.

Since finding the optimal perturbation (Eq. 1) is in-
tractable, we approximate it with a one-step projected
gradient descent as in previous work (Wu, Xia, and Wang
2020; Foret et al. 2021; Zheng, Zhang, and Mao 2021),

5*(0) = HB(p(g))(vﬂLtrain(e;A7X))7 (5)

where B(p(8)) is an I3 ball with radius p(@) and 1 z(,(e))(-)
is a projection operation, which projects the perturbation
back to the surface of B(p(€)) when the perturbation is out
of the ball. The maximum perturbation norm p(8) could ei-
ther be a constant (Foret et al. 2021; Zheng, Zhang, and Mao
2021) or layer dependent (Wu, Xia, and Wang 2020). We
specify a layer-dependent norm constraint p(8;) := p||0;||2
because the scales of different layers in a neural network can
vary greatly. With the approximation 3*(0), the definition
of the final AWP learning objective is given by

Lawp(e) = Ltrain(g + HB(p(G))(VQLtrain(o; A7 X)7 Aa X)7

(6)
If Liain (05 A, X)) is smooth enough, Vg Liin(6; A, X) =0
when 6* is a local minimum. In this case Luwp(0) =
Liain(0; A, X). A natural question is whether 6* will also
be the minimum of Ly, (6)? We show that L, (6) keeps
the local minimum of Ly, (6; A, X) unchanged.

Theorem 2. (Invariant of local minimum) With the
AWP learning objective in Eq. 6, and for continuous
Ltrain(g; A, X)» VOLtrain(e; A, X), AGLtrain(9§ A, X), if
0* is a local minimum of Ly,in(0; A, X) and the Hessian
matrix Ag Liin(0; A, X)|o« is positive definite, 0* is also a
local minimum of Lay(0).

The proof is provided in Appendix B. The exact gradient
of this new objective is

VOLtrain(O + 8*(0)7 A7 X) = veL"ai"(g; A’ X)|9+8*(9)
+ V68" (0)Vo Luain (05 A, X) g, 5- (o) @

Since Vgo* (6) includes second and higher order derivative
of 8, which are computationally expensive, they are omitted
during training, obtaining the following approximate gradient
of the AWP loss

vOLI;rain (07 A7 X)|9+(§*(0) (8)

Foret et al. (2021) show the models trained with the exact
gradient (Eq. 7) have almost the same performance as model
trained with the approximate first-order gradient (Eq. 8). Be-
sides, we can also show that the norm of the difference be-
tween Eq. 7 and Eq. 8 is proportional to p and the second
order derivatives of loss the L w.r.t. the weights 6.

4 Weighted Truncated AWP

In this section we discuss the theoretical limitations of exist-
ing AWP methods on GCN, and illustrate them empirically
on a toy dataset. We also propose two approaches to improve
AWP. Our improved AWP works well on both toy data and on
real-world GNN benchmarks across many tasks and models.
We also show that similar problems also exist for multi-layer
perceptrons (see Appendix D).

4.1 The Vanishing-gradient Issue of AWP

Consider a GCN j = o, (A(...0c(AXW))..)W,) with a
softmax activation o at the output layer and non-linearity o,
where A is the graph Laplacian given by A:=D1/? (A+
IN)D7'/2 Dy = >;(A + In);;. The perturbed model is

§=0s(A(...0(AX(W148,))...)(W,+8,)). Since the
norm of each perturbation §; could be as large as p||W;||2,
in the worst case the norm of each layer is (p + 1)||W;||2,
and thus the model will have exploding logit values when p
is large. If additionaly the logit for one class is significantly
larger than the others, the output will approximate a one-hot
encoded vector after the softmax. In this case the gradient will
be close to 0 and the weights will not be updated. Although
in practice the number of GCN layers is often less than 3, we
still observe the vanish gradient issue in both toy datasets and
GNN benchmarks.

To verify our conclusion, we train a 2-layer GCN network
with hidden dimension 64, which is a common setting for
GCNs, on a linearly separable dataset. The dataset contains
2 classes {—1,1} and each class has 100 nodes. We apply
k-nearest neighbor (k = 3) to obtain the adjacency matrix,
and use the 2D position of the nodes as the features. The
number of training epochs is 200. We use 10% nodes for
training, 10% for validating and the rest 80% for testing. In
Figure 1 we show the trained classifiers for different p values.
Models with AWP crash quickly as p increases from 0.5 to
2.5. When p = 0.5, the classification accuracy is 0.97, which
is nearly the same as the vanilla model, but when p = 2.5,
the classification accuracy is 0.51, which is the same as a
random guess. Besides, when p = 1.5 and 2.5, the loss of
AWP method is almost constant during training (Figure 2)
and the prediction score (Figure 1(c) and Figure 1(d)) is
around 0. This indicates that the weights are barely updated
during training. So with the AWP objective, we cannot select
a large p. Yet, as we discussed in Sec. 3, we prefer larger
values of p since they lead to a tighter bound (Eq. 4) and

1.0 100 o ps gt

1.0 » o5 s
Wt A I N s .8 ol
0.8 | Fpte o os Blenes o er0s
.",. Lol [N *’?c‘w’I
0.6 5.':. vy Lo;I 0.6 8 ope @ I
0.0
04le %% 1 0a|e 9% -":‘:.
@l ,¢° S0y 20he o0 ‘“.‘3
02|t Kol & |i-05 02| iw", -0.5
2° !
ol 4218 208 ool 20T 20
: 1 .
0.0 05 1.0 0 0.0 0.5 1.0

(a) Vanilla GCN (b) AWP p = 0.5

0.010
0.005

0.005

0.000 0.000

—0.005

—0.005
—-0.010

0.0 0.5 1.0

(c) AWP p = 1.5

(d) AWP p = 2.5

Figure 1: Compare AWP models on a linearly separable dataset with different perturbation strengths p. The accuracy of models
(a) to (d) is 0.97, 0.97, 0.69, and 0.48 respectively. The face color of each node shows its prediction score and the border color
shows its ground-truth label. Grey lines connect the node with its nearest neighbours in the graph. For large values of p the model

is unable to learn.

1.0
— GCN
AWP p=0.5
—— AWPp=15
—— AWP p=2.5
—— TAWPp=2.5
—— W-AWP p=2.5 A=0.5
WT-AWP p=2.5 A=0.5

0.8

0.6

Loss

0.4
0.2

0.0
0 25 50 75 100 125 150 175 200
Epochs

Figure 2: Learning curves for GCN with different losses (and
p)-

are more like to generalize better. As we shown next, our
suggested improvements fix this issue.

4.2 Truncated AWP and Weighted AWP

Intuition for WT-AWP. The vanishing gradient is mainly
due to the exploding of the logit values, which is caused by
perturbing all layers in the model. Thus, a natural idea is to
only apply AWP on certain layers to mitigate the issue. This
it the truncated AWP. Another idea is to provide a second
source of valid gradients which we do by adding the the
vanilla 1088 Lin(0; A, X) to the AWP loss. Even when
the AWP loss suffers from the vanishing gradient issue, the
vanilla loss is not affected.

Definition 1. (Truncated AWP) We split the model parame-
ters into two parts @ = [@@P ™) and we only perform
AWP on 0@P)_ The Truncated AWP objective is

min Liin(6 + [§©7°(047), 01 4, X)), (9)

where 8@ (@) s defined as in Eq. 5.

Recall that the AWP objective is the unweighted combina-
tion of the regular loss function L(0) and the sharpness term
maxgs<,[L(0+) — L(0)] (Sec. 2). The weight perturbation
in this term can lead to vanishing gradients as we discussed in
Sec. 4.1. Therefore, another way to deal with this issue is to
assign a smaller weight X to the sharpness term in the AWP
objective. The weighted combination is [Amaxs<,[L(6 +
0) —L(0)]+ L(0)] = [Amaxs<, L(0+6)+ (1 — A)L(0)].
Definition 2. (Weighted AWP) Given a weight X € [0, 1] the
Weighted AWP objective is

mein[ALm(o +6%(0); A, X) + (1 — \) Lyain(6; A, X)]
(10)

Algorithm 1: WT-AWP: Weighted Truncated Adversarial
Weight Perturbation

Input: Graph G = (A, X); model parameters 8 =
[0@WP); gnormal] with and without AWP; number of epochs
T'; loss function Lyin; perturbation strength p, AWP weight
A; learning rate .
1: Initialize weight 6y;.
2: fort € 1:T do
3: Compute the loss for
Ltrain(atfl; A, X)
4: Compute the approximating weight perturbation for
0™ 6+(0™) via Eq. 5
5: Compute the approximating gradient for 6:
g :)\VOLtrain(0§ A, X) |9t71+[5* (6),0]

+ (1 - /\)veLtrain<6; A, X)|0t71
Update the weight via 8; = 0;_1 — ag
end for
8: return O

training nodes:

A

We compare these two improvements with AWP and nat-
ural training on a linearly separable dataset using the same
setup as in Sec. 4.1. Figure 3 illustrates the trained models
with p = 2.5. In Figure 3(b) we can see that the model with
AWP objective suffers from vanishing gradients and it fails
to learn anything useful. The models with Truncated AWP!
(Figure 3(c)) and Weighted AWP (Figure 3(e)) mitigate this
issue, which is also evident in their learning curves (Figure
2), and have relatively good performance (96% and 98%
accuracy respectively). Compared to the vanilla model (Fig-
ure 3(a)), they both have a significantly smoother decision
boundary.

To tackle the vanishing-gradient issue better, we combine
Truncated AWP and Weighted AWP, into a Weighted Trun-
cated Adversarial Weight Perturbation (WT-AWP). The de-
tails of WT-AWP are shown in Algorithm 1 (description in
Sec. D.2). WT-AWP has two important parameters A\ and p.
We study how they influence the model performance in Sec.
5.5.

'In Figure 3(c) we perturb only the first-layer, i.e. §®P =
W, (first layer weights) and ™™ = W, (last layer weights).
Perturbing only the second layer instead performs similarly.

1.0 ‘:,.s,.%‘,.—-}.. 1.0 1.0 "S"'-s”"'f:
0.8 b...*.:' -'4::', o Itos 0.8 .‘...:: .‘,‘:s’ o||0.005
0.6(3y oy 0 f:’I 0.0 06 "',‘X e d5l 0.000
04-’::1’3’. o4~'*.5""".

) 1"0: \‘»"‘"} RIS,
02} LY o -0.5 0.2 LAX -0.005
AN i 0.0 ford e

0.0 0.5 o0 O 0.0 0.5 1.0

(a) Vanilla model (b) AWP

o I 1.0[o0 o ootpe
Ut RO N AC IR
08)ég™ o8 ¢ 105 08 ¢pen o 8 of[l05
06.‘:»@“."1 06.‘:5"‘
[P o 6| By e PP 2
o4~':&‘?4'"'. o0 o4~'{zé3"f'. 00
3 0, e PR JEa
ER AL gt oo, o0
0.2 Gote & |fr-05 02 fg@uoo 2|05
2 oo & od &
00 (s e el > oo fopd [

0.0 0.5 1.0 0.0 0.5 1.0

(d) W-AWP, \=0.5 (e) WT-AWP, \=0.5

Figure 3: Linearly separable dataset. The accuracy of models (a) to (d) is 0.97, 0.51, 0.96, and 0.98 respectively. The face color of
each node shows its prediction score and the border color shows the ground-truth label. Grey lines connect the nearest neighbours.
Since the perturbation is large (p = 2.5), AWP fails. The proposed weighting and truncation mitigate the vanishing-gradient

issue for the same p.

Approachs Cora Citeseer Polblogs
GCN 84.14 +0.61 73.44£1.35 95.04+0.66
GCN+WT-AWP 85.16 £0.44 7448 +£1.04 9526+0.51
GAT 84.13+£0.79 73.71+£1.23 94.93+0.51
GAT+WT-AWP 85.13+0.51 74.73+1.07 95.12+0.48
PPNP 8556 £0.46 7450+1.06 95.18+042

PPNP+WT-AWP 86.13+0.43 75.64+0.95 95.36 +0.37

Table 1: Clean accuracy comparison. We report the average
and the standard deviation across 200 experiments per model
(20 random splits x 10 random initializations). WT-AWP
consistently outperform the standard models on all bench-
marks. The improvements are statistically significant accord-
ing to a two-sided t-test at a significance level of p < 0.001.

5 Experimental Results

Setup. We conduct comprehensive experiments to show the
effect of WT-AWP on the natural and robustness performance
of different GNNss for both node classification and graph clas-
sification tasks. We utilize the open-source libraries Pytorch-
Geometric (Fey and Lenssen 2019) and Deep-Robust (Li
et al. 2020) to evaluate clean and robust node classification
performance respectively. To achieve fair comparison we
keep the same training settings for all models. We report the
mean and standard deviation over 20 different train/val/test
splits and 10 random weight initializations. See Appendix
F.4 for further details and hyperparameters.
Datasets. We use three benchmark datasets, including two ci-
tation networks, Cora and Citeseer (Sen et al. 2008), and one
blog dataset Polblogs (Adamic and Glance 2005). We treat
all graphs as undirected and only select the largest connected
component (more details and statistics in Appendix F.3).
Baseline models and attacks. We aim to evaluate the impact
of our WT-AWP on natural and robust node classification
tasks. We train three vanilla GNNs: GCN (Kipf and Welling
2017), GAT (Velickovic et al. 2018), and PPNP (Klicpera,
Bojchevski, and Giinnemann 2018), and four graph defense
methods: RGCN (Zhu et al. 2019)%, GCNJaccard (Wu et al.
2019), GCNSVD (Entezari et al. 2020), and SimpleGCN (Jin
et al. 2021). For detailed baseline descriptions see Appendix
F.1.

To generate the adversarial perturbations, we apply three

Note, we cannot apply WT-AWP to RGCN as the weights are
modeled as (Gaussian) distributions.

34 o GCM+WT-AWP
GCN

3.2

E

E

2

- 30

L]

o

o

v 28

=

<
26

0835 0.840 0.845 0850 0.855 0.860
Accuracy

Figure 4: Comparison of the averaged gradient norm w.r.t.
the adjacency matrix for GCN models with and without WT-
AWP on Cora and Citeseer. Each connected pair of points
refers to a GCN and a GCN+WT-AWP model trained with
the same data split and initialization.

methods including: DICE (Waniek et al. 2018), PGD (Xu
et al. 2019), and Metattack (Ziigner and Giinnemann 2019).
For a discussion of the attacks see Appendix F.2.

Settings for WT-AWP. All baseline models have a 2-layer
structure. When applying the WT-AWP objective, we only
perform weight perturbation on the first layer i.e. we assign
0@ — W, (the first layer) and "°™D — W, (the last
layer). For generating the weight perturbation we use a 1-step
PGD as discussed in Sec. 3. In the ablation study Sec. 5.5
we also apply S-step PGD to generate weight perturbation,
in which we utilize an SGD optimizer with learning rate 0.2
and update the perturbation for 5 steps. In the end we project
the perturbation on the I3 ball B(p(8)).

5.1 Clean Accuracy

We evaluate the clean accuracy of node classification tasks
for different GNNs and benchmarks. The baselines include
GCN, GAT, and PPNP . We use a 2-layer structure (input-
hidden-output) for these three models. For GCN and PPNP,
the hidden dimensionality is 64; for GAT, we use 8 heads
with size 8. We choose K = 10, = 0.1 in PPNP. We
also find that the hyperparameters (), p) of WI-AWP are
more related to the dataset than the backbone models. We use
(A= 0.7, p = 1) for all three baseline models on Cora, (A =

Natural Acc Acc with 5% PGDattack Acc with 5% Mettack
Models Cora Citeseer Cora Citeseer Cora Citeseer

GCN 83.73+0.71 73.03£1.19 81.26+1.27 72.04+£1.60 78.61%+1.66 69.20+1.93
+WT-AWP 84.66 £0.53 7401 +1.11 82.66+1.07 73.73+1.23 79.05+1.73 70.50+1.65
GCNJaccard 82.42+0.73 73.09+1.20 80.65+1.14 7205+1.76 78.96+1.54 69.62+1.87
+WT-AWP 83.55+0.60 74.10+1.04 82.12+091 73.85+1.38 80.23+1.38 71.22+1.44
SImPGCN 8299+0.68 74.05+128 80.71+133 73.61+139 7860+181 7252+1.72
+WT-AWP 8337+0.74 7426%+1.09 83.49+0.78 7443+1.14 79.76+1.76 72.95+1.43
GCNSVD 77.63+0.63 68.57+154 7683+142 68.08+198 7628+1.15 67.34+193
+WT-AWP 79.05+0.58 71.12+142 7850+0.89 7143+146 77.61+1.08 70.65+1.28

Table 2: Robust accuracy under PGD and Metattack poisoning attacks, with a 5% adversarial budget. We report the average and
the standard deviation across 200 experiments per model (20 random splits x 10 random initializations). Our WT-AWP loss
improves over all (vanilla and robust) baselines. All results expect the one marked with * are statistically significant at p < 0.05

according to a t-test.

Perturbation strength 5% 10%
Attacks Models Cora Citeseer Polblogs Cora Citeseer Polblogs
DICE GCN 82.83+£0.87 71.85+131 91.27+£098 81.87+£094 71.17+1.50 8747+1.17
+WT-AWP 84.01+0.59 73.84+1.10 91.45+0.86* 8293+0.64 73.14+1.25 87.70+0.97
PGD GCN 7992+0.62 7050135 7941076 77.17+0.74 6849139 72.90+0.73
+WT-AWP 81.00 £ 0.56 70.69 +1.45* 80.70+0.90 77.87+£0.64 68.96+1.30 75.11+1.03

Table 3: Robust accuracy under evasion attacks of different strength. We report the average and the standard deviation across 200
experiments per model (20 random splits x 10 random initializations). Our WT-AWP loss always improves the robustness of the
baselines. All results expect the one marked with * are statistically significant at p < 0.05 according to a two-sided t-test.

0.7,p = 2.5) on Citeseer, and (A = 0.3, p = 1) for GCN,
(A = 0.3, p = 2) for GAT and PPNP on Polblogs. Table 1
shows our results, WT-AWP clearly improves the accuracy of
all baseline models, while having smaller standard deviations.
Note, we do not claim that these models are state of the art,
but rather that WT-AWP provides consistent and statistically
significant (two-sided t-test, p < 0.001) improvements over
the baseline models. These results support our claim that WT-
AWP finds local minima with better generalization properties.

5.2 Models Trained with WT-AWP are Smoother

To estimate the smoothness of the loss landscape around the
adjacency matrix A and the node attributes X, we compute
the average norm of the gradient of Ly, (0; A, X) w.rt. A
and X. We compare a vanilla GCN model with GCN+WT-
AWP (A = 0.5, p = 1) model on Cora. We train 10 models
with different random initializations. For each model we ran-
domly sample 100 noisy inputs around A and X, and we
average the gradient norm for these noisy inputs. When com-
paring models trained with and without WT-AWP, we keep
everything else fixed, including the random initialization, to
isolate the effect of WT-AWP. In Figure 4, we can observe
that in most cases (37 out of 40) the models trained with WT-
AWP have both better accuracy and smaller average gradient
norm, i.e. are smoother. As we show in Sec. 5.3 and Sec. 5.4
this consequently improves their robustness to adversarial
input perturbations.

5.3 Robust Accuracy with Poisoning Attacks

Next we show that our WT-AWP can improve existing de-
fense methods against graph poisoning attacks. We select
two poisoning attacks: PGD and Metattack (Ziigner and
Giinnemann 2019), with a 5% adversarial budget. The base-
line models are vanilla GCN, and three GCN-based graph-
defense models: GCNJaccard, GCNSVD, and SimpleGCN.
For all attack and defense methods, we apply the default hy-
perparameter settings in (Li et al. 2020), which re-implements
the corresponding models with the same hyperparameters as
the original works. We use Cora, Citeseer, and Polblogs as the
benchmark datasets. Note that GCNJaccard does not work on
Polblogs as it requires node features. Table 11 in the appendix
shows the hyperparameters (), p) we select for all WT-AWP
models.

As we can see in Table 2, none of the defense methods have
dominant performance across benchmarks. More importantly,
our WT-AWP consistently improves the robust accuracy for
both vanilla and robust models. We also evaluate the models
against the DICE poisoning attack in Appendix E.2, and
again the results demonstrate that WT-AWP adds meaningful
improvement over the baselines.

5.4 Robust Accuracy with Evasion Attacks

Next we show that WT-AWP also improves existing defense
methods against evasion attacks. We select two evasion at-
tacks, DICE and PGD, with perturbation strengths of 5% and

WT-AWP | p=0.05 p=0.1 p=05 p=1 p=25 p=5
X=01 | 84152060 84.15£061 84.51+048 84.58+052 8450%0.51 84.54%0.49
A=0.3 | 84.10+0.62 84.13+0.58 84.76+0.51 84.91+0.46 84.77+0.46 84.64+0.47
A=05 | 84.11+0.64 84.09+0.61 8493+0.49 8506+0.49 8494045 84.67+0.49
A=07 | 84.13£059 84.15+0.64 8500+046 85.16+0.44 84.99+049 84.66+0.49
A=10 | 84.12+0.69 8423+0.64 8245+1.98 60.29+1.94 2951+091 29.19+0.13

AWP | 84.16+0.68 8423+068 41.19+£123 29.18+0.07 29.18%0.02 29.18%0.02
W-AWP | 84.12+0.66 84.20+0.66 84.63+0.51 8432+0.65 83.98+0.93 83.62+127

Table 4: Hyperparameter sensitivity study for A and p on the Cora dataset for a GCN base model.

WT-AWP (5 step) p=0.05 p=0.1 p=0.5 p=1 p=25 p=2>5
A=0.1 84.19+£0.60 84.17+£0.59 84.45+0.51 84.50+£0.50 84.39+0.52 84.41+0.54
A=0.3 84.12+0.58 84.15+0.63 84.65+0.54 84.81+£0.47 84.70+0.50 84.55+0.55
A=0.5 84.10+£0.59 84.11+£0.62 84.77+£0.53 8490+£0.50 84.82+0.47 84.64+0.52
A=0.7 84.12+0.61 84.11+£0.63 84.86+0.49 84.99+0.48 84.89+0.51 84.64+0.52
A=1.0 84.11+0.62 84.18+0.63 72.18+1.48 32.55+£6.80 29.18+0.03 29.18 +0.00

Table 5: Ablation study with A and p on WT-AWP, where we use 5-step PGD weight perturbation. The backbone model is GCN
and the benchmark is Cora. We observe no significant improvement compared to the computationally less expensive 1-step PGD.

10%. The baseline model is GCN and we perform experi-
ments on three benchmarks: Cora, Citeseer, and Polblogs.
For the PGD attack the hyperparameters (), p) are (0.5, 0.5)
for all datasets. For the DICE attack we use (0.5, 0.5) for
Cora, (0.7, 2) for Citeseer, and (0.3, 1) for Polblogs. Table 3
shows the experimental results. WT-AWP again meaningfully
improves the robustness of GCN under both PGD and DICE
evasion attacks for all perturbation strengths.

5.5 Ablation Study

We compare the performance of GCN+WT-AWP on the Cora
dataset for different A and p values. We also compare WT-
AWP with AWP under different perturbation strengths p.
Table 4 lists the results. The accuracy of GCN+WT-AWP first
increases with \ and p and then slightly decreases. Truncated
AWP is a special case for A = 1 (since the (1 — \) term
disappears in Eq. 10) and it does not perform well, especially
for larger p. Similarly, WT-AWP outperforms the vanilla

—— GCN

| GCN+WT-AWP
~06 |

0.0

0 5 10 15
rs(dotted), ry(solid)

Acc. S(rs, rg

Figure 5: Robustness guarantees on Cora, where 7, is the
certified radius — maximum number of adversarial additions
(and r4 for deletions). For perturbations to the node features
WT-AWP significantly improves the certified accuracy, i.e.
the number of nodes guaranteed not to change their predic-
tion, for all certified radii.

AWP that suffers from the vanishing-gradient issue. Weighted
but not truncated AWP with A = 0.5 (last row) is also worse
than WT-AWP, although in general weighting seems to be
more important than truncation. These results justify the
decision to combine weighting and truncation.

We also generate perturbations as in Eq. 5 but with multi-
step PGD. As shown in Table 5, the performance of 5-step
WT-AWP is similar to the 1-step WT-AWP, the accuracy of
both models first increases with A and p, and then decreases.
Since 5-step PGD offers no benefits and 1-step PGD is com-
putationally less expensive, we suggest this as the default
setting when applying WT-AWP.

5.6 Certified Robustness

In this subsection, we measure the certified robustness
of GCN and GCN+WT-AWP on the Cora dataset with
sparse randomized smoothing (Bojchevski, Klicpera, and
Giinnemann 2020). We use A = 0.5,p = 1 as the hyper-
parameters for the WT-AWP models. We plot the certified
accuracy S(r,,rq) for different addition r, and deletion 7,4
radii. In Figure 5, we see that compared to vanilla GCN train-
ing, our WT-AWP loss increases the certified accuracy w.r.t.
feature perturbations for all radii. For additional results see
Appendix E.3.

6 Conclusion

We proposed a new adversarial weight perturbation method,
WT-AWP, and we evaluated it on graph neural networks. We
showed that our WT-AWP can improve the regularization
of GNNs by finding flat local minima. We conducted ex-
tensive experiments to validate our method. In all empirical
results, WI-AWP consistently improves the performance of
GNNs on a wide range of graph learning tasks including
node classification, graph defense, and graph classification.
Further exploring the connections between flat minima and
generalization in GNNs is a promising research direction.

Acknowledgements

This work was partially supported by NSF IIS 1852606,
1838627, 1837956, 1956002, 2211492, CNS 2213701, CCF
2217003, DBI 2225775.

References

Adamic, L. A.; and Glance, N. 2005. The political blogo-
sphere and the 2004 US election: divided they blog. In Pro-
ceedings of the 3rd international workshop on Link discovery,
36-43.

Bojchevski, A.; Klicpera, J.; and Glinnemann, S. 2020. Effi-
cient robustness certificates for discrete data: Sparsity-aware
randomized smoothing for graphs, images and more. In In-

ternational Conference on Machine Learning, 1003—-1013.
PMLR.

Dinh, L.; Pascanu, R.; Bengio, S.; and Bengio, Y. 2017. Sharp
minima can generalize for deep nets. In International Con-
ference on Machine Learning, 1019-1028. PMLR.

Entezari, N.; Al-Sayouri, S. A.; Darvishzadeh, A.; and Pa-
palexakis, E. E. 2020. All you need is low (rank) defending
against adversarial attacks on graphs. In Proceedings of
the 13th International Conference on Web Search and Data
Mining, 169-1717.

Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Foret, P.; Kleiner, A.; Mobahi, H.; and Neyshabur, B. 2021.
Sharpness-aware minimization for efficiently improving gen-
eralization. ICLR.

Jiang, Y.; Neyshabur, B.; Mobahi, H.; Krishnan, D.; and Ben-
gio, S. 2019. Fantastic generalization measures and where to
find them. arXiv preprint arXiv:1912.02178.

Jin, W.; Derr, T.; Wang, Y.; Ma, Y.; Liu, Z.; and Tang, J. 2021.
Node similarity preserving graph convolutional networks. In
Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, 148—156.

Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.;
and Tang, P. T. P. 2016. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836.

Kipf, T. N.; and Welling, M. 2017. Semi-supervised classifi-
cation with graph convolutional networks. ICLR.

Klicpera, J.; Bojchevski, A.; and Gilinnemann, S. 2018. Pre-
dict then propagate: Graph neural networks meet personal-
ized pagerank. ICLR.

Kwon, J.; Kim, J.; Park, H.; and Choi, I. K. 2021. ASAM:
Adaptive Sharpness-Aware Minimization for Scale-Invariant
Learning of Deep Neural Networks. arXiv preprint
arXiv:2102.11600.

Li, Y.; Jin, W.; Xu, H.; and Tang, J. 2020. Deeprobust: A
pytorch library for adversarial attacks and defenses. arXiv
preprint arXiv:2005.06149.

Ma, J.; Deng, J.; and Mei, Q. 2021. Subgroup Generalization

and Fairness of Graph Neural Networks. arXiv preprint
arXiv:2106.15535.

McAllester, D. A. 1999. PAC-Bayesian model averaging. In
Proceedings of the twelfth annual conference on Computa-
tional learning theory, 164—170.

Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; and Srebro,
N. 2017. Exploring generalization in deep learning. NIPS.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in network
data. Al magazine, 29(3): 93-93.

Stutz, D.; Hein, M.; and Schiele, B. 2021. Relating Adversar-
ially Robust Generalization to Flat Minima. arXiv preprint
arXiv:2104.04448.

Sun, L.; Dou, Y.; Yang, C.; Wang, J.; Yu, P. S.; He, L.; and
Li, B. 2018. Adversarial attack and defense on graph data: A
survey. arXiv preprint arXiv:1812.10528.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. ICLR.
Waniek, M.; Michalak, T. P.; Wooldridge, M. J.; and Rahwan,
T. 2018. Hiding individuals and communities in a social
network. Nature Human Behaviour, 2(2): 139-147.

Wu, D.; Xia, S.-T.; and Wang, Y. 2020. Adversarial weight
perturbation helps robust generalization. NIPS.

Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K.;
and Zhu, L. 2019. Adversarial examples on graph data:
Deep insights into attack and defense. arXiv preprint
arXiv:1903.01610.

Wu, Y.; Li, X.; Kerschbaum, F.; Huang, H.; and Zhang,
H. 2022. Towards robust dataset learning. arXiv preprint
arXiv:2211.10752.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems, 32(1): 4-24.

Xu, A.; and Huang, H. 2022. Detached Error Feedback
for Distributed SGD with Random Sparsification. In Inter-
national Conference on Machine Learning, 24550-24575.
PMLR.

Xu, A.; Li, W.; Guo, P.;; Yang, D.; Roth, H. R.; Hatamizadeh,
A.;Zhao, C.; Xu, D.; Huang, H.; and Xu, Z. 2022. Closing the
Generalization Gap of Cross-silo Federated Medical Image
Segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 20866—20875.
Xu, K.; Chen, H.; Liu, S.; Chen, P.-Y.; Weng, T.-W.; Hong,
M.; and Lin, X. 2019. Topology attack and defense for graph
neural networks: An optimization perspective. arXiv preprint
arXiv:1906.04214.

Zheng, Y.; Zhang, R.; and Mao, Y. 2021. Regularizing neural
networks via adversarial model perturbation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 8156-8165.

Zhu, D.; Zhang, Z.; Cui, P.; and Zhu, W. 2019. Robust graph
convolutional networks against adversarial attacks. In Pro-
ceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 1399-1407.
Ziigner, D.; Akbarnejad, A.; and Giinnemann, S. 2018. Ad-
versarial attacks on neural networks for graph data. In Pro-
ceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2847-2856.

Ziigner, D.; and Giinnemann, S. 2019. Adversarial attacks on
graph neural networks via meta learning. /CLR.

