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ABSTRACT

Time series prediction models have played a vital role in guiding
effective policymaking and response during the COVID-19 pan-
demic by predicting future cases and deaths at the country, state,
and county levels. However, for emerging diseases, there is not suf-
ficient historic data to fit traditional supervised prediction models.
In addition, such models do not consider human mobility between
regions. To mitigate the need for supervised models and to include
human mobility data in the prediction, we propose Spatial Proba-
bilistic Contrastive Predictive Coding (SP-CPC) which leverages
Contrastive Predictive Coding (CPC), an unsupervised time-series
representation learning approach. We augment CPC to incorporate
a covariate mobility matrix into the loss function, representing the
relative number of individuals traveling between each county on
a given day. The proposal distribution learned by the algorithm
is then sampled by the Metropolis-Hastings algorithm to give a
final prediction of the number of COVID-19 cases. We find that
the model applied to COVID-19 data can make accurate short-term
predictions, more accurate than ARIMA and simple time-series ex-
trapolation methods, one day into the future. However, for longer-
term prediction windows of seven or more days into the future, we
find that our predictions are not as competitive and require future
research.
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1 INTRODUCTION

The COVID-19 pandemic has changed the way that billions of
people across the globe go about their daily lives. The disease is a
highly contagious respiratory illness that spreads mainly through
the vectors of contact and respiratory droplets [3], and researchers
have found that it has a high median Ry of 5.8 [12].

To mitigate the spread of an emerging infectious disease, it is
vital to be able to predict how, where, and when the disease is going
to spread using mathematical and computational models. These
models can help public health officials and partners make informed
decisions about pandemic planning, resource allocation, and imple-
mentation of public health interventions like social distancing and
stay-at-home measures.

One traditional model of disease spread is the susceptible-infected-
recovered (SIR) model, a compartmental model that can be approxi-
mated analytically or simulated [26]. Another common approach is
to treat disease as a time series and use data on the number of cases
and deaths at a time point to predict future time points. However,
many popular supervised time series forecasting models like the
Holt-Winters method and ARIMA models require a high number
of observations for the model to provide adequate predictions, a
privilege that isn’t afforded to researchers when fighting emerg-
ing infectious diseases like the COVID-19 pandemic in 2020 and
monkeypox in 2022 [9].

Recent advancements in machine learning, however, have made
it possible to create robust and effective models with limited data
[8]. One such algorithm is Contrastive Predictive Coding (CPC),
an unsupervised learning approach that extracts useful representa-
tions from high-dimensional data [20]. The model employs autore-
gressive models to predict the future in a learned latent space and
optimizes its representations using a probabilistic contrastive loss.

Since emerging infectious diseases, such as COVID-19 in 2020,
spread through close proximity between humans, we hypothesize
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that including human mobility in the prediction should improve
the prediction of future cases. Intuitively, if one spatial region (such
as a country, state, or county) exhibits a spike in cases, then nearby
regions are more likely to show an increase in cases in the near
future.

In this study, we propose the use of CPC to predict the spread of
emerging infectious diseases. Additionally, we put forth a method
of improving the performance of the model using real-world foot-
traffic data by embedding spatial information into the model archi-
tecture. We further propose a method of translating the learned
representations from CPC to predictions probabilistically through
the use of the Metropolis-Hastings algorithm. The resulting model
is computationally efficient and able to more easily learn effective
representations from data to predict future disease spread at the
county level.

Our approach, referred to as Spatial Probabilistic Contrastive
Predictive Coding (SP-CPC), preserves the ability of the model to
maximize the mutual information gained from past COVID-19 data
to better predict future disease spread while adding in an essential
covariate feature that has a major impact on future trends. We test
SP-CPC on past COVID-19 data to determine the performance of
the model in predicting future COVID-19 cases.

The remainder of this study is organized as follows. Section 2
provides background on CPC and the loss function the model uti-
lizes. Section 3 reviews the related work on CPC and the application
of mobility data to predict trends in disease. Section 4 outlines the
COVID-19 spread and foot-traffic data used in the SP-CPC. Sec-
tion 5 describes the architecture of SP-CPC and goes through a deep
dive into each of its components. Our experimental evaluation is
found in Section 6 and shows that SP-CPC outperforms traditional
time-series prediction approaches. We provide a link to our GitHub
repository in Section 7 to allow researchers to easily use SP-CPC
and reproduce our results. Finally, the concluding statements are
made in Section 8.

2 BACKGROUND

This section provides a brief overview of Contrastive Predicting
Coding [20] which our proposed SP-CPC approach is based upon
and provides references for the interested reader to find more in-
formation.

2.1 Contrastive Predictive Coding

CPC was introduced by Oord et al. in [20] and is a self-supervised
method of learning representations from complex, high-dimensional
data. The approach is inspired by the theory of predictive coding
from computational and cognitive neuroscience, which proposes
that the brain has a generative model of the environment that out-
puts predictions of the future. The model’s predictions are then
compared against true sensory input, and the goal of the brain
is to minimize the error between the prediction and the true in-
put [15]. To mimic this behavior, CPC’s goal is to extract useful
representations from high-dimensional data by predicting future
latent states using autoregressive models. The predictions are com-
pared against the true future latent states and used to update the
model. In their paper, Oord et al. [20] found that this approach
was effective in extracting latent representations across a variety

of domains, including speech recognition, text classification, and
image classification.

At its simplest, the structure of CPC consists of three compo-
nents: an encoder (like a multilayer perceptron (MLP) or a convolu-
tional neural network (CNN)), an autoregressive network (such as
a long short-term memory (LSTM) model or a gated recurrent unit
(GRU)), and a predictor (like a single layer perceptron (SLP) or a
CNN) that will output encoded form of predictions for future time
steps. Each input to CPC consists of a contiguous array (such as a
time series) of high-dimensional data {x;_(,_1), ..., Xt }, Where w
is the number of "windows" or samples of high-dimensional data
in the array; each window x;,i € {t — (w — 1),...,t} in the array,
such as a time point (or a series of time points) in a time series or a
word embedding (or a group of word embeddings) in a sentence,
is then individually passed through the encoder to obtain the la-
tent representation z;. An autoregressive model runs continuously
through {x;_(,,-1), .., X} to produce a context vector ¢;, which
is used to predict latent representations zs41, zz+2, ..., Z;4 several
future intervals k in the series. The latent representations can then
be used for predictive downstream tasks such as change-point de-
tection [4]. We note that CPC, despite having the word “predictive”
in its name, does not predict the actual future intervals x4; but only
provides latent representations at future times. To close this gap
and leverage CPC for prediction, we propose to use a probabilistic
sampling approach based on the Metropolis-Hastings algorithm to
estimate the future x;4; intervals.

2.2 InfoNCE

InfoNCE, proposed with CPC in [20], is a variation of Noise Con-
trastive Estimation (NCE), which was introduced by Gutmann and
Hyvérinen in [6]. In short, InfoNCE loss is the mathematical equiva-
lent of a cross-entropy loss calculated from the density ratio, which
is the ratio between the predictive posterior and the proposal distri-
bution. More information on the density ratio and the mathematical
explanations of InfoNCE loss can be found in Equations 3 and 4 in
[20].

3 RELATED WORK

Our model utilizes mobility data in the CPC algorithm to maximize
the mutual information gained in representations. This section
provides an overview and related work of these techniques for
solving real-world tasks.

3.1 Contrastive Predictive Coding

CPC has been applied to many different tasks across data mediums,
including speech recognition in audio [23], image recognition [8],
and natural language processing [1]. However, to the best of our
knowledge, CPC has not yet been explored in modeling disease
spread.

We specifically look to natural language in our initial research
because it is similarly targeted toward predicting time points in
the future (in this case, a word), but in almost all cases, CPC has
been used as a feature extraction method for classification tasks.
An implementation of CPC applied to natural language processing
can be found in [1].
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3.2 Mobility Data for Disease Spread

Mobility data has been identified as an important tool to under-
stand and predict disease spread [16]. Mobility data has not only
been used to model but also to trace COVID-19 transmission. This
process is more commonly known as contact tracing, the process
of identifying individuals who have recently been in contact with
someone who has tested positive for COVID-19. For example, re-
search by Kato et al. in [11] used trajectory data (mobility data
that records the location of moving objects, like people, at certain
moments) to build a contact tracing framework.

As mentioned prior, mobility data has also been used to model
the spread of COVID-19, including in approaches without machine
learning. For example, Rambhatla et al. in [22] drew on mobility
data to give risk scores for each geographic region for COVID-19
spread.

Mobility data has also been confirmed to be associated with
COVID-19 spread: Elarde et al. modeled changes in human mobility
during COVID-19 using Principal Component Analysis and clus-
tering and found that counties located near each other not only
have similar mobility patterns, but also similar COVID-19 spread
[5]. This corroborates Tobler’s First Law of Geography which states
that "everything is related to everything else, but near things are
more related than distant things.”

This association means that mobility data is critical as a covariate
feature in predicting future COVID-19 spread. One such study of
COVID-19 that exploited mobility data was Nikparvar et. al. in
[18], which used a deep LSTM to predict future COVID-19 cases
and deaths one to four weeks into the future at the county level.
The study concluded that the model run with the mobility data
achieved the lowest root mean square error in the prediction of
new COVID-19 cases and deaths compared to other variations of
the model.

4 DATASETS

This study aims to develop a mobility-based CPC algorithm to
predict future COVID-19 spread at the county level. In this section,
we describe the COVID-19 data and foot-traffic data provided to
SP-CPC and how the data configured was configured.

4.1 COVID-19 Spread

Data on daily COVID-19 cases and deaths provided at the county
level was obtained from the New York Times [19]. The data was
provided in three CSV files for three years (2020, 2021, and 2022)
and then combined in memory using pandas and filtered to only
contain the counties of interest. Our models use a rolling 7-day
average of new case data for each day, but the New York Times
only contains data on total cases, so pandas was used to compute
the difference between each day and the rolling average over the
new cases. This data was then used as the features and targets for
this study.

4.2 FIPS Codes

The New York Times COVID-19 case data aligns each day of data
with its associated county with a Federal Information Processing
Standards (FIPS) code. To obtain a list of all the FIPS codes in the
continental United States plus Hawaii and Alaska (for this study,
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US territories like Puerto Rico and Guam were disregarded), a CSV
file containing the FIPS codes and the state they are located in was
obtained from [7]. The importance of this dataset will be highlighted
in Section 4.3.

4.3 Human Mobility Data

Mobility data for this project was obtained from the University of
Wisconsin @ Madison Human Mobility Flow Dataset [10]. This
dataset registers the total daily visitor and population flow between
each geographic region/county (and its associated FIPS code) in the
United States. Each FIPS code is assigned an origin GeoID with the
remaining FIPS codes assigned as destination GeoIDs. A mobility
dictionary can be then built to represent total population flows
between each region of the United States.

The dataset was created by analyzing anonymous mobile phone
users’ visit trajectories to places of interest (POIs) provided by
SafeGraph. Multiscale aggregation then was used to infer popula-
tion flows on three geographic scales: census tract to census tract,
county to county, and state to state. In this study, SP-CPC uses the
county-to-county population flow numbers.

To generate the mobility dictionary, the FIPS codes were first
obtained from [7]. A CSV file from one day’s worth of data (for sim-
plicity’s sake, the same CSV file was used throughout this project)
from the GeoDS dataset was then read in, and the visitor and pop-
ulation flow for each origin/destination GeolD pair was added to
an empty dictionary. However, these origin/destination pairs were
only present if population or visitor flows were recorded between
the locations, so the master FIPS codes list was used to fill in any
missing origin/destination GeolD papers with 0. Next, the number
of visitors from each origin GeolD to that destination GeolD was di-
vided by the total number of individuals traveling to the destination
GeolD to generate weights that sum to 1 for each destination. This
format makes it easier to weight each time series in the SP-CPC
loss function (highlighted in Section 5.2).

5 SPATIAL PROBABILISTIC CONTRASTIVE
PREDICTIVE CODING

This section describes the structure of our SP-CPC architecture in
detail and also describes the data structures employed in the model
itself to load the case and mobility data. Figure 1 gives an overview
of the proposed architecture of SP-CPC.

We first describe our approach of including human mobility infor-
mation inside the traditional CPC model in Section 5.1. We denote
the resulting spatial information-aware architecture as Spatially-
Aware CPC. Section 5.2 describes how human mobility informa-
tion is used in the loss function of SP-CPC to give the model an
understanding that spatially close regions (having high mobility
between them) are expected to have similar infectious disease case
trends. Finally, we describe how SP-CPC converts the encoded
form of predictions to raw case predictions in Section 5.3 using the
Metropolis-Hastings algorithm.



SpatialEpi ’22, November 1, 2022, Seattle, WA, USA

Ct
gar(TH) —> —> gar(T') > gar(T'1) Ql,l
(w-1) e Zt-1 2t 21,+1
genc(eJf genc(aT) genc '91 MH
J
—(w-1) Ti-1
T T Ze1
[ds—(w+5)5 dt (w+4) ) [di-7,di-65-- - [de—g,dis, ...,
dt —wy t (= 1)] dt727dt71 dt 1,d] pt 5y Pt—4, - "7pt7pt+l]

Figure 1: Architecture of Overlapping Spatial Probabilistic Contrastive Predictive Coding for Prediction

5.1 Spatial CPC Model Architecture

The architecture of SP-CPC is heavily influenced by the architecture
of CPC presented in [20] and in Section 2.1.

5.1.1 Encoder. An encoder gepc first converts each window of
data x; into its encoded form z;. In our implementation, a convolu-
tional neural network (CNN) was used as the model for the encoder.
Specifically, a 1D convolutional (Conv1D) layer was initialized with
a kernel size of 1, an embedding dimension of 1, and an encoding
dimension of 60. A ReLU activation function was then applied to
the output of the Conv1D layer. The optimal encoder parameters
0" are obtained from training the Spatial CPC model.

5.1.2  Autoregressive Layer. An autoregressive layer g, then takes
in the ordered array of the encoded windows of data z;— 41, Zr—w+2,

., Zt, where w is the number of input windows, and produces a
context vector ¢; which summarizes the encodings for the seven
weeks. Our implementation uses a GRU with an input size of 60
(the output size of the encoder) and a hidden size of 60 as the autore-
gressive component. The optimal autoregressive layer parameters
I't are obtained from training the Spatial CPC model.

5.1.3  Predictive Layer. A predictive layer Qg ; is then defined for
every county s passed into the model for each future time step j =
1,2, ...,k to convert the context vector summary to predictions for
future encodings. Our implementation uses an SLP as the predictive
layer, and the future encoding z;, is the matrix product Qs jc;.
The Qg js are stored in a PyTorch ModuleDict which maps county
FIPS codes to the Qg j for each county. This approach differs slightly
from the original CPC paper, which could not differentiate between
spatial locations and therefore ended up using the same Q for all
predictions for the same future time step k. Our approach allows
us to maximize the mutual information Spatial CPC learns from

the past data for each county by being able to differentiate between
each county.

The optimal predictive layer parameters QZ,j are obtained from
training the Spatial CPC model.

5.1.4 InfoNCE. The final step of Spatial CPC is to calculate the
InfoNCE loss between the predicted value and the target value. For
each county, the predicted value is computed as the matrix product
of the Qg ; for the county and the context vector c;. The InfoNCE
loss is then calculated between the predicted value and the target
vector z;+j. This is where the spatial information is incorporated
into our model in a process described in detail in Section 5.2.

5.2 Loss Function Modification

To incorporate the mobility dataset mentioned in Section 4.3, it
was necessary to modify the InfoNCE loss function and the data
structures used in the method.

First, the predicted Z;41 from the model and the target z;4+1 for
each county were booted into their respective dictionaries. Then,
the logits of each county were calculated by multiplying the weight
between that origin county and each destination county with the
prediction and target matrices. Finally, the cross entropy loss be-
tween the logits of the county and the label was calculated, and this
entire process was repeated for each county. Then, the total loss
of all the counties was calculated and returned with the necessary
dimensions.

5.3 Metropolis-Hastings

The Metropolis-Hastings algorithm gy was utilized to compute
the final prediction of the number of cases in each county. The true
number of days into the future Metropolis-Hastings would predict
would be dependent on if overlapping or non-overlapping windows
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Algorithm 1 Metropolis-Hastings for predicting X741

Input: x; , ¢; and the trained parameters 67, QI
Output: %441
0
xt(+)1 — Ny (x¢,1d7)
T 0
ally,,, <[]
for 7 < 100 do

e No(xD) 1dy)

Zt+1 € Jenc (xt(z ;9-‘_)
Z genc(f 5 QT)
p — exp ((2 - zt+1)T ch[) > Note that Z;41 = Q;c;

if min (p,1) > rand(0,1) then
(7+1) ~

1 X
else (e41) @
T+1 T
Xee1 T X
end if
+1
ally,,, < concatenate {alle1 ,xt(+Tl )}

end for
usery1 < last 50 elems of ally,,,
Xp+1 < avg(usert1)

were used; in Figure 1, only one new day of data is predicted, while
in the non-overlapping model, seven days of new data are predicted.

Metropolis-Hastings is an algorithm for obtaining a series of
random samples from a proposal distribution when direct sampling
is not attainable [24]. The principle for using Metropolis-Hastings
is derived from the probability density ratio fundamental to the
functioning of CPC. After multiple direct samples with changes
in the parameters of the proposal distribution over each iteration,
the raw predicted case values will converge towards a single value.
In the case of COVID-19 data, data is variable, so an element of
randomness is necessary to obtain better predictions.

5.3.1 Parameters. Two parameters are passed into the model to
configure the algorithm. The first is the context vector for each
county; the autoregressive model is configured to return a con-
text vector c; vector for each county at the end of every sample.
However, as introduced in 5.1.3, the ¢; vectors are multiplied by
the different Q ; matrices for each county to form a Z;4; vector,
representing the encoded form of the prediction for each county;
in other words, Z;41 does not contain any true predicted values
for the number of cases in each county. The second parameter is
the x; vector for that county, representing the raw values for the
number of COVID-19 cases in that county during the current time
step. Metropolis-Hastings is run one time for each county and its
set of parameters c; and x;.

5.3.2  Proposal Distribution. The probability distribution of the
model is instantiated from the MultivariateNormal class of PyTorch.
The covariance matrix is set to the identity matrix, and the mean
of the distribution is set to the x; vector because future case values
are dependent on previously-seen patterns.

5.3.3 Generating Predictions. SP-CPC’s implementation of
Metropolis-Hastings to predict future COVID-19 cases is detailed
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Figure 2: Example Graphs of Predictions from the first exper-
iment (using overlapping intervals to predict the next day
only)

in pseudocode in Algorithm 1. The proposal normal distribution
detailed in Section 5.3.2 is referred to as N, and the identity matrix
is referred to as Id. genc represents the encoder model described
in Section 5.1.1 that generates the encoding for a window, and 6%
represents the trained parameters for the encoder. Q: represents
the trained parameters for the predictive layer described in Section
5.1.3. The prediction x;4+; will be compared with the true value
Xr+1 to generate the percent difference in predictions between the
predictions and the ground truth, and these results are highlighted
in Section 6.

6 EXPERIMENTAL EVALUATION

This section presents the results of how the SP-CPC algorithm
performed in predicting future COVID-19 cases for each of the 30
most populous US counties. In Section 6.1, we describe the method
for loading the COVID-19 case data, and in 6.2, we describe the
parameters used for training. Next, in Section 6.4, we outline other
traditional time series prediction algorithms and provide results of
how SP-CPC performs against these algorithms. Finally, in Section
6.5, we evaluate how changes to the different model parameters
affect the InfoNCE loss of the Spatial CPC.

Note that when calculating the final MAPE, we reject ground
truth values less than 100 to avoid issues with excessively large
MAPEs.
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Table 1: SP-CPC results compared to traditional models (best results in bold)

Model Train % Diff (1 day fut) | Valid % Diff (1 day fut) | Train % Diff (7 day fut) | Valid % Diff (7 day fut)
SP-CPC 8.36% 7.89% 28.11% 28.63%
ARIMA 9.78% 9.34% 27.35% 27.81%
Constant Interpolation 31.73% 33.74% 31.31% 35.55%

6.1 Data Loading

The first experiment, referred to as Experiment 1, uses w = 7
windows to predict k = 1 future time steps. The COVID-19 case
data is loaded in as an array of batches, where each batch is a
dictionary that maps county FIPS codes to a batch of data for a
county.

Each batch of data contains a stack of 8 X 7 tensors, each rep-
resenting eight overlapping weeks of daily case data. Each new
"week" of data adds one new day of data and removes the last day,
so in total, the model only contains 14 distinct days worth of data.
Each week is a window in the SP-CPC model, and w + k = 8 win-
dows are required. This version of the model is depicted in Figure 1.
It is important to note that the next time step predicted, X741, will
only be the only new element predicted by the model. The MAPE
will thus only be calculated between the last value of %;+1 and the
corresponding value of xz1.

Another version of the dataset was also prepared where the
data in each week was distinct and did not overlap. This dataset
used w = 3 windows to predict k = 1 future time steps; this is the
equivalent of using 21 days of past data to predict the next seven
days. This version is subsequently referred to as Experiment 2, and
the MAPE will be computed between the elements of X;+1 and the
elements of x;41.

The batch size determines the size of the stack sampled from
each county, and in a single batch, all of the county-level stacks
are collected into a single larger batch. The SP-CPC model then
iterates through each county individually.

When training the model in Experiment 1, w + k = 8 weeks (but
only 14 distinct days) of data are passed in. The first w = 7 weeks
are used to generate the context vector and the predicted encoding
for the eighth week (k = 1, so only 1 future time step is generated),
which is then compared against the encoded version of the true
eighth week reserved in the data and then used to compute loss.
When evaluating the model, the 8" week is passed in but is simply
not used. A similar procedure for Experiment 2 occurs, except with
w=3andk=1.

6.2 Overall Parameters and Miscellaneous

In SP-CPC, the Spatial CPC component is the only one that requires
training (as the Metropolis-Hastings portion of the model uses the
learned parameters from it to generate predictions), so Spatial CPC
was trained using the Adam optimizer with a learning rate of 2e™*.
All training ran on a Linux environment equipped with one NVIDIA
Quadro RTX 8000 GPU. As mentioned in Section 6.1, the overlapped
dataset version of our code had hyperparameters k = 1, w = 7,
while the nonoverlapped dataset version had k = 1 and w = 3. For
both experiments, a batch size of 32 (meaning 32 samples would be
pulled for each county) was utilized, and the train/validation split
was 80% and 20%, respectively for both experiments.

6.3 Experimental Results

For the first experiment, on the training set, the MAPE between the
predicted value of cases and the actual value of cases was 8.36%, and
on the validation set, it was 7.89%. A graph of some of the example
predictions can be found in Figure 2. In the second experiment, the
MAPE between the predicted value of cases and the actual value of
cases was 28.11% on the training set, and 28.63% on the validation
set. While it is somewhat unusual to see the training error higher
than that of the validation error (as in Experiment 1), it at least
shows us that our model did not overfit.

6.4 Comparison to Competitor Time-Series
Prediction Approaches

We compare SP-CPC against two competitor models: 1) a naive
constant interpolation, and 2) an ARIMA model. Results on how SP-
CPC compares to these baseline models are summarized in Table 1.

6.4.1 Constant Interpolation. Constant interpolation was used as
a baseline naive method to compare against. The predictions for
the next seven days were simply set to the corresponding values
from the past seven days (e.g. seven days from now will be the
same as today, and one day from now will be the same as six days
prior). The rationale of this seven-day window is to avoid confusion
about the model due to periodic patterns of reported cases, which
often have a low number of reported cases on Sundays, and a large
number of cases reported on Mondays to compensate. Note that
since we predict the number of new cases on a day, this approach
of using the number of new cases seven days ago does not predict
Z€ro new cases.

The MAPE between the predicted value of cases and the actual
value of cases was calculated, with results shown in Table 1. We
observe a MAPE of more than 30% for case prediction for both one
and seven days into the future. For this approach, it is expected
that a one-day and a seven-day prediction yield similar prediction
errors, as for both cases, the value of seven days ago is used for
prediction. We observe that this prediction error is much higher
than that of our proposed SP-CPC model.

6.4.2 ARIMA. We also compare our proposed SP-CPC approach to
an autoregressive integrated moving average (ARIMA) model. We
note that this model does not take advantage of relevant covariate
data like spatial human foot traffic data.

We compared SP-CPC against its two closest ARIMA equivalents:
one that uses 13 days of past data at each county and returns a
prediction for the next day (mirroring Experiment 1 as shown in
Figure 1) and one that uses 21 days of past data and returns a future
prediction for the next 7 days (mirroring Experiment 2). After using
the same training and validation samples as used for the SP-CPC
model, the mean absolute percent difference between the predicted
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Table 2: Experiment settings (default parameters in bold)

Experiment Type Parameter Values
Use of Mobility Data in Loss Function No / Yes
Encoder and Autoregressive Dimension 120/ 60
Effect of Model
P e Ot ode Encoder Activation Function ReLU / LeakyReLU
arameters Encoder Model Conv1D / Linear
Autogressive Model GRU / RNN

—— With Mobility Data

15000 —— Without Mobility Data

16000

14000

25000 —— With Mobility Data

22500 —— Without Mobility Data
20000
17500

& 15000
12500

10000

500 600 700 800 900 1000
Epoch

(a) Train Set Loss

500 600 700 80O 900 1000
Epoch

(b) Validation Set Loss

Figure 3: Effect of Using Mobility Data on InfoNCE loss from Epochs 500-1000
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Figure 4: Effect of Using Different Encoder and Autoregressive dimensions on InfoNCE loss from Epochs 500-1000

value of cases and the actual value of cases was calculated, with
the results summarized in Table 1. We observe a MAPE of 9.34%
for the one-day prediction (Experiment 1), which is substantially
higher than the MAPE of our proposed SP-CPC. This is a positive
result, showing that our SP-CPC architecture can leverage spatial
information to make better predictions than ARIMA models, which
only use information from a single region.

However, this result is not entirely surprising, as ARIMA mod-
els have been shown to give poor predictions for seasonal time
series [27]. Past trends of COVID-19 data have usually shown a
peak of cases during the winter months and a comparative lull
during the warmer months, giving COVID-19 the widely-accepted
characterization of a seasonal disease [17]. For our future work,
we will further compare SP-CPC to prediction models based on
epidemiological models using both compartmental models [2, 13]
and agent-based simulation [14, 21].

However, for the seven-day future prediction (Experiment 2),
we observe that ARIMA vyields better results than our proposed
SP-CPC model. We contribute this to the non-overlapping approach
that loses the context of the days of the week. In our conclusions in
Section 8, we describe future research to improve the predictions
of our model further into the future.

6.5 Effect of Model Parameters

This section presents experiments testing the impact of different
parameters (described in Section 5) of our proposed SP-CPC archi-
tecture. Table 2 shows the five parameters that are evaluated in this
section. Default

6.5.1 Use of Mobility Data in Loss Function. This experiment tested
the impact of including mobility data in the InfoNCE loss function
of Spatial CPC. As shown in Figure 3, both train and validation
losses were consistently lower when mobility data was incorporated
into InfoNCE. However, the average runtime increased from 2.83
seconds per epoch to 7.57 seconds per epoch when the mobility
data was included. This can be explained by the use of a nested for
loop to compute the logits for each county, increasing the algorithm
complexity from O(n) to O(n?), where n is the number of counties.
Due to the lower loss of the model with the mobility data, however,
we continued to use the mobility data in the InfoNCE loss function.

6.5.2 Encoder and Autoregressive Dimension. Different dimensions
of the output channels of the encoder and the input/output sizes of
the autoregressive model were also tested. Dimensions of 120 and
60 were tested, and using a dimension of 60 saw massive reductions
in the loss, as shown in Figure 4. We hypothesize this dramatic
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reduction in loss due to the encoder choosing the most useful
features from the data, rather than including features that may not
have any meaning to the number of cases, and future research can
include experimenting with different dimensions.

6.5.3 Encoder Activation Function. Two different activation func-
tions after the convolution layer in the encoder were tested: the
ReLU function and the Leaky ReLU function. When training with
an encoder dimension of 120, there were no statistically significant
differences in losses, as seen in Figure 5. However, the average
runtime increased from 7.57 seconds per epoch when using the
ReLU activation function to 8.35 seconds per epoch when using
the LeakyReLU activation function inside the encoder, so the ReLU
was used as the activation function moving forward.

6.5.4 Encoder Model. Two different encoders were also tested: the
original 1D convolution layer and a single linear layer. As shown
in Figure 6, using a linear layer resulted in extremely higher losses,

so we continued using a 1D convolutional layer inside the encoder
in future experiments.

6.5.5 Autoregressive Model. One final experiment tested the dif-
ference in model performance between a recurrent neural network
(RNN) and a GRU as the autoregressive component of SP-CPC.
Figure 7 shows that losses were comparable for both models, but
training time did substantially increase when from 7.78 seconds
to 13.02 seconds per epoch when an RNN was used. Due to the
increase in training time, a GRU was chosen as the autoregressive
model in our implementation.

7 CODE AVAILABILITY

All code used to train the model and format data is available publicly
in the GitHub repository that hosts the code at https://github.com/
ajzliu/SP-CPC.
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8 CONCLUSIONS AND FUTURE WORK

This study introduces Spatial Probabilistic Contrastive Predictive
Coding (SP-CPC) applied to COVID-19 case prediction. Built upon
Contrastive Predictive Coding, SP-CPC utilizes a mobility dictio-
nary that helps weight each time series against each other in the
InfoNCE loss function. Once Spatial CPC returns the context vectors
for each county, these vectors are multiplied by a learned param-
eter individualized for each county to predict an encoding for a
future time window. This predicted encoding is then fed into the
Metropolis-Hastings algorithm to give future case predictions for
each county. Part of this study also included altering model param-
eters within the Spatial CPC component of the model to see which
set of parameters produced the lowest InfoNCE loss, and those pa-
rameters were the ones incorporated into the Metropolis-Hastings
portion of SP-CPC.

The results of our experiments show that SP-CPC can achieve
better short-term prediction than baseline models like constant
interpolation and ARIMA, which still are at the forefront of disease
modeling [25]. These results were achieved despite SP-CPC receiv-
ing limited testing for hyperparameters and with suboptimal proce-
dures for extended predictions on future cases. This demonstrates
that SP-CPC is a promising new approach for disease modeling
with limited data and spatiotemporal machine learning tasks.

For longer-term predictions, we found that SP-CPC does not
outperform ARIMA models. For future work, we want to tackle
this problem by investigating ways to leverage overlapping time
windows for predictions more than one day into the future. We
plan to approach this task by iteratively predicting the next days of
COVID-19 cases based on predictions of previous days.

To summarize, there is great potential to apply SP-CPC to model
the spread of other contagious diseases beyond COVID-19. An open
question is whether the representation that SP-CPC learned using
COVID-19 data can be successfully transferred to other emerging in-
fectious diseases which may have different transmission pathways.
Future work also includes configuring the model to use different
model parameters to achieve a lower InfoNCE loss. In addition,
because Metropolis-Hastings applies an approach of sampling on a
probability distribution, the process of computing a confidence or
model uncertainty for a given estimate becomes relatively trivial.
This can be explored in future work.

Finally, there are many future directions for the exploration of
improving the accuracy and performance of SP-CPC. Replacing
and optimizing the proposal distributions, hyperparameters, and
preprocessing of data are all areas for significant improvement of
the model, and the model also does not take advantage of a key
feature of the original CPC model yet. In these experiments, k has
remained at 1, but increasing k may provide much better predictions
for extended predictions in the future.

In summary, despite its novelty and lack of optimization, SP-CPC
delivers performance that can beat models strongly used in the field
of epidemiology. The algorithm shows great promise, and there is a
multitude of future directions to further improve the accuracy and
robustness of the model.
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