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ABSTRACT

Synthetic populations are heavily used in agent-based simulations and microsimulations to create realistic
representations of real-world populations. Many existing techniques rely on duplicating or selecting a sam-
ple of disaggregated records captured via surveys to generate the entire synthetic population. The challenge
here is the potential bias present in the sample of disaggregated records. This paper posits that such disaggre-
gated records can be improved or replaced by training a generative adversarial network (GAN). We present a
case study of a 1.1 million population using iterative proportional fitting (IPF). We illustrate that IPF makes
a better fit using GAN-based disaggregated records rather than original census-based disaggregated records.
Our results show a promising use of GANs for synthetic population generation.

Keywords: generative adversarial networks, synthetic populations, iterative proportional fitting, agent-
based simulation, microsimulation.

1 INTRODUCTION

Computational models in many application domains, including transportation modeling (Moeckel et al.
2003, Huynh et al. 2013, Zhang et al. 2019, Le et al. 2016), computational epidemiology (Laskowski
et al. 2012, Xu et al. 2017, Narassima et al. 2020, Bissett et al. 2016, Pesavento et al. 2020), and public
policy models (Hafezi et al. 2019, He et al. 2020, Levy et al. 2014), require detailed individual-level
representations of the entire population under study. However, in order to maintain the privacy of people,
complete demographic data like the U.S. Decennial Census (Bureau 2021) or American Community Survey
(ACS) (Bureau 2022) are often available at aggregated counts and percentages. In such cases, researchers
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can generate representative synthetic human populations — a detailed set of artificial persons that fall within
some defined geographic area (e.g., country, state, etc.).

There are a vast number of techniques that can be used for the generation of synthetic populations (Jiang
et al. 2021, Jiang et al. 2022). These techniques range from Iterative Proportional Fitting (IPF) (Beckman
et al. 1996) to more advanced Iterative Proportional Updating (IPU) algorithms (Ye et al. 2009). These
approaches typically extrapolate a small disaggregated sample dataset capturing real anonymized individu-
als’ records with attributes such as age, sex, and race. This extrapolation continues until the synthetically
generated population is close enough to the aggregated data. However, the challenge here is that the disag-
gregated sample for certain geographic regions is too small and does not always sufficiently cover minority
populations. For instance, the average sample size of the Public Use Microdata Sample (PUMS) dataset
from the U.S. Census Bureau (Bureau 2021) is just around 1%.

Therefore, this paper proposes the use of Generative Adversarial Networks (GANs) to replace or enhance
the disaggregated sample. GANSs are a class of machine learning architectures that integrate deep learning
into generative modeling tasks (Goodfellow et al. 2014). The main idea here is that GANs can capture
the underlying distribution of the disaggregated sample and generate more representative and potentially
diverse samples in existing synthetic population generation algorithms. To our best knowledge, no previous
studies have attempted to replace or enhance existing algorithms using GANs. Deep generative modeling
(i.e., VAE) was only used as an alternative population synthesis algorithm (Borysov et al. 2019).

The rest of the paper is organized as follows. In Section 2, we summarize the literature regarding synthetic
populations and GANs. Our approach is summarized in Section 3, while we present our use case of Fairfax
County, Virginia, in Section 4, including datasets and results. Finally, we conclude the paper by highlighting
our contributions, some limitations, and future work.

2 LITERATURE REVIEW

2.1 Synthetic Population Generators

Population Synthesis Process

Disaggregated

population sample = % __
: Fitting Generation |:> E R
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Figure 1: Classical population synthesis approach.

Most synthetic population generators work on a simple principle that involves two data inputs and a pop-
ulation synthesis process, as summarized in Figure 1. These two inputs are (1) the aggregated population
data, which provides counts for different attributes such as sex, age groups, and race summarized to various
spatial resolutions (census block group, census tract, county); and (2) a disaggregated sample (<5%), which
is anonymized data of real people and household with their attributes. In the U.S., both input data are avail-
able by the U.S. Census Bureau through the Decennial Census (Bureau 2021) and the American Community
Survey (Bureau 2022) data sets, respectively. There are two general steps for any population synthesis tech-
niques (Sun et al. 2018). In the fitting process, a model or data structure captures the joint distributions of
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people’s attributes (i.e., learning), which are of interest to the study. In the generation process, a synthetic
population is selected/duplicated (i.e., sampling) using the disaggregated sample to fit aggregated popula-
tion counts. Once the generation process is completed, the newly generated synthetic population records are
reaggregated to compare agaisnt the real world aggregated population data. Our aim is to make the differ-
ence between these two data minimal. The majority of the techniques proposed over the past three decades
can be categorized under (1) Synthetic Reconstruction (SR), (2) Combinatorial Optimization (CO), and (3)
Statistical Learning (SL).

Synthetic Reconstruction: SR relies on calculating the suitability of each disaggregated record for all the
geographic zones according to the attributes of interest (Chapuis and Taillandier 2019). Most SR techniques
are based on Iterative Proportional Fitting (IPF) (Deming and Stephan 1940), which is a deterministic proce-
dure for adjusting data in a table in such a way so that the marginal totals, the sums of each row and column,
remain the same. In the case of population synthesis, IPF is used to allocate disaggregated records into
zones, where a non-integer weight determines how representative an individual is for these zones (Beckman
et al. 1996). In a process called integerization, these non-integer values are then converted into integers. In
the generation process, each individual is replicated to create the synthetic population for a zone.

Efforts are proposed to improve IPF to account for multiple levels of marginals. The Iterative Proportional
Updating (IPU) algorithm (Ye et al. 2009) accounts for both household and individual attributes simulta-
neously by updating cross-categorization weights until a fit is achieved. Later IPU was updated to account
for different geographical resolutions simultaneously while being computationally efficient (Konduri et al.
2016). An alternative approach called Hierarchical IPF (Miiller and Axhausen 2011) was developed to
consider proportional fitting for households and individuals dependent on an entropy-optimizing process.

Combinatorial Optimization: CO is similar to SR in that it assigns weights to disaggregated records, but
these weights are assigned to fit areas independently rather than across all regions (Williamson et al. 1998).
Each attribute of individuals is considered separately, and this deterministic process runs iteratively until
reaching the desired fit (Harland et al. 2012). While CO-based techniques can take more time to converge,
they perform comparatively well against popular SR techniques (Huang and Williamson 2001). In essence,
CO aims to select a subset of individuals from disaggregated data that maximizes the fit between the sim-
ulated data and the actual data. Metaheuristics (e.g., Hill Climbing) have been used to find a near-optimal
subset from disaggregated data (Williamson et al. 1998). In contrast, the effectiveness of the metaheuris-
tics has seen contradicting performance reports (Durdn-Heras et al. 2018, Harland et al. 2012), making it
necessary to cross-compare more objectively.

Statistical Learning: SL relies on the fact that disaggregated data have underlying distributions which can
be inferred/learned/fit using probabilistic techniques. Based on such inferred distributions, these techniques
can be used to generate synthetic populations. Markov Chain Monte Carlo (Farooq et al. 2013) is a technique
used in population synthesis with noticeable success. Bayesian Networks (Sun and Erath 2015) were used to
infer joint distributions between population attributes graphically. Similarly, a Hidden Markov Model-based
technique (Saadi et al. 2016) and a Variational Autoencoder-based technique (Borysov et al. 2019) were
proposed to infer joint distributions from disaggregated data. All the methods mentioned above assume
a flat hierarchy between the attributes of individuals. Some recent studies (Hu et al. 2018, Sun et al.
2018) enabled researchers to infer the hierarchical nature of populations, such as the relationship between
households and individuals. While SL techniques can generate new synthetic individuals (not replicated),
the learning process is especially challenging when there are many attributes with different data types (Xu
2020).
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2.2 Generative Adversarial Networks

Generative adversarial networks (GANSs) are a class of machine learning architectures that integrate deep
learning into generative modeling tasks (Goodfellow et al. 2014). GANs have the ability to discover la-
tent patterns in data based on their unique generator/discriminator mechanism. In the vanilla GAN setting
(Goodfellow et al. 2014), the generator model is trained to evolve to learn compact representations of
data distributions to generate new unseen records. On the other hand, the discriminator model is trained
to distinguish between real training data records from fake records generated by the generator model. This
generator/discriminator mechanism is a zero-sum game with a proximal equilibrium (Farnia and Ozdaglar
2020). Many successful contributions have helped GANs evolve (Zhang et al. 2019, Mao et al. 2017, Liu
and Tuzel 2016) and be used in various applications areas, while the main emphasis has mostly been on
computer vision (Pan et al. 2019).

There is a growing body of literature in recent years designing GANSs to generate tabular data (Xu et al.
2019, Kim et al. 2021, Kunar 2021). These recent developments pave a promising path for using GANs in
synthetic population data generation.

3 OUR APPROACH

Our approach aims to integrate GANSs into the population synthesis process. We extended the classical
approach by adding a GAN trained with the real disaggregated population sample. With this addition, we
no longer need to use the real disaggregated population sample; instead, we can use the GAN-generated
disaggregated population sample, which should still capture the statistical features of the real disaggregated
population sample. Figure 2 summarizes the essence of our approach.

With the addition of a GAN, our approach includes a learning component that makes it similar to the sta-
tistical learning (SL) techniques presented in Section 2.1. At the same time, we can still use the classical
population synthesis processes of Synthetic Reconstruction (SR) and Combinatorial Optimization (CO).
This makes our approach widely applicable by keeping the merits of different techniques.
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Figure 2: Our proposed population synthesis approach.
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3.1 Training GANs

We experimented with many different GANs. First, a TGAN, or tabular GAN, was used with deep neural
networks. The TGAN outperforms standard statistical generative models and generates the data using an
advanced version of Recurrent Neural Networks (RNN) called Long Short-Term Memory (LSTM) (Xu and
Veeramachaneni 2018).

A CTGAN, or conditional tabular GAN, was used to generate the synthetic data. The CTGAN is based
on the GAN-based Deep Learning data synthesizer. It offers greater flexibility when modeling distributions
compared to statistical or deep neural network models, especially with imbalanced columns (Xu et al. 2019).

Finally, a variation of the CTGAN, the CopulaGAN, was examined. The CopulaGAN aims to improve the
accuracy of the CTGAN by using Gaussian Copulas. It takes advantage of Cumulative Distribution Function
(CDF) based transformations (Kamthe et al. 2021). Various scores were used to compare the different mod-
els as well as metrics from the Synthetic Data Vault (SDV) Project library (Patki et al. 2016). The CTGAN
and the CopulaGAN clearly outperformed the tabular GAN while the CTGAN narrowly outperformed the
CopulaGAN’s average similarity metric from the SDV Evaluation Framework by 2%.

3.2 Population Synthesis Process

For the purpose of this paper, we use IPF for the “Population Synthesis Process”. In IPF, a matrix is created
that matches the original individual table data with totals closest to the aggregated census tract data possible;
after many iterations, the matrix slowly gets closer to the census tract aggregated sums. The inputs needed
to run IPF are the disaggregated population sample and the aggregated population data. Generally, with
the IPF algorithm, there has to be a unique attribute in which the individual data can be grouped up to get
broader level counts. Since the data can be described as spatial microdata, the unique attribute to group the
individual data is location, or census tracts (Lovelace and Dumont 2016).

As the value names of the disaggregated population sample and the aggregated population data are already
matched up, the dimensions of the aggregated data has to match up with the disaggregated data as a pre-
requisite to IPF. This is accomplished by flattening the individual dataset by changing disaggregated data
columns into a matrix, with each new column being an aggregated category name. Once the prerequisites
have been met, the IPF runs and successfully generates synthetic individual data.

3.3 Evaluation

As the last step in our approach, we evaluate the performance of the newly generated synthetic population.
In this case, we reaggregate our new data at an appropriate level (e.g., census block group, census tract, etc.)
and compare that data with the real aggregated population data. Several error measures, including mean
absolute error, mean squared error, can be used to make this comparison. Since our synthetic population
generation technique has novelty, we also compare our results with the classical approach that uses real
disaggregated sample and a combined dataset with real and GAN-generated disaggregated samples. By
making these comparisons, we can evaluate the extent to which GAN can replace or improve the synthetic
population generation process.
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4 USE-CASE: SYNTHETIC POPULATION FOR FAIRFAX COUNTY, VIRGINIA

4.1 Datasets and Pre-processing

A collection of the PUMS disaggregated dataset from the US Census Bureau was used with the CTGAN.
The data included 13,053 individuals, around 1.1% of Fairfax County’s actual population, with attributes like
age, sex, employment, housing situation, income, citizenship, marital status, schooling, disability, work type,
insurance, and race. Continuous data variables like age and income were binned into discrete categorical
bins to match the census aggregate statistics.

Also from the US Census Bureau, the American Community Survey (ACS) was utilized to get aggregated
population data for all 255 census tracts in Fairfax County (Bureau 2022). This census tract data had the
general population counts for each census tract on each specific attribute in the disaggregated data. For
example, a single row/individual in the disaggregated data could have an age value between 30 and 40 or
an age value above 80; the census data, on the other hand, would have how many individuals in the entire
census tract have age values between 30 and 40, age values above 80, etc. This ACS data counts sum up to
the total Fairfax County population of around 1.1 million.

Some of the individual attributes had to be combined into new attributes since the aggregated level data
before did not include these attributes. Finally, the values of the disaggregated data, which were originally
numerical values, were relabeled to match the categorical labels from the aggregated data.

The census tract data from the ACS, as we called aggregated population data, functions as constraints for
the IPF algorithm. The specific datasets used were as follows.

* S0101 - age and sex

* DPO3 - selected economic characteristics

* 52301 - employment status

* DPO2 - selected social characteristics in the US

* S1901 - income in the past 12 months (in 2018 inflation-adjusted dollars)
e S1201 - marital status

*  S1401 - school enrollment

* S1810 - disability characteristics

*  S2406 - industry by class of worker for the civilian employed population 16 years and over
e S2701 - selected characteristics of health insurance coverage in the US

* DPOS5 - ACS demographic and housing estimates

The data was then processed and relabeled to match the disaggregated data characteristics from the PUMS.
In addition, columns with low populations within the census tracts are combined. It is critical that the disag-
gregated and aggregated data at the census tract level match in order for the IPF algorithm to function. The
census aggregated data has 255 rows (one for each census tract) and 56 columns (the number of attributes)
like age between 30 and 40 or male, for the 12 attributes, like age or sex.

4.2 Synthetic Population Generation

We leveraged the IPF algorithm, using the mipfp R package (Barthélemy and Suesse 2018), to generate
our synthetic population of Fairfax County. In terms of the disaggregated sample needed for IPF, we used
three different settings: (1) the PUMS data, (2) a new disaggregated sample based on a GAN trained on the
PUMS data, and (3) a merger of the two. The CTGAN, from the sdv library (Patki et al. 2016), successfully
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generated a synthetic disaggregated population of the same size and characteristics of the PUMS data. The
model ran for 300 epochs and for around an hour in Google’s Colaboratory (Google 2022). The output
format is 13,053 rows, each signifying a single individual, and 12 unique columns, each signifying a unique
attribute of an individual, like marital status. For the aggregated population data, we used the ACS data as
described in Section 4.1.

The IPF code is run three times while keeping the aggregated population data the same. The disaggregated
sample is changed from the real 13,053 population from the PUMS to the synthetic 13,053 population with
the CTGAN, to a combination of real and synthetic data with 26,106 records. The IPF code successfully
generates data for all 1.1 million Fairfax County individuals, organized by each census tract. This synthetic
data closely matches up with the aggregated census level statistics.

4.3 Results

The three full synthetic datasets generated from the IPF are reaggregated into census tract-level data in order
to compare with the real census data from the ACS. These datasets are of the same format: 255 rows (one
for each census tract) and 56 columns for the distinct attributes. The summary of the results is provided in
Table 1. Here, the general mean absolute error is calculated using (1).

Y0 v — V)]

m*xn

ey

Here, y; ;) represents the ith population attribute in census tract j, §(; ;) represents the ith population attribute
in synthetic population tract j, n represents number of census tracts, and m represents number of attributes.
In other words, the absolute difference between real and synthetic attribute values is calculated across census
tracts, and all attributes are then averaged. The standard deviation calculation used these absolute errors
across all census tracts and attributes. The results suggest that our proposed approach outperformed the
other two with low general mean absolute error and low standard deviation of the mean absolute error.

Table 1: Summary statistics about three synthetic population datasets.

General Mean Absolute Standard Deviation of

Error Mean Absolute Error
Synthetic population using real PUMS dis- 18.75 42.30
aggregated data only
Synthetic population using CTGAN-based 13.51 14.97
disaggregated data only
Synthetic population using both real PUMS 18.44 23.35

and CTGAN-based disaggregated data

Ultimately, the error between the real aggregated data and the reaggregated synthetic data was low, as most
of the error for each attribute is below 50, while the average census tract population is 4,484. The data is
averaged for each distinct attribute across 255 census tracts to get a comprehensive graph comparing the
three IPF- generated data as shown in Figure 3. From all these comparisons, we can see that when using
a CTGAN-only disaggregated sample helped IPF perform better. The PUMS data-only version and the
combined version almost consistently performed worse.
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Mean error between real census tract data and synthetic IPF census tract data

IPF data
= Using real PUMS disaggregated data only
= Using CTGAN-based disaggregated data only
= Using both real PUMS and CTGAN based disaggregated data
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Figure 3: Attribute-specific mean absolute error between real and synthetic data across all 255 census tracts.

In addition, the real and synthetic data can be compared for a specific attribute like age or income, showing
which attributes are modeled well by which type of IPF data. As shown in Figure 4, the IPF data based on
just the real PUMS data generates the age attribute poorly as there lie many datapoints significantly off the
line of best fit, where the real census tract and synthetic census tract populations differ significantly. On
the other hand, the IPF data based on the synthetic CTGAN data and IPF data based on the real PUMS and
synthetic CTGAN data capture the age characteristic well with no points off of the line of best fit. From
both census track and attribute-based results, we can posit that this CTGAN-based technique has a promising
contribution to the modeling and simulation community.

5 SUMMARY AND FUTURE WORK

Synthetic populations are used in creating realistic population representations for agent-based and microsim-
ulation modeling approaches. In this work, we made a promising contribution to an existing and popular
synthetic population generation technique called IPF. We trained a deep generative model called CTGAN
using the US Census’ PUMS disaggregated sample. Once the patterns were learned, the CTGAN was able
to generate a novel disaggregated sample to be used in IPF. Overall, the IPF algorithm is leveraged in three
settings: (1) data based on the real PUMS, (2) data based on the synthetic CTGAN, and (3) a combination
of the two.

We found that the disaggregated sample generated using the CTGAN-based technique outperforms the other
two consistently by generating more realistic synthetic populations. Since disaggregated samples are used
in many different synthetic population generation algorithms (other than IPF) as discussed in Section 2, we
can make larger contributions to the modeling and simulation community. Our future work includes testing
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Figure 4: Comparison of real and synthetic census data on the age attribute using different disaggregated
samples.

different synthetic population generation algorithms and different geographic areas to evaluate the extent of
the results found in this paper.

NOTES

This research has been supported by National Science Foundation grants (DEB-2109647 and DEB-2030685)
and is conducted as part of the 2021 Aspiring Scientists Summer Internship Program at George Ma-
son University. All code and data used in this paper are available at https://github.com/srihan-kotnana/
spatial-microsimulation.
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