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ABSTRACT

Location-Based Social Networks (LBSNs) combine location informa-
tion with social networks and have been studied vividly in the last
decade. The main research gap is the lack of available and author-
itative social network datasets. Publicly available social network
datasets are small and sparse, as only a small fraction of the popula-
tion is captured in the dataset. For this reason, network generators
are often employed to generate social networks to study LBSNs
synthetically. In this work, we propose an evolving social network
implemented in an agent-based simulation to generate realistic so-
cial networks. In the simulation, as agents move to different places
of interest have the chance to make social connections with other
agents as they visit the same place. A large-scale real-world mo-
bility dataset informs the choice of places that agents visit in our
simulation. We show qualitatively that our simulated social net-
works are more realistic than traditional social network generators,
including the Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert.
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1 INTRODUCTION

Social networks offer a way to represent and examine relationships
between individuals. Through these models of relationships, we
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gain insight into the real world. With the advent of social media
and the Internet, the world is more connected and data is more
accessible. Especially with mobile devices, data is tracked to a much
higher and increasing degree. To gain a more nuanced model, a
spatial component can be merged into social networks, creating
Location-Based Social Networks (LBSN), bridging the gap between
the physical world and online social networking services [20]. LB-
SNs have been used in disease modeling [8, 13], urban planning [16],
and marketing [3]. However, research on LBSNs is limited due to
the absence of comprehensive and accurate social network datasets.
Publicly available real-world datasets only capture a small frac-
tion of the population [10]. The authors of [9] even conclude that
“Researchers working with LBSN data sets are often confronted
by themselves or others with doubts regarding the quality or the
potential of their data sets.”. Therefore, synthetic social networks
are often used to study LSBNs [6].

In this study, we aim to understand if social networks created
through agent-based simulation informed by real-world human
mobility data can create more realistic social network datasets than
traditional social network data generators. Specifically, we imple-
ment a growing social network using an agent-based simulation
based on human mobility data for Fairfax County, USA. Based on
interactions between agents within the model, the network con-
tinuously evolves based on these interactions, losing and gaining
connections [18]. Through fine-scale, real-world foot-traffic data
from SafeGraph!, the agent-based simulation generates realistic
mobility data on which the evolving social network is based on. By
comparing our generated social networks to commonly used ran-
dom social network generators, our qualitative evaluation shows
that this approach promises to yield more realistic social networks,
which include large and small social sub-communities of closely
connected agents. To close the gap of a lack of publicly available
large real-world social network datasets, we make our simulated
social networks available for up to 1.1 million agents having an
average number of friends of six, and we provide the source code
of our simulation for researchers to create their social networks for
other study regions.

https://www.safegraph.com/guides/foot-traffic-data
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2 AGENT-BASED SIMULATION

We use an agent-based simulation of Fairfax County, VA, with a
population of over 1.1 million individuals. To inform the human
mobility of the simulation, we use empirical data obtained from
SafeGraph foot-traffic data. This dataset provides data about visits
of individuals grouped into home census block groups (CBGs) to
points of interest (POI). A CBG is a geographical unit used by the
United States Census Bureau, having a population of 600 to 3,000
people. Points of interest data are taken from SafeGraph’s POI
databases and are places where money can be spent?, and includes
places such as restaurants, schools, and gas stations.

We use this data by estimating, for each CGB cbg and each POI
poi, the probability p(cbg,poi) that an individual from cbg visits poi.
Using foot-traffic data from 2019-2021, this probability is estimated
empirically, by dividing the number count(cbg, poi) of observed
visits of individuals from cbg to poi, divided by the total number of
visits count(cbg) from cbg to any place of interest, that is:

count(cbg, poi)

p(cbg poi) = count(cbg)

Based on this mobility model, each individual (having a home
CBG c) creates a new schedule of POIs to visit each day. POIs to
visit are selected from probability distribution defined by

Pe(poi) = p(c poi),

for each POI in the simulation. For example, if we have observed
4,000 POI visits in a CBG ¢, out of which 20 visits were made to POI
poi, then we would have a probability of % = 0.5% for an agent
from CBG c to visit poi. Based on the average duration of a stay at
a POI and arrival times (also taken from SafeGraph data), agents
repeat drawing new POIs until they fail to add an additional POI
due to a lack of time in their schedule. Due to arrival times learned
empirically from the data, most agents visit locations between 8
am-11 pm but can occasionally make trips outside of that.

Once the daily schedule of all agents has been computed, agents
execute their schedule by visiting their planned POIs. Whenever an
agent visits a PO, they choose another agent located at the same
POI (if any) to create a social connection with. An edge in the social
network is established between this pair of agents with a probability
of pfocal, Which is a parameter of our simulation. These connections
denoted as focal closure, are based on a small probability that two
strangers may become friends when meeting [7, 17]. In addition,
when an agent enters a POI and finds that two existing friends are
already located at the same POI, then there is a chance of p;,iqqic
that the agent closes the triangle by introducing these two friends
to each other, a concept denoted as triadic closure [15].

Our simulation runs until the average network degree reaches
a specified parameter degree. This parameter is used to make our
resulting social network comparable to other synthetic social net-
work generators, which also allows us to specify the desired average
network degree.

3 QUALITATIVE EVALUATION

Our goal is to compare our simulated social network with the
three common classical models, Erdos-Renyi, Watts-Strogatz, and

Zhttps://www.safegraph.com/products/places
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Figure 1: Erdos-Reyni model visualization with 250 nodes

Barabasi-Albert. To scale these network generators to large net-
works, we describe our implementation details for each of the net-
works and illustrate the resulting network using a small sample of
agents for visualization.

3.1 Erdos-Renyi

The Erdos-Renyi model [5] is a randomly generated model. Each
edge is only included in the graph based on a chosen probability.
Edges are chosen independently of other edges and nodes. Typically,
the Erdos-Renyi model is generated by looping through every edge
pair between every node, choosing a random probability pg,q4os,
and adding the edge only if the random probability is below a
certain threshold established beforehand. However, this naive im-
plementation is inapplicable for large social networks due to its
quadratic run-time. We implemented a faster algorithm to generate
Erdos-Renyi graphs by using, for each of the n nodes, a binomial
distribution B(n — 1, pgrq4os) to determine the number of friends
that an agent will have. This random variable can be approximated
for large values of n in constant time using a Normal approximation
with continuity correction. Once the number of friends an agent
will have is determined, these are drawn randomly from the set
of all agents. This approach allows us to determine the friends of
an agent in O(degree) rather than in O(n), where the degree is
the average degree of the network, which is (for large networks)
generally much larger than the number of nodes n.

Figure 1 shows an example Erdos-Renyi graph with 250 nodes
(for visualization) and having an expected degree of 4, that is, each
edge has a probability of pg,q0s = % of existing. We observe
that the resulting graph has no structure; Using OpenOrd, an open-
source toolbox to visualize large graphs [11], we cannot observe any
meaningful clusters. This is expected, as the network is entirely ran-
dom. We note that all visualization in this work uses the OpenOrd
graph visualization algorithm implemented in Gephi, which is an
open-source software for exploring and manipulating networks [2].

3.2 Watts-Strogatz

The Watts-Strogatz model [19] is a randomly generated model that
aims to have social networks with a high degree of clustering. It is
a small-world model with short average path lengths. The We use
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Figure 2: Watts-Strogatz model visualization with 250 nodes

the traditional algorithm that starts by constructing a ring lattice
in which each node is circularly connected to its d next nodes in
arbitrary order, where d is the desired degree of the network. With
a probability of py 45 each connection is rewired to a randomly
selected node. Figure 2 shows a generated Watts-Strogatz network
having p = 0.1. We observe that even after using OpenOrd [11], it
is difficult to discriminate any interesting clusters of communities.
We still observe the single ring-shaped cluster that stems from
the initial ring lattice. Beyond the single-ring cluster, there is little
evidence of interesting sub-clusters or communities that one would
expect in a real-world social network.

3.3 Barabasi-Albert

The Barabasi-Albert model [1] is a randomly generated model that
aims to create a scale-free network, one that follows a power law
in the distribution of the number of edges per node. To do this,
the model utilizes preferential attachment. Nodes are added to
the network iteratively and are more likely to connect to nodes
with a high number of edges. This model aims to simulate the
emergence of very strongly connected influencers. Figure 3 depicts
a generated Barabasi-Albert network. We once again observe no
realistic structure in the network. While some nodes have a very
large number of friends, all friends are still selected randomly, so
there are no clusters or communities.

3.4 Our Proposed ABM-Based Social Network

Generator

We ran our simulation of Fairfax County with 250 agents for com-
parison. For such a small simulation, we reduced the study to only
ten CBGs located in the southeast of Fairfax County. Figure 4 de-
picts our simulation for 250 agents to allow a fair comparison to
Figures 1-3. In this case, we can now observe reasonable clusters.
We find one cluster that is largely isolated from the rest and one
large cluster which has three smaller clusters within it.

We further show our simulated social network for 10,000 nodes
in Figure 5. While, at first glance, the resulting network appears
to be a single random furball, a closer look shows texture created
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Figure 3: Barabasi-Albert model visualization with 250 nodes

by smaller and larger clusters and communities throughout the
network. As these clusters are difficult to discern on paper, we
provide a high-resolution version of this network on our project
website at https://github.com/STIP-Summer-2021/Growing-Social-
Networks. We believe that our generated social network can closely
mimic real friends’ networks.

4 QUANTITATIVE EVALUATION

We ran all four models using 100,000 nodes and set the average
degree to 10. For the Watts-Strogatz network, we used a rewiring
probability of 50 percent, and we initialized the Barabasi-Albert
network with a set of 10 nodes. Table 1 shows network statistics
for all four considered networks.

Network Diameter: Out of the three classical networks, the Watt-
Strogatz model had the highest network diameter of 62, which is
expected due to the initial ring-like structure, which may create long
dead-ends after rewiring. Barabasi-Albert model had a diameter of
25, which is still very large, explained by potentially long chains
of agents having very few friends. The Erdos-Reyni model had a
diameter of 36. Interestingly, our model had the lowest diameter,
showing that all agents can reach each other on the network with
at most 12 hops, which seems realistic for a 100K agent network.
Number of Triangles: The Erdos-Reyni model had the least num-
ber of triangles: 155, as a triangle has a meager chance of p%r dos- The
Barabasi-Albert had a total of 35,153 triangles, mainly stemming
from neighbors on the initial ring lattice, and the Watts-Strogatz
model had the greatest number of triangles: 565,730, which is due
to some agents having a very large number of friends, thus turning
any pairs of friends among them into triangles. Our simulation has
211,305 triangles, which is a high number given the low variance
in the number of friends, showing a high degree of clusters of the
simulated network.

Standard Deviation: In the Watts-Strogatz model, all agents have
the same number of friends, so there is no standard deviation. As
expected, the Barabasi-Albert network has an extreme standard
deviation of 30.5, as some agents have hundreds of friends. Our
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Figure 4: Simulated social network with 250 nodes

Figure 5: Simulated social network with 10,000 nodes

Erdos | Watts | Barabasi | Simulated
Diameter 36 62 25 12
# Triangles 155 | 35,153 | 565,730 | 211,305
Degree std. dev. | 2.23 0.00 30.5 8.54

Table 1: Network Statistics for the three baseline network
generators and our proposed simulated network.

simulated network has a moderate standard deviation of 8.54, with
75% of agents having between 3 and 20 friends while also having
12K agents with less than three friends and 13K agents having more
than 20 friends. We show a detailed distribution of the number of
friends, visualizations of the network with different parameters,
simulation source code, and datasets on our Github page at https:
//github.com/STIP-Summer-2021/Growing-Social-Networks .

5 CONCLUSIONS, AND FUTURE WORK

We proposed an agent-based simulation to create realistic social net-
works informed by real-world human mobility data where agents
travel to points of interest to befriend other agents. We have shown
first results of our model simulating realistically looking social
networks and hope that our published social network dataset may
be useful to other researchers as a testbed to evaluate algorithms
and theories on large and realistic social networks. As next steps,
our goal is to calibrate the distribution of the number of friends of
agents to match social science results such as Dunbar’s Number [4].

Gallagher, Kotnana, Satishkumar, Siripurapu et al.

We note that calibration to real-world data is challenging as no
ground truth datasets exist. Social media network datasets (such
as Facebook, Twitter) do not exactly capture friendship as no hu-
man may have hundreds of millions of (true and stable) friendship
relationships. We also plan on implementing more realistic agent
mobility having agents adapt their mobility to more frequently
meet friends. Given our understanding that human mobility af-
fects infectious disease spread [12, 14], we want to investigate how
realistic social networks affect infectious disease spread models.
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