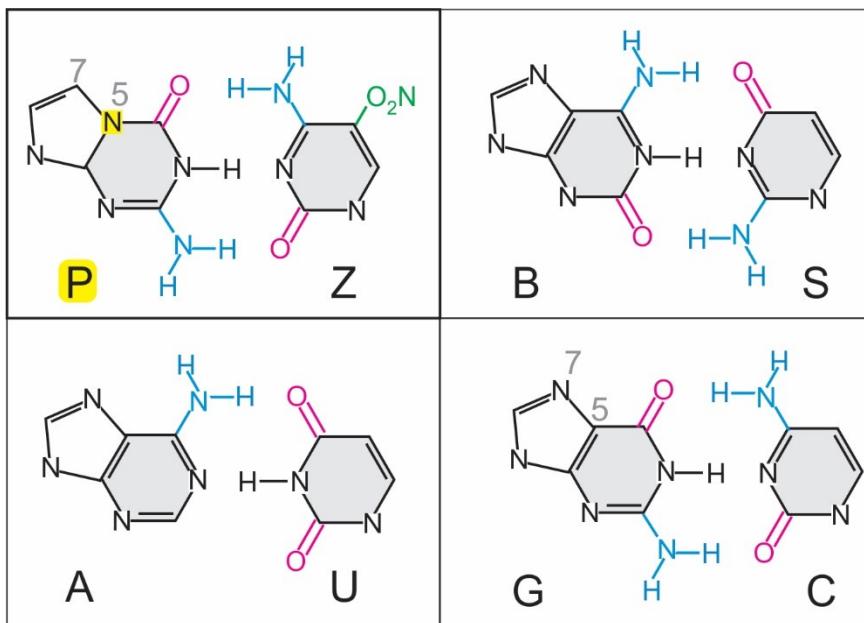


Highlight Article (Invited)

Understanding how a new Hachimoji nucleobase alters photodynamics of genetic building blocks.

Mattanjah S. de Vries*

Department of Chemistry and Biochemistry, University of California Santa Barbara, CA 93106-9510

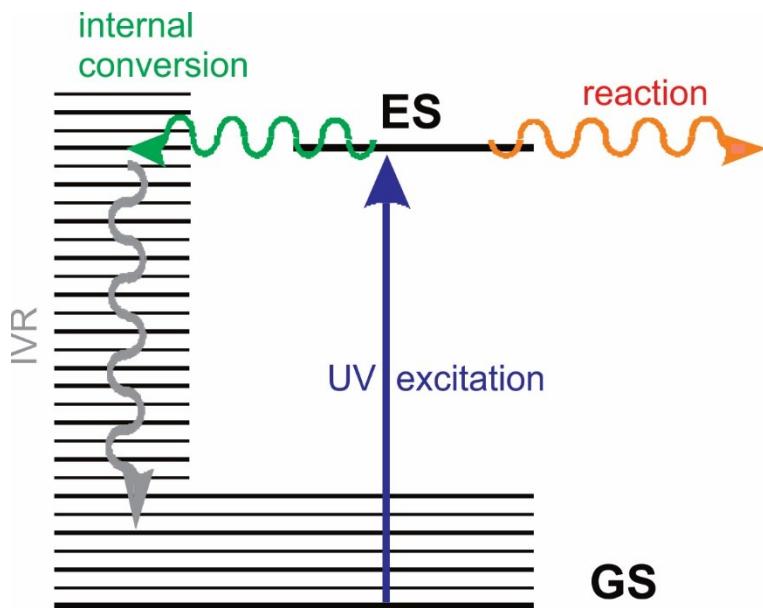

ABSTRACT

This article is a highlight of the paper by Krul et al. in this issue of *Photochemistry and Photobiology*. It describes the excited state dynamics of 5-aza-7-deazaguanine (${}^5\text{N}^7\text{C}\text{G}$), which has recently been proposed as an alternative nucleobase. Upon UV absorption to the lowest energy ${}^1\text{III}^*$ state, ${}^5\text{N}^7\text{C}\text{G}$ returns to the electronic ground state an order of magnitude more slowly than guanine with a corresponding greater fluorescence quantum yield. These findings are significant because they suggest that ${}^5\text{N}^7\text{C}\text{G}$ is less UV photostable than its canonical nucleobase equivalent, which would have been a selective disadvantage in prebiotic conditions.

COMMENTARY

One way to define life is as a self-replicating system. Replication needs to be faithful but not perfect so the system is able to evolve. From a chemical perspective then, the origin of life, as we know it, occurred with the formation of the first self-replicating molecules some 4 billion years ago. This could have been RNA or a precursor form, sometimes referred to as proto-RNA (1). It is highly improbable that the chemical inventory of heterocyclic compounds on an early earth – in the so-called primordial soup – would have consisted exclusively of the canonical nucleobases. Many analogs, derivatives, and isomers would have been equally likely (2-4) (5). From among those molecules, several have been proposed as alternative nucleobases that could have been part of “false starts” or of precursor forms of replicating polymers. More profoundly, this variety raises the question: could nature have chosen different sets of building blocks of life? Several alternative genetic alphabets have been proposed and shown to be viable for constructing stable replicating polymers(6-10). A recent such report by Hoshika et al. describes hachimoji DNA and RNA: A genetic system with eight building blocks (hachimoji means “eight letters” in Japanese) (6). As shown in Figure 1, the eight nucleotides form four orthogonal pairs, that meet the structural requirements needed to support Darwinian evolution. Hachimoji DNA was successfully transcribed to give hachimoji RNA in the form of a functioning fluorescent Hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life elsewhere.

35



36

37 Figure 1: The set of 8 hachimoji bases and the base pairs the form. P is the subject of the study by
 38 Crespo-Hernandez et al. in this issue. Compared with G, the nitrogen at N7 is replaced by a carbon atom
 39 and the carbon at C5 is replaced by a nitrogen atom.

40

41 The fact that biology has selected a very narrow alphabet of RNA and DNA building blocks raises the
 42 question why the remaining nucleobase analogs were eliminated as biologically relevant nucleosides
 43 during the course of abiogenesis. One possibility that has been raised is that UV radiation played a role in
 44 this selection (11) (12-22)). For nearly one billion years before the great oxidation event that led to a
 45 protective ozone shield, life coped with intense UV surface irradiation (23-26). Models estimate that UV
 46 damage rates were three orders of magnitude greater in the Archean oceans of the early Earth than today
 47 (27). Following the absorption of a UV photon, many photochemical processes are possible. To be
 48 protected from photodamage it is advantageous for a molecule to rapidly return to the electronic ground
 49 state, defusing the electronic excitation energy and safely transferring the absorbed energy to the
 50 environment (see Figure 2). The canonical bases follow this path in picoseconds or less, leaving the
 51 molecule no time for other potentially damaging but slower photochemical processes. By contrast, very
 52 closely related derivatives and analogues often lack this property, evidenced by much longer excited state
 53 lifetimes (12, 28, 29). Remarkably, the canonical RNA and DNA nucleobase monomers, that now make up
 54 life as we know it, have nearly ideal UV resistant properties for organic molecules of their size and
 55 complexity in the precise spectral region of intense UV irradiation that characterized the first half of
 56 Earth's existence (30). The internal conversion back to the ground state proceeds through conical
 57 intersections, which occur at parts of the potential energy surface with nonequilibrium nuclear
 58 coordinates (31). In other words, the process involves deformations of the molecular structure, explaining
 59 the exquisite dependence of photostability on even small variations between similar molecules (32, 33).

60
 61 **Fig.2** Following absorption from the ground state (GS) to the excited state (ES), reactive pathways (red
 62 arrow) compete with safe internal conversion (green arrow) followed by internal vibrational relaxation
 63 (IVR, gray arrow).

64

65

66 This issue's paper by Krul et al. examines the excited state dynamics of one of the hajimochi bases, labeled
 67 P. With femtosecond transient absorption spectroscopy in different solvents the authors find excited state
 68 lifetimes that are 10-30 times longer than those in the closest canonical analog, guanine, and fluorescence
 69 quantum yields that are an order of magnitude larger. Supported by high level quantum computational
 70 modeling, the authors propose that absorption to S2 is followed by rapid internal conversion through a
 71 conical intersection to S1 to reach a local minimum in the S1 state with an extended lifetime. From this
 72 relatively long-lived state the molecule will eventually fluoresce or internally convert to S0. The hajimochi
 73 P base is characterized by the nitrogen position, N5 and a carbon at C7, compared to guanine with a
 74 nitrogen in position N7 and a carbon at C5. This leads to a unique shape for the structure at the conical
 75 intersection between the two excited states.

76 CONCLUSION

77

78 The findings of Krul et al. shed new light on the excited state dynamics of heterocyclic compounds. Most
 79 importantly, these findings are the first determination of the relative photostability of one of the new
 80 hajimochi bases, providing critical data for prebiotic scenarios.

81 Acknowledgement

82 This work was supported by the National Science Foundation under CHE-1800283

83

84 1. N. Hud, Our Odyssey to Find a Plausible Prebiotic Path to RNA: The First Twenty Years. *Synlett*
85 **28**, 36-55 (2016).

86 2. R. Saladino, C. Crestini, C. Cossetti, E. Di Mauro, D. Deamer, Catalytic effects of Murchison
87 Material: Prebiotic Synthesis and Degradation of RNA Precursors. *Origins Life Evol B* **41**, 437-451
88 (2011).

89 3. R. Saladino *et al.*, Synthesis and degradation of nucleic acid components by formamide and iron
90 sulfur minerals. *J Am Chem Soc* **130**, 15512-15518 (2008).

91 4. R. Saladino, G. Botta, M. Delfino, E. Di Mauro, Meteorites as Catalysts for Prebiotic Chemistry.
92 *Chem-Eur J* **19**, 16916-16922 (2013).

93 5. M. P. Callahan *et al.*, Carbonaceous meteorites contain a wide range of extraterrestrial
94 nucleobases. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 13995-13998 (2011).

95 6. S. Hoshika *et al.*, Hachimoji DNA and RNA: A genetic system with eight building blocks. *Science*
96 **363**, 884-+ (2019).

97 7. L. Q. Zhang *et al.*, Evolution of Functional Six-Nucleotide DNA. *Journal of the American Chemical
98 Society* **137**, 6734-6737 (2015).

99 8. Z. Y. Yang, D. Hutter, P. P. Sheng, A. M. Sismour, S. A. Benner, Artificially expanded genetic
100 information system: a new base pair with an alternative hydrogen bonding pattern. *Nucleic
101 Acids Research* **34**, 6095-6101 (2006).

102 9. N. V. Hud, B. J. Cafferty, R. Krishnamurthy, L. D. Williams, The Origin of RNA and "My
103 Grandfather's Axe". *Chem Biol* **20**, 466-474 (2013).

104 10. S. A. Benner, C. Y. Switzer, J. D. Bain, A. R. Chamberlin, Expanding the Genetic Lexicon with Extra
105 Nucleic-Acid Letters. *Abstracts of Papers of the American Chemical Society* **203**, 67-Carb (1992).

106 11. C. Sagan, Ultraviolet Selection Pressure on the Earliest Organisms. *J. theor. Biol.* **39**, 195-200
107 (1973).

108 12. S. Boldissar, M. S. de Vries, How nature covers its bases. *Phys Chem Chem Phys* **20**, 9701-9716
109 (2018).

110 13. A. A. Beckstead, Y. Y. Zhang, M. S. de Vries, B. Kohler, Life in the light: nucleic acid
111 photoproperties as a legacy of chemical evolution. *Phys. Chem. Chem. Phys.* **18**, 24228-24238
112 (2016).

113 14. R. J. Rapf, V. Vaida, Sunlight as an energetic driver in the synthesis of molecules necessary for
114 life. *Physical Chemistry Chemical Physics* **18**, 20067-20084 (2016).

115 15. D. Tuna, A. L. Sobolewski, W. Domcke, Mechanisms of Ultrafast Excited-State Deactivation in
116 Adenosine. *Journal of Physical Chemistry A* **118**, 122-127 (2014).

117 16. D. Tuna, A. L. Sobolewski, W. Domcke, Conical-Intersection Topographies Suggest That Ribose
118 Exhibits Enhanced UV Photostability. *Journal of Physical Chemistry B* **120**, 10729-10735 (2016).

119 17. S. Perun, A. L. Sobolewski, W. Domcke, Role of Electron-Driven Proton-Transfer Processes in the
120 Excited-State Deactivation of the Adenine-Thymine Base Pair. *J. Phys. Chem. A.* **110**, 9031
121 (2006).

122 18. A. L. Sobolewski, W. Domcke, C. Hättig, Tautomeric selectivity of the excited-state lifetime of
123 guanine/cytosine base pairs: The role of electron-driven proton-transfer processes. *PNAS* **102**,
124 17903-17906 (2005).

125 19. C. T. Middleton *et al.*, DNA Excited-State Dynamics: From Single Bases to the Double Helix.
126 *Annual Review of Physical Chemistry* **60**, 217-239 (2009).

127 20. S. De Camillis *et al.*, Ultrafast non-radiative decay of gas-phase nucleosides. *PCCP* **17**, 23643--
128 23650 (2015).

129 21. H. Satzger *et al.*, Primary processes underlying the photostability of isolated DNA bases:
130 Adenine. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 10196-10201 (2006).

131 22. A. Abo-Riziq *et al.*, Photochemical selectivity in guanine-cytosine base-pair structures. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 20-23 (2005).

132 23. C. Sagan, Ultraviolet Selection Pressure on Earliest Organisms. *Journal of Theoretical Biology* **39**, 195-200 (1973).

133 24. C. S. Cockell, Ultraviolet radiation, evolution and the pi-electron system. *Biol J Linn Soc* **63**, 449-457 (1998).

134 25. C. S. Cockell, Ultraviolet radiation and the photobiology of earth's early oceans. *Origins of Life and Evolution of the Biosphere* **30**, 467-499 (2000).

135 26. I. Chlossen *et al.*, Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4-3.5 billion years ago. *J Geophys Res-Planet* **112** (2007).

136 27. C. S. Cockell, Ultraviolet radiation and the photobiology of earth's early oceans. *Orig. Life Evol. Biosph.* **30**, 467-499 (2000).

137 28. A. A. Beckstead, Y. Y. Zhang, M. S. de Vries, B. Kohler, Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. *Physical Chemistry Chemical Physics* **18**, 24228-24238 (2016).

138 29. R. Szabla, "Rethinking UV-induced Prebiotic Selection of Biomolecules" in Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, F. Saija, G. Cassone, Eds. (the Royal Society of Chemistry, 2021), 10.1039/9781839161773-00079 chap. 5, pp. 79-.

139 30. M. M. Brister, M. Pollum, C. E. Crespo-Hernandez, Photochemical etiology of promising ancestors of the RNA nucleobases. *Physical Chemistry Chemical Physics* **18**, 20097-20103 (2016).

140 31. E. M. Arpa, M. M. Brister, S. J. Hoehn, C. E. Crespo-Hernandez, I. Corral, On the Origin of the Photostability of DNA and RNA Monomers: Excited State Relaxation Mechanism of the Pyrimidine Chromophore. *J Phys Chem Lett* 10.1021/acs.jpclett.0c00935, 5156-5161 (2020).

141 32. G. Gate *et al.*, Photodynamics of alternative DNA base isoguanine. *Phys Chem Chem Phys* 10.1039/c9cp01622h (2019).

142 33. G. Gate *et al.*, "Nucleobases as Molecular Fossils of Prebiotic Photochemistry: Excited-state Dynamics of C2 and C6 Substituted Purines" in Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, F. Saija, G. Cassone, Eds. (the Royal Society of Chemistry, 2021), 10.1039/9781839161773-00124 chap. 7, pp. 124-147.

143 160