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ABSTRACT. We investigate the unsupervised learning of non-invertible obser-
vation functions in nonlinear state space models. Assuming abundant data of
the observation process along with the distribution of the state process, we
introduce a nonparametric generalized moment method to estimate the obser-
vation function via constrained regression. The major challenge comes from the
non-invertibility of the observation function and the lack of data pairs between
the state and observation. We address the fundamental issue of identifiability
from quadratic loss functionals and show that the function space of identifia-
bility is the closure of a RKHS that is intrinsic to the state process. Numerical
results show that the first two moments and temporal correlations, along with
upper and lower bounds, can identify functions ranging from piecewise polyno-
mials to smooth functions, leading to convergent estimators. The limitations
of this method, such as non-identifiability due to symmetry and stationarity,
are also discussed.

1. Introduction. We consider the following state space model for (X;,Y;) pro-
cesses in R x R:

State space model:  dX; = a(Xy)dt + b(X)dBy, with a,b are known;  (1.1)

Observation model: Y = fi(Xy), with fy unknown. (1.2)

Here (B;) is the standard Brownian motion, the drift function a(x) and the dif-
fusion coefficient b(x) are given, satisfying the linear growth and global Lipschitz
conditions. We assume that the initial distribution of X, is given; the state space
model is therefore known, in the sense that the distribution of the process (X;) is
known.

Our goal is to estimate the unknown observation function f from data consisting

of a large ensemble of trajectories of the process Y;, denoted by {Ytinz)L }M_ | where
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m indexes trajectories, and ty < - -- < ty, are the times at which the observations are
made. In particular, there are no pairs (X, Y;) being observed, so in the language
of machine learning this may be considered an unsupervised learning problem. A
case of particular interest in the present work is when the observation function f,
is nonlinear and non-invertible, and it is within a large class of functions, including
smooth functions but also, for example, piecewise regular functions. We will also
emphasize the role and usefulness of many short trajectories, vs. few long trajecto-
ries, albeit both the theory and algorithms that we consider are generally applicable
in a wide range of regimes.

We estimate the observation function f; by matching generalized moments, while
constraining the estimator to a suitably chosen finite-dimensional hypothesis (func-
tion) space, whose dimension depends on the number of observations, in the spirit
of nonparametric statistics. We consider both first- and second-order moments, as
well as temporal correlations, of the observation process. The estimator minimizes
the discrepancy between the moments over an hypothesis space (e.g. spanned by B-
spline functions), with upper and lower pointwise constraints estimated from data.
The method we propose has several significant strengths:

e the generalized moments do not require the invertibility of the observation
function fy;

o low-order generalized moments tend to be robust to additive observation noise;

e generalize moments avoid the need of local constructions, since they depend
on the entire distribution of the latent and observed processes;

e our nonparametric approach does not require a priori information about the
observation function, and, for example, it can deal with both regular and
piecewise regular functions;

e the method is computationally efficient because the moments need to be esti-
mated only once, and the computation is easily performed in parallel.

We note that the method we propose readily extends to multivariate state space
models, with the main statistical and computational bottlenecks coming from the
curse of dimensionality in the representation and estimation of a higher-dimensional
f+ in terms of basis functions.

The problem we are considering has been studied in many contexts, including
nonlinear system identification [2,24], filtering and data assimilation [4,22], albeit
typically only when observations are in the form of one, or a small number of, long
trajectories, and in the case of an invertible or smooth observations function f.
The estimation of the unknown observation function and of the latent dynamics
from unlabeled data has been considered in [11, 15,18, 28] and references therein.
Inference for state space models (SSMs) has been widely studied; most classical
approaches focus on estimating the parameters in the SSM from a single trajectory
of the observation process, by expectation-maximization methods maximizing the
likelihood, or Bayesian approaches [2,4,12,19,24], with the recent studies estimating
the coefficients in a kernel representation [37] or the coefficients of a pre-specified
set of basis functions [36]. The recent work [38] estimates a slow manifold (and
effective equations on it), image under a nonlinear but invertible map of a latent
space where slow and fast variables in a slow-fast system of SDEs are independent
and orthogonal, using short bursts of trajectories; see discussions and references
therein for motivations, applications and related works.

Our framework combines nonparametric learning [7, 14] with the generalized
moments method, that is mainly studied in the setting of parametric inference
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[31,32,34]. We study the identifiability of the observation function f, from first-
order moments, and show that the first-order generalized moments can identify the
function in the L? closure of a reproducing kernel Hilbert space (RKHS) that is
intrinsic to the state space model. As far as we know, this is the first result on the
function space of identifiability for nonparametric learning of observation functions
in SSMs.

When the observation function is invertible, its unsupervised regression is in-
vestigated [33] by maximizing the likelihood for high-dimensional data. However,
in many applications, particularly those involving complex dynamics, the obser-
vation functions are non-invertible, for example they are projections or nonlinear
non-invertible transformations (e.g.,f(z) = |z|?> with x € RY). As a consequence,
the resulting observed process may have discontinuous or singular probability den-
sities [13,17]. In [28], it has been shown empirically that delayed coordinates with
principal component analysis may be used to estimate the dimension of the hidden
process, and diffusion maps [6] may yield a diffeomorphic copy of the observation
function.

The remainder of the paper is organized as follows. We present the nonparametric
generalized moments method in Section 2. In Section 3 we study the identifiability
of the observation function from first-order moments, and show that the function
spaces of identifiability are RKHSs intrinsic to the state space model. We present
numerical examples to demonstrate the effectiveness and the limitations of the pro-
posed method in Section 4. Section 5 summarizes this study and discusses directions
of future research; we review the basic elements about RKHSs in Appendix A.

2. Non-parametric regression based on generalized moments. Throughout
this work, we focus on discrete-time observations of the state space model (1.1)—
(1.2), because data in practice are discrete in time, and the extension to continuous
time trajectories is straightforward. We thereby suppose that the data is in the
form {Ytgnz)L M_,  with m indexing multiple independent trajectories, observed at
the vector tg : t7, of discrete times (tg, - ,tr).

2.1. Generalized moments method. We estimate the observation function f
by the generalized moment method (GMM) [31,32,34], searching for an observation
function f , in a suitable finite-dimensional hypothesis (function) space, such that
the moments of functionals of the process (f(Xt)) are close to the empirical ones
(computed from data) of fi(X%).

We consider “generalized moments” in the form E [¢(Y;,.;, )], where & : REF —
RX is a functional of the trajectory Y;,.,. For example, the functional ¢ can
be E(Y%o:tL) = [Y;oitL’Y;oY;w' .- 7Y;5L—1Y;5L] € R2L+1’ in which case E[ﬁ(KOItL)] =
[E Vi, ], E[YeYar] ..., E[Y:, . Ys, |] is the vector of the first moments and of
temporal correlations at consecutive observation times. The empirical generalized
moments ¢ are computed from data by Monte Carlo approximation:

M
EE(Vigu )] ~ BaleVige,)] == 17 > €V, (21)

which converges at the rate M~'/2 by the Central Limit Theorem, since the M
trajectories are independent. Meanwhile, since the state space model (hence the
distribution of the state process) is known, for any putative observation function f,
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we approximate the moments of the process (f(X;))) by simulating M’ independent
trajectories of the state process (X;):

.
E[EG (X in)] ~ 15 D) ST (22)

Here, with some abuse of notation, f(X)g:?t)L = (f(Xt(g")), . .,f(Xt(;n))). The
number M’ can be as large as we can afford from a computational perspective;
note of course that the calculations above a trivially parallelizable over trajectories.
In what follows, since M’ can be chosen large — only subject to computational
constraints — we consider the error in this empirical approximation negligible and
work with E [£(f(X)t,:t, )] directly.

We estimate the observation function f, by minimizing a notion of discrepancy
between these two empirical generalized moments:

f = arj% r;_[lin 5M(f)ﬂ with SM(f) = dist (EM[g(}/tOZtL )]7 E [g(f(X)tottL)])2 ’ (23)
€
where f is restricted to some suitable hypothesis space H, and dist(-, -) is a suitable
distance between the moments to be specified later. We choose H to be a subset of
an n-dimensional function space, spanned by basis functions {¢;}, within which we
can write f = > Ci¢i. By the law of large numbers, EM (f) tends almost surely
t0 E(f) := dist (B [€(Vigers )] E[E(F (X)t0et,)])*-

It is desirable to choose the generalized moment functional £ and the hypothesis
space H so that the minimization in (2.3) can be performed efficiently. We select
the functional £ so that the moments E [(f(X)t:e,)], for f = D, ¢i¢i, can be
efficiently evaluated for all (¢1,...,¢,). To this end, we choose linear functionals or
low-degree polynomials, so that we only need to compute the moments of the basis
functions once, and use these moments repeatedly during the optimization process,
as discussed in Section 2.2. The selection of the hypothesis space is detailed in
Section 2.3.

2.2. Loss functional and estimator. The generalized moments we consider in-
clude the first and the second moments, and the one-step temporal correlation:

g(YtoitL) = (YtoitLaYto tL7Yt0Yt17 s 7}/'fL—1nL) € R3L+2'

The loss functional in (2.3) is then chosen in the following form: for weights
Wi,y ...,W3 > 0

L
—u Z F(X0)] — ELY: ]2 +ws ZyE (X0)”] - B[]

h \

&) &(f)

L
+ w3 % Z |E[f(th)f(th—1)] - ]E[thLY;fz—1]|2

Es(f)

In principle, these weights are selected to balance the contributions of these terms,
and we set them according to data as detailed in (4.1).

Let the hypothesis space H be a subset of the span of a linearly independent set
{¢:}"_,, which we specify in the next section. For f = > | ¢;¢; € H, we can write
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the loss functionals & (f) in (2.4) as

2

&u(f) = = ¢ Aje—2¢"by + by, (2.5)

M
MN
||M:

E[¢:(Xy)] - E[Yz]

S
[

where by := %Z E[Y;,]?, and the matrix A; and the vector by are given by
B | L L
Ai(i, j) = i Z [¢1(th)]E[¢j(th)l» : Z [9i(Xe) E[Yz,].
= Ax,1(i,5) =t b1,1(7)
(2.6)

Similarly, we can write £2(f) and E3(f) in (2.4) as

| &
:f;

2

i

Z cic; B [6i(Xy,)65(X0,)] — E [V7]
b —

Az,1(1,5) ba 1

, (2.7)

Z ¢z th 1)¢J(th)] E[Ytz—ly;fl]

Asz,1(i,5) b3,1

h \

Thus, with the above notations in (2.6)-(2.7), the minimizer of the loss functional
E(f) over H is

n

fq.[ = 2 Cii s c:= arg min E(c), where
i=1 ceR™ s.t. D | cipi€H
(2.8)

3 L
Ele) == wi[c"Arc —2¢Thy + 51] + Z wkz Z c Ach — bk7l|2 )

Here, with an abuse of notation, we denote (3", ¢;¢;) by £(c).

In practice, with data {Y we approximate the expectations involv-

t1 tN]}m 1
ing the observation process (Yt) by the corresponding empirical means as in (2.1).
Meanwhile, we approximate the expectations involving the state process (X;) by
Mounte Carlo as in (2.2), using M’ trajectories. We assume that the sampling errors
in the expectations of (X), i.e. in the terms {4y ;}3_,, are negligible, since the ba-
sis {¢;} can be chosen to be bounded functions (such as B-spline polynomials) and
M’ can be as large as we can afford. We approximate {by;};_, by their empirical

means {by}7_,:

M
bus(i) = B[] E Vil ~ E[6(X)] — 3 ™ =), (29)

m=1
1 M
bos  =E[V,] ST = b0, (2.10)
m=1
1 M
by, =E[Yi Y] ~ 57 v mym = b3t (2.11)
m=1

M ~ 2
Then, with b = %Zle by and b} = ﬁZzLﬂ er\f:l (Yt(Lm)) , the estimator
from data is
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n

fr.m = Z C; i, c= arg min EM(¢), where
i1 ceR™ s.t. D | cipi€H

: (2.12)

3
— M > 1 2
EM(e) = wy ¢ Aye —2¢Th, +bM] + Z W~ Z e Ap e — o).
L )
k=2 1=1
The minimization of £M(c) can be performed with iterative algorithms, with each
optimization iteration, with respect to ¢, performed efficiently since the data-based

matrices and vectors, Zl,giw and {Ag, b }3_y, only need to be computed once.
The main source of sampling error is the empirical approximation of the moments
of the process (Y;). We specify the hypothesis space in the next section and provide
a detailed algorithm for the computation of the estimator in Section 2.4.

Remark 2.1 (Moments involving It6’s formula). When the data trajectories are
continuous in time (or when they are sampled with a high frequency in time), we
can utilize additional moments from It6’s formula. Recall that for f € CZ, applying
Itd formula for the diffusion process in (1.1), we have

t+AL

t+ At
ﬂXHM>—ﬂX0=£ Vfwu@mn+f L(X.)ds,

t
where the operator L is

1
Ef=Vf’a+§Hess(f):bTb. (2.13)
Hence, E[AY},] = E[Lf«(Xy,_,)] At+0(At), where AY;, =Y, —Y;, ,. Thus, when

At is small, we can consider matching the generalized moments

L&
Eu(f) = ZZ
=1

Similarly, we can further consider the generalized moments E [Y;AY;] and Var(AY;)
and the corresponding quartic loss functionals. Since they require the moments of
the first- and second-order derivatives of the observation function, they are helpful
when the observation function is smooth with bounded derivatives.

B[£f(X, )] At - E[AV;]] (2.14)

2.3. Hypothesis space and optimal dimension. We let the hypothesis space
H be a class of bounded functions in span{¢;}_;,

H:={f:f= Z ¢i®i : Ymin < f(2) < Ymax for all x € supp(pr)}, (2.15)
i=1

where the basis functions {¢;} are to be specified below, and the empirical bounds

LM

m)}L,M
l,m=1

Ymin = mln{YYtE I;m=1> Ymax ‘= maX{Y;Em)

aim to approximate the upper and lower bounds for f.. Here the dimension n will
be selected adaptive to data to avoid under- and over-fitting, as detailed in Algo-
rithm 1. Note that the hypothesis space H is a bounded convex subset of the linear
space span{¢;}"_,. While the pointwise bound constraints are for all z, in practice,
for efficient computation, we apply these constraints at representative points, for
example at the mesh-grid points used when the basis functions are piecewise poly-
nomials. One may apply stronger constraints, such as requiring time-dependent
bounds to hold at all times: ymin(t) < 21| ¢; fi(z) < Ymax(t) for each time ¢, where

Ymin (t) and Ymax(t) are the minimum and maximum of the data set {Yt(m)}%ﬂ.
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Basis functions. As basis functions {¢;} for the subspace containing H we choose
B-spline basis consisting of piecewise polynomials (see Appendix B.1 for details). To
specify the knots of B-spline functions, we introduce a density function pk, which
is the average of the probability densities {ps, }Z , of {Xy, }

L T

Pha) = 1 ipule) £ pra) = 7 | mlaat (216)

L= T Jo

when t;, = T and maxi <<z, [t; — t;_1| — 0. Here pk (and its continuous time limit
pr(z)) describes the intensity of visits to the regions explored by the process (X3).
The knots of the B-spline function are from a uniform partition of [Rpin, Rmaz]s
the smallest interval enclosing the support of pZ. Thus, the basis functions {¢;}
are piecewise polynomials with knots adaptive to the state space model which de-
termines pk.
Dimension of the hypothesis space. It is important to select a suitable dimension
of the hypothesis space to avoid under- or over-fitting. We select the dimension in
two steps. First, we introduce an algorithm, namely Cross-validating Estimation of
Dimension Range (CEDR), to estimate the range of the dimension from the qua-
dratic loss functional & . Its main idea is to avoid the sampling error amplification
due to an unsuitably large dimension. The sampling error is estimated from data
by splitting the data into two sets. Then, we select the optimal dimension that
minimizes the 2-Wasserstein distance between the measures of data and prediction.
See Appendix B.1 for details. AHere we use the 2-Wasserstein distance because it is
sensitive to small changes in f caused by overfitting, and at the same time it can
be efficiently computed even for large-sample datasets.

2.4. Algorithm. We summarize the above method of nonparametric regression
with generalized moments in Algorithm 1. It minimizes a quartic loss function
with the upper and lower bound constraints, and we perform the optimization with
multiple initial conditions (see Appendix B.2 for the details).

Input: The state space model and data {YtE)W?L YM_, consisting of multiple trajectories of
the observation process.
Output: Estimator f

1: Estimate the empirical density ﬁqu in (2.16) and find its support [Rmin, Rmaz].

2: Select a basis type, Fourier or B-spline, with an estimated dimension range [1, N] (by
Algorithm 2), and compute the basis functions as described in Section 2.3 using the
support of pk.

3: forn=1:N do

Compute the moment matrices in (2.6)-(2.7) and the vectors by in (2.11).

5: Find the estimator ¢, by optimization with multiple initial conditions. Compute
and record the values of the loss functional and the 2-Wasserstein distances.

6: Select the optimal dimension n (and degree if B-spline basis) that has the minimal
2-Wasserstein distance in (B.5). Return the estimator f= > chd

b

ALGORITHM 1. Estimating the observation function by nonpara-
metric generalized moment methods

Computational complexity. The computational complexity is driven by the con-
struction of the normal matrix and vectors and the evaluation of the 2-Wasserstein
distances, which have complexity of order O(n?LM) and O(nLM ), respectively, for
an overall complexity O((n? + n)LM).
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2.5. Tolerance to noise in the observations. The (generalized) moment method
can tolerate large additive observation noise if the distribution of the noise is known.
The estimation error caused by the noise is at the scale of the sampling error, which

is negligible when the sample size is large.

(m)y M
ot Im=1

}/tl = f*(Xt]) + nt“ (217)

where {m,} is sampled from a process (n;) that is independent of (X;) and has
moments

Specifically, suppose that we observe {Y; from the observation model

E[n:] =0, C(s,t) =E[nns], for s,t = 0. (2.18)
A typical example is when 71 being identically distributed independent Gaussian
noise NV(0,0?), which gives C(s,t) = 025(t — s).

The algorithm in Section 2 applies the noisy data with only a few changes. First,
note that the loss functional in (2.4) involves only the moments E[Y;], E[Y,?] and
E[Y;, Y}, ], which are moments of fi(X;). When Y; in (2.17) has observation noise
specified above, we have

Elf«(X¢)] = E[Y,] — E[n] = E[Y3];
E[f*(Xt>f*(Xs>] = E[Yz}/s] - E[ntns] = E[YVths] - C(ta S)

for all ¢,s > 0. Thus, we only need to change the loss functional to be

L L
E(F) =wng D EIF(X)] ~ V)P +wap 3 [ELA(X,,)2] — EVZ) + Ot 1)
=1 =1

L
s 3 [BIFCG)F(Xe )]~ BV Y] + Clts)[
=1

(2.19)
Similar to (2.12), the minimizer of the loss functional can be then computed as

- arg min EM(c), where
ceR™ s.t. 27| cidi€H

o)

N n
P = D it
izl

_ v~ 1 &
EM(c) = wi[c¢" A — QCTbiW +oM] + w2 g Z |CTA2,IC - bé\/ﬁ + C(ty, tl)|2 (2.20)
=1

L
+ ’wgl Z |CTA3’ZC - bé\fll + C(tl,tl+1)|2 R
L=
where all the A-matrices and b-vectors are the same as before (e.g., in (2.6)—(2.7)
and (2.11)).

Note that the observation noise introduces sampling errors through b, bé‘/ﬁ and
bé‘/fl, which are at the scale O(ﬁ) Also, note the A-matrices are independent
of the observation noise. Thus, the observation noise affects the estimator only
through the sampling error at the scale O(ﬁ), the same as the sampling error in

the estimator from noiseless data.

3. Identifiability. We discuss in this section the identifiability of the observation
function by the loss functionals in the previous section. We show that &, the
quadratic loss functional based on the Ist-order moments in (2.5), can identify the
observation function in the L?(pk)-closure of a reproducing kernel Hilbert space
(RKHS) that is intrinsic to the state space model. In addition, the loss functional &,
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n (2.14), based on the Itd formula, enlarges the function space of identifiability. We
also discuss, in Section 3.2, some limitations of the loss functional £ in (2.19), that
combines the quadratic and quartic loss functionals: in particular, symmetries or
sampling from a stationary measure may prevent us from identifying the observation
function when using only generalized moments. The starting point is a definition
of identifiability, which is a generalization of the uniqueness of minimizer of a loss
function in parametric inference (see e.g., [3, page 431] and [8]).

Definition 3.1 (Identifiability). We say that the observation function fy is iden-
tifiable by a data-based loss functional £ on a function space H if f, is the unique
minimizer of £ in H.

When the loss functional is quadratic (such as &; or &£4), it has a unique minimizer
in a Hilbert space if and only if its Frechét derivative is invertible in the Hilbert
space; thus, the main task is to find such function spaces [21,23,25]. We will specify
such function spaces for & and/or &4 in Section 3.1. We note that these function
spaces do not take into account the constraints of upper and lower bounds, which
generically lead to minimizers near or at the boundary of the constrained set. This
consideration applies also to the piecewise quadratic functionals & and &3, which
can be viewed as providing additional constraints (see Section 3.2).

3.1. Identifiability by quadratic loss functionals. We consider the quadratic
loss functionals & and &4, and show that they can identify the observation func-
tion in the L?(pk)-closure of reproducing kernel Hilbert spaces (RKHSs) that are
intrinsic to the state space model.

Assumption 3.2. We make the following assumptions on the state space model.

o The coefficients in the state space model (1.1) satisfy a global Lipschitz con-
dition, and therefore also a linear growth condition: there exists a constant
C > 0 such that |a(z) — a(y)| + |b(z) — b(y)| < Clz —y| for all x,y € R, and
la(x)] + |b(x)] < C(1+ |z|). We assume that inf,eg b(x) > 0 for all z € R.
Furthermore, we assume that Xo has a bounded density

e The observation function fy satisfies SuPe[o 4] E [|f+(X¢)[?] < 0.

Theorem 3.3. Given discrete-time data {Ytgnz)L —1 from the state space model

(1.1) satisfying Assumption 3.2, let & and &4 be the loss functionals defined in
(2.4) and (2.14). Denote pi(x) the density of the state process X; at time t, and
recall that p% in (2.16) is the average, in time, of these densities. Let L* be the
adjoint of the 2nd-order elliptic operator L in (2.13). Then,
(a) & has a unique minimizer in Hy, the L*(pk) closure of the RKHS H ¢, with
reproducing kernel
Ki(z,2') = AR Zptl )py, (@ (3.1)
pr(x
for (z,2") such that p(x)pk(x’ ) > 0, and K1 (z,2") = 0 otherwise. When the
. . T
data is continuous (L — o), we have Ky (z,2') = m% §o pe(@)pe (2 )dt.
(b) €4 has a unique minimizer in Hy, the L?(p%) closure of the RKHS Hy, with
reproducing kernel

L
K4(I’x/) = ﬁ% Z ptl E ptl( ) (32)
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for (z,2") such that p&(x)pk(x’) > 0, and Ky(z,2") = 0 otherwise. When the
data is continuous, we have Ky(x,a') = m% SOT L*pe(z) L*py(2))dt.
(c) &1 + &4 has a unique minimizer in H, the L*(pk) closure of the RKHS H ¢

with reproducing kernel
1 1 &
T CL N T e (2)pe, (27) + L7, (2) Ly, (27) ] (3.3)
pr(x)pg(a’) L l; s l ()]
for (z,2") such that pL(x)pk(x’) > 0, and K(x,2') = 0 otherwise. Simi-

T
larly, we have K (x,2") = m% $o [pe(2)pe (") + L*py () L*py ()] dE for
continuous data.

K(z,2') =

In particular, fy is the unique minimizer of these loss functionals if fy is in Hy,
H, or H.

To prove this theorem, we first introduce an operator characterization of the
RKHS Hk, in the next lemma. Similar characterizations hold for the RKHSs Hg,
and HK.

Lemma 3.4. The function Ky in (3.1) is a Mercer kernel, that is, it is continuous,
symmetric and positive semi-definite. Also, K1 is square integrable in LQ(ﬁ% X ﬁ%),
and it defines a compact positive integral operator Ly, : L*(pk) — L?(pk):

[Lic, ]z f h(a) K (2! () . (3.4)

Also, the RKHS Hy, has the operator characterization: Hy, = L%f(LQ(ﬁ%)) and
{V i}, is an orthonormal basis of the RKHS Hp,, where {\;,1;} are the pairs
of positive eigenvalues and corresponding eigenfunctions of L, .

Proof. Since the densities {p;,} are smooth, the kernel K; is continuous on the
support of pk and it is symmetric. It is positive semi-definite (see Appendix A for

a definition) because for any (cy,...,¢,) € R™ and (z1,...,2,), we have
n 1 L n pt L n pt ) 2
ciciK(z;,xj) = — 177*— : > 0.
mzzl i J L ; Z: x;) p% (zj) L ; (i_l (xl)

Thus, K is a Mercer kernel.
To show that K is square 1ntegrable note first that py, (r) < maxy<p<r pr,, () <
Lp%(x) for any z. Thus for each z, 2/, we have

Z ptz ptz L2 ( )p%(‘m/)

and Ky (x,2') < L. It follows that K; is in L%(pk x pk).
Since K is positive definite and square integrable, the integral operator L, is
compact and positive. The operator characterization follows from Theorem A.3. [

Remark 3.5. The above lemma is only applicable to discrete-time observations
because it uses the bound Ki(z,2’) < L. When the data is continuous in time
n [0,T], we have K; € L?(pr x pr) if the support of pr is compact, since p; is
uniformly bounded above, i.e. p;(x) < maxyep se[o,7]Ps(y) < 0, since it is a regular
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solution of a Fokker-Planck equation which is uniformly elliptic by Assumption 3.1
(see e.g., [10, Chapter 6]). Thus for each z,2’, we have

1 (T 1 (T Y2y
— < - 2 t - N2
TL pe(x)pe(2”)dt Tfo pe(x)” d TJO pe(2')* dt

= AL2- o n1/2
pr(z)"*pr(x’) yeRrggfaT]ps(y)

1/2

by Cauchy-Schwartz for the first inequality. Then,

1 1 (7 ,
- - - dt < p —-1/2 = n—1/2 ’ )
pr(@)pr(a’) Tfo Pt < prle) o) P W)
It follows that K is in L?(pr x pr):

jjKf(x,x’)ﬁT(x)f)T(a:’)dmdx’ < |supp(pr)] max  p,(y)? < oo.
yeR,s€[0,T]

Ki(z,2') =

When pr has non-compact support, it remains to be proved that K € L?(pr x pr).

Proof of Theorem 3.3. The proof for (a)—(c) are similar, so we focus on (a) and only
sketch the proof for (b)—(c).

To prove (a), we only need to show the uniqueness of the minimizer, because
Lemma 3.4 has shown that K; is a Mercer kernel. Furthermore, note that by
Lemma 3.4, the L?(p%) closure of the RKHS Hy, is H; = span{t;}¥ ,, the closure
in L?(pk) of the eigenspace of Ly, with non-zero eigenvalues, where Ly, is the
operator defined in (3.4).

For any f € Hy, denoting h = f — fi, we have E[f(X;)] — E[Y;] = E[h(X})] for
each ¢ (recall that Y; = f.(X;)). Hence, we can write the loss functional as

Z [E[f(Xe,)] - E[Y,]]”

:% Z [E[A(X)]* = th(a: Zptl x)py, (') dxdx’ (3.5)
”h o) Ky (2,2)p (2)p7 (2/) dxda’ > 0.

Thus, &; attains its unique minimizer in Hy at f, if and only if & (fx + h) = 0
with h € Hy implies that h = 0. Note that the second equality in (3.5) implies that
Ei1(f«+h) = 0if and only if E[h(X,,)] = 0, i.e. {h(x)py, (x)dz =0, for all ¢;. Then,

Sh x)py, (x %(z:))dx = 0 for each ¢; and z’. Thus, the sum of them is also zero:

1 & x
0= Jh(x)z ) %p (x)da = Jh(x)Kl(z,x’)pg(z)dx
for each 2’. By the definition of the operator L, , this implies that Lg, h = 0.
Thus, h = 0 because h € H;.

The above arguments hold true when the kernel K is from continuous-time data:
one only has to replace %Zf:l by the averaged integral in time. This completes
the proof for (a).

The proofs of (b) and (c) are the same as above except the appearance of the
operator £*. Note that & in (2.14) reads & (f) = + Zlel IE[Lf(X:,)] — E[AY])?,
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thus, it differs from &; only at the expectation E [Lf(Xy,)]. By integration by parts,
we have

E[Lf(X.)] = fcfu)ps(x)dx _ j F(@)C*py(2)de

for any f € C?. Then, the rest of the proof for Part (b) follows exactly as above
with K7 and Lk, replaced by K4 and Lg,. O

The following remarks highlight the implications of the above theorem. We
consider only &1, but all the remarks apply also to &4 and & + &4.

Remark 3.6 (An operator view of identifiability). The unique minimizer of £; in
H; defined in Theorem 3.3 is the zero of its Frechét derivative: f = Ll_(i L, fx,
which is fy if fx € Hy. In fact, note that with the integral operator Ly, we can
write the loss functional &; as

Thus, the Frechét derivative of & over L2?(p%) is VEI(f) = L, (f — f«) and we
obtain the unique minimizer. Furthermore, this operator representation of the
minimizer conveys two important messages about the inverse problem of finding the
minimizer of &: (1) it is ill-defined beyond H;, and in particular, it is ill-defined
on L?(p%) when L, is not strictly positive; (2) the inverse problem is ill-posed on
H,, because the operator Ly, is compact and its inverse L;(i is unbounded.

Remark 3.7 (Identifiability and normal matrix in regression). Suppose H, =
span{¢;}? ; and denote f = Z?:l c;¢; with ¢; being basis functions such as B-
splines. As shown in (2.5)-(2.6), the loss functional & becomes a quadratic function
with normal matrix A; = %Zle Ay with 4, = ulTul, where the vector u; =
(E[¢1(Xt)],-- - E[¢n(Xt,)]) € R™. Thus, the rank of the matrix A; is no larger
than min{n, L}. Note that A; is the matrix approximation of L, on the basis
{¢;}7_; in the sense that

Zl(Za]) = <LK1¢7Z7 ¢]>L2(§§g)a

for each 1 < 4,5 < n. Thus, the minimum eigenvalue of A; approximates the
minimal eigenvalue of L, restricted in H,,. In particular, if H,, contains a nonzero
element in the null space of Lg,, then the normal matrix will be singular; if H,, is
a subspace of the L?(pk) closure of Hy,, then the normal matrix is invertible and
we can find a unique minimizer.

Remark 3.8 (Convergence of estimator). For a fixed hypothesis space, the esti-
mator converges to the projection of f, in H n H; as the data size M increases, at
the rate O(M~1/?), with the error coming from the Monte Carlo estimation of the
moments of observations. With data-adaptive hypothesis spaces, we are unable to
prove the minimax rate of convergence as in classical nonparametric regression, due
to the lack of a coercivity condition [23,26], since the eigenvalues of the compact
operator Lg, converge to zero. A minimax rate would require an estimate on the
spectral decay of Lg,, which we leave for future research.

Remark 3.9 (Regularization using the RKHS). The RKHS Hpg, provides a data-
adaptive regularization norm in the Tikhonov regularization (see [25]).
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Ezamples of the RKHS. We emphasize that the reproducing kernel and the RKHS
are intrinsic to the state space model (including the initial distribution). We demon-
strate the kernels by analytically computing them when the process (X;) is either
the Brownian motion or the Ornstein-Uhlenbeck (OU) process. For simplicity,
we consider continuous-time data. Recall that when the diffusion coefficient in

the state space model (1.1) is a constant, the second-order elliptic operators L is
Lf=Vf-a+ %bQAf, and its adjoint operator £* is

1
E*ps =-V- (aps) + §b2Ap87
where ps denotes the probability density of Xj.

Example 3.10 (1D Brownian motion). Let a = 0 and b = 1. Assume po(x)

e., Xo = zg. Then, X; is the Brownian motion starting from xq and p;(z

z—zg)?
1 e_( 21,0) . We have ﬁT( =T SO pt z)dt = E"\/{D (_lv ($_2§10)2> and

0

o
)

T
Kq(z,2") =_7—J ps(2)ps(2')ds
TF(O, (93—370)2;'7298/—950)2)

T—x0)2 z'—x0)?
2(x — o) (2" — xo)l—‘(—%7 %)F(_%v %)

)

where I'(s,z) := SZO t*~le~tdt is the upper incomplete Gamma, function. Also, we
have

L*ps(x) = ¢a(s,x)ps(x), with ¢a(s,z) = (812(5(} —x0)? — 1> .

S

Thus, the kernels K4 in (3.2) and K in (3.3) from continuous-time data are

e 11 ' s, 2)pa(s, ' )ps(x)ps(z')ds:
Ki(o.2') = s | on(s,)0(s.0 ) (@) (s
1 1

T
K(z,2') = ‘f (1 + 6a(s, 2)da (s, 2))ps (x)ps (2 )ds.

pr(@)pr(x) T Jo
Example 3.11 (Ornstein-Uhlenbeck process). Let a(z) = 6x and b = 1 with 6 > 0.
Assume po(x) = 6y, i.e., Xo = 29. Then, X; = e %z + Sé e~ 9t=5)dB,. Tt has

a distribution N'(e=%zg, 55(1 — e72%%)), thus py(z) = \/%U exp(—(lgfé)QL where
al = e "zy and of := (1 — e7?°"). Computing the spatial derivatives, we have
Lopy(e) = 4 [‘“7 = - %]p< ) = (02ps(2))’ = b2(5, 2)ps (), where
(x — :z:g 1 0 s
The reproducing kernels K in (3.1), K, in (3.2) and K in (3.3) are
K@xq—llfT(@ («/)ds:
ST @@ T )y P
Kao!) = = L [ (5. (o, @
4(Z, pr@)pr@) T Jy 2(5, 208, T )Ps\T)Ps ;
KG) = =l [0t 2)0nto, D@0
1) = ————— = 2(s,2)p2(s,2'))ps(x)ps(2')ds.
pr(x)pr(z') T Jo
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In particular, when the process is stationary, we have Kj(z,2') = 1 and Ky(z,2') =
20

0 because L*ps = 0 when pg(x) = Wer exp(—0z?) is the stationary density.

3.2. Non-identifiability due to stationarity and symmetry. When the hy-
pothesis space H has a dimension larger than the RKHS’s, the quadratic loss func-
tional £ may have multiple minimizers. The constraints of upper and lower bounds,
as well as the loss functionals £ and &5, can help identifying the observation func-
tion. However, as we show next, identifiability may still not hold due to symmetry
and/or stationarity.

Stationary processes. When the process (X}) is stationary, we have limited informa-
tion from the moments in our loss functionals. We have & (f) = [E[Y:, ] — E [£(X:,)]|?
with K (z,2’) = 1, so & can only identify a constant function. Also, the loss func-
tional &4 is identically 0 because

L¥ps = 0sps =0 <  E[Lh(X,)] =0 for any h e C2.

In other words, the function space of identifiability with & + & is the space of
constant functions. Meanwhile, the quartic loss functionals & and &5 also pro-
vide limited information: they become & = [E[f(Xy,)?] —IE[Yt21]|2 and & =
IE[f(Xs,)f(Xe,)] — B[V, Y, ]]%, the second-order moment and the temporal cor-
relation at a single pair of times.

To see the ensuing limitations, consider the finite-dimensional hypothesis space
H in (2.15). Asin (2.12), with f = > | ¢;¢;, the loss functional becomes

3
E(f) =c"Are— 270y + [E[Y, 17+ D) e Ape — b2 |7,
k=2

where A; is a rank-one matrix, and 22:2 leT Ag1c— b,i\ﬂ |2 only adds two additional
constraints. Thus, £ has multiple minimizers in a linear space with dimension
greater than 3. One has to resort to the upper and lower bounds in (2.15) for
additional constraints, which lead to minimizers on the boundary of the resulting
convex set.

Symmetry. When the distribution of the state process X; is symmetric, a moment-
based loss functional may not distinguish the true observation function from its
symmetric counterpart. More specifically, if a transformation R : R — R preserves
the distribution, i.e., (X¢,¢ = 0) and (R(X}),t = 0) have the same distribution, then
E[f(Xy)] = E[f o R(Xy)] and E[f (X¢) f(Xs)] = E[f o R(X:) f o R(X,)]. Thus, our
loss functional will not distinguish f from f o R. This is of course reasonable: the
two functions yield the same observation process (in terms of the distribution), thus

the observation data does not provide the information necessary for distinguishing
f from foR.

Example 3.12 (Brownian motion). Consider the standard Brownian motion X,
whose distribution is symmetric about & = 0 (because the two processes (X¢,t = 0)
and (—X4, ¢ > 0) have the same distribution). Let the transformation R be R(z) =
—z. Then, the two functions f(z) and f(—=z) lead to the same observation process,
thus they cannot be distinguished from the observations.

4. Numerical examples. We demonstrate the effectiveness and limitations of our
algorithm using synthetic data in representative examples. The algorithm works
well when the state space model’s densities vary appreciably in time to yield a
function space of identifiability whose distance to the true observation function is
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small. In this case, our algorithm leads to a convergent estimator as the sample
size increases. We also demonstrate that when the state process (i.e., the Ornstein-
Uhlenbeck process) is stationary or symmetric in distribution (i.e., the Brownian
motion), the loss functional can have multiple minimizers in the hypothesis space,
preventing us from identifying the observation functions (see Section 4.3).

4.1. Numerical setup. The synthetic data {Yt("Z)L _1 with ¢; = [At are gener-
ated from the state space model, which is solved by the Euler-Maruyama scheme
with a time-step At = 0.01 for L = 100 steps. We consider sample sizes M €
{[1035+72] . 5 =0,1,2,3,4, A = 0.0625} to test the convergence of the estimator.

To estimate the moments in the A-matrices and b-vectors in (2.6)—(2.7) by Monte

Carlo, we generate a new set of independent trajectories {Xt(lm) M’ with M’ = 106.

We emphasize that these samples of X are independent of the data {Yt(ﬂl 1
Inference algorithm. We follow Algorithm 1 to search for the global minimum of the
loss functionals in (2.12). The weights for the &’s are wy, = Lv/M/|m) ||, where

| - | is the Euclidean norm on RY, and for I = 0,1,--- ,L — 1,

mY (1) = M Z V) for k= 1,2 and  m} (I) = — Z Y,y ™ (4.0)

For each example, we test hypothesis spaces, spanned by B—sphnes with degree in
{0,1,2,3}, with a dimension selected by Algorithm 2 in the range [1, N]. We select
the optimal dimension and degree with the minimal 2-Wasserstein distance between
the predicted and true distribution of Y. The details are presented in Section C.
Results assessment and presentation. We present three aspects of the estimator f :

e Estimated and true functions. We compare the estimator with the true
function fy, along with the L2(p%) projection of fy to the linear space expanded
by the elements of .

e 2-Wasserstein distance. We present the 2-Wasserstein distance (see (B.5))
between the distributions of Y;, = f.(X},) and f(th) for each time with training
data and a new set of randomly generated data of size 10°. The new (test) data
has YtEm) = fq (Xt(lm))7 i.e., the X’s and Y’s are generated in pairs, while in the
training data the X’s and Y’s are generated independently. This pairing can lead
to an effect on the 2-Wasserstein distance, which depends only on the empirical
distribution of the samples, but such effect is negligible in our experiments due
to the large sample size.

e Convergence of L?(pL) error. We test the convergence of the estimator in
L?(pk) as the sample size M increases. The L?(p%) error is computed by the
Riemann sum approximation. We present the mean and standard deviation of
L?(p%) errors from 20 independent simulations. The convergence rate is also
highlighted, and we compare it with the minimax convergence rate in classical
nonparametric regression (see e.g., [14,26]), which is 55 with s —1 being the de-
gree of the B-spline basis. This minimax rate is not available yet for our method,
see Remark 3.8.

4.2. Examples. The state space model we consider is a stochastic differential equa-
tion with the double-well potential

dX; = (Xy — XP)dt + dBy, X4y ~ Pty (4.2)
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Time step Time step Time step
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(a) Process (X,) (b) Process (Y,) for f. = sine function (c) Process (Y,) for fi = sine-cosine  (d) Process (Y,) for f. = arch function

FIGURE 1. Empirical densities from the data trajectories of the process
(X¢,) in (4.2) and the observation processes (Yz,) with f« = fi, where f;’s
are the three observation functions in (4.3). Since we do not have data
pairs between (Xt(lm ), 1/;5(lm))7 these empirical densities are the available
information from data. Our goal is to find the function fi in the operator
that maps the densities of {Xy,} to the densities of {3, }.

where the density of X, is the average of N (—0.5,0.2) and N (1,0.5). The dis-
tribution of Xy,.t, is non-symmetric and far from stationary (see Figure 1(a)); we
therefore expect that the quadratic loss functional & provides a rich RKHS space
for learning.

We consider three observation functions f representing typical challenges: nearly
invertible, non-invertible, and non-invertible discontinuous, in the set supp(pr):

Sine function: fi(z) =sin(x);
Sine-Cosine function: fa(x) =2sin(x) + cos(6x); (4.3)
Arch function: fa(x) = (=21 — 2)® + 1.5(1 — ) + 0.5) Loc[0,1]-

These functions are shown in 2(a)—4(a). They lead to observation processes with
dramatically different distributions, as shown in Fig.1(b-d).

%10

—=— Estimated
-« Projection 8.6
= True i

0.8T 4 Test point
0.6 —— Slope =-0.46

— Training data
—-—New data
Y

@ 8.4

o
Y

i
2-Wasserstein distanc:
L2 error

2 -1 0 1 2 0 20 40 60 80 100 104 10° 10°

X Time st M
(a) Estimator with n=9, deg=1 (b) Wasserstein distance (c) Convergence rate

FIGURE 2. Learning results of Sine function fi(z) = sin(z) with model (4.2).

The learning results for these three functions are shown in Figure 2—4. For each
of these three observation functions, we present the estimator with the optimal
hypothesis space, the 2-Wasserstein distance in prediction and the convergence of
the estimator in L?(p%) (see Section 4.1 for details).

Sine function: Fig. 2(a) shows the estimator with degree-1 B-spline basis with
dimension n = 9 for M = 10%. The L?(pk) error is 0.0245 and the relative error is
3.47%. Fig. 2(b) shows that the Wasserstein distances are small at the scale 1073, in
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FIGURE 3. Learning results of Sine-Cosine function fz(x) = 2sin(z) +

cos(6x) with model (4.2).
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FIGURE 4. Learning results of Arch function f3 with model (4.2).

agreement with the sampling error since we used 10° samples. Fig. 2(c) shows that
the convergence rate of the LQ(ﬁ%) error is 0.46. This rate is close to the minimax
rate % = 0.4.

Sine-Cosine function: Fig. 3(a) shows the estimator with degree-2 B-spline
basis with dimension n = 13. The L?(p%) error is 0.1596 and the relative error
is 9.90%. Fig. 3(b) shows that the Wasserstein distances are at the scale of 1072
Fig. 3(c) shows that the convergence rate of the L?(p%) error is 0.26, less than the
classical minimax rate % ~ 0.42. Note also that the variance of the L? error does
not decrease as M increases. In comparison with the results for f; in Fig.2(a), we
attribute this relatively low convergence rate and the large variance to the high-
frequency component cos(6x), which is harder to identify from moments than the
low frequency component sin(x).

Arch function: Fig. 4(a) shows the estimator with degree-0 B-spline basis
with dimension n = 45. The L?(p%) error is 0.0645 and the relative error is 14.44%.
Fig. 4(b) shows that the Wasserstein distances are small, at the scale 1072, Fig. 4(c)
shows that the convergence rate of the L?(p%) error is 0.17, less than the would-be
minimax rate % ~ 0.33.

Arch function with observation noise: To demonstrate that our method
can tolerate large observation noise, we present the estimation results from noisy
observations of the Arch function, which is the most difficult among the three ex-
amples. Suppose that the observation noise € in (2.17) is iid M(0,0.25). Note that
the average of E [\Yt|2] is about 0.2, so the signal-to-noise ratio is rather small, at
E[|Y|?]/E[¢%] ~ 0.8. Nevertheless, our method can identify the function using the
moments of the noise as discussed in Section 2.5. Fig. 5(a) shows the estimator with
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FIGURE 5. Learning results of Arch function f3 with model (4.2) and
i.i.d Gaussian observation noise.

degree-1 B-spline basis with dimension n = 24. The L?(p%) error is 0.1220 and the
relative error is 27.32%. Fig. 5(b) shows that the Wasserstein distances are small, of
order 1073. The Wasserstein distances are approximated from samples of the noisy
data Y = fiue(X) + € and of the noisy prediction ¥ = f(X) + £, Fig. 5(c) shows
that the convergence rate of the L?(p%) error is 0.14. The estimation is not as good
as the noise-free case, also because the noisy observation data lead to slightly lower
and upper bound constraints in (2.15).

We consider this tolerance and robustness to noise to be quite surprising for such
an ill-posed inverse problem, and the main reason for it is the use of moments,
which average the noise so that the error occurs at scale O(1/v/M).

We have also tested piecewise constant observation functions. Our method has
difficulty in identifying such functions, due to two issues: (i) the uniform partition
often misses the jump discontinuities (even the projection of f, has a large error);
and (ii) the moments we considered depend on the observation function non-locally,
thus, they provide limited information to identify the true function from its lo-
cal perturbations. We leave it for future research to overcome these difficulties
by searching the jump discontinuities and by introducing moments detecting local
information.

4.3. Limitations. We demonstrate by examples the non-identifiability due to sym-
metry and stationarity.

Symmetric distribution. Let the state space model be the Brownian motion with
initial distribution Unif(0,1). The state process (X;) has a distribution that is
symmetric with respect to the line 2 = 1, i.e., the processes (X;) and (1 — X)
have the same distribution. Thus, with the reflection function R(z) = 1 — x, the
processes f(X;) and fo R(X}) have the same distribution, and the observation data
does not provide information for distinguishing f from f o R. The loss functional
(2.4) has at least two minima.

Figure 6 shows that our algorithm finds the reflection of the true function f, =
sin(xz). The hypothesis space H has B-spline basis functions with degree 2 and
dimension 58. Our estimator is close to fx o R(z) = sin(1 — x). Its L?(pk) error
is 1.1244 and its reflection’s L?(p%) error is 0.0790. Both the estimator and its
reflection correctly predict the distribution of the observation process (Y;).
Stationary process. When the diffusion process (X;) is stationary, the loss functional
(2.4) provides limited information about the observation function. As discussed in
Section 3.2, the matrix A; has rank 1, and & = 0 and & = 0 lead to only two
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FIGURE 6. Learning results of fy(z) = sin(z) with the state space
model being X; = B; + Xo where Xo ~ Unif(0, 1). Due to the symmetry
with respect to the line x = %, the estimator f(x) and its reflection

f(1 — z) are indistinguishable by the loss functional and they lead to
similar prediction of the distribution of {Y3,}.

more constraints. The constraints from the upper and lower bounds in (2.15) play
a major role in leading to a minimizer at the boundary of the convex set H.

Figure 7 shows the learning results with the stationary Ornstein-Uhlenbeck pro-
cess dX; = —Xdt + dB; and with the observation function fi(x) = sin(x). The
stationary density of (X3) is N(0, %) Due to the limited information, the estimator
has a large L?(p%) error, which is 0.2656 and its prediction has large 2-Wasserstein
distances oscillating near 0.1290.
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(a) Estimator with n=58, deg=2 (b) Wasserstein distance

FIGURE 7. Learning results of fx(x) = sin(z) with stationary Ornstein-
Uhlenbeck process. Due to limited information from the moments, the
estimator is inaccurate.

5. Discussions and conclusion. We have proposed a nonparametric learning
method to estimate the observation functions in nonlinear state space models. It
matches the generalized moments via constrained regression. The algorithm is suit-
able for large sets of unlabeled data. Moreover, it can deal with challenging cases
when the observation function is non-invertible. We address the fundamental issue
of identifiability from first-order moments. We show that the function spaces of
identifiability are the closure of RKHS spaces intrinsic to the state space model.
Numerical examples show that the first two moments and temporal correlations,
along with upper and lower bounds, can identify functions ranging from piecewise
polynomials to smooth functions and tolerate considerable observation noise. The
limitations of this method, such as non-identifiability due to symmetry and station-
arity, are also discussed.
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This study provides a first step in the unsupervised learning of latent dynamics
from abundant unlabeled data. Several directions are calling for further exploration:
(i) a mixture of unsupervised and supervised learning that combines unlabeled data
with limited labeled data, particularly for high-dimensional functions; (ii) enlarging
the function space of learning, either by construction of more first-order generalized
moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state space model.

Appendix A. A review of RKHS. We review the definitions and properties
of the positive definite functions, the Mercer kernel, the reproducing kernel Hilbert
space (RKHS), and the related integral operator, see e.g., [7] for them on a compact
domain [35] for them on a non-compact domain.

Positive definite functions. The following is a real-variable version of the definition
of positive definite functions in [1, p.67].

Definition A.1 (Positive definite function). Let X be a nonempty set. A function
G : X x X — R is positive definite if and only if it is symmetric (i.e. G(z,y) =
G(y,x)) and szzl cicxG(zj, ) = 0 for all m € N, {zq,...,2,} < X and ¢ =
(c1y...,¢n) € R™. The function ¢ is strictly positive definite if the equality hold
only when ¢ = 0 € R™.

Theorem A.2 (Properties of positive definite kernels). Suppose that k, ki, ko :
X x X c R?* x R?* - R are positive definite kernels. Then

(a) kiks is positive definite. ( [1, p.69])

(b) Inner product (u,vy = Z;l:1 u;jv; is positive definite ( [1, p.73])

(c) f(u)f(v) is positive definite for any function f: X — R ( [1, p.69]).

RKHS and positive integral operators. Let (X, d) be a metric space and G : X x X —
R be continuous and symmetric. We say that G is a Mercer kernel if it is positive
definite (as in Definition A.1). The RKHS H¢ associated with G is defined to be
closure of span{G(z,-) : x € X} with the inner product
n,m
e = Z cid;G(w;,y;)

i=1,j=1
for any f = ", ¢;G(w;,-) and g = Z;”:l d;G(y;,-). It is the unique Hilbert
space such that: (1) the linear space span{G(-,y),y € X} is dense in it; (2) it
has the reproducing kernel property in the sense that for all f € Hg and z € X,
f(z) =<{G(z,"), Ha (see [7, Theorem 2.9]).

By means of the Mercer Theorem, we can characterize the RKHS H¢ through
the integral operator associated with the kernel. Let u be a nondegenerate Borel
measure on (X, d) (that is, u(U) > 0 for every open set U < X). Define the integral
operator Lg on L?(X, i) by

Lof(e) = |Gl wduty).
The RKHS has the operator characterization (see e.g., [7, Section 4.4] and [35]):
Theorem A.3. Assume that G is a Mercer kernel and G € L*(X x X, u®u). Then

1. L¢g is a compact positive self-adjoint operator. It has countably many positive
eigenvalues {\;};2, and corresponding orthonormal eigenfunctions {¢;} .
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Note that when zero is an eigenvalue of Le, the linear space H = span{¢;}>,
is a proper subspace of L*(u).
2. {V/Ai¢i}£, is an orthonormal basis of the RKHS Hc:.
3. The RKHS is the image of the square root of the integral operator, i.e., Hg =
1/2
L (L(X, p)).

Appendix B. Algorithm details.

B.1. B-spline basis and dimension of the hypothesis space. The choice of
hypothesis space is important for the nonparametric regression. One can use global
basis functions such as polynomials or Fourier basis when the observation function
is known in prior to be smooth. On the other hand, when the observation function
may be discontinuous, local basis functions such as B-splines or wavelets improve
the estimation. In all our numerical experiments we choose the basis functions
to be the B-splines, as we assume only limited information about the observation
function. To select an optimal dimension of the hypothesis space, we introduce
a new algorithm to estimate the range for the dimension and then we select the
optimal dimension that minimizes the 2-Wasserstein distance between the measures
of data and prediction.

B-Spline basis functions. We briefly review the definition of B-spline basis functions
and we refer to [30, Chapter 2] and [27] for details. Given a nondecreasing sequence
of real numbers, called knots, (rg,71,...,7m), the B-spline basis functions of degree
p, denoted by {N; ,}7P~", are defined recursively as

)L o msr<min
Nio(r) = { 0, otherwise ’
r—r T —7
Nip(r) = ———Nip1(r) + — 25— N1 1(r).
Titp — T4 Titp+1 — Tit1

Each function N;, is a nonnegative local polynomial of degree p, supported on
[7i, Titp+1]. At a knot with multiplicity k, it is p — k times continuously differen-
tiable. Hence, the differentiability increases with the degree but decreases when the
knot multiplicity increases. The basis satisfies a partition unity property: for each
re [riarH-l]v Zj NjaP(r) = Z;’:i—p NLZD(T) =1

We set the knots of the spline functions to be a uniform partition of [Ryin, Rmaz]
(the support of the measure pk in (2.16)) Rpin = 70 < 71 <+ < T = Rpin.
For any choice of degree p, we set the basis functions of the hypothesis space H,
contained in a subspace with dimension n = m — p, to be

¢i(r) = N;p(r), i=0,...,m—p—1.

Thus, the basis functions {¢;} are piecewise degree-p polynomials with knots adap-
tive to pk.

Dimension of the hypothesis space. The choice of dimension n of H is important to
avoid under- and over-fitting: we choose it by minimizing the 2-Wasserstein distance
between the empirical distributions of observed process (Y;) and that predicted
by our estimated observation function. To reduce the computational burden, we
proceed in 2 steps: first we determine a rough range for n, and then within this
range we select the dimension with the minimal Wasserstein distance.

Step 1: we introduce an algorithm, called Cross-validating Estimation of Dimen-
sion Range (CEDR), to estimate the range [1, N for the dimension of the hypothesis
space, based on the quadratic loss functional £;. Its main idea is to restrict NV to
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avoid overly amplifying the estimator’s sampling error, which is estimated by split-
ting the data into two sets. It incorporates the function space of identifiability in
Section 3.1 into the SVD analysis [9,16] of the normal matrix and vector from & .

The CEDR algorithm estimates the sampling error in the minimizer of loss func-
tional & through SVD analysis in three steps. First, we compute the normal matrix
Ay and vector by in (2.6) by Monte Carlo; to estimate the sampling error in by, we
compute two copies, b and b, of b; from two halves of the data:

1 2

bi) = 7 D Elei(Xe)] 57 25 Yo,
=1

|

I
3
I

. 9 XY (m)
Vi) =7 Y EBX)— Y v

S
gy

=1

Second, we implement an eigen-decomposition to find an orthonormal basis of
L?(p%), the default function space of learning. The matrix A; is a representa-
tion of the integral operator Ly, in Lemma 3.4 on H = span{¢;}"_;, and Lg,’s
eigenvalues are solved by the generalized eigenvalue problem

Aju = A\Bu, where B = ({(¢;, bj)r2(5L)) (B.2)

(see [21, Theorem 5.1]). Denote the eigen-pairs by {o;, u;}, where the eigenvalues
{0;} are non-increasingly ordered and the eigenvectors are subject to normalization
ulTBuj = 0;,;. Thus, we have Ay = Z?=1 Uiuiu;'— (assuming that all o;’s are positive;
otherwise, we drop those zero eigenvalues). The least-squares estimators from b

T Tyt
b b . . .
and b/ are ¢ = )" | u;i w; and ¢ = > | u;—u“ respectively. Third, the difference

between their function estimators represents the sampling error (with Ac = ¢ — ¢)

g(n) :=|f - fl‘|%2(p%) = 2 Ack@cuiz(ﬁ;) = Z ACi<¢ia¢j>L2(p§)A0j = Ac' BAc
k=1 j=

i,7=1
n T ’ T / n
— 2 Mu?Bujj(i) - 7"@'27
ig=t 7 73 i=1
(B.3)
T ’
where r; = I"i(ab%b)l. The ratio r; is in the same spirit as the Picard projection
i ,
ratio |";—_b‘ in [16], which is used to detect overfitting. Note that the eigenvalues

o; will vanish as n increases because the operator Lk, is compact. Clearly, the
sampling error g(n) should be less than ||f, H%z(ﬁL)? which is the average of the
T

second moments. Thus, we set N to be

LM
. L X (m)|2
N =max{k >1: g(k) < 7}, where 7 = —— I A (B.4)

I=1,m=1

We note that this threshold is relatively large, neglecting the rich information in g,
a subject worthy of further investigation.
Algorithm 2 summarizes the above procedure.
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Input: The state space model and data {Yt(ﬂl WM
Output: A range [1, N] for the dimension of the hypothesis space for further selection.
1: Estimate the empirical density pr in (2.16) and find its support [Rmin, Rmaz].

2: Set n =1 and g(n) = 0. Estimate the threshold 7 in (B.4).

3: while g(n) < 7 do

4 Set n < n + 1. Update the basis functions, Fourier or B-spline, as in Section 2.3.
5 Compute normal matrix A; in (2.6) by Monte Carlo. Also, compute b and b’ in

: (B.1).

6: Eigen-decomposition of A as in (B.2); return A; = Y1, wioqul with u] Bu; =
0i,j-
Tin_p!
7 Compute the Picard projection ratios: r; = W fori =1,...,n and g(n) =
PR

8: Return N = n.

ALGORITHM 2. Cross-validating Estimation of Dimension Range
(CEDR) for hypothesis space

Step 2: We select the dimension n and degree for B-spline basis functions to be the
one with the smallest 2-Wasserstein distance between the distribution of the data
and that of the predictions. More precisely, let u{l and u{l denote the distributions
of Yy, = f(Xy,) and of ]?(th), respectively. Let Fy, and ﬁt, denote their cumulative
distribution functions (CDF), with thl and }?‘tl_l being their inverses. We compute

F, from the data and ﬁtl from independent simulations, approximate their inverses
using quantiles, and consider the root mean squared 2-Wasserstein distance

I 1/2 L
1 7 . ; ) .

(L Z W2(M{,7M{,)2> , with Wg(,u{l,u{l)g = L (E; M (r) = FY(r))%dr. (B.5)
1=1

This method of computing the Wasserstein distance is based on an observation in [5],
and it has been used in [20,29]. Recall that the 2-Wasserstein distance Wa(u, v/) of
two probability measures p and v over €2 with finite second order moments is defined

1/2
as Wa(p,v) := infep(u) (XQXQ | — y|2d'y(:c,y)) , where I'(u, ) denotes the set

of all measures on 2 x Q with p and v as marginals. Let F' and G be the CDF's of
and v respectively, and let F~! and G~ be their quantile functions. Then the L?

1/2
distance of the quantile functions da(p, v) := (S(l) |F~1(r) — G‘l(r)dr|2> is equal
to the 2-Wasserstein distance Wy (p, v).

B.2. Optimization with multiple initial conditions. With the convex hypoth-
esis space in (2.15), the minimization in (2.12) is a constrained optimization prob-
lem and it may have multiple local minima. Note that the loss functional £ (c)
in (2.12) consists of a quadratic term and two quartic terms. The quadratic term,
which represents &M in (2.5), has a Hessian matrix A; which is often not full rank
because it is the average of rank-one matrices by its definition (2.6), in which case
the quadratic term has a valley of minima in the kernel of A;. The two quartic
terms have valleys of minima at the intersections of the ellipse-shaped manifolds
{ceR":cT Ay c= b%}le for k = 2,3. Symmetry in the distribution of the state
process will also lead to multiple minima (see Section 3.2 for more discussions, and
the numerical examples).
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To reduce the possibility of obtaining a local minimum, we search for a mini-
mizer from multiple initial conditions. We consider the following initial conditions:
(1) the least squares estimator for the quadratic term; (2) the minimizer of the
quadratic term in the hypothesis space, which is solved by least squares with lin-
ear constraints using (©@MATLAB function Isqlin, starting from the LSE estimator;
(3) the minimizers of the quartic terms over the hypothesis space, which is found
by constrained optimization through (©MATLAB fmincon with the interior-point
search. Among the minimizers obtained from these initial conditions, we finally
take the one leading to the smallest 2-Wasserstein distance.

Appendix C. Selection of dimension and degree of the B-spline basis. We
demonstrate the selection of the dimension and degree of the B-spline basis functions
of the hypothesis space. As described in Section 2.3, we select the dimension and
degree in two steps: we first select a rough range for the dimension by the Cross-
validating Estimation of Dimension Range (CEDR) algorithm; then we pick the
dimension and degree to be the ones with minimal 2-Wasserstein distance between
the true and estimated distribution of the observation processes.

The CEDR algorithm helps to reduce the computational cost by estimating the
dimension range for the hypothesis space. It is based on an SVD analysis of the
normal matrix A; and vector b, from the quadratic loss functional & . The key idea
is to control the sampling error’s effect on the estimator in the metric of the function
space of learning. The sampling error is estimated by computing two copies of the
normal vector through splitting the data into two halves. The function space of
learning plays an important role here: it directs us to use a generalized eigenvalue
problem for the SVD analysis. This is different from the classical SVD analysis
in [16], where the information of the function space is neglected.

5 s degree =0

::,::degree=1 1 _,/:/?

degree =2 5
degree = 3 10 £
Gl threshold
i ——degree =0

degree =1
——degree =2
—degree =3

2-Wasserstein distance

: 0
0 20 40 60 80 20 40 60
number of knots k
(a) Wasserstein distances and Lz(ﬁé) errors  (b) Sampling error indicator with threshold

FIGURE 8. The selection of the dimension and the degree of B-spline
basis functions in the case of Sine-Cosine function. In (a), the 2-
Wasserstein distance reaches minimum among all cases when the degree
is 2 and the knot number is 15, at the same time as the L?(p%) error
reaches the minimum. Figure (b) shows the cross-validating error indi-
cator g (defined in (B.3)) for selecting the dimension range N, suggesting
an upper bound N = 60 with the threshold.

Figure 8 shows the dimension selection by 2-Wasserstein distances and by the
CEDR algorithm for the example of sine-cosine function. To confirm the effective-
ness of our CEDR algorithm, we compute the 2-Wasserstein distances for all di-
mensions in (a), side-by-side with the CEDR sampling error indicator g in (b) with
relatively large dimensions {n = 75 — deg| for deg € {0,1,2,3}. First, the left figure
suggests that the optimal dimension and degree are n = 13 and deg = 2, where
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the 2-Wasserstein distance reaches minimum among all cases, and at the same time
as the L?(p%) error. For the other degrees, the minimum 2-Wasserstein distances
are either reached before of after the L?(p%) error. Thus, the 2-Wasserstein dis-
tance correctly selects the optimal dimension and degree for the hypothesis space.
Second, (a) shows that the CEDR algorithm can effectively select the dimension
range. With the threshold in (B.4) being 7 = 1.60, which is relatively large (repre-
senting a tolerance of 100% relative error), the dimension upper bounds are around
N = 60 for all degrees, and the ranges encloses the optimal dimensions selected by
the 2-Wasserstein distance in (b).

Here we used a relatively large threshold for a rough estimation of the range
of dimension. Clearly, our cross-validating error indicator g(k) in (B.3) provides
rich information about the increase of sampling error as the dimension increases.
A future direction is to extract the information, along with the decay of the inte-
gral operator, to control, both in theory and algorithmically, the trade-off between
sampling error and approximation error.
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