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a b s t r a c t

Excitable media are prevalent models for describing interesting effects in physical, chem-
ical, and biological systems such as pattern formation, chaos, and wave propagation. In
this manuscript, we propose a spatially extended variant of the FitzHugh–Nagumo model
that exhibits new effects. In this excitable medium, waves of new kinds propagate. We
show that the time evolution of the medium state at the wavefronts is determined
by complicated attractors which can be chaotic. The dimension of these attractors
can be large and we can control the attractor structure by initial data and a few
parameters. These waves are capable transfer complicated information given by a Turing
machine or associative memory. We show that these waves are capable to perform cell
differentiation creating complicated patterns.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Excitable media are popular models for the exploration of physical, chemical, and biological systems. In this paper,
e propose a modification of the FitzHugh–Nagumo (FN) model that exhibits new intriguing phenomena. This model
escribes an excitable media where the waves of a new kind propagate. We show that the time evolution of the medium
tate at the wavefronts is determined by complicated attractors that can be chaotic. The dimension of these attractors
an be made large and increased to infinity depending on the model parameters. We can control the wavefront dynamics
tructure by initial data and a few parameters. These waves are capable transfer complicated information given by a
uring machine or associative memory. The physical mechanism of the formation of the waves is based on an interaction
etween topological defects (kinks). Recently we have had an understanding that topological defect motions in an active
edium are important for morphogenesis [1–4], and we show that these waves are capable to perform cell differentiation
reating complicated patterns.
First, we outline our model which we consider as a spatially extended variant of the FN model. Similar to the FN model,

he model involves cubic nonlinearities, but we extend it by including small spatial gradients. Then the first equation
f the model can be considered as a perturbed scalar Ginzburg–Landau (GL) equation for a scalar order parameter u
ith a small gradient term. That equation describes bistability and spontaneous layered patterning. The GL equation
imulates a trigger mechanism that in real biological systems is generated by positive feedback loops in gene regulation
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networks [5]. Moreover, we implement diffusion effects in the second equation of the FN model and we complement
the two equations for components u, v by the linear wave equation for a third variable z that would be interpreted as
echanical deformation. The equation for z is coupled with two first ones for variables u, v via a quadratic term.
Now we outline the physical mechanism of wave generation. Let ϵ2/2 be the coefficient at the gradient term in the

corresponding GL energy and let ϵ > 0 be small. It is well known that such a singularly perturbed GL equation has
asymptotical solutions describing kink chains where ith kink is localized at some positions slowly evolving in time [6].
Kinks are narrow topological defects (of the width O(ϵ)) with the charges (−1)i describing a symmetry breaking and
layered pattern formation: a separation of the entire domain on subdomains along x-axis, where u ≈ ±1. Note that

he direct interaction between kinks is exponentially small (it has the order O(exp(−c1/ϵ))). Therefore such asymptotical
solutions are correct within an exponentially long time O(exp(−c2/ϵ)) while kinks are well-separated [6]. We consider a
simple perturbation of the scalar Ginzburg–Landau equation by the second variable v. The time evolution of v is defined
by the reaction–diffusion dynamics where the order parameter u is involved via the quadratic term zux. The time evolution
of z is governed by a linear wave equation. We suppose that the v-component diffuses fast. The u-kinks interact with the
ast reagent v and in turn that reagent v acts on the u-kinks. We thus have a feedback loop that leads to a small non-local
ink interaction via the intermediate v-component. This interaction is small nonetheless it is much stronger than the
irect local interaction between kinks that is exponentially small as ϵ → 0.
Note that our system for u and v reminds the model studied in [7] where the formation of layered patterns is studied.

Actually, our mechanism of the kink motion and layered pattern formation is like to [7], however, there is a key difference:
our system for u, v is open, and, due to the presence of the term zux there exist no Lyapunov functions decreasing
along trajectories and making the sense of energy. This property is very important. In fact, we show that under an
appropriate choice of system parameters the dynamics of the kink coordinates Xi can be described by the Hopfield system
of ordinary differential equations with continuous-time and, in general, non-symmetric interactions. This non-symmetry
is a consequence of the fact that our system is open.

It is well known that such Hopfield systems exhibit a remarkable universality property [8]: they can generate any
structurally stable (hyperbolic) dynamics. Such dynamics may be chaotic (the best-known examples are given by Anosov
flows and Smale horseshoes [9,10]). Following [11,12] we can use this chaos to simulate Turing machines and we apply
it to cell differentiation using the results from [13].

Thus, combining reaction, diffusion, and wave effects we obtain an excitable media that can generate waves that can
be considered as moving neural nets consisting of interacting narrow fronts (kinks). The evolution of the coordinates
that define the localization of those fronts is governed by a dynamical system. The key point is that we can control the
attractors of these dynamical systems by positional information stored in spatially distributed initial data for z and by the
choice of a few parameters. These attractors may be chaotic and of high dimension. Information on the attractor structure
is contained in initial data for z-component. So, our excitable media transform positional information stored in space into
dynamic information and complex temporal behavior. We think that such waves can transfer adaptive information in cell
colonies and multicellular organisms.

Using results [13] we will show that by such waves one obtain any layered patterns of cell differentiation (see
Section 7). The idea that topological defects can serve as ‘‘topological morphogens’’ has received attention last decade
and studied theoretically and experimentally (see, for example, [1–4]).

The paper is organized as follows. In the next section, we describe the model. In Section 3, we state the property
of Universal Dynamical Approximation and by this mathematical formalism, we state the main results in Section 4. The
subsequent sections contain an outline of the proof, construction of asymptotical solutions, application to morphogenesis,
and concluding remarks.

2. Model

The model consists of a scalar perturbed Ginzburg–Landau equation for an order parameter u, a reaction–diffusion
equation, and a hyperbolic equation for z:

ut =
ϵ2

2
∆u+ u− u3

− κux + v, (1)

vt = ∆v + zux, (2)

ztt − κ2∆z = 0. (3)

Here u = u(x, y, t) and v(x, y, t) are unknown functions defined on Ω × {t ≥ 0}, Ω is the strip (−∞,∞) × [0, 1] ⊂ R2,
> 0 and ϵ > 0 are small parameters. To simplify the problem and provide existence of solutions for all times t > 0 we

et the 2π-periodic boundary conditions for v, u and z

u, v, z(x, y, t) = u, v, z(x+ 2π, y, t), (4)

upposing that initial data satisfy these periodicity conditions.
2
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At the horizontal boundaries y = 0 and y = 1 we set the Dirichlet conditions for v:

v(x, h, t) = v(x, 0, t) = 0, (5)

and the zero Neumann condition for u

uy(x, y, t)
⏐⏐⏐
y=0,1

= 0. (6)

The initial conditions are given by smooth functions u0, v0 and z0, for example,

z(x, y, 0) = z0(x, y), (7)

nd similarly for u, v. The function z0 plays a key role in the control of wave large time dynamics.
This system reminds the celebrated FitzHugh–Nagumo (FN) model [14,15] but it is extended by spatial gradients

nd the additional equation for a variable z that can describe mechanical effects critically important in biological active
edia [1,2].
So, this model takes into account basic mechanical, chemical, and physical effects. Note that our model is two-

imensional which is important for the control of large time dynamics. To obtain analogous results in a one-dimensional
ase, we have to use a number of reagents replacing a single Eq. (1) by a reaction–diffusion system [13]. Note moreover
hat the first equation arises in the generalized Landau-de Gennes model applied for morphogenesis problems in [1] (if
e remove the terms connected with cell polarities). To conclude this section, let us make some remarks. First, the model
roposed can be simplified (although then the mathematical analysis is slightly more sophisticated). For example, one
an remove the term κux in Eq. (1).
The second remark concerns the generation of complicated dynamics without waves. The complicated attractors can

e obtained in a shorted model consisting of Eqs. (1) and (2) with κ = 0. Then the coefficient z = z(x, y) can be considered
as a parameter.

3. Universal dynamical approximation

To formulate the main results let us outline first the concept of Universal Dynamical Approximation (UDA) (that term is
inspired by the work [16]). To explain this concept, remind that many neural networks such as multilayered perceptrons
(MLP) enjoy the property of universal approximation: for each prescribed sufficiently smooth output function f defined
on a compact domain D ⊂ Rn of a Euclidean space Rn and each ϵ > 0 we can adjust parameters of MLP in such a way
hat the output of fnet (q) of the network is ϵ-close to f (q) for all entries q from the domain D [17].

The UDA concept generalizes universal approximation for the networks. Many evolution equations under reasonable
oundary conditions define global semiflows in the appropriate functional phase spaces (see [18,19]). We denote such
emiflows by StP and they depend on the parameters P involved in equations, and boundary conditions. More formally,
et us consider an evolution equation in a Banach space B depending on parameter P:

ut = Au+ F (u, P). (8)

ssume that for some P that equation generates a global semiflow St . We obtain then a family F of global semiflows StP
here each semiflow depends on the parameter P.
Suppose for an integer n > 0 there is an appropriate value Pn of the parameter P such that the corresponding global

emiflow StPn has an n-dimensional normally hyperbolic locally invariant manifold Mn embedded in our phase space B
y a C1-smooth map defined on a ball Bn

⊂ Rn.
The restriction of semiflow StPn to Mn is defined then by a vector field Q on Mn. Then we say that the family StP realizes

the vector field Q (that terminology is coined by P. Poláčik, see [20,21]).
The family StP enjoys UDA if for each dimension n that family realizes a dense (in the norm C1(Bn)) set of vector fields

Q on the ball Bn.

Corollary 1. If the family StP has UDA property, the Theorem on Persistence of Hyperbolic Sets implies that some semiflows StP
exhibit a chaotic large time behavior.

In other words, one can say that the UDA semiflows can simulate, by parameter variations, any finite-dimensional
dynamics defined by a system of ordinary differential equations on the domain D ⊂ Rn within any prescribed accuracy
ϵ (in C1(D)-norm). This property implies that semiflows StP can generate all structurally stable dynamics (up to orbital
topological equivalency). Among the systems enjoying UDA, there are a number of fundamental ones: quasilinear parabolic
equations [20,21], time-continuous and time recurrent neural networks [22], a large class of reaction–diffusion systems
with heterogeneous sources [23], generalized Lotka–Volterra system [24], Oberbeck–Boussinesq model [25]. Also, the Euler
equations on multidimensional manifolds exhibit similar properties [16]. Note that for time continuous and time recurrent
neural networks and generalized Lotka–Volterra system the UDA property follows from Universal Approximation Theorem
for MLP [22].
3
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4. Main results

Concluding the ideas presented above we formulate the following statements.

Theorem I. On dynamical complexity: under a choice of the parameters κ, ϵ, and initial data z0, u0(x) the kink dynamics of
ur model is defined by a time-continuous Hopfield system:

dX̃i

dt
=

N∑
j=1

Kijσ (X̃j − hj)− λX̃i, (9)

where X̃i are deviations of kink positions from some equilibrium values X̄i. This system has the property of universal dynamical
pproximation, where parameters are N, λ, hi and the entries Kij.
We can obtain any prescribed N, Kij, hi by a variation of ϵ > 0 and initial data for u and z.

This means that when we vary the model parameters, initial data and the kink number, kink coordinate dynamics
can generate all possible kinds of structurally stable large-time behavior (up to topological equivalency). Since hyperbolic
dynamics is persistent [10], kink motions generate all hyperbolic dynamics that may be chaotic [9,10].

The second result concerns with the shorted system (1) and (2).

Theorem II. System (1) and (2) under boundary conditions (5), (6) generates a family of global semiflows StP, which has the
UDA property, where parameters are ϵ > 0 and function z(x, y).

Note that averages v̄(x, t) of v-pattern along y defined as v̄(x, t) =
∫ 1
0 v(x, y, t)dy can be described in a simple way as

follows (up to small corrections vanishing as γ , ρ, ϵ → 0). These averages are sums of exponents

v̄(x, t) =
N∑
j=1

Bm,j(t) exp(−m|x− X̄j|) (10)

where Bm,j(t) are coefficients such that

v̄(X̄i(t), t) = const dXi/dt. (11)

So, if we know the velocities Xi/dt of all kinks, we can restore v̄(x, t) for all x. To this end, we find the coefficients Bm,j(t)
using Eq. (11).

These results have interesting biological consequences. In Section 7, we show that positional information stored in a
localized embryo domain can be transported in another domain and transformed into a developmental program.

5. Outline of the proof

The proof proceeds a few of steps. One can exclude z solving the wave equation and obtain a system for u, v with
spatially heterogeneous coefficients. Analogous systems are well studied at physical level [7] and moreover there exists
rigorous methods to analyze them [23]. We find kink chain solutions to the GL equation following [6]. These solutions
are defined via kink coordinate X1, X2, . . . , XN . Under an appropriate parameter choice, xi slowly evolve in time. Although
our system is two-dimensional, we can conserve planar kink structure by an appropriate choice of small parameters, and
then kink dynamics can be completely defined by Xi(t).

The next step is to derive dynamical equations for Xi. It can be done quite rigorously in a standard way, and these
equations capture all essential dynamics in our model while u remains close to kink chains. The equations for Xi(t) form
a system of coupled oscillators of a complicated form. Further, we show that under a special choice of z0 that this system
for Xi can be simplified and reduced to a time-continuous Hopfield system (9), which describes small kink oscillations
at certain positions X̄i. This property of oscillation localization provides that the kinks remain well separated by distance
δ ≫ ϵ for all times t . In the Hopfield system, deviations X̃i of kink coordinates from X̄i correspond to neuron states in
neural network models. The parameters of this Hopfield system are the neuron (kink) number, the matrix K of the neuron
interactions with the entries Kij and thresholds hi.

Next, there are two key points. The first one that in general K is non-symmetric thus there are no Lyapunov functions
for the system (9). The second one is that we are capable to prove that we can control K: one can obtain any N×N square
matrices K by a choice of initial data z0 for z. This fact looks natural: to obtain a given square matrix K of size N × N ,
we should satisfy N2 conditions by a countable set of unknown Fourier coefficients for z0 (nonetheless, this fact needs a
proof!). Just the second point on the control of K is verified, Theorems I and II at once follow from known results (for
example, [22]).
4
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6. Asymptotic solutions to the system (1)–(3) describing complex waves

6.1. Kink chains

Let us describe kink chains following [6]. Let first κ = 0. Let Xj, j = 1, . . . ,N be the coordinates of the kinks in the
nterval (0, 2π ). We suppose that 0 < X1 < X2 < · · · < XN < 2π . Let dist(X) = mini Xi+1 − Xi, where formally XN+1 = X1.
We assume

ϵ ≪ δ < dist(X), (12)

.e., the minimal distance between the kinks is not too small: that minimal distance is much more than the characteristic
iffusion length ϵ. We need condition (12) to obtain an asymptotical solution in the form of a kink chain.
The kink chains can be obtained by 2π-periodical in x functions ŪN (x, X). Inside narrow intervals Ii,ϵ =

(
Xi − ϵ

1/2, Xi +

ϵ1/2
)
, the functions ŪN (x, X) have the form si tanh(ϵ−1(x−Xi)), where si = (−1)i are topological charges and i = 1, . . . ,N .

Outside of intervals Ii,ϵ the function ŪN (x, X) is exponentially close to ±1 and this function is a smooth function of x. We
can represent this kink chain as a sum of contributions associated with kinks:

ŪN =

N∑
j=1

UN,j(x, X),

where UN,j is exponentially close to sj tanh(x − Xj)/ϵ. For κ = 0 and v ≡ 0 we have a set of solutions u of (1) that have
the form u = ŪN (x, X(t)) + ũ, where ũ is a small correction and the kink coordinates Xj(t) evolve in time exponentially
slowly: |dXi/dt| = O

(
exp(−c0ϵ−1dist(X))

)
[6]. These solutions are correct while dist(X) ≫ ϵ. The time evolution of X is a

result of exponentially weak direct kink interaction. For κ ̸= 0 we obtain the kink chain traveling with a constant speed
κ: UN = ŪN (x− κt, X).

In the coming subsection, we consider the case v ̸= 0, where there occurs a non-direct and non-local kink interaction
via coupling with v-reagent.

6.2. Equations for kink coordinates

We choose solutions of Eq. (3) having the form z(x, y, t) = γ z0(x− κt, y), where γ > 0 is a small parameter and z0 is
a smooth 2π-periodic function. We substitute z into Eqs. (1), (2) and make variable change x̃ = x− κt (further we omit
tilde in notation). Then we obtain the following system

ut =
ϵ2

2
∆u+ u− u3

+ γ v, (13)

vt = ∆v + z0ux + κvx. (14)

We are capable to construct asymptotic solutions of the system (13) and (14) under the following assumptions to the
mall parameters:

ssumption AP. Let ϵ > 0 be small enough and

γ < ϵ4, c0 exp(−c1ϵ−1/2) ≪ κ ≪ γ , (15)

here c0, c1 are uniform in ϵ > 0.

The main idea in choice of γ is to conserve the planar structure of the kink fronts (otherwise it is impossible to describe
ink chains by coordinates Xi, and it is necessary to take into account the front curvature). The parameter κ > 0 should
e small as well in order to obtain quasistationary solutions of Eq. (14). The condition c0 exp(−c1ϵ−1/2) ≪ γ is necessary
o ensure domination of non-local kink interaction via v-reagent with respect to direct kink one.

The subsequent statement follows works [6,8,23,26] with small modifications. Our first goal is to derive equations for
i(t). Eqs. for Xi(t) can be obtained by a standard perturbation approach for small γ > 0 (see, for example, [6,26]). For
ufficiently small γ > 0 one has

u(x, t) = UN (x, X(t))+ ũ(x, t, γ ), (16)

here UN (x, X) is the kink chain (described above) and ũ is a correction (the deformation of the kink chain form). The
ime evolution of X is governed by the equation

dXi

dt
= γ

(
Gi + G̃i

)
+ κ, (17)

here

Ḡi = −(−1)i
3v̄i
, v̄i =

∫ 1

v(Xi, y, t)dy (18)

2 0

5
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and small corrections G̃i are uniformly bounded

|G̃i(X, γ , ϵ)| < c
(
γ s

+ ϵ + exp(−ϵ−1dist(X))
)
,

here s ∈ (0, 1], c, s are uniform in γ as γ → 0.
To explain Eqs. (17) and (18), let us remind the construction from [23,26] that is the well known Lyapunov–Schmidt

actorization. Let us introduce the standard convenient notation

⟨f , g⟩ =
∫ 2π

0

∫ 1

0
fgdxdy, ∥f ∥2 = ⟨f , f ⟩.

et Ψj = c̄jϵ−1/2 cosh−2(ϵ−1(x − Xi)), where the normalizing constants c̄j provide ∥Ψj∥L2(Ω) = 1. Note that c̄j equal
√
3/2

p to exponentially small corrections. The functions Ψj are the Goldstone modes induced by kink translation motions.
To obtain the dynamical equations for Xi, we impose the condition

⟨ũ(·, ·, t), Ψj(· − Xi(t))⟩ = 0 (19)

or each t and i. These equations define X uniquely for small ∥ũ∥, γ > 0 and bounded ∥v∥. Physically the conditions (19)
ean that we split kink perturbations into kink shifts defined by Xi and kink deformations orthogonal to the kink shifts.
For the correction ũ we then obtain

ũt = Lϵ(X)ũ+ H(ũ, X, γ ), (20)

here Lϵ is the linear operator defined by

Lϵψ =
ϵ2

2
∆ψ +

(
1− 3UN (x, X)2

)
ψ, (21)

and

H(ũ, X, γ ) = −ũ3
− 3UN ũ2

+ γ v.

The spectrum of the operator Lϵ is well-studied [6]. Note that Lϵ is a self-adjoint operator of Schrödinger type that has a
kernel consisting of N eigenfunctions, which are close to linear combinations of the kink Goldstone modes.

We need the following Lemma (see [23]).

Lemma I. For X such that dist(X) > δ1 > 0 one has

∥LϵΨj∥ < c0 exp(−c1ϵ−1) (22)

and if ⟨ψ,Ψj⟩ = 0 for all j then

∥Lϵψ∥ ≤ −C0ϵ
2
∥ψ∥, (23)

where all constants are uniform in ϵ as ϵ → 0.

For a proof see [23].
So, the spectrum of Lϵ consists of N exponentially small eigenvalues and all the remaining spectrum of Lϵ lies in the

interval (−∞,−δ0ϵ
2), where δ0 > 0 does not depend on ϵ > 0. This key spectral property implies that the system

dynamics is defined by Goldstone modes via Xi while the kink deformations remain small. This property also provides
the stability of the kink solutions on exponentially large intervals Iϵ and allows us to solve Eq. (20). It can be done by
the standard perturbative methods because for small γ , κ and ∥ũ∥ our model is weakly nonlinear while the linear part is
stable due to condition (19).

6.3. Quasistationary solutions of (2)

Let us turn now to Eq. (2) for v. This equation is linear with respect to both v and u, u is a sum UN + ũ, where ũ is
small. The function UN depends on time via slow variable X(t) and does not depend on t explicitly. Therefore, we can
solve Eq. (2) by a simple idea: we can freeze X in the right-hand side of Eq. (2) assuming that X is just a parameter. The
main contribution to v is given then by a function VN satisfying the equation

∆VN = −κVNx − z0UN .

We obtain

VN =

N∑
j=1

Wj(x, y, X), (24)

∆W − κW = (−1)jz (x, y)U (x− X ). (25)
j jx 0 N,jx j

6
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To obtain an asymptotic solution it is sufficient to note that for small ϵ > 0 the function dUN,j/dx = ϵ−1/2Ψj +

O(exp(−cϵ−1)) is a good approximation of δ-function (up to a constant uniform in ϵ > 0). Moreover, it is clear then
that in Eqs. (25) z0(x, y) can be replaced by z0(Xj, y). Let us denote by Γm(x) the Green function of the one-dimensional
boundary value problem satisfying the equation

d2Γm

dx2
−m2Γ = δ(x)

and the 2π-periodical boundary conditions in x.
Then we resolve (25) by the Fourier method that gives

Wj =

∞∑
m=1

ẑm(Xj) sin(πmy)Γm(x− Xj), (26)

here we remove terms of the order O(ϵ) and ẑm(Xj) are the Fourier coefficients of z0(Xj, y):

ẑm(Xj) =
bm
2

∫ 1

0
z0(Xj, y) sin(πmy)dy,

where m are positive integers, bm = (1− (−1)m)/(πm) (see Fig. 1).

6.4. Hopfield system

Using relations (24), Eqs. (17), (18), and removing small terms, we obtain evolution equations for kink coordinates:

dXi

dt
= γGi(X), (27)

here

Gi(X) = −
2
3

N∑
j=1

∫ 1

0
Wj(Xi, y, Xj)dy. (28)

ur goal is to reduce Eqs. (28) to the Hopfield system (9). It can be done by a special choice of z0(x, y), or, that is equivalent,
of ẑm(Xj). First we substitute formula (26) into (28). Then we have

Gi(X) = −

N∑
j=1

∞∑
m=0

Rijm(X) (29)

here

Rijm(X) =
ẑ2m+1(Xj)Γm(Xj − Xi)

3π (2m+ 1)2
.

he main idea to simplify the formula (29) for Gi is as follows. Suppose that the kinks oscillate at certain fixed points X̄j,
.e.,

Xi(t) = X̄i + ρX̃i(t), (30)

here X̃i are new unknowns and ρ is a small parameter, which is independent of ϵ, γ , κ and defines the oscillation
agnitude. Suppose temporarily that |X̃j| stay bounded as ρ → 0 (this assumption will be justified later). We can achieve
uch behavior of X-solutions of (28) under a special choice of ẑ2m+1(Xj). Positions of points X̄j may be arbitrary but the
ondition (12) must be satisfied. Namely, for x from a neighborhood of X̄j we set

ẑ2m+1(x) = ξjm + ηjm, (31)

ξjm(x) = Mjmσ (ρ−1(x− X̄j)− hj), (32)

ηjm(x) = Sjmρ−1(x− X̄j), (33)

here σ is a smooth sigmoidal function, for example, the Fermi function σ (z) = (1+ exp(−z))−1, and where Mjm, Sjm are
nknown coefficients, which must be matched appropriately. Note that instead of the Fermi function we can take many
ther functions, for example, σ = sin.
We obtain then

R (X) = R̄ (X)+ R̃ (X), (34)
ijm ijm ijm

7
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Fig. 1. The active medium described in the paper can generate waves, which can transfer a complicated time behavior. A cell colony that has
reated such a medium (or is immersed in it) can have an important selective advantage, watch the video [27]. For example, suppose that a cell, a
ember of that colony, finds a complex dynamical adaptive answer to an ecological challenge (the top row, the first cell). Then this answer can be

ransferred to other cells by the waves, and thus the whole colony obtains the ability to survive. Moreover, it is shown that the wavefront dynamics
re defined by the Hopfield networks, so, those waves also may transport associative memory.

here R̃ijm(X) = O(ρ), are small corrections and

Rijm(X) = Γijm
(
Mjmσ (X̃j − hj)+ SjmX̃j

)
. (35)

here Γijm = Γm(X̄j − X̄i)
Further, we use the following lemma.

emma II. For each N×N matrix K with entries Kij, i = 1, . . . , N̄ there exist a number M ≥ N and coefficients bjm such that
M∑

m=0

bjmΓm(X̄j − X̄i) = Kij ∀i, j. (36)

roof. For the unknown bjm we have a system of linear algebraic equations. For large m we have asymptotics

Γm(x) = (2m)−1(exp(−m|x|)(1+ o(1))
)
, (37)

or Γm. Hence for sufficiently large M the matrix of our linear algebraic system contains a non-degenerate Vandermonde
atrix as a submatrix thus that linear algebraic system is resolvable.
8
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T

Using this lemma, we can choose Sjm and Mjm such that Gi take the form

Gi(X̃) =
N∑
j=1

Kijσ (X̃j − hj)− λX̃i, (38)

where λ > 0 is a coefficient.

6.5. Control of dynamics for Hopfield system

Using (38) we obtain the system (9) for variables X̃i.
It is easy to show that system (9) has a compact attractor. In fact, 0 ≤ σ (z) ≤ 1 thus that system implies the inequalities

dXi

dt
≤ N|K| − λX̃i,

where |K| = maxi,j |Kij|. These differential inequalities lead to the estimate

|X̃i(t)| ≤ (Yi(0)− N|K|λ−1) exp(−λt)+ N|K|λ−1.

he last estimate shows that system (9) has an absorbing set A = {X̃ : |X̃i| < N|K|λ−1
}, thus it is dissipative and

has a compact attractor. This result justifies our hypothesis on smallness of kink oscillations X̃i at points X̄i and the
transformation of general system (27) to the Hopfield system (9).

The following claim is proved in [8].

Lemma III. Dynamics defined by system (9) generates all finite dimensional hyperbolic dynamics (up to orbital topological
equivalency) by variations of parameters K,N, λ and h.

In coming section, following [13], we show how this result can be applied for cell differentiation.

7. Applications to morphogenesis

In this section, we follow [13] however we propose here new ideas based on our model because this model essentially
extends our possibilities with respect to model from [13] due to mechanical effects.

Multicellular organisms have evolved a diversity of cell types, typically, animal multicellular organisms contain tissues
consisting of 100–150 different cell types. Our aim is to explain how waves can be used to describe cell differentiation
and development of the whole embryo from a localized domain.

Let us note that usual traveling waves can be used to describe somitogenesis [28–30]. Somitogenesis is the process
of somite formation which are bilaterally paired blocks that form along the anterior–posterior axis of the developing
embryo in segmented animals. In vertebrates, somites give rise to different organs. The clock and wavefront (CWF) model
describes the somite formation as a result of the oscillating expression of genes. The CWF model was proposed by Cooke
and Zeeman [31] and developed by [30,32].

Let us outline the main ideas from [13]. Consider a layered one-dimensional (1D) pattern consisting of cells of two
types, say, r and b. We decompose our ‘‘organism’’ into small domains of equal length occupied by cells. Then the pattern
of cell differentiation can be considered as a string, for example, non-periodic one (rbrrrbbbr). Suppose that the cell type
is determined by a morphogen operator M(u(·)) transforming patterns u(x) into patterns m(x1),m(x2), . . .m(xn), where xj
are cell centers and m(xj) ∈ {r, b}.

To obtain a non-periodic pattern we need non-monotone concentration profiles that is not easy to obtain. Moreover,
we would like to generate any prescribed patterns by a universal short model. To show how the system (1)–(3) really
extends our possibility let us introduce a mathematical formalization of a complicated cell differentiation process. Let us
consider strings s = (s1, s2, . . . , sn) consisting of symbols sj ∈ {r, b} (extension to large alphabets is straightforward). The
set of strings SD = {s(1), s(2), . . . , s(m), the time moments tj = j∆T and points x̄1 < x̄2... < x̄n, where j = 1, . . . , n can be
called a developmental program if the morphogen values take prescribed values at given time moments in given points:

M(u(·, tk))(xj) = m(xj, tk) = s(k)j , (39)

where j = 1, . . . ,m. This formal definition is illustrated by Fig. 2.

Assertion DP. The shorted system (13)–(14) is capable to realize any developmental program by an appropriate morphogenetic
operator M. This program can be encoded by initial kink positions Xj and z0(Xj, y).

This assertion is proved in SM.
9
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Fig. 2. This picture illustrates a concept of developmental program. Different types of the cells are shown by different colors. The top row of the
cells emerges at the last time moment tn , the previous row appears at t = tn−1 and the bottom row arises at the initial time t = t0 . .

. Conclusions and discussions

In this paper, the active media are described where the generation of complex waves is possible. The waves are capable
o transfer complicated (given by an attractor) information. This effect can be useful to explain classical morphogenesis
ffects such as the existence of embryo organizing centers. A developmental program created in a small domain can be
ransferred and released in another domain. Our model explains how it can be done by fundamental physical, chemical,
nd mechanical mechanisms. Namely, we use: (i) phase transitions via the Ginzburg–Landau model and kink formation,
ii) non-local kink interactions via an intermediate fast diffusing reagent, and (iii) linear mechanical waves. Note that
inks are the simplest topological defects, and in biological development, they can model segmentation, one of the most
asic effects in morphogenesis.
It is clear that real biological active media are much more complicated (in particular, it can be described by the

andau-de Gennes model) so our extended FN system can be considered as a toy (but conceptual) model. An idea
hat topological defects (such as disclinations) may play an important role in morphogenesis and can be considered as
‘topological morphogens’’, became popular recently [1,2]. A mechanism consisting of elements (i)- (iii) permits to create
f a complicated dynamical information stored in defect motion and look universal although of course for real media to
roceed with rigorous mathematical analysis is a hard problem.
Note that a few genes is sufficient to encode the mechanism consisting of (i), (ii), and (iii). Therefore, it is natural to

xpect that such media could appear as a result of biological evolution. One can imagine, for example, such a situation.
onsider a cell colony that must adapt to a new environment and develops products necessary for survival. It is clear
hat a colony, where it is possible to transfer complex adaptive innovations from one cell to another, has a clear selective
dvantage. This transmission can be done by means of the waves, opened in this paper, and these waves can not only
ransmit simple information, but they can also transfer complex behavior (which can be described by an attractor or a
uring machine, or a neural network with associative memory), similarly to human society.
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