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Abstract
We derive stretching and bending energies for isotropic elastic plates and shells. Through
the dimensional reduction of a bulk elastic energy quadratic in Biot strains, we obtain two-
dimensional bending energies quadratic in bending measures featuring a bilinear coupling
of stretches and geometric curvatures. For plates, the bending measure is invariant under
spatial dilations and naturally extends primitive bending strains for straight rods. For shells
or naturally-curved rods, the measure is not dilation invariant, and contrasts with previous
ad hoc postulated forms. The corresponding field equations and boundary conditions fea-
ture moments linear in the bending measures, and a decoupling of stretching and bending
such that application of a pure moment results in isometric deformation of a unique neutral
surface, primitive behaviors in agreement with classical linear response but not displayed
by commonly used analytical models. We briefly comment on relations between our ener-
gies, those derived from a neo-Hookean bulk energy, and a commonly used discrete model
for flat membranes. Although the derivation requires consideration of stretch and rotation
fields, the resulting energy and field equations can be expressed entirely in terms of metric
and curvature components of deformed and reference surfaces.

Keywords Plates · Shells · Nonlinear elasticity · Stretch

Mathematics Subject Classification 74B20 · 74K20 · 74K25

1 Introduction

This paper provides a detailed derivation of bending measures and energies for elastic plates
and shells that were proposed in a companion paper [1] through physical arguments re-
lated to a sensible definition of “pure stretching” of a surface, and whose properties and
advantages were discussed therein. The present results follow from dimensional reduction
of a general isotropic bulk elastic energy quadratic in Biot strains [2–4]. The use of such
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strains as primitive quantities in elasticity emerged in the field of rod mechanics [5], and
its advantages for small-strain elasticity theories in soft matter were recently discussed in
great detail by Oshri and Diamant [6] and subsequently by Wood and Hanna [7], both in
the context of thin bodies. These advantages may be summarized as follows. A bending
energy quadratic in an appropriate primitive measure will give rise to a moment linear in
the measure and a tangential force without extra bending contributions, which aside from
its appealing simplicity has the important consequence that pure moments will not induce
stretching or compression of a neutral surface; for a plate, this is the mid-surface. A choice
of energy is a choice of constitutive relations, with the potential to couple the stretching
and bending response of a structure in a variety of simple settings; induction of stretch-
ing by moments may occlude fundamental questions regarding the geometric coupling of
stretching and bending, particularly as may occur in elastic singularities. The present pa-
per and its companion [1] offer an extension of primitive bending measures for straight
rods and axisymmetric plates to classes of thin elastic bodies including general isotropic
plates, curved rods, and shells. These measures may serve as ideal building blocks for the-
ories of thin structures. The plate measure can be seen as a symmetrized form of a tensor
suggested by Atluri [8], while those for curved rods and shells that we derive here, and
also physically justify in [1], differ from the many ad hoc postulated forms in the litera-
ture.

The basis of the present derivation is a bulk elasticity theory formed by systematic expan-
sion in Biot strains or similar quantities linear in stretch [4], including low-order terms not
present in neo-Hookean elasticity or theories constructed from metric differences (Green-
Lagrange or Euler-Almansi strains). The use of stretch tensors requires consideration of a
rotation tensor or tensor square root operations, and in three dimensions these introduce
significant complications not present when using metric components. However, simplifica-
tions are possible in the setting of a two-dimensional surface, with all the relevant quantities
eventually related to metric and curvature components such that the rotations need never be
explicitly found.

The dimensional reduction we follow employs a generalized Kirchhoff-Love kinematics
[9, 10] that avoids the internal inconsistencies of the classical assumptions, while retain-
ing the flexibility to not presuppose any particular scaling of stretching or bending with
thickness, as has been done in more rigorous mathematical approaches. We combine this
with an approach to constructing effective shell field theories from a series of papers by
Steigmann [11–14], while taking care to compute through-thickness derivatives of stretches
in a manifestly symmetric way.

The structure of the paper is as follows. Notation, the basic kinematics of plates and
shells, and important tensors such as stretches and curvatures, are introduced in Section
2. Quadratic-stretch elasticity and its associated energy are reviewed in Section 3. Sec-
tion 4 applies a dimensional reduction procedure to this energy. Section 5 presents the
resulting two-dimensional stretching and bending energies for shells, the latter based on
a new tensor measure of bending. Plates, whose bending energy is dilation-invariant, and
curved rods are discussed as special cases. Comparison is made with a commonly used dis-
crete bending energy. Field equations and boundary conditions are presented in Section 6.
The linearity of the force and moment and the consequences for deformation under sim-
ple loadings are demonstrated, including recovery of the unique neutral surface of classi-
cal linear elasticity. Finally, Section 7 replaces the description in terms of stretches and
rotations with another in terms of deformed and referential metric and curvature compo-
nents.
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2 Notation, Kinematics, Stretch, Rotation, and Curvature

We adopt the following notation. Tr D and Det D are the trace and determinant of a tensor D,
whereas det[Dij ] is the determinant of a matrix with entries Dij . sym D = 1

2 (D + D!) is the
symmetric part of a second order tensor D whose transpose is D!. ‖D‖ is an (unspecified)
tensor norm. We will employ the shorthands Tr2() ≡ [Tr ()]2, Tr ()2 ≡ Tr

[
()2

]
, and sym2() ≡

[
sym ()

]2, sym ()2 ≡ sym
[
()2

]
.

An elastic body B of reference thickness h is parameterized by a system of material
coordinates {ηα, ζ }, where −h/2 ≤ ζ ≤ h/2 is a coordinate indicating distance from a
mid-surface S; in the kinematics we consider, it will be a normal coordinate and h will
be presumed small with respect to other relevant length scales. Latin indices run over
all three material coordinates, while Greek indices run over the two lateral coordinates
ηα . We consider deformations between a referential (rest) embedding R(ηα, ζ ) with mid-
surface X(ηα) = R(ηα,0) and a present (deformed) embedding r(ηα, ζ ) with mid-surface
x(ηα) = r(ηα,0), all in E3. We denote (non-covariant) material derivatives with a sub-
scripted d , however, following common practice and ensuring compactness of derivations,
we will often denote the through-thickness ζ -derivatives with a prime ′. The embeddings R
and r have, respectively, coordinate bases in the form of tangents Gi = diR and gi = dir and
reciprocal tangents defined through the relations Gi · Gj = gi · gj = δi

j . The mid-surfaces
X and x have, respectively, unit normals N and n, tangents Aα = dαX and aα = dαx, and
reciprocal tangents defined through the relations Aα · Aβ = aα · aβ = δα

β . Metric and inverse
metric components on the referential and present bodies and mid-surfaces follow naturally:
Gij = Gi · Gj , Gij = Gi · Gj , gij = gi · gj , gij = gi · gj , Aαβ = Aα · Aβ , Aαβ = Aα · Aβ ,
aαβ = aα · aβ , aαβ = aα · aβ . These can be applied to raise or lower indices only on those
objects corresponding to the same manifold as the metric in question. We define referen-
tial and present surface metric determinants A = det[Aij ] and a = det[aij ], surface covari-
ant derivatives ∇̄α and ∇α , and surface gradients ∇̄ ≡ dα( )Aα and ∇ ≡ dα( )aα . The sym-
metric curvature tensors of the referential and present surfaces are b̄ = b̄αβAαAβ = −∇̄N
and b = bαβaαaβ = −∇n, where b̄αβ = dβAα · N = −Aα · dβN and bαβ = dβaα · n =
−aα · dβn. The surfaces’ mean and Gaußian curvatures are invariants, H̄ = 1

2 Tr b̄ = 1
2 b̄α

α ,

K̄ = Det b̄ = 1
2

(
b̄α

α b̄
β
β − b̄α

β b̄β
α

)
, H = 1

2 Tr b = 1
2bα

α , K = Det b = 1
2

(
bα

αb
β
β − bα

βbβ
α

)
, where

of course b̄α
β = Aαγ b̄γβ and bα

β = aαγ bγβ .
The reference and deformed configurations are taken to be of the form

R(ηα, ζ ) = X(ηα) + ζN(ηα) , (1)

r(ηα, ζ ) = x(ηα) + φ(ηα, ζ )n(ηα) , (2)

with N constant for plates. Defining these forms is equivalent to prescribing a deformation
mapping that maps the reference position R of any material particle to a deformed position
r. The classical Kirchhoff-Love hypotheses assume φ = ζ , and thus do not allow changes in
thickness whose associated stretching energetics need to be accounted for through another
step in the calculation that is inconsistent with the kinematics. The generalized kinematics
(2) maintains the assumption that material fibers normal to the reference surface remain
so under deformation, but allows for changes in thickness. One of the first appearances of
this generalized theory in the nonlinear deformations of shells may be found in Biricikoglu
and Kalnins [15], who considered the function φ to be linear in ζ . Later, Chernykh [16] as
well as Stumpf and Makowski [9] explored quadratic and more general dependence of φ

on ζ , arguing that the distribution of normal strains in the normal direction is essential for
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modeling large rotations and deformations of shells. While the complexity of the resulting
field equations increases with the polynomial order of φ, its coefficients can be easily de-
termined when constraints on strains (or stresses), such as incompressibility, are imposed.
Recently, Ozenda and Virga [10] revisited the generalized Kirchhoff-Love theory, propos-
ing that the leading coefficients of an expanded φ in ζ for compressible materials can be
obtained by minimization of stretching and bending energies. Following this work, we ex-
pand

φ(ηα, ζ ) = α1(η
α)ζ + α2(η

α)ζ 2 + O(ζ 3) , (3)

with classical Kirchhoff-Love having α1 = 1 and all other coefficients zero. For compress-
ible materials, the coefficients αk(η

α) can be determined either by energy minimization [10]
or by applying three-dimensional field equations and boundary conditions on the top and
bottom of the shell [14]; in either case, the form of φ will be material-dependent. For
incompressible materials, the coefficients are determined directly by the kinematic con-
straint, and φ is material-agnostic. We further assume that φ′(ηα,0) = α1(η

α) > 0; recall
that a prime ′ denotes differentiation with respect to ζ . As shown in [10] in the con-
text of plates, this assumption means that for sufficiently small thickness h, the through-
thickness derivatives dominate the surface derivatives of φ, so that |dβφ(ηα, ζ )Gβ | (
φ′(ηα, ζ ) everywhere. This allows a simplifying approximation of the deformation gradi-
ent,

dir Gi = giGi ≈ ∇̄x + φ∇̄n + φ′nN , (4)

where ∇̄x = dαx Aα = aαAα can be thought of as a two-dimensional deformation gradient
for the mid-surface. These “two-point” tensors are elements of the tensor product between
the tangent spaces of the referential and present manifolds.

The polar decomposition of the deformation gradient is

giGi = Q ·!=" · Q , (5)

where the two-point rotation tensor Q ∈ SO(3) and the symmetric positive-definite right
(referential) ! and left (present) " stretch tensors are three-dimensional. These tensors
encode the ratio of deformed length to rest length, reducing to the identity I in an unstrained
body. Through a justifiable abuse of notation, it is also possible [17] to decompose the two-
dimensional deformation gradient using

aαAα = Q · U = V · Q , (6)

where U and V are two-dimensional, respectively restricted to the reference and present
mid-surfaces where ζ = 0, and the three-dimensional rotation Q is evaluated on the mid-
surface. The rotation transforms unit normals according to Q · N = N · Q! = n and
Q! · n = n · Q = N. Thus, Q′ · N = N ·

(
Q!)′ =

(
Q!)′ · n = n · Q′ = 0. In keeping with

a generalized Kirchhoff-Love kinematics in which normals remain normal, we will further
assume that the rotation does not vary significantly through the thickness, so that ‖Q′‖|ζ=0

is at most quadratic in a suitably normalized thickness and, thus, the ζ -derivative of the
deformation gradient, used later to derive the bending energy, has the form (giGi )′|ζ=0 ≈
Q ·!′|ζ=0 [18]. This is in line with the assumptions on ‖Q′‖ adopted in [19, 20].

While, throughout this paper, we will be making use of the stretch tensors rather than the
more familiar right # and left $ Cauchy-Green deformation tensors, calculation of the latter
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lends insight into the form of the former. Using the approximation (4) of the deformation
gradient and partially adopting the notation of [10], we find

#= (giGi )! · giGi = gij GiGj = Cφ + (φ′)2NN , (7)

Cφ = C + φ(∇̄x! · ∇̄n + ∇̄n! · ∇̄x) + φ2∇̄n! · ∇̄n , (8)

C = ∇̄x! · ∇̄x = aαβAαAβ , (9)

$= giGi · (giGi )! = Gij gigj = Bφ + (φ′)2nn , (10)

Bφ = B + φ(∇̄x · ∇̄n! + ∇̄n · ∇̄x!) + φ2∇̄n · ∇̄n! , (11)

B = ∇̄x · ∇̄x! = Aαβaαaβ , (12)

where Cφ , C, Bφ , B are two-dimensional tensors. The subscript φ on Cφ and Bφ indicates
their dependence on the normal coordinate ζ through the function φ, whereas C and B are
respectively equal to Cφ and Bφ at ζ = 0. We may rewrite (8) and (11) in terms of the
curvature tensor of the deformed surface

Cφ = C − 2φ∇̄x! · b · ∇̄x + φ2∇̄x! · b2 · ∇̄x , (13)

Bφ = B − φ (B · b + b · B) + φ2b · B · b . (14)

As Q! · Q = I = Q · Q! is the three-dimensional identity, from (5) we see that #=!2

and $="2. Then (7) and (10) imply that the right and left stretches are of the similar form

!= Uφ + φ′NN , (15)

"= Vφ + φ′nn , (16)

with U and V from (6) respectively equal to Uφ and Vφ at ζ = 0.

3 Quadratic-Biot Elastic Theory

The Cauchy-Green deformation tensors and their associated (Green-Lagrange or Euler-
Almansi) strains involving metric differences are already quadratic in stretch, meaning that
an energy quadratic in these strains will be quartic in stretch. In order to construct our prim-
itive bending energy, we will instead employ a strain measure linear in stretch, guided by
previous works [4–7]. This measure is the Biot strain EB =!− I, a referential tensor whose
present counterpart, with the same eigenvalues, is the Bell strain"−I. Note that these three-
dimensional quantities, which we will evaluate on the surface, should not be confused with
the corresponding surface Biot and Bell strains U − AαAα and V − aαaα that will appear
later in our reduced energy. Our use of Biot rather than Bell is an arbitrary choice that makes
use of prior derivations [4], however, when we wish to use the curvature tensor of the de-
formed surface in our description of bending, we will find that the left surface stretch V
appears naturally.

The principal invariants of EB are
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i
EB
1 = Tr EB = (1 + (2 + (3 ,

i
EB
2 = 1

2

(
Tr2EB − Tr E2

B

)
= (1(2 + (2(3 + (1(3 , (17)

i
EB
3 = Det EB = (1(2(3 ,

where the eigenvalues (k are the principal Biot strains. The most general isotropic quadratic
energy density in terms of the symmetric strain EB is [4]

W(EB) = c1(i
EB
1 )2 + c2i

EB
2 , (18)

also known as a “semilinear” material [3] or, in two dimensions, a “harmonic” material
[2]. ForW to be positive definite, the constant material parameters satisfy c1 ≥ −c2/3 and
c2 ≤ 0.1 The conjugate quantity to the Biot strain is the symmetric Biot stress

!Biot =
∂W
∂EB

= (2c1 + c2)i
EB
1 I − c2EB . (19)

From (15) we may see that on the mid-surface (ζ = 0), the Biot strain is U + α1NN − I.
Expanding the three-dimensional Biot strain in ζ ,

EB = (U + α1NN − I) + ζ!′∣∣
ζ=0 + 1

2ζ 2!′′∣∣
ζ=0 + O(h̃3) , (20)

where we interpret h̃ as being the thickness suitably normalized by a length scale related to
the derivative of the stretch, a quantity that does not in general coincide with the geometric
curvature. The first term in (20) is of the order of a characteristic Biot strain (. The result-
ing quadratic energy density we obtain will neglect terms of O((3, h̃(2, h̃2(, h̃3). Note
that integration over the thickness will result in a factor of (non-normalized) h multiplying
everything, and the volume form for a shell will multiply by additional terms containing
h normalized by rest curvatures, which are related to the relative shallowness of the shell
rather than the bending deformations affecting h̃.

4 Reduction

Our descent into two dimensions will be ferried by Steigmann [11–14], whose procedure
we employ throughout the present section. However, we provide certain twists leading to
new results. In particular, the treatment of the through-thickness derivative of the stretch
is delicate and requires care to avoid introducing artificial asymmetries into the resulting
bending measures.2

The total elastic energy of the body B is

E=
∫

B
dVW [EB(ηα, ζ )] =

∫

S

∫ h/2

−h/2
dζ dη1dη2

√
A(1 − 2ζ H̄ + ζ 2K̄)W [EB(ηα, ζ )]

≡
∫

S
dAw(ηα) , (21)

1Note that the bounds on these coefficients mentioned in [4] were overly conservative.
2We don’t want to end up with “odd bending elasticity”.
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where dV = dζ dA(1 − 2ζ H̄ + ζ 2K̄) is the referential volume form of the body and
dA =

√
Adη1dη2 is the referential area form of its mid-surface. For three-dimensional en-

ergy densitiesW explicitly written in terms of the embeddings, one may straightforwardly
integrate over ζ to obtain the two-dimensional energy density w. However, ourW in terms
of Biot strains is only implicitly related to the embeddings, either through tensor square root
operations or simultaneous consideration of rotation fields. As we only require a low-order
approximation of w, these difficulties can be avoided by expanding the integrand [11, 12].
Defining

Z≡ (1 − 2ζ H̄ + ζ 2K̄)W . (22)

The two-dimensional energy density w is, at the order we consider, a sum of stretching ws

and bending wb terms,

w/h = ws + h2wb + O((3, h̃(2, hH̄(2, h̃2(, hH̄ h̃(, h2K̄(, h̃3) , (23)

ws =Z
∣∣
ζ=0 ,

wb = 1
24Z′′∣∣

ζ=0 .

We will find later that to this order, the shell terms in the geometric prefactor in (22) will not
appear in any of our energies. From here onwards, we will refrain from writing long lists of
higher-order terms when writing expressions.

The bending term contains through-thickness derivatives of Z. Recalling the definition
(19) of the Biot stress, and using the chain rule and the fact that derivatives of EB and ! are
the same, we may write, to the relevant order,

Z′|ζ=0 = !Biot :!′|ζ=0 = (!Biot : U′
φ + !Biot : φ′′NN)|ζ=0 ,

Z′′|ζ=0 = (!′
Biot :!′ + !Biot :!′′)|ζ=0

= (!′
Biot : U′

φ + !′
Biot : φ′′NN + !Biot : U′′

φ + !Biot : φ′′′NN)|ζ=0 . (24)

However, further simplification is possible using boundary conditions on the top and bottom
of the shell, and the three-dimensional balance of linear momentum [13, 14]. In our specific
case, simple informal arguments may be made as follows. As there are no normal stresses on
the top and bottom of the thin shell, the corresponding normal stresses and their derivatives
evaluated at the mid-surface will be small. Additionally, the tangential stresses will be of the
order of the mid-surface strain, although their ζ -derivatives are still significant. Therefore,
the only term to retain in (24) is

Z′′|ζ=0 ≈ !′
Biot : U′

φ

∣∣
ζ=0 (25)

=
[
(2c1 + c2)

(
Tr U′

φ + φ′′)Tr U′
φ − c2Tr (U′

φ)2]
∣∣∣
ζ=0

, (26)

using (i
EB
1 )′ = [Tr(U′

φ) + φ′′]|ζ=0. Note that φ′′|ζ=0 = 2α2. The requirement that the nor-
mal stress and its first derivative are effectively zero will later determine the values of the
coefficients α1 and α2.

To compute the ζ -derivative of the lateral stretch in (25), we recall the assumption pre-
sented in Section 2 on the smallness of the ζ -derivative of the rotation, which implies that
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(gαGα)′|ζ=0 ≈ Q ·U′
φ |ζ=0 and (Gαgα)

′|ζ=0 ≈ U′
φ ·Q!|ζ=0. Building the deformation gradient

requires the basis vectors [21]

Gα = Aα + ζdαN = (AβAβ − ζ b̄) · Aα , (27)

Gα = (AβAβ + ζ b̄) · Aα + O(h2b̄2) , (28)

gα = aα + φdαn = (aβaβ − φb) · aα . (29)

As φ depends on ζ through (3), while all the vectors are only defined on the mid-surface,
we obtain

(gαGα)′|ζ=0 = −α1b · aαAα + aαAα · b̄ . (30)

We now take care to write the derivative in a manifestly symmetric way,

U′
φ

∣∣
ζ=0 = 1

2

[
Q! · (gαGα)′ + (Gαgα)

′ · Q
] ∣∣

ζ=0 = −sym
[
(α1Q! · b · Q − b̄) · U

]
. (31)

This expression is worthy of comment for two reasons, whose consequences will both prop-
agate forward into our final bending measure. One is that we have avoided deriving an
unsymmetric quantity such as Atluri’s [8] Q! · b · Q · U. The other is that the referential
curvature tensor appears dotted with the stretch, in contrast to its solitary uncoupled appear-
ance in the entirely ad hoc postulated forms for curved rods and shells in [8, 17, 22–25].
We note also that in independent-rotation shell theories [18–20], it is useful to consider both
symmetric and antisymmetric parts of a “relaxed” deformation measure Q! · giGi and its
derivatives. When constraining such a theory to conventional elasticity, the symmetric part
naturally recovers the right stretch tensor.

While the appearance of the rotations in (31) may appear complex and intimidating, we
will eventually see that no explicit use of rotation will be required to compute energies,
forces, or torques in a shell. The presence of some sort of two-point tensor is necessary to
meaningfully relate the present and referential curvatures b and b̄. Note that our notation is
not equivalent to that employed in, for example, [26] and [27], in which two tensors living
in the same tangent space are directly subtracted from each other and only one of them is
actually a curvature tensor.

The traces appearing in (26) are

Tr U′
φ

∣∣
ζ=0 = U′

φ : AαAα
∣∣
ζ=0 = −Tr sym

[
(α1Q! · b · Q − b̄) · U

]

= −Tr sym
[
V · (α1b − Q · b̄ · Q!)

]

= −α1Tr sym(V · b) + Tr sym(b̄ · U) , (32)

Tr(U′
φ)2

∣∣
ζ=0 = U′

φ : U′
φ

∣∣
ζ=0 = Tr sym2 [

(α1Q! · b · Q − b̄) · U
]

= Tr sym2 [
V · (α1b − Q · b̄ · Q!)

]
. (33)

The symmetrization in (32) is redundant but retained for emphasis. It remains to determine
the coefficients α1 and α2 appearing in (26) and (32-33) for this isotropic quadratic-Biot
material. In the classical Kirchhoff-Love treatment, they are taken as unity and zero, respec-
tively.
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4.1 Coefficients of φ

The first coefficient is determined by the requirement that !Biot · N|ζ=0 = 0. From (19) and
(20) we have i

EB
1 |ζ=0 = Tr (U + α1NN − I) and

α1 = 1 − β Tr (U − AαAα) , (34)

β ≡ 1 + c2/2c1 , (35)

where U − AαAα is the surface Biot strain whose invariants are identical to those
of the surface Bell strain V − aαaα . (Note that Tr I = 3, Tr NN = Tr nn = 1, and
Tr AαAα = Tr aαaα = 2.) This is equivalent to minimizing ws with respect to α1. Recall that
c1 can only vanish if c2 vanishes, which combination implies no elastic energy whatsoever.

Note that while the full form (34) will be used in the stretching energy, when incorpo-
rating α1 into the bending energy the β term proportional to the surface strain provides a
higher-order correction that we neglect. One way to express this is that the Poisson effect
makes an important correction to the stretching content but not to the bending, which is
why it was acceptable to ignore it in the physical argument associated with Figure 2 of the
companion paper [1].

The second coefficient, which appears only in the bending content, is determined by the
requirement that !′

Biot · N|ζ=0 = 0. From the derivative of (19) and (32) we have

α2 = β

2

[
α1Tr sym(V · b) − Tr sym(b̄ · U)

]
,

≈ β

2

[
Tr sym(V · b) − Tr sym(b̄ · U)

]
. (36)

Arguments from [28] may be used to show that this is equivalent to minimizing the !′
Biot :!′

term from wb with respect to α2 as in [10].
At this point we observe that the generalized Kirchhoff-Love derivation has, to the order

we consider, simply reproduced the coefficients we would have obtained through the clas-
sical Kirchhoff-Love derivation with its inconsistent assumptions combining plane stress
force balance and plane strain kinematics.

5 Energies for Shells

5.1 Stretching Energy

As expected, the stretching content ws takes a simple form in terms of the mid-surface Biot
strain U − AαAα or Bell strain V − aαaα . Begin with

ws =
[
c1(i

EB
1 )2 + c2i

EB
2

]∣∣
ζ=0 = c1

[
β Tr2EB + (1 − β)Tr E2

B

]∣∣∣
ζ=0

, (37)

and recall from (35) that β ≡ 1 + c2/2c1. Using

Tr EB
∣∣
ζ=0 = Tr (U + α1NN − I) = (1 − β)Tr (U − AαAα) , (38)

Tr E2
B

∣∣
ζ=0 = Tr

(
[U − AαAα]2 + [(α1 − 1)NN]2) = Tr (U − AαAα)2 + β2 Tr2 (U − AαAα) ,

(39)
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we obtain

ws = −c2

2

[
β Tr2(U − AαAα) + Tr (U − AαAα)2

]

= −c2

2

[
β Tr2(V − aαaα) + Tr (V − aαaα)2

]
. (40)

For an incompressible neo-Hookean material withWnH ∝ Tr#= Tr!2, only Tr U2 would
appear in the energy.

5.2 Bending Energies

The same tensor measures of bending appear in all of the quantities computed in (32), (33),
and (36) that form the building blocks of plate and shell bending energies. Setting α1 = 1 at
our order of approximation of the bending terms, these present and referential measures are

Lshell = sym[V · (b − Q · b̄ · Q!)] , (41)

L̄shell = sym[(Q! · b · Q − b̄) · U] . (42)

These share the same invariants. They are objective, in that under a superimposed rotation
Q̃ of the present configuration the present tensor Lshell → Q̃! ·Lshell · Q̃ and L̄shell does not

change, while under a superimposed rotation ˜̄Q of the reference configuration the present

tensor Lshell does not change while the referential tensor L̄shell → ˜̄Q! · L̄shell · ˜̄Q. As men-
tioned previously, the appearance of the rotation Q and its inverse Q! in (41-42) allows
both curvature tensors to be properly represented in either a present or referential setting.
The same relations hold between the stretches, namely V = Q · U · Q! and U = Q! · V · Q,
as these are present and referential representations of the strain. Note that, for example, the
referential representation of the curvature tensor of the present surface Q! · b · Q is an en-
tirely different tensor than both the curvature tensor of the referential surface b̄ as well as
the tensor bαβAαAβ used by ESK [29], although it coincides with the latter in the special
case of a mid-surface isometry.

The unsymmetric tensor Q! · b · Q · U was suggested by Atluri [8] based on calcula-
tions related to the derivation of stress and strain measures for variational formulations of
shells. However, both Atluri [8] and Pietraszkiewicz [17] propose subtracting the referen-
tial curvature in an ad hoc shell bending measure of the form Q! · b · Q · U − b̄. The new
measures (41-42) arise naturally from the derivatives of stretch whose computation is nec-
essary for the reduction of a quadratic-Biot energy, generalizing the one-dimensional and
axisymmetric derivations in [5] and [6].

Employing (32), (33), and (36) to evaluate (26), we obtain the bending content in the
simple form

wb = −c2

24

[
β Tr2Lshell + TrL2

shell

]
= −c2

24

[
β Tr2L̄shell + Tr L̄2

shell

]
(43)

= −c2

24

[
(1 + β)Tr2Lshell − 2DetLshell

]
= −c2

24

[
(1 + β)Tr2L̄shell − 2DetL̄shell

]
. (44)

For an incompressible neo-Hookean material, only TrL̄2
shell would appear in the energy.

Any deformation that leaves the bending measure Lshell invariant may be defined as a
“pure stretching” deformation that affects only ws . By contrast, isometric deformations of
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the mid-surface are “pure bending” that affects only wb . For such deformations, U = AαAα ,
V = aαaα , and TrLshell = 2(H − H̄ ). However, as will be seen in Section 6, this definition
of pure bending is not the expected response of a curved shell to a pure applied moment.

Consider the one-dimensional case of the energy (43), corresponding to either unidirec-
tional curvature of a shell, or a naturally-curved rod (beam), with rest mid-line curvature
Trb̄ = Tr(Q · b̄ · Q!) = κ̄ , deformed so as to have mid-line curvature Trb = κ and mid-line
stretch TrV = TrU = λ. The invariants in the energy reduce to a single quantity

TrLshell = λ (κ − κ̄) . (45)

The bending measure λκ for a naturally-straight rod has been employed for over half a
century, beginning with the work of Antman [22–24]. However, these authors and others
[25] propose the one-dimensional or axisymmetric measures λκ − κ̄ , which is the one-
dimensional form of the measures proposed by Atluri [8] and Pietraszkiewicz [17]. Another
common choice is the difference in curvatures κ − κ̄ . The difference between these quantities
is illustrated in their corresponding definitions of “pure stretching”. As discussed in the
companion paper [1], the measure (45) does not change when a naturally-curved body is
extended along itself in its reference configuration, such that κ = κ̄ and the tangential stretch
is uniform across the thickness of the body.

5.2.1 Plate Bending Energy

Certain things simplify when b̄ = 0. The measures Lshell and L̄shell reduce to

L = sym(V · b) , (46)

L̄ = sym(Q! · b · Q · U) . (47)

The apparent asymmetry in these expressions is a purely notational issue arising from our
use of the present curvature b in both, rather than designating a symbol for the referential
version of this tensor Q! · b · Q.

The plate bending measures (46-47) are invariant under spatial dilations x → D (x − xc),
D and xc constant, which transform aα → Daα , aα → D−1aα , and conserve n → n,
the unit normal perpendicular to these. Thus, the rotation Q → Q is conserved while
V = aαAα · Q! → DV and U = Q! · aαAα → DU, and b = dβaα · n aαaβ → D−1b, so that
any bilinear product of stretch and curvature is conserved. Thus, any plate bending energy
constructed from invariants of (46) or (47) will be dilation-invariant, with dilations super-
imposed on any deformed surface constituting purely stretching contributions to the elastic
energy. This generalizes the observations in [7] on the energy of plate-like rings and the
one-dimensional measure λκ corresponding to the plate case of (45).

Under isometric deformations of the mid-surface, we have L = b and thus the geometric
quantities TrL = 2H and DetL = K = 0 will appear in the energy density obtained from
the special case of (44) for isometric plates. In general, DetL = Det V Det b = JK where
the Jacobian determinant J = √

a/A and da = √
a dη1dη2 is the present area form. Thus,

part of the plate bending energy is a purely geometric quantity,
∫

dADetL =
∫

dAJK =∫
da K , which is equal to a boundary term plus a topological invariant.

5.2.2 Comparison with the Discrete SN Energy

Numerical implementation of energies such as (40) and (43) may be achieved either through
finite element or molecular dynamics methods, the latter offering an easier route if a simple
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algorithm is available. While we do not offer such an algorithm here, we observe first that
the computation of stretches in the stretching energy may be easily obtained from interbead
distances, and second that a discrete model commonly used in soft matter applications ac-
tually generates part of the plate bending energy. The latter is a fortunate surprise, as the
model was never proposed as a discretization of a dilation-invariant plate energy but rather
incorrectly put forward, and is often employed, as a discretization of an energy based on
squared curvature.

Seung and Nelson [30] and many subsequent authors employ an energy of the form

ESNb ∝
∑

〈a, b〉
(na − nb)

2 , (48)

which sum of normals is taken over nearest-neighbor facets in a triangular lattice. As the
bonds of this lattice have unit reference length ‖Xa − Xb‖ = 1, the summand in (48) repre-
sents the square of (1/

√
3)(na −nb)/(Xa −Xb), which is (1/

√
3) times the discretization of

the projection of the referential gradient of the normal ∇̄n on a unit vector in the direction
between the triangle centers. This should be contrasted with (na − nb)/(xa − xb), the same
operation on the gradient ∇n, which is the relevant quantity for generating geometric cur-
vature terms. Note the analogous distinction whereby differences in positions x (with unit
referential distance) are discretizations of components of the referential gradient of displace-
ment, rather than of the present gradient of displacement, which is just the identity tensor.
The authors [30] mistakenly assume that na − nb is the discretization of the present gradient
of the normal ∇n rather than the referential ∇̄n, and thus claim that (48) is the discretiza-
tion of a Helfrich energy ∝ EH =

∫
Sda (2H 2 − K). This conclusion is erroneous, both for

the misconception about the gradient, as well as the fact that the sum over triangles is not
an area-weighted integral

∫
da but a referential (mass-weighted) integral

∫
dA =

∫
J−1da.

Other related issues were discussed in [31].
Following similar lines as in [30] to interpret the sum over a triangular lattice, the con-

tinuum limit of the SN energy is actually

limESNb ∝
∫

S
dATr(∇̄n · ∇̄n!) =

∫

S
dATr(V2 · b2) . (49)

This is one of the dilation-invariant terms appearing in the plate form of the energy derived
in this paper. The term ∇̄n! · ∇̄n, recently proposed by Virga [32] as a measure of pure
bending, would provide the same trace. A reduction of an incompressible neo-Hookean
energy provides a single term of the form Tr(V2 · b2) + Tr(V · b · V · b). Any of these are
single-term dilation-invariant plate energies, lacking one of the two parameters available in
a general isotropic quadratic energy.

Finally, we should emphasize that a naïve extension of (48) to include referential normals
will not produce a shell energy with the properties of that derived in this paper.

6 Field Equations and Boundary Conditions

To derive field equations and boundary conditions, we modify the approach found in
Wiśniewski [18] that separates the variation into pieces associated with the variation of
position δx, and a pseudovector δθ that characterizes variation of rotation through the re-
lation −Q · δQ! · () = δQ · Q! · () ≡ δθ × (). However, we do not employ his kinematic
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assumption to perform the variation of curvature, which appears to have led to neglect of the
normal component of the resulting force in [18].

We evaluate the variation of the energy

E=
∫

S
dA(hws + h3wb) , (50)

using the referential forms (40) and (43),

hδws =h
∂ws

∂U
: δU ≡T : δU = −hc2

[
β(Tr U−2)AαAα + (U−AαAα)

]
: δU,

(51)

h3δwb =h3 ∂wb

∂L̄shell

: δL̄shell ≡M : δL̄shell = −h3 c2

12

[
βTr (L̄shell)AαAα + L̄shell

]
: δL̄shell .

(52)

It can be shown [5, 18] that T =
∫ h/2

−h/2 dζ !Biot and M =
∫ h/2

−h/2 dζ ζ!Biot. Clearly T is linear
in the surface Biot strain U − AαAα and M is linear in the bending measure L̄shell but,
as briefly explained in the companion paper [1], the important property of linearity in the
resulting field equations depends on whether the variations δU and δL̄ themselves intro-
duce any additional nonlinearities. Energies based on invariants of geometric curvature or
Green-Lagrange strain, for example, will result in nonlinear coupled field equations, while
an energy built from Biot strains will lead to forces and moments linear in the stretching and
bending measures derived therefrom [5–7].

Using U = Q! ·aαAα and the fact that δaα = δdαx = dαδx, the variation of the stretching
content (51) may be written

hδws = T : (δQ! · aαAα + Q! · δaαAα)

= −Q · T · Aα · δθ × aα + Q · T · Aα : δaα

= −aα × (Q · T · Aα) · δθ + ∇̄α(δx · Q · T · Aα) − ∇̄α(Q · T · Aα) · δx . (53)

Noting that L̄ = sym(Q! · bα
β aαAβ − b̄ · U), the variation of the bending content (52) may

be written

h3δwb = M : sym
[
δQ! · bα

β aαAβ + Q! · (δbα
β aαAβ + bα

β δaαAβ) − b̄ · δU
]
. (54)

Using the Gauss-Weingarten relations ∇βaα = bαβn and bα
βaα = −dβn, and defining the

two-point tensor

µ = Q · M , (55)

such that µγβaγ = Q · M · Aβ and µγβ = aγ · Q · M · Aβ , the term in (54) involving variation
of the rotation becomes

M : sym(δQ! · bα
β aαAβ) = (Q · M · Aβ) · (δθ × dβn)

=
[
aγ × ∇̄βµγβn + ∇̄β(n × µγβaγ )

]
· δθ . (56)

Using δaαβ = −aαγ aβηδaγ η and δbαβ = ∇βdαδx · n (this relation is nontrivial and holds
even though the variation doesn’t pass through the covariant derivative in general [33]),
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along with the Piola identities ∇α

[
J−1()α

]
= J−1∇̄α()

α or ∇̄α [J ()α] = J∇α()
α , the middle

terms in (54) become
∫

S
dAM : sym[Q! · (δbα

β aαAβ + bα
β δaαAβ)]

=
∫

S
dA

(
µα

βδbα
β + µγβbα

βaγ · δaα

)

=
∫

S
dA

[
∇̄α

(
∇̄βµαβn

)
· δx + ∇̄α

(
− ∇̄βµαβn · δx + µβαn · δaβ

)]
. (57)

The final term in (54) involving the referential curvature tensor is treated in a similar manner
as the stretching terms, becoming

M : sym(−b̄ · δU) = aα × (Q · sym(M · b̄) · Aα) · δθ − ∇̄α(δx · Q · sym(M · b̄) · Aα)

+ ∇̄α(Q · sym(M · b̄) · Aα) · δx . (58)

Combining everything, we obtain the variation of the energy

δE=
∫

S
dA

(
∇̄α

(
fα · δx + µβαn · δaβ

)
− ∇̄αfα · δx −

[
aα × fα + ∇̄α

(
µβαaβ × n

)]
· δθ

)
,

(59)

where the conserved force is

fα = Q · [T − sym(M · b̄)] · Aα − ∇̄βµαβn , (60)

with T and M defined in (51-53) and µ in (55). The field equation conjugate to the variation
of position is the balance of linear momentum

∇̄αfα = 0 , (61)

which is accompanied by conditions on a boundary ∂S with tangent normal ν̄α ,

ν̄αfα = 0 , (62)

ν̄αµ
βαn = 0 . (63)

Note that the boundary condition conjugate to the derivative of the variation of position is
not strictly for the moment, although the latter could be derived from it. The piece of the
variation (59) conjugate to δθ directly provides the balance of angular momentum in the
traditional form for shells,

∇̄α(µ
βαaβ × n) + aα × fα = 0 , (64)

while the conserved torque can be identified either by using the balances (61) and (64), or
by inserting a small rotation δx = εω̂ × x, εω̂ constant, into the total boundary term in (59).
Either way one obtains

mα = µβαaβ × n + x × fα , (65)
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such that

∇̄αmα = 0 . (66)

The quantity µβαaβ is linear in the bending measure L̄shell, just as the tangential force is
linear in the surface Biot strain.

Consider applying a pure moment to the surface. For a plate, b̄ = 0 and it is clear from
the form of the tangential part of fα = 0 that the surface Biot strain will vanish, so that the
response will be a mid-plane isometry. For a shell, however, the term containing b̄ indi-
cates that the mid-surface will be strained. We find that this strain recovers the uniquely
defined neutral surface of a naturally-curved beam from classical linear elasticity. This sur-
face is a property of the structure that does not depend on the magnitude of the applied
moment. For a plate, by symmetry, this must be the mid-surface. This result contrasts with
those arising from models based on squared curvature or the bending measures derived from
Green-Lagrange strains, for which a symmetric plate’s midsurface is not neutral, and thus
no unique neutral surface exists independently of the applied moment. For shells, models in
which a referential curvature is subtracted from a plate bending measure similar to ours also
fail to reproduce the classical neutral surface.

For a thin, curved beam with rectangular cross section, the neutral line is displaced
towards the concave side of the beam by a distance ζn = h( h

12 κ̄ + O(h3κ̄3)) from the
centerline [34]. Consider the tangential stretch λ(ζ ) parallel to the mid-surface; on the
neutral line λ(ζn) = 1. In one dimension, a pure moment yields T = M · b̄ and thus
λ(0) − 1 = h2

12 λ(0)(κ − κ̄)κ̄ . Similarly to (20), we may expand λ(ζ ) ≈ λ(0)(1 − ζ(κ − κ̄))

and set this equal to unity to find the neutral line at ζn ≈ h2

12 κ̄ .
Given that this neutral surface is a property of the structure, it should be possible to

reformulate everything in terms of its embedding rather than that of the mid-surface.

7 Expressions in Terms of Metrics and Curvatures

While formulations of three-dimensional elasticity in terms of stretches and rotations can
be difficult or require approximations [4], certain simplifications are possible for two-
dimensional bodies that allow us to express the energy purely in terms of the components
of the present and referential metric and curvature tensors, which are easily computed from
derivatives of position.

The following relations can be obtained either through U · U = C and V · V = B or the
Cayley-Hamilton theorem in two dimensions [17, 35]:

U = 1
Tr U

[
U · U + (Det U)AαAα

]
, V = 1

Tr V

[
V · V + (Det V)aαaα

]
, (67)

where

Det U = Det V = J =
√

a/A, (68)

Tr U = Tr V =
√

aγ ηAηγ + 2
√

a/A, (69)

and thus

Uαβ = aαβ + √
a/AAαβ√

aγ ηAηγ + 2
√

a/A
, V αβ = Aαβ + √

a/Aaαβ

√
aγ ηAηγ + 2

√
a/A

, (70)
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making use of curious identities between components in different bases, such as UαβUβ
γ =

aαγ and V αβV
γ
β = Aαγ . Recall that Uα

β = Aαγ Uγβ and V α
β = aβγ V γ α , so care should be

taken when operating on indices in mixed expressions.
The terms in the stretching content (40) are

Tr2(U − AαAα) = (Uα
α − 2)2 = (V α

α − 2)2 = Tr2(V − aαaα) , (71)

Tr(U − AαAα)2 = Uα
β Uβ

α − 2Uα
α + 2 = V α

β V β
α − 2V α

α + 2 = Tr(V − aαaα)2 , (72)

with Uα
α = V α

α =
√

aγ ηAηγ + 2
√

a/A and Uα
β Uβ

α = V α
β V β

α = aαβAαβ .
To obtain the terms in the bending content (43) we first recognize that the rotations are

acting on surface tensors, so that we need only invert their surface projections. Using Q−1 =
Q! and (6), we may write Q! ·b ·Q = Uαγ bγ ηUηβ AαAβ and Q · b̄ ·Q! = V αγ b̄γ ηV

ηβ aαaβ ,
being careful to remember that the reference metric operates on the indices of the U and b̄
components while the present metric operates on V and b (another notational option is to
use capitalization on referential indices, as in [4]). Then the bending measures (41-42) are

Lshell = 1
2 Lα

β(aαaβ + aβaα) , (73)

Lα
β = V αγ (bγβ − V η

γ b̄ηµV
µ
β ) = V αγ bγβ − b̄α

γ V
γ
β , (74)

L̄shell = 1
2 L̄α

β(AαAβ + AβAα) , (75)

L̄α
β = (Uα

µbµηU γ
η − b̄αγ )Uγβ = Uα

γ b
γ
β − b̄αγ Uγβ , (76)

so that the quantities in the bending content (43) are Tr2Lshell = Lα
αL

β
β and

TrL2
shell = 1

2 Lαβ
(
Lαβ + Lβα

)
or the equivalent referential forms, with the same caveats

on index manipulation.
Quantities appearing in the field equations include

µαβ = aαγ Uγ ηM
ηβ , (77)

fα = aβUβγ [T γ α − 1
2 (Mγ ηb̄α

η + b̄γ
η Mηα)] + ∇̄βµαβn , (78)

where the components of the referential tensors T and M can be inferred from (51-52)
and other expressions in the current section. During manipulations, it should be kept in
mind that µαβ are components of a two-point tensor of the same character as the rotation or
deformation gradient, with a left present index and a right referential index.

8 Conclusions

We have derived stretching and bending energies for isotropic elastic plates and shells by
dimensional reduction of a bulk elastic energy quadratic in Biot strains. A generalized
Kirchhoff-Love kinematics, which reproduces the classical results to low order in stretching
and bending, naturally generates new symmetric measures of bending bilinear in stretches
and geometric curvatures, through which the bending energy adopts a simple form. This
extends primitive measures for straight rods to plates and naturally-curved rods and shells,
and reveals problems with assumed forms for shells in prior literature. The bending energy
shares properties with both neo-Hookean and discrete SN energies but is fully general at
quadratic order in stretch. The plate form is dilation-invariant. Field equations and boundary
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conditions demonstrate the linearity of force and moment in the resulting measures, and the
consequence that the response to a pure moment is a neutral-surface isometry in agreement
with classical linear results. For these two-dimensional elastic bodies, it is possible to repre-
sent all the relevant quantities in terms of derivatives of position, although such expressions
are not simple.
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