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Abstract
We propose bending energies for isotropic elastic plates and shells. For a plate, we define
and employ a surface tensor that symmetrically couples stretch and curvature such that any
elastic energy density constructed from its invariants is invariant under spatial dilations.
This kinematic measure and its corresponding isotropic quadratic energy resolve outstand-
ing issues in thin structure elasticity, including the natural extension of primitive bending
strains for straight rods to plates, the assurance of a moment linear in the bending measure,
and the avoidance of induced mid-plane strains in response to pure moments as found in
some commonly used analytical plate models. Our analysis also reveals that some other
commonly used numerical models have the right invariance properties, although they lack
full generality at quadratic order in stretch. We further extend our result to naturally-curved
rods and shells, for which the pure stretching of a curved rest configuration breaks dilation
invariance; the new shell bending measure we provide contrasts with previous ad hoc pos-
tulated forms. The concept that unifies these theories is not dilation invariance, but rather
through-thickness uniformity of strain as a definition of pure stretching deformations. Our
results provide a clean basis for simple models of low-dimensional elastic systems, and
should enable more accurate analytical probing of the structure of singularities in sheets and
membranes.
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1 Introduction

It is remarkable that after many decades of modern research on thin structures, there is not
yet a consensus on a primitive covariant bending energy for simple isotropic elastic plates
subject to combinations of stretching and bending deformations. Small-slope, Föppl-von
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Kármán-like models are widely used for analytical approximations, but are appropriate only
when changes in curvature are small. Plates and shells form the basis for extensive mod-
elling of low-dimensional systems such as elastic sheets and membranes in mathematics,
physics, engineering, and biology [1–16]. Exemplifying the lack of a universal standard,
two commonly used bending energies in soft matter, namely the squared curvature and the
ESK theory [17] based on Saint-Venant-Kirchhoff elasticity, display qualitatively opposite
behaviors, either increasing or decreasing their curvature in response to simple loadings,
and responding with extension or compression of a plate mid-plane to the application of
pure moments [18–20]. These effects will not exist in an appropriately primitive quadratic
model in which the tangential force does not pick up extra bending contributions and the
moment is linear in the corresponding strain measure. Given the interest in the soft mat-
ter community in the manner in which geometric rules enforce coupling between stretching
and bending, particularly during the regularization of singular crumpling behaviors in sheets
[21], it is imperative to avoid mixing these effects with the results of artificially introduced
nonlinear couplings arising from constitutive choices.

Our intent in this brief note and a detailed companion paper [22] is to present new kine-
matic measures of plate and shell bending, and furthermore show that these results may be
derived by dimensional reduction from an equally primitive bulk elastic energy. The plate
bending measure is a symmetric bilinear product of stretch and curvature whose immedi-
ate consequence is a dilation-invariant bending energy. Both the direct construction and its
more formal justification involve a recognition that strain measures linear in stretch are the
appropriate primitive expansion variables for a small-strain elasticity theory, affording the
simplicity of decoupling moments and plate mid-plane strains, as well as a linear relation-
ship between moment and bending strain. This linear response is the expected consequence
of an energy quadratic in bending strain, but requires a careful choice of bending measure.
While related ideas are known in the literature on the mechanics of rods [18], they have not
been extended in any general way to two-dimensional objects and, we furthermore maintain,
were not properly extended to curved one-dimensional objects until now. A neo-Hookean
thin body, as often used in simulations, will display the correct invariance properties but
lacks one of two possible quadratic terms in its elastic energy. Curiously, our findings reveal
that for naturally-flat plates, the commonly used discrete SN model [23] also possesses the
right invariance properties; despite purporting to represent a squared curvature energy, it ac-
tually corresponds to a one-parameter subset of our model, similar to a neo-Hookean body
but with different proportions of invariants.

Our construction naturally extends and fully generalizes the primitive strains proposed
over half a century ago by Antman and others [24–26] for straight rods. Our plate bending
measure agrees with those recently proposed in a restricted setting by Oshri and Diamant
[19] and employed by Oshri [27]. An asymmetric referential form of this measure may
be found in Atluri’s tour de force [28], although this promising suggestion seems not to
have been adopted elsewhere. The special property of dilation invariance that we empha-
size as a criterion for plate bending energies implies that dilations correspond purely to
changes in the stretching energy of plates. We demonstrate that this is a consequence of
a preferred flat configuration; the simple example of a naturally-curved rod (beam) illus-
trates why and how shells violate this symmetry and require a different type of energy that
is not dilation-invariant. We propose an extension to shells that stands in direct contrast
with dilation-invariant bending measures for one-dimensional curved rods and axisymmet-
ric shells proposed by Antman and others [24–26, 29], the two-dimensional shell bending
measure proposed by Atluri [28] and also found in Pietraszkiewicz [30], and the naïve ex-
tension of discrete SN to shells. This proposal is further justified in a companion paper [22]
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by a detailed derivation, which also recovers the classical unstretched (neutral, not mid-)
surface of a curved body.

The division of our work into two papers reflects the possibility of independent routes
to the same conclusions. The present note proposes two-dimensional energies and justifies
them with physical arguments based on a definition of a pure stretching deformation of a
thin body. This direct construction does not rely on any choice of three-dimensional bulk
energy. The companion paper [22] employs a reduction from a particular quadratic model
of bulk energy, and allows the same definition of pure stretching to arise naturally from the
calculation. The arguments and assumptions of the two papers are distinct and, thus, the
reader is free to find one or the other more palatable. We have attempted to present both
approaches in a language intermediate between those of soft matter physicists and classical
mechanicians.

2 Plate Bending Energy

We use material coordinates ηα , α ∈ {1,2}, to parameterize rest (referential) and de-
formed (present) surfaces X(ηα) and x(ηα) in E3, with respective unit normals N and n,
tangents Aα = dαX and aα = dαx, and reciprocal tangents defined through the relations
Aα · Aβ = aα · aβ = δα

β . We consider the general form of a sum of stretching and bending
energy densities defined per reference area (equivalent to per mass in the present context),

∫
da J−1[WS (Aα,aα) + WB

(
Aα,aα, dβAα, dβaα

) ]
, (1)

where da is the present area form. The referential area form dA = da J−1, where J can be
computed as the ratio of present to referential metric determinants. The quantities listed in
(1) are closely related to the first and second derivatives of x and X, and thus the symmet-
ric tensors of the metric and curvature of both configurations. The present and referential
metric components are respectively aαβ = aα · aβ and Aαβ = Aα · Aβ , while the inverses are
aαβ = aα · aβ and Aαβ = Aα · Aβ , taking care to note that indices should only be raised and
lowered with the corresponding metric. One can think either in terms of first derivatives of
the normals or second derivatives of the tangents, as the components of the curvature tensor
b = bαβaαaβ = −∇n = −dαn aα are given by bαβ = dβaα · n = −aα · dβn. For a plate, the
curvature tensor of the reference configuration b̄ = dβAα · N AαAβ vanishes.

The present note is concerned solely with the bending content WB of (1). To define
our bending measure, we require the point-wise decomposition of the surface deformation
gradient into a (3D) rotation tensor Q ∈ SO(3) and the (2D) symmetric right (referential) U
or left (present) V surface stretch tensor

aαAα = Q · U = V · Q . (2)

This is a justifiable [30] abuse of notation, as while Q is fully three-dimensional, the
tensors U and V are restricted to the reference and present surfaces, respectively, and
Q · N = N · Q$ = n and Q$ · n = n · Q = N. The stretches are tensors encoding the ratio
of present length to rest length; note that when there is no surface strain, so colloquially “no
stretching”, the stretch tensors are U = AαAα and V = aαaα with principal stretches of unity,
not zero. The natural strain measure here is the surface Bell strain V − aαaα . The transpose
of Q is its inverse, and thus we have Q$ ·Q = AαAα +NN = I = aαaα +nn = Q ·Q$, from
whence U · U = aαβAαAβ and V · V = Aαβaαaβ . While the stretch and curvature tensors are
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Fig. 1 Schematic of a dilation of
a deformed surface whose
reference configuration is flat.

all symmetric, dot products between them are not, reflecting the independence of principal
directions of stretching and bending.

Our central result for plates is the tensor measure of bending

L = sym (V · b) = 1
2 (V · b + b · V) , (3)

which reduces to the curvature tensor b when the in-surface strains vanish. Equivalently
one can couple the referential quantities U = Q$ · V · Q and Q$ · b · Q, or use the fact that
dαn Aα = ∇̄n = −b · V · Q to interpret (3) in terms of Q$ and the referential gradient of
the normal ∇̄n. An asymmetric referential form of (3) was proposed by Atluri [28]; both
agree with established one-dimensional primitive measures [18, 19, 24–26]. The surface
tensor (3) is invariant under spatial dilations, which take any surface x → D (x − xc). Thus,
aα → Daα and therefore aα → D−1aα , while the normal and rotation are conserved, n → n
and Q → Q, so that V → DV and b → D−1b and their product is conserved. Figure 1
illustrates the situation under discussion, in which a dilation may be superposed on any
previous stretching and bending deformations of a flat surface.

Defining two convenient independent invariants of this symmetric tensor i1 = TrL and
i2 = 1

2

[
(TrL)2 − Tr (L · L)

]
= DetL which, when the strain vanishes, reduce respectively

to twice the mean, and the Gaußian, curvature, the most general isotropic quadratic bending
energy is

WB = c̃1i
2
1 + c̃2i2 . (4)

In the present note we seek to justify the use of (3) and thus (4) through physical argu-
ments. A companion paper [22] derives stretching and this bending energy through reduc-
tion of a three-dimensional isotropic quadratic-stretch energy [31]. We also find that using
a three-dimensional neo-Hookean energy results in only one quadratic invariant, namely
Tr (L · L) = i2

1 − 2i2. Similarly, the continuum limit of the discrete SN model provides a
single bending invariant; as normals are unaffected by dilation, any such scheme that uses
only operations on adjacent normals to define a bending energy will have the appropriate
invariance properties for a plate. This is somewhat ironic, as Seung and Nelson incorrectly
assumed that they were discretizing a per-area geometric curvature energy [32, 33] rather
than a per-mass energy bilinear in stretch and curvature. For a clear exposition of several
possible discrete curvature definitions, we recommend [34]. Recall that, in contrast to a fluid
membrane or other geometric energy, any sensible elastic energy should be defined per-mass
rather than per-area [5, 35–37]. This surprising but fortunate result implies that both sim-
ulations of the discrete two-dimensional SN model, and very likely any three-dimensional
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finite element simulations of a neo-Hookean model for thin plates, will display the desirable
properties of our proposed bending measure. However, both the stretching and bending re-
sponses of these one-parameter models will lack some important features of a more general
two-parameter quadratic model; it is impossible to choose the Poisson’s ratio in the linear
limit, and the models fail to capture many qualitative nonlinear behaviors of soft materials
under simple loadings [38], while the typical extensions to Mooney-Rivlin or similar models
will not preserve the properties we seek. Furthermore, as discussed below, a naïve extension
of an SN model to shells will incorrectly continue to preserve dilation invariance, and so not
behave like either our shell energy or a neo-Hookean thin body.

It is interesting to note that the referential-weighted determinant of (3) is a purely geo-
metric quantity, the integral of Gaußian curvature

∫
dAi2 =

∫
dADet V Det b =

∫
da Det b,

which is equal to a boundary term plus a topological invariant, and therefore constant for
any closed surface. This is curious because, again, we don’t expect an elastic energy to be
geometric. It further implies that SN or neo-Hookean models may sufficiently capture the
behavior of closed surfaces composed of quadratic-stretch plate-like material, however it is
more likely that a study of a closed surface will be concerned with a shell energy instead of
a plate energy.

We may contrast the bending energy (4) with commonly used energies similarly con-
structed from invariants of other bending measures. The measure L and by extension i1, i2,
and their integrals using the referential measure dA are all dilation-invariant. This means
that a dilation is a pure stretching deformation that affects only the stretching content WS .
The squared curvature energy uses the curvature tensor b and decreases under dilations, as
these decrease geometric curvatures. The ESK energy uses the unnamed tensor bαβAαAβ

and increases under dilations [20]. Note also that the per-area geometric energy
∫

da (Tr b)2,
suitable for fluid films, is conformally invariant up to a boundary term [39], while its proper
per-mass elastic counterpart

∫
dA(Tr b)2 forms part of the squared curvature energy and

has no notable invariance properties; the other part
∫

dADet b is not a boundary/topological
term like its geometric counterpart.

In the limit of a mid-surface isometry, all of these energies degenerate to the same value,
although not the same slope with respect to strain [20]. However, this is a highly restricted
situation. Isometries are not generically possible under many loading or confinement con-
ditions, and most importantly even when an isometry is possible it will not be adopted by
the plate even under very simple boundary conditions unless the force and moment have
appropriately simple relationships with the stretching and bending measures [19, 20]. The
oft-assumed paradigm of first minimizing stretching energy by finding an isometry, then
subsequently minimizing bending energy among a class of isometries, might be appropriate
for free boundaries but has been demonstrated not to work in general for squared curvature
or ESK energies [19, 20].

We reserve the derivation and presentation of full field equations and boundary conditions
associated with the energy (1) for a companion paper [22], but here demonstrate linearity
of the bending response. That is, a quadratic strain energy will give rise to a moment linear
in the strain measure. Many seemingly simple bending measures do not have this property.
This is a subtle point discussed in detail in the engineering mechanics literature by Irschik
and Gerstmayr [18] and from a physics perspective by Oshri and Diamant [19], both in a
one-dimensional setting. The variation1 of an isotropic quadratic energy density akin to (4)

1Variations of present quantities are simplest to derive in terms of an integral over present area, but

can be easily translated into referential form via Piola identities such as ∇α

[
J−1()α

]
= J−1∇̄α()α or

∇̄α
[
J ()α

]
= J∇α()α .
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Fig. 2 Transformations of a deformed one-dimensional plate or shell. Pure stretches involve uniform stretch
across the thickness direction z. Extensions are only pure stretches if performed at the referential curvature.
Dilations are only pure stretches if the reference configuration is flat.

from invariants of a symmetric tensor S will take the form
[
(2c̃1 + c̃2) Sγ

γ δα
β − c̃2S

α
β

]
δSβ

α ,
bilinear in the tensor and its variation. The variation δSβ

α is then related to variation of
position and its derivatives, and will contribute both to the stress and the boundary stress
and moment, the last coming only from terms involving second derivatives of position. The
moment is the part of the boundary term conjugate to the variation of the angles of the
tangent plane [18, 19, 40]. Thus, we want this part of the variation of the measure to have
no dependence on the measure. For our measure, it suffices to consider one asymmetric
half of the variation, δ

(
V βγ bγ α

)
. Using the fact [37] that δbγ α = ∇α∇γ δx · n and rewriting

∇γ δx = δaγ = δ
(
V δ

γ ãδ

)
, where ãδ is an unstretched but rotated referential tangent whose

variation represents a change in angle, we extract the quantity conjugate to δãδ . This moment
is linear in the measure L, as a term such as V βγ V δ

γ = Aβδ is independent of stretch or
curvature, indeed entirely independent of the deformation. By contrast, the variation of the
squared curvature energy δ

(
aβγ bγ α

)
provides an inverse stretch term V δβ to multiply the

term linear in the measure b, while that of the ESK energy δ
(
Aβγ bγ α

)
provides a (physical)

stretch term Aβγ V δ
γ to multiply the term linear in the measure bαβAαAβ .

3 Pure Stretching, and Shell Bending Energy

For a physical understanding of why dilations correspond to pure stretching of a plate, it
is best to consider both naturally-flat plates and naturally-curved shells together. We illus-
trate the idea in Fig. 2 using a one-dimensional plate or shell (rod) with radius R0 in its
rest configuration. The central unifying idea is not actually dilation invariance, but the idea
of tangential extension and associated through-thickness uniformity of stretch. The natu-
ral definition of a pure stretching deformation of a thin body is the absence of a gradient
in tangential stretch (and by extension, higher-order strains such as the metric) across the
thickness of the body; by contrast, a simple bending deformation would provide a through-
thickness linear variation in stretch (quadratic in the metric). Consider the stretch of the rod
mid-line and of other material fibers offset on either side of the mid-line by a distance z;
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although these latter fibers will contract towards the mid-line by a factor related to Poisson’s
ratio, for simplicity we may consider distortions of a thin body maintaining constant thick-
ness. Consider a deformed piece of surface of radius R subtending an angle θ . Extending
this shape along itself, maintaining its radius of curvature, extends tangential fibers of length
(R +z)θ to length (R +z)(1+')θ , which additional change in length (R +z)'θ should be
compared with the reference length (R0 + z)θ0. If the curvature is the reference curvature,
R = R0 and the additional stretch is (1 +')θ/θ0 independent of position z. Thus, extension
of a flat or curved rod along its referential shape, a tangential deformation in the reference
configuration, is a pure stretching deformation. In the special case of a flat (straight) rod, this
is just uniform extension of straight lines on, or offset from, the referential flat mid-line. This
uniform extension of curves across the thickness is achieved by dilations of any deformed
surface,2 which extend fibers of length (R + z)θ to length [(1 + ')R + z] θ . The uniform
extension by 'Rθ corresponds to a uniform through-thickness stretch only if the reference
fiber lengths are also uniform in z, as with a flat rod.

As tangential extension along a curved referential shape is a pure stretch for a shell,
pure stretching does not correspond to dilations and the appropriate bending energy
is not dilation-invariant. Considering our definition of pure stretching, or the detailed
derivation in the companion paper [22], provides us with the shell bending measure
sym

[
b · V − Q · b̄ · U · Q$]

= sym
[(

b − Q · b̄ · Q$)
· V

]
, which clearly inherits the linear-

ity property of the plate measure, as the only portion contributing to the moment is the
variation of b. Equivalently one can use the referential tensor sym

[
Q$ · b · V · Q − b̄ · U

]
=

sym
[(

Q$ · b · Q − b̄
)
· U

]
. While these forms appear cumbersome at first glance, they can

be inferred by the requirement to subtract tensors of like type. For the simple example of a
one-dimensional body, we obtain a bending energy quadratic in a single quantity

λ (κ − κ̄) , (5)

where in terms of a single material coordinate l along the curve, λ = V l
l = allV

ll is the
stretch while κ = bl

l = alld2
l x · n and κ̄ = Alld2

l X · N are the curvatures of the deformed and
rest configurations of the rod. Clearly the form of (5) is such that a tangential extension of
a curve, maintaining the reference curvature, keeps the bending energy zero. This is in con-
trast to the ad hoc postulated dilation-invariant form λκ − κ̄ found throughout the literature
[24–26, 28–30] or a naïve extension of the discrete SN model. Both forms will provide a
linear moment, but differences will show up in the contribution to the force, which affects
whether a pure moment will couple to stretching deformations, as discussed in the compan-
ion paper [22]. Note that tangential deformations of material on a surface are only “pure
stretching” if performed in a state of reference curvature. In an arbitrarily deformed config-
uration, tangential deformations change the bending content through the stretch tensor.

4 Discussion and Conclusions

Numerical implementation may be accomplished in one of two ways. Stretch or equiva-
lently Biot/Bell strain is the natural language for linear elements in the bead-spring molecu-
lar dynamics simulations often preferred by physicists studying soft matter mesostructures.
Techniques from computer graphics [41] may be employed to define discrete fundamental

2Note that it is the surface alone, and not the thin body surrounding it, that is undergoing dilation.
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forms or, more directly, the stretch tensor and referential gradients of the normal on trian-
gular meshes. Alternately, finite element methods exist that explicitly deal with the rotation
and stretch fields [28, 40], while recently developed expressions [22, 31] can provide all of
the relevant fields in terms of metrics and curvatures, and therefore derivatives of position.

The primitive bending strains we have introduced provide a new basis for analytical mod-
eling of plates and shells as well as curved rods, bringing these under the same framework as
was established for straight rods half a century ago. We are also reassured that studies prob-
ing singular structures in naturally-flat elastic sheets by employing a discrete SN model [21],
while possibly missing some elastic effects found in more general quadratic models, have
likely not introduced artificial constitutive stretch-bend coupling and are thus on a similar
footing as simulations of neo-Hookean materials.
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