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a b s t r a c t 
In response to temperature or pressure changes, many body-centered cubic (bcc) materials undergo 
martensitic bcc-hcp phase transformation, which is known to produce rich martensite microstructure 
with internal twins. Mechanical loading is also known to have a huge impact on martensitic phase trans- 
formation. In this work, we integrate atomistic simulations with theoretical calculations to investigate the 
effect of mechanical loading on the martensite microstructure. The calculations of deformation gradients 
and transformation strains reveal that the { 10 ̄1 1 } transformation twins and { 10 ̄1 2 } transformation twins 
are favored by opposite loading directions. Furthermore, the initial { 112 } twin in the bcc phase is trans- 
formed into { 11 ̄2 2 } and { 11 ̄2 1 } twins after the phase transformation. The results reveal the critical role 
of mechanical loading in the formation of the specific transformation twinning, which could offer a novel 
strategy to engineer twin microstructure using designed thermomechanical processing. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
1. Introduction 

At high temperatures, many materials exist in more open struc- 
tures such as the body-centered cubic (bcc) structure, while at 
low temperatures they transform into more close-packed struc- 
tures such as the hexagonal close-packed (hcp) structure. It is 
well known that bcc-hcp solid-state phase transformations can be 
induced by temperature or pressure changes, and exist in many 
materials such as iron [1,2] , titanium (Ti), zirconium, and many 
alloys [3–5] . Bcc-hcp phase transformation often occurs readily 
through collective atomic movements over small distances and is 
thus characterized as martensitic phase transformation. The ori- 
entation relation involved in a bcc-hcp phase transformation de- 
pends on the phase transformation mechanisms [6–8] . The most 
well-known Burgers mechanism [9] comprises a shear along the 
(1 ̄1 2) bcc plane, which converts the 70 . 53 ◦ angle between two 
〈 111 〉 bcc directions in the (110) bcc plane to the 60 ◦ angle between 
two 〈 11 ̄2 0 〉 hcp directions. The shear is accompanied by a shuf- 
fle of alternating (110) bcc planes in the opposite [ 1 ̄1 0 ] bcc direc- 
tions [10–12] . Specifically, the Burgers mechanism has the planar 
correspondence of (01 ̄1 ) bcc ‖ (0 0 01) hcp and the directional corre- 
spondence of [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp . Another bcc-hcp phase transfor- 
mation mechanism, the Pitsch–Schrader (PS) mechanism, has been 
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observed experimentally in iron-, zirconium-, and magnesium- 
alloy systems [13–15] . It has the same planar correspondence 
but a different directional correspondence of [001 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp . 
Other less discussed mechanisms include the Potter and the Rong–
Dunlop mechanisms [11] . 

Interestingly, several variants as well as complex interface 
structures could be formed as a product of the martensitic 
bcc → hcp transformation. Many previous studies have been 
devoted to the intriguing microstructure of the transformation 
products in Ti-based materials [4,16,17] . For example, Baner- 
jee et al. [17] analyzed the formation of complex substructures 
in the hcp martensite formed from the quenching of the high- 
temperature bcc Ti alloy. They proposed the mechanism that the 
martensitic domains nucleate and propagate until reaching each 
other and form stacking antiphase boundaries with a displacement 
vector of either 1 / 3 〈 10 ̄1 0 〉 or 1 / 6 〈 202 ̄3 〉 . Matsuda et al. [16] used 
transmission electron microscopy to investigate the formation of 
antiphase boundary-like structures in the B19 martensite of Ti-Pd 
alloy, which is induced by the local heterogeneity of atomic move- 
ments during the B2 to B19 martensitic transformation. Recently, 
more numerical simulations and theoretical calculations have been 
conducted, which provided even further understanding of the 
transformation product [18–22] . For instance, Gao et al. [18] used 
molecular dynamics (MD) simulations to investigate the diffuse 
scattering pattern prior to the bcc-hcp martensitic transformation, 
which was ascribed to the formation of pairs of hcp anti-variants. 
In another study, Shi et al. [20] developed a 3D phase-field model 
to investigate the influence of both external and internal stress on 
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the variant selection during precipitation in Ti-6Al-4V alloy. They 
found that uniaxial tensile and compressive stress along [010 ] bcc - 
axis lead to the selection of 8 and 4 out of the 12 hcp variants, 
respectively. Furthermore, Wang et al. [19] calculated the shape 
strains created by martensitic bcc → hcp transformation in pure 
Ti. They found that clusters of three hcp variants could achieve the 
greatest degree of self-accommodation, in which three slip systems 
provide complementary shear. 

Besides domain boundaries, twin boundaries are another preva- 
lent interface formed during the martensitic bcc-hcp transforma- 
tion. In the theories of martensite crystallography, besides lat- 
tice change, an additional deformation that often induces twin- 
ning is an indispensable component to complete the phase trans- 
formation. These theories have been successfully applied to pre- 
dict and explain the macroscopic features of phase transforma- 
tion, such as experimentally observed habit planes. It should also 
be noted that there exists a different interpretation on twinning 
in martensitic phase transformation. In particular, twinning does 
not form due to the additional deformation accompanying the lat- 
tice change, but the two twinned product phases form directly 
from the parent phase by means of crystallographically equiva- 
lent correspondences [23,24] . Along this view, the terminology of 
transformation twin is suggested, and fruitful new insights have 
been obtained lately [25–30] . For example, both { 10 ̄1 1 } and { 10 ̄1 2 } 
twins were reported as transformation twins in pure Ti and its al- 
loys [23,31–33] . Furthermore, Gao et al. [29] utilized these trans- 
formation twins formed during cyclic bcc-hcp-bcc phase transfor- 
mation to design multigrain structures. Under uniaxial compres- 
sion, the single-crystal bcc transformed into two hcp variants with 
the { 10 ̄1 2 } twin formed in between. Subsequently, the reheating 
process to the bcc-stable regime produced more inclined trans- 
formation twins and yielded multigrain structures [29] . Addition- 
ally, the cyclic hcp-bcc-hcp transition pathway is infinite because 
the two phases do not have a group-subgroup relation. As a re- 
sult, all the twinning modes in hcp metals were successfully de- 
rived based on certain reversible phase transformations [30] . In the 
MD simulation by Chen et al. [28] , they observed that a reversible 
hcp-bcc-hcp transformation leads to the formation of { 10 ̄1 2 } twins 
in Ti. In our previous MD simulations of ω-Ti (the high pressure 
phase for Ti with AlB2 structure), we found that stress-induced 
ω to hcp martensitic transformation can produce four types of 
transformation twins, namely, { 10 ̄1 2 } , { 10 ̄1 1 } , { 11 ̄2 2 } , and { 11 ̄2 1 } 
twins, each formed under different loading directions [27] . This 
new knowledge of transformation twins can guide the experimen- 
tal characterization of the complicated and dense microstructure of 
shock/pressure recovered ω/hcp structures. In this study, we take a 
step further to investigate the role of the mechanical loading in the 
activation of different phase transformation mechanisms, and ac- 
cordingly the formation of different transformation twins. We dis- 
cover tension/compression asymmetry in the transformation twins, 
which is determined by the correlation between the loading direc- 
tion and the transformation strain. Furthermore, our MD simula- 
tions and theoretical calculations allow us to uniquely determine 
the twinning components of each transformation twin. 

This paper is organized as follows. Section 2 describes the 
methods for the atomistic simulations. Section 3 shows the MD 
simulations in polycrystal Ti, the strain calculation for the ten- 
sion/compression asymmetry, and the twinning mode analysis 
for each twin observed. Finally, we present the conclusions in 
Section 4 . 
2. Methods 

In the current study, the LAMMPS package [34] is used to 
conduct the molecular dynamics (MD) simulations. The initial 
structure ( 29 . 5 × 25 . 5 × 24 . 1 nm 3 ) contains one million Ti atoms 

Fig. 1. (a) The simulation domain is a polycrystal bcc-Ti obtained from melt-quench 
simulations. The light blue region in (a) corresponds to a thin slice of the simulation 
domain and is shown in (b). The largest grain in the polycrystal is marked as G1. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
The comparison between the lattice constants ob- 
tained from the experiments [42] and the simula- 
tion [35] . 

a bcc (A ◦) a hcp ( A ◦) c/a 
Experiment 3.26 2.951 1.587 
Simulation 3.251 2.947 1.597 
Difference 0 . 27% 0 . 13% −0 . 63% 

with periodic boundary conditions applied to all three dimensions. 
The embedded-atom method potential developed by Mendelev 
et al. [35] is utilized to model the interactions between Ti atoms. 
The time-step size of the MD simulations is 1 fs. Initially, the 
atoms are assigned with random velocities following the Gaussian 
distribution, corresponding to an average temperature of 10 K. Dur- 
ing the melting process, the Ti structure is heated up to 2266 K, 
which is higher than the melting point of 1923 K, to ensure the 
complete melting. Then the structure is maintained at 2266 K 
for 500 ps and subsequently quenched to 10 K. The quench- 
ing process produces a metastable bcc-Ti polycrystal ( Fig. 1 ) that 
is stabilized by the fast quenching rate and the abundant grain 
boundaries and twin boundaries. Afterwards, the structure is re- 
laxed at 10 K and 0 Pa in the isothermal-isobaric ensemble us- 
ing the Nose-Hoover thermostat [36] and the Parrinello–Rahman 
barostat [37] for 100 ps. For the deformation process, the uniax- 
ial loading is applied to the relaxed bcc-Ti polycrystal at a con- 
stant temperature of 600 K, unless otherwise stated. Theoretically, 
a high temperature close to the phase boundary is ideal to observe 
the bcc-hcp phase transition. In this work, a lower temperature 
of 600 K is chosen to avoid thermal fluctuation that undermines 
clear visualization of the microstructure evolution. A similar strat- 
egy was adopted in previous MD simulations [38] . In addition, ex- 
tensive simulations with various strain rates have been conducted 
in the range of 10 8 s −1 to 10 9 s −1 . Indeed, the results are found 
to be strain-rate independent. Finally, OVITO [39] and the common 
neighbor analysis [40,41] are used to identify the crystal structure, 
with bcc, hcp, face-centered cubic (fcc), and amorphous phases de- 
noted in red, cyan, green, and yellow, respectively. 

The ratio of bcc and hcp lattice parameters is important for 
strain accommodation. Therefore, the lattice parameters from the 
simulation [35] and experiments [42] are compared in Table 2 . It 
can be seen that the differences are not significant ( < 1% ). There- 
fore, we believe the strain accommodation during the phase transi- 
tion in the MD simulation is close to the experimental conditions. 
3. Results 

The initial polycrystal is in the metastable bcc phase. With in- 
creasing strain, the metastable bcc phase transforms into the stable 
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Fig. 2. The formation process of { 10 ̄1 1 } twins during bcc-hcp phase transition under x -tension. (a) The grain G1 initially exists in bcc phase. (b) The nucleation of the first 
variant hcp4 in the top left and bottom right regions of grain G1 at the strain of 5.68%. (c) The nucleation of the second variant hcp1 at the strain of 6.2%. (d) The formation 
of { 10 ̄1 1 } twins between hcp4 and hcp1 at the strain of 8.4%. (e) A schematic illustrating the orientation relation of the bcc-hcp phase transformation. 
hcp phase, forming various martensite microstructure with inter- 
nal twins. Interestingly, the types of internal twins depend on the 
loading direction, which is most obvious in the largest grain G1 in 
the polycrystal ( Fig. 1 (b)). Therefore, the microstructure evolution 
in grain G1 will be shown first, followed by the loading direction 
effect on the twin formation, and finally the analysis of the twin- 
ning modes. 

We label the six hcp variants according to which bcc plane 
their basal plane originates from. In this sense, the basal planes 
of variants hcp1 ∼hcp6 originate from the bcc planes (011), (0 ̄1 1) , 
(101), (10 ̄1 ) , (110), and ( ̄1 10) , respectively. Each pair of hcp vari- 
ants, hcp1/hcp2, hcp3/hcp4, and hcp5/hcp6 present mirror symme- 
try. Moreover, a three fold symmetry also exists between the hcp 
variants. For example, hcp5/hcp1/hcp4 shows a three-fold symme- 
try around [1 ̄1 1 ] bcc axis, and hcp5/hcp2/hcp3 shows a three-fold 
symmetry around [ 11 ̄1 ] bcc axis. 
3.1. Molecular dynamics simulations 
3.1.1. The formation of { 10 ̄1 1 } twin 

Fig. 2 shows the microstructure evolution in grain G1 under x - 
axis tension. As shown in Fig. 2 (b), the phase transition initiates 
simultaneously from the top left and bottom right regions of grain 
G1, both forming the same hcp phase (hcp4). At a strain of 6.2%, 
a different hcp phase (hcp1) forms in the middle of grain G1 and 
is sandwiched between the two regions of previously formed hcp4 
( Fig. 2 (c)). In particular, the two newly formed hcp phases—hcp4 
and hcp1—are misorientated by 57 ◦ around a common 〈 11 ̄2 0 〉 hcp 
axis, which corresponds to a { 10 ̄1 1 } twin relation in hcp materials. 
Later, two { 10 ̄1 1 } twin boundaries indeed are formed in between 
hcp4 and hcp1 ( Fig. 2 (d)). 

Furthermore, the crystallography of the above phase transition 
and twin formation process is examined. Theoretically, the bcc- 
hcp phase transition can form twelve hcp variants, while grain 
G1 forms two hcp variants under x -tension. Specifically, the basal 
planes of hcp4 and hcp1 originate from (10 ̄1 ) bcc and (011) bcc 
planes in grain G1 that share a common [ 1 ̄1 1 ] bcc axis, as illustrated 
in Fig. 2 (e). Therefore, the phase transition follows the Burgers 
mechanism, { 110 } bcc ‖ { 0 0 01 } hcp and [ 1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp [9] . The 
orientation relation in each hcp variant is summarized in Eq. (1) . 
bcc → hcp4 : (10 ̄1 ) bcc ‖ (0 0 01) hcp4 , [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp4 
bcc → hcp1 : (011) bcc ‖ (0 0 01) hcp1 , [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp1 (1) 

3.1.2. The formation of { 10 ̄1 2 } twin 
We find that the twinning mode changes when changing the 

loading from x -tension to x -compression. Fig. 3 shows the mi- 
crostructure evolution in grain G1 under x -compression. The phase 
transition forms one hcp phase (hcp6) at 5.8% strain ( Fig. 3 (b)). 
When the strain reaches 8%, the left region of grain G1 transforms 
into another hcp phase (hcp5) ( Fig. 3 (c)). At 11.6% strain, hcp5 and 
hcp6 meet each other and form a { 10 ̄1 2 } twin, which is character- 
ized by a 86 ◦ misorientation across the 〈 11 ̄2 0 〉 zone axis ( Fig. 3 (d)). 

The orientation relation of the above phase transition and 
twin formation process is further examined. Specifically, the basal 
planes of hcp5 and hcp6 originate from (110) bcc and (1 ̄1 0) bcc 
planes in grain G1 that share a common [ 001 ] bcc axis, as schemati- 
cally illustrated in Fig. 3 (e). In other words, the bcc-hcp phase tran- 
sition under x -tension follows the Pitsch–Schrader (PS) orientation 
relation, { 110 } bcc ‖ (0 0 01) hcp and [0 01 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp . The orienta- 
tion relation in each hcp variant is shown in Eq. (2) . 
bcc → hcp 6 : (1 1 0) bcc ‖ (0 0 01) hcp 6 , [001] bcc ‖ [2 1 1 0] hcp 6 
bcc → hcp 5 : (110) bcc ‖ (0 0 01) hcp 5 , [001] bcc ‖ [2 1 1 0] hcp 5 (2) 
3.1.3. The formation of { 11 ̄2 2 } twin 

In the previous two sections, we focused on the largest grain 
G1 in the bcc polycrystal. It should be noted that the polycrystal 
also contains { 112 } bcc twins that were formed during the quench- 
ing process. The effect of these initial twins on the phase trans- 
formation will be investigated next. As shown in Fig. 4 (a), the 
two bcc regions forming the initial { 112 } bcc twin are labelled 
bcc1 and bcc2. Under x -axis tension, the bcc phases start to un- 
dergo martensitic phase transformation at 6 . 04% strain ( Fig. 4 (b)). 
The bcc1 and bcc2 transform completely into hcp phases at 7 . 2% 
strain ( Fig. 4 (c)) and 10 . 24% strain ( Fig. 4 (d)), respectively. Fig. 4 (e) 
schematically shows the phase transformation in the zone axis 
of [ 011 ] bcc ‖ [10 ̄1 0 ] hcp . Notably, the bcc-hcp phase transformation 
converts the initial { 112 } bcc twin into a { 11 ̄2 2 } hcp twin. In addi- 
tion, it should be noted that the misorientation angle of { 112 } bcc 
twin ( 70 ◦ across [ 011 ] bcc ) is close to that of the { 11 ̄2 2 } hcp twin ( 65 ◦
across [ 10 ̄1 0 ] hcp ), rendering the above twin transformation feasible. 
3.1.4. The formation of { 11 ̄2 1 } twin 

Interestingly, the same initial { 112 } bcc twin will be con- 
verted to different hcp twins depending on the loading direction. 
Fig. 5 shows the microstructure evolution in the { 112 } bcc twinned 
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Fig. 3. The formation process of a { 10 ̄1 2 } twin during the bcc-hcp phase transition under x -compression. (a) The same grain G1 as in Fig. 2 . The formation of (b) the first 
hcp phase (hcp6) and (c) another hcp variant (hcp5). (d) The growth of two hcp variants leads to the formation of an incoherent { 10 ̄1 2 } twin. (e) A schematic illustrating 
the orientation relation of the bcc-hcp phase transformation. 

Fig. 4. The bcc-hcp phase transformation converts a { 112 } bcc twin into a { 11 ̄2 2 } hcp twin under x -tension. (a) The initial bcc grain contains a { 112 } bcc twin. (b) The nucleation 
of two hcp variants at the strain of 6 . 04% . (c) The growing hcp phase consumes bcc1. (d) The second hcp variant consumes bcc2, forming a coherent { 11 ̄2 2 } hcp twin boundary. 
(e) A schematic illustrating the orientation relation of the bcc-hcp phase transformation. 

Fig. 5. The bcc-hcp phase transformation converts a { 112 } bcc twin into a { 11 ̄2 1 } hcp twin under x -compression. (a) The grain contains a { 112 } bcc twin between bcc1 and bcc2. 
(b) The formation of the hcp phases at 4 . 4% strain. (c-d) The growth of the two newly formed hcp phases and the formation of the { 11 ̄2 1 } hcp twin. (e) A schematic illustrating 
the orientation relation of the bcc-hcp phase transformation. 
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Fig. 6. The orientation of the Cartesian coordinate basis e i and the reference bcc lattice. (a) PS mechanism: the top row shows one (110) plane and one (1 ̄1 0) plane involved 
in the { 10 ̄1 2 } hcp twin case; the bottom row shows the comparison between bcc (110) plane and hcp basal plane in PS mechanism. (b) Burger mechanism: the top row shows 
one (110) plane in bcc unit cell and the bottom row shows the comparison between bcc (110) plane and hcp basal phase in Burgers mechanism. 
grain under x -axis compression. The same labeling rule of bcc1 
and bcc2 are adopted in Fig. 5 (a) because this is the same grain 
as in the previous case of x -tension. At 4 . 4% strain, a new hcp 
phase nucleates inside bcc1. When the strain reaches 5 . 12% , an- 
other hcp variant nucleates inside bcc2 near the initial { 112 } bcc 
twin boundary ( Fig. 5 (b)). Both hcp variants keep growing with in- 
creasing strain ( Fig. 5 (c)). Finally, the original { 112 } bcc twin trans- 
forms into a { 11 ̄2 1 } hcp twin, as shown in Fig. 5 (d). The phase tran- 
sitions follow the plane correspondence of { 110 } bcc ‖ { 0 0 01 } hcp and 
the direction correspondence of [ ̄1 13 ] bcc ‖ [01 ̄1 0 ] hcp . This process 
is feasible since the angle between the two { 110 } bcc planes ( 35 ◦
across [ ̄1 13 ] bcc axis) is close to the misorientation angle ( 35 ◦ across 
[ 01 ̄1 0 ] hcp ) of { 11 ̄2 1 } hcp twin in hcp materials. 
3.2. The effect of the loading direction on the twin formation 

In hcp metals, { 10 ̄1 1 } hcp twin is known as compression 
twin and { 10 ̄1 2 } hcp twin is known as tension twin. Specifically, 
{ 10 ̄1 1 } hcp twin forms when the c -axis is under compression; 
{ 10 ̄1 2 } hcp twin forms when the c -axis is under tension. It is in- 
teresting to note similar directional dependence in our MD sim- 
ulations: the obtained internal twins change from { 10 ̄1 1 } hcp to 
{ 10 ̄1 2 } hcp twins when the loading direction changes from x -tension 
to x -compression. However, it may not be appropriate to apply the 
directional dependence in hcp materials directly to rationalize our 
observation, because the loading in this work is applied to the bcc 
polycrystal. In this section, we will calculate the deformation gra- 
dient associated with the phase transformation to understand the 
directional dependence observed in our MD simulations. 
3.2.1. Unit cell kinematics of bcc → hcp transformation 

To understand the impact of loading on the hcp variants and 
the twins formed in the bcc-hcp phase transition shown in the MD 
simulations, we make use of the deformation gradient F associated 
with the unit cell kinematics throughout this transformation. We 
start by calculating F for the PS mechanism, and then derive F for 
the Burgers mechanism, since both mechanisms are observed in 
our simulations. 

As shown in Fig. 6 , we define a standard rectangular Cartesian 
coordinate basis aligned with the reference bcc lattice, so that e i 
is an orthonormal basis, i = { 1 , 2 , 3 } , in the [100], [010] and [001] 
directions, respectively. We further define v 1 = (e 1 − e 2 ) / √ 

2 and 
v 2 = (e 1 + e 2 ) / √ 

2 , pointing respectively in the [ ̄1 10] and [ 110] di- 
rections. A referential bcc orthogonal basis is then G 1 = √ 

2 a 0 v 1 , 

G 2 = √ 
2 a 0 v 2 , and G 3 = a 0 e 3 , where a 0 = 3 . 31 Å is the bcc-Ti lat- 

tice parameter. The reciprocal basis G i is defined by the relation 
G i · G j = δ j 

i , where δ j 
i is a Kronecker delta. 

Under PS mechanism ( Fig. 6 (a)), choosing the particular hcp5 
variant with a basal plane originating from (110) bcc plane, the 
transformation induces the following deformed basis: g 1 = √ 

3 a v 1 , 
g 2 = c v 2 , and g 3 = a e 3 , where a = 2 . 95 Å and c = 4 . 68 Å are the 
hcp-Ti lattice parameters. The deformed basis g i for different hcp 
variants can be similarly calculated; for example, g 1 = c v 1 , g 2 = √ 

3 a v 2 , and g 3 = a e 3 for the hcp6 variant, whose basal plane orig- 
inates from the (1 ̄1 0) bcc plane. This allows us to calculate the de- 
formation gradient F = g i ! G i for a specific variant of the bcc-hcp 
transformation. Eq. (3) lists the components in matrix form F i j for 
all the six bcc → hcp transformations, in the standard basis. 
F ij | PS 

hcp 1 = 1 
2 
 
  

2 a 
a 0 0 0 
0 a 

a 0 √ 
3 
2 + c √ 

2 a 0 − a 
a 0 √ 

3 
2 + c √ 

2 a 0 
0 − a 

a 0 √ 
3 
2 + c √ 

2 a 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 

 
  , 

F ij | PS 
hcp 2 = 1 

2 
 
  

2 a 
a 0 0 0 
0 a 

a 0 √ 
3 
2 + c √ 

2 a 0 a 
a 0 √ 

3 
2 − c √ 

2 a 0 
0 a 

a 0 √ 
3 
2 − c √ 

2 a 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 

 
  , 

F ij | PS 
hcp 3 = 1 

2 
 
  

a 
a 0 √ 

3 
2 + c √ 

2 a 0 0 − a 
a 0 √ 

3 
2 + c √ 

2 a 0 
0 2 a 

a 0 0 
− a 

a 0 √ 
3 
2 + c √ 

2 a 0 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 

 
  , 

F ij | PS 
hcp 4 = 1 

2 
 
  

a 
a 0 √ 

3 
2 + c √ 

2 a 0 0 a 
a 0 √ 

3 
2 − c √ 

2 a 0 
0 2 a 

a 0 0 
a 
a 0 √ 

3 
2 − c √ 

2 a 0 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 

 
  , 

F ij | PS 
hcp 5 = 1 

2 
 
  

a 
a 0 √ 

3 
2 + c √ 

2 a 0 − a 
a 0 √ 

3 
2 + c √ 

2 a 0 0 
− a 

a 0 √ 
3 
2 + c √ 

2 a 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 0 
0 0 2 a 

a 0 

 
  , 

F ij | PS 
hcp 6 = 1 

2 
 
  

a 
a 0 √ 

3 
2 + c √ 

2 a 0 a 
a 0 √ 

3 
2 − c √ 

2 a 0 0 
a 
a 0 √ 

3 
2 − c √ 

2 a 0 a 
a 0 √ 

3 
2 + c √ 

2 a 0 0 
0 0 2 a 

a 0 

 
  . 

(3) 

Since the deformation gradient associated with the bcc → hcp 
transformation only changes by a rotation between the PS and 
Burgers mechanisms, typically only the right stretch tensor as- 
sociated with Burgers is discussed [1,43] , which is the same for 
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both deformation paths. However, it is important to keep track 
of rotations with respect to load directions, since they change F 
and can have an impact on certain (non-referential) measures of 
strain. For the Burgers mechanism ( Fig. 6 (b)), one diagonal of the 
{ 110 } bcc plane, which transforms into (0 0 01) hcp , rotates by θ = 
10 . 53 ◦, which is accompanied by lattice stretching. For example, 
the present basis for hcp5 is g 1 = √ 

3 a ( cos θ v 1 − sin θ e 3 ) , g 2 = c v 2 , 
and g 3 = a ( sin θ v 1 + cos θ e 3 ) . As a comparison, the components F i j 
of the deformation gradient for hcp5 and hcp6 under the Burgers 
mechanism in standard basis are listed in Eq. (4) , which presents 
additional terms as a function of θ when compared to Eq. (3) . 
Note that F is no longer symmetric for the Burgers mechanism 
since rotations are present, Q + = I . 
F ij | Burg ers 

hcp 5 = 1 
2 
 
  

a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 − a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 2 a sin θ√ 
2 a 0 

− a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 − 2 a sin θ√ 
2 a 0 

− a √ 3 sin θ
a 0 a √ 3 sin θ

a 0 2 a 
a 0 

 
  , 
(4) 

F ij | Burg ers 
hcp 6 = 1 

2 
 
  

a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 a cos θ
a 0 √ 

3 
2 − c √ 

2 a 0 − 2 a sin θ√ 
2 a 0 

a cos θ
a 0 √ 

3 
2 − c √ 

2 a 0 a cos θ
a 0 √ 

3 
2 + c √ 

2 a 0 − 2 a sin θ√ 
2 a 0 

a √ 3 sin θ
a 0 a √ 3 sin θ

a 0 2 a 
a 0 

 
  . 

3.2.2. X -tension: { 10 ̄1 1 } twin 
After calculating the deformation gradient, we can further com- 

pare the strain associated with the phase transformation with the 
applied loading, to examine the directional dependence observed 
in our MD simulations. By the polar decomposition, the defor- 
mation gradient can be decomposed as F = Q · U = V · Q , where 
U and V are symmetric positive definite stretch tensors, and 
Q is an orthogonal tensor, which allows us to define the Biot 
strain [44] E Biot = U − I . Other measures of strain include the Bell 
strain E Bell = V − I , and, for small deformations, the small strain 
tensor ε = (1 / 2)(F + F , − 2 I ) . For the bcc to hcp F based on the 
PS mechanism, Q is the identity (no rotation) and F = U = V . The 
right stretch U for the Burgers mechanism coincides with the one 
from PS, but since rotations are present for Burgers, both F and the 
left stretch V change. Now, define d as the unit vector in the load 
direction. When the strain e d = (E Biot · d ) · d > 0 for a specific vari- 
ant, we say the transformation is kinematically preferred by ten- 
sion in the d direction accordingly to the Biot measure, and by 
compression in the opposite case e d < 0 . 

In the x -tension case ( Fig. 2 ) starting from a single bcc grain, 
the tensile load is approximately aligned with [ 1 ̄1 1 ] bcc axis. There- 
fore, we set d as the unit vector in this direction and calculate the 
strain e d for the six hcp variants based on F for the Burgers mech- 
anism Eq. (4) . We find that only three hcp variants present posi- 
tive e d strains: hcp1, hcp4, and hcp5, with e d = 2 . 48 × 10 −2 . These 
variants can combine to form { 10 ̄1 1 } compression twins, which 
agrees with our observation in Fig. 2 . In the MD simulations, hcp4 
forms first, followed by hcp1 and twinning, but we did not find 
the formation of hcp5. A possible reason is that the load direction 
presents a small deviation with respect to [ 1 ̄1 1 ] bcc , which intro- 
duces bias in the results. While the discussed strain measures co- 
incide for the PS mechanism, it is worth noting that for the Burgers 
mechanism this analysis does depend on the choice of strain. For 
example, only hcp1 presents a positive strain in the [ 1 ̄1 1 ] bcc direc- 
tion with respect to the Bell or small strain tensors, whereas for 
hcp4 and hcp5 strains are negative but small in magnitude com- 
pared to the other variants. 

After revealing that the loading of x -tension favors the for- 
mation of hcp4 and hcp1, we will further examine the crystallo- 
graphic relation between the two hcp variants. First, the (10 ̄1 ) bcc 
and (011) bcc planes—corresponding to the basal planes of hcp4 and 

hcp1—form an angle of 60 ◦. Since this angle would remain approx- 
imately the same during the bcc-hcp phase transition, hcp4 and 
hcp1 should have a misorientated angle around 60 ◦. Second, the 
(10 ̄1 ) bcc and (011) bcc planes share a common [ 1 ̄1 1 ] bcc axis, which 
later transforms into a common [ 11 ̄2 0 ] hcp shared between hcp4 
and hcp1. In other words, the misorientation angle and common 
zone axis agree with those for { 10 ̄1 1 } twin. Thus, { 10 ̄1 1 } twin is 
expected to form between hcp4 and hcp1. 
3.2.3. X -compression: { 10 ̄1 2 } twin 

As for the case of x -compression ( Fig. 3 ) starting from a single 
bcc grain, the reference lattice has its [ 001 ] bcc closely aligned with 
the out of plane x -direction of the compression load. For both hcp5 
and hcp6 variants, based on either PS (3) or Burgers (4) mecha- 
nism kinematics, U 33 = a/a 0 ≈ 0 . 89 and e d = −1 . 09 × 10 −1 , so that 
the referential bcc lattice has to compress in the d = [001 ] bcc di- 
rection in order to transform in these hcp variants. In contrast, 
the other four hcp variants present a positive normal Biot strain 
along [ 001 ] bcc . Therefore, the loading of x -compression is expected 
to favor the formation of hcp5 and hcp6 variants. This observation 
holds regardless of the choice of strain for this particular load di- 
rection. 

Further examination of the crystallographic relation reveals that 
{ 10 ̄1 2 } twin will form in between hcp5 and hcp6. First, (110) bcc 
and ( ̄1 10) bcc planes—corresponding to the basal planes of hcp5 
and hcp6—form an angle of 90 ◦, which would remain during the 
bcc-hcp phase transition and hcp5 and hcp6 are approximately 
misorientated by 90 ◦. Second, the (110) bcc and ( ̄1 10) bcc planes 
share a common [ 001 ] bcc , which under the PS mechanism trans- 
forms into a common [ 11 ̄2 0 ] hcp shared between hcp5 and hcp6. 
As the misorientation angle and the common zone axis agree with 
those in { 10 ̄1 2 } twin, { 10 ̄1 2 } twin is expected to form between 
hcp5 and hcp6, which agrees with our MD simulation shown 
in Fig. 3 . 
3.2.4. X -tension: { 11 ̄2 2 } twin 

So far we have evaluated the role of the load on transforma- 
tions starting from a single bcc grain. When the reference mi- 
crostructure contains a { 112 } bcc twin, the analysis becomes more 
intricate since one needs to account for a pre-strained bcc twin. 
As discussed by Gao et al. [45] , when a bcc transforms into a bcc 
twin through a hcp-related path, there are twelve (non-identity) 
lattice correspondences leading to distinct deformation gradients 
F { 112 } twin . For the simulation in Fig. 4 , a tensile load is applied in 
the [ 011 ] bcc direction, and the initial { 112 } bcc microstructure trans- 
forms into a { 11 ̄2 2 } hcp twin. 

From Eq. (3) , we find that the only hcp variant favored by a 
tensile load in the d direction is hcp2, with e = 9 . 15 × 10 −2 . This 
corresponds to the transformation undergone by the parent strain- 
free bcc lattice in Fig. 4 , which becomes hcp2 with F = F | PS 

hcp2 . In 
this scenario we will assume the PS mechanism a priori, since the 
right stretch for both mechanisms is the same and this simpli- 
fies the analysis. However, the total deformation gradient F ∗ of the 
bcc twin transformation needs to account for the initial F { 112 } twin , 
so that F ∗ = F | PS 

hcp2 · F { 112 } twin . Since only hcp2 is preferred by the 
load, we assume a { 112 } bcc twin → hcp2 transformation, where 
F { 112 } twin has the following components 
F ij | { 112 } twin = 

[ 
0 . 5 −0 . 75 0 . 75 
0 . 5 0 . 75 0 . 25 

−0 . 5 0 . 25 0 . 75 
] 

. (5) 
This leads to a resulting F ∗ with a Biot strain e ∗

d = 9 . 15 × 10 −2 , also 
favored by the tensile load. 
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Fig. 7. Transformation of the { 10 ̄1 1 } twin (top row) and { 10 ̄1 2 } twin (bottom row) 
to single-crystal bcc phase after increasing the temperature from 600 K to 1200 K, 
confirming that they are the transformation twins associated with bcc → hcp phase 
transformation. 
3.2.5. X -compression: { 11 ̄2 1 } twin 

The last case we presented was the { 11 ̄2 1 } twin formation 
starting from a { 112 } bcc twin. The analysis follows the same steps 
as in the { 11 ̄2 2 } twin case, where the difference now is that we 
have a compressive load in the [ ̄1 13 ] bcc direction. Calculating the 
Biot strains in this direction based on the deformation gradients 
from Eq. (3) , we find that only hcp5 with e d = −7 . 2 × 10 −2 and 
hcp6 with e d = −8 . 9 × 10 −2 are favored by the compressive load. 

The numerical results in Fig. 5 suggest that the parent strain- 
free bcc lattice transforms into hcp5, with F = F | PS 

hcp5 , whereas the 
other lattice forming the twin would come from a different variant. 
As in the { 11 ̄2 2 } case, this variant originates from a pre-strained 
bcc twin, with a total deformation gradient F ∗ = F | PS 

hcp6 · F { 112 } twin . 
Since hcp6 is the other variant preferred by the load, we assume a 
bcc twin → hcp6 transformation, where F { 112 } twin components are 
the same as in Eq. (5) . This leads to a resulting F ∗ with a Biot 
strain e ∗

d = −8 . 1 × 10 −2 also favored by the compressive load. 
3.3. The twinning mode analysis 

So far, our MD simulations of bcc → hcp phase transition cap- 
tured the formation of { 10 ̄1 1 } , { 10 ̄1 2 } , { 11 ̄2 2 } and { 11 ̄2 1 } twins, 
which are also known as the four deformation twinning modes 
in hcp materials [46] . It should be noted that both phase transi- 
tions and mechanical loadings could lead to twin formation. The 
former leads to transformation twins and the latter leads to de- 
formation twins [47–49] . The twin components for deformation 
twins are well-established [46] , while that for the transformation 
twin is still unclear [47–49] , especially on the relation between the 
transformation twins and deformation twins. 
3.3.1. Reverse phase transition 

To unambiguously determine the transformation twin, we fur- 
ther induce the reverse hcp → bcc transformation by heating up 
these twinned structures to 1200 K. If the twin is the direct prod- 
uct of bcc → hcp transformation, the reverse hcp → bcc trans- 
formation will eliminate the twin boundary and lead to a single 
bcc phase. Figs. 7 and 8 demonstrate the microstructure evolu- 
tion of the four types of twins during the heating process. For the 
{ 10 ̄1 1 } twin, only one bcc phase nucleates from the { 10 ̄1 1 } twin 
boundaries ( Fig. 7 (b)) and then consumes the entire twinned grain 
( Fig. 7 (c)). Similarly, the same phenomenon occurs in the { 10 ̄1 2 } 
twinned case ( Fig. 7 (d)–(f)). In contrast, heating up the { 11 ̄2 2 } twin 
leads to the nucleation of two different bcc phases and the forma- 
tion of a { 112 } twin ( Fig. 8 (c)), so does the case of the { 11 ̄2 1 } twin 
( Fig. 8 (f)). To conclude, only { 10 ̄1 1 } and { 10 ̄1 2 } twins are transfor- 

Fig. 8. Transformation of the { 11 ̄2 2 } twin (top row) and { 11 ̄2 1 } twin (bottom row) 
to { 112 } bcc twin after increasing the temperature from 600 K to 1200 K. 
mation twins associated with bcc → hcp phase transformation. The 
formation of { 11 ̄2 2 } and { 11 ̄2 1 } twins is ascribed to the existing 
{ 112 } twin in the parent bcc phase, formed before the bcc → hcp 
phase transformation. 

Previously, { 10 ̄1 1 } twins were identified as transformation 
twins in pure Ti, caused by quenching-induced bcc → hcp phase 
transformation [23,31,32] . In Ti alloy [33] , quenching-induced 
{ 10 ̄1 2 } transformation twins were reported. Our MD simula- 
tions agree with the experimental observation of transformation 
twins in Ti and its alloys. More importantly, our analysis in 
Section 3.2 reveals that the activation of the specific transforma- 
tion twinning mode is selected by the applied mechanical load- 
ing. This new knowledge could offer a novel strategy for engineer- 
ing twin microstructure using designed thermomechanical pro- 
cessing [21,22,29] . Finally, it should be noted that this is not spe- 
cific to Ti and its alloys, and should apply generally to other mate- 
rial systems involving bcc → hcp phase transformation. 
3.3.2. Theoretical calculation 

Last but not the least, the twinning mode of the transforma- 
tion twins will be examined to understand its relevance to the de- 
formation twinning modes in hcp metals. In Section 3.2 we were 
able to identify the deformation gradients associated with the dif- 
ferent hcp variants observed in the resulting microstructure. We 
can now employ these tensors to calculate the twinning elements 
between each pair of variants, and compare with the MD results. 
These elements are the solution of the twinning equation [50] , a 
kinematic compatibility condition between two regions presenting 
a jump in the deformation gradient and stretch. If a twin is formed 
between variants I and J, with right stretch tensors U I and U J , then 
the twinning equation takes the form 
R · U I − U J = a ! n , (6) 
for some vector a and a unit normal n to the interface. The mis- 
orientation between the neighboring lattices is captured by the ro- 
tation tensor R . 

Once the stretch tensors U I and U J are extracted from the de- 
formation gradients, a pair of solutions { a , n , R } can be calculated 
from (6) based on the algorithm detailed by Bhattacharya [51] . In 
the present case, n can be identified with the normal for the shear 
plane K in the hcp lattice, whereas the direction of shear η and 
shear magnitude s are calculated as 
η = a 

| a | , s = | a | | U −1 
J · n | . (7) 

Following this approach, we use the deformation gradients pre- 
dicted in Section 3.2 to calculate the twinning elements for each 
case. 
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Table 2 
Summary of the twinning modes observed after bcc → hcp phase transformation. ∗ The angles between bcc planes 
involved in the twin formation process is taken as an acute angle to be consistent with the definition of the mis- 
orientation angles of the twins. 

Twin type bcc → { 10 ̄1 1 } hcp bcc → { 10 ̄1 2 } hcp { 112 } bcc → { 11 ̄2 2 } hcp { 112 } bcc → { 11 ̄2 1 } hcp 
K 2 plane { 0 . 24 ̄1 0 . 76 0 . 28 } { ̄1 012 } { ̄1 ̄1 2 ̄6 } { 0 . 97 0 . 66 1 . 62 ̄1 } 
shear s 0.343 0.176 0.152 0.514 
loading direction x -tension x -compression x -tension x -compression 
zone axis [ 1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp [ 001 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp [ 011 ] bcc ‖ [10 ̄1 0 ] hcp [ ̄1 13 ] bcc ‖ [01 ̄1 0 ] hcp 
bcc-hcp pathway Burgers PS PS Burgers 
bcc planes angle ∗ 60 ◦ 90 ◦ 70 ◦ 35 ◦
twin angle 57 ◦ 85 ◦ 65 ◦ 35 ◦

1. x -tension along [ 1 ̄1 1 ] bcc : from F | PS 
hcp1 and F | PS 

hcp4 we find 
s = 0 . 343 , 
K 1 = { 10 ̄1 ̄1 } , η1 = 〈 0 . 38 1 0 . 62 0 . 25 〉 , 
K 2 = { 0 . 24 1̄ 0 . 76 0 . 28 } , η2 = 〈 ̄5 143 〉 . 

2. x -compression along [ 001 ] bcc : from F | PS 
hcp5 and F | PS 

hcp6 we find 
s = 0 . 176 , 
K 1 = { 0 ̄1 12 } , η1 = 〈 01 ̄1 1 〉 , 
K 2 = { 01 ̄1 2 } , η2 = 〈 0 ̄1 11 〉 . 

3. x -tension along [ 011 ] bcc : from F | PS 
hcp2 and F | PS 

hcp2 · F { 112 } twin we 
find 
s = 0 . 152 , 
K 1 = { ̄1 ̄1 22 } , η1 = 〈 11 ̄2 3 〉 , 
K 2 = { ̄1 ̄1 2 ̄6 } , η2 = 〈 11 ̄2 ̄1 〉 . 

4. x -compression along [ ̄1 13 ] bcc : from F | PS 
hcp5 and F | PS 

hcp6 · F { 112 } twin 
we find 
s = 0 . 514 , 
K 1 = { ̄1 2 ̄1 ̄1 } , η1 = 〈 0 . 83 0 . 17 1̄ 0 . 51 〉 , 
K 2 = { 0 . 97 0 . 66 1 . 62 1̄ } , η2 = 〈 5 ̄7 23 〉 . 
Therefore, based on the deformation gradients and the respec- 

tive hcp variants favored by the load in each case, we find twin- 
ning planes K 1 that exactly match the ones formed in the MD 
simulations. In particular, the { 10 ̄1 2 } transformation twin is deter- 
mined to resemble the { 10 ̄1 2 } deformation twinning mode com- 
mon to all hcp metals. The { 11 ̄2 2 } twin inherited from the { 112 } bcc 
twin is the same as the { 11 ̄2 2 } extension twin formed through 
non-cozone { 10 ̄1 2 } − { 01 ̄1 2 } twin-twin interaction [38] . Because 
these two twinning modes correspond to the deformation twin- 
ning modes, their dichromatic complex patterns are shown in 
Fig. 9 . As for the { 10 ̄1 1 } and the { 11 ̄2 1 } twins, the twinning ele- 
ments calculation clearly demonstrates that they have irrational K 2 

Fig. 9. The dichromatic complex of (a) { 10 ̄1 2 } and (b) { 11 ̄2 2 } twins. The top open 
symbols and bottom gray symbols represent the parent, while the top gray sym- 
bols represent the twin. The blue arrows represent the atomic shuffle direction and 
the red atoms represent the shear direction. K 1 is the twinning plane and K 2 is 
the conjugate twinning plane. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

planes and η1 direction, which is different from the well-known 
{ 10 ̄1 1 } and { 11 ̄2 1 } deformation twinning modes. While these solu- 
tions for the twinning equation were previously discussed in Gao 
et al. [30] , we here show the effect of mechanical loading. It is 
possible to predict which twin will be formed by combining the 
loading analysis for preferred variants with the twinning equa- 
tion in Eq. (6) . Finally, the twinning elements and the correspond- 
ing loading condition are summarized in Table 2 . 
4. Conclusions 

In conclusion, our MD simulations revealed the formation of 
martensite microstructure containing { 10 ̄1 1 } , { 10 ̄1 2 } , { 11 ̄2 2 } , and 
{ 11 ̄2 1 } twins as a result of bcc-hcp martensitic phase transforma- 
tion. Specifically, the { 10 ̄1 1 } and { 10 ̄1 2 } twins are found as the 
transformation twins, while the { 11 ̄2 2 } and { 11 ̄2 1 } twins are in- 
herited from the initial { 112 } twin in the bcc phase. The twinning 
mode analysis unambiguously reveals { 10 ̄1 2 } transformation twins 
correspond to the well-established deformation twinning modes in 
hcp metals. More importantly, aided by the calculation of the de- 
formation gradient and transformation strain, we explained that 
the { 10 ̄1 1 } transformation twin is favored by [ 1 ̄1 1 ] bcc axis ten- 
sion and the { 10 ̄1 2 } transformation twin is favored by [ 001 ] bcc axis 
compression. Notably, the calculation completely agrees with our 
MD simulations, revealing the critical role of mechanical loading 
on the activation of the specific transformation twinning mode. 
This new knowledge will offer a novel strategy to engineer twin 
microstructure using designed thermomechanical processing. 
Data availability 

The data that support the findings of this study are available 
from the corresponding author upon reasonable request. 
Declaration of Competing Interest 

The authors declare that they have no known competing finan- 
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 
Acknowledgments 

The authors acknowledge the partial financial support from 
NSF-CBET TTP-Thermal Transport Process Program and NSF EPSCoR 
Program (Grant no. #1953300 ). The authors also would like to ac- 
knowledge the support of Research & Innovation and the Office of 
Information Technology at the University of Nevada, Reno for com- 
puting time on the Pronghorn High-Performance Computing Clus- 
ter. E.V. is thankful to James Hanna for his support through the 
NSF grant CMMI-2001262 . 

8 

https://doi.org/10.13039/100000001


A.H. Zahiri, E. Vitral, J. Ombogo et al. Acta Materialia 241 (2022) 118377 
References 

[1] K.J. Caspersen, A. Lew, M. Ortiz, E.A. Carter, Importance of shear in the bcc–
to-hcp transformation in iron, Phys. Rev. Lett. 93 (11) (2004) 115501 . 

[2] M. Ekman, B. Sadigh, K. Einarsdotter, P. Blaha, Ab initio study of the marten- 
sitic bcc-hcp transformation in iron, Phys. Rev. B 58 (9) (1998) 5296 . 

[3] S. Banerjee, P. Mukhopadhyay, Phase Transformations: Examples from Tita- 
nium and Zirconium Alloys, Elsevier, 2010 . 

[4] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, 
Prog. Mater. Sci. 50 (5) (2005) 511–678 . 

[5] J.W. Christian, The theory of transformations in metals and alloys, Pergamon, 
Oxford, 2002, pp. 1–22 . 

[6] C. Cayron, F. Barcelo, Y. de Carlan, The mechanisms of the fcc bcc marten- 
sitic transformation revealed by pole figures, Acta Mater. 58 (4) (2010) 1395–
1402 . 

[7] S.M.C. Van Bohemen, J. Sietsma, S. Van der Zwaag, Experimental observations 
elucidating the mechanisms of structural bcc-hcp transformations in β Ti al- 
loys, Phys. Rev. B 74 (13) (2006) 134114 . 

[8] H. Zong, P. He, X. Ding, G.J. Ackland, Nucleation mechanism for hcp bcc phase 
transformation in shock-compressed Zr, Phys. Rev. B 101 (14) (2020) 144105 . 

[9] W.G. Burgers, On the process of transition of the cubic-body-centered modi- 
fication into the hexagonal-close-packed modification of zirconium, Physica 1 
(7–12) (1934) 561–586 . 

[10] K. Masuda-Jindo, S.R. Nishitani, V. Van Hung, Hcp-bcc structural phase trans- 
formation of titanium: analytic model calculations, Phys. Rev. B 70 (18) (2004) 
184122 . 

[11] S. Merkel, A. Lincot, S. Petitgirard, Microstructural effects and mechanism 
of bcc-hcp-bcc transformations in polycrystalline iron, Phys. Rev. B 102 (10) 
(2020) 104103 . 

[12] T.H. Lee, H.Y. Ha, J.Y. Kang, J. Moon, C.H. Lee, S.J. Park, An intersecting- 
shear model for strain-induced martensitic transformation, Acta Mater. 61 (19) 
(2013) 7399–7410, doi: 10.1016/J.ACTAMAT.2013.08.046 . 

[13] S. Kante, A. Leineweber, Two-phase and three-phase crystallographic relation- 
ships in white-solidified and nitrided Fe–C–Si cast iron, Acta Mater. 170 (2019) 
240–252, doi: 10.1016/J.ACTAMAT.2019.03.029 . 

[14] J. Ribis, S. Doriot, F. Onimus, Shape, orientation relationships and interface 
structure of beta-Nb nano-particles in neutron irradiated zirconium alloy, J. 
Nucl. Mater. 511 (2018) 18–29, doi: 10.1016/J.JNUCMAT.2018.08.042 . 

[15] J.P. Zhou, D.S. Zhao, O. Zheng, J.B. Wang, D.X. Xiong, Z.F. Sun, J.N. Gui, 
R.H. Wang, High-resolution electron microscopy observations of continuous 
precipitates with Pitsch–Schrader orientation relationship in an mgal based al- 
loy and interpretation with the O-lattice theory, Micron 40 (8) (2009) 906–
910, doi: 10.1016/J.MICRON.20 09.05.0 08 . 

[16] M. Matsuda, T. Hara, M. Nishida, Crystallography and morphology of antiphase 
boundary-like structure induced by martensitic transformation in Ti–Pd shape 
memory alloy, Mater. Trans. 49 (3) (2008) 461–465 . 

[17] D. Banerjee, K. Muraleedharan, J. Strudel, Substructure in titanium alloy 
martensite, Philos. Mag. A 77 (2) (1998) 299–323 . 

[18] L. Gao, X. Ding, H. Zong, T. Lookman, J. Sun, X. Ren, A. Saxena, Diffuse scat- 
tering as an indicator for martensitic variant selection, Acta Mater. 66 (2014) 
69–78 . 

[19] S. Wang, M. Aindow, M. Starink, Effect of self-accommodation on α/ α bound- 
ary populations in pure titanium, Acta Mater. 51 (9) (2003) 2485–2503 . 

[20] R. Shi, Y. Wang, Variant selection during α precipitation in Ti–6Al–4V under 
the influence of local stress—A simulation study, Acta Mater. 61 (16) (2013) 
6006–6024 . 

[21] C. Jourdan, J. Gastaldi, P. Marzo, G. Grange, In situ statistical study of the nucle- 
ation, the variant selection and the orientation memory effect during the αβ
titanium martensitic transformation, J. Mater. Sci. 26 (16) (1991) 4355–4360 . 

[22] I. Lonardelli, N. Gey, H.-R. Wenk, M. Humbert, S. Vogel, L. Lutterotti, In situ 
observation of texture evolution during αβ and βα phase transformations in 
titanium alloys investigated by neutron diffraction, Acta Mater. 55 (17) (2007) 
5718–5727 . 

[23] E. Bilby, The mechanism of phase transformations in metals: martensitic trans- 
formations, in: A Symposium Organized by the Institute of Metals and Held at 
the Royal Institution, London, on 9 Nov. 1955, vol. 18, 1955, p. 121 . 

[24] B.A. Bilby, J. Christian, The crystallography of martensitic transformations, J. 
Iron Steel Inst. 197 (1961) 122–131 . 

[25] A.H. Zahiri, J. Ombogo, L. Cao, Formation of { 11 ̄2 2 } contraction twins in ti- 
tanium through reversible martensitic phase transformation, Scr. Mater. 195 
(2021) 113694 . 

[26] J. Ombogo, A.H. Zahiri, T. Ma, L. Cao, Nucleation of { 10 ̄1 2 } twins in mag- 
nesium through reversible martensitic phase transformation, Metals 10 (8) 
(2020) 1030 . 

[27] A.H. Zahiri, J. Ombogo, T. Ma, P. Chakraborty, L. Cao, Transformation-induced 
plasticity in omega titanium, J. Appl. Phys. 129 (1) (2021) 015105 . 

[28] P. Chen, F. Wang, B. Li, Transitory phase transformations during { 10 ̄1 2 } twin- 
ning in titanium, Acta Mater. 171 (2019) 65–78 . 

[29] Y. Gao, Y. Zhang, B.W. Beeler, Y. Wang, Self-organized multigrain patterning 
with special grain boundaries produced by phase transformation cycling, Phys. 
Rev. Mater. 2 (7) (2018) 073402 . 

[30] Y. Gao, J.-H. Ke, B. Mao, Y. Liao, Y. Zheng, L.K. Aagesen, Twinning path de- 
termined by broken symmetry: arevisit to deformation twinning in hexagonal 
close-packed titanium and zirconium, Phys. Rev. Mater. 4 (7) (2020) 070601 . 

[31] Z. Nishiyama, M. Oka, H. Nakagawa, { 10 ̄1 1 } transformation twins in titanium, 
Trans. Jpn. Inst. Metals 7 (3) (1966) 174–177 . 

[32] P. Gaunt, J. Christian, The crystallography of the β- α transformation in zir- 
conium and in two titanium-molybdenum alloys, Acta Metall. 7 (8) (1959) 
534–543 . 

[33] J. Mackenzie, J. Bowles, The crystallography of martensite transformations—IV 
body-centred cubic to orthorhombic transformations, Acta Metall. 5 (3) (1957) 
137–149 . 

[34] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. 
Chem. Phys. 117 (1) (1995) 1–19, doi: 10.1006/jcph.1995.1039 . 

[35] M.I. Mendelev, T.L. Underwood, G.J. Ackland, Development of an interatomic 
potential for the simulation of defects, plasticity, and phase transformations in 
titanium, J. Chem. Phys. 145 (15) (2016) 154102 . 

[36] D.J. Evans, B.L. Holian, The nose hoover thermostat, J. Chem. Phys. 83 (8) 
(1985) 4069–4074, doi: 10.1063/1.449071 . https://doi.org/10.1063/1.449071 . 

[37] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new 
molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182–7190 . 

[38] A.H. Zahiri, L. Carneiro, J. Ombogo, P. Chakraborty, L. Cao, On the formation 
of { 11 ̄2 2 } boundary via { 10 ̄1 2 } - { 01 ̄1 2 } twin–twin interaction in magnesium, 
Comput. Mater. Sci 201 (2022) 110887 . 

[39] A. Stukowski, Visualization and analysis of atomistic simulation data with 
OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (1) (2009) 
015012, doi: 10.1088/0965-0393/18/1/015012 . https://doi.org/10.1088%2F0965- 
0393%2F18%2F1%2F015012. 

[40] D. Faken, H. Jnsson, Systematic analysis of local atomic structure combined 
with 3D computer graphics, Comput. Mater. Sci 2 (2) (1994) 279–286 . 

[41] J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freez- 
ing of small Lennard–Jones clusters, J. Phys. Chem. 91 (19) (1987) 4 950–4 963 . 

[42] R.M. Wood, The lattice constants of high purity alpha titanium, Proc. Phys. 
Soc. 80 (3) (1962) 783–786, doi: 10.1088/0370-1328/80/3/323 . https://doi.org/ 
10.1088/0370-1328/80/3/323 

[43] C. Baruffi, A. Finel, Y. Le Bouar, B. Bacroix, O.U. Salman, Atomistic simulation of 
martensite microstructural evolution during temperature driven βα transition 
in pure titanium, Comput. Mater. Sci 203 (2022) 111057 . 

[44] E. Vitral, J.A. Hanna, Quadratic-stretch elasticity, Math. Mech. Solids 27 (3) 
(2022) 462–473 . 

[45] Y. Gao, Y. Zhang, Y. Wang, Determination of twinning path from broken sym- 
metry: a revisit to deformation twinning in bcc metals, Acta Mater. 196 (2020) 
280–294 . 

[46] A. Crocker, M. Bevis, The crystallography of deformation twinning in titanium, 
in: R. Jaffee, N. Promisel (Eds.), The Science, Technology and Application of 
Titanium, Pergamon, 1970, pp. 453–458 . 

[47] R.E. Reed-Hill, J.P. Hirth, H.C. Rogers, Deformation Twinning: Proceedings of a 
Conference Sponsored by the Metallurgical Society, American Institute of Min- 
ing, Metallurgical, and Petroleum Engineers and the College of Engineering, 
University of Florida in Cooperation with the Florida Institute for Continuing 
University Studies: Gainesville, Fla., March 21-22, 1963, 1964. 

[48] A. Crocker, The role of twinning in martensite transformations, in: 
R.E. Reed-Hill, J.P. Hirth, H.C. Rogers (Eds.), Conference on Deformation Twin- 
ning, Gainesville, FL, Deformation Twinning, vol. 25, Blackie: Gordon and 
Breach Science Publishers, 1964, pp. 272–294 . 

[49] J.W. Christian, S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1–2) 
(1995) 1–157 . 

[50] J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, Arch. Ra- 
tion. Mech. Anal. 100 (1) (1987) 13–52 . 

[51] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives 
Rise to the Shape-memory Effect, vol. 2, Oxford University Press, 2003 . 

9 

http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0001
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0002
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0003
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0004
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0005
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0006
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0007
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0008
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0009
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0010
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0011
https://doi.org/10.1016/J.ACTAMAT.2013.08.046
https://doi.org/10.1016/J.ACTAMAT.2019.03.029
https://doi.org/10.1016/J.JNUCMAT.2018.08.042
https://doi.org/10.1016/J.MICRON.2009.05.008
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0016
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0017
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0018
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0019
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0020
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0021
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0022
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0023
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0024
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0025
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0026
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0027
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0028
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0029
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0030
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0031
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0032
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0033
https://doi.org/10.1006/jcph.1995.1039
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0035
https://doi.org/10.1063/1.449071
https://doi.org/10.1063/1.449071
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0037
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0038
https://doi.org/10.1088/0965-0393/18/1/015012
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0040
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0041
https://doi.org/10.1088/0370-1328/80/3/323
https://doi.org/10.1088/0370-1328/80/3/323
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0043
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0044
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0045
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0046
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0048
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0049
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0050
http://refhub.elsevier.com/S1359-6454(22)00755-8/sbref0051

	The role of mechanical loading in bcc-hcp phase transition: tension-compression asymmetry and twin formation
	1 Introduction
	2 Methods
	3 Results
	3.1 Molecular dynamics simulations
	3.1.1 The formation of  twin
	3.1.2 The formation of  twin
	3.1.3 The formation of  twin
	3.1.4 The formation of  twin

	3.2 The effect of the loading direction on the twin formation
	3.2.1 Unit cell kinematics of bcc  hcp transformation
	3.2.2 X-tension:  twin
	3.2.3 X-compression:  twin
	3.2.4 X-tension:  twin
	3.2.5 X-compression:  twin

	3.3 The twinning mode analysis
	3.3.1 Reverse phase transition
	3.3.2 Theoretical calculation


	4 Conclusions
	Data availability
	Declaration of Competing Interest
	Acknowledgments
	References


