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A B S T R A C T

The second invariant of the left Cauchy–Green deformation tensor B (or right C) has been argued to play a
fundamental role in nonlinear elasticity. Generalized neo-Hookean materials, which depend only on the first
invariant, lead to universal relations that conflict with experimental data, fail to display important mechanical
behaviors (such as the Poynting effect in simple shear), and may not provide a satisfactory link with the
mesoscale. However, the second invariant term is not a higher order strain contribution to the energy, which
lead us to reflect on what is incomplete about neo-Hookean materials. Instead of the usual Cauchy–Green
elastic formulation, we investigate this matter from the perspective of left stretch V =

˘
B and Bell strain

EBell = V * I formulations. Invariants of these tensors offer a different interpretation than those of B and are
linked to different classes of materials. The main example we adopt is a general isotropic energy quadratic
in Bell strains, the quadratic-Biot material. Despite being quadratic in stretch like neo-Hookean, this material
presents both the classic and reverse Poynting effect in simple shear, whose direction switches as a function of
the constant conjugate to the second invariant of EBell. Its second normal stress also presents a local maximum
as a function of the amount of shear, a transition that is not observed in a Mooney–Rivlin solid. Moreover, even
the Varga model, linear in Bell strains, presents Poynting in simple shear, which poses the question of why
this is not true for a model linear in Green–Lagrange strains. Pure torsion of a solid cylinder is also discussed,
particularly how the behavior of the resultant axial force contrasts between the different formulations.

1. Introduction

Simple hyperelastic materials present a strain energy density func-
tion W that, for isothermal deformations, depends only on the current
deformation gradient F, which completely determines the stress tensor.
For isotropic elastic solids, the material symmetry group of the refer-
ence undistorted configuration is the special orthogonal group SO(3),
and thus, by the polar decomposition of F and objectivity, the stress
becomes a function of the left stretch V only, or, equivalently, of the left
Cauchy–Green deformation tensor B = V2 [1]. Therefore, the most gen-
eral form of the energyW for these solids can be written in terms of the
three invariants of the stretch or Cauchy–Green deformation tensors.
When adopting a dependency on invariants iBi of B, one popular class
of materials is the generalized incompressible neo-Hookean class, for
which the energy is a function of only the first invariant W1 = W(iB1 ),
a simple functional form that also appears from the kinetic theory of
rubber. Recent discussions on micro to macro connections in these
materials, shortcomings of the W1 class, and possible generalizations
can be found in Puglisi and Saccomandi [2], Destrade et al. [3], and
Anssari-Benam and Bucchi [4].

Despite the popularity ofW1 models, a number of studies emphasize
the importance of the second invariant iB2 in the modeling of nonlin-
ear elastic materials — see for example Wineman [5], Horgan and
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Smayda [6], and Anssari-Benam et al. [7]. A powerful tool for evalu-
ating the nonlinear character and how appropriately a material class
corresponds to experimental evidence is the derivation of universal
relations [7–10]. Hence, one strong argument for incorporating iB2 in
Cauchy–Green type energies is the fact that experimental data conflicts
with universal relations based on W1 [9,11]. Moreover, the second
invariant is argued as essential to provide a better fit for experimental
data, and to model mechanical behaviors that generalized neo-Hookean
materials fail to capture, such as the Poynting effect in isochoric simple
shear under plane stress (i.e. the normal stress perpendicular to the
shearing direction required to maintain this deformation). While the
addition of iB2 solves the conflict with universal relations and recovers
desirable mechanical behaviors, the underlying issues of why ‘‘incom-
plete’’ generalized neo-Hookean materials fail in the first place to model
important responses, and what is special about iBi from a mathematical
modeling standpoint, have not been explored in detail.

The present paper proposes to look into this problem from a differ-
ent perspective by adopting a stretch formulation [12,13] for the strain
energy and derived stresses, instead of the usual formulation based on
the Cauchy–Green tensor. More precisely, we will employ a measure
of deformation linear in stretch, known as the Bell strain EBell = V * I
(spatial counterpart of the referential Biot strain), and write the energy
in terms of its invariants iEBi [14]. While both formulations have their
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own advantages and can be translated from one form to the other [13],
the Cauchy–Green one is historically preferred. This happens because
equations formulated in terms of B and its invariants often possess
a simpler form, and their associated strains, the Green–Lagrange and
Euler–Almansi tensors, can be easily written as a function of metrics
and bases of the problem. On the other hand, stretch formulations
often lead to more convoluted equations, and to complications such as
tensor square roots, although explicit equations for the stretch tensors
in terms of their own invariants are available [14–16]. However, the
role played by the invariants iEBi differs significantly when compared to
the one played by iBi in their respective formulations, which provides
new insights into canonical nonlinear elastic problems such as simple
shear of a cuboid and pure torsion of a cylinder.

When it comes to stretch type energies, we focus our attention on
the isotropic quadratic-Biot material [14,17], which, similarly to the
classic neo-Hookean material, is quadratic in stretch. However, the
former is a two constant general quadratic energy in Bell strains that
can be constructed from a systematic expansion in eigenvalues of EBell.
Therefore, particularly for small finite strains, we are interested in
contrasting the mechanical response predicted by these two different
energies. The quadratic-Biot material has been recently adopted to
derive reduced plate and shell energies [18,19], which avoids the
undesirable mixing between stretching and bending contents intro-
duced when the reduction is performed for certain energies quartic in
stretches [20–22], such as Saint Venant-Kirchhoff. It also leads to a
complete two constant bending energy for an isotropic material, instead
of the one constant bending energy derived from neo-Hookean.

Another question is how a subclass of W1 governed by (iB1 * 3)n

fares against a stretch class of energies of the type (iEB1 )n, where n
is an integer. Among the stretch class, we have the Varga model for
n = 1, and a one constant quadratic-Biot model for n = 2. In other
words, this is a comparison between models constructed with powers
of a strain quadratic in stretch, with an energy limited to even powers
of stretch [14,23], and those built with powers of a strain linear
in stretch. We emphasize that a particular energy is independent of
the formulation: it can always be rewritten in terms of another set
of invariants (although translating invariants of V into those of B is
a convoluted task, involving a quartic equation [15]). The present
work is concerned with contrasting different simple functional forms
(linear, quadratic) constructed from different sets of invariants or strain
measures. As discussed by Hoger [24], a constitutive theory that is of
a certain order in a strain measure will not be of the same order in a
different measure, leading to distinct mechanical behaviors. That work
provides a detailed derivation of second order theories in Biot strain,
whereas here we provide a comparison between theories that are linear
or quadratic in Bell strain and those with strain measures based on
invariants of B.

We introduce the quadratic-Biot energy in Section 2, adopting the
incompressibility constraint, and write the Bell and Cauchy stress ten-
sors in terms of the invariants of the Bell strain. In Section 3 we
reformulate the problem of simple shear with traction free lateral con-
dition on the basis of invariants of the left stretch and Bell strain, and
discuss the consequences of adscititious inequalities to the constants of
the quadratic-Biot material. While for this homogeneous deformation
the Poynting effect is absent in generalized neo-Hookean materials, the
quadratic-Biot material not only displays classic (positive) Poynting,
but also the reverse (negative) effect inside the allowable range of the
material’s parameters. This effect is present for stretch type energies
even when there is no functional dependence of iEB2 . Additionally, it
is shown that a quadratic-Biot material presents shear hardening and
a transition in the second normal stress as a function of the amount
of shear, which is not the case for a Mooney–Rivlin material. This
section closes with a reflection on what is recovered on Cauchy–Green
formulations when iB2 is added from the point of view of EBell, a
primitive strain linear in stretch. The second example is pure torsion
of a solid cylinder, in Section 4, which we again reformulate on the

Bell strain basis. We remark that no evident relationship between the
resultant applied moment and axial force can be found for a class of
stretch type energies, as is the case for W1. From the resultant axial
force, we also compare the Poynting effect between the Varga, neo-
Hookean, and quadratic-Biot materials as a function of the angle of
twist.

2. Isotropic quadratic-biot material

Consider a reference unstressed body where the position vector
X locates material points. When the body undergoes a deformation,
the reference position X is mapped into x, describing the deformed
configuration. The deformation gradient F satisfies dx = F � dX, so that
F = Grad x. By the polar decomposition, F can be uniquely decomposed
as

F = V �Q = Q � U , (1)

where Q À SO(3), and the stretch tensors V and U are symmetric
positive-definite. The left (spatial) and right (referential) Cauchy–Green
deformation tensors are B = F � FÒ and C = FÒ � F, respectively, and
are related to the stretch tensors by B = V2 and C = U2. Note that the
eigenvalues of V and U coincide, which are the principal stretches �i,
with i À {1, 2, 3}, whereas those of B and C are �2i . The Green–Lagrange1
2 (C * I) and Euler–Almansi 1

2 (I * B*1) tensors are often adopted as
measures of strain, which are quadratic in stretch.

While the elastic energy function for isotropic materials is typically
written in terms of invariants of the left iBi (or right i

C
i ) Cauchy–Green

tensor, we can also cast it as a function of invariants of stretches [13,25]
or of the symmetric Bell EBell = V * I (or Biot EBiot = U * I)
strain [26]. The latter is a primitive measure of strain, linear in stretch,
and can be adopted as a small expansion parameter to derive a general
quadratic-stretch elastic energy [14], which presents both even and
odd powers of stretches. In contrast, hyperelastic models based on
iBi , such as Saint Venant-Kirchhoff and Mooney–Rivlin materials (both
quartic in stretch), are limited to even powers of stretches [23]. Among
these models, we find the generalized neo-Hookean class of materials,
which is independent of iB2 , and thus incomplete; not only they are
deficient in describing general mechanical responses, but even for small
deformations they do not correspond to any systematic expansion in
strains.1

A general isotropic quadratic energy function of the Bell strain is of
the form

W(iEB1 , iEB2 ) = c1 (i
EB
1 )2 + c2 i

EB
2 , (2)

where c1 and c2 are constant material parameters and the principal
invariants of EBell are

iEB1 = TrEBell = �1 + �2 + �3 ,

iEB2 = 1
2

⌧
Tr2 EBell * Tr (EBell2)

�
= �1�2 + �2�3 + �1�3 , (3)

iEB3 = DetEBell = �1�2�3 .

The eigenvalues of EBell have a clear physical interpretation [24]: they
are principal strains, the distance of principal stretches from unity,
�i = �i * 1. If one enforces c1 g *c2_3 and c2 f 0, then (2) is
a convex function, with a positive-definite Hessian in terms of �i.
However, a stronger constraint on these constants can be imposed
due to restrictions on response function, which will be discussed in
Section 3.1.

A material governed by (2) has been labeled as ‘‘semilinear’’ by
Lurie [17], and in two-dimensions as ‘‘harmonic’’ by John [27,28]. Due
to the lack of an universally adopted name for (2), we refer to it as a

1 While this text focus on the spatial V and B tensors, arguments are
equivalent for formulations based on the referential U and C tensors due to
parity of eigenvalues and invariants.
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quadratic-Biot material. The energy (2) can also be written in terms of
invariants of the left stretch V,

W(iV1 , i
V
2 ) = c1 (iV1 * 3)2 + c2 (iV2 * 3) * 2c2 (iV1 * 3) , (4)

where iVi are analogously defined as (3) in terms of V and �i. Here
we used the fact that iEB1 = iV1 * 3 and iEB2 = iV2 * 2iV1 + 3. Although
W and W are formally different energy functions with distinct depen-
dencies, in this work we use W indiscriminately, as an energy density
with dependencies implicitly defined by the invariants appearing in
derivatives.

For an isotropic material, the Bell stress [25,26], which is conjugate
to the Bell strain, is given by

⌃Bell =
)W
)EBell

=
0

)W
)iEB1

+ iEB1
)W
)iEB2

+ iEB2
)W
)iEB3

1
I

*
0

)W
)iEB2

+ iEB1
)W
)iEB3

1
EBell +

)W
)iEB3

EBell2 . (5)

The Bell stress is related to the Cauchy stress tensor through the relation

T = J*1V �⌃Bell , (6)

where J = iV3 . If the material is incompressible, we have J = 1, which
can be factored into the variational principle presented in [14] through
a constraint p(J*1) in the energy, where the Lagrange multiplier p is the
pressure. In this case, the Bell stress derived from the Euler–Lagrange
equations has the form

⌃Bell = *pV*1 + )W
)EBell

= *pV*1 +
0

)W
)iEB1

+ iEB1
)W
)iEB2

1
I * )W

)iEB2
EBell . (7)

Therefore, for an incompressible quadratic-Biot material, the Bell (7)
and Cauchy (6) stresses are

⌃Bell = *pV*1 + [(2c1 + c2)i
EB
1 + c2]I * c2V , (8)

T = *p I + [(2c1 + c2)i
EB
1 + c2]V * c2B . (9)

While it is straightforward to work with B and its invariants if
the deformation is known, the same is not true for V =

˘
B. An

useful form of the stretch can be obtained through the Cayley–Hamilton
theorem, which gives an explicit expression for V as a function of its
own invariants and B [14,16],

V =
�
iV1 i

V
2 * iV3

�*1 ⇠iV1 iV3 I +
⌧�
iV1
�2 * iV2

�
B * B2

⇡
. (10)

This explicit form of V can be substituted into the stresses (8) and (9)
in order to connect with usual expressions function of the tensor B.

2.1. Uniaxial tension and linear limit

For familiarizing with the mechanical behavior of the incompress-
ible quadratic-Biot material, it is insightful to evaluate its response with
respect to a basic homogeneous deformation of uniaxial extension in
the 1-direction. In this case, the principal stretches are �1 = 1, and
�2 = �3 = �*1_2, so that

V = �e1 ‰ e1 + �*1_2(e2 ‰ e2 + e3 ‰ e3) ,
B = �2e1 ‰ e1 + �*1(e2 ‰ e2 + e3 ‰ e3) .

(11)

By assuming T � e2 = T � e3 = 0, we obtain the pressure p from (9).
We then substitute p into the axial stress T = T � e1 and find

T = [(2c1 + c2)(� + 2�*1_2 * 3) + c2](� * �*1_2) * c2(�2 * �*1) . (12)

One convenient way to nondimensionalize the axial stress is

ÑT = T
2c1

= [(1 + É�)(� + 2�*1_2 * 3) + É�](� * �*1_2) * É�(�2 * �*1) , (13)

where É� = c2_2c1. The nondimensional axial stress ÑT as a function of the
stretch � is shown in Fig. 1, for a range of É� both negative and positive.

Fig. 1. Nondimensional normal stress ÑT for a quadratic-Biot material in uniaxial
extension as a function of the stretch �. The range of É� = c2_2c1 for which (2) is
convex is *3_2 f É� f 0.

The interval for which (2) is convex is *3_2 f É� f 0. Observe that for
É� > 0, i.e. c2 > 0, ÑT initially decreases with �, which is not physically
reasonable. For É� < *3_2, i.e. c1 < *c2_3, the behavior of the ÑT curve
becomes closer to linear (see É� = *2), which is physically reasonable
for uniaxial tension, but lies outside the convexity range for (2).

It is also helpful to connect the constants from the energy (2) with
the Lamé parameters in the linear limit. In linear elasticity, the isotropic
Cauchy stress is given by T = �L(Tr ")I + 2�L", where �L and �L are
the first and second Lamé parameters, respectively, and " is the small
strain tensor. By linearizing V ˘ I + " and B ˘ I + 2", from the Cauchy
stress for the incompressible quadratic-Biot material (9) we find that

c2 = *2�L . (14)

Therefore, the condition c2 f 0 implies the usual �L g 0. The relation
�L = 2c1+c2 can be identified from the Cauchy stress when incompress-
ibility is not enforced for the material (2). It is also straightforward to
identify these relations by rewriting the energy (2) as [14]

W =
0
c1 +

c2
2

1
Tr2 EB *

c2
2 Tr(EB2) . (15)

3. Simple shear

We now formulate an incompressible simple shear deformation in
terms of stretches and Bell strains, adopting the quadratic-Biot material
as the main example, and contrast this formulation with the classic
one on the basis of Cauchy–Green tensors. Under traction free lateral
boundaries, generalized neo-Hookean materials do not present the
Poynting effect for such deformation, which highlights the importance
of the second invariant for materials governed by the invariants of B.
Moreover, neo-Hookean and Mooney–Rivlin materials present no shear
hardening under simple shear. While many materials show a linear
relation between shear stress and amount of shear, these two models
miss other important nonlinear effects, requiring additional terms in the
energy to be recovered [29,30]. This section aims to clarify how these
observations compare with the mechanical response of a quadratic-Biot
material and understand the role played by the invariants of the tensors
V and EBell on stretch based formulations.
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The isochoric deformation for simple shear is given by [31]

x1 = X1 + X2 , x2 = X2 , x3 = X3 , (16)

where Xi are reference coordinates of X, xi deformed coordinates of
x, and  is the amount of shear ( = tan ✓, for a shear angle ✓). We
adopt rectangular Cartesian coordinates, with a basis {ei}. Traction free
boundary condition is assumed in the out-of-plane direction, T � e3 = 0.
Note that in experiments deformations such as (16) are hard to be
controlled, see Destarde et al. [32] for further discussion.

Based on (16), the deformation gradient F, the left Cauchy–Green
deformation tensor B and the squared tensor B2 have the following
form

F = I + e1 ‰ e2 ,
B = I + 2e1 ‰ e1 + (e1 ‰ e2 + e2 ‰ e1) , (17)

B2 = I + (4 + 32)e1 ‰ e1 + 2e2 ‰ e2 + (3 + 2)(e1 ‰ e2 + e2 ‰ e1) .

From [14], we can find exactly the first invariant of EBell for simple
shear as iEB1 = *2 +

t
iB1 + 2J * 1 = *2 + ⌘, where ⌘ =

˘
4 + 2.

Consequently, iV1 = iV2 = 1 + ⌘, and iEB2 = 1 * ⌘. Instead of computing
the left stretch through V =

˘
B, we substitute these invariants into the

explicit expression for V (10), and obtain

V = (⌘ + 1)I + (⌘2 + ⌘)B * B2

⌘2 + 2⌘
. (18)

By substituting the previous expression for V into (9), we find the
following components of the Cauchy stress

T11 = *p +
4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

54
1 + 2(⌘ + 1)

⌘2 + 2⌘

5
* )W

)iEB2
(2 + 1) ,

T22 = *p +
4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

50
1 * 2

⌘2 + 2⌘

1
* )W

)iEB2
,

T33 = *p + )W
)iEB1

+ iEB1
)W
)iEB2

,

T12 =
4
)W
)iEB1

+ (1 + iEB1 ) )W
)iEB2

5

⌘
* )W

)iEB2
 .

(19)

As characteristic of stretch-based formulations, these expressions are
not as simple as their counterparts in terms of invariants of B [5,33].
Nevertheless, of course Rivlin universal relation T11 * T22 = T12 for
the displacement formulation (16) holds, which implies that normal
stresses are required to maintain the shear stress T12. For completeness,
we can also express these components on the basis of iVi ,

T11 = *p +
0
)W
)iV1

+ iV1
)W
)iV2

14
1 + 2(⌘ + 1)

⌘2 + 2⌘

5
* )W

)iV2
(2 + 1) ,

T22 = *p +
0
)W
)iV1

+ iV1
)W
)iV2

10
1 * 2

⌘2 + 2⌘

1
* )W

)iV2
,

T33 = *p + )W
)iV1

+ (iV1 * 1) )W
)iV2

,

T12 =
0
)W
)iV1

+ iV1
)W
)iV2

1

⌘
* )W

)iV2
 .

(20)

Different approaches exist for determining the pressure, including
plane stress and zero normal traction formulations (a detailed discus-
sion can be found in Horgan and Murphy [31]). Here we adopt the
former, through which p can be obtained from the out-of-plane traction
boundary condition T�e3 = 0, that is, T33 = 0. In this case, the remaining
normal stress components become

T11 = 2(⌘ + 1)
⌘2 + 2⌘

4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

5
* )W

)iEB2
2

= 2(⌘ + 1)
⌘2 + 2⌘

0
)W
)iV1

+ iV1
)W
)iV2

1
* )W

)iV2
2 ,

T22 = *2

⌘2 + 2⌘

4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

5
= *2

⌘2 + 2⌘

0
)W
)iV1

+ iV1
)W
)iV2

1
. (21)

We can now compare the normal stress (21) and the shear stress (20)
with their counterparts [31] in terms of invariants of B, also assuming
T33 = 0, which present a much simpler form

T11 = 22 )W
)iB1

, T22 = *22 )W
)iB2

, T12 = 2
0
)W
)iB1

+ )W
)iB2

1
. (22)

As an example, we will contrast the mechanical behavior of a
quadratic-Biot material (2) with neo-Hookean and Mooney–Rivlin ma-
terials

WnH = cnH (iB1 * 3) , (23)

WMR = cMR
1 (iB1 * 3) + cMR

2 (iB2 * 3) , (24)

and other incompressible material laws based on the invariants of
B. Based on (9) and (18), we can write the Cauchy stress for the
incompressible quadratic-Biot material as

T = [*p + ⇣ (⌘ + 1)]I + [⇣ (⌘2 + ⌘) * c2]B * ⇣B2 ,

where ⇣ =
(2c1 + c2)i

EB
1 + c2

⌘2 + 2⌘
. (25)

The pressure p can be determined from the out-of-plane boundary
condition T33 = 0, which gives

p = (2c1 + c2)i
EB
1 . (26)

Since  is constant, the pressure is also constant throughout the
body, so that the equilibrium equations for the homogeneous defor-
mation (16) are satisfied when body forces are zero.

Before discussing the stress components, it is important to evaluate
whether and under which circumstances the response functions in (25)
satisfy commonly considered inequalities in solid mechanics.

3.1. Restrictions on response functions

Since the response functions of a stretch based constitutive de-
scription of (9) are not conventionally found in the literature, it is
important to know what form takes the traditional response functions �i
for a quadratic-Biot material. These assist in determining if adscititious
inequalities that suggest physically realistic deformations are satisfied.
That is, when writing the Cauchy stress tensor of as

T = �0I + �1B + �*1B*1 (27)

it is often assumed that �i satisfy certain restrictions in order to rep-
resent the physical behavior of hyperelastic materials [34]. Among
them are the Baker–Ericksen (BE) and the empirical (E) inequalities:
the former follows from observations that the largest principal stress
lies in the direction of the largest principal stretch [35], and the latter
consists of stronger restrictions postulated by Truesdell [1,36] based
on available experimental evidence at the time. The E inequalities
are given by �0 f 0, �1 > 0 and �*1 f 0, or simply �1 > 0 and
�*1 f 0 in the incompressible case, which are known to hold for many
rubber-like materials. However, due to its lack of theoretical foundation
the E inequalities have been fairly criticized for arbitrarily restricting
hyperelastic energy densities [37–39] and not actually preventing phys-
ically unrealistic responses [40]. In particular, for capturing the reverse
Poynting effect in simple shear, the condition �*1 f 0 is necessarily
violated [37]. Experiments using a rheometer for shearing bio-gels
suggest the existence of such a reverse effect in torsion [41]; however,
their microstructure and macroscopic behavior differ from elastomer
type materials, so that the reverse effect could also be explained by the
anisotropy of the material [42], as is the case of soft composites [43].

By the Cayley–Hamilton theorem, it can be shown from (25) that the
response function under simple shear for an incompressible quadratic-
Biot material is

�1 =
(⌘ + 1)(2c1 + c2)i

EB
1 * c2

⌘2 + 2⌘
, �*1 = *

(2c1 + c2)i
EB
1 + c2

⌘2 + 2⌘
. (28)
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For a simple shear deformation (16), as discussed in [37] the BE
inequalities hold if and only if �1 > �*1, which requires a stronger
condition on the quadratic-Biot material constants to be true: c1 >
*c2_2. Note that it does not restrict the sign of c2. In case c2 f 0, the E
inequality �1 > 0 is satisfied for any , but the response function �*1 can
be both negative or positive depending on the values of c1 and c2, and
even change sign as a function of , so that the second E inequality does
not hold. The generalized empirical inequalities, proposed by Mihai
and Goriely [44], solve this issue by relaxing the condition on �*1.
If we allow c2 > 0, then we can have a scenario where the second E
inequality is satisfied, but not the first one. It is also possible to evaluate
restrictions on material parameters based on a thermodynamic stability
analysis, which is shown by Liu [38] to give less restrictive conditions
than the E inequalities for uniaxial contraction.

3.2. Poynting effect and shear hardening

We proceed with an investigation of shear hardening in a quadratic-
Biot material. By substituting the energy (2) into the shear stress T12
from (19), we obtain

T12 =
(2c1 + c2)

⌘
iEB1 * c2

0
1 * 1

⌘

1
= 2c1

0
1 * 2

⌘

1
* c2


⌘
. (29)

Observe that in the limit of small , the shear stress presents a linear
relation T12 Ì *(c2_2), similarly to neo-Hookean and Mooney–Rivlin
materials — see (22). In the less realistic limit of large , we also
approach a linear relation T12 Ì 2c1 * c2. In between, the shear
behavior is clearly nonlinear with a derivative

dT12
d

= 2c1 *
16c1 + 4c2

⌘3
. (30)

One way to nondimensionalize the shear stress T12 (29) is by divid-
ing it by *c2,

ÑT12 =
T12
*c2

= (� * 1)
⌘

iEB1 + 
0
1 * 1

⌘

1
, (31)

where � = *2c1_c2 > 1 since c1 > *c2_2 from the discussion in
Section 3.1. In Fig. 2 we plot ÑT12 as a function of the amount of shear
for different values of �. For the limiting case � = 1 the curve is
approximately linear up to  = 1, whereas as � increases, a nonlinear
shear hardening response intensifies. No shear softening is observed for
the allowable values of � — this would require the violation of the
convexity condition c1 g *c2_3. This is a deficiency of the quadratic-
Biot material, since shear softening has been experimentally observed
for incompressible solids [45], and is an effect captured by generalized
neo-Hookean models [46,47].

Interestingly, from (22) we see that incompressible materials with
an energy linear in B invariants (e.g. Mooney–Rivlin) will not present
shear hardening or softening, whereas for the stretch based formula-
tions (19) and (20) we see that even energies linear in V invariants
(e.g. generalized Varga) will display a nonlinear T12 in . This is not
a deficiency of Cauchy–Green formulations, but a comparison between
different functional forms linear in a different set of invariants. Another
example is the one-term Ogden material [12], function of (�n1 +�n2 +�n3*
3), for which the shear stress T12 is nonlinear in , except for n = ±2.

Another way to nondimensionalize T12 would be to divide (29) by
2c1, so that

T12
2c1

= 
0
1 * 2

⌘

1
* É� 

⌘
. (32)

Due to the BE inequalities, É� = c2_2c1 > *1. If É� > 0, i.e. c2 > 0, then the
response is a nondimensional shear stress that initially decays with 
towards negative values, similar to the response for É� = 1 observed for
uniaxial extension in Fig. 1, which is not physically reasonable. Hence,
we restrict É� to the range 0 g É� > *1.

Fig. 2. Nondimensional shear stress ÑT12 for a quadratic-Biot material in simple shear
as a function of the amount of shear . Shear hardening increases with the ratio
� = *2c1_c2 between the material’s constants.

In order to evaluate the presence and nature of the Poynting effect in
a quadratic-Biot material, we calculate from (25) the stress component
in the normal direction to the applied shear,

T22 =
*2

⌘2 + 2⌘
[(2c1 + c2)i

EB
1 + c2] . (33)

Recall that we restrict c1 > *c2_2 and c2 f 0. We conclude that for
c2 = 0 a quadratic-Biot material presents the classic Poynting effect,
that is, T22 < 0. However, at least for small , the reverse Poynting
effect, T22 > 0, may be observed when c2 < 0, so that iEB2 plays a role
in switching the effect from positive to negative normal stress. Note
that the expression (2c1 + c2)i

EB
1 + c2 is exactly the coefficient of V in

the Cauchy stress (9). This term is absent in the T expression for a
generalized neo-Hookean material, which only presents the pressure
and B terms, and hence the Poynting effect is not observed. While
we focus on isotropic materials, the nature of T22 may also depend on
anisotropy, as analyzed by Horgan and Murphy [48] in the context of
soft fibrous materials.

By dividing the normal stress T22 by 2c1, we obtain the nondimen-
sional quantity

ÑT22 =
T22
2c1

= *2

⌘2 + 2⌘
[(1 + É�)iEB1 + É�] , (34)

where 0 g É� = c2_2c1 > *1. In Fig. 3 we plot a family of ÑT22 curves
as a function of  for different values of É�. When É� = 0, only the
classic Poynting effect is observed. By decreasing É�, the normal stress
starts as ÑT22 > 0 and transits to ÑT22 < 0 as  increases, displaying a
downward concavity maximum with ÑT22 at a critical amount of shear
c = [*2É�_(1 + É�)]1_2. This normal strain softening is reminiscent of the
Mullins effect in rubbers [49]. Such transition is suggested, for example,
from the data of Janmey et al. [41] presented by Destrade et al. [42]
for the shearing of a block of gel made from actin cross-linked by
polyacrylamide, which shows an initial small region of reverse Poynting
before switching to classic Poynting as  increases. For É� f *0.3 only
the reverse Poynting effect is observed for physically reasonable values
of . The ratio between material’s constants clearly determines which
nature of Poynting is the dominant one, so that, for a fixed c1, by
decreasing c2 we can switch from classic to reverse Poynting effect.

5



E. Vitral International Journal of Non-Linear Mechanics 148 (2023) 104293

Fig. 3. Nondimensional normal stress ÑT22 for a quadratic-Biot material in simple shear
as a function of the amount of shear . Observe a transition from the classic Poynting
effect ( ÑT22 < 0) to the reverse Poynting effect ( ÑT22 > 0) as the ratio É� = c2_2c1 decreases
from 0 towards -1.

3.3. Discussion

From the stress components (22), we see one example of why the
second invariant of B plays an important role in Cauchy–Green based
modeling in nonlinear elasticity [5–7]. Although adding a dependence
on iB2 to such an energy solves the ‘‘incompleteness’’ issue of generalized
neo-Hookean materialsW1, the lingering question is why aW1 material
fails in modeling certain mechanical behaviors. Since �i = 1 + �i,
principal stretches are of order one and both terms (iB1 * 3) and (iB2 * 3)
are of order O(�i) in principal strains. Hence, the addition of iB2 does
not provide a next order contribution toW1 in a small strain expansion.
The present result (33) suggests that there is a more fundamental reason
behind the limitations of the W1 class, such as the absence of Poynting
effect in simple shear under plane stress assumption.

While both neo-Hookean and quadratic-Biot materials are quadratic
in stretch, the latter presents a more complete collection of stretches
that appears from a systematic expansion in small Bell strains. For
a particular energy, it does not matter which strain or deformation
tensor is adopted to formulate the problem, since a set of invariants can
be translated into another [15]. However, when comparing different
energies that are limited to the first invariant of B, against those limited
to the first invariant of V or some other restricted combination of
stretch powers, then differences in mechanical behavior may appear.
In this case, simple shear is insightful for contrasting these various
constructions. For example, compare the following incompressible ma-
terials: Varga, neo-Hookean, and quadratic-Biot materials. The Varga
model [50],

WV = 2cV iEB1 , (35)

is equivalent to a n = 1 Ogden [12] model, which is a formalization
of the idea of modeling an incompressible material with independent
principal stretches �i.

In this regard, the Varga (35) and neo-Hookean (23) models differ
by the choice of strain employed in these one-constant energies: the
former adopts the (first invariant of) Bell strain, and the latter the
Green–Lagrange strain. By comparing (19) and (22), we see that this
seemingly innocuous choice dictates whether the Poynting effect will be

present or not for the problem under consideration. For the quadratic-
Biot material, the classic Poynting effect appears even if c2 = 0, that is,
when the second invariant of EBell (or V) is not present, which is the
case of the Varga model. Hence, a class of materials function only of
the first invariant of V or EBell, tensors linear in stretch, present sig-
nificant differences in mechanical behavior when compared to the W1
class.

We next look into the functional form ofW1 materials to understand
how the second normal stress vanishes under plane stress assumption in
simple shear. Since from (17) we have B22 = B33 = 1, one can observe
in T (9) that any contribution from the B term to T22 is eliminated by
the pressure due to the traction free condition T33 = 0. From the explicit
expression for V (18), we perceive that the only nonzero contribution
for T22 comes from B2, since (B2)22 = 1 + 2 and (B2)33 = 1. This
contribution from B2 is absent for generalized neo-Hookean materials,
which becomes clear from the Cauchy–Green formulation of T,

T = *p I + 2
0
)W
)iB1

+ )W
)iB2

iB1

1
B * 2 )W

)iB2
B2 . (36)

From another angle, observe from V (18) that the explicit expression
for the Bell strain in simple shear is

EBell =
(*⌘2 * ⌘ + 1)I + (⌘2 + ⌘)B * B2

⌘2 + 2⌘
, (37)

so that EBell requires up to the quadratic power of B in order to be
represented by the left Cauchy–Green tensor. Although the Bell (or
Biot) strain is the most primitive measure of strain one could define
from a stretch, it cannot be found in the Cauchy stress tensor derived
from an energy of the type W1, since T (36) for this class does not
present B2. That is, some information about the Bell strain is lost for
such materials, so that even for small nonlinear deformations they may
fail to present a mechanical behavior that a linear stretch Varga model
could display.

This reasoning is consistent with the observation about the impor-
tance of iB2 in nonlinear elasticity [6,7], since the coefficient of B

2 in the
Cauchy stress (36) for an isotropic material becomes nonzero when iB2
appears in the energy. Hence, models such as Mooney–Rivlin provide
a collection of stretches that can more accurately represent Bell strains
(or, equivalently, the left stretch V), and recover Poynting and other
effects that are lost in the W1 class.

Even so, the addition of iB2 is not enough to reproduce all the
responses displayed by a quadratic-Biot material. For example, from
(22) and (24), in simple shear the two constant Mooney–Rivlin material
presents T22 = *2cMR

2 2. When relaxing the E inequalities, a Mooney–
Rivlin solid can show both compressive or tensile second normal stress,
but not the local maximum and T22 transition as a function of 
discussed in (34) and Fig. 3. For further comparison, we can use
explicit expressions for B invariants as a function of V invariants for
an incompressible material [15], and recast the Mooney–Rivlin and
neo-Hookean energy as

WnH = cnH [(iV1 )
2 * 2iV2 * 3] , (38)

WMR = cMR
1 (iV1 )

2 + cMR
2 (iV2 )

2 * 2(cMR
1 iV2 + cMR

2 iV1 ) * 3(cMR
1 + cMR

2 ) .
(39)

Observe that the Mooney–Rivlin material is quadratic in both invariants
of V, whereas the quadratic-Biot material (4) is only quadratic in iV1 and
linear in iV2 . In contrast to (4), the neo-Hookean material lacks a linear
iV1 term.

4. Pure torsion

In this session, we briefly discuss the Poynting effect for the pure
torsion of an isotropic incompressible solid cylinder. The earlier works
of Rivlin [33,51] on pure torsion of such cylinder adopted the usual
energy function of invariants of the Cauchy–Green tensor. Later, Rivlin
[13] reformulated the equations in terms of stretch invariants, which
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have been generalized by Horgan and Murphy [52] for the case of
torsion superimposed on axial elongation. Here we show an equivalent
formulation in terms of Bell strains and explore the difference in re-
sultant axial force between the quadratic-Biot, neo-Hookean and Varga
models.

In a cylindrical coordinate system, the isochoric pure torsion defor-
mation (no radial stretch) of a solid cylinder of radius a is

r = R , ✓ = ⇥ + ⌧ X3 , x3 = X3 , (40)

where (R,⇥,X3) are reference coordinates of X, (r, ✓, x3) deformed
coordinates of x, and ⌧ is the twist per unit length. The orthonormal
cylindrical basis is {er, e✓ , e3}. Assume the lateral surface of the cylinder
is traction free, so that T � er = 0 at r = a.

For this deformation (40), the deformation gradient, left Cauchy–
Green tensor and its squared tensor are

F = I + ⌧r e✓ ‰ e3 ,
B = I + ⌧2r2e✓ ‰ e✓ + ⌧r(e✓ ‰ e3 + e3 ‰ e✓) , (41)
B2 = I + (⌧4r4 + 3⌧2r2)e✓ ‰ e✓ + ⌧2r2e3 ‰ e3

+(⌧3r3 + 2⌧r)(e✓ ‰ e3 + e3 ‰ e✓) .

The invariants for pure torsion are analogous to simple shear: iEB1 =
*2 + �, iEB2 = 1 * �, and iV1 = iV2 = 1 + �, where �(r) =

˘
4 + ⌧2r2. The

explicit form of V is then the same as (18), swapping � for ⌘.
For an incompressible isotropic material, the components of the

Cauchy stress tensor (9) in terms of invariants of EBell are

Trr = *p + )W
)iEB1

+ iEB1
)W
)iEB2

,

T✓✓ = *p +
4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

54
1 + ⌧2r2(� + 1)

�2 + 2�

5
* )W

)iEB2
(⌧2r2 + 1) ,

T33 = *p +
4
)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

50
1 * ⌧2r2

�2 + 2�

1
* )W

)iEB2
, (42)

T✓3 =
4
)W
)iEB1

+ (1 + iEB1 ) )W
)iEB2

5
⌧r
�

* )W
)iEB2

⌧r .

The resultant applied moment M in pure torsion can be calculated
from the shear stress T✓3 in (42), and is given by

M =  
2⇡

0  
a

0
T✓3 r2drd✓ = 2⇡⌧2  

a

0

r3
�

0
)W
)iEB1

* )W
)iEB2

1
dr . (43)

In order for the solid cylinder to sustain pure torsion without elon-
gating, a resultant axial force N is also required. This force can be
calculated as

N =  
2⇡

0  
a

0
T33r dr d✓ = ⇡  

a

0
(2 T33 * Trr * T✓✓)r dr

= *⇡⌧2  
a

0
r3
<4

)W
)iEB1

+ (iEB1 + 1) )W
)iEB2

5 iEB1 + 5
�2 + 2�

* )W
)iEB2

=
dr .

(44)

For obtaining N we have used the balance of linear momentum DivT =
0 and traction free condition at the lateral surface, which allow to
rewrite the first integral appearing in (44) into the second one, with
subsequent elimination of the pressure [1].

Compare this equation with the resultant axial force formulated in
terms of invariants of B,

N = *2⇡⌧2  
a

0
r3
0
)W
)iB1

+ 2 )W
)iB2

1
dr . (45)

As usual, the expression (44) written in the stretch based formulation
has a more convoluted form than the Cauchy–Green based formula-
tion (45). From the latter, Horgan and Saccomandi [9] pointed out
that ⌧M + 2N = 0 is a universal relation for the class of generalized
incompressible neo-Hookean materials; however, no such relation be-
tween moment and axial force can be immediately inferred from (43)
and (44) for any particular class of stretch based materials.

We now analyze how the resultant axial force of a neo-Hookean
material NnH compares with those from a quadratic-Biot Nq and a
Varga NV material. By substituting their respective energy densities
into (44) and (45) we find

Nq = * ⇡
6⌧2

[c1(3�(a)2 + 8�(a) * 28) * 9c2](�(a) * 2)2 ,

NV = *
⇡cV
3⌧2

(2�(a) + 11)(�(a) * 2)2 ,

NnH = *
⇡cnH
4 ⌧2a4 ,

(46)

where �(a) =
˘
4 + ⌧2a2. This expression for NV has been previously

derived in [52]. These can be nondimensionalized as follows: ÑNV =
NV _(⇡a2cV ), ÑNnH = NnH_(⇡a2cnH ) and

ÑNq =
Nq

⇡a2c1
= * 1

6⌧2a2
[3�(a)2 + 8�(a) * 28 * 18É� ](�(a) * 2)2 , (47)

where 0 g É� = c2_2c1 > *1. All the resultant axial forces are
compressive, so that even for the quadratic-Biot material only the
classic Poynting effect is observed in pure torsion, in contrast with the
dual behavior found in simple shear (34). We remark that the reverse
Poynting effect in pure torsion can be captured by the generalized
neo-Hookean model [53]. For the quadratic-Biot material, a response
displaying transition in the Poynting effect would require É� > 0,
i.e. c2 > 0 (this unusual behavior in torsion has only been reported so
far in pantographic metamaterials [54]). From the present axial force
equations, we also note that while ÑNnH presents a linear *⌧2a2 relation,
the force ÑNq is much richer in behavior, despite both materials being
quadratic in stretch.

The nondimensional resultant axial force ÑN is plotted in Fig. 4 as a
function of the total angle of twist squared ⌧2a2 for the quadratic-Biot
with É� = (0, *0.1, *1), neo-Hookean and Varga materials. Observe that
for ⌧2a2 < 1, the axial force ÑN for É� = *1 quadratic-Biot, neo-Hookean
and Varga models present a similar *⌧2a2 behavior. For ⌧2a2 > 1 and
for all allowable É�, the axial force ÑNq is proportional to *⌧4a4, so that
the compressive force to maintain pure torsion increases faster than the
one for a neo-Hookean material, akin results for the Gent, Fung and
Horgan-Saccomandi limiting chain extensibility models shown in [55].
However, as É� approaches zero, the quadratic-Biot material behavior
becomes proportional to *⌧4a4 even for ⌧2a2 < 1, so that, for a small
angle of twist, pure torsion can be supported with a much lower ÑN than
the one required for neo-Hookean or Varga materials.

5. Conclusion

We have contrasted classic simple functional forms (linear or quad-
ratic in invariants) for incompressible isotropic materials on the basis of
the Cauchy–Green deformation tensor with those based on the stretch
V and Bell strain EBell, which offers a different perspective on issues
present in generalized neo-Hookean materials and on the importance of
the second invariant of B in nonlinear elasticity. For an isochoric simple
shear deformation, any simple polynomial strain energy function of
invariants of the Bell strain is shown to display the Poynting effect
and shear hardening, and, for the case of a quadratic-Biot material, the
second invariant of EBell has the role of switching the Poynting effect
from classic to reverse. This transition in the second normal stress may
occur as a function of the amount of shear, displaying a local maximum,
which is not shown by the two constant Mooney–Rivlin model. The
second invariant of EBell is also shown to be important in modeling the
intensity of shear hardening displayed in simple shear.

Interestingly, using an explicit representation of V, we observe that
the Cauchy stress derived from a generalized neo-Hookean material
is insufficient to represent Bell strains, a primitive measure linear in
stretch. This occurs because the Cauchy stress in the Cauchy–Green
formulation will only present the B2 tensor term when the energy
depends on the second invariant of B, whereas an explicit expression
for EBell as a function of B requires both B and B2. For pure torsion of
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Fig. 4. Nondimensional resultant axial force ÑN as a function of the total angle of twist squared ⌧2a2. Results ÑNq from the quadratic-Biot model (solid line), for three different
É� = c2_2c1, are compared with ÑNV for the Varga model (dashed line) and ÑNnH for the neo-Hookean model (dash-dotted line). The right plot presents the same data in log scale.

a solid cylinder, the neo-Hookean, quadratic-Biot, and Varga materials
present only the classic Poynting effect. A richer mechanical behavior
is displayed by the stretch based materials in pure torsion: while the
resultant axial force to support the deformation for neo-Hookean is
quadratic in the total angle of twist, for the quadratic-Biot model it can
change from quartic to quadratic as a function of this angle, displaying
much smaller values for small twists, whereas for the Varga model the
response changes from quadratic to linear.
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