10

15

20

Increased Heat Risk in Wet Climate Induced by Urban Humid Heat

Keer Zhang'!, Chang Cao??, Haoran Chu?3, Lei Zhao?, Jiayu Zhao??, Xuhui Lee!

School of the Environment, Yale University, New Haven, CT 06511, USA

2Center on Atmospheric Environment, International Joint Laboratory on Climate and
Environment Change (ILCEC), Nanjing University of Information Science and Technology,
Nanjing 210044, China

3Key Laboratory of Meteorological Disaster, Ministry of Education and Collaborative Innovation
Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of

Information Science and Technology, Nanjing 210044, China

“Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA.

>College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

Correspondence to: Xuhui Lee (xuhui.lee@yale.edu)



mailto:xuhui.lee@yale.edu

25

30

35

40

Summary

Cities are generally warmer than their adjacent rural land, a phenomenon known as the
urban heat island (UHI). Often accompanying the UHI is another phenomenon called the
urban dry island (UDI) whereby humidity in urban land is lower than that in their
surroundings' . The UHI exacerbates heat stress on urban residents*>, while the UDI may
instead provide relief because the human body can cope with hot conditions better at lower
humidity through perspiration®’. The relative balance between UHI and UDI - as
measured by changes in wet-bulb temperature (7) — is a key yet largely unknown
determinant of human heat stress in urban climates. Here we show that 7, is reduced in
cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but
increased in wet climates (summer precipitation Ps > 570 mm). Our results arise from
analysis of urban and rural weather stations across the world and calculations with an
urban climate model. In wet climates, the urban daytime 75 is 0.17 =+ 0.14 °C (mean + 1
standard deviation) higher than rural 7\ in the summer, primarily because of a weaker
dynamic mixing in urban air. This 7, increment is small, but because of high background
T in the wet climate, it is enough to cause two to six extra dangerous heat-stress days per
summer for urban residents under current climate conditions. The risk of extreme humid
heat is projected to increase in the future, and these urban effects may further amplify the

risk.
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Introduction

Time of the day and time of the year matter in the examination of urban heat stress. Air
temperature and air humidity are more likely to exceed dangerous heat stress thresholds in the
daytime and during the summer because of higher background temperature and humidity than at
night and during the winter. The UDI can bring more cooling relief if it occurs during summer
daylight hours. How the UDI interacts with the UHI has important health implications, especially
in cities in the Global South. Some of these cities are home to informal settlements with low
access to air conditioning infrastructure and vulnerable to temperature extremes®'°, and many
are located in tropical and subtropical climates where the combined effect of high temperature
and high humidity is approaching the human physiological threshold for survival (7w =

35 °C)!'112 | A strong UDI in these cities may have the potential to fully compensate for the
adverse UHI effect. On the other hand, if these cities are more humid than their rural
background, the high humidity will compound high urban temperatures, pushing heat stress

levels even closer to the lethal threshold.

Current knowledge of these urban microclimate effects is limited!>!# for high heat-stress regions
in humid climates, such as South Asia, the Tropical Africa, and the Amazon Basin!!-12, Satellite
data show that the daytime surface UHI (urban-rural difference in land surface temperature) is
stronger in more humid climate!>!'®, One underlying mechanism is that cities in humid climates
are less efficient in dissipating heat from the surface to the lower atmosphere than the
surrounding rural land'>!7. A working hypothesis is that the low convection efficiency of urban
land should also enhance the daytime air UHI intensity (urban-rural difference in air

temperature) in humid climates.
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Reduction in urban evaporation due to vegetation removal is a key mechanism of the UDI
formation®. The UDI phenomenon has been observed in several mid-latitude cities'®2° in
background climates where evaporation is water-limited. But in low-latitude humid climate
where evaporation is energy-limited, urban air may become more moist than the rural
background?'2, It is not known if these local results can be extended to broader geographic

regions.

In this study, we investigate the contributions of the UHI and the UDI to urban heat stress using
133 pairs of urban and rural stations across the world. We also used an urban climate model to
simulate the UHI and the UDI for over 36,000 urban clusters in the world, with the goals to
expand the spatial coverage of the observational data and to probe the thermodynamic
mechanisms of UHI and UDI formation. Results are presented for the three summer months. We
use the wet-bulb temperature (7') to measure the combined effect of temperature and humidity
on heat stress. Because it is the lowest temperature that can be achieved by evaporation of water
in an air parcel, 7 is a good approximation of the skin temperature of a cloth-less and perspiring
human body. This approximation may be more appropriate in hot and humid climates than in dry

or cold climates. We find that the urban humid heat burden is dependent on precipitation regime.

The urban wet-bulb island
We investigate the urban effects using the urban wet-bulb island, A7w, defined as the difference
in 7w between the urban and the adjacent rural land (urban minus rural). Mathematically, AT\ is

the sum of the scaled UHI (AT%, °C) and UDI intensity (Aea/y, °C):
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AT, = wAT, + w,

where w1 and w2 are positive and dimensionless scaling factors, A7z and Ae. are urban-rural
differences in air temperature and in vapour pressure, respectively, and yis the psychrometric
constant (Methods). In this formulation, the two scaling factors are equal (at about 0.3, Extended
Data Table 1) and are a weak function of 7. The second term in equation (1) is negative for a
city with an UDI and positive if the city is more humid than its surrounding (that is, the urban
moist island). Other heat indices can also be expressed as a linear combination of the UHI and

the UDI components (Methods).

The paired daytime (08:00 to 16:00 local time) observations show that, on average, the negative
UDI contribution (that is, the urban dry island) outweighs the positive UHI contribution in dry
(Ps < 180 mm) and moderately wet (intermediate Ps from 180 to 570 mm) climates, resulting in
negative AT (Fig. 1a). In other words, cities in these climates experience less humid heat stress
in the daytime than their rural environments. In wet climate (Ps > 570 mm), the average UDI
contribution is near zero, and the daytime mean A7 is slightly positive. At night (20:00 to 04:00
local time), the UDI effect is weak, but the UHI effect is strong, leading to positive AT\ in all the
three climates (Fig. 1¢). These observational patterns are reproduced by the climate model (Fig.
1b, d). It is difficult to draw firm conclusions for the wet climate from the observational data
because of large variations among the few station pairs (17) available. If we replace the model
results for the 17 grids where these station pairs are located with those for all the 10,288 urban
clusters in the wet climate, we obtain a mean daytime A7 of 0.17 £ 0.14 °C (mean + 1 standard

deviation), which is significantly different from zero (p < 0.001).
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The urban wet-bulb island is a city-scale property. Because most of the observations were made

with a single pair of stations, some of the variability in Fig. 1a & c is caused by the inability of a
single urban station to capture intra-city variations of microclimate. By applying a bootstrap
method to the few cities with multiple station pairs, we estimate that the measurement

115 uncertainty of AT\ is 0.12 to 0.57 °C (95% confidence interval; Table 1).

Causes of the urban wet-bulb island
We use the climate model to quantify causes of the urban wet-bulb island. In the modelling
framework, the screen-height 7w is allowed to vary between urban and rural subgrid tiles within
120 the same model grid — this difference is the urban wet-bulb island AT\ — and T\ at the
atmospheric reference height (i.e. blending height) of the land model is kept constant between
these tiles. The wet-bulb temperature 7% measures the surface moist static energy (MSE)?>24,
Even though MSE (and hence 7w) is a conserved quantity in the adiabatic process, ATw is
generally nonzero and is linked to the contrast in the surface enthalpy flux between the urban and

125 the rural tiles.

Using an Ohm’s Law analogy for the enthalpy flux (equation 7, Methods), we show that AT is
caused by two diabatic processes: (1) dynamic mixing of air between the screen height and the
blending height, and (2) a thermodynamic contribution or diabatic heating due to absorption of
130 solar radiation, anthropogenic heat emission, heat storage in soil and buildings, and surface
longwave radiation (Methods; Fig. 2 and Extended Data Fig. 5). Their contributions to AT are
quantified with a diagnostic analysis of model results. During the daytime, changes in dynamic

mixing cause the urban 7w to be 0.39 £ 0.34 °C (mean £ 1 SD) higher than the rural 7w in the wet

6
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climate, resulting in a positive A7w (Fig. 2a). In this climate zone, cities dissipate the surface
MSE to the lower atmosphere less efficiently than rural landscapes, which are dominated by
dense vegetation of high aerodynamic roughness. The mean daytime diffusion resistance 7.
between the screen height and the blending height is 20 s m™ and 12 s m™! for urban and rural
land, respectively, in the wet climate. This interpretation is consistent with an attribution analysis
of the surface UHI'S. At night, the role of dynamic mixing is reversed: the surface air over urban

land is statically more unstable?>2

, permitting more efficient energy dissipation than over rural
land (e.g., urban 7« = 72 s m™! versus rural 7« = 91 s m™! in the wet climate), which explains the
negative contribution to A7\ (Fig. 2b). Despite this dynamic cooling effect, the nighttime A7w is

actually positive due to diabatic heating. Diabatic heating, primarily via the release of heat stored

in buildings, increases the MSE of urban air at night in all the three climate zones (Fig. 2b).

The paired observations suggest that the urban web-bulb island may be dependent on climate
wetness, with the daytime A7\ increasing and the nighttime A7\ decreasing with increasing
summer precipitation (Fig. 1a, ¢). This climate dependence is more evident in the spatial
distributions of modelled AT’ (Fig. 3a, ¢). The spatial variations in dynamic mixing are the
dominant driver of spatial variations in the daytime A7, explaining 130% of the AT\ versus
precipitation spatial covariance (Extended Data Fig. 4a; ref!’). At night, diabatic heating via heat
stored in soil and buildings is dominant, explaining 125% of the AT\ - precipitation covariance
(Extended Data Fig. 4b). Both are associated with the background biogeography in that
vegetation tends to be denser as the climate becomes wetter, which enhances the daytime rural

convection efficiency and suppresses the role of heat storage at night.
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The urban dry island in wet and dry climates

Both the observational and the modelling data show that the daytime UDI is stronger in the dry
climate (that is, a more negative UDI component) than in the wet climate (Fig. 1a & b; Fig. 4).
Although the above diagnostic analysis cannot differentiate the UDI and the UHI components, a
similar reasoning can be deployed to explain this UDI climate gradient. First, if a stronger
dynamic mixing occurs over urban areas than over rural areas, water vapour released from the
urban surface will dissipate faster to the upper boundary layer, leading to the UDI formation. In
the modelling domain, mixing is indeed stronger for urban (mean daytime r« = 14 s m*!) than for
rural areas (v« = 18 s m™) in the dry climate. Second, reduction in the urban water vapour source
due to removal of vegetation, which is akin to reduction in diabatic heating for 7w, is a known
contributor to the UDI3. In addition, many cities in the dry climate are surrounded by irrigated
cropland. Cropland irrigation humidifies the rural air via surface evaporation, further
strengthening the UDI. We hypothesize that these changes in the surface vapour sources create a
stronger UDI in the dry climate because surface evaporation is water-limited than in the wet

climate where surface evaporation is energy-limited.

The occurrence of strong UDIs in the dry climate is somewhat counterintuitive because some
greenspaces in arid cities are irrigated (e. g, urban lawns and parks in Salt Lake City, USA%’). In
our model domain, the irrigation option is activated for cropland but not for urban land. The
urban weather stations we used are located in built-up neighborhoods (impervious surface

fraction greater than 0.45, Methods), so the humidifying effect of urban greenspaces is minimal.

Increased urban heat stress in wet climate
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That the daytime A7 is more likely to be positive than negative in the wet climate (Fig. 3) is a
cause of concern. Because the summer daytime wet-bulb temperature in the wet climate is
already quite high (mean daytime 7w 25.4 £2.5 °C), especially in coastal areas (mean daytime 7w
26.2 £1.9 °C), even a small increase in 7w can create large negative health consequences. Using
a dangerous T threshold of 27 °C (ref!>?%2°), we find that residents in coastal cities in the wet
climate experience, on average, 5.6 more dangerous days per summer (AN) than rural residents
during 2000 to 2019 (p < 0.001; Fig. 5a). In several cities, the extra urban heat burden can be as
high as 20 days per summer. The number of extra dangerous days is lower (2.4) for interior

cities, but it is still significantly different from zero (p < 0.001).

At night, the urban wet-bulb island is less a concern (Fig. 5b), even though AT, is larger than the
daytime AT (Fig. 3). The mean nighttime 7 (22.7 £ 2.9 °C) in the wet climate is much lower

than the 27 °C threshold.

Discussion

The results presented above offer partial support for the convection efficiency hypothesis. The
daytime convection efficiency of urban land becomes lower than rural land in a wetter climate,
so more MSE is trapped in the urban surface air, leading to a more positive AT\ (Fig. 1a & b,
Extended Data Fig. 4a). But this hypothesis alone cannot fully explain the air UHI spatial
pattern, which shows higher values in a drier climate in an opposite trend to A7w (ED Fig. 2c).
The relationship between the air UHI and precipitation is complex. A negative correlation of the
air UHI with climate wetness has been reported in ref*? and is suggested by the air UHI

dependence on latitude®!. Other authors have reported insignificant'® or positive correlation?2.
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The divergence among these studies is probably caused by large intracity variations in the

observed air temperature or uncertainties related to model representation of rural irrigation.

Although our urban climate model does not explicitly consider urban vegetation, some
inferences can be made from the above thermodynamic insights regarding the use of vegetation
for adaptation to humid heat. Urban vegetation can reduce air temperature by promoting
evaporation, increasing albedo, and changing heat storage’. Evaporation on its own does not
play a role in the formation of the urban wet-bulb island since it merely converts sensible heat to
latent heat, bringing no change to the total MSE. The cooling relief of vegetation to humid heat
is likely achieved via other biophysical changes. Urban vegetation may be beneficial at night
because diabatic heating via heat storage is the main contributor to the nighttime urban wet-bulb

island (Fig. 2). In Seoul, South Korea, street trees at a fractional cover of 30% reduce the
nighttime heat storage by about 15 W m (ref34), which amounts to a reduction of about 0.30 °C

in Tw according to our diagnostic analysis. A less studied effect of urban vegetation is change to

27,35 planting

dynamic mixing. According to the data from urban microclimate model simulations
of street trees reduces air temperature but raises air humidity, with the overall result being
increases in Tw. One reason is that in the model domain, the urban landscape becomes
aerodynamically smoother with increasing tree cover®®. Heat dissipation is controlled by thermal
roughness, not by momentum roughness. Rigid structures such as buildings have much lower
thermal roughness than flexible and porous plant foliage3”-*8. It is not known if the thermal

roughness of a complex urban landscape consisting of built structures and street vegetation will

behave in the same way as its momentum roughness.

10
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Our study highlights the need to consider the combined urban temperature and humidity effect
on human health. This effect is generally omitted in the existing global and regional studies on
humid heat because they are based either on historical climate data collected mostly at rural
weather stations or on reanalysis data products and future climate projections that lack urban
representation. The urban effect is dependent on local and regional background climate
conditions (Figs. 3 and 5). In the dry and intermediate climates, the UDI is strong enough to
more than offset the UHI in many locations, but there is no reduction in the average heat burden
for urban residents. In the wet climate, the urban effect increases the number of dangerous heat
stress days by 2.4 to 5.6 per summer, an intensification that is greater than the humid heat burden
of 0.5 £ 0.3 days from widespread irrigation in this region®’. The humid heat stress is projected
to increase under future warmer climates, and the urban wet-bulb island may further exacerbate
the problem in some regions. In the western Maritime Continent (Malaysia, Indonesia,
Singapore, and Brunei), about 2% of the population is projected to be at risk of experiencing
extreme humid heat (7w greater than 32 °C) at the end of the century under the RCP8.5
scenario®. In this region, the daytime AT is 0.33 °C (Fig. 3a, top panel). Using the cumulative
exposure probability in ref*°, addition of this urban effect to the projected Tw would increase the

at-risk population to 4%.
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Table 1 | Uncertainties in the observed urban wet-bulb island (°C) caused by intra-city
340 microclimate variability. CI: 95% confidence interval; S.E.: standard error of bootstrap

sampling.
City Phoenix Harrisburg | Birmingham | Guangzhou?”
Climate zone Dry Inter. Inter. Wet
Daytime
CI (-1.20, -0.68) | (-0.49, -0.12) | (-0.05,0.07) | (0.39, 0.65)
S.E. 0.20 0.09 0.03 0.07
Nighttime
CI (-0.19,0.38) | (0.68,1.00) | (0.50,0.63) | (0.97,1.22)
S.E. 0.19 0.09 0.03 0.07
FIGURE LEGENDS

Fig. 1 | The urban wet-bulb island depends on time of the day and on climate wetness. a, c,
Observed daytime (a) and nighttime (c) A7wand its components; b, d, Modelled daytime (b) and
nighttime (d) A7 and its components. Model results are for grids corresponding to the urban-
rural station pairs and from the same time periods. Box plots show the median (line), 25-75%
range (box), 5-95% range (whiskers), and the mean value (cross).

Fig. 2 | The urban wet-bulb island is controlled by dynamic mixing and diabatic heating.
The results of diagnostic analysis during the daytime (a) and nighttime (b). The modelled A7 is
difference in 7' between urban and rural subgrid tiles in the same model grid. The calculated
ATy 1s the sum of all component contributions. Box plots show the median (line), 25-75% range
(box), 5-95% range (whiskers), and the mean value (cross).

Fig. 3 | The daytime urban wet-bulb island is strongest in the wet climate. a, b,
Geographical distributions of AT\ during daytime (a) and nighttime (b) in three climate zones. c,
d, Probability density function of daytime (c) and nighttime A7\ (d). Box and whiskers show 1,
25, 50, 75 and 99 percentiles. Maps were made with the Python software.

Fig. 4 | The modelled daytime UDI component is more negative (stronger UDI) with
decreasing summer precipitation. Each data bin consists of 1819 grids. Box plots show the
median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value (cross).

Fig. 5 | Urban residents in the wet climate experience more heat-stressed days than rural
residents. The daytime (a) and nighttime (b) heat stress burden caused by the urban wet-bulb
island. AN is difference in the number of heat-stressed days per summer between urban and rural
locations. Results are shown separately for coastal and interior cities in three climate regions.
Color indicates data density, with yellow indicating high density and navy blue low density.
Smooth curves are probability density functions. Box and whiskers show 0, 25, 50, 75, and 100
percentiles.
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METHODS

The results presented here are for the summer season (JJA of the northern hemisphere and DJF
of the southern hemisphere). These months represent the hot period of the year and also coincide
with high-humidity conditions in the wet season at low latitudes. For grids north of 20° N, the
highest T\ always occurs in June, July, or August. For grids south of 18° S, the hottest month
(month with the highest 7+) is always December, January, or February. The 7\ seasonality is
weaker in the tropics (between 18° S to 20° N) than at mid- to high latitudes. The hottest month
can be March or April in some grid cells between 0° and 18° S and May or September in some
grid cells between 0° and 20° N. On average, JJA in the Northern Hemisphere and DJF in the

Southern Hemisphere are the hottest period of the year at these tropical latitudes.

We used summer precipitation Ps to divide observations and model grids into wet (Ps > 570
mm), dry (Ps < 180 mm) and intermediate (180 mm < Ps < 570 mm) climate regions; these three
regions roughly coincide with the tropical, dry, and temperate & boreal climate in the Koppen
climate classification. Coastal grids are defined as those within 50 km from coasts of oceans and

large lakes. The daytime and nighttime periods are 08:00 to 16:00 and 20:00 to 04:00 local time.

Selection of paired urban-rural weather stations

Some studies have used data collected at municipal airports as a substitute for urban conditions.
This practice is controversial. Consideration of turbulent mixing in the atmospheric boundary
layer indicates that weather stations have a small source footprint on the order of 500 m in
radius*!. Because airport weather stations are generally in compliance with the World

Meteorological Organization siting guideline (which stipulates that a weather station be installed
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on an open ground covered by grass and the location should be far away from buildings and

walls), they may not be representative of the true built environment.

Here, we applied a set of uniform site selection criteria to ensure that the chosen stations are
located in true buildup and true rural landscapes. First, the paired stations have simultaneous
observations of both temperature and humidity at hourly or 3-hourly intervals for at least one

summer from 2009 to 2019.

Second, station location and measurement height are within our pre-set standards. One challenge
about climate data depositories is that the accuracy of station coordinates is generally no better
than one arcminute or about 2 km in distance. Because of the heterogenous nature of urban
environments, a 2-km spatial ambiguity means that a station classified as urban in a medium or
small city can actually be located in a rural setting. We verified the metadata for each site pair
with the site operator or via visual inspection of the station location using Google Earth Pro. This
screening ensures that the accuracy of the station coordinates is better than 200 m and that

temperature and humidity sensors are placed at a height of 1.3 to 3 m above the surface.

Third, we used the GHS built-up grid data*? to screen potential urban and rural weather stations,
after their precise station coordinates had been confirmed. Stations with a built-up fraction higher
than 0.45 within the 1-km radius were chosen as urban, and stations with a built-up fraction
lower than 0.2 within the 3-km radius were chosen as rural. These buffers are greater than the
theoretical footprint of about 500-m radius for a weather station*!. The buffer for screening urban

stations is smaller than for rural stations, allowing us to include urban stations in small cities.
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Fourth, the elevation difference, absolute distance, and latitudinal distance between the paired
stations are smaller than 100 m, 80 km, and 50 km, respectively. A small lapse rate correction (-

0.0065 °C m!) was applied to remove the impact of the residual elevation difference.

A total of 133 urban-rural station pairs were found to satisfy the above screening criteria,
including 101 from the intermediate climate, 17 from the wet climate, and 15 from the dry
climate (Extended Data Fig. 1). Of these, 45 stations came from the Integrated Surface
Database*’ and the rest were extracted from local sources and from intensive field campaigns. If
a model grid has multiple station pairs, spatial average of urban stations and spatial average of

rural station are used to form one single pair for that grid.

Climate model simulation

We used a global climate model, the Community Earth System Model (CESM)*, to simulate
urban and rural wet-bulb temperature and other surface climate variables. The land component of
CESM, the Community Land Model Version 5 (CLMSY), represents subgrid spatial heterogeneity
with five land units or tiles (glacier, lake, urban, vegetated, and crop). The land units in the same
grid cell receive identical atmospheric forcing, but their physical state and flux variables are
computed separately with their own parameterizations. For instance, the urban microclimate is
based on the urban canyon concept, which consists of roof, sunlit wall, shaded wall, and pervious
and impervious canyon floor. The urban extent, urban morphology, and thermal and radiative
parameters come from a default urban dataset provided by CESM*, representing the present-day

urbanization pattern. In this modelling framework, the urban wet-bulb island (A7) is the Tw
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difference between the urban and the rural (vegetated and crop) land units in the same grid cell.
Because CLMS5 does not consider the lateral heat and moisture transport between the rural and
urban land units, the modelled urban-rural microclimate gradients may be biased high in
magnitude for small cities. The wet-bulb temperature at the atmospheric reference height (i.e.
blending height) of the land model is kept constant between these land units. This configuration
is similar to the tropical atmosphere where the surface climate can vary between the land and the
ocean, but the MSE (and hence T) is horizontally uniform in the free troposphere®*. There, the
weak regional T gradient is maintained by deep moist convection?*#%, In the local-scale study
presented here, the uniform 7' at the atmospheric reference height represents the effect of

horizontal blending of air due to turbulent eddies in the lower atmospheric boundary layer*’.

Cropland irrigation can influence urban-rural microclimatic gradients*. If moisture in the topsoil
of the crop land unit falls below a pre-set threshold, irrigation water is added until soil moisture
reaches field capacity. Timing of the daily peak 7\ is not sensitive to irrigation. In grid cells in
Northern India subject to irrigation, both urban and rural maximum 7' occur at around 13:00 to

14:00 local time.

The model simulation was forced by the ERA5-Land hourly data* at the finest spatial resolution
(25 km) configured for CESM. The model was first run for 10 years driven by the ERA
climatology from 2000 to 2009. After this spin-up, it was run for another 20 years, driven by the
ERA forcing data from 2000 to 2019. Post-simulation analysis was based on hourly model

outputs. This 20-year period encompasses all the paired weather station observations.
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The model has reproduced the observed day-versus-night contrast in A7 and the AT climate
gradient (Fig. 1). Other studies have also reported good performance of the same modelling
system in simulating the surface urban heat island'> and urban air temperature?°.

470
In Extended Data Fig. 6, we compare observed and modelled diurnal patterns of 7w, the urban
wet-bulb island, and its UHI and UDI components for Berlin, Germany (in the intermediate
climate zone) and Phoenix, USA (in the dry climate zone). We chose these two cities because
there are multiple rural and urban stations. These station mesonets allow a total of 4 and 6

475 possible urban versus rural pairings for Berlin and Phoenix, respectively. The larger diurnal
amplitude of the modelled 7' than that of the observed 7w is primarily caused by high amplitude
biases of air temperature and humidity in the forcing data. Overall, the model has reproduced the

observed diurnal patterns in urban-rural differences in 7, air temperature and humidity.

480 In the wet climate zone, the observations are available only as one pair per city. Furthermore,
observational hours vary among these sites. The most common observation hours are 2:00, 8:00,
14:00 and 20:00 local time. (Out of the 17 pairs, 11 have observations at these hours.) These are
used for comparison with the model data (Extended Data Fig. 7). Both model and observational
data indicate weak diurnal patterns in urban-rural differences in 7w, air temperature and

485 humidity, which is consistent with the results shown in the main text (Fig. 1).

Separating the urban wet-bulb island into UHI and UDI components
The wet-bulb temperature of the environment is measured with a wet-bulb thermometer, a

thermometer wrapped in wet cloth and in well-ventilated conditions. The latent heat of
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evaporation of the wet bulb is balanced by sensible heat from the environment. This energy

balance consideration is the basis of the wet-bulb equation®':

e: TW ea
raen) gl @
7 7

where Tw and 7, are wet-bulb temperature and air temperature, respectively, e. and e, are actual
and saturation vapour pressure, respectively, and y is the psychrometric constant. Equation (2)
expresses 7w as an implicit function of 7, and es. Differentiating equation (2) and using a linear

approximation to e,, we obtain equation (1). The scaling factors in equation (1) are given by:
A,
wp=wy=1/(1+ 7) 3)

where Aw is the slope of the saturation vapour pressure at 7w. The accuracy of equation (1) is better
than 0.017 °C for 95% of the urban clusters in comparison with A7w obtained from a numerical

solution of equation (2). The global maps of the UDI and the UHI components are shown in

Extended Data Fig. 2c-f.

Diagnostic analysis of the urban wet-bulb island
Wet-bulb temperature and equivalent temperature (7,) both measure the MSE. Their

relationships can be expressed as>?

Q—R+7
(4a,b)
T
:n+%(m
Y

The surface-to-air enthalpy flux is driven by the vertical gradient of 7. To show this, we first

apply an Ohm’s law analogy to the sensible (/) and latent heat flux (AF) as
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H=pc, ar (5)
q,- 9
AE = /lpar—b (6)

where ¢ is specific humidity, p is air density, A is latent heat of vaporization, ¢, is specific heat of
air at constant pressure, 7. 1s diffusion resistance, and subscripts a and b denote the screen height
and the blending height, respectively. Using equations 4a, 5 and 6, we obtain an expression for

the enthalpy flux

T,.-T,
H+ AE=pc, —ea"ab

Fa

(7)

In this equation, the surface enthalpy flux (H + AFE) is proportional to the difference in equivalent
temperature between the screen height and the blending height and is inversely proportional to

the diffuse resistance between the two heights.

The surface energy balance equation is
R, +Q,=H+IE+G (8)
where Q4 is anthropogenic heat flux, and G is heat storage flux. The net radiation R is given by
R, =(I-0)K+L - L, 9)
where a is albedo, K| and L are the downward solar radiation and longwave radiation,

respectively, and L, is the upward longwave radiation.

Combining equations (7) and (8), we obtain a solution for the screen-height equivalent

temperature,
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ra(Rn + QA - G)
T,=T,,+ 10
q, q.b pcp ( )

Differentiating equation (4b) and making use of equation (10) and the fact that the blending-
height equivalent temperature 74,5 is constant between the urban and the rural subgrid tiles in the

same model grid, we obtain a diagnostic equation for the urban wet-bulb island,

AT, = ———
ope,(1+AY)

[Ar, R, + Q- G) +1, AR, + O, - G)] (11)
where A,, is the slope of saturation vapour pressure at 7w and A is a spatial difference operator
525 (urban minus rural). The first term in the square brackets on the right-hand side of equation (11)
represents the contribution to A7\ from urban-rural difference in dynamic mixing, and the
second term is the contribution from diabatic heating difference. The diabatic contribution is
further partitioned into components associated with the anthropogenic heat flux, the absorbed
solar radiation, the heat storage flux and the surface longwave radiation.
530
The diagnostic analysis was performed with subgrid data generated by the climate model at
hourly time steps and averaged to the daytime (08:00 to 16:00) and the nighttime period (20:00

to 04:00). The diffusion resistance was obtained from the following diagnostic relationship,

,o= pC})(Tq,a - Tq,b)
“ H+E

(12)
Other variables were computed directly by the model. In the model, K|, L, and 7y, are the same
535 between the urban and the rural sub-grid tiles in a model grid. The credibility of this analysis is

supported by the good agreement between modelled AT and AT calculated as the sum of

component contributions (Extended Data Fig. 3; Fig. 2).

Comparison of heat stress indices
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Similar to equation (1), the urban-rural difference in an empirical heat stress index can be
decomposed mathematically into a temperature and a humidity component, in the following

general form,

Ae,
AHeat Index = w AT, + w,

(13)

But the scaling factors wi and w2 differ from those for the urban wet-bulb island. For example, the
wet-bulb globe temperature (WBGT) is a linear combination of 7\ and 74,

WBGT =0.7Tw+ 0.3T4 (14)
Making use of equations (1), (3), and (14), the scaling factors for WBGT are

L 0T 0T
T R >

(15)

w1

The Heat Index is a nonlinear function of temperature and humidity™3. Its scaling factors were

obtained numerically. The results are summarized in Extended Data Table 1.

In the present study, 7w is used as the measure of humid heat stress which has equal weights on
air temperature and humidity. Other heat stress indices weigh temperature more heavily than
humidity (Extended Data Table 1). The urban heat stress will be stronger than our assessment if
these indices are used. Although a meta analysis of mortality data clearly demonstrates the
importance of humidity>*, epidemiological studies generally do not show strong evidence for the
humidity effect (e. g., ref>®). In the real world, heat stress is also influenced by other factors, such
as wind speed, radiation and physical activities. A condition implicit in the wet-bulb equation is
that the human body is cloth-less, resting in the shade, and the skin is fully covered by sweat. We
suggest that 7w may be more appropriate for cities in hot and humid climates, where the wet-bulb

condition is more likely met, than in dry or cold climates.
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Uncertainty analysis

The UHI, the UDI and the wet-bulb island are city-wide properties. Because the observation in
most cities was made with only one pair of sites, the observed AT\ is subject to uncertainty
arising from intra-city variations in microclimate. In several cities, observations are available
from multiple pairs of sites. These are used to estimate the measurement uncertainty. The
standard deviation of A7 is 0.27 °C for Berlin, Germany (4 possible urban-rural combinations of
site pairing) and 0.30 °C for Phoenix, USA (6 combinations; Extended Data Fig. 6). By applying
a bootstrap sampling to the cities with more than three site pairs and with the data reported for
Guangzhou, China?? (a city in the wet climate zone), we estimate that the measurement
uncertainty of ATw is 0.12 to 0.57 °C (95% confidence interval; Table 1). We added Guangzhou
in this analysis because the wet cities in our own dataset are equipped with only one site pair per
city. The reader should be aware that the Guangzhou data were collected in the autumn season
(September to November), so the intra-city variability is only an approximation of summer

conditions.

In some UHI studies, the UHI intensity is calculated as the difference in the daily maximum
temperature between urban and rural land. To determine if the results in Fig. 1 are influenced by
the timing of maximum 7w, we have calculated the urban wet-bulb island as the urban daily
maximum 7 minus the rural daily maximum 7. The results, given in Extended Data Fig. 8, are
nearly identical to those based on daytime mean values (Fig. 1 a & b). For example, the mean
modelled ATw 1s 0.14 °C for the wet climate using this new procedure and that from Fig. 1b is

0.08 °C.
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The small number of station pairs for the wet and the dry climate is a limitation of this study. To
test the sensitivity to precipitation thresholds, we first changed the dry threshold by 40 mm from
180 mm to 140 mm and 220 mm. The observed dry-climate mean A7y is -0.12 °C (daytime) and
0.48 °C (nighttime) with the 140 mm threshold and -0.04 °C (daytime) and 0.64 °C (nighttime)
with the 220 mm threshold. The original dry-climate mean AT is -0.05 °C (daytime) and 0.65 °C
(nighttime; Fig. 1a & c). Next, we adjusted the wet threshold by 40 mm from the original 570
mm to 530 mm and 610 mm. The observed wet-climate mean A7 is -0.10 °C (daytime) and 0.19
°C (nighttime) with the 530 mm threshold and 0.02 °C (daytime) and 0.30 °C (nighttime) with
the 610 mm threshold. The original wet-climate mean AT\ 1s 0.03 °C (daytime) and 0.28 °C
(nighttime; Fig. 1a &c). These responses are small. The day-versus-night contrast and the climate

wetness gradient are unaffected by these threshold changes.

To quantify the uncertainties of AT\ due to random omission of cities, we randomly sampled
75% of the site pairs in each of the three categories. This process was repeated 1000 times. The
resulting statistics are given in Extended Data Fig. 9. In about 4/5 of the cases, the daytime mean
ATy is positive in the wet region and negative in the dry region. At night, the mean A7 1s always
positive. This sensitivity analysis suggests that we are likely to get statistically significant

daytime results if more site pairs are available in the wet region.

DATA AVAILABILITY STATEMENT

The ERAS5-Land hourly data is available at:

27



605

610

615

620

625

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-
means?tab=overview; The GHS built-up grid data at: https://ghsl.jrc.ec.europa.eu/download.php;
The ISD data at: https://www.ncei.noaa.gov/access/search/data-search/global-hourly; The
observation data from Arizona mesonet at: https://cals.arizona.edu/AZMET/az-data.htm; The
observation data from Birmingham Urban Climate Laboratory at:
https://catalogue.ceda.ac.uk/uuid/e448a957fc53401794e48a23¢c265c25f; The observation data
from Trans-African Hydro-Meteorological Observatory (TAHMO) at: https://tahmo.org/climate-
data/; The observation data obtained from open data portals provided by the National
Meteorological Service of different countries are available at:

https://www.dwd.de/EN/climate environment/cdc/cdc_node en.html (Germany);
https://en.ilmatieteenlaitos.fi/download-observations (Finland);
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-
observationer#param=airtemperaturelnstant,stations=core (Sweden);
https://www.met.no/en/free-meteorological-data (Norway);

https://climate.weather.gc.ca/index e.html (Canada); https://www.smn.gob.ar/descarga-de-datos
(Argentina); https://www.data.jma.go.jp/gmd/risk/obsdl/index.php (Japan);
https://portal.inmet.gov.br/dadoshistoricos (Brazil);
https://climatologia.meteochile.gob.cl/application/requerimiento/producto/RE3003 (Chile). The
data on observed daytime and nighttime Tw and the UHI and UDI components are available on
Figshare (https://figshare.com/s/d13cb1c4dd5d056192c9). The hourly model outputs are

available from the authors upon request.

CODE AVAILABILITY STATEMENT
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The Community Earth System Model Version 2 is available at
https://www.cesm.ucar.edu/models/cesm2/. The python code used to produce the figures in this

paper is available on Figshare (https://figshare.com/s/d13¢cb1c¢4dd5d056192¢9).
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EXTENDED DATA LEGENDS

Extended Data Fig. 1 | Distribution of urban-rural station pairs. Base map shows summer
precipitation. Map was made with the Python software.

Extended Data Fig. 2 | The urban wet-bulb island and its UHI and UDI components. a, c, e,
Daytime distributions; b, d, f, Nighttime distributions. Zonal mean values are also shown. Maps
were made with the Python software.

Extended Data Fig. 3 | The urban wet-bulb island calculated with the diagnostic analysis
agrees with modelled results. Comparison of modelled and calculated daytime (a) and
nighttime (b) urban wet-bulb island. The calculated A7 is the sum of all component
contributions. Each data point represents one grid-cell mean value. Color indicates data density.
The black dotted line is 1:1. The solid line is linear regression with regression statistics noted.

Extended Data Fig. 4 | The daytime AT increases and the nighttime A7, decreases with
precipitation. a, Daytime; b Nighttime. Data are bin averages. Each bin consists of 1819 grids.

Extended Data Fig. 5 | The heat storage term dominates the diabatic heating contribution
to the urban wet-bulb island. The four components of diabatic heating term during the daytime
(a) and nighttime (b). Box plots show the median (line), 25-75% range (box), 5-95% range
(whiskers), and the mean value (cross).

Extended Data Fig. 6 | Comparison of observed and modelled diurnal patterns of wet-bulb
temperature, the urban wet-bulb island, and its UHI and UDI components. a-d, Berlin; d-f,
Phoenix. Red filled areas denote one standard deviation of all urban-rural combinations of site
pairing.

Extended Data Fig. 7 | Comparison of observed and modelled diurnal patterns of wet-bulb
temperature, the urban wet-bulb island, and its UHI and UDI components in the wet
climate zone. Gray areas denote one standard deviation of 11 model grids. Error bars denote one
standard deviation of 11 site pairs.
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Extended Data Fig. 8 | Regional patterns of the urban wet-bulb island and its UHI and UDI
components calculated from daily maximum 7. a, observed; b, modelled. Box plots show the
median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value (cross).

Extended Data Fig. 9 | Statistics from random omission of site pairs. a, observed daytime; c,
observed nighttime; b, modelled daytime; d, modelled nighttime A7\ and its components. Box
plots show the median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value
(cross).

Extended Data Table 1 | Empirical heat indices weigh temperature more heavily than
humidity. Results are presented separately for daytime and nighttime in three climate regions.
w1 — temperature weighting factor, w2 — humidity weighting factor, 7w — wet-bulb temperature,
Humidex — humidity index, WBGT — wet-bulb globe temperature, DI — discomfort index, HI —
Heat Index. The heat stress index formulae are given in ref>3
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Day

Region I, dices T« Humidex  WBGT DI HI

wi 0.26 1.00 0.48 0.63 1.56

Wet wa 0.26 0.37 0.18 0.13 0.45
wilwg 1.00 2.73 2.67 4.85 3.47

wi 0.30 1.00 0.51 0.65 111

Inter. wa 0.30 0.37 0.21 0.15 0.22
wilws 1.00 2.73 2.43 4.33 5.05

wi 0.32 1.00 0.52 0.66 0.83

Dry wa 0.32 0.37 0.22 0.16 0.23
wilwa 1.00 2.73 2.36 4.13 3.61

Region Night
Indices Tw Humidex WBGT DI HI

wi 0.28 1.00 0.50 0.64 2.21

Wet wa 0.28 0.37 0.20 0.14 0.24
wilwa 1.00 2.73 2.50 4.57 9.21

wi 0.34 1.00 0.53 0.67 1.68

Inter. wa 0.34 0.37 0.23 0.17 0.38
wilwe 1.00 2.73 2.30 3.94 -4.42

wi 0.37 1.00 0.56 0.68 0.75

Dry w2 0.37 0.37 0.26 0.18 -0.10
wilws 1.00 2.73 2.15 3.78 -7.50






