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Summary  

Cities are generally warmer than their adjacent rural land, a phenomenon known as the 

urban heat island (UHI). Often accompanying the UHI is another phenomenon called the 25 

urban dry island (UDI) whereby humidity in urban land is lower than that in their 

surroundings1–3. The UHI exacerbates heat stress on urban residents4,5, while the UDI may 

instead provide relief because the human body can cope with hot conditions better at lower 

humidity through perspiration6,7. The relative balance between UHI and UDI – as 

measured by changes in wet-bulb temperature (Tw) – is a key yet largely unknown 30 

determinant of human heat stress in urban climates. Here we show that Tw is reduced in 

cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but 

increased in wet climates (summer precipitation Ps > 570 mm). Our results arise from 

analysis of urban and rural weather stations across the world and calculations with an 

urban climate model. In wet climates, the urban daytime Tw is 0.17 ± 0.14 °C (mean ± 1 35 

standard deviation) higher than rural Tw in the summer, primarily because of a weaker 

dynamic mixing in urban air. This Tw increment is small, but because of high background 

Tw in the wet climate, it is enough to cause two to six extra dangerous heat-stress days per 

summer for urban residents under current climate conditions. The risk of extreme humid 

heat is projected to increase in the future, and these urban effects may further amplify the 40 

risk. 
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Introduction 

Time of the day and time of the year matter in the examination of urban heat stress. Air 

temperature and air humidity are more likely to exceed dangerous heat stress thresholds in the 45 

daytime and during the summer because of higher background temperature and humidity than at 

night and during the winter. The UDI can bring more cooling relief if it occurs during summer 

daylight hours. How the UDI interacts with the UHI has important health implications, especially 

in cities in the Global South. Some of these cities are home to informal settlements with low 

access to air conditioning infrastructure and vulnerable to temperature extremes8–10, and many 50 

are located in tropical and subtropical climates where the combined effect of high temperature 

and high humidity is approaching the human physiological threshold for survival (Tw = 

35 °C)11,12 . A strong UDI in these cities may have the potential to fully compensate for the 

adverse UHI effect. On the other hand, if these cities are more humid than their rural 

background, the high humidity will compound high urban temperatures, pushing heat stress 55 

levels even closer to the lethal threshold.  

 

Current knowledge of these urban microclimate effects is limited13,14 for high heat-stress regions 

in humid climates, such as South Asia, the Tropical Africa, and the Amazon Basin11,12. Satellite 

data show that the daytime surface UHI (urban-rural difference in land surface temperature) is 60 

stronger in more humid climate15,16. One underlying mechanism is that cities in humid climates 

are less efficient in dissipating heat from the surface to the lower atmosphere than the 

surrounding rural land15,17. A working hypothesis is that the low convection efficiency of urban 

land should also enhance the daytime air UHI intensity (urban-rural difference in air 

temperature) in humid climates.  65 
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Reduction in urban evaporation due to vegetation removal is a key mechanism of the UDI 

formation3. The UDI phenomenon has been observed in several mid-latitude cities18-20 in 

background climates where evaporation is water-limited. But in low-latitude humid climate 

where evaporation is energy-limited, urban air may become more moist than the rural 70 

background21,22. It is not known if these local results can be extended to broader geographic 

regions.   

 

In this study, we investigate the contributions of the UHI and the UDI to urban heat stress using 

133 pairs of urban and rural stations across the world. We also used an urban climate model to 75 

simulate the UHI and the UDI for over 36,000 urban clusters in the world, with the goals to 

expand the spatial coverage of the observational data and to probe the thermodynamic 

mechanisms of UHI and UDI formation. Results are presented for the three summer months. We 

use the wet-bulb temperature (Tw) to measure the combined effect of temperature and humidity 

on heat stress. Because it is the lowest temperature that can be achieved by evaporation of water 80 

in an air parcel, Tw is a good approximation of the skin temperature of a cloth-less and perspiring 

human body. This approximation may be more appropriate in hot and humid climates than in dry 

or cold climates. We find that the urban humid heat burden is dependent on precipitation regime.  

 

The urban wet-bulb island 85 

We investigate the urban effects using the urban wet-bulb island, Tw, defined as the difference 

in Tw between the urban and the adjacent rural land (urban minus rural). Mathematically, Tw is 

the sum of the scaled UHI (Ta, °C) and UDI intensity (ea /γ, °C): 
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∆Tw =  w1∆Ta +  w2
∆ea

γ
 (1) 

where w1 and w2 are positive and dimensionless scaling factors, Ta and ea are urban-rural 

differences in air temperature and in vapour pressure, respectively, and  is the psychrometric 90 

constant (Methods). In this formulation, the two scaling factors are equal (at about 0.3, Extended 

Data Table 1) and are a weak function of Tw. The second term in equation (1) is negative for a 

city with an UDI and positive if the city is more humid than its surrounding (that is, the urban 

moist island). Other heat indices can also be expressed as a linear combination of the UHI and 

the UDI components (Methods). 95 

 

The paired daytime (08:00 to 16:00 local time) observations show that, on average, the negative 

UDI contribution (that is, the urban dry island) outweighs the positive UHI contribution in dry 

(Ps < 180 mm) and moderately wet (intermediate Ps from 180 to 570 mm) climates, resulting in 

negative ∆Tw (Fig. 1a). In other words, cities in these climates experience less humid heat stress 100 

in the daytime than their rural environments. In wet climate (Ps > 570 mm), the average UDI 

contribution is near zero, and the daytime mean ∆Tw is slightly positive. At night (20:00 to 04:00 

local time), the UDI effect is weak, but the UHI effect is strong, leading to positive ∆Tw in all the 

three climates (Fig. 1c). These observational patterns are reproduced by the climate model (Fig. 

1b, d). It is difficult to draw firm conclusions for the wet climate from the observational data 105 

because of large variations among the few station pairs (17) available. If we replace the model 

results for the 17 grids where these station pairs are located with those for all the 10,288 urban 

clusters in the wet climate, we obtain a mean daytime ∆Tw of 0.17 ± 0.14 °C (mean ± 1 standard 

deviation), which is significantly different from zero (p < 0.001).  
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 110 
The urban wet-bulb island is a city-scale property. Because most of the observations were made 

with a single pair of stations, some of the variability in Fig. 1a & c is caused by the inability of a 

single urban station to capture intra-city variations of microclimate. By applying a bootstrap 

method to the few cities with multiple station pairs, we estimate that the measurement 

uncertainty of Tw is 0.12 to 0.57 oC (95% confidence interval; Table 1).  115 

  

Causes of the urban wet-bulb island 

We use the climate model to quantify causes of the urban wet-bulb island. In the modelling 

framework, the screen-height Tw is allowed to vary between urban and rural subgrid tiles within 

the same model grid – this difference is the urban wet-bulb island Tw – and Tw at the 120 

atmospheric reference height (i.e. blending height) of the land model is kept constant between 

these tiles. The wet-bulb temperature Tw measures the surface moist static energy (MSE)23,24. 

Even though MSE (and hence Tw) is a conserved quantity in the adiabatic process, Tw is 

generally nonzero and is linked to the contrast in the surface enthalpy flux between the urban and 

the rural tiles.   125 

 

Using an Ohm’s Law analogy for the enthalpy flux (equation 7, Methods), we show that Tw is 

caused by two diabatic processes: (1) dynamic mixing of air between the screen height and the 

blending height, and (2) a thermodynamic contribution or diabatic heating due to absorption of 

solar radiation, anthropogenic heat emission, heat storage in soil and buildings, and surface 130 

longwave radiation (Methods; Fig. 2 and Extended Data Fig. 5). Their contributions to Tw are 

quantified with a diagnostic analysis of model results. During the daytime, changes in dynamic 

mixing cause the urban Tw to be 0.39 ± 0.34 °C (mean ± 1 SD) higher than the rural Tw in the wet 
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climate, resulting in a positive ∆Tw (Fig. 2a). In this climate zone, cities dissipate the surface 

MSE to the lower atmosphere less efficiently than rural landscapes, which are dominated by 135 

dense vegetation of high aerodynamic roughness. The mean daytime diffusion resistance ra 

between the screen height and the blending height is 20 s m-1 and 12 s m-1 for urban and rural 

land, respectively, in the wet climate. This interpretation is consistent with an attribution analysis 

of the surface UHI15. At night, the role of dynamic mixing is reversed: the surface air over urban 

land is statically more unstable25,26, permitting more efficient energy dissipation than over rural 140 

land (e.g., urban ra = 72 s m-1 versus rural ra = 91 s m-1 in the wet climate), which explains the 

negative contribution to ∆Tw (Fig. 2b). Despite this dynamic cooling effect, the nighttime ∆Tw is 

actually positive due to diabatic heating. Diabatic heating, primarily via the release of heat stored 

in buildings, increases the MSE of urban air at night in all the three climate zones (Fig. 2b). 

 145 

The paired observations suggest that the urban web-bulb island may be dependent on climate 

wetness, with the daytime ∆Tw increasing and the nighttime ∆Tw decreasing with increasing 

summer precipitation (Fig. 1a, c). This climate dependence is more evident in the spatial 

distributions of modelled ∆Tw (Fig. 3a, c). The spatial variations in dynamic mixing are the 

dominant driver of spatial variations in the daytime Tw, explaining 130% of the ∆Tw versus 150 

precipitation spatial covariance (Extended Data Fig. 4a; ref15). At night, diabatic heating via heat 

stored in soil and buildings is dominant, explaining 125% of the ∆Tw - precipitation covariance 

(Extended Data Fig. 4b). Both are associated with the background biogeography in that 

vegetation tends to be denser as the climate becomes wetter, which enhances the daytime rural 

convection efficiency and suppresses the role of heat storage at night.  155 
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The urban dry island in wet and dry climates  

Both the observational and the modelling data show that the daytime UDI is stronger in the dry 

climate (that is, a more negative UDI component) than in the wet climate (Fig. 1a & b; Fig. 4). 

Although the above diagnostic analysis cannot differentiate the UDI and the UHI components, a 160 

similar reasoning can be deployed to explain this UDI climate gradient. First, if a stronger 

dynamic mixing occurs over urban areas than over rural areas, water vapour released from the 

urban surface will dissipate faster to the upper boundary layer, leading to the UDI formation. In 

the modelling domain, mixing is indeed stronger for urban (mean daytime ra = 14 s m-1) than for 

rural areas (ra = 18 s m-1) in the dry climate. Second, reduction in the urban water vapour source 165 

due to removal of vegetation, which is akin to reduction in diabatic heating for Tw, is a known 

contributor to the UDI3. In addition, many cities in the dry climate are surrounded by irrigated 

cropland. Cropland irrigation humidifies the rural air via surface evaporation, further 

strengthening the UDI. We hypothesize that these changes in the surface vapour sources create a 

stronger UDI in the dry climate because surface evaporation is water-limited than in the wet 170 

climate where surface evaporation is energy-limited.   

 

The occurrence of strong UDIs in the dry climate is somewhat counterintuitive because some 

greenspaces in arid cities are irrigated (e. g, urban lawns and parks in Salt Lake City, USA40). In 

our model domain, the irrigation option is activated for cropland but not for urban land. The 175 

urban weather stations we used are located in built-up neighborhoods (impervious surface 

fraction greater than 0.45, Methods), so the humidifying effect of urban greenspaces is minimal. 

 

Increased urban heat stress in wet climate 
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That the daytime ∆Tw is more likely to be positive than negative in the wet climate (Fig. 3) is a 180 

cause of concern. Because the summer daytime wet-bulb temperature in the wet climate is 

already quite high (mean daytime Tw 25.4 ± 2.5 °C), especially in coastal areas (mean daytime Tw 

26.2 ± 1.9 °C), even a small increase in Tw can create large negative health consequences. Using 

a dangerous Tw threshold of 27 °C (ref12,28,29), we find that residents in coastal cities in the wet 

climate experience, on average, 5.6 more dangerous days per summer (N) than rural residents 185 

during 2000 to 2019 (p < 0.001; Fig. 5a). In several cities, the extra urban heat burden can be as 

high as 20 days per summer. The number of extra dangerous days is lower (2.4) for interior 

cities, but it is still significantly different from zero (p < 0.001).   

 

At night, the urban wet-bulb island is less a concern (Fig. 5b), even though ΔTw is larger than the 190 

daytime ΔTw (Fig. 3). The mean nighttime Tw (22.7 ± 2.9 °C) in the wet climate is much lower 

than the 27 °C threshold. 

 

Discussion 

The results presented above offer partial support for the convection efficiency hypothesis. The 195 

daytime convection efficiency of urban land becomes lower than rural land in a wetter climate, 

so more MSE is trapped in the urban surface air, leading to a more positive Tw (Fig. 1a & b, 

Extended Data Fig. 4a). But this hypothesis alone cannot fully explain the air UHI spatial 

pattern, which shows higher values in a drier climate in an opposite trend to Tw (ED Fig. 2c). 

The relationship between the air UHI and precipitation is complex. A negative correlation of the 200 

air UHI with climate wetness has been reported in ref30 and is suggested by the air UHI 

dependence on latitude31. Other authors have reported insignificant13 or positive correlation32. 
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The divergence among these studies is probably caused by large intracity variations in the 

observed air temperature or uncertainties related to model representation of rural irrigation.     

 205 

Although our urban climate model does not explicitly consider urban vegetation,  some 

inferences can be made from the above thermodynamic insights regarding the use of vegetation 

for adaptation to humid heat. Urban vegetation can reduce air temperature by promoting 

evaporation, increasing albedo, and changing heat storage33. Evaporation on its own does not 

play a role in the formation of the urban wet-bulb island since it merely converts sensible heat to 210 

latent heat, bringing no change to the total MSE. The cooling relief of vegetation to humid heat 

is likely achieved via other biophysical changes. Urban vegetation may be beneficial at night 

because diabatic heating via heat storage is the main contributor to the nighttime urban wet-bulb 

island (Fig. 2). In Seoul, South Korea, street trees at a fractional cover of 30% reduce the 

nighttime heat storage by about 15 W m-2 (ref34), which amounts to a reduction of about 0.30 °C 215 

in Tw according to our diagnostic analysis. A less studied effect of urban vegetation is change to 

dynamic mixing. According to the data from urban microclimate model simulations27,35, planting 

of street trees reduces air temperature but raises air humidity, with the overall result being 

increases in Tw. One reason is that in the model domain, the urban landscape becomes 

aerodynamically smoother with increasing tree cover36. Heat dissipation is controlled by thermal 220 

roughness, not by momentum roughness. Rigid structures such as buildings have much lower 

thermal roughness than flexible and porous plant foliage37,38. It is not known if the thermal 

roughness of a complex urban landscape consisting of built structures and street vegetation will 

behave in the same way as its momentum roughness.   

 225 
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Our study highlights the need to consider the combined urban temperature and humidity effect 

on human health. This effect is generally omitted in the existing global and regional studies on 

humid heat because they are based either on historical climate data collected mostly at rural 

weather stations or on reanalysis data products and future climate projections that lack urban 

representation. The urban effect is dependent on local and regional background climate 230 

conditions (Figs. 3 and 5). In the dry and intermediate climates, the UDI is strong enough to 

more than offset the UHI in many locations, but there is no reduction in the average heat burden 

for urban residents. In the wet climate, the urban effect increases the number of dangerous heat 

stress days by 2.4 to 5.6 per summer, an intensification that is greater than the humid heat burden 

of 0.5  0.3 days from widespread irrigation in this region29. The humid heat stress is projected 235 

to increase under future warmer climates, and the urban wet-bulb island may further exacerbate 

the problem in some regions. In the western Maritime Continent (Malaysia, Indonesia, 

Singapore, and Brunei), about 2% of the population is projected to be at risk of experiencing 

extreme humid heat (Tw greater than 32 °C) at the end of the century under the RCP8.5 

scenario39. In this region, the daytime ΔTw is 0.33 °C (Fig. 3a, top panel). Using the cumulative 240 

exposure probability in ref39, addition of this urban effect to the projected Tw would increase the 

at-risk population to 4%. 
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Table 1 | Uncertainties in the observed urban wet-bulb island (oC) caused by intra-city 
microclimate variability. CI: 95% confidence interval; S.E.: standard error of bootstrap 340 
sampling. 

City Phoenix Harrisburg Birmingham Guangzhou20 
Climate zone Dry Inter. Inter. Wet 

 Daytime 
CI (-1.20, -0.68) (-0.49, -0.12) (-0.05, 0.07) (0.39, 0.65) 

S.E. 0.20 0.09 0.03 0.07 
 Nighttime 

CI (-0.19, 0.38) (0.68, 1.00) (0.50, 0.63) (0.97, 1.22) 
S.E. 0.19 0.09 0.03 0.07 

 

FIGURE LEGENDS 

Fig. 1 | The urban wet-bulb island depends on time of the day and on climate wetness. a, c, 
Observed daytime (a) and nighttime (c) ∆Tw and its components; b, d, Modelled daytime (b) and 345 
nighttime (d) ∆Tw and its components. Model results are for grids corresponding to the urban-
rural station pairs and from the same time periods. Box plots show the median (line), 25-75% 
range (box), 5-95% range (whiskers), and the mean value (cross).  
 
Fig. 2 | The urban wet-bulb island is controlled by dynamic mixing and diabatic heating. 350 
The results of diagnostic analysis during the daytime (a) and nighttime (b). The modelled ∆Tw is 
difference in Tw between urban and rural subgrid tiles in the same model grid. The calculated 
∆Tw is the sum of all component contributions. Box plots show the median (line), 25-75% range 
(box), 5-95% range (whiskers), and the mean value (cross). 
 355 
Fig. 3 | The daytime urban wet-bulb island is strongest in the wet climate.  a, b, 
Geographical distributions of ∆Tw during daytime (a) and nighttime (b) in three climate zones. c, 
d, Probability density function of daytime (c) and nighttime ∆Tw (d). Box and whiskers show 1, 
25, 50, 75 and 99 percentiles. Maps were made with the Python software. 
 360 
Fig. 4 | The modelled daytime UDI component is more negative (stronger UDI) with 
decreasing summer precipitation. Each data bin consists of 1819 grids. Box plots show the 
median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value (cross). 
 
Fig. 5 | Urban residents in the wet climate experience more heat-stressed days than rural 365 
residents. The daytime (a) and nighttime (b) heat stress burden caused by the urban wet-bulb 
island. ΔN is difference in the number of heat-stressed days per summer between urban and rural 
locations. Results are shown separately for coastal and interior cities in three climate regions. 
Color indicates data density, with yellow indicating high density and navy blue low density. 
Smooth curves are probability density functions. Box and whiskers show 0, 25, 50, 75, and 100 370 
percentiles. 
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METHODS 375 

The results presented here are for the summer season (JJA of the northern hemisphere and DJF 

of the southern hemisphere). These months represent the hot period of the year and also coincide 

with high-humidity conditions in the wet season at low latitudes. For grids north of 20° N, the 

highest Tw always occurs in June, July, or August. For grids south of 18° S, the hottest month 

(month with the highest Tw) is always December, January, or February. The Tw seasonality is 380 

weaker in the tropics (between 18° S to 20° N) than at mid- to high latitudes. The hottest month 

can be March or April in some grid cells between 0° and 18° S and May or September in some 

grid cells between 0° and 20° N. On average, JJA in the Northern Hemisphere and DJF in the 

Southern Hemisphere are the hottest period of the year at these tropical latitudes. 

 385 

We used summer precipitation Ps to divide observations and model grids into wet (Ps > 570 

mm), dry (Ps < 180 mm) and intermediate (180 mm < Ps < 570 mm) climate regions; these three 

regions roughly coincide with the tropical, dry, and temperate & boreal climate in the Köppen 

climate classification. Coastal grids are defined as those within 50 km from coasts of oceans and 

large lakes. The daytime and nighttime periods are 08:00 to 16:00 and 20:00 to 04:00 local time. 390 

 

Selection of paired urban-rural weather stations 

Some studies have used data collected at municipal airports as a substitute for urban conditions. 

This practice is controversial. Consideration of turbulent mixing in the atmospheric boundary 

layer indicates that weather stations have a small source footprint on the order of 500 m in 395 

radius41. Because airport weather stations are generally in compliance with the World 

Meteorological Organization siting guideline (which stipulates that a weather station be installed 
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on an open ground covered by grass and the location should be far away from buildings and 

walls), they may not be representative of the true built environment.  

 400 

Here, we applied a set of uniform site selection criteria to ensure that the chosen stations are 

located in true buildup and true rural landscapes. First, the paired stations have simultaneous 

observations of both temperature and humidity at hourly or 3-hourly intervals for at least one 

summer from 2009 to 2019.   

 405 

Second, station location and measurement height are within our pre-set standards. One challenge 

about climate data depositories is that the accuracy of station coordinates is generally no better 

than one arcminute or about 2 km in distance. Because of the heterogenous nature of urban 

environments, a 2-km spatial ambiguity means that a station classified as urban in a medium or 

small city can actually be located in a rural setting. We verified the metadata for each site pair 410 

with the site operator or via visual inspection of the station location using Google Earth Pro. This 

screening ensures that the accuracy of the station coordinates is better than 200 m and that 

temperature and humidity sensors are placed at a height of 1.3 to 3 m above the surface.  

 

Third, we used the GHS built-up grid data42 to screen potential urban and rural weather stations, 415 

after their precise station coordinates had been confirmed. Stations with a built-up fraction higher 

than 0.45 within the 1-km radius were chosen as urban, and stations with a built-up fraction 

lower than 0.2 within the 3-km radius were chosen as rural. These buffers are greater than the 

theoretical footprint of about 500-m radius for a weather station41. The buffer for screening urban 

stations is smaller than for rural stations, allowing us to include urban stations in small cities.  420 
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Fourth, the elevation difference, absolute distance, and latitudinal distance between the paired 

stations are smaller than 100 m, 80 km, and 50 km, respectively. A small lapse rate correction (-

0.0065 °C m-1) was applied to remove the impact of the residual elevation difference.  

 425 

A total of 133 urban-rural station pairs were found to satisfy the above screening criteria, 

including 101 from the intermediate climate, 17 from the wet climate, and 15 from the dry 

climate (Extended Data Fig. 1). Of these, 45 stations came from the Integrated Surface 

Database43 and the rest were extracted from local sources and from intensive field campaigns. If 

a model grid has multiple station pairs, spatial average of urban stations and spatial average of 430 

rural station are used to form one single pair for that grid. 

 

Climate model simulation  

We used a global climate model, the Community Earth System Model (CESM)44, to simulate 

urban and rural wet-bulb temperature and other surface climate variables. The land component of 435 

CESM, the Community Land Model Version 5 (CLM5), represents subgrid spatial heterogeneity 

with five land units or tiles (glacier, lake, urban, vegetated, and crop). The land units in the same 

grid cell receive identical atmospheric forcing, but their physical state and flux variables are 

computed separately with their own parameterizations. For instance, the urban microclimate is 

based on the urban canyon concept, which consists of roof, sunlit wall, shaded wall, and pervious 440 

and impervious canyon floor. The urban extent, urban morphology, and thermal and radiative 

parameters come from a default urban dataset provided by CESM45, representing the present-day 

urbanization pattern. In this modelling framework, the urban wet-bulb island (Tw) is the Tw 
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difference between the urban and the rural (vegetated and crop) land units in the same grid cell. 

Because CLM5 does not consider the lateral heat and moisture transport between the rural and 445 

urban land units, the modelled urban-rural microclimate gradients may be biased high in 

magnitude for small cities. The wet-bulb temperature at the atmospheric reference height (i.e. 

blending height) of the land model is kept constant between these land units. This configuration 

is similar to the tropical atmosphere where the surface climate can vary between the land and the 

ocean, but the MSE (and hence Tw) is horizontally uniform in the free troposphere23. There, the 450 

weak regional Tw gradient is maintained by deep moist convection23,46. In the local-scale study 

presented here, the uniform Tw at the atmospheric reference height represents the effect of 

horizontal blending of air due to turbulent eddies in the lower atmospheric boundary layer47.  

 

Cropland irrigation can influence urban-rural microclimatic gradients48. If moisture in the topsoil 455 

of the crop land unit falls below a pre-set threshold, irrigation water is added until soil moisture 

reaches field capacity. Timing of the daily peak Tw is not sensitive to irrigation. In grid cells in 

Northern India subject to irrigation, both urban and rural maximum Tw occur at around 13:00 to 

14:00 local time. 

 460 

The model simulation was forced by the ERA5-Land hourly data49 at the finest spatial resolution 

(25 km) configured for CESM. The model was first run for 10 years driven by the ERA 

climatology from 2000 to 2009. After this spin-up, it was run for another 20 years, driven by the 

ERA forcing data from 2000 to 2019. Post-simulation analysis was based on hourly model 

outputs. This 20-year period encompasses all the paired weather station observations.  465 
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The model has reproduced the observed day-versus-night contrast in ∆Tw and the ∆Tw climate 

gradient (Fig. 1). Other studies have also reported good performance of the same modelling 

system in simulating the surface urban heat island15 and urban air temperature50. 

 470 

In Extended Data Fig. 6, we compare observed and modelled diurnal patterns of Tw, the urban 

wet-bulb island, and its UHI and UDI components for Berlin, Germany (in the intermediate 

climate zone) and Phoenix, USA (in the dry climate zone). We chose these two cities because 

there are multiple rural and urban stations. These station mesonets allow a total of 4 and 6 

possible urban versus rural pairings for Berlin and Phoenix, respectively. The larger diurnal 475 

amplitude of the modelled Tw than that of the observed Tw is primarily caused by high amplitude 

biases of air temperature and humidity in the forcing data. Overall, the model has reproduced the 

observed diurnal patterns in urban-rural differences in Tw, air temperature and humidity. 

 

In the wet climate zone, the observations are available only as one pair per city. Furthermore, 480 

observational hours vary among these sites. The most common observation hours are 2:00, 8:00, 

14:00 and 20:00 local time. (Out of the 17 pairs, 11 have observations at these hours.) These are 

used for comparison with the model data (Extended Data Fig. 7). Both model and observational 

data indicate weak diurnal patterns in urban-rural differences in Tw, air temperature and 

humidity, which is consistent with the results shown in the main text (Fig. 1). 485 

 

Separating the urban wet-bulb island into UHI and UDI components 

The wet-bulb temperature of the environment is measured with a wet-bulb thermometer, a 

thermometer wrapped in wet cloth and in well-ventilated conditions. The latent heat of 
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evaporation of the wet bulb is balanced by sensible heat from the environment. This energy 490 

balance consideration is the basis of the wet-bulb equation51:  

Tw+
es

*(Tw)
γ

 = Ta+
ea

γ
 (2) 

where Tw and Ta are wet-bulb temperature and air temperature, respectively, ea and es
* are actual 

and saturation vapour pressure, respectively, and γ is the psychrometric constant. Equation (2) 

expresses Tw as an implicit function of Ta and ea. Differentiating equation (2) and using a linear 

approximation to es
*, we obtain equation (1). The scaling factors in equation (1) are given by: 495 

w1 = w2 = 1/(1 + 
∆w

γ
) (3) 

where w is the slope of the saturation vapour pressure at Tw. The accuracy of equation (1) is better 

than 0.017 °C for 95% of the urban clusters in comparison with Tw obtained from a numerical 

solution of equation (2). The global maps of the UDI and the UHI components are shown in 

Extended Data Fig. 2c-f. 

 500 

Diagnostic analysis of the urban wet-bulb island 

Wet-bulb temperature and equivalent temperature (Tq) both measure the MSE. Their 

relationships can be expressed as52 

Tq = Ta + 
ea

γ
 

= Tw + 
es

*(Tw)
γ

 

(4a,b) 

The surface-to-air enthalpy flux is driven by the vertical gradient of Tq. To show this, we first 

apply an Ohm’s law analogy to the sensible (H) and latent heat flux (λE) as 505 
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H = ρcp
Ta - Tb

ra
 (5) 

λE = λρ
qa - qb

ra
 (6) 

where q is specific humidity, ρ is air density,  is latent heat of vaporization, cp is specific heat of 

air at constant pressure, ra is diffusion resistance, and subscripts a and b denote the screen height 

and the blending height, respectively. Using equations 4a, 5 and 6, we obtain an expression for 

the enthalpy flux 

H + λE = ρcp
Tq,a - Tq,b

ra
 (7) 

In this equation, the surface enthalpy flux (H + E) is proportional to the difference in equivalent 510 

temperature between the screen height and the blending height and is inversely proportional to 

the diffuse resistance between the two heights.  

 

The surface energy balance equation is 

Rn + QA = H + λE + G (8) 

where QA is anthropogenic heat flux, and G is heat storage flux. The net radiation Rn is given by 515 

Rn  = (1 - α) K↓+ L↓ -  L↑  (9) 

where α is albedo, K↓ and L↓ are the downward solar radiation and longwave radiation, 

respectively, and L↑ is the upward longwave radiation.  

 

Combining equations (7) and (8), we obtain a solution for the screen-height equivalent 

temperature, 520 
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Tq,a= Tq,b + 
ra(Rn + QA - G)

ρcp
 (10) 

Differentiating equation (4b) and making use of equation (10) and the fact that the blending-

height equivalent temperature Tq,b is constant between the urban and the rural subgrid tiles in the 

same model grid, we obtain a diagnostic equation for the urban wet-bulb island, 

∆Tw = 
1

ρcp(1 + ∆w/γ)
[∆ra (Rn + QA - G) + ra ∆(Rn + QA - G)] (11) 

where ∆w is the slope of saturation vapour pressure at Tw and  is a spatial difference operator 

(urban minus rural). The first term in the square brackets on the right-hand side of equation (11) 525 

represents the contribution to ∆Tw from urban-rural difference in dynamic mixing, and the 

second term is the contribution from diabatic heating difference. The diabatic contribution is 

further partitioned into components associated with the anthropogenic heat flux, the absorbed 

solar radiation, the heat storage flux and the surface longwave radiation.  

 530 

The diagnostic analysis was performed with subgrid data generated by the climate model at 

hourly time steps and averaged to the daytime (08:00 to 16:00) and the nighttime period (20:00 

to 04:00). The diffusion resistance was obtained from the following diagnostic relationship, 

ra = 
ρcp(Tq,a - Tq,b)

H + λE
 (12) 

Other variables were computed directly by the model. In the model, K↓, L↓, and Tq,b are the same 

between the urban and the rural sub-grid tiles in a model grid. The credibility of this analysis is 535 

supported by the good agreement between modelled ∆Tw and ∆Tw calculated as the sum of 

component contributions (Extended Data Fig. 3; Fig. 2).  

 

Comparison of heat stress indices 
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Similar to equation (1), the urban-rural difference in an empirical heat stress index can be 540 

decomposed mathematically into a temperature and a humidity component, in the following 

general form, 

∆Heat Index  = w1∆Ta +  w2
∆ea

γ
 (13) 

But the scaling factors w1 and w2 differ from those for the urban wet-bulb island. For example, the 

wet-bulb globe temperature (WBGT) is a linear combination of Tw and Ta, 

WBGT = 0.7Tw + 0.3Ta (14) 

Making use of equations (1), (3), and (14), the scaling factors for WBGT are 545 

w1 = 
0.7

1 + ∆w/γ
 + 0.3; w2 = 

0.7
1 + ∆w/γ

   (15) 

The Heat Index is a nonlinear function of temperature and humidity53. Its scaling factors were 

obtained numerically. The results are summarized in Extended Data Table 1. 

 

In the present study, Tw is used as the measure of humid heat stress which has equal weights on 

air temperature and humidity. Other heat stress indices weigh temperature more heavily than 550 

humidity (Extended Data Table 1). The urban heat stress will be stronger than our assessment if 

these indices are used. Although a meta analysis of mortality data clearly demonstrates the 

importance of humidity54, epidemiological studies generally do not show strong evidence for the 

humidity effect (e. g., ref55). In the real world, heat stress is also influenced by other factors, such 

as wind speed, radiation and physical activities. A condition implicit in the wet-bulb equation is 555 

that the human body is cloth-less, resting in the shade, and the skin is fully covered by sweat. We 

suggest that Tw may be more appropriate for cities in hot and humid climates, where the wet-bulb 

condition is more likely met, than in dry or cold climates.  
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Uncertainty analysis 560 

The UHI, the UDI and the wet-bulb island are city-wide properties. Because the observation in 

most cities was made with only one pair of sites, the observed Tw is subject to uncertainty 

arising from intra-city variations in microclimate. In several cities, observations are available 

from multiple pairs of sites. These are used to estimate the measurement uncertainty. The 

standard deviation of Tw is 0.27 oC for Berlin, Germany (4 possible urban-rural combinations of 565 

site pairing) and 0.30 oC for Phoenix, USA (6 combinations; Extended Data Fig. 6). By applying 

a bootstrap sampling to the cities with more than three site pairs and with the data reported for 

Guangzhou, China22 (a city in the wet climate zone), we estimate that the measurement 

uncertainty of Tw is 0.12 to 0.57 oC (95% confidence interval; Table 1). We added Guangzhou 

in this analysis because the wet cities in our own dataset are equipped with only one site pair per 570 

city. The reader should be aware that the Guangzhou data were collected in the autumn season 

(September to November), so the intra-city variability is only an approximation of summer 

conditions.    

   

In some UHI studies, the UHI intensity is calculated as the difference in the daily maximum 575 

temperature between urban and rural land. To determine if the results in Fig. 1 are influenced by 

the timing of maximum Tw, we have calculated the urban wet-bulb island as the urban daily 

maximum Tw minus the rural daily maximum Tw. The results, given in Extended Data Fig. 8, are 

nearly identical to those based on daytime mean values (Fig. 1 a & b). For example, the mean 

modelled Tw is 0.14 °C for the wet climate using this new procedure and that from Fig. 1b is 580 

0.08 °C.   
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The small number of station pairs for the wet and the dry climate is a limitation of this study. To 

test the sensitivity to precipitation thresholds, we first changed the dry threshold by 40 mm from 

180 mm to 140 mm and 220 mm. The observed dry-climate mean Tw is -0.12 oC (daytime) and 585 

0.48 oC (nighttime) with the 140 mm threshold and -0.04 oC (daytime) and 0.64 oC (nighttime) 

with the 220 mm threshold. The original dry-climate mean Tw is -0.05 oC (daytime) and 0.65 oC 

(nighttime; Fig. 1a & c). Next, we adjusted the wet threshold by 40 mm from the original 570 

mm to 530 mm and 610 mm. The observed wet-climate mean Tw is -0.10 oC (daytime) and 0.19 

oC (nighttime) with the 530 mm threshold and 0.02 oC (daytime) and 0.30 oC (nighttime) with 590 

the 610 mm threshold. The original wet-climate mean Tw is 0.03 oC (daytime) and 0.28 oC 

(nighttime; Fig. 1a &c). These responses are small. The day-versus-night contrast and the climate 

wetness gradient are unaffected by these threshold changes. 

 

To quantify the uncertainties of ∆Tw due to random omission of cities, we randomly sampled 595 

75% of the site pairs in each of the three categories. This process was repeated 1000 times. The 

resulting statistics are given in Extended Data Fig. 9. In about 4/5 of the cases, the daytime mean 

∆Tw is positive in the wet region and negative in the dry region. At night, the mean ∆Tw is always 

positive. This sensitivity analysis suggests that we are likely to get statistically significant 

daytime results if more site pairs are available in the wet region. 600 

 

 

DATA AVAILABILITY STATEMENT 

The ERA5-Land hourly data is available at: 
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-605 

means?tab=overview; The GHS built-up grid data at: https://ghsl.jrc.ec.europa.eu/download.php; 

The ISD data at: https://www.ncei.noaa.gov/access/search/data-search/global-hourly; The 

observation data from Arizona mesonet at: https://cals.arizona.edu/AZMET/az-data.htm; The 

observation data from Birmingham Urban Climate Laboratory at: 

https://catalogue.ceda.ac.uk/uuid/e448a957fc53401794e48a23c265c25f; The observation data 610 

from Trans-African Hydro-Meteorological Observatory (TAHMO) at: https://tahmo.org/climate-

data/; The observation data obtained from open data portals provided by the National 

Meteorological Service of different countries are available at: 

https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html (Germany); 

https://en.ilmatieteenlaitos.fi/download-observations (Finland); 615 

https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-

observationer#param=airtemperatureInstant,stations=core (Sweden); 

https://www.met.no/en/free-meteorological-data (Norway); 

https://climate.weather.gc.ca/index_e.html (Canada); https://www.smn.gob.ar/descarga-de-datos 

(Argentina); https://www.data.jma.go.jp/gmd/risk/obsdl/index.php (Japan); 620 

https://portal.inmet.gov.br/dadoshistoricos (Brazil); 

https://climatologia.meteochile.gob.cl/application/requerimiento/producto/RE3003 (Chile). The 

data on observed daytime and nighttime Tw and the UHI and UDI components are available on 

Figshare (https://figshare.com/s/d13cb1c4dd5d056192c9). The hourly model outputs are 

available from the authors upon request. 625 

 

CODE AVAILABILITY STATEMENT 
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The Community Earth System Model Version 2 is available at 

https://www.cesm.ucar.edu/models/cesm2/. The python code used to produce the figures in this 

paper is available on Figshare (https://figshare.com/s/d13cb1c4dd5d056192c9). 630 
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EXTENDED DATA LEGENDS 

Extended Data Fig. 1 | Distribution of urban-rural station pairs. Base map shows summer 
precipitation. Map was made with the Python software. 
 
Extended Data Fig. 2 | The urban wet-bulb island and its UHI and UDI components. a, c, e, 695 
Daytime distributions; b, d, f, Nighttime distributions. Zonal mean values are also shown. Maps 
were made with the Python software. 
 
Extended Data Fig. 3 | The urban wet-bulb island calculated with the diagnostic analysis 
agrees with modelled results. Comparison of modelled and calculated daytime (a) and 700 
nighttime (b) urban wet-bulb island. The calculated ∆Tw is the sum of all component 
contributions. Each data point represents one grid-cell mean value. Color indicates data density. 
The black dotted line is 1:1. The solid line is linear regression with regression statistics noted. 
 
Extended Data Fig. 4 | The daytime ∆Tw increases and the nighttime ∆Tw decreases with 705 
precipitation. a, Daytime; b Nighttime. Data are bin averages. Each bin consists of 1819 grids.   
 
Extended Data Fig. 5 | The heat storage term dominates the diabatic heating contribution 
to the urban wet-bulb island. The four components of diabatic heating term during the daytime 
(a) and nighttime (b). Box plots show the median (line), 25-75% range (box), 5-95% range 710 
(whiskers), and the mean value (cross). 
 
Extended Data Fig. 6 | Comparison of observed and modelled diurnal patterns of wet-bulb 
temperature, the urban wet-bulb island, and its UHI and UDI components. a-d, Berlin; d-f, 
Phoenix. Red filled areas denote one standard deviation of all urban-rural combinations of site 715 
pairing. 
 
Extended Data Fig. 7 | Comparison of observed and modelled diurnal patterns of wet-bulb 
temperature, the urban wet-bulb island, and its UHI and UDI components in the wet 
climate zone. Gray areas denote one standard deviation of 11 model grids. Error bars denote one 720 
standard deviation of 11 site pairs. 
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Extended Data Fig. 8 | Regional patterns of the urban wet-bulb island and its UHI and UDI 
components calculated from daily maximum Tw. a, observed; b, modelled. Box plots show the 
median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value (cross). 725 
 
Extended Data Fig. 9 | Statistics from random omission of site pairs. a, observed daytime; c, 
observed nighttime; b, modelled daytime; d, modelled nighttime ∆Tw and its components. Box 
plots show the median (line), 25-75% range (box), 5-95% range (whiskers), and the mean value 
(cross). 730 
 
Extended Data Table 1 | Empirical heat indices weigh temperature more heavily than 
humidity.  Results are presented separately for daytime and nighttime in three climate regions. 
w1 – temperature weighting factor, w2 – humidity weighting factor, Tw – wet-bulb temperature, 
Humidex – humidity index, WBGT – wet-bulb globe temperature, DI – discomfort index, HI – 735 
Heat Index. The heat stress index formulae are given in ref53 
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