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a b s t r a c t

In this paper, we deal with epistemic uncertainty in the framework of Dempster–
Shafer theory, where basic belief assignments are used to characterize the uncertain
parameters. To propagate the mixed epistemic and aleatory uncertainties, we introduce
the relevant theoretical basics of DS theory, present the numerical approach based on DS
theory combined with generalized polynomial chaos expansion, and conduct the error
analysis for the numerical approach. Specifically, to analyze the convergence rate of
the numerical solution represented with basic belief assignments, we define a measure
based on the Hausdorff distance to quantify the difference between two basic belief
assignments. The convergence of the numerical approximation is demonstrated with a
few simple examples under different scenarios, and the presented numerical approach
is applied to quantify the mixed types of uncertainty in quasi-one-dimensional flow.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

As computational power increases, numerical simulations have increasingly been used to study and predict the
behavior of physical systems. However, due to the inherent variability of the systems, lack of understanding about physical
characteristics, the assumptions embodied in the mathematical models, etc., uncertainty is inevitable in the modeling and
simulation process. Therefore, to provide reliable information regarding the physical systems, quantifying the uncertainty
in the simulations is critical.

Motivated by the need for uncertainty quantification (UQ) in simulations, there have been numerous attempts over
the last few decade at developing UQ techniques. The predominant techniques characterize the uncertainty using random
variables/processes in the framework of probability theory, such as the Monte Carlo method, generalized polynomial chaos
(gPC) expansion and the stochastic collocation method [1–4], polynomial chaos-based kriging method [5]. However, in
practice, the probability density functions (PDF) required by the probabilistic approaches may not always be available.
In addition, there may exist uncertain parameters in the system, where the uncertainty is epistemic (referring to the
uncertainty due to the lack of knowledge) rather than aleatory (referring to the uncertainty due to the random nature).
In such situations, non-probabilistic approaches may provide a better representation of the epistemic uncertainty [6].
Notable non-probabilistic approaches are based on the alternative mathematical frameworks, such as interval analysis,
fuzzy set theory [7,8], possibility theory [9,10], generalized p-boxes [11], and Dempster–Shafer (DS) theory [12,13]. Some
of the research on epistemic uncertainty quantification using various approaches can be found in literature [14–21].
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Nomenclature

(S, m̃) Finite support random set
(⌦,F,P) Complete probability space
�i, i Eigenvalue, eigenfunction of CAA
�i(y) Generalized polynomial chaos
BBA Basic belief assignment
CBF Cumulative belief function
CDF Cumulative distribution function
CPF Cumulative plausibility function
A(x) Cross-section area of nozzle
Bk Focal element of En(⇠ )
Bel, Pl Belief and plausibility functions
CAA(x1, x2) Correlation of Gaussian process
d(x1, x2) Euclidean distance
dH (A, B) Hausdorff distance between two sets
DH (mf ,mg ) Distance between two BBAs
Dk High-dimensional focal element for ⇠

E(⇠ ) Expectation
En(⇠ ) Approximation of expectation
m m-function
P Probability
p1, p2 Inlet, outlet pressure
S(⇠ ) Standard deviation
Sn(⇠ ) Approximation of standard deviation
ui gPC expansion coefficients
un(⇠ , y) gPC expansion over space Y
xs Shock position
Y Stochastic space
Z Non-probabilistic space or universal set

In the current work, we focus on the use of DS theory in uncertainty propagation (i.e., quantifying the uncertainty in
outputs propagated from the uncertainty in inputs through the simulation model). Numerical techniques for epistemic
uncertainty propagation based on DS theory have been explored and applied to various applications in the literature. For
example, Oberkampf et al. have discussed the epistemic uncertainty propagation using DS theory and demonstrated the
approach using an algebraic equation with two uncertain parameters [6]; Talavera et al. have applied DS theory to quantify
the uncertainty in the paths that ships will navigate in the future, based on the information provided by the automatic
identification system (AIS) on the paths followed by the ships in the past [22]; Tang et al. have quantified epistemic
uncertainty in flutter analysis using DS theory to evaluate the structural stability and flutter risk of the system [23];
Abdallah et al. have utilized DS theory to model uncertainty in hydrographic inputs and analyzed their effect on climate
change [24]; Bae et al. have proposed to use DS theory for quantifying the epistemic uncertainty that stems from lack
of knowledge about a structural system, and further for the preliminary design of airframe structures in an intermediate
complexity wing example [25]; Wang and Matthies [26] have used both DS theory and fuzzy set to represent the epistemic
uncertainty and conduct reliability analysis, radial basis functions are constructed as a universal metamodel to improve
the computational efficiency.

With the above-mentioned techniques, aleatory and epistemic uncertainties can be dealt with individually. However,
mixed types of uncertainties normally exist in the underlying physical system and the simulation models. Therefore, it is
necessary to explore the numerical UQ techniques for mixed aleatory and epistemic uncertainty propagation, which serves
as the objective of our current work. Early attempts have been made to deal with the mixed uncertainties in the literature.
For example, Roy and Oberkampf have discussed a comprehensive framework for estimating the predictive uncertainty
of scientific computing applications based on the combination of probability theory and interval analysis, which results
in a p-box to represent mixed types of uncertainties in the model output [19]. Baudrit et al. have presented a hybrid
approach to jointly propagate and exploit probabilistic and possibilistic information in risk assessment, and proposed a
new post processing method in the framework of DS theory [18]. DS theory has also been directly used for mixed types of
uncertainty propagation. For example, Shah et al. have modeled both aleatory and epistemic uncertainty using DS theory
and constructed a cheaper surrogate model for the response based on point-collocation non-intrusive polynomial chaos
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to reduce computational cost [27]. Tang et al. have combined DS theory with the gPC method to quantify the mixed
types of uncertainty in synthetic problems, where DS theory is for epistemic uncertainty and gPC method deals with
aleatory uncertainty [28]. Eldred et al. have implemented interval-valued probability, second-order probability and DS
theory combined with probability theory for mixed types of uncertainty propagation where stochastic expansion methods
are applied in stochastic space to reduce the computational cost [29]. These numerical approaches based on DS theory and
probability theory with gPC method have worked effectively and efficiently for the synthetic examples and application
problems. However, the above-mentioned research works provide only the minimum theoretical foundation of DS theory
and no rigorous error analysis for the numerical approaches.

In this work, we introduce the relevant theoretical basics from DS theory, present the numerical approach based on
DS theory combined with generalized polynomial chaos expansion, and conduct the error analysis for the approach.
Specifically, we use definition of the extension principle for random sets directly in the framework of DS theory since
the equivalence between basic belief assignments (defined in DS theory) and random sets has been discovered [30,31].
The extension principle uniquely defines the basic belief assignments (BBA) for model output mapped (through a function)
from inputs characterized with BBAs [30]. Then we present the numerical approach for mixed types of uncertainty
propagation in the system where gPC method is used for efficiently propagating aleatory uncertainty represented using
PDFs and the extension principle is used for propagating epistemic uncertainty represented with BBAs. Since mixed types
of uncertainties are involved, the BBAs corresponding to the statistics of model output will be obtained eventually. To
implement the error analysis for the numerical approach, a distance to measure the difference between two BBAs is
required. Various dissimilarity measures have been defined in the framework of DS theory and the thorough summary
can be found in [32–34]. However, those measures are defined for BBAs with a set of finite number of elements as the
universal set, therefore cannot be directly applied in the situation where the universal set is an interval. For the purpose of
our current work, we define a distance measure based on the well-known Hausdorff distance to determine the difference
between two BBAs.

This paper is organized as follows. We first provide a general problem setup in Section 2. Then we introduce relevant
concepts from DS theory and define a new distance to measure the difference between two BBAs in Section 3. The
numerical technique for mixed aleatory and epistemic uncertainty propagation and its theoretical error analysis are
provided in detail in Section 4. In Section 5, we demonstrate the convergence of the numerical estimation using a few
simple examples, and apply the numerical technique to quantify the mixed types of uncertainty in quasi-one-dimensional
flow.

2. Problem setup

Let x 2 D ⇢ RnD be the physical domain, and t 2 (0, T ] (T > 0) be the time domain. Let Y ⇢ RnY be a bounded
parameter domain for random inputs y = {y1, y2, . . . , ynY } and Z ⇢ RnZ be another bounded parameter domain for
other uncertain inputs ⇠ = {⇠1, . . . , ⇠nZ }. nD, nY and nZ are the dimensions of the domain D, Y and Z , respectively.
The random inputs characterize the aleatory uncertainty in the system while the other uncertain inputs represent the
epistemic uncertainty in the system. Consider the following general partial differential equation

8
<

:

ut (x, t, y, ⇠ ) = L(u), D ⇥ (0, T ] ⇥ Y ⇥ Z,
B(u) = 0, @D ⇥ [0, T ] ⇥ Y ⇥ Z,
u = u0, D̄ ⇥ {t = 0} ⇥ Y ⇥ Z,

(1)

where ut is the partial derivative @u/@t , B is the boundary condition operator, u = u0 is the initial condition, and L is a
differential operator. It is assumed that the problem is well-posed in Y ⇥ Z , and the quantity of interest (u or a function
of u) is continuous over domain Z .

We further assume that the probability density function is available for the random input y. However, no probability
density function is assigned to the uncertain input ⇠ due to the lack of knowledge or data, and consequently the traditional
probabilistic approaches are not applicable here. Instead, we assume that there exists sufficient information associated
with ⇠ such that a BBA in the framework of DS theory can be constructed to model the uncertainty in ⇠ . The goal is
to quantify the uncertainty in the model output u(x, t, y, ⇠ ), due to the mixed aleatory and epistemic uncertainty in the
uncertain input variables y and ⇠ . Without losing the generality, we consider scalar model output (i.e., u 2 R).

3. Preliminaries

In this section, we will introduce the relevant concepts from DS Theory.

3.1. Basics of DS theory

Let ⇠ 2 Z be the quantity of interest, and the knowledge regarding ⇠ is incomplete and consequently the value of ⇠
is unknown. We consider the propositions in the form of ‘‘the true value of ⇠ is in A (A ⇢ Z)’’. The strength of evidence
supporting the proposition A is represented by a belief function Bel in DS theory.
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Definition 1. A belief function assigns a number in [0, 1] to an element A 2 2Z (Z is the universal set and 2Z is its power
set), satisfying:

Bel(;) = 0, Bel(Z) = 1,
Bel([k

i=1Ai) �

X

;6=I✓{1,...,k}

(�1)|I|+1Bel(\i2IAi), for k � 2, A1, . . . , Ak 2 2Z .

Compare to probability density functions, belief functions do not have constraint of additivity. This relaxation makes
them more flexible to represent epistemic uncertainty. Specifically, Bel(A) + Bel(A)  1, where A is the complement of
A. When the summation does not reach one, the remaining part (i.e., 1 � Bel(A) � Bel(A)) can support either A or A or
even both (which cannot be specified due to lack of information), therefore, goes to universal set, representing part of the
epistemic uncertainty. The dual measure of the belief function is called plausibility function (Pl : 2Z ! [0, 1]), defined
as Pl(A) = 1 � Bel(A). It measures the maximum possible strength of evidence supporting a proposition A. Belief and
plausibility functions can also be defined as

Bel(A) =
X

B✓A

m(B), Pl(A) =
X

B\A6=;

m(B), (2)

where the basic belief assignment (BBA) m : 2Z ! [0, 1], also called m-function (hereafter we use BBA and m-function
interchangeably), assigns a number (called mass or belief mass) in [0, 1] to an element A 2 2Z , satisfying:

m(;) = 0,
X

A✓Z

m(A) = 1. (3)

Subset A is called a focal element if m(A) 6= 0. In this work, we assume the number of focal elements is finite.
The BBA can be interpreted using the concept of random sets (i.e., set-valued random variables) [30,31,35–37] as

follows. Let Z be a non-empty set, a finite support random set on Z is a pair (S, m̃) where S is a finite family of distinct
non-empty subsets of Z and m̃ is a mapping S ! [0, 1] such that

P
A2S m̃(A) = 1. The support of the random set S is

equivalent to the collection of the focal elements for a belief function, and m̃(A), which can be viewed as the probability of
A containing the true value of variable ⇠ , is equivalent to the belief mass m(A) for all A 2 S [30]. The extension principle
for random sets through a function is also defined in [30,35]. We state the definition in the language of DS theory as
follows.

Definition 2. Let u = f (⇠ ) be a mapping from the domain Z ⇢ RnZ to a domain U , and let m be the BBA associated with
input variable ⇠ , where its focal elements are a finite number ñ of subdomains A1, A2, . . . , Añ (Ai ⇢ Z), i.e., for any A ⇢ Z ,

m⇠ (A) =
⇢
m⇠ (Ai), if A = Ai, i = 1, . . . ñ,
0, otherwise,

(4)

then the BBA of the output u (denoted as mu) is defined as, for any B ⇢ U

mu(B) =
⇢P

i2S m⇠ (Ai), S = {i|f (Ai) = B}, if S 6= ;,

0, otherwise.
(5)

Analogous to the cumulative distribution function in probability theory, cumulative belief function (CBF) and cumula-
tive plausibility function (CPF) in DS theory are defined as follows.

Definition 3. Let Bel be a belief function in DS theory, then its cumulative belief function and cumulative plausibility
function are [6,38]

CBF (z) = Bel(⇠ 2 (1, z]), (6)
CPF (z) = Pl(⇠ 2 (1, z]). (7)

Remark: Given the belief function, both CBF, CPF are obtained uniquely. However, the inverse does not hold, i.e., given
a CBF and a CPF, we cannot get a unique belief function [38].

3.2. Distance between two BBAs

For the purpose of error analysis, we now introduce a distance to measure the difference between two BBAs or m-
functions (the m-function obtained from numerical algorithms and the true m-function). Before that, let us first recall the
commonly used distance — Hausdorff distance dH between two non-empty sets A and B.

dH (A, B) = max
⇢
sup
x12A

inf
x22B

d(x1, x2), sup
x22B

inf
x12A

d(x1, x2)
�
, (8)
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where d(x1, x2) is a classical distance between elements x1 and x2.
For the purpose of our current work, we are interested in the distance between two BBAs defined over the real line.

Therefore we rewrite the Hausdorff distance dH for the special case with sets A, B being intervals and with the specification
of d(x1, x2) being Euclidean distance. Let A = [a1, a2] ⇢ R and B = [b1, b2] ⇢ R be two real intervals, the Hausdorff
distance between A and B becomes

dH (A, B) =

8
>>>>><

>>>>>:

max{|a1 � b1|, |a2 � b2|}, if all |ai|, |bi| < 1, i = 1, 2;
|a1 � b1|, if |a1|, |b1| < 1 and a2, b2 = 1;

|a2 � b2|, if a1, b1 = �1 and a2, b2 < 1;

0, if a1, b1 = �1 and a2, b2 = 1;

1, otherwise.

(9)

Next we define the distance between two BBAs associated with the outputs from two functions of the same input variable.

Definition 4. Let ⇠ 2 Z be the input variable associated with a BBA (m-function) with finite number of focal elements
A1, A2, . . . , Añ and the corresponding belief masses m⇠ (A1),m⇠ (A2), . . .m⇠ (Añ). Consider two mappings f and g defined on
Z , and the BBAs mf and mg for the corresponding outputs are defined by Definition 2. Denote Fi = f (Ai) and Gi = g(Ai).
Then, the distance between the two BBAs mf and mg is defined as

DH (mf ,mg ) =
ñX

i=1

m⇠ (Ai)dH (Fi,Gi). (10)

It satisfies the following properties:

• DH (mf ,mg ) � 0 and DH (mf ,mg ) = 0 ) mf = mg .
• DH (mf ,mg ) = DH (mg ,mf ).
• DH (mf ,mg )  DH (mf ,mh)+ DH (mh,mg ), where mh is the BBA for the outputs of function h(⇠ ).

Theorem 3.1. Let DH (mf ,mg ) be the distance defined in Definition 4, where each of the focal elements Ai ⇢ Z(i = 1, . . . , ñ)
is a continuous domain and the two functions f (⇠ ) and g(⇠ ) are continuous over Z. If |f (⇠ ) � g(⇠ )|  ✏ for any ⇠ 2 Z, then
DH (mf ,mg )  ✏.

Proof. Since |f (⇠ ) � g(⇠ )|  ✏ for any ⇠ 2 Z , then |f (⇠ ) � g(⇠ )|  ✏ for any ⇠ 2 Ai ⇢ Z . In addition, Fi = f (Ai) =

[a1,i, a2,i] ⇢ R and Gi = g(Ai) = [b1,i, b2,i] ⇢ R since f and g are continuous over the continuous domain Ai.

DH (mf ,mg )

=

ñX

i=1

m⇠ (Ai)dH (Fi,Gi),

=

ñX

i=1

m⇠ (Ai) ⇤

8
>>>>><

>>>>>:

max{|a1,i � b1,i|, |a2,i � b2,i|}, if |aj,i|, |bj,i| < 1;

|a1,i � b1,i|, if |a1,i|, |b1,i| < 1 and a2,i, b2,i = 1;

|a2,i � b2,i|, if a1,i, b1,i = �1 and a2,i, b2,i < 1;

0, if a1,i, b1,i = �1 and a2,i, b2,i = 1;

1, otherwise
dH (Fi,Gi) 6= 1 due to |f (⇠ ) � g(⇠ )|  ✏ for any ⇠ 2 Ai.

For the simplicity of writing, we omit the conditions for different scenarios.

DH (mf ,mg ) =
ñX

i=1

m⇠ (Ai) ⇤

8
>><

>>:

max{|a1,i � b1,i|, |a2,i � b2,i|},
|a1,i � b1,i|,
|a2,i � b2,i|,
0,

Since |f (⇠ ) � g(⇠ )|  ✏ for all ⇠ 2 Ai, we have |a1,i � b1,i|  ✏ and |a2,i � b2,i|  ✏ for the first case; |a1,i � b1,i|  ✏ for
the second case; |a2,i � b2,i|  ✏ for the third case, therefore

DH (mf ,mg ) 

ñX

i=1

m⇠ (Ai) ⇤

8
>><

>>:

max{✏, ✏},
✏,

✏,

0,

 ✏

ñX

i=1

m⇠ (Ai) = ✏. ⇤
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4. Mixed aleatory and epistemic uncertainty propagation using generalized polynomial chaos and DS theory

In this section, we propose the numerical strategy for uncertainty propagation in the original problem Eq. (1). For the
convenience of notation, we neglect the dependence of the solution on the variables x and t , and discuss the problem for
any fixed x 2 D and t 2 (0, T ]. Then the output is denoted as u(⇠ , y). As mentioned in [15], this is a standard approach in
most UQ literature.

As assumed in the problem setup, the epistemic uncertainty in the system is characterized by the uncertain non-
probabilistic variable ⇠ 2 Z associated with a BBA, while the aleatory uncertainty is characterized by random variable
y 2 Y associated with a probability density function. The mixed types of uncertainty are propagated through the system,
and the goal is to mathematically represent the uncertainty in the output u(⇠ , y) : Z ⇥ Y ! U . Due to the availability
of the probability density function (denoted as ⌘(y)) for the random variable y, it is possible to evaluate the statistics of
output u over the space Y , such as its expectation and standard deviation (denoted as S)

E(⇠ ) = E[u(⇠ , y)|⇠ ] =
Z

Y
u(⇠ , y)⌘(y)dy, ⇠ 2 Z . (11)

S(⇠ ) =
p
E[u2(⇠ , y)|⇠ ] � E2(⇠ ) =

Z

Y
(u(⇠ , y) � E(⇠ ))2⌘(y)dy. (12)

Due to the mixed types of uncertainty, such statistics (e.g., E(⇠ ), S(⇠ )) are not deterministic. Instead, they are functions
of the non-probabilistic variable ⇠ over the domain Z . Since a BBA is associated with the input variable ⇠ , the goal then
becomes to obtain a BBA for the statistics of model output u efficiently.

4.1. Aleatory uncertainty propagation using GPC method

In this section, we adopt the gPC method to propagate the aleatory uncertainty in system, so that the statistics of the
output solution u can be evaluated efficiently at a fixed ⇠ . For simplicity, we denote the output u(⇠ , y) at a fixed ⇠ as u(y).

First we define a complete probability space (⌦,F,P), where ⌦ is the sample space including all possible outcomes,
F ⇢ 2⌦ is the � -algebra with all measurable events belonging to ⌦ , and P : F ! [0, 1] is the probability
measure. Assume that the uncertainty in a system is represented by a set of uncorrelated random variables y =

{y1(!), y2(!), . . . , ynY (!)} : ⌦ ! Y ✓ RnY . Then any second-order random variables u(!) 2 L2(⌦,P) can be
approximated by a gPC expansion as follows [2,39–41]:

un(y(!)) =
N�1X

i=0

ui�i(y(!)), (13)

where n is the highest polynomial order, N = (nY + n)!/(nY !n!) is the number of terms, and uis are the gPC coefficients to
be determined in the algorithm. The functions �i were originally proposed as Wiener–Hermite polynomial chaos (under
assumption of y associated with Gaussian distribution) by Wiener [1] and later extended to the generalized polynomial
chaos via the Askey scheme [2]. The choice of the type of the polynomial chaos depends on the distribution of the random
inputs. By matching the probability density function (PDF) of random variables to the weighting function of orthogonal
polynomials, the gPC expansion with this specific type of polynomial basis is capable of converging rapidly to a smooth
function. In the current work, we adopt the corresponding polynomials from Askey scheme for random variables with
different distributions.

Using the orthogonality of the polynomial basis, one can calculate the gPC coefficients by projecting u on each basis
with the inner product

ui =
hu,�ii

h�i,�ii
=

1
E[�2

i ]

Z

Y
u(y)�i(y)⌘(y)dy, (14)

where ⌘(y) is the PDF of the variable y, and the integration can be approximated using a quadrature rule as

ui ⇡ ûi =
1

E[�2
i ]

MX

j=1

u(y(j))�i(y(j))↵(j), i = 0, 1, . . . ,N � 1, (15)

where {y(j),↵(j)}Mj=1 is a set of quadrature points and the corresponding weights. Sparse grid quadrature points can be
considered for high-dimensional stochastic space since the number of quadrature points increases exponentially as the
dimension increases [42].

For the output u(⇠ , y) with variable ⇠ , the truncated gPC expansion (as in Eq. (13)) is updated as

un(⇠ , y) =
N�1X

i=0

ui(⇠ )�i(y), (16)

6
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where the gPC coefficients depends on the variable ⇠ . The gPC expansion un approximate u accurately for each ⇠ 2 Z and
the convergence of un (for any ⇠ ) can be expressed as

✏n(⇠ ) = kun � ukLp⌘(Y ) ! 0, p � 1, as n ! 1, (17)

More details on gPC can be found in [2,41].
Since un is an approximation to u, then the statistics of the output such as E(⇠ ) (and S(⇠ )) can also approximated by

En (and Sn(⇠ )) as

En(⇠ ) = E[un(⇠ , y)|⇠ ] =
Z

Y
un(⇠ , y)⌘(y)dy, ⇠ 2 Z . (18)

Sn(⇠ ) =
q
E[u2

n(⇠ , y)|⇠ ] � E2
n (⇠ ) =

Z

Y
(un(⇠ , y) � En(⇠ ))2⌘(y)dy. (19)

Similarly, the quantities En and Sn are functions of variable ⇠ . With gPC expansions un over the stochastic space Y , the
expectation and standard deviation can be obtained directly from the gPC coefficient uis as

En(⇠ ) = u0(⇠ )E[�2
0 (y)]; Sn(⇠ ) =

vuut
N�1X

i=1

u2
i (⇠ )E[�

2
i (y)]. (20)

4.2. Epistemic uncertainty propagation using DS theory

Consider the numerical approximation expectation En (function of ⇠ = {⇠1, . . . , ⇠nZ }) as an example (the standard
deviation Sn(⇠ ) can be considered with the exact same procedure by replacing En(⇠ ) with Sn(⇠ )). Uncertainty propagation
using DS theory is to find the BBA (m-function) for the output En given the BBAs for each ⇠i.

Suppose the universal set Zi = [ai, bi] (1  i  nZ ) includes all the possible values of ⇠i. And the focal elements are a
finite number of subintervals Dij = [aij, bij], where 1  j  ñi and ñi < 1 is the number of focal elements of the BBA mi.

The nZ -dimensional belief structure of the BBA can be constructed by taking the Cartesian product over all the
directions of ⇠ . Specifically, the universal set is Z = Z1⇥Z2⇥· · ·⇥ZnZ . The focal elements are Dk = D1k1 ⇥D2k2 ⇥· · ·⇥DnZ knZ
for 1  k 

QnZ
i=1 ñi, where Dk is a nZ -dimensional hypercube, and Diki is a focal element of the ith BBA mi. The mass of

each focal element is m⇠ (Dk) = ⇧
nZ
i=1mi(Diki ). Note that the focal elements of the BBA for nZ -dimensional variable ⇠ may

not be hypercubes if the BBA for ⇠ is directly prescribed (instead of the BBAs for each ⇠i).
The uncertainty in ⇠ , represented by the nZ -dimensional belief structure, is propagated through the function En = En(⇠ )

and accumulated in the uncertainty of the output En. The BBA of the output En based on Definition 2 can be used to
represent the uncertainty in En. For the purpose of numerical computation, we construct the BBA by first solving a pair
of optimization problems in each hypercube Dk.

Bk,1 = min
⇠2Dk

En(⇠ ), (21)

Bk,2 = max
⇠2Dk

En(⇠ ). (22)

Under the assumption that the output u is continuous in Z , the interval Bk = [Bk,1, Bk,2] becomes one focal element of
the BBA for En(⇠ ), and the belief mass is m⇠ (Dk). Obviously, the BBA of the output En(⇠ ) should have the same number of
focal elements as the BBA of ⇠ unless there are more than one hypercubes corresponding to the same focal element for
En(⇠ ).

The error in the obtained BBA for the numerical approximation En(⇠ ) can be quantified using the distance defined in
Section 3.2.

Theorem 4.1. Let E be the true expectation of a continuous function u(⇠ , y) (over y 2 Y) conditioned on variable ⇠ 2 Z,
which is associated with a BBA m⇠ with continuous focal elements Dks. Let En(⇠ ) be its approximation defined as in Eq. (18).
Denote the BBA of E(⇠ ) as mE with focal elements Cks, and the BBA of En(⇠ ) be mEn with focal elements Bks obtained by the
procedure described above. With ku(y, ⇠ ) � un(y, ⇠ )kLp⌘(Y )  ✏n for all ⇠ 2 Z and the assumption that u is continuous over Z,
we have

|DH (mE,mEn )|  ✏n. (23)

Proof. From ku(y, ⇠ ) � un(y, ⇠ )kLp⌘(Y )  ✏n for all ⇠ 2 Z , one can easily show that for any ⇠ 2 Z , the error in the
approximation En is bounded by the error in the approximation un, i.e., we have |E(⇠ ) � En(⇠ )|  ✏n for any ⇠ 2 Z .

Since u and un is continuous over Z , their statistics in stochastic space E(⇠ ) and En(⇠ ) are continuous over Z as well.
In addition, all the focal elements of ⇠ are continuous domains.

Let DH (mE,mEn ) =
P

m⇠ (Dk)dH (Ck, Bk), Using Theorem 3.1, one can easily conclude that the Eq. (23) holds. ⇤

7
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4.3. Algorithm

The steps for obtaining output BBA for En(⇠ ) is outlined in Algorithm 1. The calculation for standard deviation can be
performed following the algorithm by replacing En(⇠ ) with Sn(⇠ ). As describe in Section 2 Problem Setup, the algorithm
assumes that PDF is available for random variable y, BBAs are available for each uncertain variable ⇠i. Then we obtain
BBA for the full-dimensional variable ⇠ with hypercubes as focal elements. In each focal element (hypercube), one pairs
of optimization are solved to obtain the upper/lower bounds of the focal element interval for the output statistics En(⇠ ).
For any fixed ⇠ , En(⇠ ) is efficiently obtained using gPC expansion over stochastic space Y . Sampling method has been used
to solve the optimization problems in our examples, however, it is possible to improve the efficiency of the optimization
using multi-start implementations of local optimization methods or efficient global optimization method. Once the
output focal elements are obtained, the belief mass can be assigned. With the obtained BBA, CBF and CPF can then be
calculated without much computational effort. Since the algorithm goes through all hypercubes, its complexity increases
as dimensions of Z or the focal elements of each ⇠i increases. For example, in one-dimensional case, the computational
cost increases linearly with the increase in the number of focal elements. With the number of focal elements for each
⇠i fixed, the computational cost will increase exponentially with the increase in the dimension of space Z . As shown in
Section 5.2.2, one may also construct computationally cheaper surrogate to approximate the function En(⇠ ) in the space
Z to reduce the computational cost, however, with sacrifice on the accuracy of output BBA approximation.

Algorithm 1: Summarized steps for obtaining BBA for En(⇠ )
Input

PDF for y 2 Y , BBA (focal element Di,ki with m⇠i (Di,ki )) for each ⇠i 2 Zi.

Obtain hypercube focal element Dk and mass for ⇠ 2 Z
for all combinations of focal elements from each ⇠i do

Obtain nZ -dimensional hypercube Dk = D1k1 ⇥ D2k2 ⇥ ... ⇥ DnZ knZ .
Assign the mass m⇠ (Dk) = ⇧

nZ
i=1m⇠i (Diki ).

end for

Obtain output focal element and mass

for all focal elements Dk do

Solve optimizations (21)–(22) for [Bk,1, Bk,2] (call approximation En(⇠ )).
Assign mass m([Bk,1, Bk,2]) = m⇠ (Dk).

end for

Obtain CBF and CPF using Eqs. (6)–(7).

Approximation En(⇠ ) (with fixed ⇠ ) using gPC

Specify a set of quadrature points {yj,↵j}Mj=1.
Solve system Eq. (1) at quadrature points to obtain u(yj, ⇠ ).
Perform gPC expansion with Eqs. (14)–(16), obtain un(y, ⇠ ).
Obtain En(⇠ ) using Eq. (20).

5. Numerical examples

5.1. Ordinary differential equation (with 1D BBA structure)

We first consider a simple example of an ordinary differential equation (ODE) as
du(t, ⇠1)

dt
= ⇠1u, u(0) = ⇠2, (24)

where ⇠1 is a random variable with normal distribution N (0, 1), and ⇠2 is a non-probabilistic uncertain variable associated
with a BBA (the m-function) as

m⇠2 (D1) = 0.2;m⇠2 (D2) = 0.5;m⇠2 (D3) = 0.3,

where the focal elements Dis are overlapped intervals

D1 = [0.03, 0.045);D2 = [0.04, 0.055);D3 = [0.05, 0.06].

The goal is to quantify the mixed types of uncertainty in the output solution u propagated from the uncertainty in inputs
using the presented numerical method, i.e., representing the aleatory uncertainty using the gPC method and obtain a BBA
to quantify the epistemic uncertainty in the conditional expected value of the output u.

Due to the simplicity of the chosen ODE Eq. (24), not only the analytical solution for the output is known u(t, ⇠1, ⇠2) =
⇠2e⇠1t , but also the analytical solution for the conditional expectation of the output is available E(u|⇠2, t) = ⇠2et

2/2. The

8
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Fig. 1. (a) The BBA for numerical conditional expectation with approximation order n = 6, (b) The CBF and CPF for E(u|⇠2), and (c) The distance
DH (mE ,mEn ) with respect to approximation order n.

analytical solutions can be used for error analysis of the numerical approach. In this problem, we consider the solution u
at a fixed time t = 1.

To quantify the aleatory uncertainty in the system efficiently, we implement the gPC expansion with polynomial order n
to obtain un(⇠1, ⇠2) =

Pn
j=0 uj(⇠2)�j(⇠1), which serves as an approximation to the exact solution u. Then the approximation

of conditional expectation En (depending on ⇠2) is consequently calculated from un. Following that, the BBA of numerical
conditional expectation mEn is then constructed. The focal elements of the obtained BBA (see Fig. 1(a)) with approximation
order n = 6 are

B1 = [0.0495, 0.0742], B2 = [0.0659, 0.0907], B3 = [0.08240.0990];

and the assigned masses are

mEn ([B1]) = 0.2, mEn ([B2]) = 0.5, mEn ([B3]) = 0.3. (25)

From the BBA, one can conclude that the expectation of the output solution will be inside the interval [0.0659, 0.0907]
with maximum degree of belief 0.5, and no preference will be given to any more specific subset of that interval due to
the epistemic uncertainty. With obtained BBA mEn , the cumulative belief function (CBF) is calculated as follows:

CBF (z) = Bel({⇠ |⇠  z}) =
X

i

mEn (Bi|Bi ✓ {⇠ |⇠  z})

=

8
>><

>>:

0, for z < 0.0742,
mEn ([B1]) = 0.2, for 0.0742  z < 0.0907,
mEn ([B1])+mEn ([B2]) = 0.7, for 0.0907  z < 0.0990,
mEn ([B1])+mEn ([B2])+mEn ([B3]) = 1, for z � 0.0990.

(26)

The cumulative plausibility function (CPF) is calculated as follows:

CPF (z) = Pl({⇠ |⇠  z}) =
X

i

mEn (Bi|Bi \ {⇠ |⇠  z} 6= ;)

=

8
>><

>>:

0, for z < 0.0495,
mEn ([B1]) = 0.2, for 0.0495  z < 0.0659,
mEn ([B1])+mEn ([B2]) = 0.7, for 0.0659  z < 0.0824,
mEn ([B1])+mEn ([B2])+mEn ([B3]) = 1, for z � 0.0824.

(27)

The CBF and CPF are plotted in Fig. 1(b), which bound the possible true cumulative distribution function (CDF) of the
expectation of output E(u|⇠2). We also study the convergence of the distance between the true BBA and the one based
on approximation with respect to polynomial order n. The error in the BBA obtained based on numerical approximation
mEn is plotted in Fig. 1(c) with respect to the approximation order n. Clearly one can observe the spectral convergence.

Similarly, the BBA of numerical conditional standard deviation mSn is also constructed. The obtained BBA, CBF/CPF with
approximation order n = 6 are provided in Fig. 2(a,b). The output BBA shows that the standard deviation will be inside
the interval [0.0863, 0.1187] with maximum degree of belief 0.5, and no preference will be given to any more specific
subset of that interval due to the epistemic uncertainty. The analytical solution for the conditional standard deviation of
the output is also available and the formula is S(u|⇠2, t = 1) = ⇠2

p
e2 � e. The analytical solutions is also used to study

the convergence of the distance between the true BBA and the one based on approximation with respect to polynomial
order n. The error in the BBA mSn is plotted in Fig. 2(c). Clearly one can again observe the spectral convergence with
respect to polynomial order n.

9
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Fig. 2. (a) The BBA for numerical conditional standard deviation with approximation order n = 6, (b) The CBF and CPF for S(u|⇠2), and (c) The
distance DH (mS ,mSn ) with respect to approximation order n.

Fig. 3. 2D belief structure of the BBA for input.

5.2. Nonlinear ordinary differential equation (with 2D BBA structure)

5.2.1. Mixed uncertainty quantification
We now consider a nonlinear ODE equation.

du(t, y, ⇠1)
dt

= �⇠1u(1 �
u
y
), u(0) = ⇠2, (28)

where we consider y to be random variable uniformly distributed over interval [1, 3], and ⇠1, ⇠2 to be uncertain with BBAs
as

m⇠1 ([0.3, 0.4]) = 0.3;m⇠1 ([0.4, 0.5]) = 0.5;m⇠1 ([0.5, 0.6]) = 0.2,
m⇠2 ([0.84, 0.85]) = 0.3;m⇠2 ([0.85, 0.86]) = 0.7.

The 2D belief structure of the BBA is shown in Fig. 3.
The analytical solutions are available for error analysis. The solution to ODE is

u(t, y, ⇠1, ⇠2) =
y⇠2e�⇠1t

⇠2e�⇠1t � ⇠2 + y
, (29)

and the solution for the conditional expectation of the output is

E(u|⇠1, ⇠2, t) = ⇠2e�⇠1t �
⇠2e�⇠1t (⇠2e�⇠1t � ⇠2)

2
log

����
3+ ⇠2e�⇠1t � ⇠2

1+ ⇠2e�⇠1t � ⇠2

���� .

and the solution for the conditional standard deviation of the output is

S2(u|⇠1, ⇠2, t) = ⇠ 2
2 e

�2⇠1t � ⇠ 2
2 e

�2⇠1t (⇠2e�⇠1t � ⇠2)log
����
3+ ⇠2e�⇠1t � ⇠2

1+ ⇠2e�⇠1t � ⇠2

����

+
1
2
⇠ 2
2 e

�2⇠1t (⇠2e�⇠1t � ⇠2)2(1+
1

⇠2e�⇠1t � ⇠2 + 1
+

1
⇠2e�⇠1t � ⇠2 + 3

).

Here, we consider u at a fixed time t = 2, and construct the gPC expansion (over stochastic space y 2 [1, 3]) un (n
is the highest polynomial order) to approximate the exact solution u. Consequently, the approximation of conditional
expectation En (depending on ⇠1, ⇠2), and associated BBA can be calculated/constructed from un. The obtained BBA with
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Fig. 4. (a) The BBA for numerical conditional expectation with approximation order n = 4, (b) The CBF and CPF for E(u|⇠1, ⇠2), and (c) The distance
DH (mE ,mEn ) with respect to approximation order n.

Fig. 5. (a) The BBA for numerical conditional standard deviation with approximation order n = 4, (b) The CBF and CPF for S(u|⇠1, ⇠2), and (c) The
distance DH (mS ,mSn ) with respect to approximation order n.

approximation order n = 4 is provided in Fig. 4(a), which shows that the expectation of the output solution will be inside
the interval [0.453, 0.53] with maximum degree of belief 0.35. Similarly, the CBF and CPF are constructed and plotted
in Fig. 4(b). We also study the convergence of the distance between the true BBA and the one based on approximation
with respect to polynomial order n for this nonlinear problem. Fig. 4(c) shows the spectral convergence of the numerical
approach with respect to order n.

Similarly, the approximation of conditional standard deviation Sn(⇠1, ⇠2), and associated BBA, CBF/CPF can be calcu-
lated/constructed from un (see Fig. 5(a,b)). The output BBA with n = 4 shows that the standard deviation of the output
solution will be inside the interval [0.0654, 0.0737] with maximum degree of belief 0.35. The distance between the true
BBA and the one based on approximation with respect to polynomial order n for standard deviation is also calculated and
plotted in Fig. 5(c), which shows the spectral convergence of the numerical approach with respect to order n.

5.2.2. Comparison to approach with surrogate over non-probabilistic space
Recall that our proposed approach constructs gPC expansion as an approximation only in the probabilistic space Y , not

in the non-probabilistic space Z . To further reduce the computational cost, surrogate has been used in non-probabilistic
space Z to estimate the lower and upper bounds of output focal elements as in [43]. For the purpose of demonstration,
we also construct surrogate of gPC expansion to approximate E4(⇠ ) and S4(⇠ ) in the non-probabilistic space ⇠ 2 Z for this
simple example, and compare the obtained CBF/CPF to the ones produced by our approach. Fig. 6(a) shows the comparison
of CBF/CPF of E(u|⇠1, ⇠2), the curves in black color from our approach are exactly overlapped with the truth (therefore truth
is not plotted for better visualization), while the curves from the approach with surrogate constructed in non-probabilistic
space Z are almost overlapping (with almost invisible but slight deviation around E = 0.605). The comparison of CBF/CPF
for S(u|⇠1, ⇠2) are shown in Fig. 6(b,c), from which one can observe that CBF/CPF from our approach is closer to (almost
overlapping with) the truth. The observations match the expectation that our method would produce more accurate result
since no approximation is used in space Z from our proposed approach.

To further compare the two approaches, the errors in the obtained BBAs are calculated for both expectation and
standard deviation from both methods. From Table 1, one can also conclude that our method produce more accurate
BBAs for both expectation and standard deviation.
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Fig. 6. CBF and CPF: (a) comparison on the expectation E(u|⇠1, ⇠2) between our approach (black) and the approach with surrogate in non-probabilistic
space Z (blue); (b) comparison on the standard deviation S(u|⇠1, ⇠2) from our approach (black) to the truth (red); and (c) comparison on the standard
deviation S(u|⇠1, ⇠2) from the approach with surrogate in non-probabilistic space Z (blue) to the truth (red).

Table 1

Error in BBAs of expectation and standard deviation.
Our method Method with surrogate

constructed over Z
Error in BBA of E(u|⇠1, ⇠2) 5.76e�11 1.18e�04
Error in BBA of S(u|⇠1, ⇠2) 2.53e�05 8.9e�05

5.3. Quasi-one-dimensional nozzle flow

The quasi-one-dimensional (Q1D) nozzle problem is a simple example of aerodynamic flows. In a quasi-one-
dimensional (convergent–divergent) nozzle shocked flow, the impact of the uncertain inlet conditions, exit pressure and
nozzle geometry on the output has been analyzed. For example, Mathelin and Hussaini [3] analyzed the uncertainty
in the exit pressure and exit velocity of supersonic flow using a stochastic collocation method. In their work, it was
assumed that only aleatory uncertainty exists in the input parameters and nozzle geometry. Chen et al. [44] quantified the
uncertainty of the shock position in a dual throat nozzle with a simplified model. Different probability density functions
were assigned to the initial velocity and the corresponding PDFs for the shock position were obtained using the PC
expansion. Abgrall et al. [45] introduced a semi-intrusive method to analyze the uncertainty in Mach number within
the Q1D nozzle flow with random heat coefficient ratio. They compared the convergence rates for the standard deviation
of Mach number between the semi-intrusive method and gPC expansion. The works mentioned above mainly focused
on aleatory uncertainty where PDFs were prescribed for random input variables, however, the PDFs might not always
be available and epistemic uncertainty may be involved. Therefore it is crucial to explore mixed types of uncertainty in
Q1D flow. Roy and Oberkampf [19] were interested in the total predictive uncertainty in the test section temperature in
the Q1D flow. Interval analysis coupled with the Monte Carlo method was implemented to obtain a ‘‘p-box’’ to represent
the propagated uncertainty in the temperature from the input parameters, followed by appending the numerical and the
model uncertainty into the p-box. However, it could be computationally expensive due to the slow convergence of the
Monte Carlo method. In this section, we apply the presented numerical procedure that couples gPC expansion method
and DS theory to quantify the mixed types of uncertainty in the shock position of Q1D flow.

5.3.1. Basic equations
The system of Euler equations of the conservative form governing the Q1D nozzle flow can be described as follows:

Ut + F (U)x = S(U) (30)

where

U =

(
⇢A
⇢uA
⇢EA

)
, F =

8
<

:

⇢uA
(⇢u2 + p)A
(⇢E+ p)uA

9
=

; , S =

( 0
pAx

�pAt

)
,

with ⇢ as the density, u as the velocity, A as the cross-section area, p as the pressure and E as the total energy. In the
formulation, ⇢E =

p
��1 +

1
2⇢u

2, Ax =
@(A)
@x and At =

@(A)
@t .

The shock position xs of the flow in the steady case is the quantity of our interest. With the isentropic flow relation
before/after the occurrence of the shock and the Rankine–Hugoniot relation at the shock position, an implicit function for
xs dependent on only A and p2

p1
can be derived, where p1, p2 are inlet and exit pressures, respectively. Therefore, the cross

section area A, inlet and exit pressures are considered as uncertain in the current work. The inlet temperature T = 0.7469
is considered as a deterministic parameter hereafter.
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5.3.2. Mathematical representation of mixed uncertainty
The nozzle geometry has an inevitable level of variability due to manufacturing limitations. Therefore, we assume that

cross-section area A(x) varies with space with mean value defined as

Ā(x) =

8
<

:

0.7, x <= 0.25
25.6x3 � 28.8x2 + 9.6x � 0.3, 0.25 < x <= 0.5
�1.6x3 + 4.0x2 � 2.8x+ 1.1, 0.5 < x <= 1

A Gaussian process is further assumed for nozzle geometry and its correlation along the x direction is:

CAA(x1, x2) = � 2e�
|x1�x2 |

b , (31)

where b = 10 is the correlation length and � = 0.01 is the associated standard deviation. For the purpose of numerical
computation, we represent the stochastic field using the Karhunen–Loeve decomposition,

A(x) = Ā(x)+
1X

i=1

p
�i i(x)⇠i, (32)

where ⇠is are independent standard Gaussian variables and �i,  i are eigenvalue, eigenfunctions of the correlation function
satisfying

Z
CAA(x1, x2) i(x2)dx2 = �i i(x1) on [0, 1]. (33)

Due to the rapid decay of eigenvalues �i as i increases, the terms with i � 3 in the expansion are truncated. Then the
nozzle geometry is described as

A(x) = Ā(x)+
p

�1 1(x)⇠1 +
p

�2 2(x)⇠2, ⇠1 ⇠ N (0, 1), ⇠2 ⇠ N (0, 1). (34)

The exit pressure p2 is also assumed to be stochastic and characterized by a Gaussian variable

p2 = 0.86 ⇤ 0.6171+ 0.01⇠3, ⇠3 ⇠ N (0, 1). (35)

The inlet pressure p1 is assumed to be non-probabilistic and characterized by the following BBA with universal set
Xp1 = [0.59, 0.65]:

mp1 (D1) = 0.1573,mp1 (D2) = 0.6827,mp1 (D3) = 0.1573,mp1 (D4) = 0.0027,

where the focal elements Dis are

D1 = [0.59, 0.61);D2 = [0.61, 0.63);D3 = [0.63, 0.65];D4 = Xp1 .

5.3.3. Results
The presented method is implemented to quantify the aleatory and epistemic uncertainty in the shock position xs.

First, the shock position is expanded in the probability space in terms of Hermite polynomials:

xs(⇠1, ⇠2, ⇠3, p1) =
NX

i=0

xsi(p1)�i(⇠1, ⇠2, ⇠3). (36)

Then consider the conditional expectation of shock position E[xs|p1] = x̄s(p1). Since p1 is uncertain and represented by a
BBA, consequently, the output x̄s is also nondeterministic and its BBA can be obtained using the method in Section 4.2.
From the BBA of E[xs|p1] shown in Fig. 7(a), we conclude that (1) the expectation of the shock position falls inside
H = [0.816, 0.853] with the highest degree of belief Bel(E[xs|p1] 2 H) = 0.6827 and (2) no further preference inside
the interval H = [0.816, 0.853]. Fig. 7(b) shows the CBF and CPF, which bound the possible true CDF of the expectation of
the shock position. For example, consider the proposition ‘‘E[xs|p1] < 0.83’’ and estimate the likelihood of its occurrence.
From Fig. 7(b), we conclude that the lower and upper bounds of the probability of this proposition being true are:

Bel(E[xs|p1] < 0.83)  P(E[xs|p1] < 0.83)  Pl(E[xs|p1] < 0.83),

where belief and plausibility are calculated based on the obtained belief function in Fig. 7(a).

Bel(E[xs|p1] < 0.83) = m([0.775, 0.816]) = 0.1573,
Pl(E[xs|p1] < 0.83) = m([0.775, 0.816])+m([0.816, 0.853])+m([0.775, 0.888]) = 0.8427.

The conditional standard deviation of shock position S[xs|p1] is also considered, and its BBA and CBF, CPF are provided
in Fig. 8. One can easily observe that the standard deviation of shock position falls inside the interval [0.02157, 0.02234]
with the highest degree of belief 0.6827. If consider the proposition ‘‘S[xs|p1] < 0.022’’, the likelihood of its occurrence
would be bounded by the belief of the proposition 0.1537 and the plausibility of the proposition 0.8427 (read from the
curves of Fig. 8(b)).
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Fig. 7. (a) The belief function of the conditional expectation E[xs|p1]. (b) The CBF/CPF of the conditional expectation E[xs|p1].

Fig. 8. (a) The belief function of the conditional standard deviation S[xs|p1]. (b) The CBF/CPF of the conditional standard deviation S[xs|p1].

6. Summary and conclusions

In this work, we introduce the relevant theoretical basics from DS theory, present the numerical approach based on
DS theory combined with gPC expansion for mixed types of uncertainty propagation, and conduct the error analysis.
Specifically, we use definition of the extension principle for random sets directly in the framework of DS theory due to
the equivalence between the BBA and random sets. The extension principle uniquely defines the BBA for model output
mapped (through a function) from inputs characterized with BBAs. Then we present the numerical approach for mixed
types of uncertainty propagation in the system where gPC method is used for efficiently propagating aleatory uncertainty
represented using PDFs and the extension principle is used for propagating epistemic uncertainty represented with BBAs.
The approach first estimates the statistics of the output solution in the stochastic space, and then represents the epistemic
uncertainty in the statistics using a BBA. In order to analyze the error in the obtained BBA based on the numerical
approximation, a measure based on Hausdorff distance is defined to quantify the difference between two BBAs. Using
simple ODE examples with available analytical statistics, it is demonstrated that exponentially-fast convergence rate can
be obtained for the numerical estimations of the output solutions involving propagated mixed types of uncertainty.
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