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Abstract. Costello’s pushforward formula relates virtual fundamental classes of virtually

birational algebraic stacks. Its original formulation omits a necessary hypothesis, whose

addition is not sufficient to correct the proof. We supply a substitute for Costello’s notion

of pure degree and prove the pushforward formula with this definition. We also show the

hypotheses of the corrected pushforward formula are satisfied in a variety of its applications.

Some adjustments to the original proofs are required in several cases, including the original

one.

1. Introduction

If f : X ′ → X is a proper, birational morphism of varieties, then the fundamental

class of X ′ pushes forward to the fundamental class of X . Birationality can be

relaxed to generic finiteness of degree d, in which case f∗[X ′] = d[X ]. Costello’s

pushforward formula asserts the same holds for virtual fundamental classes in a

situation that might be called “virtual birationality”.

Theorem 1.1. (Costello’s pushforward formula) Suppose there is a cartesian dia-

gram

X ′ X

Y ′ Y

f

p′ � p

g

(1)

such that

(1) X ′ and X are Deligne–Mumford stacks;

(2) Y ′ and Y are Artin stacks of the same pure dimension;

(3) g is a morphism of Deligne–Mumford type and pure degree d;

(4) f is proper;
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(5) p has a perfect relative obstruction theory E inducing a perfect relative obstruc-

tion theory E ′ for p′ by pullback.

Then f∗[X ′/Y ′]vir = d[X/Y ]vir .

At issue is the definition of pure degree. Costello defines a morphism g : Y ′ →

Y of Deligne–Mumford type to be of pure degree d if both Y ′ and Y have the same

pure dimension and all of the generic fibers of Y ′ over Y are finite of degree d.

With this definition of pure degree, Theorem 1.1 is false: see Examples 2.1 and 2.2

. However, Manolache shows that the formula is true if either g is projective or g is

proper and Y is a Deligne–Mumford stack [1, Proposition 5.29 and Remark 5.30].

In Sect. 2 we prove that Costello’s original statement is valid, provided pure

degree is defined as in Definition 2.3. Our definition includes all diagrams (1) in

which g is proper, which is easier to verify in practice than projectivity.

We found almost twenty papers that used Costello’s pushforward formula,

including several by the second author. The bulk of the present paper is devoted to

checking that the relevant maps are indeed proper to ensure the formula was used

correctly. This list is not meant to be exhaustive, but representative of techniques

used to remedy the situation.

2. Pure degree and the pushforward formula

The following two examples of squares (1) show some properness assumption is

necessary for the pushforward formula to hold.

Example 2.1. Let Y be the affine line, Y ′ the affine line with a doubled origin,

and Y ′ → Y the projection that is the identity on each copy. Let X be the origin

of Y . The morphisms p and p′ are local complete intersection embeddings, so

their canonical obstruction theories induce virtual fundamental classes that are the

ordinary fundamental classes. The map g has pure degree 1 but f has degree 2.

Example 2.2. Let Y be the affine line and X its origin. Let Y ′ be the disjoint union of

A1 and A1 −{0}. Then Y ′ → Y has pure degree 2 but X ′ → X is an isomorphism,

hence has pure degree 1.

On the other hand, it would be too much to insist that g actually be proper. For

example, Y ′ might have a component that is not proper over Y but is sufficiently far

away from the image of p so as not to affect [X/Y ]vir. We propose the following

definition of pure degree:

Definition 2.3. We say that a Deligne–Mumford type morphism of locally noethe-

rian Artin stacks g : Y ′ → Y is pure along p : X → Y if, whenever S is the

spectrum of a discrete valuation ring with closed point s, and f : S → Y is a

morphism such that f (s) lies in the image of X , the base change Y ′
S → S is proper.

We elaborate on the phrase “of degree d over” in Appendix A.
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Remark 2.4. Definition 2.3 is related, but not equivalent, to the definition of Ray-

naud and Gruson [5, Définition (3.3)]. The map Y ′ → Y in Example 2.2 fails to

be pure by either definition, while Example 2.2 is pure according to Raynaud and

Gruson [5, Définition (3.3)] but not according to Definition 2.3.

Remark 2.5. We record some consequences of Definition 2.3.

• If a map Y ′ → Y is proper, it is pure along any morphism X → Y .

• If X̃ → X is surjective and Y ′ → Y is pure along X̃ → X → Y , then it’s also

pure along X → Y .

• If Y ′ → Y is of pure degree along a map X → Y , then it is of pure degree

along any map Z → X → Y .

• Suppose in diagram (1) that p, p′ are open immersions. If f is proper, then

g : Y ′ → Y is of pure degree along p for topological reasons.

• Purity is stable under base change in Y .

• Purity of g in diagram (1) implies properness of f , so the assumption that f be

proper is redundant.

Proposition 2.6. With notation as in the statement of Theorem 1.1, the map of

relative intrinsic normal cones CX ′/Y ′ → CX/Y is of degree d over each generic

point of CX/Y .

Proof. This assertion is local in CX/Y , so it is also local in X and Y . Replace both

by smooth covers to assume X, Y are affine schemes.

The morphism p : X → Y can be factored as a closed embedding followed by

a smooth morphism: X → Ỹ → Y . Then CX/Y is the stack quotient of CX/Ỹ by

TỸ/Y ×Ỹ X ; likewise CX ′/Y ′ is the quotient of CX ′/Ỹ ′ by TỸ/Y ×Ỹ X ′ (where Ỹ ′ is

the base change of Ỹ to Y ′). The generic fibers of CX ′/Y ′ over CX/Y have the same

degrees as the generic fibers of CX ′/Ỹ ′ over CX/Ỹ . We may therefore replace Y by

Ỹ and assume that p : X → Y is a closed embedding.

Let M ′ → M be the morphism of deformations to the normal cone induced

by the commutative diagram (1). Recall that M is the complement of the strict

transform of Y × {0} in the blowup of Y × A1 along X × {0}. The normal cone

C = CX/Y is the fiber of M over 0 ∈ A1.

Let ξ be a generic point of C . Let R be the integral closure of OM,ξ . Then

R is a 1-dimensional, integrally closed, noetherian local ring, hence is a discrete

valuation ring. By construction, the composition of Spec R → M → Y sends the

closed point of Spec R to X ⊂ Y and its open point to the generic point of Y as in

Definition 2.3.

By assumption, this implies the base change Y ′
R := Y ′ ×Y Spec R → Spec R

is proper. Then M ′ ×M Spec R → Spec R is also proper: the valuative criterion

requires a unique lift for a commutative diagram

Spec K ′ M ′ Y ′

Spec R′ Spec R M Y
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after a finite extension R′ of R, but we get the lift Spec R′ → Y ′ by the properness

of Y ′
R → Spec R. This induces a map Spec R′ → Y ′ × A1 that factors through

the blowup M
′

of Y ′ × A1 along X ′ × {0}. This map lies in M ′ ⊆ M
′

because

the generic point of Spec R′ maps a point of Y ′ × A1 over the generic point of A1.

In particular, the closed point cannot lie in the strict transform of Y × {0}, so the

image of Spec R′ → M
′

is contained in M .

Let us write M ′
R = Spec R ×M M ′ (note that the fiber product is over M , not

over Y ). We have just seen that M ′
R → Spec R is proper. We argue that it is also

flat. It suffices to show M ′
R is torsion free. But under the map Spec R → M → A1,

a uniformizer t of A1 at the origin pulls back to a nonzero element of R, which

is a power of the maximal ideal of R, since R is a discrete valuation ring. By

construction of M ′, it has no t-torsion, so M ′
R must be torsion-free over R.

Now M ′
R is a proper and flat Deligne–Mumford stack over Spec R. It remains

only to show that the fibers of M ′
R have the same degree over Spec R. We can

replace R with a flat cover, so we assume R is complete. Let U → M ′
R be an

étale cover with U affine. Then U is 1-dimensional, flat, of finite type over Spec R.

Therefore it is quasifinite over R. Since R is complete, U = U0 ⊔ V where U0

is finite over R and the closed fiber of V is empty. We can replace U by U0 and

then U → M ′
R and U → Spec R are both finite and flat. Note U → M ′

R is finite

because M ′
R is proper over Spec R.

Assume without loss of generality that M ′
R is connected. If d is the degree of

M ′
R over the generic fiber of Spec R then d = rankR OU / rankOM ′

R

OU , which is

the same whether evaluated at the generic or the special point of Spec R. On the

special fiber, this ratio is the multiplicity of the pushforward of CX ′/Y ′ at the point

ξ . On the generic fiber, it is the pure degree of Y ′ over Y , as required. ⊓⊔

Proof of Theorem 1.1. Let E∨ and E ′∨ denote the vector bundle stacks dual to the

obstruction theories E and E ′. As relative obstruction theories, there are closed

embeddings CX/Y ⊂ E∨ and CX ′/Y ′ ⊂ E ′∨. Their compatibility entails a commu-

tative diagram whose lower square is cartesian:

CX ′/Y ′ CX/Y

E ′∨ E∨

X ′ X.

h

q ′ � q

f

Using compatibility of proper pushforward and flat pullback q∗ f∗ = h∗q ′∗, we

have

q∗ f∗[X ′/Y ′]vir = h∗q ′∗[X ′/Y ′]vir = h∗[CX ′/Y ′ ] = d[CX/Y ] = q∗
(
d[X/Y ]vir

)

(2)

But [X/Y ]vir is the unique cycle class on X such that q∗[X/Y ]vir = [CX/Y ], so we

conclude that f∗[X ′/Y ′]vir = [X/Y ]vir, as required. ⊓⊔
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Remark 2.7. In this paper, we verify the hypotheses of Theorem 1.1 by showing g

is proper. We did find applications of Costello’s theorem in the literature where g

was pure but not proper, but we found it easier to replace Y ′ by a smaller stack that

was proper than to verify purity directly.

3. Higher genus stable maps and genus zero orbifold stable maps

Let X be a smooth, projective scheme and work over Spec C. The original appli-

cation of the pushforward formula was to the following fiber square in the proof of

[6, Lemma 8.0.2]:

Mη(X) Mv(X)

Mη Mv.

� (3)

The stack Mη parametrizes finite, étale, d-sheeted covers C ′ → C with fixed

numerical data η. The spaces Mv(X), Mv parameterize stable maps and prestable

curves with fixed data v. The horizontal arrow sends such a cover to its source

curve C ′. The stack Mη(X) is defined to make this square cartesian [6, pp. 575,

591, 593].1 We replace this square in Sect. 3.1 and defer to Costello [6] for details

because we will not need it later.

The next example illustrates that the horizontal arrows in diagram (3) are not

proper, and therefore that Mη(X) is not proper. Since stable maps to [Symd X ] do

form a proper Deligne–Mumford stack, Mη(X) cannot be one of its components,

as claimed in [6, Lemma 2.4.2]. The pushforward formula cannot be applied to

Mη(X) because even its statement requires proper pushforward along the upper

horizontal arrow Mη(X) → Mv(X).

Example 3.1. Let X = P2 and U = A1
λ \ {0}. Consider the family of plane cubics

C ′
λ ⊆ X indexed by λ ∈ U given by the projective closure of

y2 = x(x + λ)(x + 1).

We will describe a modification of Mη that makes the horizontal arrows proper

and revives [6, Lemma 2.4.2]. Assume the graph η has a single vertex and eliminate

the graphs from the notation for simplicity. We leave it to the reader to adapt the

method to more complicated graphs and deduce Costello’s main theorem in its

original form.

The closure of the projection [x : y : z] �→ [x : z] gives a map of curves

C ′
λ → P1 × U over U as in Fig. 1. Mark the four sections of P1 × U given by the

branch locus and endow them with BZ/2-stack structure. This yields a family of

stacky projective lines over U which we call Cλ. The map C ′
λ → Cλ is a proper,

1 In the fiber products on pp. 575 and 591, Ms(η) and Mr(s(η)) were presumably meant

to be Ms(η)(X) and Mr(s(η))(X), respectively.
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Fig. 1. A family of maps to P1 with general fiber a ramified cover and special fiber that is

not

étale, 2-sheeted cover of stacky curves. Degenerating the source to λ = 0, we see

there’s no way to add stack structure to the base P1 to complete this family to an

étale Z/2-torsor.

The map C ′
λ → Cλ is classified by a map Cλ → BS2, which is classified in turn

by a map U → M0,4(BS2). We will instead take the limit in the sense of twisted

stable maps (equivalently, admissible covers), which allows Cλ to degenerate into

two copies of P1 joined at a node.

Write Sd for the symmetric group on d letters and 〈d〉 := {1, 2, . . . , d}. Our

solution is to use twisted stable maps to the stack [Symd X ] = [Xd/Sd ]. A map

C → [Symd X ] may be interpreted equivalently as a torsor Sd

�

P → C with

an equivariant map P → Xd or a d-sheeted finite étale cover C ′ → C given by

C ′ = 〈d〉 ×Sd P with a map C ′ → X [6, Lemma 2.2.1]. We will apply Costello’s

pushforward formula to the cartesian diagram of moduli stacks of twisted curves

after comparing conventions for torsors and twisted stable maps.

The map Sd−1 → Sd including those permutations which fix the last element

induces a group action Sd−1

�

Sd . Consider the d-element set 〈d〉 ≃ Sd−1\Sd as

a set-theoretic quotient with right-action by Sd . We may view BSd−1 ≃ 〈d〉/Sd

similarly. This latter identification does not depend on which (d−1)-element subset

Sd−1 is allowed to act.

Lemma 3.2. If T → BSd classifies an Sd -torsor P → T , then the contracted

product and fiber product are the same:

〈d〉 ×Sd P ≃ T ×BSd
BSd−1.

Applying this lemma to the torsor Xd → [Symd X ], the associated d-sheeted

cover is

X × [Symd−1 X ] ≃ [Xd/Sd−1] ≃ [Symd X ] ×BSd
BSd−1.

This comes with a canonical projection to X .

Remark 3.3. Our description of the equivalence between the categories of Sd -

torsors and d-sheeted covers over T is the opposite of Costello [6, Lemma 2.2.1].

Remark 3.4. The space of twisted stable maps K0,n(V ) to a smooth projective

target V [7] allow marked points to have nontrivial gerbe structure. We instead

use a stack M
tw

0,n(V ) that requires those gerbes to be trivialized by sections at
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each marked point, as in [6, 2]. Our marked points are globally of the form Bμr

for some “ramification order” r ∈ Z�1. We demand similarly that the gerbes of

relative twisted stable maps M
tw

0,n(V/W ) [8, 8.3] for a map V → W be trivialized.

The map M
tw

0,n(V ) → K0,n(V ) is the universal gerbe, of degree
1

r1 · r2 · · · · rn
over the locus where the gerbes are Bμri

.

Remark 3.5. A d-fold cover of orbifold curves C ′ → C over S has discrete invari-

ants including the genera, the stack structures at marked points, and the maps

Bμri
→ BSd from each i th marked point of C encoding its fiber in C ′ → C .

All are locally constant in S. If the fiber over the i th marked point is denoted 〈ℓi 〉,

there is a function τ : 〈ℓi 〉 → Z�1 sending each point to its ramification order. The

function depends in a locally constant fashion on the cover C ′ → C .

Let � be a monodromy profile, specified by n maps Bμri
→ BSd parametrizing

the fiber over each marked point as a d-sheeted cover of Bμri
(specifying, in other

words, the monodromy of the cover around the i th parked point of the base). The

substack M
tw

� ([Symd X ]) ⊆ M
tw

0,n([Symd X ]) of stable maps from covers C ′ → C

with monodromy profile � is open and closed. The fiber over the i th marked point

consists of ℓi ramified points. Choosing an ordering of each fiber among Sℓi
choices

makes the source C ′ into a ℓ =
∑

ℓi -marked curve. There is an open and closed

substack inside M
tw

� ([Symd X ]) that also fixes τ . If τ is increasing for example,

ri > r j implies i > j and ramified points come later in the ordering.

The monodromy profile � is a component of the cyclotomic intertia stack

Iμ(BSd) [9, Definition 3.2.1], recipient of evaluation maps

M
tw

0,n([Symd X ]) → (Iμ([Symd X ]))n → (Iμ(BSd))n .

3.1. Applying the pushforward formula to the new diagram

Fix nonnegative integers g, n, d, ℓ =
∑

ℓi with n � ℓ � dn and monodromy

profile � as in Remark 3.5. We are ready to reinterpret (3):

M̃�([Symd X ]) Mg,ℓ(X)

M̃�(BSd) Mg,ℓ.

q

π ′ �
π

p

(4)

The stacks Mg,ℓ(X),Mg,ℓ parametrize ordinary stable maps to X and prestable

curves with ℓ marked points, while the map π forgets all but the source curve of the

stable map. The stack M̃�(BSd) carries more data than prestable maps M�(BSd).

We now introduce p and M̃�(BSd) in three steps.

Step 1: Relative maps

Let u : D → Mg,ℓ be the universal curve and M
tw

0,n(u) = M
tw

0,n([Symd D]/Mg,ℓ)

be the stack of relative twisted stable maps with trivialized marked gerbes, as
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described in Remark 3.4. If S → Mg,ℓ classifies a curve D → S, points of this

stack are given by:

M
tw

0,n(u)

S Mg,ℓ
D

:=

⎧
⎪⎪⎨
⎪⎪⎩

C [Symd D]

S

f̂

∣∣∣∣∣∣∣∣

C is a connected, nodal

orbifold curve with trivialized

marked gerbes, and

f̂ is representable and stable

⎫
⎪⎪⎬
⎪⎪⎭

.

Maps C → [Symd D] are equivalent to d-sheeted finite étale covers C ′ → C of

twisted curves with a representable map C ′ → D ×[Symd−1 D]. Stability requires

that the sheaf of automorphisms of the trio (C ← C ′ → D) that restrict to the

identity on D be finite at geometric points.

Step 2: Marked points

Endow C ′ with the marked points pulled back from those of C . These preimages

are unordered, so C ′ is not yet a marked curve.

If C ′ → C were an untwisted finite étale cover, order the d preimages of each

marked point of C . Then ℓi = d, ℓ = dn, and ordering amounts to a (Sd)n-torsor

on moduli spaces in the untwisted case. Globally fixing a lexicographic ordering

of 〈n〉 × 〈d〉 then equates a 〈n〉 × 〈d〉-marked curve with a dn-marked curve.

For twisted/ramified covers C ′ → C , the sizes ℓi of the fibers over the marked

points vary according to �. Ordering them nevertheless entails a
∏

Sℓi
-torsor

M̃0,n(u) over M
tw

0,n(u), as in Remark 3.5.

Now M̃0,n(u) parametrizes trios of curves (C ← C ′ → D) where C ′ is a

marked curve, but C ′ → D needn’t be a map of marked curves. This condition cuts

out a closed substack M̃ ′
0,n(u) ⊆ M̃0,n(u) where C ′ → D maps marked points to

marked points in order.

Step 3: Partial stabilization

Think of the map f : C ′ → D as a prestable twisted map to D and take its

stabilization f : C
′
→ D. If f identifies D with the coarse moduli space of C

′

then f is called a partial stabilization. Define

M̃0,n(BSd) ⊆ M̃ ′
0,n(u)

to be the substack where f is a partial stabilization; in particular, C ′ is connected.

This substack is open and closed:

Lemma 3.6. Let f : C ′ → D be a morphism of untwisted prestable curves over a

base S. The locus in S where f is a partial stabilization is both open and closed.

Proof. The stabilization f : C
′
→ D is an isomorphism over an open locus [10,

Tag 05XD]. This locus is also stable under specialization by the uniqueness of

stable limits of stable maps. ⊓⊔

The map p in diagram (4) is the composite of all the proper maps above:

p : M̃0,n(BSd) ⊆ M̃ ′
0,n(u) ⊆ M̃0,n(u) → M

tw

0,n(u) → Mg,ℓ.

Corollary 3.7. The map p : M̃0,n(BSd) → Mg,ℓ is proper, thus pure.
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Proof. It was constructed as a closed substack of a finite cover of the space of stable

maps to a target that is proper over Mg,ℓ. Since stable maps to a proper target form

a proper space, this implies that p is proper. ⊓⊔

An example due to Costello [6, Lemma 6.0.1] of (g, n, d, �) where p is gener-

ically finite is worked out in Sect. 3.2.

The stack of twisted stable maps M0,n([Symd X ]) parametrizes (C ← C ′ →

X) as in Step 1 above. The curve C ′ is connected on an open and closed sub-

stack. There is a similar
∏

Sℓi
-torsor M̃0,n([Symd X ]) over this substack of

M0,n([Symd X ]) of orderings of the preimages in C ′ of the marked points of C .

This is the remaining piece of diagram (4). The map q sends (C ← C ′ → X) to

the stabilization C
′
→ X , and π ′ sends it to (C ← C ′ → C

′
).

Remark 3.8. Stabilization s : C → C of prestable maps C → X is functorial in

that X -automorphisms ϕ : C ≃ C all lie over unique X -automorphisms ϕ : C ≃ C .

Automorphisms of C → X lying over an automorphism of C form a subsheaf:

i : AutX (C → C) ⊆ AutX (C)

C C

C C

∼

∼

�→ (C ≃ C).

To argue i is an isomorphism, assume the base is a geometric point [10, 03PU].

But ϕ must restrict to an automorphism on the union of unstable components over

X , so C
ϕ
≃ C → C is also the stabilization of C → X . The map ϕ comes from

canonicity of stabilization.

Lemma 3.9. The square (4) is cartesian.

Proof. If M̃0,n([Symd X ]) and M̃0,n(BSd) and Mg,ℓ(X) are all replaced by their

unstable variants, Diagram (4) is immediately commutative and cartesian. Given

C ← C ′ → C
′
→ X

with C
′
→ X stable but (C ← C ′ → C

′
) not necessarily, we must show (C ←

C ′ → X) is stable if and only if (C ← C ′ → C
′
) is. This is a consequence of

Remark 3.8.

⊓⊔

Diagram (4) is cartesian and p is proper. It remains only to compare the perfect

obstruction theories of π and π ′.

Lemma 3.10. The map

M̃0,n(BSd) → M0,n(BSd) ×(BSd )n ∗

forgetting the partial stabilization is étale.

Proof. Apply the formal criterion as in [11, Lemma 7] or [12, Lemma B (ii) for

ϒ]. ⊓⊔

Corollary 3.11. The perfect relative obstruction theories on π ′ induced from the

natural ones on π and from M0,n([Symd X ]) → M0,n(BSd) coincide.
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Fig. 2. A cover in �, g = 3, d = 4. Marked points are colored black if forgotten and white

if remembered under the map to Mg,ℓ−A

3.2. Costello’s example computation

We now compute the pure degree e of p : M̃0,n(BSd) → Mg,ℓ in the setting of

Costello [6, Lemma 6.0.1] to check consistency.

Remark 3.5 lets one fix discrete data (g, d, n, ℓi , �) illustrated in Fig. 2. Let

d = g + 1 and k be an integer to be specified later. Require n � ℓ � dn, as

ℓ =
∑

ℓi counts marked points of the source C ′ and n of the target C .

Consider decompositions 〈n〉 = 〈k〉⊔ J ⊔{∞} and 〈ℓ〉 = 〈k · g〉⊔ J ×〈g + 1〉⊔ I

and a function d : I → Z�1, with m(∞) := lcm(d(i)). Define

� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(C ′) = g, g(C) = 0,

〈ℓ〉 → 〈n〉 is 〈kg〉 = 〈k〉 × 〈g〉
pr1
�→ 〈k〉, J × 〈g + 1〉

pr1
�→ J, I �→ ∞,

∀ j ∈ J, r j = 1,∀i ∈ 〈k〉 ri = 2, r∞ = m(∞)

⊔
J Bμ1 = ∗ → BSd ,

⊔
i∈〈k〉 Bμ2

ψ
→ BSd

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here ψ corresponds to the action μ2

�

〈d〉 with one 2-cycle and the other

points fixed. We decline to specify the ramification profile Bμm(∞) → BSd over

the point ∞ ∈ C . These discrete data define a possibly disconnected substack

M̃�([Symd X ]) ⊆ M̃0,n([Symd X ]).

Choose A ⊆ 〈k · g〉 ⊔ J × 〈g + 1〉 ⊆ 〈ℓ〉 such that 〈k · g〉 ⊆ A and J ×

〈g + 1〉 \ (A ∩ J × 〈g + 1〉) → J is a bijection. Write ℓ − A abusively for the set

〈ℓ〉\ A = I ⊔ J . Define a map π : M̃�([Symd X ]) → Mg,ℓ−A(X) as the composite

of p from diagram (4) and the map forgetting the marked points A and stabilizing.

Define a stack M̃�(BSd) as above to keep track of triples (C ← C ′ → D) with

C ′ → D a partial stabilization after forgetting the points labelled by A, C ′ → C a

d-sheeted cover, and an ordering on the preimages of C’s marked points. This fits
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in a cartesian square

M̃�([Symd X ]) Mg,ℓ−A(X)

M̃�(BSd) Mg,ℓ−A.

�

p′

One shows this square is cartesian as in Lemma 3.9 and that p′ is proper as in

Corollary 3.7. We compute its pure degree after [6, Lemma 6.0.1].

Theorem 3.12. With the above discrete data � and k = #I + 3g − 1,

dim M̃�(BSd) = dim Mg,ℓ−A and the map p′ between them is of pure degree

e =
k!(g!)#J (g!)k

2k · m(∞)
.

Proof. The map from M̃�(BSd) that forgets D is étale, so we can ignore D to

calculate its dimension. Our moduli spaces are the closure of strata considered by

Costello, so we again have

dim M̃�(BSd) = k + #J − 2, dim Mg,ℓ−A = 3g − 3 + #I + #J.

These are equal by definition of k. Because the dimensions are equal, the preimage

of the generic point must either be the generic point of the source or empty. The

generic point of the source has smooth C ′, C by design, hence C ′ ∼
→ D is an

isomorphism. We’ve reduced to the case considered by Costello.

Fix general points q1, . . . , qs ∈ D and write B =
∑

d(i)[qi ] for the induced

divisor of degree g + 1.

Claim: There are no special effective subdivisors 0 � B ′ < B of degree g.

We outsource the proof to Lemma 3.13. We conclude as in Costello’s original

argument. Any effective B ′ < B of degree g is not special, so h1(O(B ′)) =

h1(O(B)) = 0. Riemann–Roch gives h0(O(B ′)) = 1 and h0(O(B)) = 2. This

means there is at most one map f : D → P1 with f ∗∞ � B up to isomorphism

and no such maps with f ∗∞ � B ′; i.e., f ∗∞ = B.

The dimension of the moduli space of covers of P1 is determined by the number

of marked and branch points [13, 1.G]. A more-ramified cover has fewer branch

points, so general maps f : D → P1 as above are simply ramified at distinct points

away from B. We do not control the ramification profile over ∞ ∈ C .

It remains to promote the source and target of f : D → P1 to 〈ℓ〉- and 〈n〉-

marked curves. Endowing D, P1 with stack structure to make f étale, we must then

trivialize the μk
2×μm(∞) marked gerbes of P1 as per our conventions in Remark 3.4.

On moduli, this is a gerbe of pure degree
1

2km(∞)
. Ordering the k images of the

simple ramification points, each of their fibers, and the fibers of the marked points

labelled by J constitutes an Sk ⋉ (Sg)
k × (Sg)

#J -torsor (the black points in Fig. 2).

This gives the multiplicity e.

⊓⊔
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Noam Elkies’ response to [3] led to this lemma.

Lemma 3.13. Fix multiplicities d : I → Z�1 with
∑

d(i) = g+1. General points

q1, . . . , qs ∈ D on a general smooth curve engender a divisor B =
∑

d(i)[qi ].

There are no special effective subdivisors 0 � B ′ < B of degree g.

Proof. Fix numbers b1, . . . , bs ∈ N adding up to
∑

bi = g to obtain a map

Ds → Divg; (p1, . . . , ps) �→
∑

bi [pi ].

The locus of special divisors is closed in Divg , as can be seen by applying upper

semicontinuity theorem [14, Theorem III.12.8] to the universal sheaf O(B) for the

fibers of the projection π : D × Divg → Divg . We argue the pullback P{bi } ⊆ Ds

of the locus in Divg of special divisors is a proper closed subscheme. If P{bi }

contained the diagonal �D , a general point p ∈ D would be a Weierstrass point.

There are finitely many Weierstrass points on a curve over C, so P{bi } is a proper

closed subscheme.

For any 1 � j � s, we obtain a sequence

bi :=

⎧
⎪⎨
⎪⎩

d(i) if i �= j

d(i) − 1 if i = j.

.

Our general points q1, . . . , qs ∈ D are not in any P{bi }, so our divisor B :=∑
d(i)[qi ] contains no special effective divisors of degree g. ⊓⊔

Remark 3.14. Taking C alone to be general in Costello’s original proof [6, Lemma

6.0.1] does not suffice – one must assume I = SuppD ⊆ C general as well to

guarantee dim Ŵ(O(D′)) = 1 for any divisor 0 � D′ < D. Otherwise, take a

generic genus two curve with g1
2 mapping f : C → P1 and let D = 2p + q with

p a Weierstrass point. If D′ = 2p, dim Ŵ(O(D′)) = 2.

Remark 3.15. The pure degree e is different from that computed by Costello:

e′ =
k!(g!)#J ((g − 1)!)k

2km(∞)
.

Consider the substack M̃′
� ⊆ M̃�(BSd) ordering points of equal ramification

separately by fixing τ as in Remark 3.5. The restriction of p′ to M̃′
� is of pure

degree e′ because the simple ramification points must have the greatest label in

their fiber for each of the k-marked points. Ordering the other unramified points is

a Sg−1-torsor. The other terms count degree of the gerbes and ordering of the other

points identically to Theorem 3.12.

The main computation of virtual fundamental classes in [6, Lemma 8.0.2] thus

applies to our above modifications:

q∗[M̃�([Symd X ])]vir = e · [Mg,ℓ−A(X)]vir .
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Remark 3.16. We employed the technology of Abramovich and Vistoli [8] for con-

venience and brevity, but the same results may be achieved with Costello’s original

technology of weighted graphs. The data of a partial stabilization can be encoded

on the level of graphs, and the stabilization of a map C → X can be reconstructed

from the weighting of components by their curve classes in X .

4. Applications of the pushforward formula

This section addresses myriad articles which use Costello’s Formula. The papers

[15–18] reference but don’t use Costello’s Formula. The paper [19] uses other

results from Costello’s paper and not his formula, while [20] uses it only for moti-

vation.

The use of Costello’s Formula in [12] will be addressed alongside other sim-

plifications in forthcoming work by Sam Molcho, Rahul Pandharipande, and the

authors. Similar techniques also apply to Cavalieri et al. [21] and Marcus and Wise

[22], although both are subsumed by the suitably proper diagram in [23, 5.5].

4.1. An algebraic proof of the hyperplane property of the genus-one

GW-invariants of quintics

The application of a “cosection-localized version” of Costello’s Formula proposed

in Eq. (1.4) [24] is spelled out at the end of Sect. 2. There is a cartesian diagram

D(̃σ ) Ỹ X̃ D̃ M̃w

D(σ ) Y X D Mw,

�

f̃

p� q � �

f

where the map M̃w → Mw is a blowup and the obstruction theories of Y, X

relative to D pull back to those of Ỹ , X̃ relative to D̃. Properness and birationality

of the blowup lets one apply Costello’s pushforward formula to show q∗[X̃ ]vir =

[X ]vir .

One of two proofs they offer of Proposition 2.3 claims that f̃∗[Ỹ ]vir
loc = [X̃ ]vir

and f∗[Y ]vir
loc = [X ]vir . From this claim and the valid application of Costello’s

pushforward formula, we see the Proposition is correct:

deg[Ỹ ]vir
loc = deg[Y ]vir

loc .

4.2. Virtual pull-backs

The final result [1, Proposition 5.29] in the latest version assumes the morphism is

projective.
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4.3. Log Gromov–Witten theory with expansions

The paper only uses Costello’s Formula to address pushforwards along logarith-

mic modifications that are pulled back from the target of the perfect obstruction

theory [25, Proposition 3.6.1]. The definition of logarithmic modification includes

a properness assumption [25, 3.2].

4.4. The cohomological crepant resolution conjecture for the Hilbert-Chow

morphisms

This paper uses Costello’s Formula for a cartesian square

M(V̂1 ×T V̂2) M(V̂1) ×T M(V̂2)

T × D(d1, d2) T × M0,3(d1) × M0,3(d2)

�

in the proof of [26, Lemma 5.5]. Immediately before, Li and Qin [26, Lemma

5.4] shows that the lower horizontal arrow without T , D(d1, d2) → M0,3(d1) ×

M0,3(d2), is proper and birational.

4.5. Gromov-Witten theory of étale gerbes, I: root gerbes

Costello’s result is used in [27, Theorem 4.3]. The morphism Y
g
0,n,β → M0,n,β is

an example of the Matsuki–Olsson construction, which is finite [28, Theorem 4.1].

4.6. The degeneration formula for logarithmic expanded degenerations

The map T
u,spl
0 → Tu

0 is observed to be a normalization in [29, 7.2], subject to

Remark A.7. This proper map is the base of a diagram

KQ Q Qext T
u,spl
0

K Tetw
0 Ttw Tu

0

� � �

to which Chen applies Costello’s Formula.

4.7. Virtual classes of Artin stacks

The result [30, Theorem 5.2] includes a properness assumption.
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4.8. Virtual normalization and virtual fundamental classes

Theorem 1 applies Costello’s pushforward formula to a pullback along the map

L̂og ⊆ Log1 → Log.

This pullback entails saturation of log structures, which is finite [31, Proposition

III.2.1.5 (2)].

4.9. Orbifold techniques in degeneration formulas

Costello’s formula is used several times in [32].

Theorem 4.7. the maps Tr′

0 → Tr
0, T r′

→ T r along the bottom of the two squares

written as one in Proposition 4.4.2 (2) are proper by Proposition 2.12 [31].

Lemma 4.16. the proof applies Costello’s formula to the diagram

K�

∏
KŴν

T ′ (T )h .

�

We need to argue T ′ → (T tw)h is proper. We don’t know how to define the

contraction maps unless the rooting order is the same at each node, but this suffices.

Recall the description of T given in [23, 5.2]. The strict-étale topology on fs

log schemes supports a sheaf of groups:

G
trop
m (S) := Ŵ(S, M

gp

S ).

An (oriented) tropical line (bundle) is a torsor in the strict-étale topology for G
trop
m .

A map S → T is a tropical line P together with a subsheaf of sets Q ⊆ P for

which there locally exists a nonempty chain {γ1 � · · · � γn} ⊆ Ŵ(S, M
gp

S ) such

that Q is the subsheaf of sections of P locally comparable to all the γi .

Lemma 4.1. The map T ′ → (T tw)h is a log blowup, hence proper.

Proof. For any map S → (T )h , take the fs pullback

R S

T ′ (T )h .

�ℓ

By strict-étale localization, assume each map S → T corresponds to a G
trop
m -

torsor P which is subdivided by sections γ
j

1 � · · · � γ
j

n j
. Use γ

j
1 to trivialize this

torsor:

P ≃ G
trop
m p �→ p − γ

j
1 .
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Write

s
j

i = γ
j

i − γ
j

1 ∈ M S

for the image of γ
j

i under this isomorphism.

In the present language, the map T ′ → (T )h corresponds to a subdivided

tropical line γ ′
1 � · · · � γ ′

n which induces all the others by forgetting some

elements γ ′
i . The first γ ′

1 is never forgotten, since it corresponds to the unexpanded

target X in the expansion of (X, D). Thus the element γ ′
1 maps to 0 under our

trivializations above. Write s′
i := γ ′

i − γ ′
1 similarly.

Take the fs product B of all log blowups of S at ideals given by pairs (s
j
i , s

j ′

i ′
) for

1 � j � h. Each of these blowups may be fs pulled back from the ideal of universal

elements of MA 2 on A 2. A map T → S factors through B (and uniquely) if and

only if the set (s
j
i |T ) ⊆ MT is totally ordered.

Since the γ
j

i ’s all arise by forgetting parts of the subdivision γ ′
1 � · · · � γ ′

n ,

they are totally ordered on R. This means R → S factors through B. Observe also

that the fs product R ×S B → B is an isomorphism – if the s
j
i ’s are totally ordered,

their sums with γ1 yield a unique subdivision. Thus R → B is an isomorphism. ⊓⊔

Lemma 5.11. Costello’s formula is applied to the cartesian diagram

KQ K

Q Ttw
0

T
u,spl
0 Tu

0

�

�

beginning Sect. 5.4 [31]. They observe that the bottom horizontal arrow is a nor-

malization of locally finite type stacks, hence subject to Remark A.7.

Lemma 5.12. The bottom map in the diagram

K
spl
r KQr

T
r,spl
0 Qr

�

is the reduced induced closed substack, hence a proper map.

Lemma 5.15. Costello’s formula is applied to a gerbe banded by μr , which is

proper.
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4.10. Birational invariance in log Gromov–Witten theory

The paper [33] uses Costello’s Pushforward Formula on the cartesian square (1) in

[33, 1.6]:

M(Y ) M(X)

M′(Y → X ) M(X ).

�

M(h)

Lemma 4.2. The map M(h) is proper.

Proof. The map sends a square

C Y

C X

to the bottom horizontal arrow. Write C for the universal curve on M(X ) and

P := C ×X Y

for the pullback. Then M(h) factors through the inclusion of components of

M(P/M(X )) on which the universal map C → P → C is a partial stabiliza-

tion and Lemma 3.6 concludes. ⊓⊔

4.11. Relative and Orbifold Gromov–Witten Invariants

In [34, Diagram 2.3.1], we see another application of Costello’s pushforward for-

mula. This square is a special case of a more general class of diagrams investigated

in Sect. 7.3 [33]:

M
tr

Ŵ (X rel/T ) MŴ(X )

Mrel
0,n(A , BGm)′ M0,n(A )′.

φX

�

φA

The stack M0,n(A )′ is an open substack of M0,n(A ).

Lemma 4.3. The map

M
rel
0,n(A , BGm)′ → M0,n(A )′

is proper.
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Proof. This map is pulled back from the map

M
rel
0,n(A , BGm)∗ → M0,n(A ).

This map sends a square

C Ãr

C Ar × S

to the lower horizontal arrow. We again employ Lemma 3.6 by describing this map

as the locus among relative moduli of stable curves where a particular morphism

is a partial stabilization. ⊓⊔

The same techniques handle the square [34, 7.1.2]:

M
rel

g=0(Xr , Dr ) M
orb

g=0(Xr )

Mrel
g=0(Ar ,Dr ) Morb

g=0(Ar ).

�

We still must address the map φA in

M
rel

(Xr , Dr ) M
rel

(X, D)

Mrel
0,n(Ar ,Dr ) Mrel

0,n(A ,D).

φX

�

φA

Remark 4.4. No stabilization occurs in φX .

Lemma 4.5. The map

φA : M
rel
0,n(Ar ,Dr ) → M

rel
0,n(A ,D)

is of pure degree 1.

Proof. Write u : D ×
Ã

Ãr → M(A ,D) for the pullback of the universal curve

along the map between universal expansions. The space Mrel(Ar ,Dr ) lies inside

the spaces of relative stable map M(u) as the locus with S-points where C → D|S

is an isomorphism. Denote the closure of this locus by M. Then M → M(A ,D) is

proper and birational, so restriction to the dense open M(Ar ,Dr ) is pure degree 1.

⊓⊔
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Appendix A. Degree of a Generically Finite Morphism

The stacks project offers two definitions of generic finiteness. We assume our stacks

are locally noetherian and elaborate on definition (1) of [10, 073A].

Definition A.1. Let f : X → Y be locally of finite type and η ∈ Y be a maximal

point. We say f is generically finite at η if the preimage X ×Y η is a finite, nonempty

set. Equivalently, there’s an affine open V ⊆ Y and finitely many U1, . . . , Un such

that Ui → V is finite and η ∈ V and X ×Y η ⊆
⋃

n Ui [10, 02NW].

Given that f : X → Y is generically finite at some maximal η, we say it is of

degree d at η if [10, 02NY]

d =
∑

ξ∈ f −1(η)

dimR(η) OX,ξ .

A morphism f : X → Y locally of finite type is said to be generically finite or of

degree d if it is so at every maximal point η ∈ Y .

A representable morphism X → Y locally of finite type between algebraic stacks

is said to be generically finite or of degree d (at a specific maximal point η ∈ Y or

for all) if the same is true for pulling back along some smooth cover V → Y by a

scheme (with ξ ∈ V mapping to η).

Remark A.2. Generically finite and degree d both pull back along flat, quasicom-

pact morphisms Y ′ → Y and may be checked after some (equivalently any) flat,

quasicompact cover. This is because generalizations lift along flat, quasicompact

morphisms, ensuring that maximal points map to each maximal point.

Lemma A.3. Let X → Spec k be a finite morphism from a DM stack to a field.

Then X admits a finite étale cover from a scheme.
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Proof. Pick a finite type étale cover P → X . Then P → X is locally quasifinite

[10, 03WS] and hence quasifinite [10, 01TD]. The composite P → Spec k is

quasifinite, hence finite [10, 02NH]. The map P → X is then finite. ⊓⊔

Definition A.4. A finite DM-type morphism X → Spec k is of pure degree d if,

for some (equiv. any) finite étale cover P → X by a scheme,

deg(P/ Spec k)

deg(P/X)
= d.

A DM-type morphism X → Y of locally noetherian artin stacks is generically

finite if, for all maximal points η → Y , the pullback

X ×Y η → η

is finite.

Remark A.5. The definition of degree d for generically finite morphisms is deter-

mined by its properties:

• A composite X
f

→ Y
g

→ Z for which deg f , deg g, deg g ◦ f are well defined

satisfies

deg(g ◦ f ) = deg f · deg g.

• Given a pullback square

X ′ X

Y ′ Y

f ′� f

with Y ′ → Y flat and quasicompact, f is generically finite (of degree d) if and

only if f ′ is.

• Agreement with the notion for representable morphisms in Definition A.1.

We conclude with two folklore observations that we use in the body of the text.

Remark A.6. (“Stability is an open condition”) Suppose f : X → Y is locally

finite type and X, Y are algebraic stacks. There is a substack U ⊆ X representing

morphisms T → X such that f |T is DM type, and this substack is open. A map

is DM type when the diagonal is unramified, which is an open condition by The

Stacks Project Authors [10, 0475].

This shows that the locus where a family of prestable maps is stable is open in the

base.

Remark A.7. If X is an algebraic stack locally of finite type, then its normalization

Xν → X is finite. This is because normalizations are integral [10, 035Q] and the

map is locally of finite type [10, 01WJ].
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