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Abstract. Costello’s pushforward formula relates virtual fundamental classes of virtually
birational algebraic stacks. Its original formulation omits a necessary hypothesis, whose
addition is not sufficient to correct the proof. We supply a substitute for Costello’s notion
of pure degree and prove the pushforward formula with this definition. We also show the
hypotheses of the corrected pushforward formula are satisfied in a variety of its applications.
Some adjustments to the original proofs are required in several cases, including the original
one.

1. Introduction

If f: X’ — X is a proper, birational morphism of varieties, then the fundamental
class of X’ pushes forward to the fundamental class of X. Birationality can be
relaxed to generic finiteness of degree d, in which case fi[X'] = d[X]. Costello’s
pushforward formula asserts the same holds for virtual fundamental classes in a
situation that might be called “virtual birationality”.

Theorem 1.1. (Costello’s pushforward formula) Suppose there is a cartesian dia-
gram

L,

X’ X
T )
Y’ — Y

such that

(1) X" and X are Deligne—-Mumford stacks;
(2) Y' and Y are Artin stacks of the same pure dimension;
(3) g is a morphism of Deligne—Mumford type and pure degree d;

4) f is proper;
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(5) p has a perfect relative obstruction theory E inducing a perfect relative obstruc-
tion theory E’ for p’ by pullback.

Then f[X' /YT = d[ X/ Y]

At issue is the definition of pure degree. Costello defines a morphism g : Y/ —
Y of Deligne-Mumford type to be of pure degree d if both Y’ and Y have the same
pure dimension and all of the generic fibers of Y’ over Y are finite of degree d.
With this definition of pure degree, Theorem 1.1 is false: see Examples 2.1 and 2.2
. However, Manolache shows that the formula is true if either g is projective or g is
proper and Y is a Deligne-Mumford stack [1, Proposition 5.29 and Remark 5.30].

In Sect. 2 we prove that Costello’s original statement is valid, provided pure
degree is defined as in Definition 2.3. Our definition includes all diagrams (1) in
which g is proper, which is easier to verify in practice than projectivity.

We found almost twenty papers that used Costello’s pushforward formula,
including several by the second author. The bulk of the present paper is devoted to
checking that the relevant maps are indeed proper to ensure the formula was used
correctly. This list is not meant to be exhaustive, but representative of techniques
used to remedy the situation.

2. Pure degree and the pushforward formula

The following two examples of squares (1) show some properness assumption is
necessary for the pushforward formula to hold.

Example 2.1. Let Y be the affine line, Y’ the affine line with a doubled origin,
and Y’ — Y the projection that is the identity on each copy. Let X be the origin
of Y. The morphisms p and p’ are local complete intersection embeddings, so
their canonical obstruction theories induce virtual fundamental classes that are the
ordinary fundamental classes. The map g has pure degree 1 but f has degree 2.

Example 2.2. Let Y be the affine line and X its origin. Let Y’ be the disjoint union of
Aland A' —{0}. Then Y’ — Y has pure degree 2 but X’ — X is an isomorphism,
hence has pure degree 1.

On the other hand, it would be too much to insist that g actually be proper. For
example, Y/ might have a component that is not proper over Y but is sufficiently far
away from the image of p so as not to affect [X/Y]"''. We propose the following
definition of pure degree:

Definition 2.3. We say that a Deligne-Mumford type morphism of locally noethe-
rian Artin stacks g : Y/ — Y is pure along p : X — Y if, whenever S is the
spectrum of a discrete valuation ring with closed point s, and f : § — Y is a
morphism such that f (s) lies in the image of X, the base change Y§ — S is proper.

We elaborate on the phrase “of degree d over” in Appendix A.
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Remark 2.4. Definition 2.3 is related, but not equivalent, to the definition of Ray-
naud and Gruson [5, Définition (3.3)]. The map Y’ — Y in Example 2.2 fails to
be pure by either definition, while Example 2.2 is pure according to Raynaud and
Gruson [5, Définition (3.3)] but not according to Definition 2.3.

Remark 2.5. We record some consequences of Definition 2.3.

e If a map Y’ — Y is proper, it is pure along any morphism X — Y.

oIf X > Xis surjective and Y’ — Y is pure along X > X — Y, thenit’s also
pure along X — Y.

o If Y/ — Y is of pure degree along a map X — Y, then it is of pure degree
alonganymapZ — X — Y.

o Suppose in diagram (1) that p, p’ are open immersions. If f is proper, then
g : Y — Y is of pure degree along p for topological reasons.

o Purity is stable under base change in Y.

e Purity of g in diagram (1) implies properness of f, so the assumption that f be
proper is redundant.

Proposition 2.6. With notation as in the statement of Theorem 1.1, the map of
relative intrinsic normal cones Cxjyr — Cxy is of degree d over each generic

point of Cxyy.

Proof. This assertion is local in Cx,y, so itis also local in X and Y. Replace both
by smooth covers to assume X, Y are affine schemes.

The morphism p : X — Y can be factored as a closed embedding followed by
a smooth morphism: X — Y — Y. Then Cx /v is the stack quotient of Cy /7 by
Ty,y x§ X; likewise Cx/y is the quotient of Cy, , by Ty X7 X' (where Y is
the base change of YoV ). The generic fibers of Cx//y’ over Cx,y have the same
degrees as the generic fibers of C, 3, over Cy 7. We may therefore replace ¥ by
Y and assume that p : X — Y is aclosed embedding.

Let M’ — M be the morphism of deformations to the normal cone induced
by the commutative diagram (1). Recall that M is the complement of the strict
transform of ¥ x {0} in the blowup of ¥ x A! along X x {0}. The normal cone
C = Cxyy is the fiber of M over 0 € Al.

Let & be a generic point of C. Let R be the integral closure of Oy ¢. Then
R is a 1-dimensional, integrally closed, noetherian local ring, hence is a discrete
valuation ring. By construction, the composition of Spec R — M — Y sends the
closed point of Spec R to X C Y and its open point to the generic point of Y as in
Definition 2.3.

By assumption, this implies the base change Y := Y’ xy Spec R — Spec R
is proper. Then M’ x 3y Spec R — Spec R is also proper: the valuative criterion
requires a unique lift for a commutative diagram

Spec K’ M Y’

/7
—
—~
_
—
—~
—
~

Spec R" —— SpecR ——= M ——=Y
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after a finite extension R’ of R, but we get the lift Spec R’ — Y’ by the properness
of Y — Spec R. This induces a map Spec R’ — Y’ x Al that factors through
the blowup M of ¥’ x Al along X’ x {0}. This map lies in M’ € M because
the generic point of Spec R’ maps a point of ¥’ x A! over the generic point of A!.
In particular, the closed point cannot lie in the strict transform of ¥ x {0}, so the
image of Spec R’ — M is contained in M.

Let us write My = Spec R xy M’ (note that the fiber product is over M, not
over Y). We have just seen that M}, — Spec R is proper. We argue that it is also
flat. It suffices to show M}, is torsion free. But under the map Spec R — M — Al
a uniformizer ¢ of A! at the origin pulls back to a nonzero element of R, which
is a power of the maximal ideal of R, since R is a discrete valuation ring. By
construction of M’, it has no ¢-torsion, so M ;? must be torsion-free over R.

Now M, is a proper and flat Deligne-Mumford stack over Spec R. It remains
only to show that the fibers of M} have the same degree over Spec R. We can
replace R with a flat cover, so we assume R is complete. Let U — M} be an
étale cover with U affine. Then U is 1-dimensional, flat, of finite type over Spec R.
Therefore it is quasifinite over R. Since R is complete, U = Uy U V where Uy
is finite over R and the closed fiber of V is empty. We can replace U by Uy and
then U — M} and U — Spec R are both finite and flat. Note U — M}, is finite
because M, is proper over Spec R.

Assume without loss of generality that M}, is connected. If d is the degree of
M ;e over the generic fiber of Spec R then d = rankg Oy / rankoM}{ Oy, which is
the same whether evaluated at the generic or the special point of Spec R. On the
special fiber, this ratio is the multiplicity of the pushforward of Cx/,y- at the point
&. On the generic fiber, it is the pure degree of Y’ over Y, as required. O

Proof of Theorem 1.1. Let EY and E’" denote the vector bundle stacks dual to the
obstruction theories E and E’. As relative obstruction theories, there are closed
embeddings Cx;y C E¥ and Cx//y» C E'". Their compatibility entails a commu-
tative diagram whose lower square is cartesian:

Cxjyy — Cxyy

E/V h Ev
r
q’l lq
X’ —f> X.
Using compatibility of proper pushforward and flat pullback ¢* fi, = hyq'™*, we
have

q* X )Y T = hag (X' /YT = hilCx vl = d[Cxyy] = ¢*(d[X/ Y1)
2)

But [X/ Y]V is the unique cycle class on X such that g X/ YV = [Cx/y], sowe
conclude that f, [ X'/ YY" = [X/Y]"", as required. |
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Remark 2.7. In this paper, we verify the hypotheses of Theorem 1.1 by showing g
is proper. We did find applications of Costello’s theorem in the literature where g
was pure but not proper, but we found it easier to replace Y’ by a smaller stack that
was proper than to verify purity directly.

3. Higher genus stable maps and genus zero orbifold stable maps

Let X be a smooth, projective scheme and work over Spec C. The original appli-
cation of the pushforward formula was to the following fiber square in the proof of
[6, Lemma 8.0.2]:

3)

The stack 9, parametrizes finite, étale, d-sheeted covers C' — C with fixed
numerical data 1. The spaces M, (X), 9, parameterize stable maps and prestable
curves with fixed data v. The horizontal arrow sends such a cover to its source
curve C’. The stack MW(X ) is defined to make this square cartesian [6, pp. 575,
591, 593]." We replace this square in Sect. 3.1 and defer to Costello [6] for details
because we will not need it later.

The next example illustrates that the horizontal arrows in diagram (3) are not
proper, and therefore that M,, (X) is not proper. Since stable maps to [Sym? X] do
form a proper Deligne-Mumford stack, Mn(X ) cannot be one of its components,
as claimed in [6, Lemma 2.4.2]. The pushforward formula cannot be applied to
MU(X ) because even its statement requires proper pushforward along the upper
horizontal arrow M, (X) — M, (X).

Example 3.1. Let X =P? and U = Ai \ {0}. Consider the family of plane cubics
C; € X indexed by A € U given by the projective closure of

v =x(x 4+ M)+ 1).

We will describe a modification of 90, that makes the horizontal arrows proper
and revives [6, Lemma 2.4.2]. Assume the graph n has a single vertex and eliminate
the graphs from the notation for simplicity. We leave it to the reader to adapt the
method to more complicated graphs and deduce Costello’s main theorem in its
original form.

The closure of the projection [x : y : z] + [x : z] gives a map of curves
C, — P! x U over U as in Fig. 1. Mark the four sections of P! x U given by the
branch locus and endow them with BZ/2-stack structure. This yields a family of
stacky projective lines over U which we call C;.. The map C; — C, is a proper,

! In the fiber products on pp. 575 and 591, Ms(n) and M, (s(i)) Were presumably meant
to be ﬂs(,,) (X) and ﬂr(s(,m (X), respectively.
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Fig. 1. A family of maps to P! with general fiber a ramified cover and special fiber that is
not

étale, 2-sheeted cover of stacky curves. Degenerating the source to A = 0, we see
there’s no way to add stack structure to the base P! to complete this family to an
étale 7 /2-torsor.

The map C; — Cj, is classified by amap C, — B, which is classified in turn
byamap U — MOA(B S7). We will instead take the limit in the sense of twisted
stable maps (equivalently, admissible covers), which allows C; to degenerate into
two copies of P! joined at a node.

Write S; for the symmetric group on d letters and (d) := {1,2,...,d}. Our
solution is to use twisted stable maps to the stack [Symd X] = [x¢ /Sal. A map
C — [Sym? X] may be interpreted equivalently as a torsor Sy & P — C with
an equivariant map P — X or a d-sheeted finite étale cover C’ — C given by
C' = (d) x5 P with amap C' — X [6, Lemma 2.2.1]. We will apply Costello’s
pushforward formula to the cartesian diagram of moduli stacks of twisted curves
after comparing conventions for torsors and twisted stable maps.

The map S;—1 — Sy including those permutations which fix the last element
induces a group action Sy_1 C Sy4. Consider the d-element set (d) ~ Sy_1\Sy as
a set-theoretic quotient with right-action by S;. We may view BS;_1 =~ (d)/Sq4
similarly. This latter identification does not depend on which (d — 1)-element subset
S4—1 is allowed to act.

Lemma 3.2. If T — BSy classifies an Sy-torsor P — T, then the contracted
product and fiber product are the same:

(d) x5 P~ T xps, BSq_1.

Applying this lemma to the torsor X¢ — [Sym“ X1, the associated d-sheeted
cover is

X x [Sym?~! X1~ [X9/8; 1] ~ [Sym? X] x g5, BSa_1.
This comes with a canonical projection to X.

Remark 3.3. Our description of the equivalence between the categories of Sy-
torsors and d-sheeted covers over T is the opposite of Costello [6, Lemma 2.2.1].

Remark 3.4. The space of twisted stable maps Ky (V) to a smooth projective
target V [7] allow marked points to have nontrivial gerbe structure. We instead

use a stack Mgivn(V) that requires those gerbes to be trivialized by sections at
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each marked point, as in [6, 2]. Our marked points are globally of the form B,
for some “ramification order” r € Zx. We demand similarly that the gerbes of

relative twisted stable maps Mz)wn (V/W)[8,8.3] foramap V — W be trivialized.

The map Mgwn(V) — Ko,n(V) is the universal gerbe, of degree
’ rl . "‘2 o e e e r
over the locus where the gerbes are B, . !

Remark 3.5. A d-fold cover of orbifold curves C’ — C over S has discrete invari-
ants including the genera, the stack structures at marked points, and the maps
Bu,, — BS,; from each ith marked point of C encoding its fiber in C" — C.
All are locally constant in S. If the fiber over the ith marked point is denoted (¢;),
there is a function 7 : (¢;) — Z>1 sending each point to its ramification order. The
function depends in a locally constant fashion on the cover C' — C.

Let E be amonodromy profile, specified by n maps Bu,, — BS; parametrizing
the fiber over each marked point as a d-sheeted cover of By, (specifying, in other
words, the monodromy of the cover around the ith parked point of the base). The
substack M’Ew ([Symd X]) € Mgui, ([Symd X]) of stable maps from covers C’ — C
with monodromy profile E is open and closed. The fiber over the ith marked point
consists of ¢; ramified points. Choosing an ordering of each fiber among Sy, choices
makes the source C’ into a £ = Y_ ¢;-marked curve. There is an open and closed
substack inside M’Ew([Symd X1) that also fixes t. If 7 is increasing for example,
r; > rj implies i > j and ramified points come later in the ordering.

The monodromy profile E is a component of the cyclotomic intertia stack
1,,(BSy) 9, Definition 3.2.1], recipient of evaluation maps

M (1Sym? X1) — (L, (ISym? X1))" — (I,(BS2)".

3.1. Applying the pushforward formula to the new diagram

Fix nonnegative integers g, n, d, £ = Y _¢; with n < £ < dn and monodromy
profile E as in Remark 3.5. We are ready to reinterpret (3):

Mg([Symd X)) L> Mg,[(x)

lﬂ’ ; lﬂ “4)

Me(BSy) —— M.

The stacks Mg)g (X), My ¢ parametrize ordinary stable maps to X and prestable
curves with £ marked points, while the map 7 forgets all but the source curve of the
stable map. The stack Mz £B S4) carries more data than prestable maps 9z (BSy).
We now introduce p and MMz (BS,) in three steps.

Step 1: Relative maps

Letu : © — 9, ¢ be the universal curve andﬁffﬁz (u) = Mgﬁl([Symd D]/Mg0)
be the stack of relative twisted stable maps with trivialized marked gerbes, as
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described in Remark 3.4. If § — 90, ; classifies a curve D — §, points of this
stack are given by:

i ) 7 d C is a connected, nodal
0.n ¢ [Sym® D] orbifold curve with trivialized

///Z l = \ / marked gerbes, and
S

S /T> Mg ¢ f is representable and stable

Maps C — [Sym“ D] are equivalent to d-sheeted finite étale covers C’ — C of
twisted curves with a representable map C’ — D x [Sym?~! D]. Stability requires
that the sheaf of automorphisms of the trio (C < C’ — D) that restrict to the
identity on D be finite at geometric points.

Step 2: Marked points

Endow C’ with the marked points pulled back from those of C. These preimages
are unordered, so C' is not yet a marked curve.

If C’ — C were an uniwisted finite étale cover, order the d preimages of each
marked point of C. Then ¢; = d, £ = dn, and ordering amounts to a (Sy)"-torsor
on moduli spaces in the untwisted case. Globally fixing a lexicographic ordering
of (n) x (d) then equates a (n) x (d)-marked curve with a dn-marked curve.

For twisted/ramified covers C’ — C, the sizes £; of the fibers over the marked

—~

points vary according to E. Ordering them nevertheless entails a [ ] Se,-torsor
Mo,n(u) over Mg’f; (1), as in Remark 3.5.

Now Mo,n(u) parametrizes trios of curves (C < C’ — D) where C’ is a
marked curve, but C’ — D needn’t be a map of marked curves. This condition cuts
out a closed substack A~4(’)n (n) C 1\710,,1 (u) where C’ — D maps marked points to
marked points in order.

Step 3: Partial stabilization

Think of the map f : C’ — D as a prestable twisted map to D and take its
stabilization f : C — D.If f identifies D with the coarse moduli space of C’
then f is called a partial stabilization. Define

Mo.n(BSa) M}, (u)

to be the substack where f is a partial stabilization; in particular, C’ is connected.
This substack is open and closed:

Lemma 3.6. Let f : C' — D be a morphism of untwisted prestable curves over a
base S. The locus in S where f is a partial stabilization is both open and closed.

Proof. The stabilization f : C — Disan isomorphism over an open locus [10,
Tag 05XD]. This locus is also stable under specialization by the uniqueness of
stable limits of stable maps. O

The map p in diagram (4) is the composite of all the proper maps above:
p o (BSa) S My, () S Mo,u(u) — Mooy () — Mg .

Corollary 3.7. The map p : ﬁto,n(BSd) — M, ¢ is proper, thus pure.
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Proof. Tt was constructed as a closed substack of a finite cover of the space of stable
maps to a target that is proper over 9, ,. Since stable maps to a proper target form
a proper space, this implies that p is proper. O

An example due to Costello [6, Lemma 6.0.1] of (g, n, d, E) where p is gener-
ically finite is worked out in Sect. 3.2.

The stack of twisted stable maps Mo,n([Symd X1) parametrizes (C < C' —
X) as in Step 1 above. The curve C’ is connected on an open and closed sub-
stack. There is a similar []Sg,-torsor Mo’,l([Symd X1) over this substack of
Moy, ([Sym“ X]) of orderings of the preimages in C’ of the marked points of C.
This is the remaining piece of diagram (4). The map ¢ sends (C <— C’ — X) to
the stabilization C — X ,and 7’ sends it to (C < C’ — f/).

Remark 3.8. Stabilization s : C — C of prestable maps C — X is functorial in
that X-automorphisms ¢ : C = C alllie over unique X-automorphisms ¢ : C =~ C.
Automorphisms of C — X lying over an automorphism of C form a subsheaf:
. cC —C
iAuty(C—>C)CAuy(©) | | »(C=O0.
Cc —C
To argue i is an isomorphism, assume the base is a geometric point [10, 03PU].
But ¢ must restrict to an automorphism on the union of unstable components over

X,soC é C — C is also the stabilization of C — X. The map ¢ comes from
canonicity of stabilization.

Lemma 3.9. The square (4) is cartesian.

Proof. 1f Mo,n([Symd X1]) and 255?0,,,(8 Sg) and Mg)[(X) are all replaced by their
unstable variants, Diagram (4) is immediately commutative and cartesian. Given

C«C—>C->X
with C' — X stable but (C < C’ — C') not necessarily, we must show (C <«

C’' — X) is stable if and only if (C < C' — 6/) is. This is a consequence of
Remark 3.8.
O

Diagram (4) is cartesian and p is proper. It remains only to compare the perfect
obstruction theories of 7 and 7’.

Lemma 3.10. The map
Mo,n(BSa) — Mon(BSa) X (Bsn *
forgetting the partial stabilization is étale.

Proof. Apply the formal criterion as in [11, Lemma 7] or [12, Lemma B (ii) for
T]. O

Corollary 3.11. The perfect relative obstruction theories on 7" induced from the
natural ones on w and from Mg ;, ([Symd X1) — Mo.n(BSyq) coincide.
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C Oo0— 00— 00— & o e O —
J k o0

Fig. 2. A coverin E, g = 3, d = 4. Marked points are colored black if forgotten and white
if remembered under the map to Mg ¢4

3.2. Costello’s example computation

We now compute the pure degree e of p : D?To’n(B Sq) — M, ¢ in the setting of
Costello [6, Lemma 6.0.1] to check consistency.

Remark 3.5 lets one fix discrete data (g, d, n, £;, E) illustrated in Fig. 2. Let
d = g+ 1 and k be an integer to be specified later. Require n < £ < dn, as
£ =" ¢; counts marked points of the source C’ and n of the target C.

Consider decompositions (n) = (k)LJU{oo}and (£) = (k- g)uJ x{g + 1)Ul
and a functiond : I — Z31, with m(00) := lem(d(i)). Define

8(Ch =g, g(C)=0,

(E)—)(n)is(kg):(k)x(g)ﬂ)l(k), Jx(g—}-l)ﬂ)lj, I — oo,

[l

Vield, rj=1,Viek)r=2ro=m(o0)

4
Ll, Bui =% — BSg, |_|ie(k) Bu, = BSy

Here i corresponds to the action up C (d) with one 2-cycle and the other
points fixed. We decline to specify the ramification profile B, (00) — BSq over
the point oo € C. These discrete data define a possibly disconnected substack
Mz([Sym‘ X1) € My, ([Sym? X)).

Choose AC (k-gyuJ x(g+1) € (£) such that (k-g) € A and J x
(g+hH\ANT x(g+1) —> Jisa leCCtIOI’l Write £ — A abusively for the set
(6)\A = TuJ.Defineamapr : Mz ([Sym X)) — Mg ¢—A(X) as the composite
of p from diagram (4) and the map forgetting the marked points A and stabilizing.
Define a stack Mg (BS,) as above to keep track of triples (C <— C’ — D) with
C’ — D apartial stabilization after forgetting the points labelled by A, C’ — C a
d-sheeted cover, and an ordering on the preimages of C’s marked points. This fits
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in a cartesian square

Mz([Sym? X]) — Mg —a(X)

L

Mz (BSq) —— Mg i a.

One shows this square is cartesian as in Lemma 3.9 and that p’ is proper as in
Corollary 3.7. We compute its pure degree after [6, Lemma 6.0.1].

Theol‘em 3.12. With the above discrete data E and k = #I + 3g — 1,
dim Mz (BSy) = dim M, ¢4 and the map p' between them is of pure degree

_kNghH™ (g)*
2k im(oo)

Proof. The map from 555?5(8 Sq) that forgets D is étale, so we can ignore D to
calculate its dimension. Our moduli spaces are the closure of strata considered by
Costello, so we again have

dim Mz (BSy) = k + #J — 2, dim Mg -4 = 3g — 3+ #1 +#J.

These are equal by definition of k. Because the dimensions are equal, the preimage
of the generic point must either be the generic point of the source or empty. The
generic point of the source has smooth C’, C by design, hence C’ S Disan
isomorphism. We’ve reduced to the case considered by Costello.

Fix general points qi, ..., gs € D and write B = Y d(i)[g;] for the induced
divisor of degree g + 1.

Claim: There are no special effective subdivisors 0 < B’ < B of degree g.

We outsource the proof to Lemma 3.13. We conclude as in Costello’s original
argument. Any effective B’ < B of degree g is not special, so h!(O(B)) =
h'(O(B)) = 0. Riemann—Roch gives h°(O(B’)) = 1 and h°(O(B)) = 2. This
means there is at most one map f : D — P! with f*oo < B up to isomorphism
and no such maps with f*oo < B';i.e., f*oo = B.

The dimension of the moduli space of covers of P! is determined by the number
of marked and branch points [13, 1.G]. A more-ramified cover has fewer branch
points, so general maps f : D — P! as above are simply ramified at distinct points
away from B. We do not control the ramification profile over oo € C.

It remains to promote the source and target of f : D — P! to (¢)- and (n)-
marked curves. Endowing D, P! with stack structure to make f étale, we must then
trivialize the ,ug X [Lm(cc) Marked gerbes of P! as per our conventions in Remark 3.4.

On moduli, this is a gerbe of pure degree . Ordering the k images of the

2km(c0)
simple ramification points, each of their fibers, and the fibers of the marked points
labelled by J constitutes an Sy x (S, g)k X (S g)#J -torsor (the black points in Fig. 2).
This gives the multiplicity e.

O
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Noam Elkies’ response to [3] led to this lemma.

Lemma 3.13. Fix multiplicitiesd : I — Zx>1 with)_ d(i) = g+ 1. General points
qis---,qs € D on a general smooth curve engender a divisor B = ) d(i)[g;].
There are no special effective subdivisors 0 < B’ < B of degree g.

Proof. Fix numbers by, ..., by € N adding up to >_ b; = g to obtain a map

D® — Divé; (1., ps) > Y bilpil.

The locus of special divisors is closed in Divé, as can be seen by applying upper
semicontinuity theorem [14, Theorem II1.12.8] to the universal sheaf O (%) for the
fibers of the projection 7 : D x Div# — Div&. We argue the pullback Py,,; € D*
of the locus in Divé of special divisors is a proper closed subscheme. If Py,
contained the diagonal A p, a general point p € D would be a Weierstrass point.
There are finitely many Weierstrass points on a curve over C, so Py, is a proper
closed subscheme.
For any 1 < j < s, we obtain a sequence

d(@) ifi #j
i = .
di)—1 ifi =j.
Our general points g1, ...,gs; € D are not in any Py, so our divisor B :=
> d(i)[g;] contains no special effective divisors of degree g. O

Remark 3.14. Taking C alone to be general in Costello’s original proof [6, Lemma
6.0.1] does not suffice — one must assume / = SuppD C C general as well to
guarantee dim I'(O(D’)) = 1 for any divisor 0 < D’ < D. Otherwise, take a
generic genus two curve with gé mapping f : C — P! and let D = 2p + ¢ with
p a Weierstrass point. If D’ = 2p, dimT'(O(D")) = 2.

Remark 3.15. The pure degree e is different from that computed by Costello:

. klEH (g — D)
e = .
2km (00)

Consider the substack 93?/5 - 93?5(3 S4) ordering points of equal ramification
separately by fixing t as in Remark 3.5. The restriction of p’ to 9’5?/5 is of pure
degree ¢’ because the simple ramification points must have the greatest label in
their fiber for each of the k-marked points. Ordering the other unramified points is
a Sg_1-torsor. The other terms count degree of the gerbes and ordering of the other
points identically to Theorem 3.12.

The main computation of virtual fundamental classes in [6, Lemma 8.0.2] thus
applies to our above modifications:

g [Mz([Sym? X' = e - [Mg - a(X)]T.
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Remark 3.16. We employed the technology of Abramovich and Vistoli [8] for con-
venience and brevity, but the same results may be achieved with Costello’s original
technology of weighted graphs. The data of a partial stabilization can be encoded
on the level of graphs, and the stabilization of a map C — X can be reconstructed
from the weighting of components by their curve classes in X.

4. Applications of the pushforward formula

This section addresses myriad articles which use Costello’s Formula. The papers
[15-18] reference but don’t use Costello’s Formula. The paper [19] uses other
results from Costello’s paper and not his formula, while [20] uses it only for moti-
vation.

The use of Costello’s Formula in [12] will be addressed alongside other sim-
plifications in forthcoming work by Sam Molcho, Rahul Pandharipande, and the
authors. Similar techniques also apply to Cavalieri et al. [21] and Marcus and Wise
[22], although both are subsumed by the suitably proper diagram in [23, 5.5].

4.1. An algebraic proof of the hyperplane property of the genus-one
GW-invariants of quintics

The application of a “cosection-localized version” of Costello’s Formula proposed
in Eq. (1.4) [24] is spelled out at the end of Sect. 2. There is a cartesian diagram

DGE) — Y f> X —D— MY
[ A
D(o) > Y > X > D > MY,

where the map MY > MY is a blowup and the obstruction theories of ¥, X
relative to D pull back to those of Y, X relative to D. Properness and birationality
of the blowup lets one apply Costello’s pushforward formula to show q*[X Vi =
[X] vir .

One of two proofs they offer of Proposition 2.3 claims that f*[Y]});Z = [ XV

and f*[Y]”i’ = [X]Y"". From this claim and the valid application of Costello’s

loc
pushforward formula, we see the Proposition is correct:

deg[Y )" = deg[Y]V"".

loc loc

4.2. Virtual pull-backs

The final result [1, Proposition 5.29] in the latest version assumes the morphism is
projective.
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4.3. Log Gromov—Witten theory with expansions

The paper only uses Costello’s Formula to address pushforwards along logarith-
mic modifications that are pulled back from the target of the perfect obstruction
theory [25, Proposition 3.6.1]. The definition of logarithmic modification includes
a properness assumption [25, 3.2].

4.4. The cohomological crepant resolution conjecture for the Hilbert-Chow
morphisms

This paper uses Costello’s Formula for a cartesian square

M(Vy x7 Va) r—> M(V1) x7 M(Va)

T xD(d1,dr) — T x Mo 3(d1) x Mo3(d2)

in the proof of [26, Lemma 5.5]. Immediately before, Li and Qin [26, Lemma
5.4] shows that the lower horizontal arrow without 7', D(dy, d2) — Mo 3(d1) X
Mo 3(d2), is proper and birational.

4.5. Gromov-Witten theory of étale gerbes, I: root gerbes
Costello’s result is used in [27, Theorem 4.3]. The morphism Y0 i Mo,n,p is

an example of the Matsuki—Olsson construction, which is finite [28 Theorem 4.1].

4.6. The degeneration formula for logarithmic expanded degenerations

The map Tg"gp LN Tg is observed to be a normalization in [29, 7.2], subject to
Remark A.7. This proper map is the base of a diagram

Kq — 9 — Q%1 — o)

Lo LT

K > T y T > To

to which Chen applies Costello’s Formula.

4.7. Virtual classes of Artin stacks

The result [30, Theorem 5.2] includes a properness assumption.
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4.8. Virtual normalization and virtual fundamental classes

Theorem 1 applies Costello’s pushforward formula to a pullback along the map
f(E - Log1 — Log.

This pullback entails saturation of log structures, which is finite [31, Proposition
11.2.1.5 (2)].

4.9. Orbifold techniques in degeneration formulas

Costello’s formula is used several times in [32].

Theorem 4.7. the maps 56/ - T, 7 Y > T along the bottom of the two squares
written as one in Proposition 4.4.2 (2) are proper by Proposition 2.12 [31].

Lemma 4.16. the proof applies Costello’s formula to the diagram

KE — HK[‘U
r

| l

T — ().

We need to argue 7' — (T™™) is proper. We don’t know how to define the
contraction maps unless the rooting order is the same at each node, but this suffices.

Recall the description of .7 given in [23, 5.2]. The strict-étale topology on fs
log schemes supports a sheaf of groups:

Gn(S) :=T(S, M5").

An (oriented) tropical line (bundle) is a torsor in the strict-étale topology for GZOP .
A map § — 7 is a tropical line P together with a subsheaf of sets Q C P for
which there locally exists a nonempty chain {y; < --- < y,} S I'(S, ﬁﬁp ) such
that Q is the subsheaf of sections of P locally comparable to all the y;.

Lemma 4.1. The map I’ — (™) is a log blowup, hence proper.
Proof. For any map S — (.7)", take the fs pullback

Rrg—> S
! |
T — (T)".

By strict-6tale localization, assume each map S — .7 corresponds to a G-

torsor P which is subdivided by sections y{ < --- < y;,. Use y{ to trivialize this
torsor:

P~Gp” pr—)p—ylj.
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Write
sij =Vi] _Vlj € Mg
for the image of yl.j under this isomorphism.

In the present language, the map 7/ — (.7)" corresponds to a subdivided
tropical line y{ < --- < y, which induces all the others by forgetting some
elements y/. The first y| is never forgotten, since it corresponds to the unexpanded
target X in the expansion of (X, D). Thus the element y; maps to 0 under our
trivializations above. Write s/ := y/ — y{ similarly.

Take the fs product B of all log blowups of S at ideals given by pairs (sl.j , sl.j,,) for
1 < j < h. Each of these blowups may be fs pulled back from the ideal of universal
elements of M /> on <72, A map T — S factors through B (and uniquely) if and

only if the set (sij |7) € M7 is totally ordered.

Since the yij ’s all arise by forgetting parts of the subdivision y| < --- < y,,
they are totally ordered on R. This means R — S factors through B. Observe also

that the fs product R x g B — B is an isomorphism — if the sij ’s are totally ordered,
their sums with y; yield a unique subdivision. Thus R — B is an isomorphism. O

Lemma 5.11. Costello’s formula is applied to the cartesian diagram

Ko — K
r

| |

9 F—> rzz)w

L]

ToP g

beginning Sect. 5.4 [31]. They observe that the bottom horizontal arrow is a nor-
malization of locally finite type stacks, hence subject to Remark A.7.

Lemma 5.12. The bottom map in the diagram

K" — Ka,
r
l |

,spl
ngép —> Dr

is the reduced induced closed substack, hence a proper map.

Lemma 5.15. Costello’s formula is applied to a gerbe banded by (., which is
proper.
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4.10. Birational invariance in log Gromov—Witten theory

The paper [33] uses Costello’s Pushforward Formula on the cartesian square (1) in
[33, 1.6]:

MY) — M(X)
! i

MO > x) 2N o).

Lemma 4.2. The map 9(h) is proper.

Proof. The map sends a square

|

Al <—a
R—<

—

to the bottom horizontal arrow. Write % for the universal curve on 9t(X) and
P:=% x x Y

for the pullback. Then 2M(h) factors through the inclusion of components of
M(P/MM(X)) on which the universal map C — P — % is a partial stabiliza-
tion and Lemma 3.6 concludes. O

4.11. Relative and Orbifold Gromov—Witten Invariants
In [34, Diagram 2.3.1], we see another application of Costello’s pushforward for-

mula. This square is a special case of a more general class of diagrams investigated
in Sect. 7.3 [33]:

My (27 Ty 2 M (2)
L l
M (o, BGy) L3 Mo (7).
The stack 9y ,(<7)’ is an open substack of My ,, ().
Lemma 4.3. The map
MG (7, BGw) — Mo (/)

is proper.
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Proof. This map is pulled back from the map

Mot (o, BGy)* — Mo ().

This map sends a square

_>bQZ‘
l

[<— QO

C — @ xS

to the lower horizontal arrow. We again employ Lemma 3.6 by describing this map
as the locus among relative moduli of stable curves where a particular morphism

is a partial stabilization.

The same techniques handle the square [34, 7.1.2]:

—rel —orb
M, Zo(X,, Dy) — My_o(X,)

L !

MLy D) — ML ().

We still must address the map ¢, in

M (x,. D) 22 M (X, D)

L !

Ml (o, By) 2Ly ML (A, D).

Remark 4.4. No stabilization occurs in ¢ ¢-.

Lemma 4.5. The map

bor = ML (ty, D) — ML (A, )

is of pure degree 1.

O

Proof. Writeu : © xgy;z?, — (', D) for the pullback of the universal curve
along the map between universal expansions. The space ¢ (<7, Z,) lies inside
the spaces of relative stable map M () as the locus with S-points where C — D|g
is an isomorphism. Denote the closure of this locus by M. Then M — M(, D) is
proper and birational, so restriction to the dense open (27, ) is pure degree 1.

O
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Appendix A. Degree of a Generically Finite Morphism

The stacks project offers two definitions of generic finiteness. We assume our stacks
are locally noetherian and elaborate on definition (1) of [10, 073A].

Definition A.1. Let f : X — Y be locally of finite type and n € Y be a maximal
point. We say f is generically finite at n if the preimage X Xy n is a finite, nonempty
set. Equivalently, there’s an affine open V' C Y and finitely many Uy, ..., U, such
that U; — V is finite and n € V and X xy n € |, U; [10, 02NW].

Given that f : X — Y is generically finite at some maximal 7, we say it is of
degree d at n if [10, 02NY]

d= Z dimR(n) OX,g.
gef~1m

A morphism f : X — Y locally of finite type is said to be generically finite or of
degree d if it is so at every maximal point € Y.

A representable morphism X — Y locally of finite type between algebraic stacks
is said to be generically finite or of degree d (at a specific maximal point € Y or
for all) if the same is true for pulling back along some smooth cover V. — Y by a
scheme (with £ € V mapping to ).

Remark A.2. Generically finite and degree d both pull back along flat, quasicom-
pact morphisms Y’ — Y and may be checked after some (equivalently any) flat,
quasicompact cover. This is because generalizations lift along flat, quasicompact
morphisms, ensuring that maximal points map to each maximal point.

Lemma A.3. Let X — Speck be a finite morphism from a DM stack to a field.
Then X admits a finite étale cover from a scheme.
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Proof. Pick a finite type étale cover P — X. Then P — X is locally quasifinite
[10, 03WS] and hence quasifinite [10, 01TD]. The composite P — Speck is
quasifinite, hence finite [10, 02NH]. The map P — X is then finite. O

Definition A.4. A finite DM-type morphism X — Speck is of pure degree d if,
for some (equiv. any) finite étale cover P — X by a scheme,

deg(P/Speck)
deg(P/X)

A DM-type morphism X — Y of locally noetherian artin stacks is generically
finite if, for all maximal points  — Y, the pullback

X Xyn—n
is finite.

Remark A.5. The definition of degree d for generically finite morphisms is deter-
mined by its properties:

e A composite X —f> Y % Z for which deg f, deg g, deg g o f are well defined
satisfies

deg(go f) =deg f -degg.

e Given a pullback square

X — X
Iy

Y — Y

with Y’ — Y flat and quasicompact, f is generically finite (of degree d) if and
only if f’is.
e Agreement with the notion for representable morphisms in Definition A.1.

We conclude with two folklore observations that we use in the body of the text.

Remark A.6. (“Stability is an open condition”) Suppose f : X — Y is locally
finite type and X, Y are algebraic stacks. There is a substack U C X representing
morphisms 7 — X such that f|7r is DM type, and this substack is open. A map
is DM type when the diagonal is unramified, which is an open condition by The
Stacks Project Authors [10, 0475].

This shows that the locus where a family of prestable maps is stable is open in the
base.

Remark A.7. If X is an algebraic stack locally of finite type, then its normalization
XV — X is finite. This is because normalizations are integral [10, 035Q] and the
map is locally of finite type [10, 01W]J].
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