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Abstract

This paper studies optimal decision rules, including estimators and tests, for weakly identi-
fied GMM models. We derive the limit experiment for weakly identified GMM, and propose a
theoretically-motivated class of priors which give rise to quasi-Bayes decision rules as a limiting
case. Together with results in the previous literature, this establishes desirable properties for the
quasi-Bayes approach regardless of model identification status, and we recommend quasi-Bayes
for settings where identification is a concern. We further propose weighted average power-
optimal identification-robust frequentist tests and confidence sets, and prove a Bernstein-von
Mises-type result for the quasi-Bayes posterior under weak identification.
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1 Introduction

Weak identification arises in a wide range of empirical settings. Weakly identified non-
linear models have objective functions which are near-flat in certain directions, or have
multiple near-optima. Standard asymptotic approximations break down when identifi-
cation is weak, resulting in biased and non-normal estimates, as well as invalid standard

errors and confidence sets. Further, existing optimality results do not apply in weakly
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identified settings, making it unclear how researchers should best extract the information
present in the data.

To provide guidance for such cases, this paper develops a theory of optimality for
nonlinear GMM models with weak identification.® Even when identification is weak the
sample average GMM moment function is approximately normally distributed, allowing
us to derive a novel Gaussian process limit experiment which upper-bounds attainable
large-sample performance. This limit experiment is infinite-dimensional, reflecting the
semiparametric nature of the GMM model, and there typically exists no uniformly best
procedure. As a consequence, asymptotically optimal approaches for weakly identified
GMM necessarily trade off performance across different parts of the parameter space.

We discipline these tradeoffs by considering Bayes decision rules, and propose a
theoretically-motivated class of computationally tractable priors for the limit experiment.
This class yields the quasi-Bayes approach studied by Kim (2002) and Chernozhukov and
Hong (2003) as a diffuse-prior limit. Quasi-Bayes treats a transformation of the continu-
ously updating GMM objective function as a likelihood, which is combined with a prior
to produce Bayes decision rules. We further prove a Bernstein-von Mises-type result
establishing the asymptotic properties of quasi-Bayes under weak identification.

For inference, one may report quasi-Bayes credible regions. However, these do not
in general have correct frequentist coverage under weak identification. To address this
issue, we derive weighted average power-maximizing frequentist tests with respect to our
recommended priors, and construct confidence sets by collecting the parameter values
not rejected by these tests. These confidence sets take a form similar to quasi-Bayes
highest posterior density regions, but ensure correct coverage under weak identification.

Finally, we illustrate our analysis with simulations and empirical results based on
quantile IV applied to data from Graddy (1995) on the demand for fish.

The bottom line of this analysis is that quasi-Bayes decision rules have desirable opti-
mality properties whether identification is weak or strong. Unlike for conventional GMM

estimators, to use the quasi-Bayes approach researchers must specify a prior. Cher-

3Kaji (2021) studies weakly identified parameters in semiparametric models, and introduces a notion
of weak efficiency for estimators. Weak efficiency is necessary, but not in general sufficient, for decision-

theoretic optimality (e.g. admissibility) in many contexts.



nozhukov and Hong (2003) show, however, that quasi-Bayes procedures are equivalent
to efficient GMM in large samples under strong identification, and so are insensitive
to the prior in this case. Under weak identification, by contrast, the prior plays an
important role, since the data provide only limited information. Even under weak identi-
fication, however, our robust confidence sets guarantee correct coverage regardless of the
choice of prior. These results complement earlier findings from Chen, Christensen, and
Tamer (2018) who show, among many other findings, that quasi-Bayes highest posterior
density sets based on flat priors have correct coverage for the identified set in strongly
but partially identified models, establishing a further desirable property for quasi-Bayes

4 Based on these results, we

approaches in settings with non-standard identification.
recommend quasi-Bayes for settings where identification is a concern.

The next section introduces our setting and derives the limit experiment. Section
3 motivates and derives our recommended class of priors and shows that quasi-Bayes
corresponds to their diffuse limit. Section 4 discusses quasi-Bayes decision rules and
constructs optimal frequentist tests. Section 5 discusses feasible quasi-Bayes decision

rules and characterizes their large-sample behavior. Finally, Section 6 provides empirical

results for quantile IV applied to data from Graddy (1995).

2 Limit Experiment for Weakly Identified GMM

2.1 Weak Identification in Nonlinear GMM

Suppose we observe a sample of independent and identically distributed observations
{Xi,i =1,...,n} with support X'. We are interested in a structural parameter 6* € ©,
which is assumed to satisfy the moment equality Ep [¢(X,0*)] = 0 € R¥, for P the
unknown distribution of the data and ¢(-,-) a known function of the data and parame-

ters. We assume 0* corresponds to a quantity of economic interest which is well-defined

4Chen, Christensen, and Tamer (2018) also show that, in the partially, strongly identified setting,
quasi-Bayes posteriors based on informative priors can be used to form critical values for confidence sets

for the full parameter vector and subvectors, and propose simple confidence sets for scalar subvectors.
5Qur results in this section allow infinite-dimensional structural parameters, but in the remainder of

the paper we assume that 6 is finite-dimensional.



whether or not it can be recovered from the data, and want to choose an action a € A

to minimize a loss L(a,0*) > 0 that depends only on a and 6*.

Example: Quantile IV  Suppose the observed data X = (Y, W, Z) consist of an
outcome Y, a (p—1)-dimensional vector of endogenous regressors W, and a k-dimensional

vector of instruments Z. For 6 = («a, 5) € ©, consider the moment condition
¢(X,0)=I{Y —a-W'B<0}—1)Z, (1)

introduced by Chernozhukov and Hansen (2005) for inference on the 7-th conditional
quantile. For estimation of # we could take A = © and consider squared error loss,
L(a,0) = |la—0|>. O

If the data are informative, standard asymptotic arguments imply that the GMM
estimator for #* is approximately normally distributed in large samples, with standard
errors that can be consistently estimated. Under regularity conditions, one can further
show that the optimally-weighted GMM estimator is asymptotically efficient, in the sense
of minimizing expected squared error loss in large samples, and that efficient decision
rules for many other problems may be constructed based on this estimator. By contrast,
when the data are less informative and identification is weak, these approximations break
down. Consequently, GMM estimators may be far from normally distributed, and it is

less clear how to efficiently estimate 6* or solve other decision problems.

Example: Quantile IV, continued We illustrate the problem of weak identification
with an application of quantile IV to data from Graddy (1995) on the demand for fish at
the Fulton fish market. Following Chernozhukov et al. (2009), who discuss finite-sample
frequentist inference in this setting, we consider the quantile IV moment conditions stated
in equation (1) with Y the log quantity of fish purchased, W the log price, and Z a vector
of instruments consisting of a constant, a dummy for whether the weather offshore was
mixed (with wave height above 3.8 feet and windspeed over 13 knots), and a dummy for
whether the weather offshore was stormy (with wave height above 4.5 feet and windspeed
over 18 knots). We focus on results for the 75th percentile, 7 = 0.75. For further details
on the data and setting, see Graddy (1995) and Chernozhukov et al. (2009).
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Figure 1: GMM objective function @, (0) for quantile IV, 7 = 0.75, based on Graddy (1995) data.

The first panel of Figure 1 plots contours of the continuously updating GMM objective
function, Qn(0) = gn (8) =1 (6,6) g (8), for gu(-) = \/LEZ?ZI #(X;,-) and $,(6,0) the
sample variance of ¢(X;,0). The second and third panels plot the profiled objective
functions for a and 3, respectively, where the profiled objective for a is ming @, (c, ).
The GMM objective is low over a substantial part of the parameter space suggesting,
as previously noted by Chernozhukov et al. (2009), that weak identification may be an
issue here.

The details of Figure 1 suggest particular trouble for conventional asymptotic ap-
proximations. Standard arguments for the large-sample normality of GMM estimators
rely on quadratic approximations to the objective function, but Figure 1 shows that the
sample objective function is far from quadratic in these data. To explore the implica-
tions for GMM estimation, we calibrate simulations to the Graddy (1995) data.® The
first column of Figure 2 shows the distribution of the GMM estimators for a and S in
these calibrations, and highlights that these distributions are clearly non-normal, with
substantial right-skewness. Hence, we see that weak identification undermines the va-
lidity of conventional asymptotic approximations in this setting, raising the question of
how to efficiently estimate the structural parameters. [

To develop asymptotic results for weakly identified GMM, we need a framework for
modeling weak identification. Intuitively, 6* is weakly identified when the mean of the
moment function Ep[p(X,0)] is close to zero, relative to sampling uncertainty, over a
non-trivial part of the parameter space ©. To obtain asymptotic approximations that

reflect this situation, we adopt a nonparametric version of weak identification asymptotics

5Details of the calibration may be found in Appendix D.



and model the data generating process as local to identification failure. Specifically, we
assume the sample of size n follows distribution P = P, r, where the sequence P, s

converges to some (unknown) limit P,

1 2
/ [\/ﬁ(dPi,/f—dPo”Q)—§fdP5/2 -0 o)

as n — oo. Restriction (2) is a differentiability in quadratic mean condition, and is
standard in the literature on semi-parameteric efficiency (see Chapter 25 in van der
Vaart, 1998).” We focus on the case where the structural parameter 6* is set-identified

under Py, in the sense that the identified set
O = {0 € 0 : En,[6(X,0)] = 0}

contains at least two distinct elements, and assume that ©g is compact, with 6* € ©,.%
A measurable function f in (2) is called a score, and necessarily satisfies Ep, [f(X)] =
0 and Ep,[f*(X)] < oo (see Van der Vaart and Wellner, 1996, Lemma 3.10.10). Denote
the space of score functions by T'(F), and note that this is a linear subspace of Ly(F),
the space of functions from X to R that are square integrable with respect to Fy. Intu-
itively, each f € T'(P,) specifies a different “direction” from which the sequence of data
generating processes P, y may approach F5. The space of such directions is typically
infinite-dimensional (in particular, whenever X has a continuously distributed element),
and describes the many ways in which the data generating P, ; may depart from £ in
terms of means and covariances, but also in terms of higher moments and other features.
Condition (2) then implies that P,  approaches F, at rate \/Lﬁ, so the difference between
the two distributions is on the same order of magnitude as sampling uncertainty. This
ensures that P,  and P remain “close” in a statistical sense even in large samples.
While the score f controls the distribution of the data, our interest lies in the struc-
tural parameter 6*. Identifying information about 6* comes from the fact that not
all elements of T(Fy) are consistent with a given #*. Specifically, the scaled sample

average of the moments has (asymptotic) mean zero at 6* under P, ; if and only if

"Prior work by Kaji (2021) also analyzes weak identification using paths satisfying (2).
8The more general assumption that 6* is local to O yields a limit experiment similar to that derived

below, at the cost of heavier notation. Hence, we focus on the case with 6* € ©,.
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Figure 2: Finite sample distribution of GMM estimator in simulations calibrated to Graddy (1995) data,
along with weak- and strong-asymptotic large-sample distributions. Based on 1000 simulation draws,

dropping top and bottom 1% of draws in the left panel for visibility.
Ep, [f(X)o(X,0%)] = 0. Correspondingly, the sub-space of scores consistent with 6* is
Ty (Po) = {f € T(Po) : Ep, [f(X)o(X, 67)] = 0} .

This space is typically infinite-dimensional, in keeping with the semi-parametric nature of

the GMM model. We are now equipped to define the finite sample statistical experiment.

Definition 1 The finite sample experiment for sample size n, £, corresponds to ob-
serving an i.1.d. sample of random variables X;,i = 1,...,n, distributed according to P, ,

with parameter space {(0%, ) : 6* € Oy, f € Ty-(F)}.

Example: Quantile IV, continued A variety of different distributions P, give rise
to non-trivial identified sets ©¢ in this example. Correspondingly, there are many ways
weak identification may arise. For example, suppose that the first element of Z is a
constant, while the remaining elements of Z can be written as UZ*, for U a mean-
zero random variable independent of (Y, W, Z*) and Z* a potentially informative, but
unobserved, instrument. The last k£ — 1 elements of Ep [¢ (X, 6)] are thus identically zero

on O, while the first element of Ep [¢ (X, 0)] is zero if and only if « is equal to the 7-th



quantile of Y — W’g under Py, qp, (Y — W’B). Hence the identified set under P, is
O = {0 = (1,8) € O a = qp (Y — W'B)}.

To illustrate the utility of weak identification asymptotic approximations, we return
to our simulations calibrated to Graddy (1995). The second column of Figure 2 shows
the distribution of GMM estimators when we (a) increase the sample size by a factor of
100 and (b) model the finite-sample distribution P, ; as converging (in the sense of (2))
to the distribution P discussed above, with score f chosen to match the distribution
at the original sample size. For comparison, the third column shows the distribution
under strong-identification asymptotics, which hold the data generating process fixed as
n grows. As Figure 2 makes clear, weak-identification asymptotics preserve the asym-
metric and heavy-tailed behavior seen in the data-calibrated design. By contrast, under
strong-identification asymptotics the distribution appears approximately normal. This
is expected given standard asymptotic results, but is a much worse approximation to the

small-sample distribution. []

2.2 Asymptotic Representation Theorem

This section shows that to construct asymptotically optimal decision rules for weakly
identified GMM, it suffices to derive optimal decision rules in a limit experiment. This
limit experiment corresponds to observing a Gaussian process g(-) with unknown mean
function m(-) and known covariance function (-, -), where 6* satisfies m(6*) = 0. Intu-
itively, g(+) corresponds to the scaled sample average of the moments, since as we discuss

below, under P, ;
% ; ¢(Xi,) = gn(-) = g(-) ~ GP(m, %), (3)

on ©p, where = denotes weak convergence as a process, m(-) = Ep[f(X)o(X,")],
¥ (01,62) = Ep,[0(X, 01)p(X, 62)'], and ¥ is consistently estimable. We assume through-
out that ¥ is continuous in both arguments.”

To derive the limit experiment, we first discuss the parameter space for the mean

9Together with compactness of ©g, this implies that we can take the stochastic process g to be

everywhere continuous almost surely. See Lemma 1.3.1 of Adler and Taylor (2007).



function m(-). Define a linear transformation mapping f € T'(Fp) to functions m(-):

m(-) = Ep [f(X)o(X,-)]. (4)

Let H be the image of T'(F) under this transformation. Lemma 2 in the Appendix shows
that H is the Reproducing Kernel Hilbert Space (RKHS) associated with the covariance
function X. Let Ho« = {m € H : m(0*) = 0} denote the subset of H with a zero at 6*.

Definition 2 The Gaussian process experiment £ p corresponds to observing a Gaus-
sian process g(-) ~ GP(m(-),X) with known covariance function %(-,-), unknown mean

function m, and parameter space {(60*,m) : 0* € ©g,m € Hy-}.

To compare & p to &, we need to relate their parameter spaces. A challenge here is
that the space of scores f in the experiment £ is larger than the space of means m in
ELp. To address this, we decompose each score as f = f* + f+ where f* is isomorphic
to m, while f* reflects aspects of the data generating process which are irrelevant to the
large-sample behavior of the moments, and so can safely be ignored when constructing
decision rules. Specifically, denote the null space of the linear operator (4) by H*. By
definition Ht is a linear subspace of T'(F). Let H* be the orthogonal complement of
H+.10 For any score f € T(F,), denote by f* and f* its projections onto H* and H*
respectively. By definition f+ is orthogonal to the GMM moment condition, so two scores
imply the same mean function if and only if they have the same projection f* onto H*.

We can re-write the parameter space for £ as a Cartesian product
{0* € ®Ouf: (f*afJ_) € T@*(PO)} = {9* € @07f* € 7_[;*} X {fJ_ € %J_}

for Hy. = {f* € H* : Ep,[f*(X)d(X,0%)] = 0}. For fixed f+, however, (4) defines an iso-
morphism between the parameter space in £ and that in &} p, so following the literature
on limits of experiments (c.f. Le Cam 1986) we can compare these experiments in terms

of the attainable risk (expected loss) functions.

Theorem 1 Consider any sequence of statistics S,, which has a limit distribution under

Er. in the sense that under P,y for any f € T(Fy), S, (X1,....X,) = Sf as n — oo.

10The proof of Lemma 2 shows that H* is the completion of the space spanned by scores of the form

F(X) = 37521 0(X,0;)'b; in La(Py).



Assume there exists a complete separable set Sy such that Pr{Sy € So} =1 for all f €
T(Py), and that the loss function L is continuous in its first argument. For any f+ € H*
there exists in ELp a (possibly randomized) statistic S such that, defining f = f* + f*
and m(-) = Ep[f(X)o(X, )],

liminf Ep, ,[L(Sn, 0°)] > En[L(S,6%)] for all 0% € Oy, f* € Hj.,

n—oo

where E,, is the expectation in Ep under mean function m.

Theorem 1 establishes that the attainable risk functions in &fp lower-bound the
attainable asymptotic risk functions in &;. Thus, if a sequence of decision rules S,, has
risk converging to an optimal risk function in &fp, it must be asymptotically optimal.
The proof of this result builds on van der Vaart (1991), who derives the limit experiment
for inference on f. In our setting, however, f* is a nuisance parameter that neither
interacts with the parameter of interest 8* nor enters the loss function. Thus, to derive
optimal procedures it suffices to study optimality holding f+ fixed, similar to the “slicing”
argument of Hirano and Porter (2009).

Theorem 1 gives a criterion which may be checked to verify asymptotic optimality. In
many cases, a plug-in approach further suggests the form of an asymptotically optimal
rule. Suppose we know an optimal decision rule S = s(g,>) in % p, where we now make
dependence on the covariance function explicit.!’ If a uniform central limit theorem
holds under F, and we have a consistent estimator S for ¥ (e.g. the sample covariance
function 3(6,6) = 6(;)(925()(7;; 0), »(X;:0))), then Le Cam’s third lemma implies that the
weak convergence (3) holds, while 3 remains consistent under P, ¢. Provided s(g,X)
is almost-everywhere continuous in (g(-), ), the Continuous Mapping Theorem thus
implies that S, = s (gn(),i) = s(g,%) = S under P, , so the sequence of rules S,
is asymptotically optimal so long as convergence in distribution implies convergence in

expected loss (e.g. under uniform integrability conditions).

Special Case: Finite © Suppose that ©y = {61, ...,0,} is finite. In this case the

Gaussian process experiment £5p reduces to observing the normal random vector g =

Al of our results allow for randomized decision rules, e.g. S = s(g(+),%,U) with U ~ U[0,1]

independent of the data, but for simplicity we suppress randomization in our notation.

10



(9 (91)',...,g(6T)')/ € R™ with unknown mean m = (m (91)',...,m(9r)')/ and known
rk X rk variance matrix ¥. We assume for this example that > has full rank, which
implies that H = R"*. The parameter space in £}p thus consists of (§*,m) pairs where
the sub-vector of m corresponding to 6* is zero: {9* € Og,m € R™ :m () = 0}. Hence,
the limit problem reduces to observing a collection of normal random vectors and trying
to infer which among them have mean zero.

Even for finite Oy, the score f in the finite-sample experiment £ is typically infinite-
dimensional and controls all features of the data distribution, for instance the skewness
and kurtosis of ¢ (X, 0). Asymptotically, however, only part of f is important, namely, its
projection f*(X) = ¢ (X)'S™'Ep, [¢ (X) £ (X)] on ¢ (X) = (¢(X,01)', ..., ¢(X,6,)),
where there is a one-to-one correspondence between scores f* and m € H. Theorem 1
then implies that (under regularity conditions) it is without loss, in terms of attainable
asymptotic performance, to limit attention to decision rules that depend on the data only
through the sample average moments \/iﬁ > ¢ (X;) and the estimated variance .0

The idea of solving a limit problem in order to derive asymptotically optimal decision
rules is of course not new — see e.g. Le Cam (1986). More recently, Mueller (2011)
proposed an alternative approach to derive asymptotically optimal tests starting from
weak convergence conditions like (3). Relative to the approach of Mueller (2011) applied
to our setting, the benefits of Theorem 1 are (i) to show that there is, in a sense, no
asymptotic information loss from limiting attention to the sample average of the moments

and (ii) the ability to consider general decision problems in addition to tests.

3 Priors for GMM Limit Problem

The previous section showed that we can reduce the search for asymptotically optimal
decision rules to a search for rules based on the Gaussian process g(-) ~ GP(m, X), with a
known covariance function (-, -) and an unknown mean function m such that m(6*) = 0.

While the Gaussian process limit experiment is much simpler than the original finite-
sample GMM setting, it still has an infinite-dimensional parameter space. Moreover
minimizing risk at different parameter values generally produces different decision rules,

so there do not exist uniformly best estimators or uniformly most powerful tests. Instead,

11



optimal decision rules trade off performance over different regions of the parameter space.
In this paper we focus on Bayes decision rules, which make this tradeoff explicit through
the prior. The Bayes decision rule for the prior 7 minimizes m-weighted average risk,
ming [ Eo«,,[L(5(g), 0%)]dn (6%, m).

Bayes decision rules are closely linked to optimality, and in particular admissibility,
in the limit problem. A decision rule s(g) in the experiment £fp is admissible if there
exists no rule §(g) with weakly lower risk for all parameter values, and strictly lower risk
for some. A class S of rules is complete if it contains all admissible rules. For convex loss
functions, a result in Brown (1986) implies that pointwise limits of Bayes decision rules

are a complete class.

Theorem 2 (Brown, 1986) Suppose that A is closed, with A C R® for some d, that
L (a,0) is continuous and strictly convex in a for every 0, and that either A is bounded
or limjq|»o00 L(a,0) = co. Then for every admissible decision rule s in Efp there exists

a sequence of priors m. and corresponding Bayes decision rules s, ,

[ EoranlL 50, (9,601 (6" ) = i [ By L(5(9), ) (8", m0)
such that s (g) — s(g) as r — oo for almost every g.

Related results hold for settings with non-convex loss, e.g. in testing problems. For
instance, Strasser (1985, Theorem 47.9) shows that the weak limits of Bayes decision
rules form an essentially complete class in settings with bounded loss.

Even focusing on Bayes decision rules, it remains to chose a prior 7(6*,m) and to
derive the resulting optimal rule. The infinite-dimensional nature of the limit experi-
ment makes it difficult to specify subjective priors, so in this section we propose that
researchers use a subjective prior for the structural parameter 6* together with a default
prior on an infinite-dimensional nuisance parameter. While these default priors are moti-
vated by conjugacy and invariance arguments, it turns out that all priors in the class we
consider deliver the quasi-Bayes approach suggested by Chernozhukov and Hong (2003)

as a limiting case.

12



3.1 A Class of Priors for the Limit Problem

We derive our class of priors in three steps. First, we re-parameterize the limit experiment
to separate the structural parameter 6* from an infinite-dimensional nuisance parameter.
Second, for tractability we consider independent priors on the two components. Third,
we use a conjugate Gaussian prior on the nuisance parameter, and show that a natural
invariance property for default priors greatly restricts the choice of prior covariance. In
particular, invariance generically limits attention to what we term proportional priors,
which are indexed by a scalar variance parameter. Taking this variance parameter to

infinity yields the quasi-Bayes approach.

3.1.1 Reparameterization

The parameter space {(6*,m): 0" € ©g,m € Hy-} in ELp requires that for fixed 67,
the mean function m must lie in the linear subspace Hy«, so the parameter space for
the infinite-dimensional parameter m depends on 6*. To simplify the analysis, we re-
parameterize the model to disentangle 6* from the nuisance parameter.

Denote by C the space of continuous functions from 6y to R¥, and let A be any
linear functional A : C — R* such that Cov(A(g), g()) is nonsingular for all §, where we

assume such a functional A exists.

Lemma 1 Let { = A(g), h(-) = g(-) — Cov(g(-),§)Var(§)'¢, and pu(-) = m(-) —
Cov(g(+),&)Var(§)~A(m). Then there exist one-to-one correspondences (i) between
{(6*,m) : 6* € ©g,m € He} and (0", 1) € O x H,,, and (ii) between g(-) and (&, h(-))
such that:

(a) The vector & ~ N(v(0%, 1), S¢) and process h(-) ~ GP(u,¥) are independent, where

v, Y¢ ,and Y are known transformations of (2, A).
(b) H, is the RKHS generated by covariance function 3.

Lemma 1 re-parameterizes the model in terms of the structural parameter 6* and a func-
tional nuisance parameter p, where the parameter space for (6*, i) is a Cartesian product
and the parameter space for p is linear. Intuitively, each Hy« imposes the k-dimensional

linear restriction m(6*) = 0, while the reparameterization expresses these *-specific

13



restrictions as restrictions on a common k-dimensional functional A(m), leaving the re-
mainder of m, described by p, unrestricted. Lemma 1 also establishes a corresponding
decomposition of the observed process ¢(-) into components (&, h(+)), where the distribu-

tion of h depends only on pu.

Special Case: Point Evaluation Suppose A is the point evaluation functional at

some value 6y, so & = A(g) = g(0p). Andrews and Mikusheva (2016) show that

h(-) = g(-) — 5(-,00)2(0o, o) " g(6o), (5)

is a Gaussian process independent of & ~ N (m(6y), (6o, 6p)), while Lemma 1 establishes

that if ¥(+, 6p) is everywhere full rank, knowledge of the functional parameter
p() =E[h()] = m(-) — E(-, 00) (00, 60) " m(bo)

and the structural parameter 0* suffices to reconstruct the mean function m. O
Analogous reparameterizations can be constructed for other linear functionals A, and
we obtain a different parameterization for each such functional. Since A does not matter

for the procedure we ultimately recommend, we do not discuss how to choose it.

Special Case: Finite O, continued When O is finite, any k-dimensional linear
functional A with A(0) = 0 corresponds to a k X rk matrix. In this case £ = Ag is
a k x 1 Gaussian vector, while h = (h (91)',...,h(9T)'), = (I -%A (AZA’)_lA) gisa
Gaussian vector with mean p = (I — $A4’ (AxA) A) m and rank (¢ — 1)k covariance
matrix ¥ = ¥ — DA/ (AZ)A’)_1 AX. In this context our assumption that Cov(Ag, g(6))
is nonsingular for all € is equivalent to requiring that all r of the k x k blocks in the
k x rk matrix AX have full rank. Since ¥ has full rank, such A always exists. Lemma
1 then states that the transformation from (6*,m) to (6*, ) is one-to-one, and hence a
reparameterization. The original parameter space for m is the subset of R™ where at
least one of k-dimensional component is exactly zero. This space is not linear, or even
convex, as convex combinations of two mean vectors with zeros at different #’s need not
be zero anywhere. By contrast, the parameter space for (0%, i) is the Cartesian product

©¢ x H,,, where H,, = Span {i} is a (r — 1)k dimensional linear subspace of R™. [J

14



3.1.2 Prior Independence

The likelihood function £ (i, 0*; g) based on the observed data g(-) factors as'

C(p,0%59) = (1, 0%58) £ (s h)

where £ (u, 0% &) and £ (u; h) are the likelihood functions based on & and h, with the
latter depending only on p and not on #*. Since the loss function depends only on 6*,
to derive Bayes decision rules it suffices to construct the marginal posterior distribution
for §*. For analytical tractability we consider independent priors 7(6*)m(u) on * and p.

Under such priors the marginal posterior for 8* simplifies to

(0°l0) = Fati . o €0(6) = [ £Gu:€)dr i), ©)

where 7(u|h) denotes the posterior for u given h.

3.1.3 Conjugacy and Invariance

The posterior (6) depends on the data (&, h(-)), the prior 7(6*) on the structural param-
eter, and the prior m(x) on the nuisance parameter. Researchers may have informative
priors about #* in a given application, but seem unlikely to have strong priors about pu.
Moreover, the infinite-dimensional nature of p makes it challenging to specify a subjec-
tive prior even when the researcher has prior information. We thus leave the prior on 6*
free to be selected by the researcher, while seeking a default recommendation for m(u).
In our search for a default m(u) we restrict attention to Gaussian process priors
w~ GP(0,9Q), for Q(-,-) a continuous covariance function. This allows us to exploit
conjugacy results, greatly simplifying computation of the integrated likelihood ¢*(6).'3
Even with this restriction, the space of potential covariance functions 2 is enormous, and
it is challenging to directly evaluate whether or not a given prior covariance is reasonable.

To derive default priors, we thus take a different approach, and ask what choices of prior

covariance €2 lead to decision rules with desirable properties.

12 A1l Gaussian processes with covariance function ¥ and mean functions in A are mutually absolutely

continuous, so we can define the likelihood with respect to any base measure in this class.
13For Gaussian (), £* (0*) corresponds to a Gaussian likelihood for observation ¢ with mean given by

the best linear predictor of & based on h under the prior. The solution to this linear prediction problem

is obtained in Parzen (1962), and details appear in the proof of Theorem 3, stated below.
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We want a default 7(u) to imply reasonable decision rules when combined with many
different choices of 7(6*). To this end, we impose that if a researcher rules out some
parameter values ex-ante, the implied Bayes decision rules should not depend on the
behavior of the moments at the excluded parameter values. Formally, we require that
for priors 7(6*) with restricted support O C O, Bayes decision rules based on the prior
7(6*)7 (1) should depend on the data only through € and the restriction of h to ©. For
this invariance property to hold for all possible priors 7(6*) and all loss functions L(a, 0*),
however, it must be that £*(6) depends on the data only through (&, h(6)) for all § € ©,.'

This restriction dramatically narrows the class of candidate covariance functions 2.

Theorem 3 Assume the covariance function §) is continuous.

(a) For all 0* € ©q such that S(0%,6%) and Q(6*,0%) have full rank, the integrated
likelihood ¢* (6*) depends on the data only through (£, h(0%)) if and only if

Q0%,0%)71Q0%,0) = 2(0*,0°)1S(6*,0) for all 6 € O. (7)

(b) Assume, further, that for some 6y € ©¢ such that 5(90,90) is full rank, there does
not exist a non-trivial (non-empty, but strictly smaller than R¥) linear subspace

V C R* that is invariant for the whole family of symmetric matrices™

D= {D(e) = R(00,0)R(65,0).0 € O : det(3(6,0)) > o} ,

where R(0y,0) = S(0y,00)"/22(0y,0)S(6,0)"2 is a correlation function. Then
condition (7) is equivalent to Q(-,-) = AS(-,-) for some A > 0.

Two positive-definite matrices share an invariant subspace if and only if several eigen-
vectors of one matrix span the same sub-space as several eigenvectors of the other. Gener-
ically (that is, everywhere but a nowhere-dense subset) two positive-definite matrices
share no non-trivial invariant subspace. For the condition in part (b) of Theorem 3 to
fail requires something still stronger, namely that the same subspace be invariant for a
whole family of matrices indexed by 6. Thus, invariance generically reduces the class of

candidate priors to the one dimensional family Q(,-) = AX(-, -).

14See Appendix B for details, and a formal invariance argument.
15A linear subspace V C RF is invariant for a linear operator L if for any v € V we have Lv € V.

Invariant sub-spaces for a symmetric matrix L are the sub-spaces spanned by subsets of its eigenvectors.
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Special Case: Finite ©, continued Recall that in this case H, = Span {i} is a
(r — 1)k dimensional linear subspace of R™. Hence, h ~ N (u, i) has support H,, and
the inverse of & is well defined on H,. Consider a Gaussian prior p ~ N(0,Q) with
support #H,,. This implies that  is also rank (r — 1)k, with a well-defined inverse on H,,.
The posterior mean for p given h is thus (i’l + Ql>1 >1h.

The proof of Theorem 3 establishes that the integrated likelihood ¢* (6*) depends on
the data through (&, (6%)) if and only if the posterior mean for u (6*) given h depends
only on h (6*) . Given the formula for the posterior mean, the matrix (ifl + Q*1> e
must therefore be block-diagonal, with r blocks of size k& x k. We then show that,

'is block-diagonal

generically in the space of covariance matrices i, (i_l + Q_1> - >
if and only if 2 proportional to 3. O

While the condition in Theorem 3(b) holds generically, it can fail in cases where
the moments have special structure. For instance, suppose a researcher forms moments
based on two independent datasets, where one dataset is used to form the first group of
moments while the other is used for the rest. In this case ¥ will be block-diagonal, and
will imply two orthogonal invariant sub-spaces that are common across all 6. If these
are the only nontrivial invariant subspaces, the family of Q satisfying condition (7) is

two-dimensional, allowing a researcher to put different coefficients of proportionality on

two invariant sub-spaces.

3.2 Proportional Priors and Quasi-Likelihood

Motivated by Theorem 3, we focus on proportional prior covariance functions, Q(-,-) =
AS(-,-).%6 In this case

£ (0) = 00: 9,5, X) = |AO) " - oxp (—1u<e>'A<e>-1u<e>) |

for u(f) = 25¢ ()" g (0) + 1556 AO) = 25 [ ()] 2 0.0) [v ()] + L Var(9),
where the k x k-matrix valued function ¥ (-) = Cov(g(-),&)Var(£)~' depends on A and

¥.. Hence, for proportional priors the posterior distribution (6) takes a simple form.

16Gimilar to e.g. Jeffreys prior, proportional priors depend on the data generating process and so

violate the likelihood principal.
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The constant of proportionality A controls the strength of identification under the
prior. When A = 0 the prior implies that the mean function m is zero with probability
one, so nothing can be learned from ¢ and the posterior on 6* is equal to the prior. By

contrast, under the diffuse (A — 00) limit, the prior variance of m diverges. In this case

N

lim £(0:.9,,0) = [$(6)| - 20, 0)| - exp <—§g<e>’z<9,e>—1g<e>> . (8)

Hence, as A\ — oo, £* (f) converges to a transformation of the continuously updating
GMM objective function, multiplied by factors that do not depend on ¢ and so may be
absorbed into the prior. Note, in particular, that A enters (8) only through [¢(8)], so as
A — oo our default priors deliver posteriors of the same form for all choices of A.

The quasi-likelihood (8) was used by Chernozhukov and Hong (2003) as part of their
quasi-Bayes approach, discussed further in the next section. Motivated by the simplifica-
tions obtained by taking A — oo (e.g. the elimination of dependence on A) together with
other desirable properties discussed in the following sections, we recommend using this
limiting quasi-likelihood, absorbing |¢(6)| and | (6, 0) |7% into the prior to obtain a quasi-
posterior of the form (6) with £*(6) = exp(—3Q(6)) for Q(8) = g ()" = (6, 0)"g(0).

While (8) resembles a Gaussian likelihood, under weak identification the function
Q(0) will often be far from quadratic, implying highly non-normal quasi-posteriors for
the structural parameter 0. In strongly-identified settings, by contrast, the data rule out
values of # outside a small neighborhood of #*, allowing Taylor expansion arguments to
establish that the function () is approximately quadratic in # and the quasi-posterior
for 0 is approximately normal. Intuitively, the Gaussian form of (8) reflects that the
moment function, evaluated at a given point, is asymptotically normal, but under weak
identification this does not imply normality of the quasi-posterior for the structural pa-

rameter.

4 Decision Rules Based on the Quasi-Posterior

The last section derived a class of priors for the limit problem, and showed that they
imply the quasi-likelihood (8) as a limiting case. This section discusses how to use this

quasi-likelihood to construct decision rules. We first consider point estimation and other
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decision problems with no constraint on the class of rules, and then turn to statistical

tests, which impose frequentist size control as a side condition.

4.1 Estimation

We first consider quasi-Bayes estimates, or other unconstrained decision rules, which
solve the weighted average risk minimization problem over the class of all decision rules.
To minimize weighted average risk it suffices to minimize the posterior expected loss for
each realization of ¢, taking

o, L, 0)r(8) exp {1 (6)} d6
Jo, m(0) exp {—3Q ()} df

For instance, under squared-error loss L(a,0) = |la — 0|3, equation (9) delivers the

s(g) € argmin/ L(a,0)dr(0]g) = arg min
0o acA

acA

quasi-posterior mean. If # is scalar and we instead consider the check-function loss
L(a,0) = (1 — {0 < a})(0 — a), the optimal decision rule corresponds to the 7-th
quasi-posterior quantile. While the quasi-posterior 7(|g) is not in general available
in closed form, there is a large Bayesian computational literature on how to obtain
posterior draws (e.g. via Markov chain Monte Carlo). Given a sample of such draws,
we can then approximate the optimal decision rule by minimizing the sample average
loss. Chernozhukov and Hong (2003) provide a detailed discussion of computation of
quasi-Bayes decision rules (9).

Chernozhukov and Hong (2003) advocate the quasi-Bayes approach as a computa-
tional device for point-identified, strongly-identified settings where Bayesian techniques
are more numerically tractable than minimization, and show that the resulting estima-
tors are asymptotically efficient (again under strong identification). We have established
that the same quasi-posterior arises as the limit of proper-prior Bayes posteriors even
under weak identification. Appendix C shows that under further regularity conditions,
quasi-Bayes decision rules correspond to pointwise limits of proper-prior (and admissible)
Bayes decision rules, consistent with the conditions of Theorem 2. Section 5 establishes
the asymptotic properties for a feasible version of these rules. Given the range of desir-
able properties established for these rules, we recommend the use of quasi-Bayes decision

rules in settings where weak identification is a concern.
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Bayesian Approaches to GMM Several other papers have justified quasi-Bayes de-
cision rules (9) from a Bayesian perspective. Closest to our approach, Florens and Si-
moni (2021) consider Bayesian inference based on an asymptotic normal approximation
to a transformation of the data, and obtain the quasi-likelihood (8) as a diffuse-prior
limit. Unlike our analysis, however, they specify a Gaussian process prior on the finite-
sample density of the data X, rather than on the mean function in the limit experiment.
Earlier work by Kim (2002) obtained the same quasi-likelihood via maximum entropy
arguments, while Gallant (2016) obtains it as a Bayesian likelihood based on a coarsened
sigma-algebra. Unlike our analysis, none of these papers speak to questions of optimality.

Other authors have considered alternative Bayesian approaches for moment condi-
tion models that do not run through the quasi-likelihood (8). Chamberlain and Imbens
(2003) consider inference for just-identified moment condition models with discrete data,
while Bornn et al. (2019) consider discrete data and potentially over-identified moment
conditions. Both procedures have a finite-sample Bayesian justification, unlike our ap-
proach. Shin (2015) considers Bayesian approaches based on Dirichlet process priors and
exponential tilting arguments. Finally, Lazar (2003) discusses posteriors formed using
the empirical likelihood objective, and Schennach (2005) shows that a particular gener-
alized empirical likelihood (GEL)-type objective function arises in the limit for a family
of nonparametric priors.

It may be surprising that the quasi-likelihood (8) is simply a transformation of the
limiting GMM objective function, since there are many other objectives that can be
used to fit moment conditional models, particularly GEL approaches. Guggenberger and
Smith (2005) show, however, that under regularity conditions all GEL objective functions
are first-order asymptotically equivalent under weak (as well as strong) identification.
Since continuously updating GMM is a member of the GEL family, this implies that all
approaches in this family, including Bayesian empirical likelihood as proposed by Lazar
(2003), are equivalent to (8) in the limit experiment. Since the approach of Schennach

(2005) is closely related to GEL, it is likewise equivalent to (8) in the limit problem.!”

1"The equivalence proofs in Guggenberger and Smith (2005) extend directly to this case.
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4.2 Optimal Tests

Our results show desirable properties for quasi-Bayes decision rules, but Bayesian infer-
ence does not in general control frequentist size or coverage under weak identification. In
particular, while Chernozhukov and Hong (2003) show that credible sets formed based on
quasi-posterior quantiles have correct coverage when identification is strong, these sets
can badly under-cover when identification is weak, consistent with well-known results on
Bayesian inference for settings with identification failure (e.g. Moon and Schorfheide,
2012). Our results are nonetheless useful for frequentist inference, since Theorem 1 im-
plies that attainable asymptotic type-I and type-II error functions are bounded below
by the corresponding functions in the limit experiment. Hence, if we can characterize
optimal tests in the limit experiment, these bound the attainable asymptotic power.

In previous work (Andrews and Mikusheva, 2016) we developed a general technique for
constructing identification-robust tests based on a wide variety of test statistics. Different
choices of test statistic imply different power properties, however, and the optimal choice
of statistic remained an open question. Here, we characterize optimal tests.

Consider the problem of testing the null Hy : 6* = 6, against the composite alternative
H, : 0" # 6. For this problem it is natural to let A be the point evaluation functional
at 0y, A(m) =m (6y). Define p and h as in Lemma 1 and the point evaluation example.
There is no uniformly most powerful test in this setting, so we instead specify weights
7 (0*, 1) over parameter values in the alternative. We want to maximize weighted average

power (WAP), subject to controlling the rejection probability under the null

maX/Eg*yu[gp]dﬂ(H*,,u) subject to Eg, ,[¢] < o for all p € H,,
%)

where ¢ = 0 and ¢ = 1 denote non-rejection and rejection of Hy, respectively. Unfortu-
nately, the size constraint in this setting is challenging to work with, since it involves the
infinite-dimensional nuisance parameter p € H,. If we strengthen the size constraint to
require similarity,

Egyulp] = a for all p e H,, (10)

this simplifies the problem.'® Theorem S2.1 in the supplement to Andrews and Mikusheva
(2016) establishes that any test ¢ satisfying (10) must be conditionally similar, with

18WAP-optimal similar tests for the weak IV model have been studied by D. Andrews, Moreira, and
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Eg, [¢|h] = a for almost every h, and shows how to construct conditionally similar tests.

Together with the results above, this delivers WAP-optimal similar tests:

Theorem 4 Let T = W, where (*(-) is defined in (6). Let co(h) be 1 — «
quantile of the conditional distribution of T given h under 6y. Provided the distribution
of T given h is almost surely continuous, the test p*(6y) = I{T > co(h)} is similar.
Further, ¢*(60y) mazimizes 7 (0, u) = w (0) 7w (1)-weighted average power over the class of

similar tests, in the sense that for any other test ¢ with Eq, , [¢] = a for all p € H,,
fE&u [©* (00) — @] dm (0, 11) > 0.

Theorem 4 states that optimal similar tests reject when an integrated likelihood ratio
exceeds a conditional critical value. Implementation is straightforward so long as one
can efficiently evaluate the integrated likelihood ratio statistic 77 = t(g) for a given
realization of g(-). Specifically, to simulate the conditional critical value c,(h), we draw
& ~ N(0,%(6y,06p)) and take T* = t(g*), where g*(-) = h(-) + 2(-,00) 2 (6o, o) '¢*. The
conditional critical value ¢, (h) is the 1 —a quantile of 7™, and the test rejects if 7" exceeds
ca(h).

Note that while the test ¢* (6y) depends on the weight function =, it controls the
rejection probability for all parameter values consistent with the null. Hence, if we form

a confidence set by collecting the non-rejected values,

J e (0)(8)ad
CS={0cO:p"(0)=0}=<0:0"(0) > ,
ca(h)
this set has frequentist coverage 1 — « for 0* no matter the choice of w. Thus, while

we use priors to direct power, this confidence set is valid in the usual frequentist sense.

Comparing C'S' to the level 1 — a highest quasi-posterior density credible region,

cr-{oeo. ezt /ng):((ef) “r

for k(g)~! the a-quantile of the posterior density %, we see that the two sets

take a similar form, thresholding ¢*(#), where the confidence set chooses the threshold to

Stock (2006), Moreira and Ridder (2017), and Moreira and Moreira (2019), among others. Specialized

to linear IV, the method we propose here is equivalent to a particular class of priors.
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ensure correct coverage. In this sense, the confidence set is a natural complement to the

credible region, modifying the threshold to ensure correct coverage.

5 Feasible Procedures

The limit experiment studied in the previous sections treats ©y as known. In prac-
tice, however, the structure of weak identification, and thus the set ©g, is often un-
known. Moreover, we don’t observe the limiting process ¢(-), and don’t know X. Fea-
sible quasi-Bayes procedures replace them by the normalized sample moments g, (-) =
\/iﬁ > or o(Xi,-) and estimated covariance S3,. The researcher specifies a prior over the

whole parameter space ©, and for Q,(0) = g, ()’ ijl (0,0) gn (0) uses the decision rule

$n(gn) = arg min f@ L(a, O)m(0) exp {_EQn (9)} d9.

acA  [ym(0)exp{—3Q, (0)} db

This section shows that feasible decision rules (11) are asymptotically equivalent to

(11)

infeasible rules based on knowledge of ©y. In particular, the feasible quasi-posterior

S0\ Jam@®) exp{—5Qn(0)}do
7T(®|gn) - f@ ﬂ,(e) exp{—%Qn(e)}dG
exist infeasible decision rules that are asymptotically equivalent to (11) for a large class of

concentrates on neighborhoods of 0.1 Moreover, there

loss functions. These rules correspond to a prior 7° supported on ©, and a transformation
of the moments. Specifically, some of the original moments are used to estimate Og, while
the remainder are used to form the posterior on ©y. We focus on unconstrained decision
rules for brevity, but a similar analysis applies for tests, and sufficient conditions for
uniform asymptotic validity of tests are provided in Andrews and Mikusheva (2016).

To derive these results, we first assume that the moments, appropriately centered and

scaled, converge to a Gaussian process with consistently estimable variance.

Assumption 1 The distribution Py is such that ® (0) = Ep, [¢ (X;;0)] and X(-,-) are

continuous, and the determinant of 3(0) = X(0,0) is nonzero. Further, under P,

Gn() = gn () = vVn® () = G(-) ~GP(0,%),

~

and the covariance estimator 3, is uniformly consistent, supgceo HEn 0)—% (H)H —p 0.

Yiao and Jiang (2010) establish a similar consistency result for the case where the weighting matrix

does not vary with 6.
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We next assume that, on a neighborhood of ©, the model can be reparameterized in

terms of strongly identified parameter v and weakly or partially identified parameter .

Assumption 2 There exists a continuously differentiable function ¥(5,v) : 2 — ©* C O
where Oy C ©*, = = {(8,7) : B € B,y €T (B) C R} is compact, I (5,7) € O if and
only if v =0, and 0 lies in the interior of I' (B) for all § € B. There exist a (positive)
measure w(3,7) on Z such that w(0) on ©* is the pushforward of w (B,~) under ¥. The
conditional prior on y given 8 has a uniformly bounded density m., (v|B) that is uniformly

continuous and positive at v = 0, and [, dr(3) > 0.

Finally, we shorthand ®(8,v) = ®(J(8,v)) and ®(8) = ®(5,0) for all functions.

Assumption 3 The function ®(3,v) is uniformly (over 5 € B) differentiable in v at
v = 0. Further, for V (8) = % (8), J(B) =iV (B)'D (B)"'V (B) is everywhere positive
definite.

Assumption 1 is standard for asymptotic analysis. Assumption 2 imposes that on a
neighborhood of © there exists some (unknown to the researcher) re-parameterization
of the model in terms of § and v, where § indexes the weakly or partially identified
parameter, while v can be called strongly identified. The set ©y corresponds to v = 0,
and is parameterized by 8 € B. Han and McCloskey (2019) provide sufficient conditions
for such a reparameterization to exist. The mapping from (3, v) to 6 can be many-to-one,
and we impose very little structure on the set B, which may, for example, be a collection
of points or intervals. We also note that m (3, ) need not integrate to one, since ©* may
be a strict subset of ©. Assumption 3 requires that + be strongly identified, in the sense
that the Jacobian of the moments with respect to v has full rank at v = 0.

Theorem 5 Suppose Assumptions 1, 2, and 3 hold. If the prior w(0) has bounded density

on ©, then for any sequence c, — 0o, under sequences P, y local to Py in the sense of

(2) we have

: -1 Cn _
7r ({9 €0 : 2(0)2(0) 2 (0) = } ]gn> op(1). (12)
Moreover, for any bounded function c¢(6) uniformly continuous at Oy,

c exp {—3Q° 0
[ o ir(olg,) — DR (RN G _ a3)
° Jpexp {~3Q0(8) b am(8)
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where dr®(8) = ,(018)|J(8)|"2dn(8), QE(B) = g (B) M (B) gn (8), and
M@B)=2(B) " =S(B) V(B JB) V(B S(B).

Theorem 5 is a version of the Bernstein-von Mises theorem for weakly and partially
identified quasi-Bayesian settings. The GMM objective function @, () is bounded on
©p but diverges away from ©y. As (12) highlights, this forces the quasi-posterior to
concentrate on infinitesimal neighborhoods of G, corresponding to consistent estimation
of the strongly identified parameter . The rank k—p, matrix M (3) then selects the linear
combination of moments orthogonal to those used to estimate ~, and this combination is
used to form the posterior on 5. Unlike in the classical Bernstein-von Mises theorem, the
prior on O (i.e. on B) matters asymptotically, and is adjusted based on the precision of
the estimate for v as measured by J().2° Overall, we obtain that feasible quasi-Bayes
posteriors are asymptotically equivalent to infeasible posteriors based on a transformation
of the prior and moment conditions. This likewise implies asymptotic equivalence of

feasible and infeasible decision rules.

Corollary 1 Let the assumptions of Theorem 5 hold. Assume that the loss function
L(a,0) is Lipschitz in a and continuous in 0 over ©*, and that A is compact. Assume
further that for almost all realization of process G(8) ~ GP(0,%), the process L(a) =
[ L(a,9(8)) exp {—2G (B) M (B) G (B)} d=°(B) has a unique minimizer over A. Then

9 (0) — argmin 22 V) exp { 30U} dn(5)
' e { QU dno(9)

=P 5,(gn)-

Uniqueness of the minimizer L(a) is guaranteed to hold if the loss function is convex in
a. Sufficient conditions for uniqueness in non-convex cases are discussed in Cox (2020).

Overall, we obtain that feasible quasi-Bayes decision rules, computed without knowl-
edge of Og, converge to infeasible quasi-Bayes rules based on knowledge of ©y and a
transformation of the moments and prior. These rules are, in turn, the limit of sequences

of proper-prior Bayes decision rules in the limit problem by our previous results.

20See Kleibergen and Mavroeidis (2014) for related discussion.
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Example: Quantile IV (continued) As discussed above, in this example ©p =
{0 =(a,58) : a=qp, (Y —W'B)}. This set is one-dimensional, and can be parameter-
ized by . We may then define the strongly identified parameter as v = a—qp, - (Y —W'p3),
so U(B,7) = (v + aqp, (Y —W’'B), ), and 9(B,7) € Oy if and only if v = 0, as required
for Assumption 2. The remainder of Assumptions 1-3 hold under regularity conditions
on Py and 7(6). Hence, Theorem 5 and Corollary 1 imply that feasible quasi-Bayes deci-
sion rules (11), formed without knowledge of ©y, are asymptotically equivalent to rules

formed with knowledge of Py and a reduced set of moments. [J

6 Empirical Illustration

This section returns to quantile IV in the Graddy (1995) data, and reports the results from
a quasi-Bayesian analysis. Following Chernozhukov et al. (2009), we restrict attention to
a € 10,30] and 3 € [—10,30].2! We use a flat prior 7 (§*) on 6 = («a, 3), and calculate the
quasi-Bayes posterior distribution discussed in Section 5 via slice sampling (Neal, 2003).
The first row of Figure 3 plots a sample from the joint posterior, along with the marginals
for a« and [B. Three features emerge clearly: first, the quasi-posterior distribution is
highly non-normal, and is indeed bimodal, consistent with weak identification. Second,
the quasi-posterior mean differs considerably from the GMM estimate, again consistent
with weak identification. Third, despite weak identification of o« and [ separately, the
quasi-posterior is concentrated around a lower-dimensional set, as expected given the
posterior consistency for ©, established by Theorem 5.

The posterior bimodality observed in Figure 3 stems from a combination of two forces.
First, if we consider the profiled quasi-likelihood for o and 3 separately, as shown in the
second and third panels of Figure 4, we see that it is multimodal, albeit with a pronounced
global maximum at the GMM estimate. As is clear from inspection, however, both
profiled quasi-likelihoods are less right-skewed then their respective quasi-posteriors. The
additional skewness of the quasi-posterior reflects that the quasi-likelihood becomes less
steeply curved in the strongly identified direction as o and  increase, and so remains high

over a wider region, as shown in the first panel of Figure 4. When we integrate against

21This choice of parameter space is discussed in the working paper version, Chernozhukov et al. (2006).
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Figure 3: Joint and marginal quasi-posteriors for quantile IV, 7 = 0.75, based on Graddy (1995) data.
The results in the first row are based on the continuously updated GMM objective following Cher-
nozhukov and Hong (2003), while the second row is empirical likelihood quasi-posterior proposed by
Lazar (2003), and the third row is the exponentially tilted empirical likelihood posterior proposed by
Schennach (2005)

the prior, this increases the posterior mass assigned to large values of a and . This effect
is captured in the |J(8)]"2 term in Theorem 5, which shows that quasi-posterior assigns
more mass to regions where the strongly-identified parameter is less precisely estimated.

While we have focused on quasi-Bayes procedures (11) based on the continuously
updating GMM objective function, as noted in Section 4 quasi-Bayes procedures based on
other GEL-type objectives are equivalent in the limit experiment. The second and third
rows of Figure 3 plot the the empirical likelihood quasi-posterior proposed by Lazar (2003)
and the exponentially tilted empirical likelihood posterior proposed by Schennach (2005),

along with the corresponding estimators. In both cases the results are qualitatively

27



Quasi-Likelihood

Profiled Quasi-Likelihood for a

. Profiled Quasi-Likelihood for 8

0.7

0.6

0.5

0.3

0.2

U‘LL‘_ 0.1

-10 0 10 20 30 0 5 10 15 20 25 30 -10 0 10 20 30
Iéi o Iéi

Figure 4: Quasi-likelihood exp(—3Q,(6)) for quantile IV, 7 = 0.75, based on Graddy (1995) data. Note
that this is a transformation of the GMM objective plotted in Figure 1.
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Figure 5: Joint and marginal quasi-posteriors for quantile IV for median, 7 = 0.5, based on Graddy

(1995) data

similar to those obtained based on continuously updating GMM.

Finally, to illustrate the impact of varying identification strength on the quasi-posterior,
we consider inference on the median 7 = 0.5, which might be expected to be more strongly
identified than 7 = 0.75. Consistent with this intuition, the quasi-posterior for the me-
dian (plotted in Figure 5) is much more concentrated, and the GMM estimate is closer to
the quasi-posterior mean. Interestingly, however, even in this case the quasi-posterior is
clearly non-normal, suggesting that strong-identification asymptotic approximations may
not be fully reliable. Consistent with this possibility, in simulations calibrated to this
application (and reported in the Appendix) we find that the distribution of the GMM es-
timator is clearly non-normal, and that the weak-identification asymptotic approximation
again better matches the finite-sample distribution.

While one could use the quasi-posteriors discussed above to form credible sets, as
discussed in Section 4.2 these sets will not in general have correct frequentist coverage.

To ensure coverage, one can instead compute identification-robust confidence sets. In
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this application the resulting confidence set, shown in Appendix D, closely resembles the

95% highest posterior density set.
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Appendix A: Proofs

Definition 3 The Reproducing Kernel Hilbert Space (RKHS) H associated with ¥ is
a space of functions from ©g to RF, which is obtained as the completion of the space

spanned by functions of the form ijl X(-,0;)b; for any finite set of constant vectors
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{b;} C R* and parameters {0;} C Oy, with respect to the scalar product (-, )+ defined on

the basis set as

s s s s

<ZZ('=‘9j)ijzZ( De)wn = ZZb;Z QJ’QZ

j=1 =1 j=1 i=1

Lemma 2 The image of T(P,) under transformation (4) is H.

Proof of Lemma 2 A score f(X) =3, #(X,0;)a; corresponds to the function

m() = IE’Po [f(X)¢(X’ )] = ZEPO [¢(X’ )¢(X7 gi),ai] = Z E('v 92)a

For two scores f1(X) = >0 | ¢(X, ;) a; and fo(X) = ijl ¢(X,07)'b; and corresponding

)

mean functions my(-) = >_7_, X(+,0;)a; and my(-) = ijl %(-,05)b; we have

=1

s s*

B (A0 = 33 alEn [9(X0060X.0] by = 5 3 alS(6. )b, = (mr,mabu

i=1 j=1 i=1 j=1
This implies that there is an isomorphism between H and the completion of the space
spanned by scores of the form f(X) = > 7_, ¢(X,0;)'b; in La(Fy).

It remains to show that for any f+ € T(P,) that is orthogonal to the completion
of the space spanned by scores of the form f(X) = >>7_, ¢(X,0;)'b; in La(Fy) we have
Ep[fH(X)p(X,-)] = 0 € R¥. Indeed, ft is orthogonal to a’¢(X,0) for any vector
a € R* and any 6 € ©g. Thus Ep [f+(X)d'¢(X,0)] = a’m() = 0. This also shows that

‘H* coincides with the completion of the space spanned by scores of the form f(X) =

Z;:l ¢<X, 9])’bj 1n LQ(P())

Definition 4 Let {¢;} be a complete orthonormal basis in T'(Fy). Define an experiment
&% as the one of observing the (infinite) sequence of independent random variables W; ~

N (Ep,[f(X)p;(X)],1), with parameter space {(0%, f) : 0* € O, f € Tp-()}.

Lemma 3 (Theorem 3.1 in Van der Vaart, 1991) Consider a sequence of statistics S,

which has a limit distribution under £

n’

in the sense that under any P, ; for f € T(F),
Sn (X1,...., X)) = S as n — oco. Assume there exists a complete separable set Sy such
that S¢(Sp) = 1 for all f € T(Fy). Then in the experiment £ there exists a (possibly
randomized) statistic S* = s* ({W;},U) for a random variable U ~ U [0, 1] independent
of W; such that S* ~ Sy under f for all f € T(F).
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Proof of Theorem 1 Define the orthonormal basis {¢;(X)} of T'(F%) to consist of
the union of an orthonormal basis {¢5(X)} of H* and an orthonormal basis {¢; (X)} of
H~+. The limit experiment % corresponds to observing the union of two sets of mutually

independent random variables:
W}~ N (Eg[f(X)p;(X)],1) and W ~ N (Ep[f(X)e; (X)],1) .

Due to Lemma 2 we have Ep,[f(X)@;(X)] = (m,¢})n. The experiment of observing
only Wy ~ N ((m, ©5 ) 1) is equivalent to the Gaussian Process experiment &} p (see
e.g. Theorem 4.3 of van der Vaart and van Zanten, 2008).

By independence dPy(W*, W) = dPp(W*) x dP; (W+). The loss function depends
only on #*, and the parameter space for (6%, f*, f*) is the Cartesian product {#* €
Oo, [* € Hp.} x {f*+ € H}. The risk of a decision rule § is

R(0%, f) = RO, f*, f*) = E; [LOW*, WH),0)] .

We claim that for any fixed value f there exists a decision rule in the experiment £ p
with risk R(6*,m) = R(6*, f*, f1+) for all 0, f*) € {0* € Oy, f* € Hj;.}, where m
corresponds to f*. Indeed, since experiment £fp is equivalent to observing only the
W} variables, it is enough for each realization W* = w to draw a random variable
(W) from distribution dP;. (which is fixed) and produce a randomized decision as

§(w) = 6(w, W1). The last line of the result then follows from the portmanteau lemma.

Proof of Theorem 2 The distribution of g for any m € H is dominated by the
distribution under m = 0. Moreover, the form of the likelihood ratio for Gaussian
processes (see e.g. Theorem 54 in Berlinet and Thomas-Agnan) implies that condition
(1) in Section 4A.1 of Brown (1986) holds. Our assumptions likewise imply condition (2)
of Brown (1986). This result is thus immediate from Theorem 4A.12 of Brown (1986).

Proof of Lemma 1 Denote by G(-) = g(-) — m(-) the mean-zero Gaussian process
with covariance function ¥. The regression of the process G on the anchor A(G) defines

a Pettis integral
V() = [ (); s ()] = E[GHAG)E[AG)AG)] € HE, (14)
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where each column is a function in H (see Van der Vaart and Van Zanten, 2008,
for discussion) and depends only on ¥ and A. Let H, be the linear sub-space of
H orthogonal to {¢1(:),...,¢x(-)}. For each m(-) € H, define pu(-) to be the projec-
tion of m on the linear sub-space H,. The properties of Pettis integrals imply that
(1, m)y = [A(G)A(G)] " A(m) and (¢, ¥}y = [A(G)A(G)]™", which yields the orthog-

onal decomposition

For any 0* and m € Hg+, m(6*) = 0, so A(m) = —[¢(6*)] ' u(6*). We can consequently

re-write m(-) as a function of (0%, u),
m(-) = () = () (07)] 7 u(07).

This establishes a one-to-one correspondence between {(6*,m) : 6* € ©g,m € Hyp-} and

(6%, 1) € ©g x H,,. Moreover, H,, is the RKHS generated by the covariance function
2(61,02) = S(61,62) — p(0)E[A(G)A(G)] $(6)'

Define the random vector ¢ and stochastic process h by & = A(g) and h(:) = g(-) —
Y(-)€. By construction & ~ N(v(0%, 1), 3¢) for v(0*, u) = —[¢(6%)] 'u(6*) and X =
E[A(G)A(G)'], while h(-) ~ GP(11,%). Moreover, ¢ and h are jointly normal and uncor-

related, and therefore independent.

Proof of Theorem 3 According to Neveu (1968) the conditional distribution of £ ~
N(=[(0%)] 7 u(6%), X¢) given the realization of h = u+GP(0, i), assuming p ~ GP(0,Q),
is Gaussian and the conditional mean coincides with the best linear predictor.

Let p(-) = E[¢h(-)] = —[¢(0)]7'Q(6*, ), and note that E[h(6;)h(62)] = Q(6y,6,) +
5(91, 0s). Denote by K the RKHS corresponding to the covariance function Q+§, and by
L(h) the subspace of L, random variables obtained as the closure of linear combinations of
h. Define £* as the projection of £ on to L(h). By definition it is the best linear predictor
of & given h, and E[¢h(-)] = E[¢*h(-)] = p(-). Lemma 13 in Berlinet and Thomas-Agnan
(2004) implies that p(-) € K. Denote by ¥ the canonical congruence between L(h) and
IC, defined by

v (Z aﬂ(@)) =) a;(26;,-) + 2(6;,-) € K,
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and extended by continuity. Then £* = ¥~!(p()). See Section 3 of Berlinet and Thomas-
Agnan (2004) for further discussion.
To prove (a) we fix #*, assume that condition (7) holds, and show that the best linear

predictor depends on (&, g(6*)) only. Condition (7) implies that
0", ) + 30", ) = (I + 5(6%,60)0",0) 1) (8", )

Thus,

-1

p() = —[(8) ™ (I + (6, 69)0060",0)7) [0 ) + 300",

and the canonical congruence has the form
- -1
& =0 p() = —[(O") " (1o+ S07,67)006%,67)7) ("),

which depends on the data only through h(6*) = g(6*) — ¥ (0*)&.

Now let us assume that for each 6* the likelihood depends only on (£, g(0*)) and prove
that (7) holds. Since the conditional distribution of £ given 6* and £* is N (£*, X¢), £* must
depend only on (£, g(6*)) or, equivalently, on (£, h(6*)). Linearity of £* in h then implies
that there exists a non-random k x k matrix B(6*) such that U~=!(p(-)) = B(6*)h(6*). By
the definition of the canonical congruence this implies p(-) = B(6%) [Q(67%,-) + 2(6%, )] .
Since p(+) = —[(67)]71Q(6*, ), however, [1h(8%)]72Q(0*%,-) = B(0*) |Q(6*,-) + 2(6*, ).
Since 1(0*) has full rank, both sides are invertible when evaluated at 6*, and some
rearrangement yields (7). This finishes the proof of (a)

To prove (b) let B = Q(6y, 6p). Condition (7) implies that

Q(60,60) = B(0o, 00) "2 (65, 6) and Q(6,6)'Q(6, 6p) = (6, 0)713(0, 6,).
The transposed equations are
Q(6,60) = (6, 00)2(6o, 60) "B and Q(6, 0)Q(6,6)~" = S (6,,0)2(6,6) "
We can calculate (6, 0)2(0,0)71Q(6,6,) in two ways, so
3(6, 0)S(6,0)'S(6, 0) (6o, o) 1B = B (6, 60) " (6o, 0)2(6,0) 1 2(6, 6.
Pre and post multiply the last equation with (6, o) ~/2 and let
B = %6y, 0)) "> B (6, 60) /2.
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We obtain that B commutes with a whole family of symmetric matrices : D(f)B =
ED(@). Assume B has r distinct eigenvalues. Since B is symmetric, all eigenvectors
corresponding distinct eigenvalues are orthogonal. Let Vi,..., V,. be the orthogonal sub-
spaces spanned by eigenvectors of the B corresponding to eigenvalues Ay, ..., A, respec-
tively. Consider a symmetric matrix D(#) € D that commutes with B. Take any v; € V;
and v; € Vj:

v!D(0)Bu; = \jv'D(0)v; = v.BD(0)v; = A, D(0)v;

This implies v;D(#)v; = 0 for any i # j. Thus D(8)v; € V}, and Vi,..., V, are invariant
subspaces for D(#). Thus, we proved that Vj,...,V, are invariant spaces for the whole
family of operators D. Under the conditions of the lemma this implies that B has single
eigenvalue A > 0, and thus Q(-,-) = AS(:, ).

Proof of Theorem 4 Similarity of ¢* (6) follows from Andrews and Mikusheva (2016).

For any pu € H,, and any test ¢,

[ JEestln o an 0) = B ] = B, | LD,

Since & = g (6y), ¢ (u,00;&) does not depend on p, and is equal to ¢* (6y). Lemma

2 of Andrews and Mikusheva (2016) implies that @ (6y) = 1 {% > Cq (h)}

maximizes E, [p] over the class of size-a similar tests, where é, (h) is the 1 — a quantile

ffz 0)d7r )f(R)
00)€(psh)

that in ¢* (0y) only through terms depending on h. These can be absorbed into the

conditional on h under the null. The test statistic in ¢ (6p) differs from

critical value, so ¢ (6y) = ¢* (6p) .

Proof of Theorem 5 By contiguity it is enough to prove the statement under F.
Denote Q(8) = ®(6)'S(6) L@ (6). Due to Assumption 1, 3,(6)~! is uniformly bounded
in probability and G,(-) = GP(0,%), thus maxgeo Gn(6)'S,(0) G, () = O,(1). Since
gn(0) = /n®(0) + G,(0) we have

5Qu(6) < nQO)(1 + 0,(1)) + max G (6)S.(6) ™ G0
52(0) 2 QO +0,(1)) — max Gu(6),(0) o 6).
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Define a set O;, = {# € ©: Q(f) < 2} for some § > 0 and ©° = {6 € ©: Q(0) > =}.

fGSn 7(0) exp {—1Q, (0)} db <oy). f@)ﬁn 7(0) exp{—2Q(6)}dO
Jo,, m0)exp {—3Q. ()} ~ " Jo,, m(0)d0

Due to uniform differentiability of ®(3,~) there exist positive constants C;, Cy and small

™ (©5,19x) <

enough € > 0 such that for all § € OF = {0 = J(B,7) : |7l < e} we have Cy||y|]* <
Q(B,7) < Col|7||* . For large enough n we have O;,, C ©*. Thus,

/ 7(0)do = / / 7y (v|8)dydr (B) > C’/ dy>Cn™ 2.
Os.n BJQBMLE i<

I
Con

Divide the integral over ©¢ into integrals over ©¢ N ©* and over ©¢ N (O©*)¢, where
g Cn g Cn 15 Cn e ?

(©1)° = (©\ ©7). We have ©¢ NOr C {6 =3I(8,7) : Cofv||* > =}. Denote by @ the

non-zero minimum of Q(#) over (0%)¢. Thus,

Jor () exp {=5Q(0)} d " o 2
f@&n 7(0)do <Cnz= (eXP {‘5@} + /02”72202 exp{—nC1|7|| }dv) <

<o(l) + / exp{—Cily|[2ydy — 0.
CallylI?>en

In the last line we used the change of variables y = \/ny and integrability of exp{—||y||*}.
This proves (12), and implies that for mg_ the prior restricted to ©.,, the posterior
me., (Tlgn) = % defined on sets T C © is asymptotically the same as 7(Y|gy).
If ©» — 0, then due to compactness of ©, for large enough n we have ©., C ©*. Thus,
we can treat the parameterization described in Assumption 2 as applying to the whole

parameter space O.

The above implies that for any € > 0 there exists ¢ large enough such that

Py 1
P {s%pn /5§||72 exp {—ﬁQn(ﬁ,v)} > 5} <e, (15)

n

and also supg P {|[N(0,J7'(8))|| > 6} < e. Define g)(3,7) = gn(B) + v/nV(3)7 and
R.(B,7) = g.(8,7) — ¢°%(B,7). Let us show that

sup sup |[|R,.(8,7)] = 0. (16)

2.0
Boln2<

Indeed, [ Ra(8, 1)l < vAl®(3,7) — V(B + [Ga(B,7) — Gu(B)]. We have that
SUPg SUP ., 2< s [|Gn(B,7) — Gu(B)|| =P 0 due to stochastic equicontinuity. Uniform dif-

ferentiability implies supg sup,j2<s [ ®(8,7) — V(8)7[| = 0.
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Denote Q°(3,7) = ¢%(8,7)271(B)g% (8, ). Equation (16) implies that

sup sup
Bolvr<s

1
1o { - 5(@u(5) - QBN | . (17
Indeed, the left-hand side is bounded above by

sup sup [Qn(B,7) — Q%(B,7)| <

206
Bzt

<sup sup {[(gn + 907 Bl + 190571 (8,7) = ST (B))ghl | =7 0.

20
Bonz<e

The last convergence follows from continuity of covariance function ¥, equation (16), and
boundedness in probability of g,, ¢° and S~ over {||y||? < o1
Denote Q(B8) = g, (B)' M (B) gn (8). Let us define a projection operator P(3) =

1

S22 (B)V(B)J(8)~'V(B)'E"2(8). Notice that M(B) = I~ (8)(I — P(B))S~3(B).
Q%(8,7) =g2(8,7) M (B)g2(5,7) + g2(B.7)' S~ (B)P(B)E™2(8)g% (B, 7) =
=Q5(B) + (G*(B) + vnv) T (B) (G*(B) + V) ,

where G*(3) = J(B)"'V(B)'271(B)G.(B). Integration of the Gaussian pdf gives

. exp {_% (G(8) + V)" J(B) (G*(8) + ﬁv)} dy =

IvlIP< 2
e (Jze). 70| < o} PN 0.7 ) 1 <6},
where § was chosen large enough that ¢(6) = P {||N(0,J71(8))|| <} > 1 —e. Thus,

R e G ORI %Qﬁ(ﬁ)}’%”o-

sup
B

Joining together last statement with equations (15) and (17) we get

oF [ e {50080 iy = B L espl—50080) | -0

sup
B

Given statement (15), for ¢(3,~) satisfying assumptions of Theorem 5 we have

sup

o [ g e {5080 |1 =01 e {502 }| 0

Assumption 2 implies [, 7r7(0|ﬁ)|J(ﬁ)]’% exp{—3Q5(8)}dr(B) is stochastically bounded
aways from zero. Thus, (13) holds. O
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Proof of Corollary 1 For each a € A we can apply (13) to ¢(f) = L(a,d). Since
L(a,0) is Lipschitz in a and A is compact, this implies

J5 L(a,9(8,0)) exp {—3Q5(B) } dr°(B)
Jyexp { ~3Q0(8) } ax°(8)
We also have weak convergence of the process

Ji 0 95,0)) exp {~ 3Q0(3)} ' (5)
Jwexp {=3i(8) } an"(8)

on A. This implies [y L(-,0)dn(6|g,) = L(:). Due to Theorem 3.2.2 in Van der Vaart

—P 0.

sup /L(a,@)dﬂ(9|gn)—
acA |JO

= L(-)

and Wellner (1996), (s,,(g,), s%(gn)) = (argmin,. 4L(a), argmin,. ,L(a)). Thus, s,(g,) —
$9(gn) =7 0. O

Appendix B: Invariance Argument

We seek default priors on p that yield reasonable decision rules when combined with
many different priors on #*, including priors with restricted support O € ©,. For any
such prior 7w(0*), define a corresponding restricted model with parameter space O x H,.
Intuitively, by specifying a restricted-support prior m(6*), a researcher limits attention to
the restricted model.

We next introduce a group of transformations. Define H .6 to be the linear subspace

of functions in H, that are zero everywhere on é,
Hu,éz{,MG"H#:;L(G):OforaHHEé}.

The decision problem in the restricted model is invariant with respect to the group of
transformations that for i € H, g takes (§, 1 (-)) — (§, 1 (-) + it (-)) in the sample space,
and (0%, u(+)) — (0%, u(+) + a(+)) in the parameter space. See Chapter 3 of Lehmann and
Casella (1998) for an introduction to invariance in decision problems.
A maximal invariant in the parameter space under this group of transformations is
0%, 1 (-)I{- € ©} ). The statistic (5, h()I{- € (:j}) is also invariant, and is sufficient for
0%, 11 (-)1{- € ©} ). Hence, once we restrict ourselves to invariant decision rules, it is

without loss (in terms of attainable risk) to limit attention to decision rules that depend

on the data only through <§, h(-)I{- € é})
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By definition, Bayes decision rules in our setting minimize the quasi-posterior risk

i | L(a,0)t*(0)dn(0)

acA [ (+(0)dn(0)

for almost every realization of the data. Motivated by the invariance of the restricted

model, we seek default priors m(u) such that for all priors 7w (6*) with restricted sup-
port © C Oy, the joint prior m(0*)m (1) admits Bayes decision rules depending only on
(&1 ()1{ € 8}),

Definition 5 A prior m(u) is emphinvariance-compatible for action space A and loss

function L if for all O C ©o and all priors w(0*) with support é, there exists a Bayes
decision rule that depends on the data only through <§, h()I{- e é})

Priors 7(u) such that £*(6*) depends on the data only through (&, h(#)) are invariance-
compatible for any (A, L). For unrestricted action spaces and loss functions, the converse

(up to scale) holds as well.

Theorem 6 A prior w(u) is invariance-compatible for all (A, L) pairs if and only if
for any 0 € ©q the integrated likelihood ¢* (0), defined in equation (6) in the main text,

depends on the data only through (&, h(0)), up to scale.

For Gaussian process priors on p, £*(f) corresponds to a Gaussian likelihood for £
with mean equal to the best linear predictor based on A(-). In this case there is no scope

for a data-dependent constant of proportionality, and 7(u) is invariance-compatible if

and only if ¢* (§) depends on the data only through (&, h (6)).

Proof of Theorem 6 The “if” part of the statement is immediate. For “only if,” first
consider the case where © = {1,6,}, A = {a1,a,}, and

[; if0=20;, and a # a, for j € {1,2};
P R Jfor j € {1,2)

0 otherwise,

so an incorrect decision incurs a loss ;. Bayes decision rules must take

;

0(01)  lom(8s).
{1} i 757 > s

e 0(01) _ lom(0s).

ce (L2} i Egy =itey
e 0(01) _ Lam(82)

\{2} if e*(eé) < l?w(@?)’



for almost every realization of the data. Thus, we see that the optimal action depends on
the data only through (&, h (01),h (6;)) for all values of [y, l5 if and only if the integrated
likelihood ratio ¢* (01) /¢* (02) depends on the data only through (£, (01),h (62)).

Since we can repeat this argument for all ;, 6 € O, we conclude that for 7(u) to

be invariance-compatible, it must be the case that for all 8, 6, € O

£ (01)
£+ (02)

=7 (& h(01),h(03);61,02),

for some function 7. This implies that for all 6y, 05, 03 € O,

(& h(61),h(0s);061,03)
(& h(03) 1 (02) ;05,65)

Hence, the right hand side does not depend on the value of h(f3), and in particu-
lar is the same as if h(f3) = 0. For a fixed value § € Oy, define r(£,h(0;),6;) =
T (f, h(60y) ,0;91,5> , and note that

f(ﬁ,h(&l),h(Gz) ;91,92) =

" (02)
(&, 7 (62) ,02)
where the right side cannot depend on 5. Thus ¢* (0) o< r ({,h (0),60). O

*(6,) = " r (& h(6h),01),

Appendix C: Properties of Bayes and Quasi-Bayes Rules

Admissibility of Proportional Prior Rules In finite-dimensional settings (specifi-
cally, settings where the covariance function 3 has a finite number of nonzero eigenvalues)
choosing Q) = AY implies that 7 (1) has support H,,. In infinite-dimensional settings, by
contrast, 7 (p) assigns probability zero to H,, — see Section 3.1 of Berlinet and Thomas-
Agnan (2004). It may not therefore be obvious that the resulting Bayes decision rules
are admissible.

This section shows that admissibility continues to hold under a weak continuity con-
dition. Specifically, for ||-|| the Euclidian norm, let |[u|| . = supyee, |[1£ ()| be the sup

norm, and define H,, as the closure of H,, under |-||_ . For a metric dy on Oy, define

d((8, 1), (0 1)) =do (0,6") + Il — 'll

on Oy x H,. Let S be the class of decision rules whose risk functions Eg, [L (s (g),0)]

are continuous with respect to d.
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Theorem 7 Form (0,1) =7 (0) 7 (1), where w(0) has support Oy and m (u) corresponds
to u~ GPpP (0, Ai) with A > 0, any decision rule s, € S with

[ EoslL (52 (0).0) dm 6.0 =i [ Ean LG () 0)dm (o) (19)

is admissible relative to S and parameter space Oy X H,,.

Proof of Theorem 7 Suppose there exists s € S that dominates s,. Since § dominates

sy, and the risk function is continuous, the set

{(0.1) € © X Ty : Bgyu[L (55 () .0)] — Bau[L (3(9) .0)] > 0} (19)

is nonempty and open, while the set

{(0.1) € © x Hyy : Eou[L (52 (9),0)] — Eou [L(5(g),0)] <0} (20)

is empty. By Lemma 5.1 in van der Vaart and van Zanten (2008), 7 (u) has sup-
port ﬁ#. From the definition of d, 7 (0, ) must therefore assign positive mass to
(19). Since (20) is empty, this implies that [Eq, [L (sx (g),0)] dm (0, u) strictly exceeds
[ Eq, [L(5(g),0)]dn (6, p). We have obtained a contradiction with (18).

Limit-of-Bayes We obtain the quasi-posterior of Chernozhukov and Hong (2003) as
the limit of a sequence of posteriors for proper priors. Here, we show that under the
conditions similar to Theorem 2, quasi-Bayes decision rules are likewise the pointwise
limit of the corresponding Bayes decision rules, and that the same holds for their risk
functions. To state this result, consider any sequence of finite values A\, — oo as r — oo,
define , (6, u) = 7 () m. (1) to be the corresponding sequence of priors, and let s, be

the corresponding sequence of Bayes decision rules,
[ L(a,0)t:(0)dn(6)
[ € (0)dr (9)

and s, (g) the quasi-Bayes decision rule.

Sr, (g) € argmin, 4 = argmin, 4 / L(a,8)¢ (0)dr(0),

Theorem 8 Suppose that A is compact and convex, that L (a,0) is uniformly bounded
as well as continuous and strictly convex in a for every 0, and that 3 (0, 0) is everywhere

full rank. Then s..(g) = S (9) for every g and
B, [L (sx, (9),0)] = Bou [L (5ry (9),0)] for each (0, 1) € Op X M. (21)
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Proof of Theorem 8 Recall that % (6) = |A.(6)]7% - exp (—Lu, () An(6) " u.(6)),

where u,(6) = 250 (0) ' g(0) + i AB) = 25 [0 ()] =0,0) [0 (©)"] +

Tll\rVar(f). Since the minimum eigenvalue of ¥ (6,6) is bounded away from zero by

compactness of O, and ¢ (-) is bounded, we have:

[

£0) > . (0) = 100) - [90.0)* - exp (- 3a(0)/516.6)4(0))

uniformly on ©y. Since the loss function is bounded,
/L (a,0) 05 (0)dr (0) — /L (a,0) 0% (0)dr (0) uniformly on A,

which, since the loss is strictly convex, implies that s. (¢9) — sq. (¢g). Finally, (21)

follows from another application of the dominated convergence theorem.

Appendix D: Simulation Design and Additional Results.

Simulation Design This section describes the simulation design used to produce Fig-
ure 2 in Section 2.1. We base our simulations on the Graddy (1995) data. In particular,

for our data-calibrated simulations, we:
1. Estimate 0 using continuously updating GMM.

2. Draw (W)Y, Z) from the empirical distribution, and generate new outcomes Y*
by adding normal noise with standard deviation equal to one-tenth that of Y, i.e.

A withng(O,ﬁ@*(Y)).

3. Use exponential tilting for find weights w; on the observations {W;,Y;, Z;} in the
original sample such that the quantile IV moments, evaluated with the observations

constructed in step 2, hold exactly at 0.

4. Draw samples {W,Y*, Z} with sampling weights w; as in step 3, and outcomes Y™*

as in step 2.

This construction ensures that (i) Y is continuously distributed, as necessary for condi-
tional quantiles to be uniquely defined and (ii) the (over-identified) GMM moments hold
exactly at the value 6 estimated on the original data. Denote the resulting distribution

by P*.
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To construct the distribution F,, we take the distribution P* and, as described
in Section 2, multiply all entries of Z but the constant by a mean-zero (specifically,
Rademacher) random variable. This construction ensures that Py dominates P* and, as
discussed in the text, that 0" is set-identified under F. To construct P, ;, we draw from
a mixture between Py and P*, with weight %1 on P*. Hence, for the original sample

size (n = 111) P,y = P*, while as n — oo, P, ; converges to I%. In particular, P, ;

dpP*
dPy

satisfies equation (2) for f o — 1. Finally, to compute GMM estimates in each draw
of simulated data, we run an MCMC algorithm (specifically slice sampling), and report
the parameter values yielding the minimal objective function value encountered as our

estimate.

Additional Empirical Results Figure 6 plots the 95% conditional confidence set
formed by inverting our weighted average power optimal tests, along with the 95% highest
posterior density set. The conditional confidence sets do have asymptotically correct
frequentist coverage and use quasi-posterior only to form a powerful test statistics. The
95% highest posterior density set does not have frequentist guarantees and is a Bayesian
object. In this application the two sets have a quite similar shape, but the confidence set
is slightly smaller, covering 4.74% of the parameter space as compared to 4.82% for the
highest posterior density set.

Figure 7 plots the small sample distribution of the GMM estimate for the median,
7 = 0.5 and weak- and large-sample asymptotic distributions. We again see that the

weak-asymptotic approximation appears substantially more accurate.
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Figure 6: Quasi-Bayes 95% highest posterior density set, and 95% conditional frequentist confidence set,
for 7 = 0.75 based on Graddy (1995) data
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Figure 7: Finite sample distribution of GMM estimator in simulations calibrated to Graddy (1995) data,

along with weak- and strong-asymptotic large-sample distributions. Based on 1000 simulation draws.
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