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Laplace’s demon in biology: models of evolutionary1

prediction2

Abstract3

Our ability to predict natural phenomena can be limited by incomplete information. This issue is4

exemplified by ‘Laplace’s demon’, an imaginary creature proposed in the 18th century, who knew5

everything about everything, and thus could predict the full nature of the universe forward or6

backward in time. Quantum mechanics, among other things, has cast doubt on the possibility of7

Laplace’s demon in the full sense, but the idea still serves as a useful metaphor for thinking about8

the extent to which prediction is limited by incomplete information on deterministic processes9

versus random factors. Here we use simple analytical models and computer simulations to10

illustrate how data limits can be captured in a Bayesian framework, and how they influence our11

ability to predict evolution. We show how uncertainty in measurements of natural selection,12

or low predictability of external environmental factors affecting selection, can greatly reduce13

predictive power, often swamping the influence of intrinsic randomness caused by genetic drift.14

Thus, more accurate knowledge concerning the causes and action of natural selection is key15

to improving prediction. Fortunately, our analyses and simulations show quantitatively that16

reasonable improvements in data quantity and quality can meaningfully increase predictability.17

Keywords: prediction, selection, genetic drift, environmental stochasticity, randomness, deter-18

minism, simulation models19

Introduction20

Prediction is a critical component of the sciences, and a major theme in evolutionary biology. For21

example, instances of repeated, parallel evolution in response to similar environmental pressures22

can provide evidence of predictable evolution by natural selection (e.g., Campbell-Staton et al.,23

2020; Chaturvedi et al., 2018; Chevin et al., 2010b; Colosimo et al., 2005; Ferris et al., 2021; Haenel24
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et al., 2019; Martin and Orgogozo, 2013; Rêgo et al., 2019; Soria-Carrasco et al., 2014; Stuart et al.,25

2022). In contrast, idiosyncratic outcomes can indicate constraints on the power of selection.26

At the core of this issue is the extent to which evolution is driven by deterministic versus ran-27

dom processes (Lenormand et al., 2009; Nosil et al., 2020; Sober, 1984). Resolving this question28

concerning the predictability of evolution is not only of great basic scientific interest but also29

has practical implications for forecasting organismal responses to natural and human-induced30

environmental change, the planning of plant and animal breeding programs, and the design of31

medicines and strategies to combat the spread of disease. In the end, all predictions are really32

probability distributions with breadth (e.g., variance) reflecting our uncertainty about the under-33

lying processes. What we want to know here is how much one can shrink those distributions34

through gaining a better understanding of natural selection.35

Here, we focus on the ability to forecast evolutionary dynamics, that is trait values or allele36

frequencies, over time. There are two main classes of explanation for limits in the ability of37

scientists to predict evolution (Nosil et al., 2020). First, predictability can be limited by random38

evolutionary processes, described as the ‘random limits’ hypothesis in Nosil et al. (2020). The key39

mechanisms underlying the random limits hypothesis are stochastic changes in allele frequency40

due to genetic drift and the random nature of mutation (Sober, 1984; Wright, 1931). Second, even41

evolution driven by natural selection–a deterministic factor conditional on the environment–42

could exhibit low predictability, due to measurement error, and limited data and models that43

in turn lead to poor understanding of selection and trait variation (the ‘data limits’ hypothesis44

hereafter) (Marques et al., 2018; Nosil et al., 2020, 2018; Reimchen, 1995). Under the data limits45

hypothesis, the assumption is that with better data and better analysis, evolution by natural se-46

lection can be better predicted. Limits to our understanding of evolution by selection can occur47

because environmental sources of selection, such as climatic conditions or predator abundance,48

fluctuate in ways that are difficult to predict (Chevin et al., 2022; Grant and Grant, 2002; Lenor-49

mand et al., 2009; Nosil et al., 2018). And even if the environment is constant or can be predicted,50

limited information about how environmental factors affect resource and trait distributions, and51
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thus selection, can make evolution less predictable. We recently treated these topics in a publi-52

cation that helped lay a conceptual foundation for studying the causes of variation in our ability53

to predict evolution (Nosil et al., 2020). This previous study was purely verbal and thus did54

not allow us to quantify the diverse causes of variable predictability, or to begin to resolve their55

relative contributions and extent to which they could be ameliorated. These are our main goals56

here.57

The data limits hypothesis is exemplified by a thought experiment proposed by 18th century58

mathematician Pierre-Simon Laplace. This experiment, now called Laplace’s demon, posits an59

imaginary creature with unlimited computational powers, who knew everything about every-60

thing (i.e., the position and velocity of all the particles in the universe), and thus could predict61

the full nature of the universe forward or backward in time from the laws of Newtonian physics.62

By analogy, we are interested in the extent to which prediction of evolution can be improved by63

increased knowledge stemming from data quantity and quality.64

In contrast, random processes impose fundamental limits on prediction, even for an all-65

knowing intellect like Laplace’s demon, as true randomness persists even after accounting for66

all causally relevant parameters affecting a process. Notably, the only proposed source in the67

universe of absolute randomness in this sense is the collapse of wave functions in quantum68

mechanics (most clearly in spontaneous wave-function collapse theories but also in a Bayesian69

context with branching in Everettian quantum mechanics) (Maudlin, 2019; Wallace, 2012). Be-70

cause these quantum processes can directly impact mutation, mutation likely includes a random71

component in this absolute sense. For example, quantum transitions between keto and enol72

forms of guanine, which bond with cytosine or thymine, respectively, can cause mutations dur-73

ing replication (Carroll, 2020; Kimsey et al., 2015, 2018). Genetic drift, on the other hand, is74

random in a more limited sense (Sober, 1984). Variation in survival and fecundity that gives rise75

to drift presumably has some deterministic causes that could be known, but these causes are76

not the genotype or phenotype of the organism. Thus, change due to drift can be productively77

viewed as random with respect to genotype and phenotype, and thus as random with respect to78
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evolution by natural selection.79

Finally, selection depends on the interactions of genes, phenotypes, and the environment,80

and the environment often varies or fluctuates in space and time. There is a long and productive81

history of modeling components of environmental variability as random processes (e.g., Chevin,82

2019; Gillespie, 1991; Lenormand et al., 2009; Ohta, 1972; Sæther and Engen, 2015). Nonetheless,83

most environmental variation is unlikely to be random in an absolute sense, but rather reflects84

some combination of limited knowledge (uncertainty), chaos, and complexity that can make as-85

pects of environmental change indistinguishable from random processes (Sugihara et al., 1990).86

Indeed, even systems that are deterministic may be fundamentally unpredictable in their dynam-87

ics. Perhaps one of the best-known cases comes from physics, where chaotic dynamics arise in88

three-body gravitating systems. These systems can be so dependent on initial conditions that89

measurement precision would need to be at or below the Planck length (an extremely small scale90

at which quantum gravity becomes relevant) to allow for reliable long-term predictions (Liao,91

2013, 2014). It is unclear how often or to what extent environmental variability falls into this cat-92

egory of fundamental unpredictability. However, in at least some cases, some prediction about93

future environments on some scales is possible, and such predictions can likely be improved (if94

not perfected) with additional data and better models or computational power. Our focus here95

is on this aspect of environmental variability, which we place within the data limits hypothesis96

(we return to the topic of environmental variability and randomness in the Discussion).97

Herein, we begin by considering constraints on predicting evolution in analytical models that98

include drift and uncertainty in the strength of selection. We then use simulations to go beyond99

these analytical models and jointly consider multiple sources of uncertainty–environmental vari-100

ation, genetic drift, selection, and genetic architecture–and how predictability varies over time.101

We do so via two case studies that are motivated by empirical systems, but our results do not102

correspond one-to-one to any particular biological system (i.e., our approach is not a model-103

fitting endeavor). Thus, the concepts invoked here are grounded in empirical reality but apply104

to a wide range of environmental factors, traits, and taxa (as we discuss below). We quantify105
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predictability based on the variability among different probable evolutionary trajectories. The106

rationale for this choice is that evolution is more predictable when probable evolutionary tra-107

jectories (i.e., alternative, reasonable outcomes from replaying the tape of life) are more similar.108

We specifically consider the precision (reciprocal of the variance) in allele frequencies or trait109

values as a metric of predictability. In this context, higher precision denotes higher predictability110

(this avoids comparisons to some assumed, “actual” evolutionary trajectory, which is especially111

problematic when incorporating genetic drift).112

We emphasize Bayesian inference and prediction throughout our quantitative treatment of113

predicting evolution. We do this because Bayesian methods provide a clear, probabilistic frame-114

work for quantifying and updating uncertainty (Figure 1A). Prior probability distributions de-115

scribe initial uncertainty about relevant demographic or evolutionary parameters, such as the116

strength of selection. These prior distributions are then updated repeatedly by observations and117

experiments generating increasingly more informative posterior probability distributions, that118

is reduced uncertainty about model parameters. Posterior distributions are the basis for prob-119

abilistic predictions of evolutionary trajectories. Importantly, with Bayesian methods it is often120

possible to accurately estimate the effect of additional data on shrinking the uncertainty in pos-121

teriors, and thus on increasing predictive power for evolutionary trajectories. We take just such122

an approach with both the analytical models and case studies here. This information can guide123

decisions about which additional experiments or studies might be most useful for increasing124

scientists’ ability to accurately predict evolution.125

Analytical arguments and case-study simulations126

Analytical arguments127

We begin by showing quantitatively and concretely how random genetic drift and uncertainty in128

selection combine to place limits on our ability to predict evolution under simple conditions. We129

do this in an explicitly Bayesian framework. First, consider a single locus evolving for one genera-130
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tion by random drift and (uncertain) selection. We can approximate the expected allele frequency131

p in the subsequent generation t + 1 as pt+1 ≈ p + p(1 − p)s, where s is the selection coefficient132

(defined from relative fitnesses as wAA = 1 + 2s, wAa = 1 + s and waa = 1, assuming additivity)133

(Walsh and Lynch, 2018). Genetic drift and uncertainty in selection (i.e., imperfect knowledge of134

the value of s) each contribute additively to the variance around this expectation. Specifically,135

the variances caused by drift and uncertainty in selection are
p(1−p)

2Ne and (p(1 − p))2 var(s), re-136

spectively, with Ne denoting the effective population size and var(s) the variance of a Bayesian137

(prior or posterior) distribution for s. Uncertain selection should impose a greater limit on pre-138

dictability than drift when var(s)p(1− p) > 1
2Ne (Chevin, 2019; Ohta, 1972) (this relationship was139

derived for the case where the variance in s is caused by a randomly fluctuating environment,140

but applies equally well to the case here of uncertainty in a fixed value of s).141

Whereas Ne is an intrinsic property of the system, var(s) depends on data and a statistical142

model. And importantly, the magnitude of var(s) declines with more precise estimates of se-143

lection. We can make this explicit with an example. Assume the relative fitnesses of alternative144

homozygotes are estimated from a release-recapture experiment with equal initial release fre-145

quencies (we focus on an experiment without heterozygotes for mathematical simplicity). Let y146

denote the number of AA individuals recaptured out of n recaptures. If we assume a binomial147

sampling distribution (likelihood) with a conjugate beta prior on the binomial parameter (de-148

noted π to avoid confusion with p, the allele frequency), the posterior distribution has a known149

form of Pr(π|y, n) ∼ beta(α = a0 + y, β = b0 + n − y). Here, a0 and b0 denote prior sample sizes,150

which could reflect past experiments or could be set to low values to denote prior ignorance;151

y and n depend on the sample size of the current experiment. This implies a variance for s of152

α(α+β−1)
(β−2)(β−1)2

1
4 (Johnson et al., 1995). We illustrate the corresponding precisions in allele frequency153

(i.e., the predictability of allele frequency) over a range of values of effective population sizes154

(random limits) and sample sizes (data limits) in Figure 1B (also see Figure S1). Importantly,155

our results show that drift and uncertain selection can place comparable limits on the precision156

of predictions, and that increasing the experimental sample size (reducing the data limits) has a157
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more pronounced effect when Ne is not too small.158

Second, consider the evolution of a quantitative trait by random drift and (uncertain) selec-159

tion. The expected change in the mean trait value in one generation is given by the breeder’s160

equation, R = h2S where S is the selection differential and h2 is the trait’s heritability

(

σ2
g

σ2
z

)

.161

Again, drift and uncertainty in selection contribute variances around this expectation of σ2
g /(2Ne)162

and (h2)2var(S), respectively (Lande, 1976). Here, σ2
g is the additive genetic variance and var(S)163

comes from a Bayesian probability distribution that depends on data and a model. We can again164

make the latter explicit with an example. Assume knowledge of S comes from regressing fitness165

(or a component of fitness) on standardized trait values (e.g., Lande and Arnold, 1983). If we166

model the data with a normal sampling distribution (likelihood) and a normal prior on the stan-167

dardized selection differential (and for simplicity assume that the residual variance is known),168

the posterior distribution on S (here, the standardized selection differential which is equivalent to169

the standardized regression coefficient or selection gradient) is normal with var(S) = σ2

n0+n . Here,170

σ2 is the residual trait variance, and n0 and n are prior and actual sample sizes for the experi-171

ment. We show the corresponding precisions for the predicted mean trait values with different172

effective population sizes (random limits) and sample sizes (data limits) in Figure 1C (also see173

Figure S1). As for the single locus case, effective population size and experimental sample size174

have similar effects on our ability to predict evolution, and once again only the latter is (partially)175

under the control of scientists.176

Additional constraints on predictability occur when selection depends in an uncertain way on177

the environment or on an uncertain future environment. For example, if the selection differential178

S is a linear function of the environment x, such that S = a + bx, then the total variance caused179

by fluctuating and poorly predicted selection alone is var(h2S) = (h2)2[var(a) + E(b)2var(x) +180

E(x)2var(b)], which may be quite large if environmental fluctuations are substantial and poorly181

predicted (large var(x)), or if there is uncertainty in selection (var(a)) or in how it varies with182

the environment (var(b)) (a similar argument could be made for selection on a single locus).183

Uncertainty in genetic architecture further inflates this variance by making h2 a random variable.184
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Additional limits to prediction occur when considering the genetic loci underlying a quantitative185

trait. In such cases, the genetic effects on traits are often only ascribed probabilistically, and186

causal variants are often not even known; instead we detect genetic variants in linkage disequi-187

librium with putative causal ones. Jointly considering these different sources of uncertainty is188

beyond the reach of the simple analytical arguments laid out in this paragraph. Instead, we now189

turn to simulation-based case studies to begin to explore the relative, quantitative importance of190

different sources of uncertainty on predicting evolution where these complexities can be modeled191

explicitly and jointly under realistic conditions. These simulations also allow us to examine the192

decline in predictability over time, that is from a few to tens of generations.193

Overview and motivation of case studies194

The two case studies concern selection that varies in space and time, but for distinct reasons that195

should make the first case more predictable than the second. The case studies also introduce196

uncertainty in the genetic basis of the trait under selection, again with differences that should197

make the first case more predictable than the second. The first involves predator behavior and198

the evolution of anti-predator traits, motivated by long-term studies of the evolution of cryptic199

coloration in stick insects (Nosil et al., 2018). This scenario incorporates frequency-dependent200

selection, which was shown to increase the predictability of evolution under some conditions,201

even in an unpredictable environment (Chevin et al., 2022). The second involves climatic varia-202

tion and the evolution of trophic traits, motivated by long-term studies of beak size evolution in203

Darwin’s finches (Grant and Grant, 2002). We quantify uncertainty by computing the variance in204

evolutionary outcomes among replicate simulations under each scenario (e.g., with and without205

genetic drift, with and without uncertainty in natural selection, variable sample sizes, and genetic206

architectures). Thus, the results tackle another famous thought experiment posed by Stephen J.207

Gould on the extent to which repeatedly ‘replaying the tape of life’ would yield similar evolu-208

tionary outcomes (Gould, 1990). Our simulations show how data limits can strongly mediate the209

extent to which scientists can predict evolution, and how modest increases in the size or scale210
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of experiments can meaningfully reduce these data limits, with the goal of motivating progress211

towards making evolution a more predictive science.212

Case study 1: predation and frequency-dependent selection213

Predation affects most organisms and is a common and general source of natural selection (Meyer214

and Kassen, 2007; Reimchen, 1995; Svensson and Friberg, 2007). Predation can cause negative215

frequency-dependent selection (NFDS) when predators focus on more common prey types. In216

such cases, the fitness of a phenotype is expected to fluctuate because it depends on its frequency217

in the population and involves feedbacks with predator choice. This has been documented, for218

example, in cichlids, guppies, stickleback, and stick insects (Bolnick and Stutz, 2017; Hori, 1993;219

Hughes et al., 2013; Nosil et al., 2018; Olendorf et al., 2006). Moreover, evolutionary dynamics220

and equilibrium outcomes in predator-prey systems and under NFDS have received considerable221

theoretical attention (Abrams, 2000; Abrams et al., 2008; Chevin et al., 2022). Such systems might222

represent cases where evolution is easier to predict, especially when selection is primarily a223

function of the current state (phenotype frequency) of a focal population. Thus, we first consider224

predictability in the context of predation and NFDS.225

We used data concerning NFDS on color pattern in the stick insect Timema cristinae to help226

guide our choice of parameters for our illustrative model (Nosil et al., 2018). We emphasize227

that our goal is not to fit a model for the T. cristinae system, but rather to ensure that we use228

biologically relevant parameters and data-based levels of uncertainty. Timema cristinae exhibits229

striped and unstriped color-pattern morphs. Striped morphs are more cryptic on one host plant230

(Adenostoma), and thus generally favored on this host by selection from visual predators such as231

birds and lizards (Nosil, 2004; Nosil and Crespi, 2006; Sandoval, 1994a,b). However, experimental232

and observational data show that striped individuals are less fit when they become very common233

compared to when they are rarer, thus demonstrating NFDS (Nosil et al., 2018).234

We quantified the effects of limited knowledge of selection and genetic drift on the ability235

to predict evolutionary trajectories under NFDS (Figure 2A). We did this through three compar-236
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isons. First, for uncertainty in selection, we are referring to what happens when one predicts the237

future course of evolutionary change when one has exact knowledge of, for example, selection238

coefficients for traits under NFDS at different frequencies versus less exact estimates, reflected239

in a Bayesian probability distribution for these values. In the case of uncertainty in selection,240

we eliminate the randomness due to drift by simulating an infinite population size. Second, in241

the drift analysis, we consider having exact information for all the relevant variables affecting242

selection, but simulate finite-sized populations. Thus, the course of selection is determined by243

our exact knowledge of how selection would work, plus a degree of randomness introduced by244

genetic drift in a finite population size. Finally, in drift plus uncertainty in selection simulations,245

the above uncertainty in selection is incorporated into the runs along with finite population size,246

introducing the effects of random drift.247

The logic then is that by comparing the three types of simulations, the relative effects of drift248

versus uncertainty in selection can be resolved with respect to their effects on predicting evolu-249

tionary change. This can further help identify cases where one can, through increased sampling250

and rigor in experimental design, decrease the variance in the Bayesian probability distributions251

around these point estimates to see how much this effort, which is at least empirically tractable252

to some degree, can improve our ability to forecast evolution.253

We assumed the existence of two morphs or phenotypes, denoted ‘A’ (e.g., striped) and ‘B’254

(e.g., unstriped). We further assumed that the A phenotype was advantageous when its popula-255

tion frequency was not too high (less than a critical value), with relative fitness values of wA and256

wB for the A and B morphs, and with wA > wB. However, when A was very common (above a257

critical value) we assumed selection favored the B morph with w∗
B > w∗

A (here w∗ denotes relative258

fitness when morph A is very common). We based the magnitude of uncertainty in selection on259

the sample sizes and results from a T. cristinae release-recapture field experiment. In this ex-260

periment, 500 T. cristinae stick insects were released in two treatments, one with an initial stripe261

frequency of 20%, and one with an initial stripe frequency of 80%. Survivors were then collected262

to estimate the strength of selection for or against stripe under the two different treatments (see263
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Nosil et al., 2018). In both treatments, survival was measured on the host plant Adenostoma. The264

initial stripe frequencies for the two treatments were chosen based on our expectations that they265

would be on different sides of the critical point where NFDS would alternately favor the striped266

versus non-striped form.267

For our current purposes, we obtained Bayesian estimates of survival probabilities assuming268

a binomial likelihood for recapture in each treatment and with uninformative beta priors on269

the recapture probabilities (the beta priors set both shape parameters, i.e., prior sample sizes a0270

and b0, to 0). This resulted in closed-form posterior distributions for absolute fitness (survival271

probabilities) of beta(52, 48) (mean = 0.52) and beta(62, 338) (mean = 0.155) for the A (striped)272

and B (unstriped) morphs, respectively (these values come from the experiment with stripe at273

an initial frequency of 20%) (Nosil et al., 2018). The means of these distributions were used274

to calculate relative fitness values in the case where selection was assumed known (1.0 and 0.3,275

respectively). We knew less about fitness when the striped (A) morph was above the critical point276

(in the original experiment the 80% stripe treatment resulted in nearly equal recapture rates for277

both morphs). To approximate this, we halved the sample sizes, then flipped the recapture rates278

and shifted the counts slightly to construct probability distributions for this case: beta(31+10, 169-279

10) (mean = 0.186) and beta(26-2.5, 24+2.5) (mean = 0.49) for striped (A) and unstriped (B). We280

further assumed the critical value where selection switched between favoring A versus favoring B281

was known to fall between 0.7 and 0.9 (frequency of A) and took on any value within that range282

with equal probability (i.e., we assumed a uniform probability distribution constrained by the283

previous experiment). We used 0.85 for cases of known selection. Thus, for each simulation of284

evolution, we either used these point estimates (selection known) or sampled fitness values from285

these four beta distributions (i.e., posterior distributions), and a value for the critical point from286

U(0.7, 0.9)(selection uncertain). As a comparison, an additional set of simulations were conducted287

to assess predictability with weak, but uncertain selection. For this, survival values were sampled288

from beta(50.5, 49.5) and beta(49.5, 50.5) for the favored and less fit morph, respectively (here the289

expected relative fitness values are 1.0 and 0.98, respectively).290
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We considered trait heritabilities of 0.8 or 1 (consistent with Comeault et al., 2016; Lindtke291

et al., 2017), and an initial frequency for morph A of 50%. We incorporated genetic drift by292

binomial sampling, such that pt+1 ∼ binomial(E[pt+1], 2Ne). Here, pt+1 is the frequency of293

morph A in the next generation, E[pt + 1] is the expected frequency given the current frequency294

(pt), selection and the trait heritability, and Ne is the effective population size, which we set to295

110 diploid individuals. This value comes from an empirical estimate of the variance effective296

population size in a T. cristinae population (population code FHA, 43◦30.958’ N, 119◦48.050’ W),297

which is based on genome-wide allele frequency change (Nosil et al., 2018). We conducted298

100 simulations of evolution incorporating uncertainty in selection, genetic drift, or both, and299

measured the effect of each factor on predictability based on the precision (median across 100300

generations) in evolutionary trajectories. In most cases, the model rapidly fell into a stable,301

equilibrium oscillation, consistent with patterns of change associated with NFDS documented in302

nature (Figure 3 and Nosil et al., 2018) (such stable oscillations are a specific outcome of using a303

step function for NFDS; compare to Chevin et al., 2022). These simulations were written in R and304

are available via GitHub (https://github.com/zgompert/LaplaceDemonSims/).305

Uncertainty in selection and genetic drift both caused variability in evolutionary trajectories306

affecting predictability (i.e., increased variability among probable, simulated evolutionary tra-307

jectories) (Figure 3). Predictability was highest for the first few generations, but then quickly308

declined and remained relatively constant from about five to 100 generations (i.e., for the re-309

mainder of the simulated time; Figure S2). We thus focus on the mean predictability (precision)310

when comparing sources of uncertainty.311

Importantly, uncertainty in selection did not lead to erroneous qualitative predictions, as312

a stable oscillation in stripe frequency was always predicted (this is expected given the step313

function assumed for NFDS, unlike in Chevin et al., 2022). However, limited knowledge of314

selection did cause considerable quantitative uncertainty in the evolutionary trajectory (i.e., in315

the pattern and characteristics of the oscillations), and this was greater than the uncertainty316

caused by genetic drift (Figure 3F). For example, with h2 = 0.8, the median precision across317
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generations was two times higher with genetic drift and known selection (median precision =318

277.7) than with no genetic drift and uncertainty in selection (median precision = 128.4) (higher319

values indicate higher precision in predicting evolution). Moreover, adding drift to the latter case320

(i.e., both drift and uncertainty in selection) did not markedly lower precision (median precision321

= 118.3). Similar results were observed for h2 = 1 (median precision = 192.2, 96.5, and 92.3,322

respectively). These results, with associated measures of variability and uncertainty, are depicted323

in detail in Figures S3 and S4.324

These effects of uncertainty in selection versus drift on predictability were not restricted to a325

scenario of strong selection. For example, even with weak selection (1% difference in expected326

survival probabilities), drift had less of an effect on predictability than did uncertainty in selec-327

tion (median precision across generations of 36.2 versus 5.8) (Figure S4). This perhaps counter-328

intuitive result arose because weak NFDS combined with uncertainty in selection resulted in329

transient directional selection (rather than strongly fluctuating) for or against either phenotype330

being among the set of probable selection models. In such cases, directional selection, even if331

transient, was consistent enough to fix one or the other morph, resulting in a high variance (low332

precision) in evolutionary trajectories.333

Whereas genetic drift is a property of the effective size of any finite population, predictability334

can be increased by better knowledge of selection. To examine the effects of such knowledge, we335

conducted additional simulations assuming two or five times larger sample sizes for the release-336

recapture experiment (and consequent reduction in uncertainty in selection) and a decrease of the337

range of possible values where the transition occurred from selection favoring morph A to B (at a338

frequency of A of 0.8-0.9). With strong selection and h2 = 0.8, doubling the sample size essentially339

doubled the predictability. Thus, with a two times larger sample size the predictability with340

uncertainty in selection (precision = 242.4) was almost as high as the level observed for just drift341

(precision = 277.7; precision with both uncertainty in selection and drift = 214.6), suggesting quite342

meaningful increases in predictability would be possible with only a reasonable increase in effort343

(Figure 3D-F). Similar results were observed with h2 = 1 or with weak selection (Figures S3D-F344
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and S4D-F), but increasing the sample size five-fold had little additional effect on improving345

predictability (Figure S5).346

Case study 2: climatic variability and trophic evolution347

Temporal variation in climatic conditions can cause the direction and magnitude of selection on a348

trait to vary in time. Climate and weather can themselves be agents of selection or can indirectly349

cause selection by affecting resource availability, predators, competitors, etc., which then act as350

agents of selection. Temporally fluctuating selection caused by climatic variability is likely to be351

general, as it has been documented in numerous species (Bergland et al., 2014; Busoms et al.,352

2018; Reimchen and Nosil, 2004; Rudman et al., 2022; Siepielski et al., 2009, 2017; de Villemereuil353

et al., 2020). Perhaps the best-known example comes from Darwin’s finches, where variation354

in rainfall on Daphne Major has been shown to affect the relative abundances of small versus355

large seeds, which in turn exerts selection on beak size in Geospiza fortis (Boag and Grant, 1981;356

Grant and Grant, 2014). Such cases are of particular interest for predicting evolution because357

they include both uncertainty in climatic conditions and uncertainty in selection. Selection has358

been described as unpredictable in the case of G. fortis (Grant and Grant, 2002), not because we359

do not understand selection (i.e., selection is known to be exerted by seed size distributions),360

but rather because we cannot predict climatic fluctuations or how these affect the seed size361

distribution. Because of this dual complexity and the potential generality of such conditions,362

we consider climatic variability and trophic evolution as our second case study. Here, we also363

consider the effects of uncertainty in the detailed genetic basis of the selected trait. As for364

the case of NFDS, we used general empirical knowledge (in this case from the finch system)365

to parameterize our illustrative models, but without the aim of fitting specific models to the366

finch system. Rather, we use this scenario to understand the extent to which evolution can be367

predicted without directly measuring selection in all generations, but instead relying on known368

(current generation) or projected (future generations) environmental data. This is important to369

assess because environmental data can be simpler to gather than measurements of selection, so370
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the prediction process could be simplified by first estimating the relationship between selection371

and the environment (environmental sensitivity of selection) over a few generations, and then372

combining this with environmental projections to predict evolutionary dynamics (Chevin et al.,373

2010a).374

We either assumed climatic conditions were known, or incorporated uncertainty in such con-375

ditions, as would occur when trying to project future environments based on past time series376

(Figure 2B). An observed annual rainfall time series on Daphne Major, which included data from377

1973 to 2012, was used for cases where we assumed climate conditions were known (Grant and378

Grant, 2014). Uncertainty in climatic conditions was modeled by sampling from this time series379

with replacement (i.e., here we do not adopt a Bayesian approach). Alternative, (simple) model-380

based approaches to account for climate uncertainty failed to capture the salient features of the381

actual time series, especially the extreme variability (i.e., the extreme values relative to, e.g., a382

normal or exponential distribution; results not shown).383

We assumed that, conditional on climatic conditions, the nature of selection was either known384

or uncertain. We considered two sources of uncertainty: the link between climatic conditions and385

resource, and between resource and selection differential (Figure 2B). For resource abundance,386

we first used the data from Daphne Major to infer the relationship between rainfall and resource387

(the relative abundance of small seeds versus large seeds) (Grant and Grant, 2014). To do this, we388

regressed resource abundance on five year cumulative rainfall in a model that included linear and389

quadratic effects (five-year rainfall performed better, i.e., higher r2, than sums over fewer years).390

Point estimates for these parameters were: intercept = 1.57 × 10−1, rain linear = 6.5 × 10−4,391

and rain quadratic = −6.36 × 10−7 (r2 = 0.498, P = 0.011). These were used when selection392

was assumed known. In cases where selection was not known, we incorporated uncertainty in393

this relationship by sampling regression coefficients from Gaussian distributions centered on the394

point estimates, and with standard deviations equal to the standard errors of the coefficients395

(SEs: intercept = 1.47 × 10−1, rain linear = 1.84 × 10−1, rain quadratic = 3.13 × 10−7). From a396

Bayesian perspective, using the standard errors in this way is analogous to placing flat priors397
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on the regression coefficients and treating the residual variance as known (Congdon, 2007). In398

terms of the resource-selection link, with selection known we assumed the selection differential399

S = a + bx, with a = 0.18, b = -0.81 and x = resource abundance. These values assume resource400

abundance has been centered (mean = 0) and are approximately equal to the extremes of selection401

observed in G. fortis. When selection was uncertain, values for a and b were sampled from normal402

distributions with standard deviations of 0.1 and means of 0.18 and -0.81, respectively. Thus, we403

treat these distributions as Bayesian probability distributions for uncertain a and b; uncertainty is404

encoded by the non-zero standard deviations, which we set to 0.1 (we chose these values in the405

absence of pertinent information but consider alternative values that reflect an increase in data406

below).407

We further assumed the trophic trait was moderately heritable (h2 ≈ 0.5), with ∼27 causal408

variants with a normal effect size distribution (inspired by genetic mapping results from Chaves409

et al., 2016) (Figure 2B). More specifically, we created 1415 loci potentially affecting the trait. We410

assigned Bayesian probabilities of effect/association to each locus sampling from uniform distri-411

butions: U(0.1,0.6) (15 loci), U(0.05,0.1) (100 loci), U(0.01,0.05) (300 loci) and U(0.001,0.01) (1000412

loci). Thus, a small number of loci had high probabilities of association and many had much413

lower probabilities of association (the expectation is 27.2 associated loci). Phenotypic effects were414

assigned to the loci by sampling from a standard normal distribution, and allele frequencies for415

each bi-allelic locus were drawn from a beta distribution, beta(0.6,0.6) (this gives a U-shaped416

distribution of allele frequencies). Then, for each simulation of evolution, the subset of causal417

variants was determined by sampling loci according to their probabilities of association (analo-418

gous to posterior inclusion probabilities from Bayesian polygenic models for genomic prediction,419

see, e.g., Gompert, 2021; Zhou et al., 2013). Sampled loci were assigned their respective effect420

sizes, and other loci were assigned an effect size of 0.421

We modeled the evolution of expected trait values (akin to the genome-estimated breeding422

values) by calculating the effect of phenotypic selection on expected allele frequency change423

across loci. The selection differential denoted the expected phenotypic change. We then ap-424
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proximated the selection on each allele as si = wi − 1 ≈ bi
S
σ2

z
, where bi is the average excess of425

locus i, σ2
z denotes the phenotypic variance and was set to 2 to give a heritability of about 0.5426

(the exact value varied based on the specific causal loci), and S
σ2

z
equals the selection gradient β427

(Gompert, 2021; Kimura and Crow, 1978; Walsh and Lynch, 2018). This approximation assumes428

the trait remains normally distributed, effect sizes are small, and causal loci are unlinked. The429

expected change in allele frequency is then given by ∆pi = pisi (Kimura and Crow, 1978). Ge-430

netic drift was incorporated by binomial sampling around this expectation. We used an effective431

population size of 60 (Grant and Grant, 1992), ran 100 simulations for each set of conditions, and432

ran each simulation for 35 generations. We tracked allele frequencies and expected trait values433

(genome-estimated breeding values). These simulations were written in C++ with the Gnu Sci-434

entific Library (code available via GitHub; https://github.com/zgompert/LaplaceDemonSims/)435

(Galassi et al., 2003). Predictability was measured as the precision in expected trait values or436

allele frequencies.437

Uncertainty in selection, climatic conditions, and genetic architecture, as well as genetic drift,438

all acted to limit the predictability of the evolutionary time series for the expected value of439

the trophic trait (i.e., the mean genome-estimated breeding value) (Figure 4), and predictability440

(i.e., precision across replicates) again declined over time (Figure S6). Of these factors, genetic441

drift had the smallest effect, resulting in the highest predictability for models that included drift442

alone (median precision 383.6; Figure 4A). The other factors caused much larger reductions in443

predictability (other factors in combination or isolation gave median precisions ranging between444

4.2 and 25.4; Figure 4).445

Likewise, genetic drift often had only a modest effect on predictions for the evolutionary446

trajectories of individual alleles (Figure 5, S7). The magnitude of the relative effects of drift and447

uncertainty in selection depended in part on the probability that a locus was associated with (i.e.,448

caused variation in) the trophic trait. In cases where an association between a locus and the trait449

was uncertain but likely (i.e., inclusion probability of ∼10-50%), drift and uncertainty in selection450

had similar effects on precision (i.e., predictability) (e.g., Figure 5A-H). The main factor causing451
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variability in trajectories was instead uncertainty in genetic architecture. In particular, distinct452

sets of trajectories were evident for simulations where the locus was versus was not assumed453

to be associated with the trait (also compare Figures 5 and S5). This effect was reduced with454

lower probabilities of association (Figure S9). Indeed, the main exception to the pattern of drift455

having less effect than uncertainty in selection occurred for loci with very low probabilities of456

association (e.g., Figure 5M-P). In such cases, drift was the bigger cause of poor predictability,457

as almost all probable trajectories included no selection on these loci (because they were not458

actually associated with the trait), and thus uncertainty in selection was of minimal relevance for459

evolutionary dynamics.460

As with the first case study, we conducted additional simulations to determine the effect461

of increased information about selection on our ability to predict evolution. Here, we focused462

on the effect of increased information about the link between the environment and selection.463

Specifically, we considered a three-fold increase in the number of experiments used to determine464

the relationship between resources and selection differentials, which would decrease the standard465

deviations for the Bayesian probability distributions on the intercept (a) and slope (b) from 0.1 to466

0.058. This increase in the number of experiments increased the predictability for the expected467

value of the trophic trait with the precision increasing from 25.4 to 188.2, again suggesting that468

a feasible increase in effort can result in quite notable gains in predictability (Figure S8). Higher469

predictability remained (though to a lesser extent) when uncertainty in selection was combined470

with drift or uncertainty in weather, but was less evident when uncertainty in genetic architecture471

was included.472

Summary considerations and moving beyond these case studies473

We think several practical messages emerge from our analytical arguments and case studies.474

First, we can improve our ability to predict evolution by obtaining better estimates of selection475

within an environment; our results suggest that sample sizes on the order of the effective popu-476

lation size (or a bit bigger) represent a reasonable (and often feasible) goal. Here, we refer to the477
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variance effective population size, which is often much smaller (e.g., ∼ 1
10 ) than the local census478

population size (e.g., Frankham, 1995; Gompert et al., 2021; Waples, 2022). Beyond that effort,479

our results suggest that measuring selection in additional environments will be more productive480

for improving predictions of evolution. This of course adds considerable complexity and work,481

but perhaps starting with relevant environmental extremes (e.g., wettest versus driest habitats,482

low versus high trait frequencies, etc.) would allow one to at least place bounds on the extent to483

which environmental variation is associated with variation in selection in a given system.484

Second, and unsurprisingly, predicting evolution at the genetic level was easier for a highly485

heritable trait (stripe) than for a less heritable polygenic trait (beak size). This is likely to hold in486

general, and very large genetic mapping studies will likely be necessary for precise predictions of487

allele frequency change for polygenic traits. Often it will be more profitable and more reasonable488

to make predictions at the level of expected breeding values (polygenic scores), either using489

pedigrees and classic quantitative genetic methods or genetic-marker based genomic prediction490

methods. Importantly, we did not consider cases where the trait value itself is affected by the491

environment (i.e., where there is plasticity) (e.g., Crozier et al., 2011); in such cases, predicting492

evolutionary change (albeit perhaps not phenotypic patterns) will likely require larger genetic493

mapping or quantitative genetic studies spanning multiple environments.494

Lastly, the case studies we considered were based on empirical work that combines long-495

term monitoring of populations with selection experiments and genetic mapping or traditional496

quantitative genetics. We think that such combined approaches are critical for making and test-497

ing evolutionary predictions (e.g., Wade and Kalisz, 1990). Several other systems have similar498

features, such as Soay sheep on St. Kilda island (Ashraf et al., 2021; Clutton-Brock and Pember-499

ton, 2004; Johnston et al., 2013), great tits (Garant et al., 2004; Gienapp et al., 2019; Husby et al.,500

2011), collared flycatchers (Merilä et al., 2001), threespine stickleback fish (Marques et al., 2018;501

Reimchen and Nosil, 2002, 2004; Reimchen, 1995), and Edith’s Checkerspot butterflies (Ehrlich502

et al., 2004, 1975; Parmesan and Singer, 2022). We think that these and other long-term studies503

(reviewed in, e.g., Clutton-Brock and Sheldon, 2010) can provide further tests of the predictability504
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of evolution, and that our work here can generate hypotheses for how to improve predictability505

in these systems.506

Discussion507

The analytical arguments and case studies we considered illustrate how data limitations and508

uncertainty in selection, including that caused by low environmental predictability, can substan-509

tially affect the predictability of phenotypic and genetic evolutionary change, much beyond the510

influence of random evolutionary processes, in this case genetic drift. Moreover, our results are511

likely conservative, as we only modeled a subset of possible uncertainties in selection and con-512

sidered modest population sizes, where the potential for genetic drift is substantial. Despite this,513

uncertainty in selection generally had much more pronounced effects on reducing predictabil-514

ity than did genetic drift, especially in the two case studies. This is consistent with theoretical515

expectations that uncertainty in selection should dominate when var(s)p(1 − p) > 1
2Ne (Chevin,516

2019; Ohta, 1972).517

These results suggest that progress towards predicting evolution can be made with empirical518

and analytical effort, because the largest limit does not come from intrinsic properties of the pop-519

ulation. For example, our results show how larger sample sizes can increase the predictability520

of evolution; in case study 1, doubling the sample size made the Bayesian probability distribu-521

tion for selection more precise and thereby doubled our ability to predict evolutionary dynamics522

(Figure 3). Similar gains in predictability were observed in simulations with better knowledge523

of additional factors affecting evolutionary dynamics, such as trait genetic architectures, weather524

and climate, and the environmental causes and ecological consequences of selection (Figure 4).525

The only notable exception to this pattern comes from the analytical models, which show that526

increasing sample sizes has minimal effect when the effective population size is very low (i.e.,527

below 50) (Figure 1). Consequently, while perfect prediction as envisioned by Laplace’s demon is528

forever out of reach due to the action of largely random processes of genetic drift and mutation,529
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our results suggest that even modest improvements in data quantity and quality can meaning-530

fully increase predictability (i.e., we will not get an omniscient demon, but at least we can have a531

serviceable, low-level imp that throws loaded dice).532

Still, improving the predictability of evolution is not without its challenges. First, collect-533

ing sufficient data for meaningful prediction is not a trivial task. For example, gathering ad-534

equate time-series data may require multiple scientists’ entire careers, and very large sample535

sizes can be required for genetic mapping of traits, especially in the presence of gene-gene or536

gene-environment interactions (Wang et al., 2005; Wei et al., 2014). With that said, evolution of537

quantitative traits can be successfully predicted without knowing the effects of individual genes538

using the animal model and pedigrees or kinship matrixes inferred from genetic marker data539

(e.g., Bonnet et al., 2022; Charmantier et al., 2014; Meuwissen et al., 2001; Walsh and Lynch,540

2018). Still, this methods require extensive data and even with detailed (e.g., pedigree-based)541

observational work, it can often be difficult to determine whether or to what extent changes in542

phenotypes (or breeding values) reflect selection or only random drift (e.g., Hadfield et al., 2010;543

Pigeon et al., 2016).544

Second, pleiotropy could confound predictions, especially at the genetic level, if mutations545

affecting a favored trait have additional effects on other traits and genetic effects or selection546

on these other traits has not been measured (e.g., Gromko, 1995; Saltz et al., 2017). Third, the547

precision of predictions cannot likely be increased indefinitely by collecting more data (e.g.,548

Figure 1). Many ecologically relevant environmental variables (such as temperature) include549

sufficient noise (Halley, 1996; Ruokolainen et al., 2009; Vasseur and Yodzis, 2004) that, from a550

practical perspective, they can only be predicted in a probabilistic sense. The envelope breadth551

of evolutionary predictions in response to such environmental variables will be bounded below552

by these practical limits. Improving underlying physical models may increase environmental553

predictability to some extent, but it cannot realistically be expected to fully explain environmental554

variability.555

Moreover, our ability to predict evolution can be further compromised when systems exhibit556
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extreme sensitivity to initial conditions, for example leading to chaotic dynamics (e.g., Costantino557

et al., 1997). Evolutionary theory has raised the possibility of chaos in evolutionary dynamics558

(Doebeli and Ispolatov, 2014; Gavrilets and Hastings, 1995), including in a changing environment559

(Chevin et al., 2022; Rego-Costa et al., 2018), but its actual existence and prevalence remains to560

be investigated empirically. Another situation where initial conditions are critical to the outcome561

is when evolution occurs on rugged adaptive landscapes caused by strong epistatic interactions562

(Kauffman et al., 1993; Nosil et al., 2020), such that randomly occurring mutations or slight differ-563

ences in standing genetic variation may lead populations into different, irreversible evolutionary564

paths (e.g., Park et al., 2022). Finally, organisms may perceive environmental fluctuations as ran-565

dom, regardless of whether they really are, and this may select for specific biological mechanisms566

such as bet hedging, making evolution difficult to predict even when the causes of environmental567

variation can be deciphered (e.g., Crean and Marshall, 2009; Simons, 2014).568

Another critical consideration is that temporal scale is important for assessing our ability to569

predict evolution. As our simulations showed, the variance of predictions increases with time570

when selection estimates are imprecise or the environment is only partly predictable. The time571

scale of predictability is determined by the patterns of environmental fluctuations, the sensi-572

tivity to initial conditions (i.e., the Lyapunov exponent of chaotic dynamics), and the genetic573

architecture of responses to selection. We focused on short-term predictability of evolutionary or574

ecological dynamics, where selection acted on standing genetic variation. We expect evolution575

from standing variation to be more predictable than evolution from new mutations (e.g., Blount576

et al., 2008; Colosimo et al., 2005; Haenel et al., 2019; Rêgo et al., 2019) (but see, e.g., Chan et al.,577

2010). This is because evolution from standing variation removes a major source of randomness,578

that is mutation (Barrett and Schluter, 2008; Lenormand et al., 2009). Moreover, the evolution-579

ary fate of new mutations, even those favored by selection, is greatly impacted by genetic drift580

(Kimura, 1983). And in general, rare and difficult to predict events contribute more to evolution581

on longer time-scales (e.g., Blount et al., 2018; Gould, 1990). Likewise, many-to-one mapping of582

form to function suggests that multiple genotype or trait combinations can result in functionally583
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equivalent phenotypes, further limiting evolution’s long-term predictability (e.g., Wainwright584

et al., 2005). Thus, predictions in evolutionary biology may always have a limited time horizon.585

In conclusion, our analyses and simulations show that data limits can profoundly curtail586

our ability to predict evolution. We show that optimizing data collection towards increasing587

the precision of selection estimates or their dependence on the environment can meaningfully588

improve our ability to predict evolution, at least on shorter time-scales, but we temper this by589

noting that this is a non-trivial undertaking and that fundamental limits to predictability will590

remain. Perfect precision will be impossible or at least impractical, but also often unnecessary.591

Chaos may increase uncertainty, and to the best of our knowledge some processes are either592

truly random (mutation) or at least random with respect to genotype and phenotype (genetic593

drift), and others will be treated as effectively random at least beyond their time window of594

predictability (environmental stochasticity). We cannot have the perfectly predictive model of595

causal determinism in evolution conjured by Laplace’s demon, but modest increases in data can596

still lead to quantifiably more robust predictions. As such increases could benefit basic and597

applied science, this is what we are after.598
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Côté, F. S. Dobson, S. R. Evans, et al., 2020. Fluctuating optimum and temporally variable832

selection on breeding date in birds and mammals. Proceedings of the National Academy of833

Sciences 117:31969–31978.834

Wade, M. J. and S. Kalisz, 1990. The causes of natural selection. Evolution 44:1947–1955.835

Wainwright, P. C., M. E. Alfaro, D. I. Bolnick, and C. D. Hulsey, 2005. Many-to-one mapping836

of form to function: a general principle in organismal design? Integrative and Comparative837

Biology 45:256–262.838

Wallace, D., 2012. The Emergent Multiverse: Quantum Theory According to the Everett Inter-839

pretation. Oxford University Press.840

Walsh, B. and M. Lynch, 2018. Evolution and selection of quantitative traits. Oxford University841

Press.842

Wang, W. Y., B. J. Barratt, D. G. Clayton, and J. A. Todd, 2005. Genome-wide association studies:843

theoretical and practical concerns. Nature Reviews Genetics 6:109–118.844

Waples, R. S., 2022. What is Ne, anyway? Journal of Heredity URL https://doi.org/10.1093/845

jhered/esac023. Esac023.846

Wei, W.-H., G. Hemani, and C. S. Haley, 2014. Detecting epistasis in human complex traits.847

Nature Reviews Genetics 15:722–733.848

Wright, S., 1931. Evolution in Mendelian populations. Genetics 16:97.849

Zhou, X., P. Carbonetto, and M. Stephens, 2013. Polygenic modeling with bayesian sparse linear850

mixed models. PLoS Genetics 9:e1003264.851

36



Figures852

37



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

Parameter value
P

ro
b
a
b
ili

ty

prior

20

60

100

140

(A) Bayesian updating

Random limit (effective population size)

D
a
ta

 l
im

it
 (

s
a
m

p
le

 s
iz

e
)

0

1000

2000

3000

4000

5000

1
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

(B) Predicting allele frequency

Random limit (effective population size)

D
a
ta

 l
im

it
 (

s
a
m

p
le

 s
iz

e
)

1
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

(C) Predicting trait value

Predictability

(precision)

Figure 1: Conceptual overview of Bayesian updating of uncertainty and summary of predictabil-
ity from simple analytical models. Panel (A) illustrates the effect of increasing the sample size of
an experiment on a Bayesian posterior distribution (the example here assumes a binomial likeli-
hood and conjugate beta prior distribution). Colors denote posteriors based on different sample
sizes. Heat maps in panels (B) and (C) show the precision (reciprocal of the variance) in the allele
frequency (B) or mean trait value (C) following after one generation of evolution by drift and
selection. Darker colors indicate higher precision (predictability). Results are shown over a range
of effective population sizes and experimental sample sizes with selection coefficients (B) or se-
lection differentials (C) of 0.1. The initial allele frequency in (B) is 0.5 and the trait heritability in
(C) is 0.5. Results with other levels of genetic variation are shown in Figure S1.
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Figure 2: Illustrative overview of the case studies and simulations for considering the predictabil-
ity of evolution. In this figure, we provide an overview of our procedure for simulating evolution
in for case studies one (A) and two (B). In case study 1 (A), we conduct the following three in
silico simulation steps. (i) Survival probabilities for selection functions are sampled from the
appropriate probability distributions (e.g., Bayesian posterior distributions). Alternative, sam-
pled NFDS functions are shown. (ii) Given the relevant parameter values, evolution by selection
or selection and drift is simulated multiple times (lines denote alternative possible evolutionary
trajectories). (iii) Based on these trajectories, we calculate the variance in morph frequencies in
each generation. We convert these values to a metric of predictability by computing the precision
(1/variance) and summarizing this statistic across time steps. In case study 2 (B), we conduct
the following five in silico simulation steps. (i) A climate (annual rainfall) time series is first re-
sampled with replacement (the red line denotes the original time series and the gray lines show
examples of re-sampled data). Given the climate time series, resource abundance is determined
by first sampling parameters for a linear regression that relates climate to resource. (ii) Second,
regression parameters for the linear model for the selection differential are sampled from the ap-
propriate probability distributions (e.g., Bayesian posterior distributions). Alternative, sampled
linear functions for selection differentials are shown. (iii) Next, causal genetic loci for the selected
trait are sampled based on their probabilities of association, which are high for a small number
of loci, but low for most. (iv) Given the relevant parameter values, evolution by selection or
selection and drift is simulated multiple times, and (v) based on these trajectories, we calculate
the variance in breeding values or allele frequencies in each generation, which we convert to
precision as described above.
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(D) Unc. in selection, 2X
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Figure 3: Case study 1 with negative frequency-dependent selection (NFDS). Gray lines show
100 probable evolutionary trajectories through time (in generations) under NFDS. Sources of
variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift
and uncertainty in selection (C). Panels (D) and (E) show the effect of uncertainty in selection
and drift plus uncertainty in selection given a hypothetical, larger experiment. In each case, an
arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the
fact that one of the possible trajectories would be realized in a given biological system. Panel
(F) summarizes the predictability of evolution across each of the five conditions shown (labeled
by their panel letter in this figure). Predictability is measured by the precision (reciprocal of
the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown
the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median
precision for each condition is also reported in each panel as a numerical inset. Results are shown
for a heritability of 0.8. Similar results with heritability of 1.0 are shown in Figure S3.

41



0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(A) Drift

383.6

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(B) Unc. selection

25.4

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(C) Unc. sel. + weather

8

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(D) Drift + unc. sel. + weather

4.2

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(E) Drift + unc. genetics

13.2

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(F) Unc. sel. + genetics

10.7

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(G) Unc. sel. + weather + gen.

8.3

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e
a
n
 B

V

(H) Drift + unc. sel. + w. + gen

11.3

A B C D E F G H

Conditions

P
re

c
is

io
n
 (

lo
g
1
0
 s

c
a
le

)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

(I) Predictability

Figure 4: Case study 2 with climatic variation and breeding values. Gray lines show 100 probable
evolutionary trajectories of the expected breeding value (BV) of a trophic trait under temporally-
fluctuating selection. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.)
in selection (B), uncertainty in climatic conditions and selection (sel.) (C), and genetic drift and
uncertainty in climatic conditions and selection (E). Panels (E-H) combine these effects with
uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the trophic trait).
In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to
emphasize the fact that one of the possible trajectories would be realized in a given biological
system. Panel (I) summarizes the predictability of evolution across each of the eight conditions
shown (labeled by their panel letter in this figure). Predictability is measured by the precision
(reciprocal of the variance) in the mean (expected) BV across probable trajectories. Bars shown
the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median
precision for each condition is also reported in each panel as a numerical inset.
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Figure 5: Case study 2 with climatic variation and consideration of genetic architecture and in-
dividual loci. Gray lines show 100 probable evolutionary trajectories of allele frequencies for
loci potentially under temporally-fluctuating selection. Each row in this multi-panel figure corre-
sponds with one of the 1415 genetic loci. The probabilities of trait association (e.g., Bayesian pos-
terior inclusions probabilities or PIPs) are: 0.557 (panels A-D), 0.554 (panels E-H), 0.098 (panels
I-L) and 0.007 (panels M-P). All results shown assume uncertainty in the trait genetic architecture.
Additional sources of variability in each panel are genetic drift (A, E, I, M), uncertainty (Unc.)
in climatic conditions (w.) and selection (B, F, J, N), and genetic drift and uncertainty in climatic
conditions and selection (sel.) (C, G, K, 0). In each case, an arbitrary trajectory is shown in black
to make the dynamics more clear and to emphasize the fact that one of the possible trajectories
would be realized in a given biological system. Panels (D, H, L, P) summarize the predictability
of evolution across each of the three conditions shown for each locus (labeled by their panel
letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in
the allele frequency across probable trajectories. Bars show the median (across generations) and
vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also
reported in each panel as a numerical inset. Compare to Figure S7, which shows the same loci
with genetic architecture known.
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Figure S1: Predictability of evolution by random genetic drift (panels A and C) or uncertain
selection (panels B and D) for an allele frequency (A and B) or mean trait value (C and D). Heat
maps show the precision (reciprocal of the variance) in the allele frequency (A and B) or mean
trait value (C and D) following after one generation of evolution by drift and selection. Darker
colors indicate higher precision (predictability). Results are shown over a range of effective
population sizes or experimental sample sizes and a range of initial allele frequencies or additive
genetic variances (we assume a trait variance of 1 so these are identical to the trait heritabilities).
Panels (A) and (C) assume no selection, whereas the selection coefficient or differential in (B) and
(D) are both 0.1.
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(C) Unc. in selection + drift
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(D) Unc. in selection, 2X
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Figure S2: Precision over time in case study 1 with negative frequency-dependent selection
(NFDS). Points connected by lines show the precision (reciprocal of the variance) in evolution-
ary trajectories over time under NFDS. Sources of variability in each panel are genetic drift (A),
uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D)
and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a
hypothetical, larger experiment.
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(B) Unc. in selection
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(C) Unc. in selection + drift
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(D) Unc. in selection, 2X
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(E) Unc. in selection + drift, 2X
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Figure S3: Case study 1 with NFDS, h2 = 1.0. Gray lines show 100 probable evolutionary trajecto-
ries under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in
selection (B), and genetic drift and uncertainty in selection (C). Panels (D) and (E) show the effect
of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, larger ex-
periment. In each case, an arbitrary trajectory is shown in black to make the dynamics more clear
and to emphasize the fact that only one trajectory would be realized in a given biological system.
Panel (F) summarizes the predictability of evolution across each of the five conditions shown (la-
beled by their panel letter in this figure). Predictability is measured by the precision (reciprocal
of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown
the median (across generations) and vertical lines denote the 25th and 75th percentiles. Results
are shown for a heritability of 1.0.
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(B) Unc. in selection
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(C) Unc. in selection + drift
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(D) Unc. in selection, 2X
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(E) Unc. in selection + drift, 2X
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Figure S4: Case study 1 with NFDS, h2 = 1.0, weak selection. Gray lines show 100 probable
evolutionary trajectories under NFDS. Sources of variability in each panel are genetic drift (A),
uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D)
and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a
hypothetical, larger experiment. In each case, an arbitrary trajectory is shown in black to make
the dynamics clearer and to emphasize the fact that only one trajectory would be realized in a
given biological system. Panel (F) summarizes the predictability of evolution across each of the
five conditions shown (labeled by their panel letter in this figure). Predictability is measured by
the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across proba-
ble trajectories. Bars shown the median (across generations) and vertical lines denote the 25th
and 75th percentiles. Results are shown for a heritability of 1.0, and with weak selection (1%
difference in survival probabilities between morphs).
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(B) Unc. in selection, 2X
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(C) Unc. in selection + drift, 2X
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(D) Unc. in selection, 5X
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(E) Unc. in selection + drift, 5X
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Figure S5: Case study 1 with NFDS, increased sample size. Gray lines show 100 probable evo-
lutionary trajectories under NFDS. Sources of variability in each panel are genetic drift (A),
uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (B)
and (C) show the effect of uncertainty in selection and drift plus uncertainty in selection given
a hypothetical, doubling of the experiment, whereas panes (D) and (E) show the effect of hypo-
thetically increasing the sample size five-fold. In each case, an arbitrary trajectory is shown in
black to make the dynamics clearer and to emphasize the fact that only one trajectory would be
realized in a given biological system. Panel (F) summarizes the predictability of evolution across
each of the five conditions shown (labeled by their panel letter in this figure). Predictability is
measured by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p)
across probable trajectories. Bars shown the median (across generations) and vertical lines denote
the 25th and 75th percentiles. Results are shown for a heritability of 0.8.
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(D) Drift + unc. sel. + weather
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(E) Drift + unc. genetics
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(F) Unc. sel. + genetics
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(G) Unc. sel. + weather + gen.
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Figure S6: Precision over time in case study 2 with climatic variation and breeding values. Points
connected by lines show the precision (reciprocal of the variance) in evolutionary trajectories
of the expected breeding value (BV) of a trophic trait over time under temporally fluctuating
selection. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection
(B), uncertainty in climatic conditions and selection (sel.) (C), and genetic drift and uncertainty
in climatic conditions and selection (E). Panels (E-H) combine these effects with uncertainty in
genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the trophic trait).
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Figure S7: Case study 2 with climatic variation and no uncertainty in genetic architecture. Gray
lines show 100 probable evolutionary trajectories of allele frequencies for loci. Each row in
this multi-panel figure corresponds with one of the 1415 genetic loci. Here, we assume trait
associations were certain, with loci in all but panels A-D being associated with the trait. Sources
of variability in each panel are genetic drift (A, E, I, M), uncertainty (Unc.) in climatic conditions
and selection (sel.) (B, F, J, N), and genetic drift and uncertainty in climatic conditions (w.) and
selection (C, G, K, 0). In each case, an arbitrary trajectory is shown in black to make the dynamics
more clear and to emphasize the fact that one of the possible trajectories would be realized in
a given biological system. Panels (D, H, L, P) summarize the predictability of evolution across
each of the three conditions shown for each locus (labeled by their panel letter in this figure).
Predictability is measured by the precision (reciprocal of the variance) in the allele frequency
across probable trajectories. Bars shown the median (across generations) and vertical lines denote
the 25th and 75th percentiles. Median precision for each condition is also reported in each panel
as a numerical inset. Compare to Figure 5, which shows the same loci with uncertainty in genetic
architecture.
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(B) Unc. selection
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(C) Unc. sel. + weather
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(D) Drift + unc. sel. + weather
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(E) Drift + unc. genetics

13.7

0 5 10 15 20 25 30 35

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Time

M
e

a
n

 B
V

(F) Unc. sel. + genetics
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(G) Unc. sel. + weather + gen.
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(H) Drift + unc. sel. + w. + gen
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Figure S8: Case study 2 with climatic variation and breeding values, increased sample size. Gray
lines show 100 probable evolutionary trajectories of the expected breeding value (BV) of a trophic
trait under temporally fluctuating selection. Sources of variability in each panel are genetic drift
(A), uncertainty (Unc.) in selection (B), uncertainty in climatic conditions and selection (sel.)
(C), and genetic drift and uncertainty in climatic conditions and selection (E). Here, uncertainty
in selection is reduced relative to the main results (compare to 4). Panels (E-H) combine these
effects with uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the
trophic trait). In each case, an arbitrary trajectory is shown in black to make the dynamics more
clear and to emphasize the fact that one of the possible trajectories would be realized in a given
biological system. Panel (I) summarizes the predictability of evolution across each of the eight
conditions shown (labeled by their panel letter in this figure). Predictability is measured by the
precision (reciprocal of the variance) in the mean (expected) BV across probable trajectories. Bars
shown the median (across generations) and vertical lines denote the 25th and 75th percentiles.
Median precision for each condition is also reported in each panel as a numerical inset.
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Figure S9: Case study 2 with climatic variation and consideration of genetic architecture and
individual loci. Here, we show how the degree of uncertainty in whether a locus was under
selection affects precision at the level of locus-specific allele frequency change. All results shown
assume uncertainty (unc.) in the trait genetic architecture; additional sources of variability in
each panel are genetic drift (A), uncertainty in climatic conditions and selection (sel.) (B), and
genetic drift and uncertainty in climatic conditions (w.) and selection (C). In each panel, each
point denotes the precision (median over generations on a log10 scale) for one of 1415 genetic
loci as a function of the uncertainty in the genotype-phenotype association. This latter value is
the minimum of the probability of association or 1 minus the probability of association (i.e., a 0
would indicate perfect association or, as is closer to the case here, a perfect lack of association).
The Pearson correlation (r) between this measure of uncertainty in genetic architecture and the
log10 precision is reported along with the 95% confidence intervals (all P < 0.0001). These
negative correlations indicate that precision was lower for loci with less certain associations,
especially in the absence of genetic drift (as indicated by the larger negative correlation in panel
B).
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