

Laplace's demon in biology: models of evolutionary prediction

Zachariah Gompert^{1*}, Samuel M. Flaxman², Jeffrey L. Feder³,
Luis-Miguel Chevin⁴, Patrik Nosil⁴

1. Department of Biology, Utah State University, Logan, UT 84322, USA
2. EBIO, University of Colorado Boulder, Boulder, CO 80309, USA
3. Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
4. CEFÉ, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France

* Corresponding author; e-mail: zach.gompert@usu.edu.

Running title: Laplace's demon in biology

Manuscript type: Perspective

Author Contributions

ZG and PN conceived and designed the study. ZG and L-MC analyzed the analytical models. ZG conducted the simulations. ZG and PN drafted the initial version of the manuscript and all authors contributed substantially to later versions of the manuscript.

Acknowledgments

This research was funded by a grant from National Science Foundation (NSF) (DEB-1844941) to Z.G., from NSF (DEB-1638997) and the USDA-NIFA program (2015-67013-23289) to J.L.F., and

from the European Research Council (EE-Dynamics 770826, <https://erc.europa.eu/>) to P.N. The support and resources from the Center for High Performance Computing at the University of Utah are also gratefully acknowledged.

Data Accessibility

Simulation data supporting the results from this paper are available from GitHub, <https://github.com/zgompert/LaplaceDemonSims/>

1 **Laplace's demon in biology: models of evolutionary
2 prediction**

3 **Abstract**

4 Our ability to predict natural phenomena can be limited by incomplete information. This issue is
5 exemplified by 'Laplace's demon', an imaginary creature proposed in the 18th century, who knew
6 everything about everything, and thus could predict the full nature of the universe forward or
7 backward in time. Quantum mechanics, among other things, has cast doubt on the possibility of
8 Laplace's demon in the full sense, but the idea still serves as a useful metaphor for thinking about
9 the extent to which prediction is limited by incomplete information on deterministic processes
10 versus random factors. Here we use simple analytical models and computer simulations to
11 illustrate how data limits can be captured in a Bayesian framework, and how they influence our
12 ability to predict evolution. We show how uncertainty in measurements of natural selection,
13 or low predictability of external environmental factors affecting selection, can greatly reduce
14 predictive power, often swamping the influence of intrinsic randomness caused by genetic drift.
15 Thus, more accurate knowledge concerning the causes and action of natural selection is key
16 to improving prediction. Fortunately, our analyses and simulations show quantitatively that
17 reasonable improvements in data quantity and quality can meaningfully increase predictability.

18 *Keywords:* prediction, selection, genetic drift, environmental stochasticity, randomness, deter-
19 minism, simulation models

20 **Introduction**

21 Prediction is a critical component of the sciences, and a major theme in evolutionary biology. For
22 example, instances of repeated, parallel evolution in response to similar environmental pressures
23 can provide evidence of predictable evolution by natural selection (e.g., Campbell-Staton et al.,
24 2020; Chaturvedi et al., 2018; Chevin et al., 2010b; Colosimo et al., 2005; Ferris et al., 2021; Haenel

25 et al., 2019; Martin and Orgogozo, 2013; Rêgo et al., 2019; Soria-Carrasco et al., 2014; Stuart et al.,
26 2022). In contrast, idiosyncratic outcomes can indicate constraints on the power of selection.
27 At the core of this issue is the extent to which evolution is driven by deterministic versus ran-
28 dom processes (Lenormand et al., 2009; Nosil et al., 2020; Sober, 1984). Resolving this question
29 concerning the predictability of evolution is not only of great basic scientific interest but also
30 has practical implications for forecasting organismal responses to natural and human-induced
31 environmental change, the planning of plant and animal breeding programs, and the design of
32 medicines and strategies to combat the spread of disease. In the end, all predictions are really
33 probability distributions with breadth (e.g., variance) reflecting our uncertainty about the under-
34 lying processes. What we want to know here is how much one can shrink those distributions
35 through gaining a better understanding of natural selection.

36 Here, we focus on the ability to forecast evolutionary dynamics, that is trait values or allele
37 frequencies, over time. There are two main classes of explanation for limits in the ability of
38 scientists to predict evolution (Nosil et al., 2020). First, predictability can be limited by random
39 evolutionary processes, described as the ‘random limits’ hypothesis in Nosil et al. (2020). The key
40 mechanisms underlying the random limits hypothesis are stochastic changes in allele frequency
41 due to genetic drift and the random nature of mutation (Sober, 1984; Wright, 1931). Second, even
42 evolution driven by natural selection—a deterministic factor conditional on the environment—
43 could exhibit low predictability, due to measurement error, and limited data and models that
44 in turn lead to poor understanding of selection and trait variation (the ‘data limits’ hypothesis
45 hereafter) (Marques et al., 2018; Nosil et al., 2020, 2018; Reimchen, 1995). Under the data limits
46 hypothesis, the assumption is that with better data and better analysis, evolution by natural se-
47 lection can be better predicted. Limits to our understanding of evolution by selection can occur
48 because environmental sources of selection, such as climatic conditions or predator abundance,
49 fluctuate in ways that are difficult to predict (Chevin et al., 2022; Grant and Grant, 2002; Lenor-
50 mand et al., 2009; Nosil et al., 2018). And even if the environment is constant or can be predicted,
51 limited information about how environmental factors affect resource and trait distributions, and

52 thus selection, can make evolution less predictable. We recently treated these topics in a publi-
53 cation that helped lay a conceptual foundation for studying the causes of variation in our ability
54 to predict evolution (Nosil et al., 2020). This previous study was purely verbal and thus did
55 not allow us to quantify the diverse causes of variable predictability, or to begin to resolve their
56 relative contributions and extent to which they could be ameliorated. These are our main goals
57 here.

58 The data limits hypothesis is exemplified by a thought experiment proposed by 18th century
59 mathematician Pierre-Simon Laplace. This experiment, now called Laplace’s demon, posits an
60 imaginary creature with unlimited computational powers, who knew everything about every-
61 thing (i.e., the position and velocity of all the particles in the universe), and thus could predict
62 the full nature of the universe forward or backward in time from the laws of Newtonian physics.
63 By analogy, we are interested in the extent to which prediction of evolution can be improved by
64 increased knowledge stemming from data quantity and quality.

65 In contrast, random processes impose fundamental limits on prediction, even for an all-
66 knowing intellect like Laplace’s demon, as true randomness persists even after accounting for
67 all causally relevant parameters affecting a process. Notably, the only proposed source in the
68 universe of absolute randomness in this sense is the collapse of wave functions in quantum
69 mechanics (most clearly in spontaneous wave-function collapse theories but also in a Bayesian
70 context with branching in Everettian quantum mechanics) (Maudlin, 2019; Wallace, 2012). Be-
71 cause these quantum processes can directly impact mutation, mutation likely includes a random
72 component in this absolute sense. For example, quantum transitions between keto and enol
73 forms of guanine, which bond with cytosine or thymine, respectively, can cause mutations dur-
74 ing replication (Carroll, 2020; Kimsey et al., 2015, 2018). Genetic drift, on the other hand, is
75 random in a more limited sense (Sober, 1984). Variation in survival and fecundity that gives rise
76 to drift presumably has some deterministic causes that could be known, but these causes are
77 not the genotype or phenotype of the organism. Thus, change due to drift can be productively
78 viewed as random with respect to genotype and phenotype, and thus as random with respect to

79 evolution by natural selection.

80 Finally, selection depends on the interactions of genes, phenotypes, and the environment,
81 and the environment often varies or fluctuates in space and time. There is a long and productive
82 history of modeling components of environmental variability as random processes (e.g., Chevin,
83 2019; Gillespie, 1991; Lenormand et al., 2009; Ohta, 1972; Sæther and Engen, 2015). Nonetheless,
84 most environmental variation is unlikely to be random in an absolute sense, but rather reflects
85 some combination of limited knowledge (uncertainty), chaos, and complexity that can make as-
86 pects of environmental change indistinguishable from random processes (Sugihara et al., 1990).
87 Indeed, even systems that are deterministic may be fundamentally unpredictable in their dynam-
88 ics. Perhaps one of the best-known cases comes from physics, where chaotic dynamics arise in
89 three-body gravitating systems. These systems can be so dependent on initial conditions that
90 measurement precision would need to be at or below the Planck length (an extremely small scale
91 at which quantum gravity becomes relevant) to allow for reliable long-term predictions (Liao,
92 2013, 2014). It is unclear how often or to what extent environmental variability falls into this cat-
93 egory of fundamental unpredictability. However, in at least some cases, some prediction about
94 future environments on some scales is possible, and such predictions can likely be improved (if
95 not perfected) with additional data and better models or computational power. Our focus here
96 is on this aspect of environmental variability, which we place within the data limits hypothesis
97 (we return to the topic of environmental variability and randomness in the Discussion).

98 Herein, we begin by considering constraints on predicting evolution in analytical models that
99 include drift and uncertainty in the strength of selection. We then use simulations to go beyond
100 these analytical models and jointly consider multiple sources of uncertainty—environmental vari-
101 ation, genetic drift, selection, and genetic architecture—and how predictability varies over time.
102 We do so via two case studies that are motivated by empirical systems, but our results do not
103 correspond one-to-one to any particular biological system (i.e., our approach is not a model-
104 fitting endeavor). Thus, the concepts invoked here are grounded in empirical reality but apply
105 to a wide range of environmental factors, traits, and taxa (as we discuss below). We quantify

106 predictability based on the variability among different probable evolutionary trajectories. The
107 rationale for this choice is that evolution is more predictable when probable evolutionary tra-
108 jectories (i.e., alternative, reasonable outcomes from replaying the tape of life) are more similar.
109 We specifically consider the precision (reciprocal of the variance) in allele frequencies or trait
110 values as a metric of predictability. In this context, higher precision denotes higher predictability
111 (this avoids comparisons to some assumed, “actual” evolutionary trajectory, which is especially
112 problematic when incorporating genetic drift).

113 We emphasize Bayesian inference and prediction throughout our quantitative treatment of
114 predicting evolution. We do this because Bayesian methods provide a clear, probabilistic frame-
115 work for quantifying and updating uncertainty (Figure 1A). Prior probability distributions de-
116 scribe initial uncertainty about relevant demographic or evolutionary parameters, such as the
117 strength of selection. These prior distributions are then updated repeatedly by observations and
118 experiments generating increasingly more informative posterior probability distributions, that
119 is reduced uncertainty about model parameters. Posterior distributions are the basis for prob-
120 abilistic predictions of evolutionary trajectories. Importantly, with Bayesian methods it is often
121 possible to accurately estimate the effect of additional data on shrinking the uncertainty in pos-
122 teriors, and thus on increasing predictive power for evolutionary trajectories. We take just such
123 an approach with both the analytical models and case studies here. This information can guide
124 decisions about which additional experiments or studies might be most useful for increasing
125 scientists’ ability to accurately predict evolution.

126 **Analytical arguments and case-study simulations**

127 *Analytical arguments*

128 We begin by showing quantitatively and concretely how random genetic drift and uncertainty in
129 selection combine to place limits on our ability to predict evolution under simple conditions. We
130 do this in an explicitly Bayesian framework. First, consider a single locus evolving for one genera-

131 tion by random drift and (uncertain) selection. We can approximate the expected allele frequency
132 p in the subsequent generation $t + 1$ as $p_{t+1} \approx p + p(1 - p)s$, where s is the selection coefficient
133 (defined from relative fitnesses as $w_{AA} = 1 + 2s$, $w_{Aa} = 1 + s$ and $w_{aa} = 1$, assuming additivity)
134 (Walsh and Lynch, 2018). Genetic drift and uncertainty in selection (i.e., imperfect knowledge of
135 the value of s) each contribute additively to the variance around this expectation. Specifically,
136 the variances caused by drift and uncertainty in selection are $\frac{p(1-p)}{2N_e}$ and $(p(1-p))^2 \text{var}(s)$, re-
137 spectively, with N_e denoting the effective population size and $\text{var}(s)$ the variance of a Bayesian
138 (prior or posterior) distribution for s . Uncertain selection should impose a greater limit on pre-
139 dictability than drift when $\text{var}(s)p(1 - p) > \frac{1}{2N_e}$ (Chevin, 2019; Ohta, 1972) (this relationship was
140 derived for the case where the variance in s is caused by a randomly fluctuating environment,
141 but applies equally well to the case here of uncertainty in a fixed value of s).

142 Whereas N_e is an intrinsic property of the system, $\text{var}(s)$ depends on data and a statistical
143 model. And importantly, the magnitude of $\text{var}(s)$ declines with more precise estimates of se-
144 lection. We can make this explicit with an example. Assume the relative fitnesses of alternative
145 homozygotes are estimated from a release-recapture experiment with equal initial release fre-
146 quencies (we focus on an experiment without heterozygotes for mathematical simplicity). Let y
147 denote the number of AA individuals recaptured out of n recaptures. If we assume a binomial
148 sampling distribution (likelihood) with a conjugate beta prior on the binomial parameter (de-
149 noted π to avoid confusion with p , the allele frequency), the posterior distribution has a known
150 form of $\text{Pr}(\pi|y, n) \sim \text{beta}(\alpha = a_0 + y, \beta = b_0 + n - y)$. Here, a_0 and b_0 denote prior sample sizes,
151 which could reflect past experiments or could be set to low values to denote prior ignorance;
152 y and n depend on the sample size of the current experiment. This implies a variance for s of
153 $\frac{\alpha(\alpha+\beta-1)}{(\beta-2)(\beta-1)^2} \frac{1}{4}$ (Johnson et al., 1995). We illustrate the corresponding precisions in allele frequency
154 (i.e., the predictability of allele frequency) over a range of values of effective population sizes
155 (random limits) and sample sizes (data limits) in Figure 1B (also see Figure S1). Importantly,
156 our results show that drift and uncertain selection can place comparable limits on the precision
157 of predictions, and that increasing the experimental sample size (reducing the data limits) has a

158 more pronounced effect when N_e is not too small.

159 Second, consider the evolution of a quantitative trait by random drift and (uncertain) selec-
160 tion. The expected change in the mean trait value in one generation is given by the breeder's
161 equation, $R = h^2S$ where S is the selection differential and h^2 is the trait's heritability $\left(\frac{\sigma_g^2}{\sigma_z^2}\right)$.
162 Again, drift and uncertainty in selection contribute variances around this expectation of $\sigma_g^2/(2N_e)$
163 and $(h^2)^2\text{var}(S)$, respectively (Lande, 1976). Here, σ_g^2 is the additive genetic variance and $\text{var}(S)$
164 comes from a Bayesian probability distribution that depends on data and a model. We can again
165 make the latter explicit with an example. Assume knowledge of S comes from regressing fitness
166 (or a component of fitness) on standardized trait values (e.g., Lande and Arnold, 1983). If we
167 model the data with a normal sampling distribution (likelihood) and a normal prior on the stan-
168 dardized selection differential (and for simplicity assume that the residual variance is known),
169 the posterior distribution on S (here, the standardized selection differential which is equivalent to
170 the standardized regression coefficient or selection gradient) is normal with $\text{var}(S) = \frac{\sigma^2}{n_0+n}$. Here,
171 σ^2 is the residual trait variance, and n_0 and n are prior and actual sample sizes for the experi-
172 ment. We show the corresponding precisions for the predicted mean trait values with different
173 effective population sizes (random limits) and sample sizes (data limits) in Figure 1C (also see
174 Figure S1). As for the single locus case, effective population size and experimental sample size
175 have similar effects on our ability to predict evolution, and once again only the latter is (partially)
176 under the control of scientists.

177 Additional constraints on predictability occur when selection depends in an uncertain way on
178 the environment or on an uncertain future environment. For example, if the selection differential
179 S is a linear function of the environment x , such that $S = a + bx$, then the total variance caused
180 by fluctuating and poorly predicted selection alone is $\text{var}(h^2S) = (h^2)^2[\text{var}(a) + E(b)^2\text{var}(x) +$
181 $E(x)^2\text{var}(b)]$, which may be quite large if environmental fluctuations are substantial and poorly
182 predicted (large $\text{var}(x)$), or if there is uncertainty in selection ($\text{var}(a)$) or in how it varies with
183 the environment ($\text{var}(b)$) (a similar argument could be made for selection on a single locus).
184 Uncertainty in genetic architecture further inflates this variance by making h^2 a random variable.

185 Additional limits to prediction occur when considering the genetic loci underlying a quantitative
186 trait. In such cases, the genetic effects on traits are often only ascribed probabilistically, and
187 causal variants are often not even known; instead we detect genetic variants in linkage disequi-
188 librium with putative causal ones. Jointly considering these different sources of uncertainty is
189 beyond the reach of the simple analytical arguments laid out in this paragraph. Instead, we now
190 turn to simulation-based case studies to begin to explore the relative, quantitative importance of
191 different sources of uncertainty on predicting evolution where these complexities can be modeled
192 explicitly and jointly under realistic conditions. These simulations also allow us to examine the
193 decline in predictability over time, that is from a few to tens of generations.

194 *Overview and motivation of case studies*

195 The two case studies concern selection that varies in space and time, but for distinct reasons that
196 should make the first case more predictable than the second. The case studies also introduce
197 uncertainty in the genetic basis of the trait under selection, again with differences that should
198 make the first case more predictable than the second. The first involves predator behavior and
199 the evolution of anti-predator traits, motivated by long-term studies of the evolution of cryptic
200 coloration in stick insects (Nosil et al., 2018). This scenario incorporates frequency-dependent
201 selection, which was shown to increase the predictability of evolution under some conditions,
202 even in an unpredictable environment (Chevin et al., 2022). The second involves climatic varia-
203 tion and the evolution of trophic traits, motivated by long-term studies of beak size evolution in
204 Darwin’s finches (Grant and Grant, 2002). We quantify uncertainty by computing the variance in
205 evolutionary outcomes among replicate simulations under each scenario (e.g., with and without
206 genetic drift, with and without uncertainty in natural selection, variable sample sizes, and genetic
207 architectures). Thus, the results tackle another famous thought experiment posed by Stephen J.
208 Gould on the extent to which repeatedly ‘replaying the tape of life’ would yield similar evolu-
209 tionary outcomes (Gould, 1990). Our simulations show how data limits can strongly mediate the
210 extent to which scientists can predict evolution, and how modest increases in the size or scale

211 of experiments can meaningfully reduce these data limits, with the goal of motivating progress
212 towards making evolution a more predictive science.

213 *Case study 1: predation and frequency-dependent selection*

214 Predation affects most organisms and is a common and general source of natural selection (Meyer
215 and Kassen, 2007; Reimchen, 1995; Svensson and Friberg, 2007). Predation can cause negative
216 frequency-dependent selection (NFDS) when predators focus on more common prey types. In
217 such cases, the fitness of a phenotype is expected to fluctuate because it depends on its frequency
218 in the population and involves feedbacks with predator choice. This has been documented, for
219 example, in cichlids, guppies, stickleback, and stick insects (Bolnick and Stutz, 2017; Hori, 1993;
220 Hughes et al., 2013; Nosil et al., 2018; Olendorf et al., 2006). Moreover, evolutionary dynamics
221 and equilibrium outcomes in predator-prey systems and under NFDS have received considerable
222 theoretical attention (Abrams, 2000; Abrams et al., 2008; Chevin et al., 2022). Such systems might
223 represent cases where evolution is easier to predict, especially when selection is primarily a
224 function of the current state (phenotype frequency) of a focal population. Thus, we first consider
225 predictability in the context of predation and NFDS.

226 We used data concerning NFDS on color pattern in the stick insect *Timema cristinae* to help
227 guide our choice of parameters for our illustrative model (Nosil et al., 2018). We emphasize
228 that our goal is not to fit a model for the *T. cristinae* system, but rather to ensure that we use
229 biologically relevant parameters and data-based levels of uncertainty. *Timema cristinae* exhibits
230 striped and unstriped color-pattern morphs. Striped morphs are more cryptic on one host plant
231 (*Adenostoma*), and thus generally favored on this host by selection from visual predators such as
232 birds and lizards (Nosil, 2004; Nosil and Crespi, 2006; Sandoval, 1994a,b). However, experimental
233 and observational data show that striped individuals are less fit when they become very common
234 compared to when they are rarer, thus demonstrating NFDS (Nosil et al., 2018).

235 We quantified the effects of limited knowledge of selection and genetic drift on the ability
236 to predict evolutionary trajectories under NFDS (Figure 2A). We did this through three compar-

237 isons. First, for uncertainty in selection, we are referring to what happens when one predicts the
238 future course of evolutionary change when one has exact knowledge of, for example, selection
239 coefficients for traits under NFDS at different frequencies versus less exact estimates, reflected
240 in a Bayesian probability distribution for these values. In the case of uncertainty in selection,
241 we eliminate the randomness due to drift by simulating an infinite population size. Second, in
242 the drift analysis, we consider having exact information for all the relevant variables affecting
243 selection, but simulate finite-sized populations. Thus, the course of selection is determined by
244 our exact knowledge of how selection would work, plus a degree of randomness introduced by
245 genetic drift in a finite population size. Finally, in drift plus uncertainty in selection simulations,
246 the above uncertainty in selection is incorporated into the runs along with finite population size,
247 introducing the effects of random drift.

248 The logic then is that by comparing the three types of simulations, the relative effects of drift
249 versus uncertainty in selection can be resolved with respect to their effects on predicting evolu-
250 tionary change. This can further help identify cases where one can, through increased sampling
251 and rigor in experimental design, decrease the variance in the Bayesian probability distributions
252 around these point estimates to see how much this effort, which is at least empirically tractable
253 to some degree, can improve our ability to forecast evolution.

254 We assumed the existence of two morphs or phenotypes, denoted 'A' (e.g., striped) and 'B'
255 (e.g., unstriped). We further assumed that the *A* phenotype was advantageous when its popula-
256 tion frequency was not too high (less than a critical value), with relative fitness values of w_A and
257 w_B for the *A* and *B* morphs, and with $w_A > w_B$. However, when *A* was very common (above a
258 critical value) we assumed selection favored the *B* morph with $w_B^* > w_A^*$ (here w^* denotes relative
259 fitness when morph *A* is very common). We based the magnitude of uncertainty in selection on
260 the sample sizes and results from a *T. cristinae* release-recapture field experiment. In this ex-
261 periment, 500 *T. cristinae* stick insects were released in two treatments, one with an initial stripe
262 frequency of 20%, and one with an initial stripe frequency of 80%. Survivors were then collected
263 to estimate the strength of selection for or against stripe under the two different treatments (see

264 Nosil et al., 2018). In both treatments, survival was measured on the host plant *Adenostoma*. The
265 initial stripe frequencies for the two treatments were chosen based on our expectations that they
266 would be on different sides of the critical point where NFDS would alternately favor the striped
267 versus non-striped form.

268 For our current purposes, we obtained Bayesian estimates of survival probabilities assuming
269 a binomial likelihood for recapture in each treatment and with uninformative beta priors on
270 the recapture probabilities (the beta priors set both shape parameters, i.e., prior sample sizes a_0
271 and b_0 , to 0). This resulted in closed-form posterior distributions for absolute fitness (survival
272 probabilities) of beta(52, 48) (mean = 0.52) and beta(62, 338) (mean = 0.155) for the *A* (striped)
273 and *B* (unstriped) morphs, respectively (these values come from the experiment with stripe at
274 an initial frequency of 20%) (Nosil et al., 2018). The means of these distributions were used
275 to calculate relative fitness values in the case where selection was assumed known (1.0 and 0.3,
276 respectively). We knew less about fitness when the striped (*A*) morph was above the critical point
277 (in the original experiment the 80% stripe treatment resulted in nearly equal recapture rates for
278 both morphs). To approximate this, we halved the sample sizes, then flipped the recapture rates
279 and shifted the counts slightly to construct probability distributions for this case: beta(31+10, 169-
280 10) (mean = 0.186) and beta(26-2.5, 24+2.5) (mean = 0.49) for striped (*A*) and unstriped (*B*). We
281 further assumed the critical value where selection switched between favoring *A* versus favoring *B*
282 was known to fall between 0.7 and 0.9 (frequency of *A*) and took on any value within that range
283 with equal probability (i.e., we assumed a uniform probability distribution constrained by the
284 previous experiment). We used 0.85 for cases of known selection. Thus, for each simulation of
285 evolution, we either used these point estimates (selection known) or sampled fitness values from
286 these four beta distributions (i.e., posterior distributions), and a value for the critical point from
287 $U(0.7, 0.9)$ (selection uncertain). As a comparison, an additional set of simulations were conducted
288 to assess predictability with weak, but uncertain selection. For this, survival values were sampled
289 from beta(50.5, 49.5) and beta(49.5, 50.5) for the favored and less fit morph, respectively (here the
290 expected relative fitness values are 1.0 and 0.98, respectively).

291 We considered trait heritabilities of 0.8 or 1 (consistent with Comeault et al., 2016; Lindtke
292 et al., 2017), and an initial frequency for morph *A* of 50%. We incorporated genetic drift by
293 binomial sampling, such that $p_{t+1} \sim \text{binomial}(E[p_{t+1}], 2N_e)$. Here, p_{t+1} is the frequency of
294 morph *A* in the next generation, $E[p_t + 1]$ is the expected frequency given the current frequency
295 (p_t), selection and the trait heritability, and N_e is the effective population size, which we set to
296 110 diploid individuals. This value comes from an empirical estimate of the variance effective
297 population size in a *T. cristinae* population (population code FHA, $43^{\circ}30.958' \text{ N}$, $119^{\circ}48.050' \text{ W}$),
298 which is based on genome-wide allele frequency change (Nosil et al., 2018). We conducted
299 100 simulations of evolution incorporating uncertainty in selection, genetic drift, or both, and
300 measured the effect of each factor on predictability based on the precision (median across 100
301 generations) in evolutionary trajectories. In most cases, the model rapidly fell into a stable,
302 equilibrium oscillation, consistent with patterns of change associated with NFDS documented in
303 nature (Figure 3 and Nosil et al., 2018) (such stable oscillations are a specific outcome of using a
304 step function for NFDS; compare to Chevin et al., 2022). These simulations were written in R and
305 are available via GitHub (<https://github.com/zgompert/LaplaceDemonSims/>).

306 Uncertainty in selection and genetic drift both caused variability in evolutionary trajectories
307 affecting predictability (i.e., increased variability among probable, simulated evolutionary tra-
308 jectories) (Figure 3). Predictability was highest for the first few generations, but then quickly
309 declined and remained relatively constant from about five to 100 generations (i.e., for the re-
310 mainder of the simulated time; Figure S2). We thus focus on the mean predictability (precision)
311 when comparing sources of uncertainty.

312 Importantly, uncertainty in selection did not lead to erroneous qualitative predictions, as
313 a stable oscillation in stripe frequency was always predicted (this is expected given the step
314 function assumed for NFDS, unlike in Chevin et al., 2022). However, limited knowledge of
315 selection did cause considerable quantitative uncertainty in the evolutionary trajectory (i.e., in
316 the pattern and characteristics of the oscillations), and this was greater than the uncertainty
317 caused by genetic drift (Figure 3F). For example, with $h^2 = 0.8$, the median precision across

318 generations was two times higher with genetic drift and known selection (median precision =
319 277.7) than with no genetic drift and uncertainty in selection (median precision = 128.4) (higher
320 values indicate higher precision in predicting evolution). Moreover, adding drift to the latter case
321 (i.e., both drift and uncertainty in selection) did not markedly lower precision (median precision
322 = 118.3). Similar results were observed for $h^2 = 1$ (median precision = 192.2, 96.5, and 92.3,
323 respectively). These results, with associated measures of variability and uncertainty, are depicted
324 in detail in Figures S3 and S4.

325 These effects of uncertainty in selection versus drift on predictability were not restricted to a
326 scenario of strong selection. For example, even with weak selection (1% difference in expected
327 survival probabilities), drift had less of an effect on predictability than did uncertainty in selec-
328 tion (median precision across generations of 36.2 versus 5.8) (Figure S4). This perhaps counter-
329 intuitive result arose because weak NFDS combined with uncertainty in selection resulted in
330 transient directional selection (rather than strongly fluctuating) for or against either phenotype
331 being among the set of probable selection models. In such cases, directional selection, even if
332 transient, was consistent enough to fix one or the other morph, resulting in a high variance (low
333 precision) in evolutionary trajectories.

334 Whereas genetic drift is a property of the effective size of any finite population, predictability
335 can be increased by better knowledge of selection. To examine the effects of such knowledge, we
336 conducted additional simulations assuming two or five times larger sample sizes for the release-
337 recapture experiment (and consequent reduction in uncertainty in selection) and a decrease of the
338 range of possible values where the transition occurred from selection favoring morph A to B (at a
339 frequency of A of 0.8-0.9). With strong selection and $h^2 = 0.8$, doubling the sample size essentially
340 doubled the predictability. Thus, with a two times larger sample size the predictability with
341 uncertainty in selection (precision = 242.4) was almost as high as the level observed for just drift
342 (precision = 277.7; precision with both uncertainty in selection and drift = 214.6), suggesting quite
343 meaningful increases in predictability would be possible with only a reasonable increase in effort
344 (Figure 3D-F). Similar results were observed with $h^2 = 1$ or with weak selection (Figures S3D-F

345 and S4D-F), but increasing the sample size five-fold had little additional effect on improving
346 predictability (Figure S5).

347 *Case study 2: climatic variability and trophic evolution*

348 Temporal variation in climatic conditions can cause the direction and magnitude of selection on a
349 trait to vary in time. Climate and weather can themselves be agents of selection or can indirectly
350 cause selection by affecting resource availability, predators, competitors, etc., which then act as
351 agents of selection. Temporally fluctuating selection caused by climatic variability is likely to be
352 general, as it has been documented in numerous species (Bergland et al., 2014; Busoms et al.,
353 2018; Reimchen and Nosil, 2004; Rudman et al., 2022; Siepielski et al., 2009, 2017; de Villemereuil
354 et al., 2020). Perhaps the best-known example comes from Darwin's finches, where variation
355 in rainfall on Daphne Major has been shown to affect the relative abundances of small versus
356 large seeds, which in turn exerts selection on beak size in *Geospiza fortis* (Boag and Grant, 1981;
357 Grant and Grant, 2014). Such cases are of particular interest for predicting evolution because
358 they include both uncertainty in climatic conditions and uncertainty in selection. Selection has
359 been described as unpredictable in the case of *G. fortis* (Grant and Grant, 2002), not because we
360 do not understand selection (i.e., selection is known to be exerted by seed size distributions),
361 but rather because we cannot predict climatic fluctuations or how these affect the seed size
362 distribution. Because of this dual complexity and the potential generality of such conditions,
363 we consider climatic variability and trophic evolution as our second case study. Here, we also
364 consider the effects of uncertainty in the detailed genetic basis of the selected trait. As for
365 the case of NFDS, we used general empirical knowledge (in this case from the finch system)
366 to parameterize our illustrative models, but without the aim of fitting specific models to the
367 finch system. Rather, we use this scenario to understand the extent to which evolution can be
368 predicted without directly measuring selection in all generations, but instead relying on known
369 (current generation) or projected (future generations) environmental data. This is important to
370 assess because environmental data can be simpler to gather than measurements of selection, so

371 the prediction process could be simplified by first estimating the relationship between selection
372 and the environment (environmental sensitivity of selection) over a few generations, and then
373 combining this with environmental projections to predict evolutionary dynamics (Chevin et al.,
374 2010a).

375 We either assumed climatic conditions were known, or incorporated uncertainty in such con-
376 ditions, as would occur when trying to project future environments based on past time series
377 (Figure 2B). An observed annual rainfall time series on Daphne Major, which included data from
378 1973 to 2012, was used for cases where we assumed climate conditions were known (Grant and
379 Grant, 2014). Uncertainty in climatic conditions was modeled by sampling from this time series
380 with replacement (i.e., here we do not adopt a Bayesian approach). Alternative, (simple) model-
381 based approaches to account for climate uncertainty failed to capture the salient features of the
382 actual time series, especially the extreme variability (i.e., the extreme values relative to, e.g., a
383 normal or exponential distribution; results not shown).

384 We assumed that, conditional on climatic conditions, the nature of selection was either known
385 or uncertain. We considered two sources of uncertainty: the link between climatic conditions and
386 resource, and between resource and selection differential (Figure 2B). For resource abundance,
387 we first used the data from Daphne Major to infer the relationship between rainfall and resource
388 (the relative abundance of small seeds versus large seeds) (Grant and Grant, 2014). To do this, we
389 regressed resource abundance on five year cumulative rainfall in a model that included linear and
390 quadratic effects (five-year rainfall performed better, i.e., higher r^2 , than sums over fewer years).
391 Point estimates for these parameters were: intercept = 1.57×10^{-1} , rain linear = 6.5×10^{-4} ,
392 and rain quadratic = -6.36×10^{-7} ($r^2 = 0.498$, $P = 0.011$). These were used when selection
393 was assumed known. In cases where selection was not known, we incorporated uncertainty in
394 this relationship by sampling regression coefficients from Gaussian distributions centered on the
395 point estimates, and with standard deviations equal to the standard errors of the coefficients
396 (SEs: intercept = 1.47×10^{-1} , rain linear = 1.84×10^{-1} , rain quadratic = 3.13×10^{-7}). From a
397 Bayesian perspective, using the standard errors in this way is analogous to placing flat priors

398 on the regression coefficients and treating the residual variance as known (Congdon, 2007). In
399 terms of the resource-selection link, with selection known we assumed the selection differential
400 $S = a + bx$, with $a = 0.18$, $b = -0.81$ and x = resource abundance. These values assume resource
401 abundance has been centered (mean = 0) and are approximately equal to the extremes of selection
402 observed in *G. fortis*. When selection was uncertain, values for a and b were sampled from normal
403 distributions with standard deviations of 0.1 and means of 0.18 and -0.81, respectively. Thus, we
404 treat these distributions as Bayesian probability distributions for uncertain a and b ; uncertainty is
405 encoded by the non-zero standard deviations, which we set to 0.1 (we chose these values in the
406 absence of pertinent information but consider alternative values that reflect an increase in data
407 below).

408 We further assumed the trophic trait was moderately heritable ($h^2 \approx 0.5$), with ~ 27 causal
409 variants with a normal effect size distribution (inspired by genetic mapping results from Chaves
410 et al., 2016) (Figure 2B). More specifically, we created 1415 loci potentially affecting the trait. We
411 assigned Bayesian probabilities of effect/association to each locus sampling from uniform distri-
412 butions: $U(0.1, 0.6)$ (15 loci), $U(0.05, 0.1)$ (100 loci), $U(0.01, 0.05)$ (300 loci) and $U(0.001, 0.01)$ (1000
413 loci). Thus, a small number of loci had high probabilities of association and many had much
414 lower probabilities of association (the expectation is 27.2 associated loci). Phenotypic effects were
415 assigned to the loci by sampling from a standard normal distribution, and allele frequencies for
416 each bi-allelic locus were drawn from a beta distribution, $\text{beta}(0.6, 0.6)$ (this gives a U-shaped
417 distribution of allele frequencies). Then, for each simulation of evolution, the subset of causal
418 variants was determined by sampling loci according to their probabilities of association (analo-
419 gous to posterior inclusion probabilities from Bayesian polygenic models for genomic prediction,
420 see, e.g., Gompert, 2021; Zhou et al., 2013). Sampled loci were assigned their respective effect
421 sizes, and other loci were assigned an effect size of 0.

422 We modeled the evolution of expected trait values (akin to the genome-estimated breeding
423 values) by calculating the effect of phenotypic selection on expected allele frequency change
424 across loci. The selection differential denoted the expected phenotypic change. We then ap-

425 proximated the selection on each allele as $s_i = w_i - 1 \approx b_i \frac{S}{\sigma_z^2}$, where b_i is the average excess of
426 locus i , σ_z^2 denotes the phenotypic variance and was set to 2 to give a heritability of about 0.5
427 (the exact value varied based on the specific causal loci), and $\frac{S}{\sigma_z^2}$ equals the selection gradient β
428 (Gompert, 2021; Kimura and Crow, 1978; Walsh and Lynch, 2018). This approximation assumes
429 the trait remains normally distributed, effect sizes are small, and causal loci are unlinked. The
430 expected change in allele frequency is then given by $\Delta p_i = p_i s_i$ (Kimura and Crow, 1978). Ge-
431 netic drift was incorporated by binomial sampling around this expectation. We used an effective
432 population size of 60 (Grant and Grant, 1992), ran 100 simulations for each set of conditions, and
433 ran each simulation for 35 generations. We tracked allele frequencies and expected trait values
434 (genome-estimated breeding values). These simulations were written in C++ with the Gnu Sci-
435 entific Library (code available via GitHub; <https://github.com/zgompert/LaplaceDemonSims/>)
436 (Galassi et al., 2003). Predictability was measured as the precision in expected trait values or
437 allele frequencies.

438 Uncertainty in selection, climatic conditions, and genetic architecture, as well as genetic drift,
439 all acted to limit the predictability of the evolutionary time series for the expected value of
440 the trophic trait (i.e., the mean genome-estimated breeding value) (Figure 4), and predictability
441 (i.e., precision across replicates) again declined over time (Figure S6). Of these factors, genetic
442 drift had the smallest effect, resulting in the highest predictability for models that included drift
443 alone (median precision 383.6; Figure 4A). The other factors caused much larger reductions in
444 predictability (other factors in combination or isolation gave median precisions ranging between
445 4.2 and 25.4; Figure 4).

446 Likewise, genetic drift often had only a modest effect on predictions for the evolutionary
447 trajectories of individual alleles (Figure 5, S7). The magnitude of the relative effects of drift and
448 uncertainty in selection depended in part on the probability that a locus was associated with (i.e.,
449 caused variation in) the trophic trait. In cases where an association between a locus and the trait
450 was uncertain but likely (i.e., inclusion probability of ~10-50%), drift and uncertainty in selection
451 had similar effects on precision (i.e., predictability) (e.g., Figure 5A-H). The main factor causing

452 variability in trajectories was instead uncertainty in genetic architecture. In particular, distinct
453 sets of trajectories were evident for simulations where the locus was versus was not assumed
454 to be associated with the trait (also compare Figures 5 and S5). This effect was reduced with
455 lower probabilities of association (Figure S9). Indeed, the main exception to the pattern of drift
456 having less effect than uncertainty in selection occurred for loci with very low probabilities of
457 association (e.g., Figure 5M-P). In such cases, drift was the bigger cause of poor predictability,
458 as almost all probable trajectories included no selection on these loci (because they were not
459 actually associated with the trait), and thus uncertainty in selection was of minimal relevance for
460 evolutionary dynamics.

461 As with the first case study, we conducted additional simulations to determine the effect
462 of increased information about selection on our ability to predict evolution. Here, we focused
463 on the effect of increased information about the link between the environment and selection.
464 Specifically, we considered a three-fold increase in the number of experiments used to determine
465 the relationship between resources and selection differentials, which would decrease the standard
466 deviations for the Bayesian probability distributions on the intercept (a) and slope (b) from 0.1 to
467 0.058. This increase in the number of experiments increased the predictability for the expected
468 value of the trophic trait with the precision increasing from 25.4 to 188.2, again suggesting that
469 a feasible increase in effort can result in quite notable gains in predictability (Figure S8). Higher
470 predictability remained (though to a lesser extent) when uncertainty in selection was combined
471 with drift or uncertainty in weather, but was less evident when uncertainty in genetic architecture
472 was included.

473 *Summary considerations and moving beyond these case studies*

474 We think several practical messages emerge from our analytical arguments and case studies.
475 First, we can improve our ability to predict evolution by obtaining better estimates of selection
476 within an environment; our results suggest that sample sizes on the order of the effective popu-
477 lation size (or a bit bigger) represent a reasonable (and often feasible) goal. Here, we refer to the

478 variance effective population size, which is often much smaller (e.g., $\sim \frac{1}{10}$) than the local census
479 population size (e.g., Frankham, 1995; Gompert et al., 2021; Waples, 2022). Beyond that effort,
480 our results suggest that measuring selection in additional environments will be more productive
481 for improving predictions of evolution. This of course adds considerable complexity and work,
482 but perhaps starting with relevant environmental extremes (e.g., wettest versus driest habitats,
483 low versus high trait frequencies, etc.) would allow one to at least place bounds on the extent to
484 which environmental variation is associated with variation in selection in a given system.

485 Second, and unsurprisingly, predicting evolution at the genetic level was easier for a highly
486 heritable trait (stripe) than for a less heritable polygenic trait (beak size). This is likely to hold in
487 general, and very large genetic mapping studies will likely be necessary for precise predictions of
488 allele frequency change for polygenic traits. Often it will be more profitable and more reasonable
489 to make predictions at the level of expected breeding values (polygenic scores), either using
490 pedigrees and classic quantitative genetic methods or genetic-marker based genomic prediction
491 methods. Importantly, we did not consider cases where the trait value itself is affected by the
492 environment (i.e., where there is plasticity) (e.g., Crozier et al., 2011); in such cases, predicting
493 evolutionary change (albeit perhaps not phenotypic patterns) will likely require larger genetic
494 mapping or quantitative genetic studies spanning multiple environments.

495 Lastly, the case studies we considered were based on empirical work that combines long-
496 term monitoring of populations with selection experiments and genetic mapping or traditional
497 quantitative genetics. We think that such combined approaches are critical for making and test-
498 ing evolutionary predictions (e.g., Wade and Kalisz, 1990). Several other systems have similar
499 features, such as Soay sheep on St. Kilda island (Ashraf et al., 2021; Clutton-Brock and Pember-
500 ton, 2004; Johnston et al., 2013), great tits (Garant et al., 2004; Gienapp et al., 2019; Husby et al.,
501 2011), collared flycatchers (Merilä et al., 2001), threespine stickleback fish (Marques et al., 2018;
502 Reimchen and Nosil, 2002, 2004; Reimchen, 1995), and Edith's Checkerspot butterflies (Ehrlich
503 et al., 2004, 1975; Parmesan and Singer, 2022). We think that these and other long-term studies
504 (reviewed in, e.g., Clutton-Brock and Sheldon, 2010) can provide further tests of the predictability

505 of evolution, and that our work here can generate hypotheses for how to improve predictability
506 in these systems.

507 **Discussion**

508 The analytical arguments and case studies we considered illustrate how data limitations and
509 uncertainty in selection, including that caused by low environmental predictability, can substan-
510 tially affect the predictability of phenotypic and genetic evolutionary change, much beyond the
511 influence of random evolutionary processes, in this case genetic drift. Moreover, our results are
512 likely conservative, as we only modeled a subset of possible uncertainties in selection and con-
513 sidered modest population sizes, where the potential for genetic drift is substantial. Despite this,
514 uncertainty in selection generally had much more pronounced effects on reducing predictabil-
515 ity than did genetic drift, especially in the two case studies. This is consistent with theoretical
516 expectations that uncertainty in selection should dominate when $\text{var}(s)p(1 - p) > \frac{1}{2N_e}$ (Chevin,
517 2019; Ohta, 1972).

518 These results suggest that progress towards predicting evolution can be made with empirical
519 and analytical effort, because the largest limit does not come from intrinsic properties of the pop-
520 ulation. For example, our results show how larger sample sizes can increase the predictability
521 of evolution; in case study 1, doubling the sample size made the Bayesian probability distribu-
522 tion for selection more precise and thereby doubled our ability to predict evolutionary dynamics
523 (Figure 3). Similar gains in predictability were observed in simulations with better knowledge
524 of additional factors affecting evolutionary dynamics, such as trait genetic architectures, weather
525 and climate, and the environmental causes and ecological consequences of selection (Figure 4).
526 The only notable exception to this pattern comes from the analytical models, which show that
527 increasing sample sizes has minimal effect when the effective population size is very low (i.e.,
528 below 50) (Figure 1). Consequently, while perfect prediction as envisioned by Laplace's demon is
529 forever out of reach due to the action of largely random processes of genetic drift and mutation,

530 our results suggest that even modest improvements in data quantity and quality can meaning-
531 fully increase predictability (i.e., we will not get an omniscient demon, but at least we can have a
532 serviceable, low-level imp that throws loaded dice).

533 Still, improving the predictability of evolution is not without its challenges. First, collect-
534 ing sufficient data for meaningful prediction is not a trivial task. For example, gathering ad-
535 equate time-series data may require multiple scientists' entire careers, and very large sample
536 sizes can be required for genetic mapping of traits, especially in the presence of gene-gene or
537 gene-environment interactions (Wang et al., 2005; Wei et al., 2014). With that said, evolution of
538 quantitative traits can be successfully predicted without knowing the effects of individual genes
539 using the animal model and pedigrees or kinship matrixes inferred from genetic marker data
540 (e.g., Bonnet et al., 2022; Charmantier et al., 2014; Meuwissen et al., 2001; Walsh and Lynch,
541 2018). Still, this methods require extensive data and even with detailed (e.g., pedigree-based)
542 observational work, it can often be difficult to determine whether or to what extent changes in
543 phenotypes (or breeding values) reflect selection or only random drift (e.g., Hadfield et al., 2010;
544 Pigeon et al., 2016).

545 Second, pleiotropy could confound predictions, especially at the genetic level, if mutations
546 affecting a favored trait have additional effects on other traits and genetic effects or selection
547 on these other traits has not been measured (e.g., Gromko, 1995; Saltz et al., 2017). Third, the
548 precision of predictions cannot likely be increased indefinitely by collecting more data (e.g.,
549 Figure 1). Many ecologically relevant environmental variables (such as temperature) include
550 sufficient noise (Halley, 1996; Ruokolainen et al., 2009; Vasseur and Yodzis, 2004) that, from a
551 practical perspective, they can only be predicted in a probabilistic sense. The envelope breadth
552 of evolutionary predictions in response to such environmental variables will be bounded below
553 by these practical limits. Improving underlying physical models may increase environmental
554 predictability to some extent, but it cannot realistically be expected to fully explain environmental
555 variability.

556 Moreover, our ability to predict evolution can be further compromised when systems exhibit

557 extreme sensitivity to initial conditions, for example leading to chaotic dynamics (e.g., Costantino
558 et al., 1997). Evolutionary theory has raised the possibility of chaos in evolutionary dynamics
559 (Doebeli and Ispolatov, 2014; Gavrilets and Hastings, 1995), including in a changing environment
560 (Chevin et al., 2022; Rego-Costa et al., 2018), but its actual existence and prevalence remains to
561 be investigated empirically. Another situation where initial conditions are critical to the outcome
562 is when evolution occurs on rugged adaptive landscapes caused by strong epistatic interactions
563 (Kauffman et al., 1993; Nosil et al., 2020), such that randomly occurring mutations or slight differ-
564 ences in standing genetic variation may lead populations into different, irreversible evolutionary
565 paths (e.g., Park et al., 2022). Finally, organisms may perceive environmental fluctuations as ran-
566 dom, regardless of whether they really are, and this may select for specific biological mechanisms
567 such as bet hedging, making evolution difficult to predict even when the causes of environmental
568 variation can be deciphered (e.g., Crean and Marshall, 2009; Simons, 2014).

569 Another critical consideration is that temporal scale is important for assessing our ability to
570 predict evolution. As our simulations showed, the variance of predictions increases with time
571 when selection estimates are imprecise or the environment is only partly predictable. The time
572 scale of predictability is determined by the patterns of environmental fluctuations, the sensi-
573 tivity to initial conditions (i.e., the Lyapunov exponent of chaotic dynamics), and the genetic
574 architecture of responses to selection. We focused on short-term predictability of evolutionary or
575 ecological dynamics, where selection acted on standing genetic variation. We expect evolution
576 from standing variation to be more predictable than evolution from new mutations (e.g., Blount
577 et al., 2008; Colosimo et al., 2005; Haenel et al., 2019; Rêgo et al., 2019) (but see, e.g., Chan et al.,
578 2010). This is because evolution from standing variation removes a major source of randomness,
579 that is mutation (Barrett and Schluter, 2008; Lenormand et al., 2009). Moreover, the evolution-
580 ary fate of new mutations, even those favored by selection, is greatly impacted by genetic drift
581 (Kimura, 1983). And in general, rare and difficult to predict events contribute more to evolution
582 on longer time-scales (e.g., Blount et al., 2018; Gould, 1990). Likewise, many-to-one mapping of
583 form to function suggests that multiple genotype or trait combinations can result in functionally

584 equivalent phenotypes, further limiting evolution's long-term predictability (e.g., Wainwright
585 et al., 2005). Thus, predictions in evolutionary biology may always have a limited time horizon.

586 In conclusion, our analyses and simulations show that data limits can profoundly curtail
587 our ability to predict evolution. We show that optimizing data collection towards increasing
588 the precision of selection estimates or their dependence on the environment can meaningfully
589 improve our ability to predict evolution, at least on shorter time-scales, but we temper this by
590 noting that this is a non-trivial undertaking and that fundamental limits to predictability will
591 remain. Perfect precision will be impossible or at least impractical, but also often unnecessary.
592 Chaos may increase uncertainty, and to the best of our knowledge some processes are either
593 truly random (mutation) or at least random with respect to genotype and phenotype (genetic
594 drift), and others will be treated as effectively random at least beyond their time window of
595 predictability (environmental stochasticity). We cannot have the perfectly predictive model of
596 causal determinism in evolution conjured by Laplace's demon, but modest increases in data can
597 still lead to quantifiably more robust predictions. As such increases could benefit basic and
598 applied science, this is what we are after.

References

600 Abrams, P. A., 2000. The evolution of predator-prey interactions: theory and evidence. *Annual*
601 *Review of Ecology and Systematics* 31:79–105.

602 Abrams, P. A., C. Rueffler, and G. Kim, 2008. Determinants of the strength of disruptive and/or
603 divergent selection arising from resource competition. *Evolution* 62:1571–1586.

604 Ashraf, B., D. C. Hunter, C. Bérénos, P. A. Ellis, S. E. Johnston, J. G. Pilkington, J. M. Pemberton,
605 and J. Slate, 2021. Genomic prediction in the wild: A case study in Soay sheep. *Molecular*
606 *Ecology* .

607 Barrett, R. D. and D. Schlüter, 2008. Adaptation from standing genetic variation. *Trends in*
608 *Ecology & Evolution* 23:38–44.

609 Bergland, A. O., E. L. Behrman, K. R. O'Brien, P. S. Schmidt, and D. A. Petrov, 2014. Genomic
610 evidence of rapid and stable adaptive oscillations over seasonal time scales in *Drosophila*. *PLoS*
611 *Genetics* 10:e1004775.

612 Blount, Z. D., C. Z. Borland, and R. E. Lenski, 2008. Historical contingency and the evolution of
613 a key innovation in an experimental population of *Escherichia coli*. *Proceedings of the National*
614 *Academy of Sciences* 105:7899–7906.

615 Blount, Z. D., R. E. Lenski, and J. B. Losos, 2018. Contingency and determinism in evolution:
616 *Replaying life's tape*. *Science* 362.

617 Boag, P. T. and P. R. Grant, 1981. Intense natural selection in a population of Darwin's finches
618 (Geospizinae) in the Galapagos. *Science* 214:82–85.

619 Bolnick, D. I. and W. E. Stutz, 2017. Frequency dependence limits divergent evolution by favour-
620 ing rare immigrants over residents. *Nature* 546:285–288.

621 Bonnet, T., M. B. Morrissey, P. de Villemereuil, S. C. Alberts, P. Arcese, L. D. Bailey, S. Boutin,
622 P. Brekke, L. J. Brent, G. Camenisch, et al., 2022. Genetic variance in fitness indicates rapid
623 contemporary adaptive evolution in wild animals. *Science* 376:1012–1016.

624 Busoms, S., P. Paajanen, S. Marburger, S. Bray, X.-Y. Huang, C. Poschenrieder, L. Yant, and D. E.
625 Salt, 2018. Fluctuating selection on migrant adaptive sodium transporter alleles in coastal
626 *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences* 115:E12443–E12452.

627 Campbell-Staton, S. C., K. M. Winchell, N. C. Rochette, J. Fredette, I. Maayan, R. M. Schweizer,
628 and J. Catchen, 2020. Parallel selection on thermal physiology facilitates repeated adaptation
629 of city lizards to urban heat islands. *Nature Ecology & Evolution* 4:652–658.

630 Carroll, S. B., 2020. *A Series of Fortunate Events: Chance and the Making of the Planet, Life, and*
631 *You*. Princeton University Press.

632 Chan, Y. F., M. E. Marks, F. C. Jones, G. Villarreal, M. D. Shapiro, S. D. Brady, A. M. Southwick,
633 D. M. Absher, J. Grimwood, J. Schmutz, et al., 2010. Adaptive evolution of pelvic reduction in
634 sticklebacks by recurrent deletion of a Pitx1 enhancer. *Science* 327:302–305.

635 Charmantier, A., D. Garant, and L. E. Kruuk, 2014. Quantitative genetics in the wild. OUP
636 Oxford.

637 Chaturvedi, S., L. K. Lucas, C. C. Nice, J. A. Fordyce, M. L. Forister, and Z. Gompert, 2018. The
638 predictability of genomic changes underlying a recent host shift in Melissa blue butterflies.
639 *Molecular Ecology* 27:2651–2666.

640 Chaves, J. A., E. A. Cooper, A. P. Hendry, J. Podos, L. F. De León, J. A. Raeymaekers, W. O.
641 MacMillan, and J. A. C. Uy, 2016. Genomic variation at the tips of the adaptive radiation of
642 Darwin's finches. *Molecular Ecology* 25:5282–5295.

643 Chevin, L.-M., 2019. Selective sweep at a QTL in a randomly fluctuating environment. *Genetics*
644 213:987–1005.

645 Chevin, L.-M., Z. Gompert, and P. Nosil, 2022. Frequency dependence and the predictability of
646 evolution in a changing environment. *Evolution Letters* 6:21–33.

647 Chevin, L.-M., R. Lande, and G. M. Mace, 2010a. Adaptation, plasticity, and extinction in a
648 changing environment: towards a predictive theory. *PLoS Biology* 8:e1000357.

649 Chevin, L.-M., G. Martin, and T. Lenormand, 2010b. Fisher's model and the genomics of adapta-
650 tion: restricted pleiotropy, heterogenous mutation, and parallel evolution. *Evolution* 64:3213–
651 3231.

652 Clutton-Brock, T. and B. C. Sheldon, 2010. Individuals and populations: the role of long-term,
653 individual-based studies of animals in ecology and evolutionary biology. *Trends in Ecology &*
654 *Evolution* 25:562–573.

655 Clutton-Brock, T. H. and J. M. Pemberton, 2004. *Soay Sheep: Dynamics and Selection in an Island*
656 *Population*. Cambridge University Press.

657 Colosimo, P. F., K. E. Hosemann, S. Balabhadra, G. Villarreal, M. Dickson, J. Grimwood,
658 J. Schmutz, R. M. Myers, D. Schluter, and D. M. Kingsley, 2005. Widespread parallel evolution
659 in sticklebacks by repeated fixation of ectodysplasin alleles. *Science* 307:1928–1933.

660 Comeault, A. A., C. F. Carvalho, S. Dennis, V. Soria-Carrasco, and P. Nosil, 2016. Color pheno-
661 types are under similar genetic control in two distantly related species of *Timema* stick insect.
662 *Evolution* 70:1283–1296.

663 Congdon, P., 2007. *Bayesian Statistical Modelling*. John Wiley & Sons.

664 Costantino, R. F., R. Desharnais, J. M. Cushing, and B. Dennis, 1997. Chaotic dynamics in an
665 insect population. *Science* 275:389–391.

666 Crean, A. J. and D. J. Marshall, 2009. Coping with environmental uncertainty: dynamic bet
667 hedging as a maternal effect. *Philosophical Transactions of the Royal Society B: Biological*
668 *Sciences* 364:1087–1096.

669 Crozier, L. G., M. D. Scheuerell, and R. W. Zabel, 2011. Using time series analysis to characterize
670 evolutionary and plastic responses to environmental change: a case study of a shift toward
671 earlier migration date in sockeye salmon. *The American Naturalist* 178:755–773.

672 Doebeli, M. and I. Ispolatov, 2014. Chaos and unpredictability in evolution. *Evolution* 68:1365–
673 1373.

674 Ehrlich, P. R., I. Hanski, et al., 2004. On the wings of checkerspots: a model system for population
675 biology. Oxford University Press.

676 Ehrlich, P. R., R. R. White, M. C. Singer, S. W. McKechnie, and L. E. Gilbert, 1975. Checkerspot
677 butterflies: A historical perspective: Long-term studies of *Euphydryas* butterflies have revealed
678 much about the biology of natural populations. *Science* 188:221–228.

679 Ferris, K. G., A. S. Chavez, T. A. Suzuki, E. J. Beckman, M. Phifer-Rixey, K. Bi, and M. W.
680 Nachman, 2021. The genomics of rapid climatic adaptation and parallel evolution in North
681 American house mice. *PLoS Genetics* 17:1–25. URL <https://doi.org/10.1371/journal.pgen.1009495>.

683 Frankham, R., 1995. Effective population size/adult population size ratios in wildlife: a review.
684 *Genetics Research* 66:95–107.

685 Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi, 2003.
686 GNU scientific library. Reference Manual. Edition 1.4, for GSL Version 1.4 .

687 Garant, D., L. E. Kruuk, R. H. McCleery, and B. C. Sheldon, 2004. Evolution in a changing
688 environment: a case study with great tit fledgling mass. *The American Naturalist* 164:E115–
689 E129.

690 Gavrilets, S. and A. Hastings, 1995. Intermittency and transient chaos from simple frequency-
691 dependent selection. *Proceedings of the Royal Society of London. Series B: Biological Sciences*
692 261:233–238.

693 Gienapp, P., M. P. Calus, V. N. Laine, and M. E. Visser, 2019. Genomic selection on breeding time
694 in a wild bird population. *Evolution Letters* 3:142–151.

695 Gillespie, J. H., 1991. *The Causes of Molecular Evolution*. Oxford University Press On Demand.

696 Gompert, Z., 2021. A population-genomic approach for estimating selection on polygenic traits
697 in heterogeneous environments. *Molecular Ecology Resources* 21:1529–1546.

698 Gompert, Z., A. Springer, M. Brady, S. Chaturvedi, and L. K. Lucas, 2021. Genomic time-series
699 data show that gene flow maintains high genetic diversity despite substantial genetic drift in a
700 butterfly species. *Molecular Ecology* 30:4991–5008.

701 Gould, S. J., 1990. *Wonderful life: the Burgess Shale and the nature of history*. WW Norton &
702 Company.

703 Grant, P. R. and B. R. Grant, 1992. Demography and the genetically effective sizes of two popu-
704 lations of darwin's finches. *Ecology* 73:766–784.

705 ———, 2002. Unpredictable evolution in a 30-year study of Darwin's finches. *Science* 296:707–
706 711.

707 ———, 2014. *40 years of evolution: Darwin's finches on Daphne Major Island*. Princeton Uni-
708 versity Press.

709 Gromko, M. H., 1995. Unpredictability of correlated response to selection: pleiotropy and sam-
710 pling interact. *Evolution* 49:685–693.

711 Hadfield, J. D., A. J. Wilson, D. Garant, B. C. Sheldon, and L. E. Kruuk, 2010. The misuse of
712 BLUP in ecology and evolution. *The American Naturalist* 175:116–125.

713 Haenel, Q., M. Roesti, D. Moser, A. D. MacColl, and D. Berner, 2019. Predictable genome-
714 wide sorting of standing genetic variation during parallel adaptation to basic versus acidic
715 environments in stickleback fish. *Evolution Letters* 3:28–42.

716 Halley, J. M., 1996. Ecology, evolution and 1f-noise. *Trends in Ecology & Evolution* 11:33–37.

717 Hori, M., 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid
718 fish. *Science* 260:216–219.

719 Hughes, K. A., A. E. Houde, A. C. Price, and F. H. Rodd, 2013. Mating advantage for rare males
720 in wild guppy populations. *Nature* 503:108–110.

721 Husby, A., M. E. Visser, and L. E. Kruuk, 2011. Speeding up microevolution: the effects of
722 increasing temperature on selection and genetic variance in a wild bird population. *PLoS
723 biology* 9:e1000585.

724 Johnson, N. L., S. Kotz, and N. Balakrishnan, 1995. *Continuous univariate distributions*, volume
725 2, vol. 289. John Wiley & Sons.

726 Johnston, S. E., J. Gratten, C. Berenos, J. G. Pilkington, T. H. Clutton-Brock, J. M. Pemberton,
727 and J. Slate, 2013. Life history trade-offs at a single locus maintain sexually selected genetic
728 variation. *Nature* 502:93–95.

729 Kauffman, S. A. et al., 1993. *The origins of order: Self-organization and selection in evolution.*
730 Oxford University Press, USA.

731 Kimsey, I. J., K. Petzold, B. Sathyamoorthy, Z. W. Stein, and H. M. Al-Hashimi, 2015. Visualizing
732 transient Watson–Crick-like mispairs in DNA and RNA duplexes. *Nature* 519:315–320.

733 Kimsey, I. J., E. S. Szymanski, W. J. Zahurancik, A. Shakya, Y. Xue, C.-C. Chu, B. Sathyamoor-
734 thy, Z. Suo, and H. M. Al-Hashimi, 2018. Dynamic basis for $dg \bullet dt$ misincorporation via
735 tautomerization and ionization. *Nature* 554:195–201.

736 Kimura, M., 1983. *The Neutral Theory of Molecular*. Cambridge University Press.

737 Kimura, M. and J. F. Crow, 1978. Effect of overall phenotypic selection on genetic change at
738 individual loci. *Proceedings of the National Academy of Sciences* 75:6168–6171.

739 Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. *Evolution*
740 Pp. 314–334.

741 Lande, R. and S. J. Arnold, 1983. The measurement of selection on correlated characters. *Evolu-*
742 *tion* Pp. 1210–1226.

743 Lenormand, T., D. Roze, and F. Rousset, 2009. Stochasticity in evolution. *Trends in Ecology &*
744 *Evolution* 24:157–165.

745 Liao, S., 2013. On the numerical simulation of propagation of micro-level inherent uncertainty
746 for chaotic dynamic systems. *Chaos, Solitons & Fractals* 47:1–12.

747 ———, 2014. Physical limit of prediction for chaotic motion of three-body problem. *Communi-*
748 *cations in Nonlinear Science and Numerical Simulation* 19:601–616.

749 Lindtke, D., K. Lucek, V. Soria-Carrasco, R. Villoutreix, T. E. Farkas, R. Riesch, S. R. Dennis,
750 Z. Gompert, and P. Nosil, 2017. Long-term balancing selection on chromosomal variants asso-
751 ciated with crypsis in a stick insect. *Molecular Ecology* 26:6189–6205.

752 Marques, D. A., F. C. Jones, F. Di Palma, D. M. Kingsley, and T. E. Reimchen, 2018. Experimental
753 evidence for rapid genomic adaptation to a new niche in an adaptive radiation. *Nature Ecology
& Evolution* 2:1128–1138.

755 Martin, A. and V. Orgogozo, 2013. The loci of repeated evolution: a catalog of genetic hotspots
756 of phenotypic variation. *Evolution* 67:1235–1250.

757 Maudlin, T., 2019. *Philosophy of Physics: Quantum Theory*, vol. 33. Princeton University Press.

758 Merilä, J., L. Kruuk, and B. Sheldon, 2001. Cryptic evolution in a wild bird population. *Nature*
759 412:76–79.

760 Meuwissen, T. H., B. J. Hayes, and M. Goddard, 2001. Prediction of total genetic value using
761 genome-wide dense marker maps. *Genetics* 157:1819–1829.

762 Meyer, J. R. and R. Kassen, 2007. The effects of competition and predation on diversification in a
763 model adaptive radiation. *Nature* 446:432–435.

764 Nosil, P., 2004. Reproductive isolation caused by visual predation on migrants between diver-
765 gent environments. *Proceedings of the Royal Society of London. Series B: Biological Sciences*
766 271:1521–1528.

767 Nosil, P. and B. J. Crespi, 2006. Experimental evidence that predation promotes divergence in
768 adaptive radiation. *Proceedings of the National Academy of Sciences* 103:9090–9095.

769 Nosil, P., S. M. Flaxman, J. L. Feder, and Z. Gompert, 2020. Increasing our ability to predict
770 contemporary evolution. *Nature Communications* 11:1–6.

771 Nosil, P., R. Villoutreix, C. F. de Carvalho, T. E. Farkas, V. Soria-Carrasco, J. L. Feder, B. J. Crespi,
772 and Z. Gompert, 2018. Natural selection and the predictability of evolution in *Timema* stick
773 insects. *Science* 359:765–770.

774 Ohta, T., 1972. Fixation probability of a mutant influenced by random fluctuation of selection
775 intensity. *Genetics Research* 19:33–38.

776 Olendorf, R., F. H. Rodd, D. Punzalan, A. E. Houde, C. Hurt, D. N. Reznick, and K. A. Hughes,
777 2006. Frequency-dependent survival in natural guppy populations. *Nature* 441:633–636.

778 Park, Y., B. P. Metzger, and J. W. Thornton, 2022. Epistatic drift causes gradual decay of pre-
779 dictability in protein evolution. *Science* 376:823–830.

780 Parmesan, C. and M. C. Singer, 2022. Mosaics of climatic stress across species' ranges: tradeoffs
781 cause adaptive evolution to limits of climatic tolerance. *Philosophical Transactions of the Royal*
782 *Society B* 377:20210003.

783 Pigeon, G., M. Festa-Bianchet, D. W. Coltman, and F. Pelletier, 2016. Intense selective hunting
784 leads to artificial evolution in horn size. *Evolutionary Applications* 9:521–530.

785 Rêgo, A., F. J. Messina, and Z. Gompert, 2019. Dynamics of genomic change during evolutionary
786 rescue in the seed beetle *Callosobruchus maculatus*. *Molecular Ecology* 28:2136–2154.

787 Rego-Costa, A., F. Debarre, and L.-M. Chevin, 2018. Chaos and the (un)predictability of evolution
788 in a changing environment. *Evolution* 72:375–385.

789 Reimchen, T. and P. Nosil, 2002. Temporal variation in divergent selection on spine number in
790 threespine stickleback. *Evolution* 56:2472–2483.

791 ———, 2004. Variable predation regimes predict the evolution of sexual dimorphism in a popu-
792 lation of threespine stickleback. *Evolution* 58:1274–1281.

793 Reimchen, T. E., 1995. Predator-induced cyclical changes in lateral plate frequencies of *Gasteros-*
794 *teus*. *Behaviour* Pp. 1079–1094.

795 Rudman, S. M., S. I. Greenblum, S. Rajpurohit, N. J. Betancourt, J. Hanna, S. Tilk, T. Yokoyama,
796 D. A. Petrov, and P. Schmidt, 2022. Direct observation of adaptive tracking on ecological time
797 scales in *Drosophila*. *Science* 375:eabj7484. URL <https://www.science.org/doi/abs/10.1126/science.abj7484>.

799 Ruokolainen, L., A. Lindén, V. Kaitala, and M. S. Fowler, 2009. Ecological and evolutionary
800 dynamics under coloured environmental variation. *Trends in Ecology & Evolution* 24:555–563.

801 Sæther, B.-E. and S. Engen, 2015. The concept of fitness in fluctuating environments. *Trends in
802 Ecology & Evolution* 30:273–281.

803 Saltz, J. B., F. C. Hessel, and M. W. Kelly, 2017. Trait correlations in the genomics era. *Trends in
804 ecology & evolution* 32:279–290.

805 Sandoval, C. P., 1994a. Differential visual predation on morphs of *Timema cristinae* (Phasma-
806 todae: Timemidae) and its consequences for host range. *Biological Journal of the Linnean
807 Society* 52:341–356.

808 ———, 1994b. The effects of the relative geographic scales of gene flow and selection on morph
809 frequencies in the walking-stick *Timema cristinae*. *Evolution* 48:1866–1879.

810 Siepielski, A. M., J. D. DiBattista, and S. M. Carlson, 2009. It's about time: the temporal dynamics
811 of phenotypic selection in the wild. *Ecology Letters* 12:1261–1276.

812 Siepielski, A. M., M. B. Morrissey, M. Buoro, S. M. Carlson, C. M. Caruso, S. M. Clegg, T. Coulson,
813 J. DiBattista, K. M. Gotanda, C. D. Francis, et al., 2017. Precipitation drives global variation in
814 natural selection. *Science* 355:959–962.

815 Simons, A., 2014. Playing smart vs. playing safe: the joint expression of phenotypic plasticity
816 and potential bet hedging across and within thermal environments. *Journal of Evolutionary
817 Biology* 27:1047–1056.

818 Sober, E., 1984. *The Nature of Selection: Evolutionary Theory in Philosophical Focus*. MIT Press.

819 Soria-Carrasco, V., Z. Gompert, A. A. Comeault, T. E. Farkas, T. L. Parchman, J. S. Johnston, C. A.
820 Buerkle, J. L. Feder, J. Bast, T. Schwander, S. P. Egan, B. J. Crespi, and P. Nosil, 2014. Stick insect
821 genomes reveal natural selection's role in parallel speciation. *Science* 344:738–742.

822 Stuart, K. C., W. B. Sherwin, J. J. Austin, M. Bateson, M. Eens, M. C. Brändley, and L. A. Rollins,
823 2022. Historical museum samples enable the examination of divergent and parallel evolution
824 during invasion. *Molecular Ecology* .

825 Sugihara, G., B. T. Grenfell, and R. M. May, 1990. Distinguishing error from chaos in ecological
826 time series. *Philosophical Transactions of the Royal Society of London. Series B: Biological
827 Sciences* 330:235–251.

828 Svensson, E. I. and M. Friberg, 2007. Selective predation on wing morphology in sympatric
829 damselflies. *The American Naturalist* 170:101–112.

830 Vasseur, D. A. and P. Yodzis, 2004. The color of environmental noise. *Ecology* 85:1146–1152.

831 de Villemereuil, P., A. Charmantier, D. Arlt, P. Bize, P. Brekke, L. Brouwer, A. Cockburn, S. D.
832 Côté, F. S. Dobson, S. R. Evans, et al., 2020. Fluctuating optimum and temporally variable
833 selection on breeding date in birds and mammals. *Proceedings of the National Academy of
834 Sciences* 117:31969–31978.

835 Wade, M. J. and S. Kalisz, 1990. The causes of natural selection. *Evolution* 44:1947–1955.

836 Wainwright, P. C., M. E. Alfaro, D. I. Bolnick, and C. D. Hulsey, 2005. Many-to-one mapping
837 of form to function: a general principle in organismal design? *Integrative and Comparative
838 Biology* 45:256–262.

839 Wallace, D., 2012. *The Emergent Multiverse: Quantum Theory According to the Everett Inter-
840 pretation*. Oxford University Press.

841 Walsh, B. and M. Lynch, 2018. *Evolution and selection of quantitative traits*. Oxford University
842 Press.

843 Wang, W. Y., B. J. Barratt, D. G. Clayton, and J. A. Todd, 2005. Genome-wide association studies:
844 theoretical and practical concerns. *Nature Reviews Genetics* 6:109–118.

845 Waples, R. S., 2022. What is N_e , anyway? *Journal of Heredity* URL <https://doi.org/10.1093/jhered/esac023>. Esac023.

846 Wei, W.-H., G. Hemani, and C. S. Haley, 2014. Detecting epistasis in human complex traits.
847 *Nature Reviews Genetics* 15:722–733.

849 Wright, S., 1931. Evolution in Mendelian populations. *Genetics* 16:97.

850 Zhou, X., P. Carbonetto, and M. Stephens, 2013. Polygenic modeling with bayesian sparse linear
851 mixed models. *PLoS Genetics* 9:e1003264.

Figures

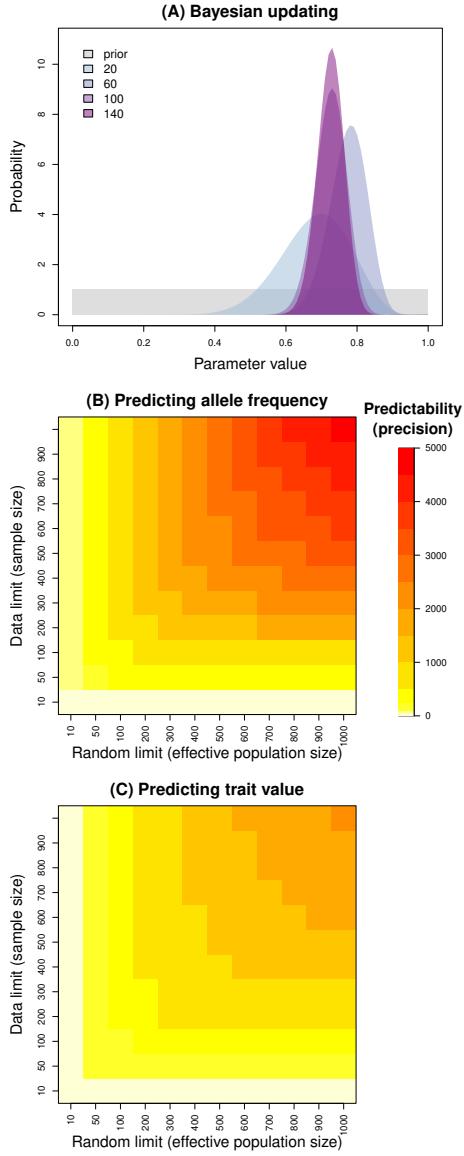


Figure 1: Conceptual overview of Bayesian updating of uncertainty and summary of predictability from simple analytical models. Panel (A) illustrates the effect of increasing the sample size of an experiment on a Bayesian posterior distribution (the example here assumes a binomial likelihood and conjugate beta prior distribution). Colors denote posteriors based on different sample sizes. Heat maps in panels (B) and (C) show the precision (reciprocal of the variance) in the allele frequency (B) or mean trait value (C) following after one generation of evolution by drift and selection. Darker colors indicate higher precision (predictability). Results are shown over a range of effective population sizes and experimental sample sizes with selection coefficients (B) or selection differentials (C) of 0.1. The initial allele frequency in (B) is 0.5 and the trait heritability in (C) is 0.5. Results with other levels of genetic variation are shown in Figure S1.

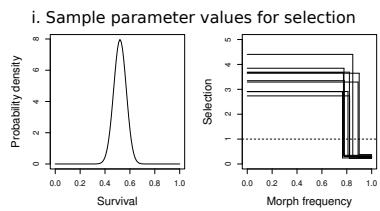
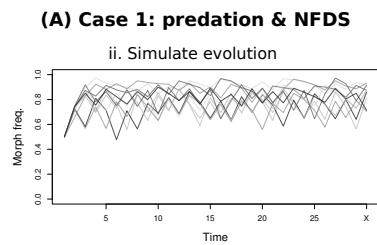
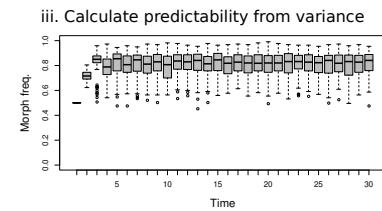
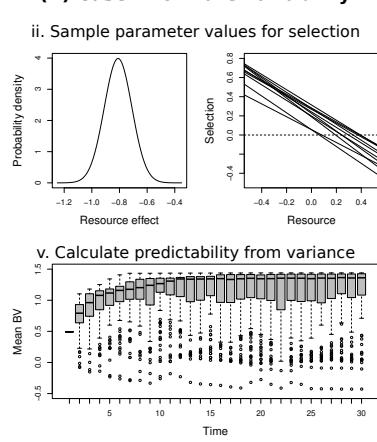
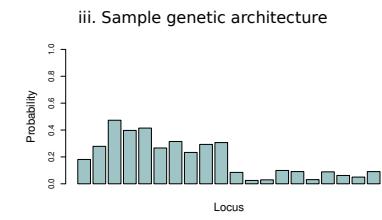


Figure 2: Illustrative overview of the case studies and simulations for considering the predictability of evolution. In this figure, we provide an overview of our procedure for simulating evolution in for case studies one (A) and two (B). In case study 1 (A), we conduct the following three in silico simulation steps. (i) Survival probabilities for selection functions are sampled from the appropriate probability distributions (e.g., Bayesian posterior distributions). Alternative, sampled NFDS functions are shown. (ii) Given the relevant parameter values, evolution by selection or selection and drift is simulated multiple times (lines denote alternative possible evolutionary trajectories). (iii) Based on these trajectories, we calculate the variance in morph frequencies in each generation. We convert these values to a metric of predictability by computing the precision (1/variance) and summarizing this statistic across time steps. In case study 2 (B), we conduct the following five in silico simulation steps. (i) A climate (annual rainfall) time series is first re-sampled with replacement (the red line denotes the original time series and the gray lines show examples of re-sampled data). Given the climate time series, resource abundance is determined by first sampling parameters for a linear regression that relates climate to resource. (ii) Second, regression parameters for the linear model for the selection differential are sampled from the appropriate probability distributions (e.g., Bayesian posterior distributions). Alternative, sampled linear functions for selection differentials are shown. (iii) Next, causal genetic loci for the selected trait are sampled based on their probabilities of association, which are high for a small number of loci, but low for most. (iv) Given the relevant parameter values, evolution by selection or selection and drift is simulated multiple times, and (v) based on these trajectories, we calculate the variance in breeding values or allele frequencies in each generation, which we convert to precision as described above.

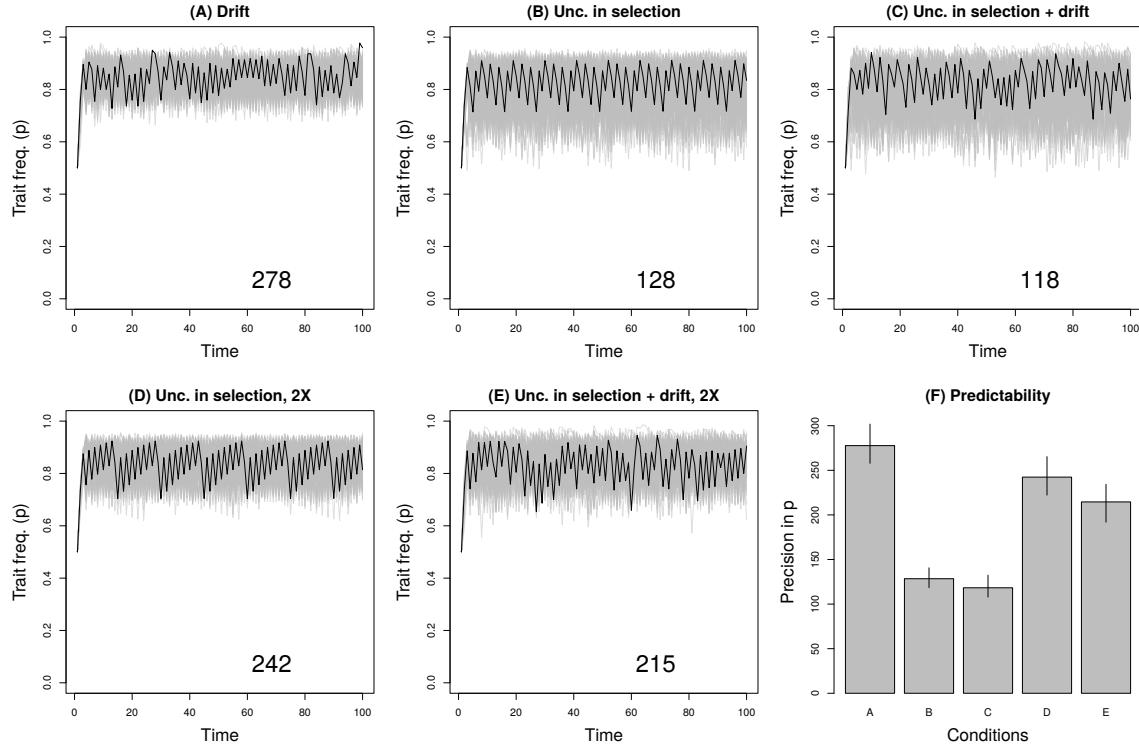


Figure 3: Case study 1 with negative frequency-dependent selection (NFDS). Gray lines show 100 probable evolutionary trajectories through time (in generations) under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D) and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, larger experiment. In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panel (F) summarizes the predictability of evolution across each of the five conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical inset. Results are shown for a heritability of 0.8. Similar results with heritability of 1.0 are shown in Figure S3.

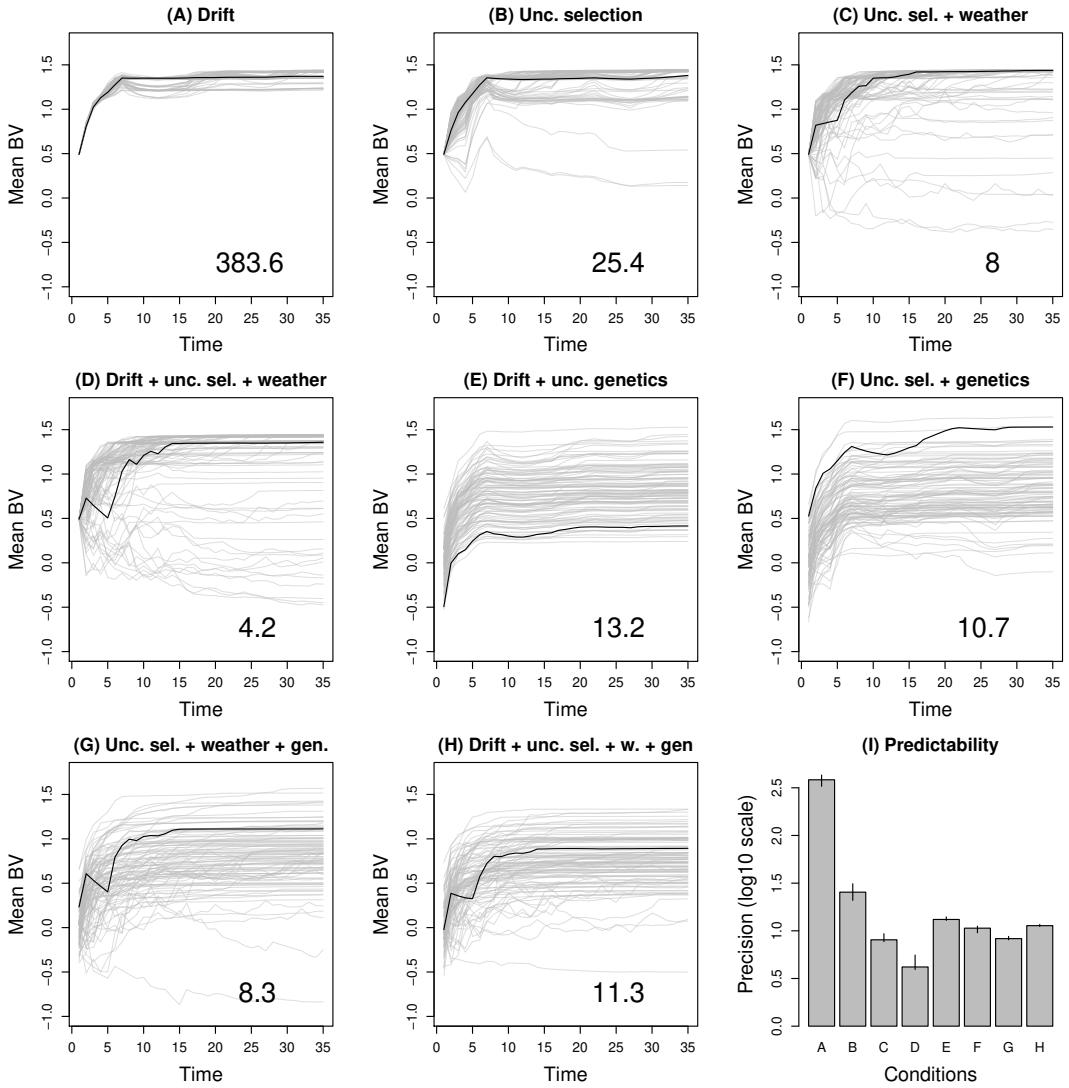


Figure 4: Case study 2 with climatic variation and breeding values. Gray lines show 100 probable evolutionary trajectories of the expected breeding value (BV) of a trophic trait under temporally-fluctuating selection. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), uncertainty in climatic conditions and selection (sel.) (C), and genetic drift and uncertainty in climatic conditions and selection (E). Panels (E-H) combine these effects with uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the trophic trait). In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panel (I) summarizes the predictability of evolution across each of the eight conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in the mean (expected) BV across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical inset.

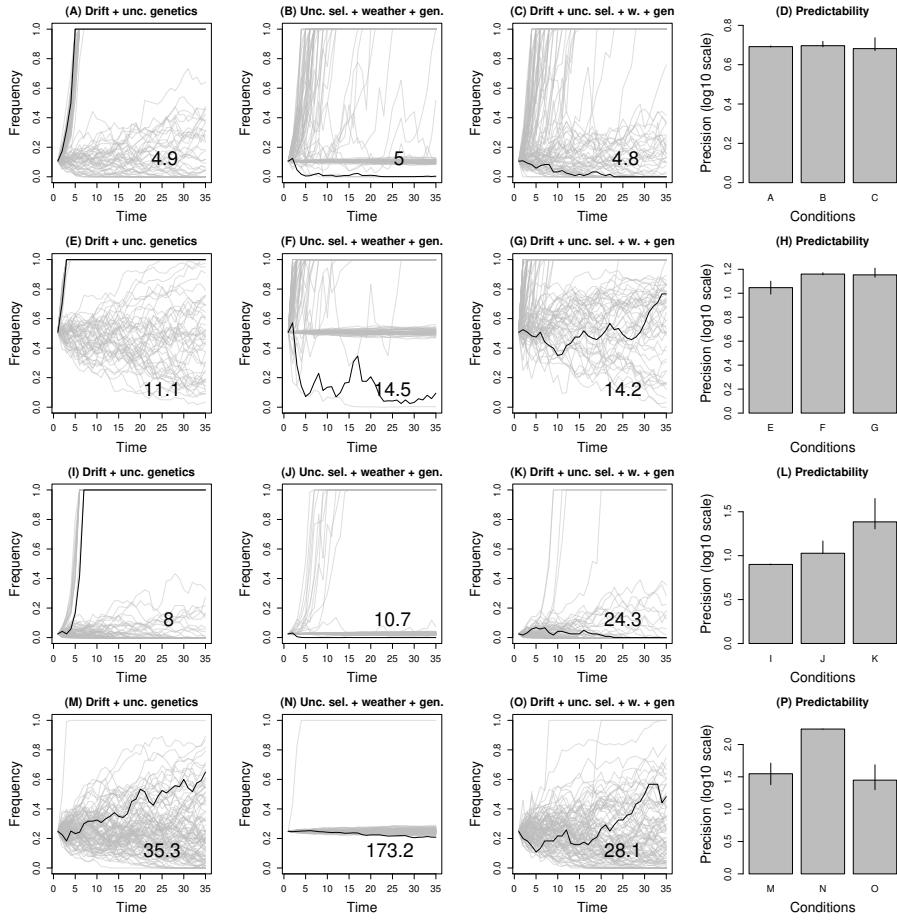


Figure 5: Case study 2 with climatic variation and consideration of genetic architecture and individual loci. Gray lines show 100 probable evolutionary trajectories of allele frequencies for loci potentially under temporally-fluctuating selection. Each row in this multi-panel figure corresponds with one of the 1415 genetic loci. The probabilities of trait association (e.g., Bayesian posterior inclusions probabilities or PIPs) are: 0.557 (panels A-D), 0.554 (panels E-H), 0.098 (panels I-L) and 0.007 (panels M-P). All results shown assume uncertainty in the trait genetic architecture. Additional sources of variability in each panel are genetic drift (A, E, I, M), uncertainty (Unc.) in climatic conditions (w.) and selection (B, F, J, N), and genetic drift and uncertainty in climatic conditions and selection (sel.) (C, G, K, O). In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panels (D, H, L, P) summarize the predictability of evolution across each of the three conditions shown for each locus (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in the allele frequency across probable trajectories. Bars show the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical inset. Compare to Figure S7, which shows the same loci with genetic architecture known.

Supplemental Figures

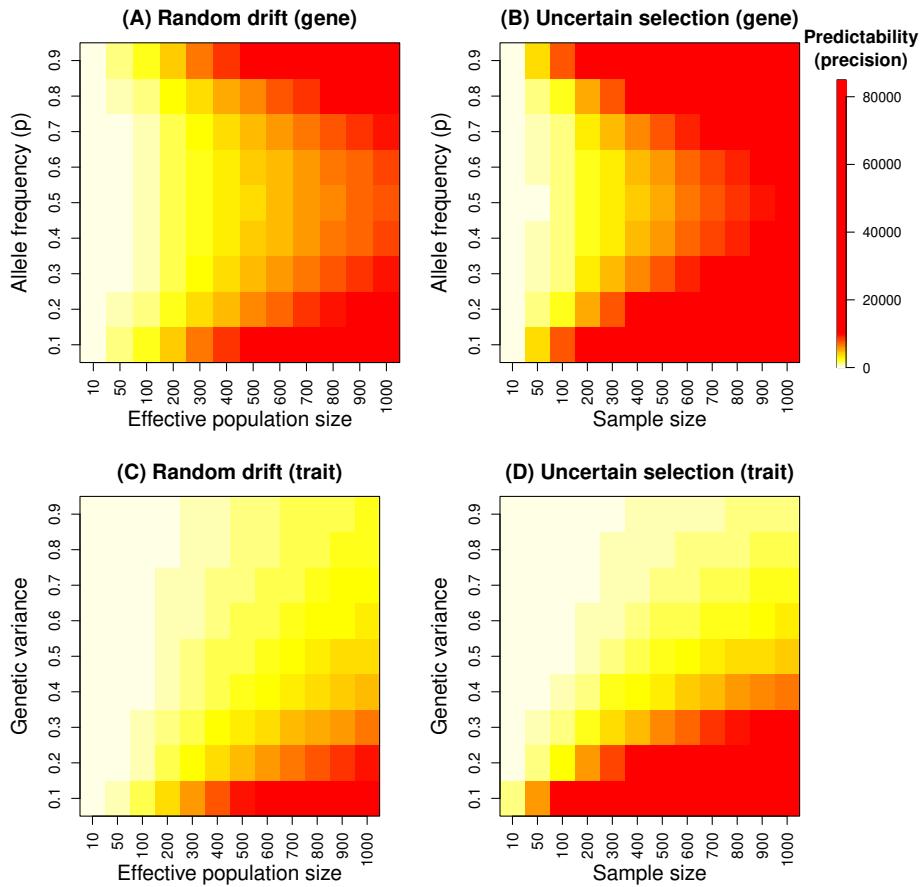


Figure S1: Predictability of evolution by random genetic drift (panels A and C) or uncertain selection (panels B and D) for an allele frequency (A and B) or mean trait value (C and D). Heat maps show the precision (reciprocal of the variance) in the allele frequency (A and B) or mean trait value (C and D) following after one generation of evolution by drift and selection. Darker colors indicate higher precision (predictability). Results are shown over a range of effective population sizes or experimental sample sizes and a range of initial allele frequencies or additive genetic variances (we assume a trait variance of 1 so these are identical to the trait heritabilities). Panels (A) and (C) assume no selection, whereas the selection coefficient or differential in (B) and (D) are both 0.1.

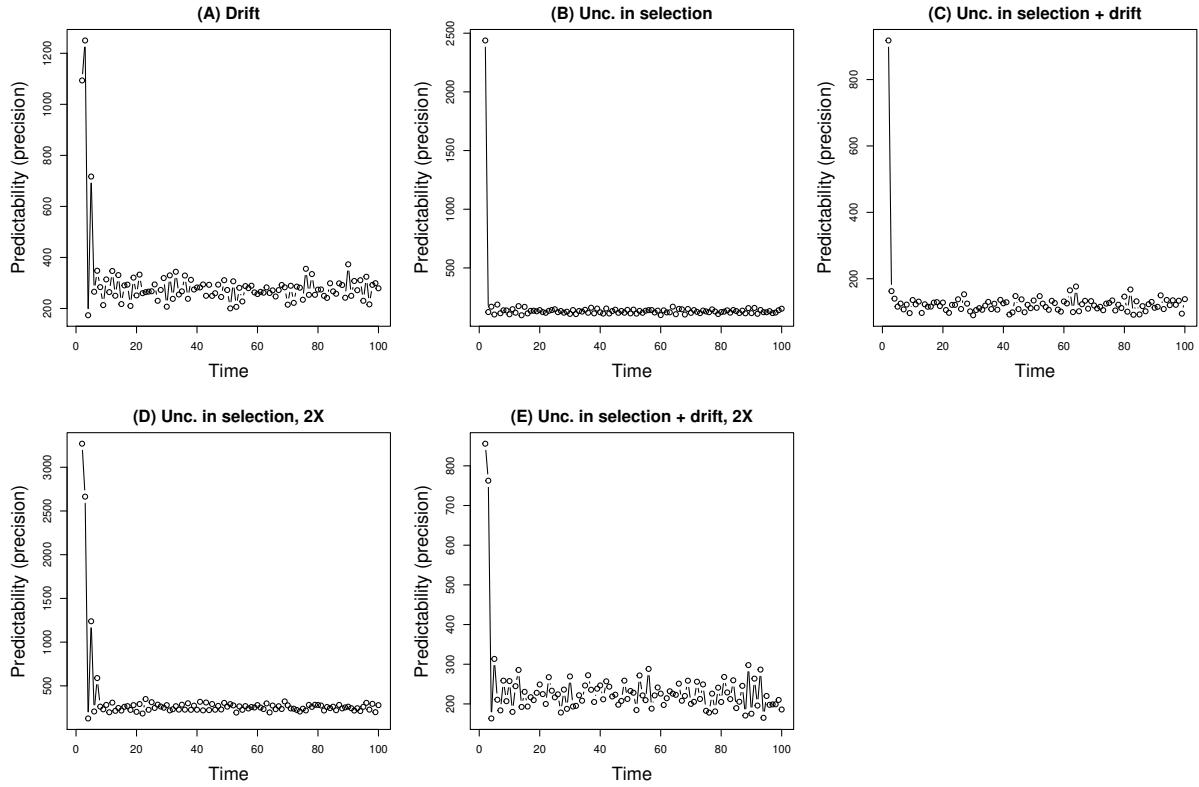


Figure S2: Precision over time in case study 1 with negative frequency-dependent selection (NFDS). Points connected by lines show the precision (reciprocal of the variance) in evolutionary trajectories over time under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D) and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, larger experiment.

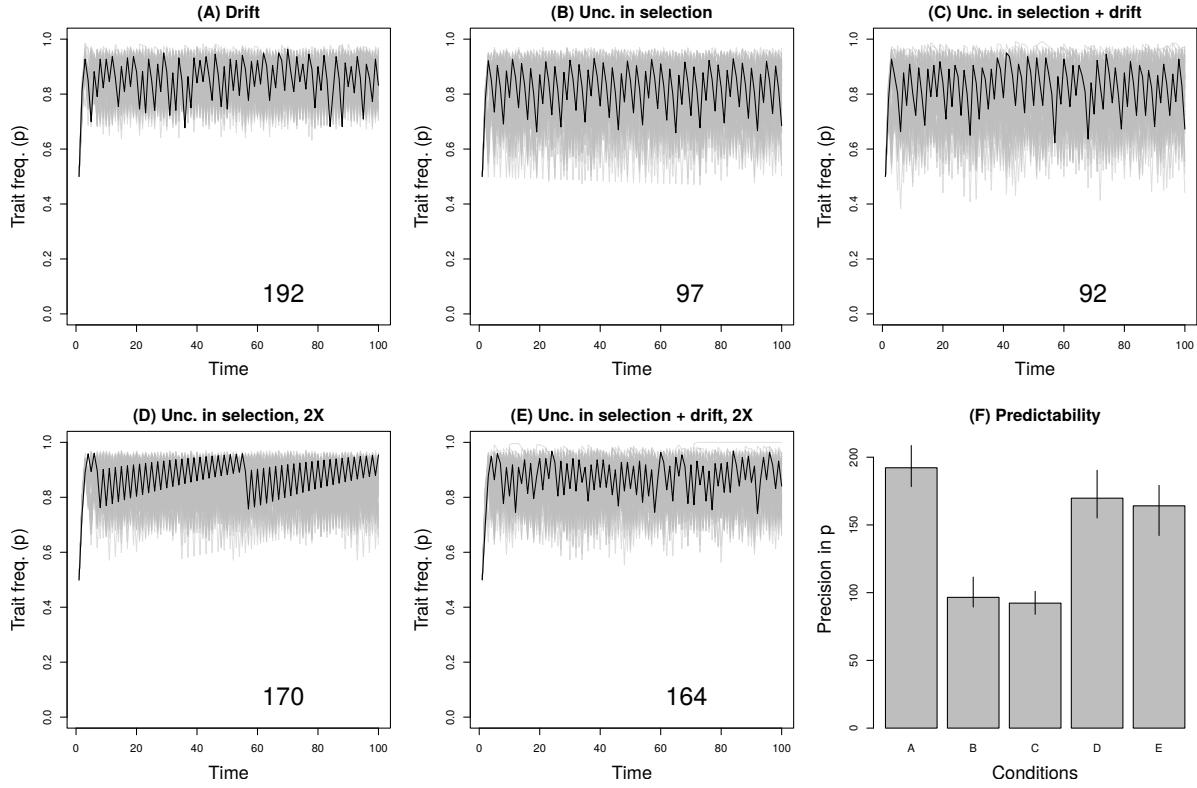


Figure S3: Case study 1 with NFDS, $h^2 = 1.0$. Gray lines show 100 probable evolutionary trajectories under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D) and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, larger experiment. In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that only one trajectory would be realized in a given biological system. Panel (F) summarizes the predictability of evolution across each of the five conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Results are shown for a heritability of 1.0.

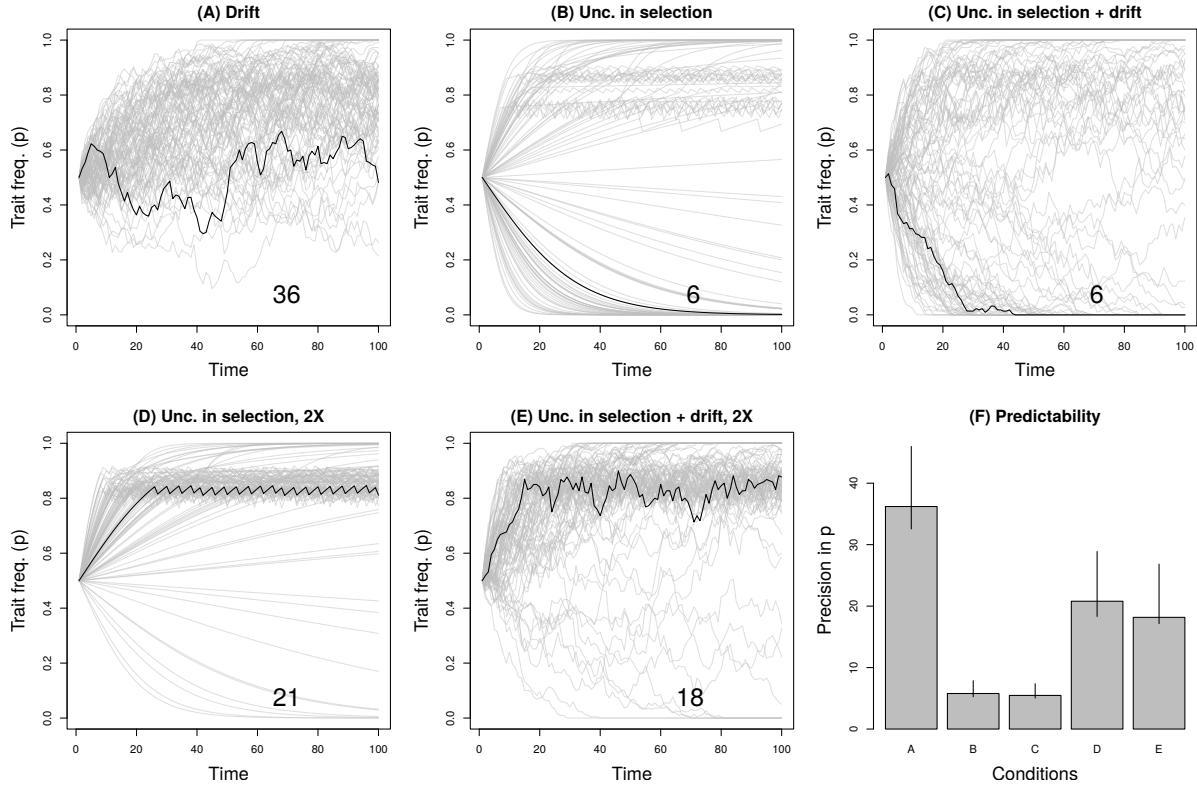


Figure S4: Case study 1 with NFDS, $h^2 = 1.0$, weak selection. Gray lines show 100 probable evolutionary trajectories under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (D) and (E) show the effect of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, larger experiment. In each case, an arbitrary trajectory is shown in black to make the dynamics clearer and to emphasize the fact that only one trajectory would be realized in a given biological system. Panel (F) summarizes the predictability of evolution across each of the five conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Results are shown for a heritability of 1.0, and with weak selection (1% difference in survival probabilities between morphs).

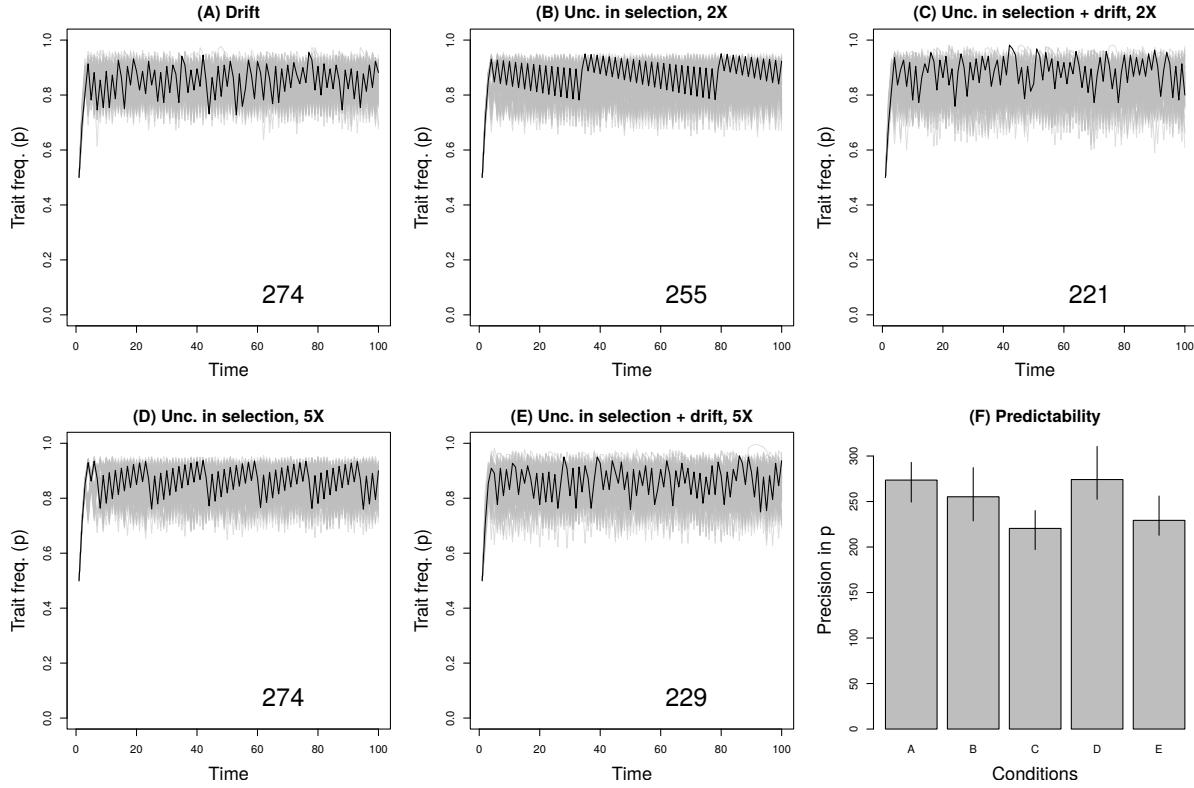


Figure S5: Case study 1 with NFDS, increased sample size. Gray lines show 100 probable evolutionary trajectories under NFDS. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), and genetic drift and uncertainty in selection (C). Panels (B) and (C) show the effect of uncertainty in selection and drift plus uncertainty in selection given a hypothetical, doubling of the experiment, whereas panes (D) and (E) show the effect of hypothetically increasing the sample size five-fold. In each case, an arbitrary trajectory is shown in black to make the dynamics clearer and to emphasize the fact that only one trajectory would be realized in a given biological system. Panel (F) summarizes the predictability of evolution across each of the five conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Results are shown for a heritability of 0.8.

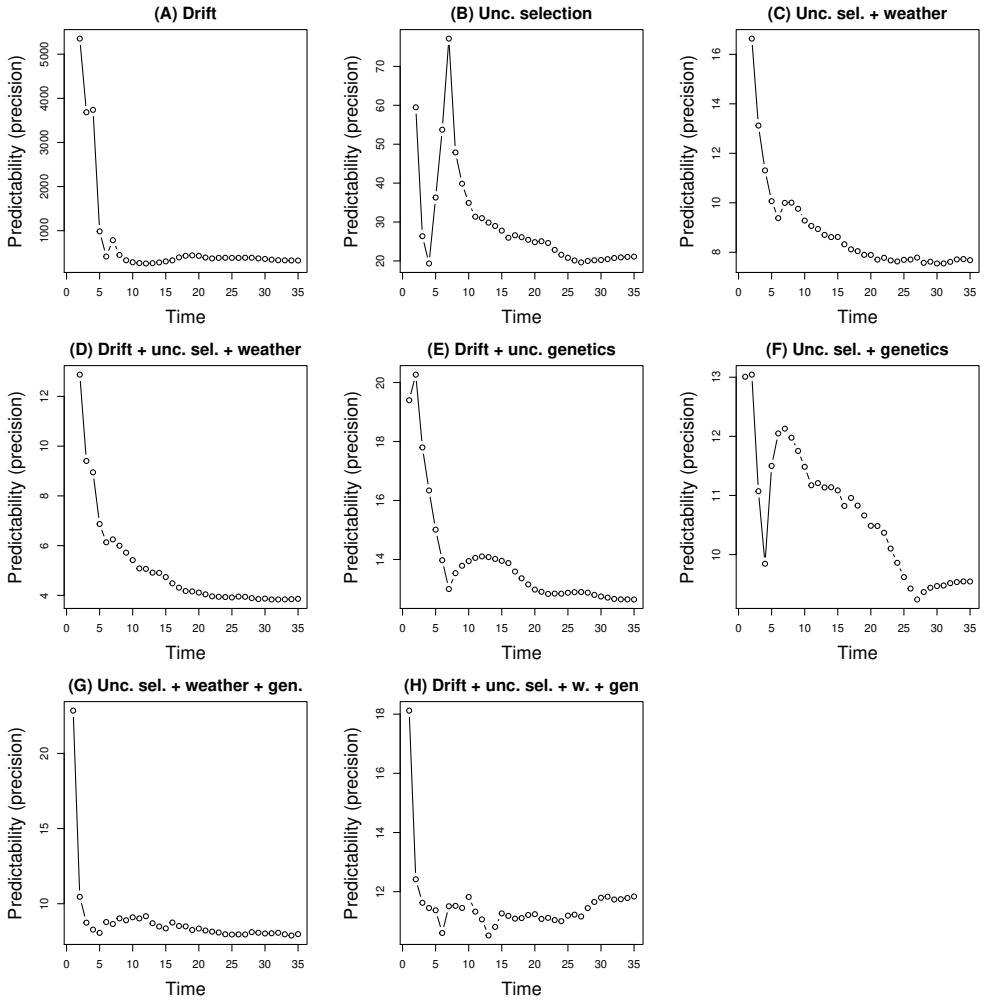


Figure S6: Precision over time in case study 2 with climatic variation and breeding values. Points connected by lines show the precision (reciprocal of the variance) in evolutionary trajectories of the expected breeding value (BV) of a trophic trait over time under temporally fluctuating selection. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), uncertainty in climatic conditions and selection (sel.) (C), and genetic drift and uncertainty in climatic conditions and selection (E). Panels (E-H) combine these effects with uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the trophic trait).

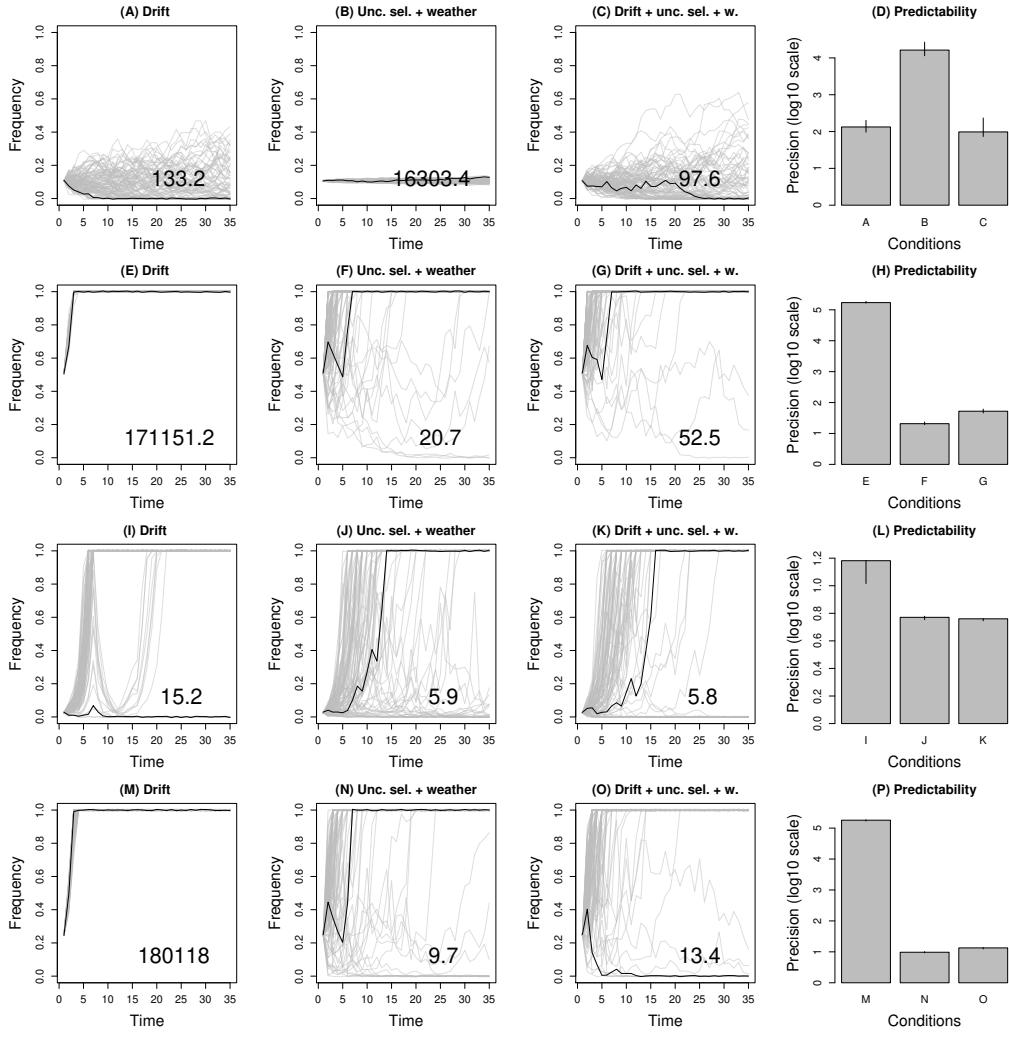


Figure S7: Case study 2 with climatic variation and no uncertainty in genetic architecture. Gray lines show 100 probable evolutionary trajectories of allele frequencies for loci. Each row in this multi-panel figure corresponds with one of the 1415 genetic loci. Here, we assume trait associations were certain, with loci in all but panels A-D being associated with the trait. Sources of variability in each panel are genetic drift (A, E, I, M), uncertainty (Unc.) in climatic conditions and selection (sel.) (B, F, J, N), and genetic drift and uncertainty in climatic conditions (w.) and selection (C, G, K, 0). In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panels (D, H, L, P) summarize the predictability of evolution across each of the three conditions shown for each locus (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in the allele frequency across probable trajectories. Bars show the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical inset. Compare to Figure 5, which shows the same loci with uncertainty in genetic architecture.

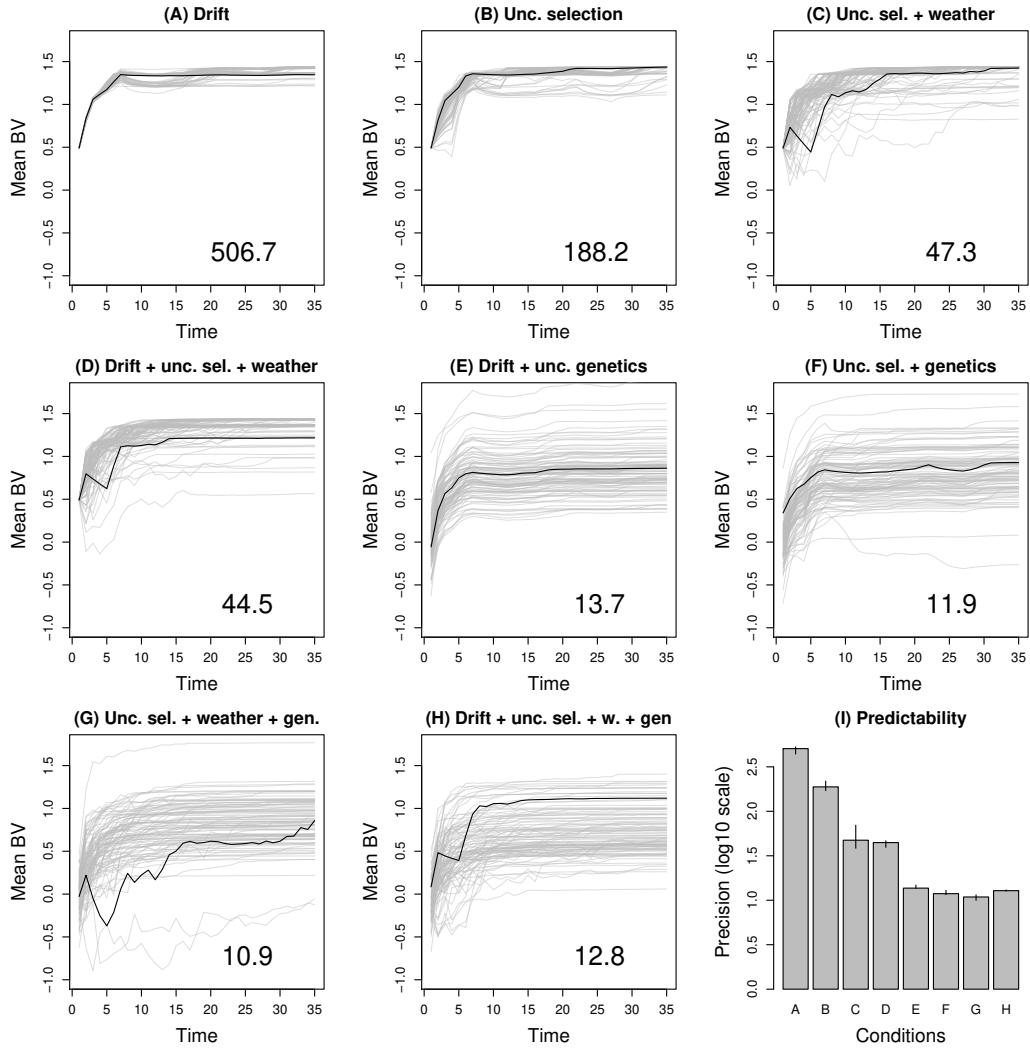


Figure S8: Case study 2 with climatic variation and breeding values, increased sample size. Gray lines show 100 probable evolutionary trajectories of the expected breeding value (BV) of a trophic trait under temporally fluctuating selection. Sources of variability in each panel are genetic drift (A), uncertainty (Unc.) in selection (B), uncertainty in climatic conditions and selection (sel.) (C), and genetic drift and uncertainty in climatic conditions and selection (E). Here, uncertainty in selection is reduced relative to the main results (compare to 4). Panels (E-H) combine these effects with uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic loci affect the trophic trait). In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panel (I) summarizes the predictability of evolution across each of the eight conditions shown (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in the mean (expected) BV across probable trajectories. Bars shown the median (across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical inset.

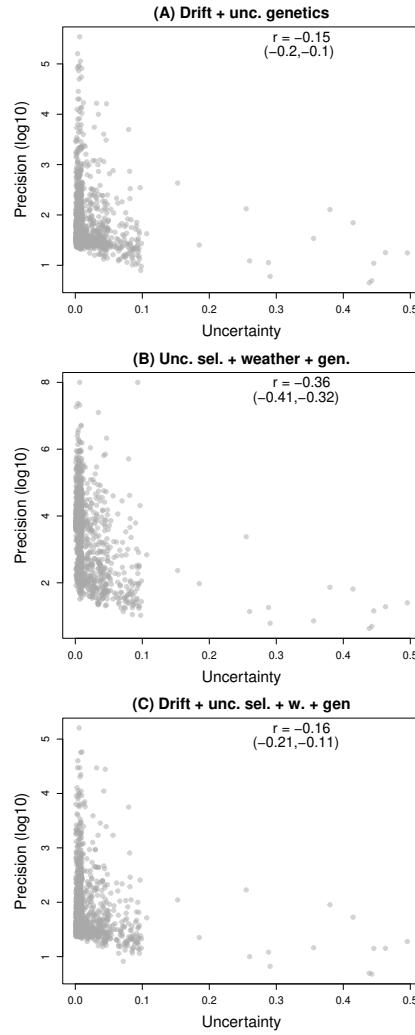


Figure S9: Case study 2 with climatic variation and consideration of genetic architecture and individual loci. Here, we show how the degree of uncertainty in whether a locus was under selection affects precision at the level of locus-specific allele frequency change. All results shown assume uncertainty (unc.) in the trait genetic architecture; additional sources of variability in each panel are genetic drift (A), uncertainty in climatic conditions and selection (sel.) (B), and genetic drift and uncertainty in climatic conditions (w.) and selection (C). In each panel, each point denotes the precision (median over generations on a log₁₀ scale) for one of 1415 genetic loci as a function of the uncertainty in the genotype-phenotype association. This latter value is the minimum of the probability of association or 1 minus the probability of association (i.e., a 0 would indicate perfect association or, as is closer to the case here, a perfect lack of association). The Pearson correlation (r) between this measure of uncertainty in genetic architecture and the log₁₀ precision is reported along with the 95% confidence intervals (all $P < 0.0001$). These negative correlations indicate that precision was lower for loci with less certain associations, especially in the absence of genetic drift (as indicated by the larger negative correlation in panel B).