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ABSTRACT

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying
similar environments. Moreover, parallel evolution sometimes, but not always, uses the same
genes. Two main hypotheses have been put forth to explain the probability and extent of parallel
evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns
of natural selection in different taxa. Second, parallelism is more likely when genomes are
similar, because of shared standing variation and similar mutational effects in closely related
genomes. Here we combine ecological, genomic, experimental, and phenotypic data with
Bayesian modeling and randomization tests to quantify the degree of parallelism and its
relationship with ecology and genetics. Our results show that the extent to which genomic

regions associated with climate are parallel among species of Timema stick insects is shaped
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collectively by shared ecology and genomic background. Specifically, the extent of genomic
parallelism decays with divergence in climatic conditions (i.e., habitat or ecological similarity)
and genomic similarity. Moreover, we find that climate-associated loci are likely subject to
selection in a field experiment, overlap with genetic regions associated with cuticular
hydrocarbon traits, and are not strongly shaped by introgression between species. Our findings

shed light on when evolution is most expected to repeat itself.

INTRODUCTION

To what extent is evolution predictable and repeatable? Stephen J. Gould posed this question
through his famous thought experiment on whether repeatedly ‘replaying the tape of life’ would
yield similar evolutionary outcomes [1]. Gould considered similar outcomes unlikely, due to
chance events and historical contingency in evolution, and this thought experiment helped launch
decades of research on the repeatability of evolution [2,3]. Indeed, the answer to this question is
important because it is central to understanding the processes shaping biological diversification
[4,5,6]. For example, instances of repeated or parallel evolution in response to similar
environmental pressures can provide evidence of evolution by natural selection. In contrast,
idiosyncratic outcomes can support a role for chance or contingency in evolution and indicate
constraints on the power of selection. The predictability of evolution also has practical
implications, for example, for forecasting organismal responses to natural and human-induced
environmental change [7], the planning of breeding programs, and the design of medicines and

strategies to combat disease spread [8].

It is now known that evolution can repeat itself but does not always do so [9,10]. Parallelism has
been documented at the genetic level, with striking cases of parallel evolution involving single
genes of major effect both within- and among species [15,16,17]. For example, the Ectodysplasin
gene controlling body armor has repeatedly been used by numerous populations of stickleback
fish during freshwater adaptation [11]. Likewise, the Agouti and McIR genes control coloration
in diverse organisms [12,13,14]. In contrast to these studies of major effect genes, parallelism is
less understood when evolution involves many genes of smaller effect, although studies of
genome-wide variation are beginning to fill this gap [18-22]. However, evolution is not always

parallel. Indeed, the probability and extent of parallelism decline as the time of divergence
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increases between taxa [23,24]. Although this decline is well established, its likely causes are
potentially complex (i.e., time itself is not the causal agent controlling parallelism; rather factors
such as climate and genetics are likely involved, as outlined below and as we test here) and
remain poorly resolved, particularly beyond experimental evolution experiments in microbes
[25,26]. Our goal here is to elucidate the factors shaping the extent of parallel evolution in the

wild, focusing on quantifying parallelism at the genome-wide level.

In this context, two general hypotheses have been put forth, which are not mutually exclusive.
First, parallel evolution is more likely when shared ecologies result in similar patterns of natural
selection in different taxa such as ecotypes or divergent lineages (the ‘shared ecology’
hypothesis) [27,28,29]. Shared aspects of environmental variation can decline with time since
divergence, as species (or even populations or ecotypes) come to occupy different geographic
areas or as local environments change over time, thus reducing parallelism at both phenotypic
and genotypic levels [29,30,31]. Second, parallelism is expected to be more likely when
genomes are similar because pools of standing variation, new mutations which arise, and the
effects of these mutations will tend to be more similar in closely related genomes (the ‘shared
genetics’ hypothesis; we use this term to also encompass the role of gene regulation and
development) [16,32-34]. Epistatic interactions might be particularly important here because the

effects of new mutations are dependent on the mutations that preceded them.

Both ecological (i.e., habitat and climatic) and genetic similarity are expected to decline with
time and there is support for both hypotheses [24, 35-38]. However, few studies have
simultaneously examined ecology and genetics, particularly in wild populations, such that the
relative contribution of the two factors remains unclear. Parsing these contributions is important
because it is required to test the roles of selection (i.e., shared ecology) and constraint (i.e.,
shared genetics) in evolution [32,39-42]. Here, we combine ecological data, genomic analyses, a
field experiment, and genetic mapping to ascertain the genomic extent and causes of parallel
adaptation to climate, thus testing the shared ecology and genetics hypotheses. Rather than
focusing on time per se, we conduct analyses that jointly consider the degree of climatic and
genetic divergence between taxa to parse their relative contributions to explaining the degree of

parallel evolution observed.
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Our study system is wingless, univoltine, herbivorous stick insects in the genus Timema, many
species of which are endemic to California, USA [43]. These insects are best-studied for their
cryptic colours and colour-patterns, which are controlled by the same genetic region (termed
Mel-Stripe) in all species studied to date [44-47]. Timema colouration thus provides a striking
example of highly parallel evolution at the level of a single, largely non-recombining gene region
that could be considered akin to a major effect locus. However, adaptation often involves many
genes, including those with alleles of minor effect, arrayed throughout the genome [48,49],
where the probability of parallel genetic evolution is less clear [20]. In this context, we study a
novel ecological dimension in Timema, namely climate, motivated by the fact that adaptation to
varying climatic (abiotic) conditions of the environment can be polygenic, and the genus Timema
inhabits variable habitats in California. For example, the occupied habitats of Timema range
from sea-level to mountainous regions, and from arid semi-deserts near the Mexican border to
wet evergreen forests in northern California [50]. Moreover, there is climatic variation both
within and among species, with several species being distributed along elevational gradients
(ranging from 10 meters to ~2800 meters) [51]. This creates an opportunity to test the role of
climatic variables, such as precipitation and temperature, in driving parallel evolution in Timema,

which are known to be important determinants of selection in many organisms [52,53].

For this study we test the shared ecology and genetics hypothesis in Timema to identify climate-
associated gene regions within species which show a range of divergence times of up to tens of
millions of years (here, generations). We assess the contribution of shared ecology and genetics
to genomic parallelism by comparing the proportions of the genome that exhibit repeated
genotype-climate association. We then bolster the evidence that climate-associated gene regions
are likely subject to selection by using a field experiment and genetic mapping of cuticular
hydrocarbons. Our collective results yield a comprehensive evaluation of genome-wide parallel
evolution in the context of an environmental pressure of high current interest (i.e., climate), and
in a system where comparison can be made to parallelism seen at a single, major locus (i.e., Mel-

Stripe) (Figure 1).
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RESULTS
Climatic variation within- and among-species

We studied eight Timema species across 53 geographic localities (n = 1420 individuals) (Figure
1, Table S1). We used 22 bioclimatic variables describing precipitation and temperature variation
which are known drivers of selection in many systems [52], including Timema [71]. Due to high
correlations among the studied climate variables, we performed an ordination using principal
component analysis (PCA) of the climate variables for all populations included in the study (see
Figure 2A for species range map). This revealed that most of the variation in climate variables
was explained by the first three principal components (PC) (Total = 92.2%, PC1 =51.7%, PC2 =
24.4% and PC3 = 16.1%), which we hereafter focus on and refer to as PC1, PC2, and PC3 (Table
S2 for PC loadings, Extended Data Figure 1).

We saw that PC1 is a general axis of elevation and precipitation variation, with high positive
values representing wet localities at high elevation (Extended Data Figure 1A, Extended Data
Figure 1C, Table S2). PC2 is a general axis of temperature variation, with high positive values
representing localities experiencing high temperatures (Extended Data Figure 1A, Extended Data
Figure 1B, Table S2). Lastly, PC3 is an axis of contrasting variation in precipitation and
temperature, with high positive values representing localities (often) closer to the coast
experiencing greater temperature and precipitation fluctuations (Extended Data Figure 1B,

Extended Data Figure 1C, Table S2).

One way ANOVA revealed significant among-species variation for all three PCs (PC1: Variance
component = 12.1%, Df =7, F value = 104.5, P-value = < 0.0001; PC2: Variance component =
3.2%, Df =7, F value 6.803, P-value = < 0.001; PC3: Variance component = 3.1%, Df =7, F
value = 28.07, P-value = < 0.0001). We also detected clear within-species variation (range of
median PC scores values across the eight species were -3.0 and 5.8 for PC1, -2.5 to 6.5 for PC2,
and -1.6 to 3.5 for PC3; Figure 2C-D). We next used these three PCs to identify genomic regions

associated with climate within species, a prerequisite for testing parallelism among species.
Identifying climate-associated genomic regions

We first identified the genomic regions most strongly associated with climatic variation within

each of the eight species. To do so, we analyzed single nucleotide polymorphisms (SNPs)
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obtained through previous genotyping-by-sequencing of natural populations [61]. Since our data
included species that are considerably diverged from each other, the number and fine-scale
genomic positions of SNPs called for each species were different. This could be due to different
evolutionary histories of the restriction sites targeted for the sequencing and genome-level
divergence of species from the genome of 7. cristinae [62]. To account for this variation, we
focus on 100 kilobase (Kb) SNP windows to allow subsequent comparisons among species (n =
9487 windows in each species, across the eight study species, minimum SNPs per window = 1,

mean SNPs per window = 1.78).

Within each species, we quantified SNP-climate associations for each of the three climate PCs
using BayPass (version 1.2). The association of each SNP with population-specific PC variables
was assessed using Bayes Factors (BF), which for a given SNP compares the marginal
likelihoods of models with zero versus non-zero regression coefficients. For each species, we
then calculated the median of logarithmic BF values for all the SNPs in the 100 Kb window to
identify SNP windows with medians in the top 10% empirical quantile and then used these for all
downstream analyses (“climate-associated SNP windows” hereafter). We do not assume that all
100 Kb windows with the largest (top 10%) BF contribute to climatic adaptation, but rather we
expect such windows to be enriched for SNPs contributing to climatic adaptation relative to other
parts of the genome. In all species, the top 10% climate-associated SNP windows were widely
distributed across the genome and found on all 13 linkage groups (LGs) (Figure 3, Extended
Data Figure 2, Extended Data Figure 3).

Parallel evolution of climate-associated genomic regions

We next quantified the extent to which climate-associated SNP windows were parallel (i.e., the
same) across the eight species of Timema that we studied. Here we are interested in identifying
and quantifying genomic parallelism based on the 100 Kb SNP windows spread across the

genome (“genomic parallelism” hereafter) [15,24,63-65].

Critically, we tested if windows exhibited excess overlap across species relative to that expected
by chance, that is, if the same SNP windows show association with climate PCs between 3, 4, 5,
6, 7 or 8 species (Figure 1B). To do so, we conducted randomisation tests to quantify excess

overlap of windows relative to expectations for multi-species comparisons (Figure 1A). As an
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example, an x-fold enrichment of 2.0 in the genomic parallelism analyses would indicate that the
evidence for overlap of climate-associated SNP windows for a given comparison was two times
higher than expected by chance based on the mean of the null. For this, we focused on windows
with the greatest (top 10%) climate association in nature for all three climate PCs. Notably, these
approaches randomise the data after results from BayPass have been obtained. We discuss in a
subsequent section below further results where environmental (i.e., climatic) data were permuted

before running BayPass.

These analyses revealed evidence for genomic parallelism across species. For PC1, excess
overlap of SNP windows with the largest median BF among three or more species was ~2x more
than expected by chance (observed = 60, expected = 26.77, x-fold enrichment = 2.25, P-value <
0.01; Extended Data Figure 4), and for four or more species excess overlap was ~3x more than
expected by chance (observed = 4, expected = 1.03, x-fold enrichment = 3.87, P-value 0.02;
Extended Data Figure 4). For PC2, excess overlap of SNP windows with largest median BF
among three or more species was about ~1.5x more than expected by chance (observed =42,
expected = 26.41, x-fold enrichment = 1.59, P-value <.01; Extended Data Figure 5), and for four
or more species excess overlap was about ~4x more than expected by chance (observed =5,
expected = 1.19, x-fold enrichment = 4.17, P-value = 0.007; Extended Data Figure 5). Lastly, for
PC3 there excess overlap of climate-associated SNP windows among three or more species that
was ~1.6x more than expected by chance (observed = 43, expected = 26, x-fold enrichment =
1.63, P-value < 0.01; Figure 4) and almost 5x for four or more species (observed = 5, expected =
1.10, x-fold enrichment = 4.53, P-value = 0.006; Figure 4). Additional tests for historical and
contemporary gene flow revealed that introgression and gene flow were not largely responsible

for this parallelism (see Supplementary Results and Methods; Figure SA, Figures S7-S9).
Genomic parallelism declines predictably between species

We next tested the extent to which the shared ecology and shared genetics hypotheses could
account for the degree of genomic parallelism observed with climate across Timema species
(Figure 2B). Shared ecology would cause a higher degree of parallelism due to similar selective
pressures from similar climate conditions experienced by taxa (i.e., PCs 1-3) (Figure 2B, “shared
ecology hypothesis”). On the other hand, shared genetics would cause a higher degree of

parallelism due to a higher extent of gene reuse associated with variation retained from a
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common ancestor (Figure 2B, “shared genetics hypothesis”). Here, we quantified genomic
parallelism as the degree of excess overlap of climate-associated SNP windows relative to null
expectations for pairwise comparisons. We estimated climatic similarity between pairs of species
using climatic data and genetic similarity based on a previously published genome-level
phylogeny [61]. We then fit Bayesian linear mixed models to explicitly compare models where
the degree of parallelism is determined by climatic similarity, genetic similarity, or both.
Notably, this mixed model approach accounts for the non-independence of pairwise distances
[65 for details]. Specifically, for each climatic PC variable, we modeled parallelism as the x-fold
excess in shared top climate-associated SNP windows as a function of climatic distance, which
was calculated as the average difference in climate PC scores between a given pair of species
(hereafter referred to as ecology, indicating “climatic divergence”), genetic distance, which was
pairwise phylogenetic distances for a given pair of Timema species (hereafter referred to as genes
indicating “genome-wide divergence”), or both. The fit of models with or without ecology or
genetics was compared using deviance information criterion (DIC) (Figure 5B, Extended Data

Figure 6B, Extended Data Figure 7B), which is a metric of predictive performance [66].

Our analyses revealed evidence for the effects of both ecology and genes on the extent of
genomic parallelism, with details that varied among the climate PCs (Figure 5C-D for PC3,
Extended Data Figure 6A-C for PC1, Extended Data Figure 7A-C for PC2). For PC3, the best fit
was obtained for the full model (ecology and genes), with similar, negative effects on parallelism
observed for ecology (standardized f=-0.47, 95% CI = -0.80 to -0.14) and genes (standardized
beta = -0.55, 95% CI = -0.87 to -0.21; Figure SE; Table S3). For PC1, the genes-only model was
the best model (standardized g=-0.55, 95% CI = -0.8 to -0.25; Extended Data Figure 6D, Table
S3). The second-best model was the full model, but this included a positive rather than negative
effect of climatic distance on parallelism. Lastly, for PC2 the best model was a null model of no
effect of genes or ecology on parallelism (Extended Data Figure 7D, Table S9). The results thus
provide variable support for both the shared ecology and shared genetics hypotheses, dependent

on the climate PC, with the association being strongest for PC3.
Comparison of parallelism results with permuted data sets

We next conducted permutation analyses that randomised the climatic data before implementing

BayPass. We did so to ask whether the patterns of observed genomic parallelism and its decay
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could have been inflated by unaccounted aspects of the genetic data, such as shared SNP density
in specific genomic regions, allele frequency distributions, or linkage disequilibrium, affecting
some genomic regions more than others. To generate null expected distributions for climate-
associated SNP windows, we therefore initially permuted PC climatic values across populations
within species, thereby randomizing the relation between the environmental variables and any
potential unaccounted-for feature(s) in gene regions affecting parallelism. We generated 10 such
permuted data sets hereafter referred to as "permuted data sets". We then redid the analysis for
each of the 10 permuted data sets, for each species separately, exactly as described for the
observed data set. First, we reran BayPass using each of the permuted data sets and for each
species. Second, we quantified the degree of genomic parallelism by making multispecies
comparisons. Third, we conducted our Bayesian linear mixed models to test for the effect of

ecology and genetics on the decay of genomic parallelism.

For all three PCs, the ten permuted data sets showed no evidence for the decay in parallelism
seen in the actual data set with increased ecological or genetic distance (Figures S1-3). However,
the permuted data sets indicate significant x-fold enrichments of multiple-species sharing
climate-associated SNP windows (Figures S4-6). In certain instances, the parallelism extended to
involving 4 or more species, as we found significant x-fold excesses in 3 of the 10 permuted data
sets for PC1, 6 of 10 for PC2, and 4 of 10 for PC3 (Figures S4-6). These results suggest that
aspects of the genetic data could generate apparent parallelisms of gene regions responding to
environmental variables across species. However, for PC3 which displayed the strongest
association of climate and genetics with parallelism, the x-fold excesses in the 4 or more species
comparisons in the 10 permuted data sets did not approach the level observed in the original data
(Figure S6). And most importantly, as noted above, for the 10 permuted data sets, the pattern of
excess parallelism was random across species with respect to its relationship with climatic and
genome-wide divergence. Our core test of the shared ecology and shared genetic hypotheses thus
appears highly robust. Having tested these hypotheses, we next tested for additional evidence,
beyond genomic parallelism, that the climate-associated SNP windows have been affected by

natural selection.

Climate-associated regions experience natural selection
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To bolster the evidence that climate-associated SNP windows are enriched for genetic variants
experiencing natural selection, we tested whether these windows exhibited exceptional patterns

of allele-frequency change in a published transplant-and-sequence field experiment (Figure 1C).

The transplant experiment used a block design to measure 8-day survival and associated
genome-wide allele frequency change during this period in 500 7. cristinae transplanted to 10
experimental bushes comprising two host plants occurring along a gradient of higher elevations
than the source population for the experiment [67 for further details]. Distances between plants
within block ranged from 6 — 10m and distances between blocks ranged from 12 —30m. A
previous analysis of this experiment documented evidence of selection associated with elevation,
which is relevant as the sample of species analyzed for the current study of parallelism were
distributed along elevational gradients ranging from 10m to ~2800m [67]. Here, as a metric of
possible elevation (environment)-dependent selection, we calculated the Pearson correlation
between transplant elevation and allele frequency change caused by mortality during the
transplant experiment. We found that the 100 Kb windows exhibiting patterns of allele frequency
change most strongly associated with elevation in the transplant experiment coincided modestly
but significantly with climate-associated SNP windows. Specifically, when focusing on the
windows with the greatest (top 10%) correlation between change and elevation in the experiment
and with the greatest (top 10%) climate association in nature, windows associated with all three
climate PCs corresponded with those where change was most strongly associated with elevation
~1.2-1.3 times more than expected under the null hypothesis of independence (constrained
randomization test controlling for SNP density within windows based on 1000 randomizations;
PC1: observed = 108 shared windows, P = 0.005; PC2: observed = 101 shared windows, P =
0.015; PC3: observed = 105 shared windows, P = 0.021) (Figure 6). Similar patterns were
observed when more extreme top percentiles were considered, and when using an unconstrained
randomization test (Table S4). These patterns are consistent with the hypothesis that multiple

genetic variants in these windows are subject to selection in nature.

Additionally, we found that climate-associated SNP windows overlapped more than expected
with regions associated with phenotypic variation in genetic mapping analyses of cuticular
hydrocarbons (CHCs), specifically pentacosane in females (Supplementary Methods and Results;

Figure 1D, Tables S5-S8), which studies of insects have shown can contribute to climate
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adaptation [54,55]. This combined with the results presented above suggests a polygenic basis
for climatic adaptation in 7. cristinae, with at least a modest correspondence between our top

climate-associated windows and the actual loci involved in climate adaptation.
DISCUSSION AND CONCLUSION

We used GBS data from 1420 individuals across eight species combined with data from field
transplant and GWAS for cuticular hydrocarbons to show that adaptation to climate occurs in
parallel across species but as a function of the climatic and genomic divergence between species.
Our results inform five fundamental issues in biology, namely the repeatability of evolution,
variation in the degree of parallelism based on the climate variables considered, the effect of
ecology and genetics on parallelism, technical aspects pertaining to the study of parallelism, and

the processes promoting parallelism. We treat these issues in turn below.

First, we show that evolution in response to climate occurs in parallel among eight species and
that parallelism likely involves multiple SNPs. These findings fill a gap in our knowledge of
parallel evolution because many studies, including past work in Timema, have mostly focused on
parallelism driven by single genes or specific regions of the genome [11,12, 47]. These results
agree with other cases of parallel or convergent climate adaptation that are also driven by
polygenic interactions [21,68-70]. Overall, our study demonstrates that repeatability of evolution
can be driven by numerous genetic paths, but the magnitude of repeatability can be highly

variable, specifically when considering inter-species comparisons.

Second, our results reveal notable variation in the degree of parallelism across the three PCs,
which we use as composite climate variables. We attribute the variation in the degree of
parallelism to Timema species occupying variable environmental niches in their geographic
distributions, which can cause environmentally heterogeneous selection. Furthermore, each PC is
composed of different climatic variables. Therefore, the level of genomic association and in turn
parallelism would vary based on the PC (and climatic variables) being considered. For example,
precipitation (which is one of the top loading variables on PC1 and PC2) can affect variability in
selection in space [52] and has also been shown to drive thermoregulatory evolution in Timema
[71]. Other unaccounted factors can influence response to climate such as microclimate variation

on the spatial scale that Timema species occupy, and nonlinear gene—climate associations [72].

11
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All these factors together contribute to the variable degree of parallelism observed across the
three PCs, emphasizing that the genomic basis of adaptation to climate in Timema is predictable

to some extent yet complex.

Third, our results reveal that parallelism decays with climatic and genome-wide divergence,
suggesting that both shared ecology and shared genetics can affect parallel evolution. Thus, the
parallelism we observe in Timema can be partly attributed to selection pressures exerted on
insects inhabiting similar niches [28]. In addition, genetic similarity increases the chances for
shared standing genetic variation in closely related taxa to allow for gene reuse in response to
similar environmental pressures [73]. Similar gene modules can also drive convergent adaptation
to climate, where genes or SNPs that collectively serve a similar functional role are tightly
integrated by strong pleiotropic effects and are relatively independent of other such units [21,68].
Our study demonstrates that both these aspects can affect parallelism, with a perhaps more
consistent effect of genetics, due to patterns of ecological variation being more complex among

species compared to genetics.

Fourth, our approach involving permuted data sets highlights important issues concerning
analytical aspects of parallelism tests. We found no evidence of the observed decay in
parallelism with climatic or genome-wide divergence in permuted data sets conducted prior to or
following analysis with BayPass. Overall, these findings in combination with the experiment and
CHC results provide support that the documented parallelism in genomic association with
climate reflects a contribution from selection. However, we also note that our analyses using
permuted data sets generated instances where ‘significant’ x-fold excesses in the numbers of
gene regions displaying parallelism above null expectations. Our findings thus concur with
previous studies using simulation-based approaches showing that false positives can be detected
due to unaccounted aspects of the genetic data [74-76]. Therefore, we suggest that these
associations should be interpreted with caution, and studies identifying genomic association with

climatic variables warrant additional cross-validation of findings, as performed here.

Fifth, our collective results inform how two core evolutionary processes, namely
introgression/gene flow, and selection, might affect parallelism. We show that parallel evolution
and adaptation to climate occurs despite limited or minimal gene flow among Timema species.

While introgression can facilitate parallel adaptation to similar environmental pressures through

12
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the sharing of novel genetic material [33,56-60,77], a lack of introgression or gene flow
demonstrates independent instances of adaptation and the role of selection in driving parallel
evolution at the genomic level [78]. Ancestral genetic variation can also underlie parallelism due
to similar selection pressures driving phenological similarity not just for newly formed and
partially reproductively isolated host races, but also for distantly related sibling species [3].
Additionally, while a study on divergent conifers has indicated that conserved genomic regions
can drive convergent adaptation to climate [21] another study on distinct genetic clusters of
Arabidopsis lyrata (two lineages) shows that parallelism in genomic association to climate is
detectable at the gene but not the SNP level [68]. Both these systems also have minimal gene
flow. In comparison, a study on replicate pairs of threespine stickelbacks implies a significant
role for the environment and gene flow in affecting parallelism [28]. In summary, our study
shows how local adaptation among species with minimal between-species gene flow can occur
and consequently be crucial for predicting evolution in response to rapidly changing
environments and climate. Furthermore, our results bolster evidence for selection beyond a
correlational genome scan because we found that the genomic regions which underlie parallelism
also were associated with allele-frequency changes in a manipulative field experiment [like 79]
and climatically relevant CHC traits. Thus, together these results suggest that allele reuse
through standing genetic variation, new mutations, and selection can all be powerful drivers of

parallel local adaptation.
METHODS

Below we describe details of our methods and analyses, and we provide a graphic summary in

Figure 1 of the main text.
Samples and DNA sequences from natural populations

For this study, we analyzed genotyping-by-sequencing (GBS) data from 1420 Timema stick
insects from 53 localities from eight species: 6 T. bartmani populations (N = 195 individuals), 3
T. californicum populations (N = 77 individuals), 12 T. chumash populations (N = 358
individuals), 6 T. cristinae populations (N = 205 individuals), 5 T. knulli populations (N = 89
individuals), 4 T. landenlsensis populations (N = 125 individuals), 12 T. podura populations (N =
255 individuals) and 5 T. poppensis populations (N = 116 individuals) (Table S1). GBS data for
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this study has been previously published in a study of the speciation continuum in Timema [61].
DNA sequence data, the reference genome, experimental data, and CHC data used in this study
are associated with the previously published studies [61,67]. The associated DNA sequence data
have been archived on NCBIs SRA (Accession: PRINA356405 ID: 356405). The genomic data
in the transplant experiment and used for genetic mapping of cuticular hydrocarbons is

independent from these data and is described in detail below.
Sequence alignment and variant calling

To incorporate variants typed for individuals of each species, we built a consensus reference
sequence for each species [similar to 44,47]. To do this, we first aligned all reads from all our
samples to the 7. cristinae reference genome (draft version 0.3) using the MEM algorithm of

BWA (Version: 0.7.17-r1188) [61]. We ran BWA MEM with a minimum seed length of 15 (-k),
internal seeds of longer than 20 bp, and only output alignments with a quality score of = 30 (-T).

We then used SAMTOOLS (version 1.5) to view, sort and index the alignments [80]. We called
variants using SAMTOOLS and BCFTOOLS (version 1.6) [80,81]. For variant calling, we used
the mapping quality adjustment of 50 (-C), skipped alignments with mapping quality 0, skipped
bases with base quality <13, and ignored insertion-deletion polymorphisms. We then set the prior
on single nucleotide polymorphisms (SNPs) to 0.001 (-P) and called SNPs when the posterior
probability that the nucleotide was invariant was <0.01 (-p). We then performed two rounds of
filtering to retain final sets of SNPs. In the first round, we filtered the initial set of SNPs to retain
only those with sequence data for at least 80% of the individuals, a mean sequence depth of two
per individual, at least four reads of the alternative allele, a minimum quality score of 30, a
minimum (overall) minor allele frequency of at least 5%, and no more than 0.01% of the reads in
the reverse orientation. In the second round of filtering, we removed SNPs with excessive
coverage (2 standard deviations above the mean) or that were tightly clustered (within 5 base
pairs (bp) of each other). This left us with the following number of SNPs for each species:
10,036 SNPs for T. bartmani, 14,955 SNPs for T. californicum, 20,478 SNPs for T. chumash,
3,43,746 SNPs for T. cristinae, 25,835 SNPs for T. knulli, 21,314 SNPs for T. landelsensis,
21,986 SNPs for T. podura, and 18,237 SNPs for T. poppensis.

We used these filtered variants for each species to construct consensus reference sequences for

each species using the CONSENSUS algorithm of BCFTOOLS (version 1.6) [81]. We then used
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the consensus reference of each species to redo alignments for GBS sequences of individuals for
each species separately. Following this, we repeated variant calling and two rounds of variant
filtering as described above. This left us with the following number of SNPs for each species:
3074 SNPs for T. bartmani, 7858 SNPs for T. californicum, 4172 SNPs for T. chumash, 1,96,252
SNPs for T. cristinae, 11,139 SNPs for T. knulli, 8548 SNPs for T. landelsensis, 6000 SNPs for
T. podura, and 7157 SNPs for T. poppensis. We used this second set of SNPs noted directly

above for all downstream analyses.
Climate variables and SNP by climate associations

We used 22 climate variables associated with our 53 study localities (Table S2), which were
extracted from the WorldClim database version 1.4
(https://www.worldclim.org/data/v1.4/worldclim14.html; climate data for 1960-1990). Since the
first three PC scores explained the overwhelming majority (92.4%) of variation in the climate
variables (Table S2, Extended Data Figure 1), we used these three PCs to study genomic

associations with climate in all further analyses.

We used BayPass version 2.1 [82] to identify genomic regions associated with the three sets of
PC scores for the climate variables. The BayPass software controls for background population
structure and is based on the BAYENYV method introduced by Gunther and Coop [83]. This
software controls for background population structure by using a population covariance matrix
for populations within each species, and then quantifies the association of each SNP with an
environmental variable (in our case, a PC axis). We ran this program separately for each species
and for each PC (eight species by three PCs). We treated each PC score as the environmental
covariate and ran the standard covariate model. For each data set, we ran four Markov chain
Monte Carlo (MCMC) simulations, each with a 20,000-iteration burn-in and 50,000 sampling
iterations with a thinning interval of 100. We used the default option of importance sampling to
calculate the regression coefficient (i), which describes the association of each SNP with
climate PC scores. For a given SNP, the BF compares the marginal likelihoods of models with
zero versus non-zero regression coefficients (i.e., values of £1); this is like a likelihood ratio
except the marginal likelihood of the model with non-zero regression coefficients are integrated
over the prior distribution. Finally, since we had a different number of focal SNPs for each

species, we calculated median of logarithmic BF for 100 kilobase (Kb) non-overlapping SNP

15



445
446
447
448
449
450
451
452
453
454
455
456

457

458
459
460
461
462

463
464
465
466
467
468
469
470
471
472
473

windows (i.e., the same window boundaries were used in every species, facilitating comparisons
among them). For a given species, we had the following number of SNP windows: 1771
windows with an average of 1.73 SNPs per window for T. bartmani, 3852 windows with an
average of 2.04 SNPs per window for 7. californicum, 1806 windows with an average of 2.31
SNPs per window for T. chumash, 9754 windows with an average of 20.76 SNPs per window for
T. cristinae, 4426 windows with an average of 2.55 SNPs per window for 7. knulli, 3799
windows with an average of 2.25 SNPs per window for 7. landelsensis, 2443 windows with an
average of 2.45 SNPs per window for 7. podura, and 3609 windows with an average of 1.98
SNPs for T. poppensis. Our downstream analyses described below focus on these windows. We
delimited climate-associated SNP windows as those with greatest association with the three
climate PCs, specifically as the windows in the top 10% quantile. We refer to such windows as

“climate-associated SNP windows” hereafter.
Quantifying parallel genomic associations with climate

We quantified parallel genomic associations with climate across species (using the results
described above from BayPass) and used randomization tests to measure the extent to which the
observed parallelism exceeded that expected by chance. We report this excess as ‘x-fold’
enrichments, relative to null expectations, also reporting associated P-values for statistical

significance.

We quantified overlap in climate-associated SNP windows between multiple species (“multi-
species comparisons") i.e., we tested if the same SNP windows show association with climate
PCs between or among 3, 4, 5, 6, 7 or 8 species. We did this for each of the three climate PCs.
To do this, we used randomization tests (10,000 randomizations per test) to generate null
expectations for the proportion of top climate-associated SNP windows shared between a given
pair of species and tested whether this was significantly more than expected by chance (x-fold
enrichments and P-values). As an example, an x-fold enrichment of 2.0 would indicate that twice
as many climate-associated SNP windows showed overlap between a given set of species than
was expected by chance (based on the mean of the null). With our approach, we assess coarse-
grain (100 Kb) genomic parallelism by analyzing multiple SNPs spread across the genome,

rather than focusing on parallelism at the level of specific mutations or genes. Nonetheless, we
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suspect that parallelism at this scale will often involve the same genes, as only a modest number

of genes occur in most 100 Kb windows (e.g., mean number of genes per window = 1 gene).

We note that our approach is not a direct test of whether the same variants or alleles per se are
responsible for climate adaptation in different species. Rather, we assess the degree to which the
same gene regions associated with climatic variation within species are shared among species,
and the extent to which such parallelism can be accounted for by taxa being more similar in the
environmental conditions they experience and/or how closely they are related to one another in
their overall levels of genomic divergence. Our focus on genomic regions as the unit for
quantifying parallelism also means that it is not necessarily the case that the exact same gene(s)
are involved in climatic adaptation between species. However, the size of the windows we use to
define genomic regions for the analysis (100 Kb) is such that given the gene density in Timema
on average only 1.78 SNPs will be present in each region. Thus, it can be inferred that shared
genetic responses of gene regions across species generally equate to the involvement of the same

loci or genetic basis for climate adaptation.
Testing the shared ecology and shared genetics hypotheses

We tested the contribution of shared ecology versus shared genetics to the observed degree of
parallelism. We expect both shared ecology and genetics to influence the extent of parallelism.
To do so, we fit Bayesian linear mixed models (BLMMs) to explicitly compare models where
parallelism is determined by climatic similarity, genetic similarity, or both. This Bayesian
regression analysis is based on the mixed model framework proposed by [84] and extended by
[65]. Our method accounts for the correlated error structure inherent in pairwise covariates and
response variables (e.g., climatic or genetic distances). In this analysis, our response variable was
the x-fold excess in shared top climate-associated SNP windows for a given PC (we did analyses
separately for each climate PC). Our independent variables were climatic and genetic distances,
estimated as follows. Climatic distance was calculated as pairwise absolute mean difference of
PC scores of each species. We calculated genetic (i.e., phylogenetic) distances based on the
previously published phylogeny described in [61]. Briefly, we used the data from this previous
phylogeny (based on genome-wide SNP data) constructed using Bayesian phylogenetic inference
with BEAST (version 2.1.387) for 11 Timema species based on GBS data of curated dataset of

19,556 single-nucleotide variants. For our current study, we used pairwise phylogenetic distances
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for the eight Timema species as our metrics of genetic distances for this analysis. All variables

were standardized (given mean 0 and standard deviation of 1) before analysis.

We then considered four alternative models: (i) a null model without covariates, (ii) a model
including only phylogenetic distance, (iii) a model with only climatic distance, and (iv) a model
with both climate and phylogenetic distance. We fit the models in R using the rjags (version 4.8)
interface with Jags (version 4.3.0). We used minimally informative priors for the regression
coefficients (i.e., normal with p =0 and precision T = 0.001) and for the population random
effects and residual errors, all gamma (1, 0.01). Deviance information criterion was used for
model comparison. Parameter estimates and DIC estimates were obtained via MCMC. For each
analysis and model, we ran three chains each comprising 10,000 sampling iterations, a 2000-

iteration burn-in, and a thinning interval of 5.
Comparison of parallelism results to permuted datasets

We next asked whether the patterns of observed genomic parallelism and its decay could have
been inflated (unexpectedly high numbers) due to unaccounted aspects of the genetic data. We
did this by permuting environmental variables (i.e., PC scores) before running BayPass rather
than just permuting BF across species. Our expectation was that a high number of false positives
with the permuted environmental variables would raise a warning against the results obtained
from the observed data. We did this by generating and analyzing 10 permuted data sets identical
to our own, but with each PC score randomized across populations within each species (10
permutations x 3 PCs x 8 species = 240 combinations). We limited our analyses to 10 permuted
data sets because of the very large computational burden of running these analyses. Hereafter, we
refer to this data as "permuted data sets". We then performed analysis for each of the 10
permuted data sets, for each species separately, exactly as described for the real data set. First,
we ran BayPass using each of the permuted data sets and for each species. Second, we quantified
the degree of genomic parallelism by making pairwise and multi-species comparisons exactly as
we did for the real data set (i.e., including the permutations to test for excess overlap). Thirdly,
we fit Bayesian linear mixed models to test for the effect of ecology (i.e., the permuted climatic

PC variables) and genetics on the decay of genomic parallelism.

Climate-associated SNP windows and field-experiment associated genetic regions
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We quantified overlap between climate-associated SNP windows and windows that exhibited
elevation-dependent allele-frequency change in a previously published release-recapture field
experiment. We then tested if this overlap was greater than expected by chance. Full details of
the experiment can be found in the original publications [67,71] but those relevant for the current
study are as follows. The experiment involved releasing 500 7. cristinae (from which a tissue
sample was taken) onto 10 experimental bushes (five blocks, each with one plant of Adenostoma
fasciculatum and one of Ceanothus spinosus). Survivors were recaptured eight days later.
Whole-genome sequence data, which we analyze here, was obtained from 491 of the 500 stick

insects [71].

For the current study, we estimated allele frequencies in the released and recaptured stick insects
at the 6,175,495 bi-allelic SNPs identified by [71]. This was done using an expectation-
maximization (EM) algorithm as implemented in the program estpEM (version 0.1) with
tolerance of 0.001 and a maximum of 50 EM iterations [85]. We then used these estimates to
compute allele-frequency change between the start and end of the experiment. Then, for each
SNP we calculated the Pearson correlation between allele frequency change and the elevation at
each of the ten transplant sites. Finally, we determined the average correlation between change
and elevation for the 100 Kb windows across the genome. Windows with fewer than four SNPs

were ignored. These steps were done using R (version 3.4).

We then calculated the number of 100Kb windows that were among the top 10% for both
elevation-dependent change during the experiment (highest average absolute correlation) and for
climate-association (highest average BF for each climate PC). We used a constrained
randomization procedure to generate null expectations for such concordance between change and
climate-association windows, using a separate randomization for each PC. Specifically, we
randomized mean change metrics across windows, but only among windows with similar SNP
densities (10 equally sized bins were used for this). This was done because we observed a
positive correlation between SNP density and mean change-elevation correlations per window
(Pearson R = 0.069, 95% CI = 0.047-0.091, P < 0.001), and we wanted to control for this. Null
distributions and P-values were based on 1000 randomizations and are reported for each climate

PC.
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CODE AVAILABILITY

Computer code is available on

https://github.com/karwaan/Timema_climate adaptation genomics. Correspondence for

materials (data, scripts, or samples) should be addressed to Samridhi Chaturvedi
(samridhi.chaturvedi@gmail.com) or Zachariah Gompert (zach.gompert@usu.edu) or Patrik

Nosil (patrik.nosil @cefe.crns.fr).
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FIGURE CAPTIONS

Figure 1: Conceptual figure to summarize the analyses conducted in this study. (A) Diagram
shows the approach to quantify overlap of top climate-associated SNP windows between a given
pair of species (Species 1 and species 2). Here red dots denote climate-associated SNP windows
for each species. We then quantify overlap in these windows between a given set of species
which can “2 or more”, “3 or more”, and “4 or more” (“N”). (B) Parallelism: Diagram shows the
approach to quantify excess overlap of top climate-associated SNP windows for multiple species.
(C) Experimental comparison: Diagram shows two steps to identify excess overlap in climate-
associated SNP windows and those that changed in an elevation-dependent manner during an
experiment. Here, first we identify loci/genomic regions associated with the greatest allele-
frequency change in an elevational dependent manner in an experiment as those which show
exceptional change as compared to a null expectation (denoted in green line, denoted as “X”).
Second, we compare if these regions (“X’’) show excess overlap with the climate-associated SNP
windows (“N”). (D) CHC comparison: Diagram shows two steps to identify excess overlap in
climate-associated SNP windows and genomic regions associated with CHCs. First, we identify
loci/genomic regions associated with greatest effect on CHC traits (denoted in green line,
denoted as “C”). Second, we compare if these regions (“C”’) show excess overlap with the
climate-associated SNP windows (“N”).

Figure 2: Map of species ranges and plots for within-species variation in climate PC scores. (A)
Map of the ranges of the eight species included in the study, where the coloured shapes represent
the geographic ranges of each species. (B) Two hypotheses which we use to test for decay of
parallelism: First diagram shows our prediction for the “shared ecology” hypothesis where we
expect a decay in parallelism with an increase in climate (i.e., habitat and ecological) distance.
Second diagram shows our prediction for the “shared genetics” hypothesis where we expect a
decay in parallelism with an increase in genetic distance. We use these two hypotheses to study
the decay of parallelism. (C-E) Box plots of PC variation for the first three principal components
(PC1, PC2, PC3) for the eight species included in the study (n = 1420 individuals from 53
localities).

Figure 3: Manhattan plots showing the strength of evidence for association (measured here
using the Bayes factor from the software BayPass [82]) between a SNP window and climate (in
this case, PC3, see Figures S2 and S3 for analogous results for PC1 and PC2). Results are shown
along the 13 linkage groups. In each panel title, the two values in parentheses are the number of
SNP windows in the top 10% quantile (“windows”), followed by the number of linkage groups
with at least 1 SNP window in the top 10% quantile (“LGs”).

Figure 4: Tests for parallel climate-associated SNP windows between species of Timema stick
insects (all plots are for the top 10% empirical quantile). In this case, PC3, see Figures S4 and S5
for analogous results for PC1 and PC2. Barplot shows x-fold enrichments for number of
overlapping climate-associated SNP windows for PC3 for comparisons between multiple
species, i.e., beyond pairs of species (e.g., 2 or more species, 3 or more species, 4 or more
species). Gray dots denote x-fold values expected under 1000 randomizations for a null
distribution. Black dot denotes median of the x-fold values expected under 1000 randomizations
for a null distribution. Red dot and N value above each group indicates the observed number of
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overlapping climate-associated SNP windows for each comparison. P-value above each group
denotes whether the overlap is greater than expected by chance from a one-sided randomization
test. * Indicates x-fold enrichments with P-value <0.05.

Figure 5: Tests for introgression and “shared ecology” and “shared genetics” hypotheses. (A)
Population graph from TREEMIX for all Timema populations used in this study (N = 53),
allowing no migration or admixture event (the actual migration edge is not shown due to the
extremely high proportion of variation explained from the admixture model as shown in Table
S9). Terminal nodes are labelled by abbreviations for locations from where samples were
collected and coloured according to species. (B) Scatterplot shows the relationship between
climatic distance (measured as distance in PC3 scores and as distance in climate variables) and
genetic distance (measured as pairwise phylogenetic distance) based on a one-way linear model.
(C) Scatterplot shows the relationship between x-fold enrichment (measure for parallelism) and
climatic distance (measured as distance in PC3 scores) based on a single-factor linear model. (D)
Scatterplot shows the relationship between X-fold enrichment (measure for parallelism) and
genetic distance (measured as pairwise phylogenetic distance) based on a one-way linear model.
(E) Plot shows parameter estimates with standardized coefficients for the full model for PC3.
Error bars indicate 95% equal-tail probability intervals (ETPIs). Estimates diverging from zero
indicate a positive or negative effect of ecology or genetics on parallelism. This test was
implemented for all eight species and 56 species pairs. Results analogous to those for (B)- (E)
but for PC1 and PC2 are shown in extended figures 8 and 9, respectively. A negative or positive
estimate which deviates from zero is indicative of an effect on parallelism.

Figure 6. Evidence for excess overlap between 100Kb windows associated with climate in
nature and those that changed in an elevation-dependent manner during an experiment. (A) The
scatterplot shows the mean correlation between change and elevation during an experiment
versus the median Bayes factor measuring SNP-climate (PC3) association in nature for 7.
cristinae for 100 Kb windows. Points denoting windows in the top 10% for change-elevation
correlations are shown in orange, those in the top 10% for SNP-climate associations are shown in
blue, and those in the top 10% for both are in purple (other windows are shown with gray
points). We are interested in the top right corner of the plot, that is the purple points denoting
windows were exceptional (top 10%) in the experiment and nature, and we used a randomization
test to ask whether more windows fall in this category than expected by chance. Panels (B), (C)
and (D) show null expectations for the number of windows in the top 10% for the experiment
and nature based on climate PCs 1, 2 and 3, respectively. The null distribution from the
constrained randomization test in each case is denoted by the gray density plot, whereas the
observed value is shown with a vertical purple line. The P-value for the null hypothesis of no
association between SNP-climate and change-elevation correlations is reported in each panel as
well.

22



669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

REFERENCES

—_—

10.

11.

12.

13.

14.

Gould, Stephen Jay. 1990. Wonderful Life. London, England: Radius.

Blount, Zachary D., Christina Z. Borland, and Richard E. Lenski. 2008. “Historical
Contingency and the Evolution of a Key Innovation in an Experimental Population of
Escherichia Coli.” Proceedings of the National Academy of Sciences of the United States
of America 105 (23): 7899-7906.

Meyers, Peter J., Meredith M. Doellman, Gregory J. Ragland, Glen R. Hood, Scott P.
Egan, Thomas H. Q. Powell, Patrik Nosil, and Jeffrey L. Feder. 2020. “Can the Genomics
of Ecological Speciation Be Predicted across the Divergence Continuum from Host
Races to Species? A Case Study in Rhagoletis.” Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences 375 (1806): 20190534.

Stern, David L., and Virginie Orgogozo. 2009. “Is Genetic Evolution Predictable?”
Science (New York, N.Y.) 323 (5915): 746-51.

Langerhans, R. Brian. 2010. “Predicting Evolution with Generalized Models of Divergent
Selection: A Case Study with Poeciliid Fish.” Integrative and Comparative Biology 50
(6): 1167-84.

Losos, Jonathan B. 2011. “Convergence, Adaptation, and Constraint.” Evolution,
International Journal of Organic Evolution 65 (7): 1827-40.

Waldvogel, Ann-Marie, Barbara Feldmeyer, Gregor Rolshausen, Moises Exposito-
Alonso, Christian Rellstab, Robert Kofler, Thomas Mock, et al. 2020. “Evolutionary
Genomics Can Improve Prediction of Species’ Responses to Climate Change.” Evolution
Letters 4 (1): 4-18.

Lieberman, Tami D., Jean-Baptiste Michel, Mythili Aingaran, Gail Potter-Bynoe,
Damien Roux, Michael R. Davis Jr, David Skurnik, et al. 2011. “Parallel Bacterial
Evolution within Multiple Patients Identifies Candidate Pathogenicity Genes.” Nature
Genetics 43 (12): 1275-80.

Grant, Peter R., and B. Rosemary Grant. 2002. “Unpredictable Evolution in a 30-Year
Study of Darwin’s Finches.” Science (New York, N.Y.) 296 (5568): 707-11.

Bolnick, Daniel I., Rowan D. H. Barrett, Krista B. Oke, Diana J. Rennison, and Yoel E.
Stuart. 2018. “(Non)Parallel Evolution.” Annual Review of Ecology, Evolution, and
Systematics 49 (1): 303-30.

Colosimo, Pamela F., Kim E. Hosemann, Sarita Balabhadra, Guadalupe Villarreal Jr,
Mark Dickson, Jane Grimwood, Jeremy Schmutz, Richard M. Myers, Dolph Schluter,
and David M. Kingsley. 2005. “Widespread Parallel Evolution in Sticklebacks by
Repeated Fixation of Ectodysplasin Alleles.” Science (New York, N.Y.) 307 (5717):
1928-33.

Kingsley, Evan P., Marie Manceau, Christopher D. Wiley, and Hopi E. Hoekstra. 2009.
“Melanism in Peromyscus Is Caused by Independent Mutations in Agouti.” PloS One 4
(7): e6435.

Manceau, Marie, Vera S. Domingues, Catherine R. Linnen, Erica Bree Rosenblum, and
Hopi E. Hoekstra. 2010. “Convergence in Pigmentation at Multiple Levels: Mutations,
Genes and Function.” Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences 365 (1552): 2439-50.

Linnen, Catherine R., Yu-Ping Poh, Brant K. Peterson, Rowan D. H. Barrett, Joanna G.
Larson, Jeffrey D. Jensen, and Hopi E. Hoekstra. 2013. “Adaptive Evolution of Multiple

23



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Traits through Multiple Mutations at a Single Gene.” Science (New York, N.Y.) 339
(6125): 1312-16.

Elmer, Kathryn R., and Axel Meyer. 2011. “Adaptation in the Age of Ecological
Genomics: Insights from Parallelism and Convergence.” Trends in Ecology & Evolution
26 (6): 298-306.

Stern, David L. 2013. “The Genetic Causes of Convergent Evolution.” Nature Reviews.
Genetics 14 (11): 751-64.

Greenway, Ryan, Nick Barts, Chathurika Henpita, Anthony P. Brown, Lenin Arias
Rodriguez, Carlos M. Rodriguez Pefa, Sabine Arndt, et al. 2020. “Convergent Evolution
of Conserved Mitochondrial Pathways Underlies Repeated Adaptation to Extreme
Environments.” Proceedings of the National Academy of Sciences of the United States of
America 117 (28): 16424-30.

Barrett, Rowan D. H., and Dolph Schluter. 2008. “Adaptation from Standing Genetic
Variation.” Trends in Ecology & Evolution 23 (1): 38—44

Papadopulos, Alexander S. T., Andrew J. Helmstetter, Owen G. Osborne, Aaron A.
Comeault, Daniel P. Wood, Edward A. Straw, Laurence Mason, et al. 2021. “Rapid
Parallel Adaptation to Anthropogenic Heavy Metal Pollution.” Molecular Biology and
Evolution 38 (9): 3724-36.

Yeaman, Sam. 2015. “Local Adaptation by Alleles of Small Effect.” The American
Naturalist 186 Suppl 1 (S1): S74-89.

Yeaman, Sam, Kathryn A. Hodgins, Katie E. Lotterhos, Haktan Suren, Simon Nadeau,
Jon C. Degner, Kristin A. Nurkowski, et al. 2016. “Convergent Local Adaptation to
Climate in Distantly Related Conifers.” Science (New York, N.Y.) 353 (6306): 1431-33.
Chaturvedi, Samridhi, Lauren K. Lucas, Chris C. Nice, James A. Fordyce, Matthew L.
Forister, and Zachariah Gompert. 2018. “The Predictability of Genomic Changes
Underlying a Recent Host Shift in Melissa Blue Butterflies.” Molecular Ecology 27 (12):
2651-66.

Arendt, Jeff, and David Reznick. 2008. “Convergence and Parallelism Reconsidered:
What Have We Learned about the Genetics of Adaptation?” Trends in Ecology &
Evolution 23 (1): 26-32.

Conte, Gina L., Matthew E. Arnegard, Catherine L. Peichel, and Dolph Schluter. 2012.
“The Probability of Genetic Parallelism and Convergence in Natural Populations.”
Proceedings. Biological Sciences 279 (1749): 5039-47.

Bailey, Susan F., Nicolas Rodrigue, and Rees Kassen. 2015. “The Effect of Selection
Environment on the Probability of Parallel Evolution.” Molecular Biology and Evolution
32 (6): 1436-48.

Lenski, Richard E. 2017. “Experimental Evolution and the Dynamics of Adaptation and
Genome Evolution in Microbial Populations.” The ISME Journal 11 (10): 2181-94.
Roda, Federico, Huanle Liu, Melanie J. Wilkinson, Gregory M. Walter, Maddie E.
James, Diana M. Bernal, Maria C. Melo, et al. 2013. “Convergence and Divergence
during the Adaptation to Similar Environments by an Australian Groundsel.” Evolution;
International Journal of Organic Evolution 67 (9): 2515-29.

Stuart, Yoel E., Thor Veen, Jesse N. Weber, Dieta Hanson, Mark Ravinet, Brian K.
Lohman, Cole J. Thompson, et al. 2017. “Contrasting Effects of Environment and
Genetics Generate a Continuum of Parallel Evolution.” Nature Ecology & Evolution 1
(6): 158.

24



761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Morales, Hernan E., Rui Faria, Kerstin Johannesson, Tomas Larsson, Marina Panova,
Anja M. Westram, and Roger K. Butlin. 2019. “Genomic Architecture of Parallel
Ecological Divergence: Beyond a Single Environmental Contrast.” Science Advances 5
(12): eaav9963.

Manousaki, Tereza, Pincelli M. Hull, Henrik Kusche, Gonzalo Machado-Schiaffino,
Paolo Franchini, Chris Harrod, Kathryn R. Elmer, and Axel Meyer. 2013. “Parsing
Parallel Evolution: Ecological Divergence and Differential Gene Expression in the
Adaptive Radiations of Thick-Lipped Midas Cichlid Fishes from Nicaragua.” Molecular
Ecology 22 (3): 650—-69.

Rennison, Diana J., Kira E. Delmore, Kieran Samuk, Gregory L. Owens, and Sara E.
Miller. 2020. “Shared Patterns of Genome-Wide Differentiation Are More Strongly
Predicted by Geography than by Ecology.” The American Naturalist 195 (2): 192-200.
Schluter, Dolph, Elizabeth A. Clifford, Maria Nemethy, and Jeffrey S. McKinnon. 2004.
“Parallel Evolution and Inheritance of Quantitative Traits.” The American Naturalist 163
(6): 809-22.

Roesti, Marius, Sergey Gavrilets, Andrew P. Hendry, Walter Salzburger, and Daniel
Berner. 2014. “The Genomic Signature of Parallel Adaptation from Shared Genetic
Variation.” Molecular Ecology 23 (16): 3944-56.

Meyers, Peter J., Meredith M. Doellman, Gregory J. Ragland, Glen R. Hood, Scott P.
Egan, Thomas HQ Powell, Patrik Nosil, and Jeffrey L. Feder. "Can the genomics of
ecological speciation be predicted across the divergence continuum from host races to
species? A case study in Rhagoletis." Philosophical Transactions of the Royal Society

B 375, no. 1806 (2020): 20190534.

Matos, Margarida, Pedro Simdes, Marta A. Santos, Sofia G. Seabra, Gongalo S. Faria,
Filipa Vala, Josiane Santos, and Inés Fragata. 2015. “History, Chance and Selection
during Phenotypic and Genomic Experimental Evolution: Replaying the Tape of Life at
Different Levels.” Frontiers in Genetics 6 (February): 71.

Good, Benjamin H., Michael J. McDonald, Jeffrey E. Barrick, Richard E. Lenski, and
Michael M. Desai. 2017. “The Dynamics of Molecular Evolution over 60,000
Generations.” Nature 551 (7678): 45-50.

Storz, Jay F. 2016. “Causes of Molecular Convergence and Parallelism in Protein
Evolution.” Nature Reviews. Genetics 17 (4): 239-50.

Kohler, Annegret, Alan Kuo, Laszlo G. Nagy, Emmanuelle Morin, Kerrie W. Barry,
Francois Buscot, Bjorn Canbick, et al. 2015. “Convergent Losses of Decay Mechanisms
and Rapid Turnover of Symbiosis Genes in Mycorrhizal Mutualists.” Nature Genetics 47
(4): 410-15.

Haldane, John Burdon. 1990. The Causes of Evolution. Princeton Science Library 5.
Princeton, NJ: Princeton University Press.

Gompel, Nicolas, and Sean B. Carroll. 2003. “Genetic Mechanisms and Constraints
Governing the Evolution of Correlated Traits in Drosophilid Flies.” Nature 424 (6951):
931-35.

Orgogozo, Virginie. 2015. “Replaying the Tape of Life in the Twenty-First Century.”
Interface Focus 5 (6): 20150057.

Blount, Zachary D., Richard E. Lenski, and Jonathan B. Losos. 2018. “Contingency and
Determinism in Evolution: Replaying Life’s Tape.” Science (New York, N.Y.) 362 (6415):
eaam5979.

25



807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Nosil, Patrik. 2007. “Divergent Host Plant Adaptation and Reproductive Isolation
between Ecotypes of Timema cristinae Walking Sticks.” The American Naturalist 169
(2): 151-62.

Comeault, Aaron A., Clarissa F. Carvalho, Stuart Dennis, Victor Soria-Carrasco, and
Patrik Nosil. 2016. “Color Phenotypes Are under Similar Genetic Control in Two
Distantly Related Species of Timema stick Insect.” Evolution; International Journal of
Organic Evolution 70 (6): 1283-96.

Comeault, Aaron A., Samuel M. Flaxman, Riidiger Riesch, Emma Curran, Victor Soria-
Carrasco, Zachariah Gompert, Timothy E. Farkas, et al. 2015. “Selection on a Genetic
Polymorphism Counteracts Ecological Speciation in a Stick Insect.” Current Biology: CB
25 (15): 1975-81.

Lindtke, Dorothea, Kay Lucek, Victor Soria-Carrasco, Romain Villoutreix, Timothy E.
Farkas, Riidiger Riesch, Stuart R. Dennis, Zach Gompert, and Patrik Nosil. 2017. “Long-
Term Balancing Selection on Chromosomal Variants Associated with Crypsis in a Stick
Insect.” Molecular Ecology 26 (22): 6189-6205.

Villoutreix, Romain, Clarissa F. de Carvalho, Victor Soria-Carrasco, Dorothea Lindtke,
Marisol De-la-Mora, Moritz Muschick, Jeffrey L. Feder, Thomas L. Parchman, Zach
Gompert, and Patrik Nosil. 2020. “Large-Scale Mutation in the Evolution of a Gene
Complex for Cryptic Coloration.” Science (New York, N.Y.) 369 (6502): 460—66.
Barghi, Neda, Joachim Hermisson, and Christian Schlétterer. 2020. “Polygenic
Adaptation: A Unifying Framework to Understand Positive Selection.” Nature Reviews.
Genetics 21 (12): 769-81.

Rockman, Matthew V. 2012. “The QTN Program and the Alleles That Matter for
Evolution: All That’s Gold Does Not Glitter.” Evolution; International Journal of
Organic Evolution 66 (1): 1-17.

Law, Jennifer H., and Bernard J. Crespi. 2002. “The Evolution of Geographic
Parthenogenesis in Timema Walking-Sticks.” Molecular Ecology 11 (8): 1471-89.
Nosil, Patrik, Romain Villoutreix, Clarissa F. de Carvalho, Jeffrey L. Feder, Thomas L.
Parchman, and Zach Gompert. 2020. “Ecology Shapes Epistasis in a Genotype-
Phenotype-Fitness Map for Stick Insect Colour.” Nature Ecology & Evolution 4 (12):
1673-84.

Siepielski, Adam M., Michael B. Morrissey, Mathieu Buoro, Stephanie M. Carlson,
Christina M. Caruso, Sonya M. Clegg, Tim Coulson, et al. 2017. “Precipitation Drives
Global Variation in Natural Selection.” Science (New York, N.Y.) 355 (6328): 959-62.
De La Torre, Amanda R., Benjamin Wilhite, and David B. Neale. 2019. “Environmental
Genome-Wide Association Reveals Climate Adaptation Is Shaped by Subtle to Moderate
Allele Frequency Shifts in Loblolly Pine.” Genome Biology and Evolution 11 (10):
2976-89.

Sprenger, Philipp P., Lars H. Burkert, Bérengere Abou, Walter Federle, and Florian
Menzel. 2018. “Coping with the Climate: Cuticular Hydrocarbon Acclimation of Ants
under Constant and Fluctuating Conditions.” The Journal of Experimental Biology 221
(9): jeb171488.

Botella-Cruz, Maria, Josefa Velasco, Andrés Millan, Stefan Hetz, and Susana Pallarés.
2021. “Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic
Beetles.” Insects 12 (4): 285.

26



852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

878

879

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

56.

57.

58.

59.

60.

61.

62.

63

64.

65.

66.

67.

68.

69.

Heliconius Genome Consortium. 2012. “Butterfly Genome Reveals Promiscuous
Exchange of Mimicry Adaptations among Species.” Nature 487 (7405): 94-98.
Henning, Frederico, and Axel Meyer. 2014. “The Evolutionary Genomics of Cichlid
Fishes: Explosive Speciation and Adaptation in the Postgenomic Era.” Annual Review of
Genomics and Human Genetics 15 (1): 417-41.

Marburger, Sarah, Patrick Monnahan, Paul J. Seear, Simon H. Martin, Jordan Koch,
Pirita Paajanen, Magdalena Bohutinska, James D. Higgins, Roswitha Schmickl, and Levi
Yant. 2019. “Interspecific Introgression Mediates Adaptation to Whole Genome
Duplication.” Nature Communications 10 (1): 5218.

Giska, Iwona, Liliana Farelo, Jodo Pimenta, Fernando A. Seixas, Mafalda S. Ferreira,
Jodo P. Marques, Inés Miranda, et al. 2019. “Introgression Drives Repeated Evolution of
Winter Coat Color Polymorphism in Hares.” Proceedings of the National Academy of
Sciences of the United States of America 116 (48): 24150-56.

Menon, Mitra, Justin C. Bagley, Gerald F. M. Page, Amy V. Whipple, Anna W.
Schoettle, Christopher J. Still, Christian Wehenkel, et al. 2021. “Adaptive Evolution in a
Conifer Hybrid Zone Is Driven by a Mosaic of Recently Introgressed and Background
Genetic Variants.” Communications Biology 4 (1): 160.

Riesch, Riidiger, Moritz Muschick, Dorothea Lindtke, Romain Villoutreix, Aaron A.
Comeault, Timothy E. Farkas, Kay Lucek, et al. 2017. “Transitions between Phases of
Genomic Differentiation during Stick-Insect Speciation.” Nature Ecology & Evolution 1
(4): 82.

Harvey, Michael G., Brian Tilston Smith, Travis C. Glenn, Brant C. Faircloth, and Robb
T. Brumfield. "Sequence capture versus restriction site associated DNA sequencing for
shallow systematics." Systematic biology 65, no. 5 (2016): 910-924.

. Schluter, Dolph, and Gina L. Conte. "Genetics and ecological speciation." Proceedings of

the National Academy of Sciences 106, no. Supplement 1 (2009): 9955-9962.
Liu, Shenglin, Anne-Laure Ferchaud, Peter Grgnkjer, Rasmus Nygaard, and Michael M.

Hansen. "Genomic parallelism and lack thereof in contrasting systems of three-spined

sticklebacks." Molecular ecology 27, no. 23 (2018): 4725-4743.

Gompert, Zachariah, Lauren K. Lucas, C. Alex Buerkle, Matthew L. Forister, James A.
Fordyce, and Chris C. Nice. 2014. “Admixture and the Organization of Genetic Diversity
in a Butterfly Species Complex Revealed through Common and Rare Genetic Variants.”
Molecular Ecology 23 (18): 4555-73.

Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika van der Linde.
2002. “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical
Society. Series B, Statistical Methodology 64 (4): 583-639.

Gompert, Zachariah, Aaron A. Comeault, Timothy E. Farkas, Jeffrey L. Feder, Thomas
L. Parchman, C. Alex Buerkle, and Patrik Nosil. 2014. “Experimental Evidence for
Ecological Selection on Genome Variation in the Wild.” Ecology Letters 17 (3): 369-79.
Walden, Nora, Kay Lucek, and Yvonne Willi. 2020. “Lineage-Specific Adaptation to
Climate Involves Flowering Time in North American Arabidopsis Lyrata.” Molecular
Ecology 29 (8): 1436-51.

Rose, Noah H., Rachael A. Bay, Megan K. Morikawa, and Stephen R. Palumbi. 2018.
“Polygenic Evolution Drives Species Divergence and Climate Adaptation in Corals.”
Evolution; International Journal of Organic Evolution 72 (1): 82-94.

27



897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Blanco-Pastor, José Luis, Isabel M. Liberal, Muhammet Sakiroglu, Yanling Wei, E.
Charles Brummer, Rose L. Andrew, and Bernard E. Pfeil. 2021. “Annual and Perennial
Medicago Show Signatures of Parallel Adaptation to Climate and Soil in Highly
Conserved Genes.” Molecular Ecology, no. mec.16061 (July).
https://doi.org/10.1111/mec.16061.

Nosil, Patrik, Romain Villoutreix, Clarissa F. de Carvalho, Timothy E. Farkas, Victor
Soria-Carrasco, Jeffrey L. Feder, Bernard J. Crespi, and Zach Gompert. 2018. “Natural
Selection and the Predictability of Evolution in Timema Stick Insects.” Science,
February. https://science.sciencemag.org/content/359/6377/765.

Wang, Li, Emily B. Josephs, Kristin M. Lee, Lucas M. Roberts, Rubén Rellén—Alvarez,
Jeffrey Ross-Ibarra, and Matthew B. Hufford. "Molecular parallelism underlies
convergent highland adaptation of maize landraces." Molecular biology and evolution 38,
no. 9 (2021): 3567-3580.

Bohutinska, Magdalena, Jakub Vicek, Sivan Yair, Benjamin Laenen, Veronika Konec¢na,
Marco Fracassetti, Tanja Slotte, and Filip Kolar. 2021. “Genomic Basis of Parallel
Adaptation Varies with Divergence in Arabidopsis and Its Relatives.” Proceedings of the
National Academy of Sciences of the United States of America 118 (21): e2022713118.
Lobréaux, Stéphane, and Christelle Melodelima. "Detection of genomic loci associated
with environmental variables using generalized linear mixed models." Genomics 105, no.
2 (2015): 69-75.

Frachon, Léa, Claudia Bartoli, Sébastien Carrere, Olivier Bouchez, Adeline Chaubet,
Mathieu Gautier, Dominique Roby, and Fabrice Roux. "A genomic map of climate
adaptation in Arabidopsis thaliana at a micro-geographic scale." Frontiers in plant
science 9 (2018): 967.

Contreras-Moreira, Bruno, Roberto Serrano-Notivoli, Naheif E. Mohammed, Carlos P.
Cantalapiedra, Santiago Begueria, Ana M. Casas, and Ernesto Igartua. 2019. “Genetic
Association with High-Resolution Climate Data Reveals Selection Footprints in the
Genomes of Barley Landraces across the Iberian Peninsula.” Molecular Ecology 28 (8):
1994-2012.

Bay, Rachael A., Eric B. Taylor, and Dolph Schluter. 2019. “Parallel Introgression and
Selection on Introduced Alleles in a Native Species.” Molecular Ecology 28 (11): 2802—
13.

Zhang, Xiao, Jack G. Rayner, Mark Blaxter, and Nathan W. Bailey. 2021. “Rapid
Parallel Adaptation despite Gene Flow in Silent Crickets.” Nature Communications 12
(1): 50.

Marques, David A., Felicity C. Jones, Federica Di Palma, David M. Kingsley, and
Thomas E. Reimchen. "Experimental evidence for rapid genomic adaptation to a new
niche in an adaptive radiation." Nature ecology & evolution 2, no. 7 (2018): 1128-1138.
Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing
Subgroup. 2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics
(Oxford, England) 25 (16): 2078-79.

Danecek, Petr, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin
O. Pollard, Andrew Whitwham, et al. 2021. “Twelve Years of SAMtools and BCFtools.”
GigaScience 10 (2). https://doi.org/10.1093/gigascience/giab008.

28


https://doi.org/10.1111/mec.16061

942
943
944
945
946
947
948
949
950
951
952
953

82.

83.

84.

85.

Gautier, Mathieu. 2015. “Genome-Wide Scan for Adaptive Divergence and Association
with Population-Specific Covariates.” Genetics 201 (4): 1555-79.

Giinther, Torsten, and Graham Coop. 2013. “Robust Identification of Local Adaptation
from Allele Frequencies.” Genetics 195 (1): 205-20.

Clarke, Ralph T., Peter Rothery, and Alan F. Raybould. 2002. “Confidence Limits for
Regression Relationships between Distance Matrices: Estimating Gene Flow with
Distance.” Journal of Agricultural, Biological, and Environmental Statistics 7 (3): 361—
72.

Soria-Carrasco, Victor, Zachariah Gompert, Aaron A. Comeault, Timothy E. Farkas,
Thomas L. Parchman, J. Spencer Johnston, C. Alex Buerkle, et al. 2014. “Stick Insect
Genomes Reveal Natural Selection’s Role in Parallel Speciation.” Science (New York,
N.Y.) 344 (6185): 738-42.

29



Figure 1

(A) Identify top shared (B) Parallelism
climate-associated SNP windows
Species 1 ‘ ° SNP Wf';?dOWS in Multi-species

- top 10% quantile comparisons
- c
g2 s 5 How many top SNP

— H ?
§ § ..... ) .. et windows overlap?
el 4® 9
o T o — >

How many top SNP
windows overlap? (N)

Species 2
. @
[ ]
[ ] ]
LIPS ™
® .. e_©

o %e
H—+—H—1+—»

Linkage groups

Linkage groups

Species 4

Environmental
association

(C) Experimental comparison (D) CHC comparison

I Identify top loci from experiment | Identify top loci with an effect on CHC

Observed number of

Observed number loci with t

i wi oci with mos
distribution | [of loci with

il exceptional change (X) effect on CHC (C)

Density

Effect on CHC
o
®

' Linkage groups
Allele frequency change

Compare with climate-associated

Compare with climate-associated SNP windows

SNP windows

How many top SNP How many top SNP
windows overlap? windows overlap?

ADEERAD



Figure 2

(A) Map of species ranges
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Figure 3

P SNP windows in the top 10% quantile
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Figure 5

(A) Phylogeny based on Treemix
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