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ABSTRACT 21 

 22 

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying 23 

similar environments. Moreover, parallel evolution sometimes, but not always, uses the same 24 

genes. Two main hypotheses have been put forth to explain the probability and extent of parallel 25 

evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns 26 

of natural selection in different taxa. Second, parallelism is more likely when genomes are 27 

similar, because of shared standing variation and similar mutational effects in closely related 28 

genomes. Here we combine ecological, genomic, experimental, and phenotypic data with 29 

Bayesian modeling and randomization tests to quantify the degree of parallelism and its 30 

relationship with ecology and genetics. Our results show that the extent to which genomic 31 

regions associated with climate are parallel among species of Timema stick insects is shaped 32 
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collectively by shared ecology and genomic background. Specifically, the extent of genomic 33 

parallelism decays with divergence in climatic conditions (i.e., habitat or ecological similarity) 34 

and genomic similarity. Moreover, we find that climate-associated loci are likely subject to 35 

selection in a field experiment, overlap with genetic regions associated with cuticular 36 

hydrocarbon traits, and are not strongly shaped by introgression between species. Our findings 37 

shed light on when evolution is most expected to repeat itself. 38 

INTRODUCTION 39 

To what extent is evolution predictable and repeatable? Stephen J. Gould posed this question 40 

through his famous thought experiment on whether repeatedly ‘replaying the tape of life’ would 41 

yield similar evolutionary outcomes [1]. Gould considered similar outcomes unlikely, due to 42 

chance events and historical contingency in evolution, and this thought experiment helped launch 43 

decades of research on the repeatability of evolution [2,3]. Indeed, the answer to this question is 44 

important because it is central to understanding the processes shaping biological diversification 45 

[4,5,6]. For example, instances of repeated or parallel evolution in response to similar 46 

environmental pressures can provide evidence of evolution by natural selection. In contrast, 47 

idiosyncratic outcomes can support a role for chance or contingency in evolution and indicate 48 

constraints on the power of selection. The predictability of evolution also has practical 49 

implications, for example, for forecasting organismal responses to natural and human-induced 50 

environmental change [7], the planning of breeding programs, and the design of medicines and 51 

strategies to combat disease spread [8]. 52 

It is now known that evolution can repeat itself but does not always do so [9,10]. Parallelism has 53 

been documented at the genetic level, with striking cases of parallel evolution involving single 54 

genes of major effect both within- and among species [15,16,17]. For example, the Ectodysplasin 55 

gene controlling body armor has repeatedly been used by numerous populations of stickleback 56 

fish during freshwater adaptation [11]. Likewise, the Agouti and Mc1R genes control coloration 57 

in diverse organisms [12,13,14]. In contrast to these studies of major effect genes, parallelism is 58 

less understood when evolution involves many genes of smaller effect, although studies of 59 

genome-wide variation are beginning to fill this gap [18-22]. However, evolution is not always 60 

parallel. Indeed, the probability and extent of parallelism decline as the time of divergence 61 
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increases between taxa [23,24]. Although this decline is well established, its likely causes are 62 

potentially complex (i.e., time itself is not the causal agent controlling parallelism; rather factors 63 

such as climate and genetics are likely involved, as outlined below and as we test here) and 64 

remain poorly resolved, particularly beyond experimental evolution experiments in microbes 65 

[25,26]. Our goal here is to elucidate the factors shaping the extent of parallel evolution in the 66 

wild, focusing on quantifying parallelism at the genome-wide level. 67 

In this context, two general hypotheses have been put forth, which are not mutually exclusive. 68 

First, parallel evolution is more likely when shared ecologies result in similar patterns of natural 69 

selection in different taxa such as ecotypes or divergent lineages (the ‘shared ecology’ 70 

hypothesis) [27,28,29]. Shared aspects of environmental variation can decline with time since 71 

divergence, as species (or even populations or ecotypes) come to occupy different geographic 72 

areas or as local environments change over time, thus reducing parallelism at both phenotypic 73 

and genotypic levels [29,30,31]. Second, parallelism is expected to be more likely when 74 

genomes are similar because pools of standing variation, new mutations which arise, and the 75 

effects of these mutations will tend to be more similar in closely related genomes (the ‘shared 76 

genetics’ hypothesis; we use this term to also encompass the role of gene regulation and 77 

development) [16,32-34]. Epistatic interactions might be particularly important here because the 78 

effects of new mutations are dependent on the mutations that preceded them.  79 

Both ecological (i.e., habitat and climatic) and genetic similarity are expected to decline with 80 

time and there is support for both hypotheses [24, 35-38]. However, few studies have 81 

simultaneously examined ecology and genetics, particularly in wild populations, such that the 82 

relative contribution of the two factors remains unclear. Parsing these contributions is important 83 

because it is required to test the roles of selection (i.e., shared ecology) and constraint (i.e., 84 

shared genetics) in evolution [32,39-42]. Here, we combine ecological data, genomic analyses, a 85 

field experiment, and genetic mapping to ascertain the genomic extent and causes of parallel 86 

adaptation to climate, thus testing the shared ecology and genetics hypotheses. Rather than 87 

focusing on time per se, we conduct analyses that jointly consider the degree of climatic and 88 

genetic divergence between taxa to parse their relative contributions to explaining the degree of 89 

parallel evolution observed. 90 
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Our study system is wingless, univoltine, herbivorous stick insects in the genus Timema, many 91 

species of which are endemic to California, USA [43]. These insects are best-studied for their 92 

cryptic colours and colour-patterns, which are controlled by the same genetic region (termed 93 

Mel-Stripe) in all species studied to date [44-47]. Timema colouration thus provides a striking 94 

example of highly parallel evolution at the level of a single, largely non-recombining gene region 95 

that could be considered akin to a major effect locus. However, adaptation often involves many 96 

genes, including those with alleles of minor effect, arrayed throughout the genome [48,49], 97 

where the probability of parallel genetic evolution is less clear [20]. In this context, we study a 98 

novel ecological dimension in Timema, namely climate, motivated by the fact that adaptation to 99 

varying climatic (abiotic) conditions of the environment can be polygenic, and the genus Timema 100 

inhabits variable habitats in California. For example, the occupied habitats of Timema range 101 

from sea-level to mountainous regions, and from arid semi-deserts near the Mexican border to 102 

wet evergreen forests in northern California [50]. Moreover, there is climatic variation both 103 

within and among species, with several species being distributed along elevational gradients 104 

(ranging from 10 meters to ~2800 meters) [51]. This creates an opportunity to test the role of 105 

climatic variables, such as precipitation and temperature, in driving parallel evolution in Timema, 106 

which are known to be important determinants of selection in many organisms [52,53]. 107 

For this study we test the shared ecology and genetics hypothesis in Timema to identify climate-108 

associated gene regions within species which show a range of divergence times of up to tens of 109 

millions of years (here, generations). We assess the contribution of shared ecology and genetics 110 

to genomic parallelism by comparing the proportions of the genome that exhibit repeated 111 

genotype-climate association. We then bolster the evidence that climate-associated gene regions 112 

are likely subject to selection by using a field experiment and genetic mapping of cuticular 113 

hydrocarbons. Our collective results yield a comprehensive evaluation of genome-wide parallel 114 

evolution in the context of an environmental pressure of high current interest (i.e., climate), and 115 

in a system where comparison can be made to parallelism seen at a single, major locus (i.e., Mel-116 

Stripe) (Figure 1). 117 

 118 

 119 
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RESULTS 120 

Climatic variation within- and among-species 121 

We studied eight Timema species across 53 geographic localities (n = 1420 individuals) (Figure 122 

1, Table S1). We used 22 bioclimatic variables describing precipitation and temperature variation 123 

which are known drivers of selection in many systems [52], including Timema [71]. Due to high 124 

correlations among the studied climate variables, we performed an ordination using principal 125 

component analysis (PCA) of the climate variables for all populations included in the study (see 126 

Figure 2A for species range map). This revealed that most of the variation in climate variables 127 

was explained by the first three principal components (PC) (Total = 92.2%, PC1 = 51.7%, PC2 = 128 

24.4% and PC3 = 16.1%), which we hereafter focus on and refer to as PC1, PC2, and PC3 (Table 129 

S2 for PC loadings, Extended Data Figure 1). 130 

We saw that PC1 is a general axis of elevation and precipitation variation, with high positive 131 

values representing wet localities at high elevation (Extended Data Figure 1A, Extended Data 132 

Figure 1C, Table S2). PC2 is a general axis of temperature variation, with high positive values 133 

representing localities experiencing high temperatures (Extended Data Figure 1A, Extended Data 134 

Figure 1B, Table S2). Lastly, PC3 is an axis of contrasting variation in precipitation and 135 

temperature, with high positive values representing localities (often) closer to the coast 136 

experiencing greater temperature and precipitation fluctuations (Extended Data Figure 1B, 137 

Extended Data Figure 1C, Table S2). 138 

One way ANOVA revealed significant among-species variation for all three PCs (PC1: Variance 139 

component = 12.1%, Df = 7, F value = 104.5, P-value = < 0.0001; PC2: Variance component = 140 

3.2%, Df = 7, F value 6.803, P-value = < 0.001; PC3: Variance component = 3.1%, Df = 7, F 141 

value = 28.07, P-value = < 0.0001). We also detected clear within-species variation (range of 142 

median PC scores values across the eight species were -3.0 and 5.8 for PC1, -2.5 to 6.5 for PC2, 143 

and -1.6 to 3.5 for PC3; Figure 2C-D). We next used these three PCs to identify genomic regions 144 

associated with climate within species, a prerequisite for testing parallelism among species.  145 

Identifying climate-associated genomic regions  146 

We first identified the genomic regions most strongly associated with climatic variation within 147 

each of the eight species. To do so, we analyzed single nucleotide polymorphisms (SNPs) 148 
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obtained through previous genotyping-by-sequencing of natural populations [61]. Since our data 149 

included species that are considerably diverged from each other, the number and fine-scale 150 

genomic positions of SNPs called for each species were different. This could be due to different 151 

evolutionary histories of the restriction sites targeted for the sequencing and genome-level 152 

divergence of species from the genome of T. cristinae [62]. To account for this variation, we 153 

focus on 100 kilobase (Kb) SNP windows to allow subsequent comparisons among species (n = 154 

9487 windows in each species, across the eight study species, minimum SNPs per window = 1, 155 

mean SNPs per window = 1.78).  156 

Within each species, we quantified SNP-climate associations for each of the three climate PCs 157 

using BayPass (version 1.2). The association of each SNP with population-specific PC variables 158 

was assessed using Bayes Factors (BF), which for a given SNP compares the marginal 159 

likelihoods of models with zero versus non-zero regression coefficients. For each species, we 160 

then calculated the median of logarithmic BF values for all the SNPs in the 100 Kb window to 161 

identify SNP windows with medians in the top 10% empirical quantile and then used these for all 162 

downstream analyses (“climate-associated SNP windows” hereafter). We do not assume that all 163 

100 Kb windows with the largest (top 10%) BF contribute to climatic adaptation, but rather we 164 

expect such windows to be enriched for SNPs contributing to climatic adaptation relative to other 165 

parts of the genome. In all species, the top 10% climate-associated SNP windows were widely 166 

distributed across the genome and found on all 13 linkage groups (LGs) (Figure 3, Extended 167 

Data Figure 2, Extended Data Figure 3).  168 

Parallel evolution of climate-associated genomic regions 169 

We next quantified the extent to which climate-associated SNP windows were parallel (i.e., the 170 

same) across the eight species of Timema that we studied. Here we are interested in identifying 171 

and quantifying genomic parallelism based on the 100 Kb SNP windows spread across the 172 

genome (“genomic parallelism” hereafter) [15,24,63-65].   173 

Critically, we tested if windows exhibited excess overlap across species relative to that expected 174 

by chance, that is, if the same SNP windows show association with climate PCs between 3, 4, 5, 175 

6, 7 or 8 species (Figure 1B). To do so, we conducted randomisation tests to quantify excess 176 

overlap of windows relative to expectations for multi-species comparisons (Figure 1A). As an 177 
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example, an x-fold enrichment of 2.0 in the genomic parallelism analyses would indicate that the 178 

evidence for overlap of climate-associated SNP windows for a given comparison was two times 179 

higher than expected by chance based on the mean of the null. For this, we focused on windows 180 

with the greatest (top 10%) climate association in nature for all three climate PCs. Notably, these 181 

approaches randomise the data after results from BayPass have been obtained. We discuss in a 182 

subsequent section below further results where environmental (i.e., climatic) data were permuted 183 

before running BayPass. 184 

These analyses revealed evidence for genomic parallelism across species. For PC1, excess 185 

overlap of SNP windows with the largest median BF among three or more species was ~2x more 186 

than expected by chance (observed = 60, expected = 26.77, x-fold enrichment = 2.25, P-value < 187 

0.01; Extended Data Figure 4), and for four or more species excess overlap was ~3x more than 188 

expected by chance (observed = 4, expected = 1.03, x-fold enrichment = 3.87, P-value 0.02; 189 

Extended Data Figure 4). For PC2, excess overlap of SNP windows with largest median BF 190 

among three or more species was about ~1.5x more than expected by chance (observed = 42, 191 

expected = 26.41, x-fold enrichment = 1.59, P-value <.01; Extended Data Figure 5), and for four 192 

or more species excess overlap was about ~4x more than expected by chance (observed = 5, 193 

expected = 1.19, x-fold enrichment = 4.17, P-value = 0.007; Extended Data Figure 5). Lastly, for 194 

PC3 there excess overlap of climate-associated SNP windows among three or more species that 195 

was ~1.6x more than expected by chance (observed = 43, expected = 26, x-fold enrichment = 196 

1.63, P-value < 0.01; Figure 4) and almost 5x for four or more species (observed = 5, expected = 197 

1.10, x-fold enrichment = 4.53, P-value = 0.006; Figure 4). Additional tests for historical and 198 

contemporary gene flow revealed that introgression and gene flow were not largely responsible 199 

for this parallelism (see Supplementary Results and Methods; Figure 5A, Figures S7-S9). 200 

Genomic parallelism declines predictably between species 201 

We next tested the extent to which the shared ecology and shared genetics hypotheses could 202 

account for the degree of genomic parallelism observed with climate across Timema species 203 

(Figure 2B). Shared ecology would cause a higher degree of parallelism due to similar selective 204 

pressures from similar climate conditions experienced by taxa (i.e., PCs 1-3) (Figure 2B, “shared 205 

ecology hypothesis”). On the other hand, shared genetics would cause a higher degree of 206 

parallelism due to a higher extent of gene reuse associated with variation retained from a 207 
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common ancestor (Figure 2B, “shared genetics hypothesis”). Here, we quantified genomic 208 

parallelism as the degree of excess overlap of climate-associated SNP windows relative to null 209 

expectations for pairwise comparisons. We estimated climatic similarity between pairs of species 210 

using climatic data and genetic similarity based on a previously published genome-level 211 

phylogeny [61]. We then fit Bayesian linear mixed models to explicitly compare models where 212 

the degree of parallelism is determined by climatic similarity, genetic similarity, or both. 213 

Notably, this mixed model approach accounts for the non-independence of pairwise distances 214 

[65 for details]. Specifically, for each climatic PC variable, we modeled parallelism as the x-fold 215 

excess in shared top climate-associated SNP windows as a function of climatic distance, which 216 

was calculated as the average difference in climate PC scores between a given pair of species 217 

(hereafter referred to as ecology, indicating “climatic divergence”), genetic distance, which was 218 

pairwise phylogenetic distances for a given pair of Timema species (hereafter referred to as genes 219 

indicating “genome-wide divergence”), or both. The fit of models with or without ecology or 220 

genetics was compared using deviance information criterion (DIC) (Figure 5B, Extended Data 221 

Figure 6B, Extended Data Figure 7B), which is a metric of predictive performance [66]. 222 

Our analyses revealed evidence for the effects of both ecology and genes on the extent of 223 

genomic parallelism, with details that varied among the climate PCs (Figure 5C-D for PC3, 224 

Extended Data Figure 6A-C for PC1, Extended Data Figure 7A-C for PC2). For PC3, the best fit 225 

was obtained for the full model (ecology and genes), with similar, negative effects on parallelism 226 

observed for ecology (standardized 𝛽= -0.47, 95% CI = -0.80 to -0.14) and genes (standardized 227 

beta = -0.55, 95% CI = -0.87 to -0.21; Figure 5E; Table S3). For PC1, the genes-only model was 228 

the best model (standardized 𝛽= -0.55, 95% CI = -0.8 to -0.25; Extended Data Figure 6D, Table 229 

S3). The second-best model was the full model, but this included a positive rather than negative 230 

effect of climatic distance on parallelism. Lastly, for PC2 the best model was a null model of no 231 

effect of genes or ecology on parallelism (Extended Data Figure 7D, Table S9). The results thus 232 

provide variable support for both the shared ecology and shared genetics hypotheses, dependent 233 

on the climate PC, with the association being strongest for PC3.  234 

Comparison of parallelism results with permuted data sets 235 

We next conducted permutation analyses that randomised the climatic data before implementing 236 

BayPass. We did so to ask whether the patterns of observed genomic parallelism and its decay 237 
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could have been inflated by unaccounted aspects of the genetic data, such as shared SNP density 238 

in specific genomic regions, allele frequency distributions, or linkage disequilibrium, affecting 239 

some genomic regions more than others. To generate null expected distributions for climate-240 

associated SNP windows, we therefore initially permuted PC climatic values across populations 241 

within species, thereby randomizing the relation between the environmental variables and any 242 

potential unaccounted-for feature(s) in gene regions affecting parallelism. We generated 10 such 243 

permuted data sets hereafter referred to as "permuted data sets". We then redid the analysis for 244 

each of the 10 permuted data sets, for each species separately, exactly as described for the 245 

observed data set. First, we reran BayPass using each of the permuted data sets and for each 246 

species. Second, we quantified the degree of genomic parallelism by making multispecies 247 

comparisons. Third, we conducted our Bayesian linear mixed models to test for the effect of 248 

ecology and genetics on the decay of genomic parallelism.  249 

For all three PCs, the ten permuted data sets showed no evidence for the decay in parallelism 250 

seen in the actual data set with increased ecological or genetic distance (Figures S1-3). However, 251 

the permuted data sets indicate significant x-fold enrichments of multiple-species sharing 252 

climate-associated SNP windows (Figures S4-6). In certain instances, the parallelism extended to 253 

involving 4 or more species, as we found significant x-fold excesses in 3 of the 10 permuted data 254 

sets for PC1, 6 of 10 for PC2, and 4 of 10 for PC3 (Figures S4-6). These results suggest that 255 

aspects of the genetic data could generate apparent parallelisms of gene regions responding to 256 

environmental variables across species. However, for PC3 which displayed the strongest 257 

association of climate and genetics with parallelism, the x-fold excesses in the 4 or more species 258 

comparisons in the 10 permuted data sets did not approach the level observed in the original data 259 

(Figure S6). And most importantly, as noted above, for the 10 permuted data sets, the pattern of 260 

excess parallelism was random across species with respect to its relationship with climatic and 261 

genome-wide divergence. Our core test of the shared ecology and shared genetic hypotheses thus 262 

appears highly robust. Having tested these hypotheses, we next tested for additional evidence, 263 

beyond genomic parallelism, that the climate-associated SNP windows have been affected by 264 

natural selection.   265 

Climate-associated regions experience natural selection 266 
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To bolster the evidence that climate-associated SNP windows are enriched for genetic variants 267 

experiencing natural selection, we tested whether these windows exhibited exceptional patterns 268 

of allele-frequency change in a published transplant-and-sequence field experiment (Figure 1C).  269 

The transplant experiment used a block design to measure 8-day survival and associated 270 

genome-wide allele frequency change during this period in 500 T. cristinae transplanted to 10 271 

experimental bushes comprising two host plants occurring along a gradient of higher elevations 272 

than the source population for the experiment [67 for further details]. Distances between plants 273 

within block ranged from 6 – 10m and distances between blocks ranged from 12 – 30m. A 274 

previous analysis of this experiment documented evidence of selection associated with elevation, 275 

which is relevant as the sample of species analyzed for the current study of parallelism were 276 

distributed along elevational gradients ranging from 10m to ~2800m [67]. Here, as a metric of 277 

possible elevation (environment)-dependent selection, we calculated the Pearson correlation 278 

between transplant elevation and allele frequency change caused by mortality during the 279 

transplant experiment. We found that the 100 Kb windows exhibiting patterns of allele frequency 280 

change most strongly associated with elevation in the transplant experiment coincided modestly 281 

but significantly with climate-associated SNP windows. Specifically, when focusing on the 282 

windows with the greatest (top 10%) correlation between change and elevation in the experiment 283 

and with the greatest (top 10%) climate association in nature, windows associated with all three 284 

climate PCs corresponded with those where change was most strongly associated with elevation 285 

~1.2-1.3 times more than expected under the null hypothesis of independence (constrained 286 

randomization test controlling for SNP density within windows based on 1000 randomizations; 287 

PC1: observed = 108 shared windows, P = 0.005; PC2: observed = 101 shared windows, P = 288 

0.015; PC3: observed = 105 shared windows, P = 0.021) (Figure 6). Similar patterns were 289 

observed when more extreme top percentiles were considered, and when using an unconstrained 290 

randomization test (Table S4). These patterns are consistent with the hypothesis that multiple 291 

genetic variants in these windows are subject to selection in nature.  292 

Additionally, we found that climate-associated SNP windows overlapped more than expected 293 

with regions associated with phenotypic variation in genetic mapping analyses of cuticular 294 

hydrocarbons (CHCs), specifically pentacosane in females (Supplementary Methods and Results; 295 

Figure 1D, Tables S5-S8), which studies of insects have shown can contribute to climate 296 
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adaptation [54,55]. This combined with the results presented above suggests a polygenic basis 297 

for climatic adaptation in T. cristinae, with at least a modest correspondence between our top 298 

climate-associated windows and the actual loci involved in climate adaptation.  299 

DISCUSSION AND CONCLUSION 300 

We used GBS data from 1420 individuals across eight species combined with data from field 301 

transplant and GWAS for cuticular hydrocarbons to show that adaptation to climate occurs in 302 

parallel across species but as a function of the climatic and genomic divergence between species. 303 

Our results inform five fundamental issues in biology, namely the repeatability of evolution, 304 

variation in the degree of parallelism based on the climate variables considered, the effect of 305 

ecology and genetics on parallelism, technical aspects pertaining to the study of parallelism, and 306 

the processes promoting parallelism. We treat these issues in turn below.  307 

First, we show that evolution in response to climate occurs in parallel among eight species and 308 

that parallelism likely involves multiple SNPs. These findings fill a gap in our knowledge of 309 

parallel evolution because many studies, including past work in Timema, have mostly focused on 310 

parallelism driven by single genes or specific regions of the genome [11,12, 47]. These results 311 

agree with other cases of parallel or convergent climate adaptation that are also driven by 312 

polygenic interactions [21,68-70]. Overall, our study demonstrates that repeatability of evolution 313 

can be driven by numerous genetic paths, but the magnitude of repeatability can be highly 314 

variable, specifically when considering inter-species comparisons.  315 

Second, our results reveal notable variation in the degree of parallelism across the three PCs, 316 

which we use as composite climate variables. We attribute the variation in the degree of 317 

parallelism to Timema species occupying variable environmental niches in their geographic 318 

distributions, which can cause environmentally heterogeneous selection. Furthermore, each PC is 319 

composed of different climatic variables. Therefore, the level of genomic association and in turn 320 

parallelism would vary based on the PC (and climatic variables) being considered. For example, 321 

precipitation (which is one of the top loading variables on PC1 and PC2) can affect variability in 322 

selection in space [52] and has also been shown to drive thermoregulatory evolution in Timema 323 

[71]. Other unaccounted factors can influence response to climate such as microclimate variation 324 

on the spatial scale that Timema species occupy, and nonlinear gene–climate associations [72]. 325 
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All these factors together contribute to the variable degree of parallelism observed across the 326 

three PCs, emphasizing that the genomic basis of adaptation to climate in Timema is predictable 327 

to some extent yet complex. 328 

Third, our results reveal that parallelism decays with climatic and genome-wide divergence, 329 

suggesting that both shared ecology and shared genetics can affect parallel evolution. Thus, the 330 

parallelism we observe in Timema can be partly attributed to selection pressures exerted on 331 

insects inhabiting similar niches [28]. In addition, genetic similarity increases the chances for 332 

shared standing genetic variation in closely related taxa to allow for gene reuse in response to 333 

similar environmental pressures [73]. Similar gene modules can also drive convergent adaptation 334 

to climate, where genes or SNPs that collectively serve a similar functional role are tightly 335 

integrated by strong pleiotropic effects and are relatively independent of other such units [21,68]. 336 

Our study demonstrates that both these aspects can affect parallelism, with a perhaps more 337 

consistent effect of genetics, due to patterns of ecological variation being more complex among 338 

species compared to genetics.  339 

Fourth, our approach involving permuted data sets highlights important issues concerning 340 

analytical aspects of parallelism tests. We found no evidence of the observed decay in 341 

parallelism with climatic or genome-wide divergence in permuted data sets conducted prior to or 342 

following analysis with BayPass. Overall, these findings in combination with the experiment and 343 

CHC results provide support that the documented parallelism in genomic association with 344 

climate reflects a contribution from selection. However, we also note that our analyses using 345 

permuted data sets generated instances where ‘significant’ x-fold excesses in the numbers of 346 

gene regions displaying parallelism above null expectations. Our findings thus concur with 347 

previous studies using simulation-based approaches showing that false positives can be detected 348 

due to unaccounted aspects of the genetic data [74-76]. Therefore, we suggest that these 349 

associations should be interpreted with caution, and studies identifying genomic association with 350 

climatic variables warrant additional cross-validation of findings, as performed here. 351 

Fifth, our collective results inform how two core evolutionary processes, namely 352 

introgression/gene flow, and selection, might affect parallelism. We show that parallel evolution 353 

and adaptation to climate occurs despite limited or minimal gene flow among Timema species. 354 

While introgression can facilitate parallel adaptation to similar environmental pressures through 355 
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the sharing of novel genetic material [33,56-60,77], a lack of introgression or gene flow 356 

demonstrates independent instances of adaptation and the role of selection in driving parallel 357 

evolution at the genomic level [78]. Ancestral genetic variation can also underlie parallelism due 358 

to similar selection pressures driving phenological similarity not just for newly formed and 359 

partially reproductively isolated host races, but also for distantly related sibling species [3]. 360 

Additionally, while a study on divergent conifers has indicated that conserved genomic regions 361 

can drive convergent adaptation to climate [21] another study on distinct genetic clusters of 362 

Arabidopsis lyrata (two lineages) shows that parallelism in genomic association to climate is 363 

detectable at the gene but not the SNP level [68]. Both these systems also have minimal gene 364 

flow. In comparison, a study on replicate pairs of threespine stickelbacks implies a significant 365 

role for the environment and gene flow in affecting parallelism [28]. In summary, our study 366 

shows how local adaptation among species with minimal between-species gene flow can occur 367 

and consequently be crucial for predicting evolution in response to rapidly changing 368 

environments and climate. Furthermore, our results bolster evidence for selection beyond a 369 

correlational genome scan because we found that the genomic regions which underlie parallelism 370 

also were associated with allele-frequency changes in a manipulative field experiment [like 79] 371 

and climatically relevant CHC traits. Thus, together these results suggest that allele reuse 372 

through standing genetic variation, new mutations, and selection can all be powerful drivers of 373 

parallel local adaptation. 374 

METHODS 375 

Below we describe details of our methods and analyses, and we provide a graphic summary in 376 

Figure 1 of the main text. 377 

Samples and DNA sequences from natural populations 378 

For this study, we analyzed genotyping-by-sequencing (GBS) data from 1420 Timema stick 379 

insects from 53 localities from eight species: 6 T. bartmani populations (N = 195 individuals), 3 380 

T. californicum populations (N = 77 individuals), 12 T. chumash populations (N = 358 381 

individuals), 6 T. cristinae populations (N = 205 individuals), 5 T. knulli populations (N = 89 382 

individuals), 4 T. landenlsensis populations (N = 125 individuals), 12 T. podura populations (N = 383 

255 individuals) and 5 T. poppensis populations (N = 116 individuals) (Table S1). GBS data for 384 
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this study has been previously published in a study of the speciation continuum in Timema [61]. 385 

DNA sequence data, the reference genome, experimental data, and CHC data used in this study 386 

are associated with the previously published studies [61,67]. The associated DNA sequence data 387 

have been archived on NCBIs SRA (Accession: PRJNA356405 ID: 356405). The genomic data 388 

in the transplant experiment and used for genetic mapping of cuticular hydrocarbons is 389 

independent from these data and is described in detail below. 390 

Sequence alignment and variant calling 391 

To incorporate variants typed for individuals of each species, we built a consensus reference 392 

sequence for each species [similar to 44,47]. To do this, we first aligned all reads from all our 393 

samples to the T. cristinae reference genome (draft version 0.3) using the MEM algorithm of 394 

BWA (Version: 0.7.17-r1188) [61]. We ran BWA MEM with a minimum seed length of 15 (-k), 395 

internal seeds of longer than 20 bp, and only output alignments with a quality score of ≥ 30 (-T). 396 

We then used SAMTOOLS (version 1.5) to view, sort and index the alignments [80]. We called 397 

variants using SAMTOOLS and BCFTOOLS (version 1.6) [80,81]. For variant calling, we used 398 

the mapping quality adjustment of 50 (-C), skipped alignments with mapping quality 0, skipped 399 

bases with base quality <13, and ignored insertion-deletion polymorphisms. We then set the prior 400 

on single nucleotide polymorphisms (SNPs) to 0.001 (-P) and called SNPs when the posterior 401 

probability that the nucleotide was invariant was <0.01 (-p). We then performed two rounds of 402 

filtering to retain final sets of SNPs. In the first round, we filtered the initial set of SNPs to retain 403 

only those with sequence data for at least 80% of the individuals, a mean sequence depth of two 404 

per individual, at least four reads of the alternative allele, a minimum quality score of 30, a 405 

minimum (overall) minor allele frequency of at least 5%, and no more than 0.01% of the reads in 406 

the reverse orientation. In the second round of filtering, we removed SNPs with excessive 407 

coverage (2 standard deviations above the mean) or that were tightly clustered (within 5 base 408 

pairs (bp) of each other). This left us with the following number of SNPs for each species: 409 

10,036 SNPs for T. bartmani, 14,955 SNPs for T. californicum, 20,478 SNPs for T. chumash, 410 

3,43,746 SNPs for T. cristinae, 25,835 SNPs for T. knulli, 21,314 SNPs for T. landelsensis, 411 

21,986 SNPs for T. podura, and 18,237 SNPs for T. poppensis.  412 

We used these filtered variants for each species to construct consensus reference sequences for 413 

each species using the CONSENSUS algorithm of BCFTOOLS (version 1.6) [81]. We then used 414 
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the consensus reference of each species to redo alignments for GBS sequences of individuals for 415 

each species separately. Following this, we repeated variant calling and two rounds of variant 416 

filtering as described above. This left us with the following number of SNPs for each species: 417 

3074 SNPs for T. bartmani, 7858 SNPs for T. californicum, 4172 SNPs for T. chumash, 1,96,252 418 

SNPs for T. cristinae, 11,139 SNPs for T. knulli, 8548 SNPs for T. landelsensis, 6000 SNPs for 419 

T. podura, and 7157 SNPs for T. poppensis. We used this second set of SNPs noted directly 420 

above for all downstream analyses.  421 

Climate variables and SNP by climate associations 422 

We used 22 climate variables associated with our 53 study localities (Table S2), which were 423 

extracted from the WorldClim database version 1.4 424 

(https://www.worldclim.org/data/v1.4/worldclim14.html; climate data for 1960-1990). Since the 425 

first three PC scores explained the overwhelming majority (92.4%) of variation in the climate 426 

variables (Table S2, Extended Data Figure 1), we used these three PCs to study genomic 427 

associations with climate in all further analyses.  428 

We used BayPass version 2.1 [82] to identify genomic regions associated with the three sets of 429 

PC scores for the climate variables. The BayPass software controls for background population 430 

structure and is based on the BAYENV method introduced by Gunther and Coop [83]. This 431 

software controls for background population structure by using a population covariance matrix 432 

for populations within each species, and then quantifies the association of each SNP with an 433 

environmental variable (in our case, a PC axis). We ran this program separately for each species 434 

and for each PC (eight species by three PCs). We treated each PC score as the environmental 435 

covariate and ran the standard covariate model. For each data set, we ran four Markov chain 436 

Monte Carlo (MCMC) simulations, each with a 20,000-iteration burn-in and 50,000 sampling 437 

iterations with a thinning interval of 100. We used the default option of importance sampling to 438 

calculate the regression coefficient (𝛽𝑖), which describes the association of each SNP with 439 

climate PC scores. For a given SNP, the BF compares the marginal likelihoods of models with 440 

zero versus non-zero regression coefficients (i.e., values of 𝛽𝑖); this is like a likelihood ratio 441 

except the marginal likelihood of the model with non-zero regression coefficients are integrated 442 

over the prior distribution. Finally, since we had a different number of focal SNPs for each 443 

species, we calculated median of logarithmic BF for 100 kilobase (Kb) non-overlapping SNP 444 
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windows (i.e., the same window boundaries were used in every species, facilitating comparisons 445 

among them). For a given species, we had the following number of SNP windows: 1771 446 

windows with an average of 1.73 SNPs per window for T. bartmani, 3852 windows with an 447 

average of 2.04 SNPs per window for T. californicum, 1806 windows with an average of 2.31 448 

SNPs per window for T. chumash, 9754 windows with an average of 20.76 SNPs per window for 449 

T. cristinae, 4426 windows with an average of 2.55 SNPs per window for T. knulli, 3799 450 

windows with an average of 2.25 SNPs per window for T. landelsensis, 2443 windows with an 451 

average of 2.45 SNPs per window for T. podura, and 3609 windows with an average of 1.98 452 

SNPs for T. poppensis. Our downstream analyses described below focus on these windows. We 453 

delimited climate-associated SNP windows as those with greatest association with the three 454 

climate PCs, specifically as the windows in the top 10% quantile. We refer to such windows as 455 

“climate-associated SNP windows” hereafter.   456 

Quantifying parallel genomic associations with climate 457 

We quantified parallel genomic associations with climate across species (using the results 458 

described above from BayPass) and used randomization tests to measure the extent to which the 459 

observed parallelism exceeded that expected by chance. We report this excess as ‘x-fold’ 460 

enrichments, relative to null expectations, also reporting associated P-values for statistical 461 

significance. 462 

We quantified overlap in climate-associated SNP windows between multiple species (“multi-463 

species comparisons") i.e., we tested if the same SNP windows show association with climate 464 

PCs between or among 3, 4, 5, 6, 7 or 8 species. We did this for each of the three climate PCs. 465 

To do this, we used randomization tests (10,000 randomizations per test) to generate null 466 

expectations for the proportion of top climate-associated SNP windows shared between a given 467 

pair of species and tested whether this was significantly more than expected by chance (x-fold 468 

enrichments and P-values). As an example, an x-fold enrichment of 2.0 would indicate that twice 469 

as many climate-associated SNP windows showed overlap between a given set of species than 470 

was expected by chance (based on the mean of the null). With our approach, we assess coarse-471 

grain (100 Kb) genomic parallelism by analyzing multiple SNPs spread across the genome, 472 

rather than focusing on parallelism at the level of specific mutations or genes. Nonetheless, we 473 
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suspect that parallelism at this scale will often involve the same genes, as only a modest number 474 

of genes occur in most 100 Kb windows (e.g., mean number of genes per window = 1 gene). 475 

We note that our approach is not a direct test of whether the same variants or alleles per se are 476 

responsible for climate adaptation in different species. Rather, we assess the degree to which the 477 

same gene regions associated with climatic variation within species are shared among species, 478 

and the extent to which such parallelism can be accounted for by taxa being more similar in the 479 

environmental conditions they experience and/or how closely they are related to one another in 480 

their overall levels of genomic divergence. Our focus on genomic regions as the unit for 481 

quantifying parallelism also means that it is not necessarily the case that the exact same gene(s) 482 

are involved in climatic adaptation between species. However, the size of the windows we use to 483 

define genomic regions for the analysis (100 Kb) is such that given the gene density in Timema 484 

on average only 1.78 SNPs will be present in each region. Thus, it can be inferred that shared 485 

genetic responses of gene regions across species generally equate to the involvement of the same 486 

loci or genetic basis for climate adaptation.  487 

Testing the shared ecology and shared genetics hypotheses 488 

We tested the contribution of shared ecology versus shared genetics to the observed degree of 489 

parallelism. We expect both shared ecology and genetics to influence the extent of parallelism. 490 

To do so, we fit Bayesian linear mixed models (BLMMs) to explicitly compare models where 491 

parallelism is determined by climatic similarity, genetic similarity, or both. This Bayesian 492 

regression analysis is based on the mixed model framework proposed by [84] and extended by 493 

[65]. Our method accounts for the correlated error structure inherent in pairwise covariates and 494 

response variables (e.g., climatic or genetic distances). In this analysis, our response variable was 495 

the x-fold excess in shared top climate-associated SNP windows for a given PC (we did analyses 496 

separately for each climate PC). Our independent variables were climatic and genetic distances, 497 

estimated as follows. Climatic distance was calculated as pairwise absolute mean difference of 498 

PC scores of each species. We calculated genetic (i.e., phylogenetic) distances based on the 499 

previously published phylogeny described in [61]. Briefly, we used the data from this previous 500 

phylogeny (based on genome-wide SNP data) constructed using Bayesian phylogenetic inference 501 

with BEAST (version 2.1.387) for 11 Timema species based on GBS data of curated dataset of 502 

19,556 single-nucleotide variants. For our current study, we used pairwise phylogenetic distances 503 
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for the eight Timema species as our metrics of genetic distances for this analysis. All variables 504 

were standardized (given mean 0 and standard deviation of 1) before analysis. 505 

We then considered four alternative models: (i) a null model without covariates, (ii) a model 506 

including only phylogenetic distance, (iii) a model with only climatic distance, and (iv) a model 507 

with both climate and phylogenetic distance. We fit the models in R using the rjags (version 4.8) 508 

interface with Jags (version 4.3.0). We used minimally informative priors for the regression 509 

coefficients (i.e., normal with μ = 0 and precision τ  =  0.001) and for the population random 510 

effects and residual errors, all gamma (1, 0.01). Deviance information criterion was used for 511 

model comparison. Parameter estimates and DIC estimates were obtained via MCMC. For each 512 

analysis and model, we ran three chains each comprising 10,000 sampling iterations, a 2000-513 

iteration burn-in, and a thinning interval of 5.  514 

Comparison of parallelism results to permuted datasets 515 

We next asked whether the patterns of observed genomic parallelism and its decay could have 516 

been inflated (unexpectedly high numbers) due to unaccounted aspects of the genetic data. We 517 

did this by permuting environmental variables (i.e., PC scores) before running BayPass rather 518 

than just permuting BF across species. Our expectation was that a high number of false positives 519 

with the permuted environmental variables would raise a warning against the results obtained 520 

from the observed data. We did this by generating and analyzing 10 permuted data sets identical 521 

to our own, but with each PC score randomized across populations within each species (10 522 

permutations x 3 PCs x 8 species = 240 combinations). We limited our analyses to 10 permuted 523 

data sets because of the very large computational burden of running these analyses. Hereafter, we 524 

refer to this data as "permuted data sets". We then performed analysis for each of the 10 525 

permuted data sets, for each species separately, exactly as described for the real data set. First, 526 

we ran BayPass using each of the permuted data sets and for each species. Second, we quantified 527 

the degree of genomic parallelism by making pairwise and multi-species comparisons exactly as 528 

we did for the real data set (i.e., including the permutations to test for excess overlap). Thirdly, 529 

we fit Bayesian linear mixed models to test for the effect of ecology (i.e., the permuted climatic 530 

PC variables) and genetics on the decay of genomic parallelism.  531 

Climate-associated SNP windows and field-experiment associated genetic regions 532 
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We quantified overlap between climate-associated SNP windows and windows that exhibited 533 

elevation-dependent allele-frequency change in a previously published release-recapture field 534 

experiment. We then tested if this overlap was greater than expected by chance. Full details of 535 

the experiment can be found in the original publications [67,71] but those relevant for the current 536 

study are as follows. The experiment involved releasing 500 T. cristinae (from which a tissue 537 

sample was taken) onto 10 experimental bushes (five blocks, each with one plant of Adenostoma 538 

fasciculatum and one of Ceanothus spinosus). Survivors were recaptured eight days later. 539 

Whole-genome sequence data, which we analyze here, was obtained from 491 of the 500 stick 540 

insects [71].  541 

For the current study, we estimated allele frequencies in the released and recaptured stick insects 542 

at the 6,175,495 bi-allelic SNPs identified by [71]. This was done using an expectation-543 

maximization (EM) algorithm as implemented in the program estpEM (version 0.1) with 544 

tolerance of 0.001 and a maximum of 50 EM iterations [85]. We then used these estimates to 545 

compute allele-frequency change between the start and end of the experiment. Then, for each 546 

SNP we calculated the Pearson correlation between allele frequency change and the elevation at 547 

each of the ten transplant sites. Finally, we determined the average correlation between change 548 

and elevation for the 100 Kb windows across the genome. Windows with fewer than four SNPs 549 

were ignored. These steps were done using R (version 3.4). 550 

We then calculated the number of 100Kb windows that were among the top 10% for both 551 

elevation-dependent change during the experiment (highest average absolute correlation) and for 552 

climate-association (highest average BF for each climate PC). We used a constrained 553 

randomization procedure to generate null expectations for such concordance between change and 554 

climate-association windows, using a separate randomization for each PC. Specifically, we 555 

randomized mean change metrics across windows, but only among windows with similar SNP 556 

densities (10 equally sized bins were used for this). This was done because we observed a 557 

positive correlation between SNP density and mean change-elevation correlations per window 558 

(Pearson R = 0.069, 95% CI = 0.047-0.091, P < 0.001), and we wanted to control for this. Null 559 

distributions and P-values were based on 1000 randomizations and are reported for each climate 560 

PC. 561 

 562 
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CODE AVAILABILITY  563 

Computer code is available on 564 

https://github.com/karwaan/Timema_climate_adaptation_genomics. Correspondence for 565 

materials (data, scripts, or samples) should be addressed to Samridhi Chaturvedi 566 

(samridhi.chaturvedi@gmail.com) or Zachariah Gompert (zach.gompert@usu.edu) or Patrik 567 

Nosil (patrik.nosil@cefe.crns.fr). 568 
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FIGURE CAPTIONS 584 
 585 
Figure 1: Conceptual figure to summarize the analyses conducted in this study. (A) Diagram 586 
shows the approach to quantify overlap of top climate-associated SNP windows between a given 587 
pair of species (Species 1 and species 2). Here red dots denote climate-associated SNP windows 588 
for each species. We then quantify overlap in these windows between a given set of species 589 
which can “2 or more”, “3 or more”, and “4 or more” (“N”). (B) Parallelism: Diagram shows the 590 
approach to quantify excess overlap of top climate-associated SNP windows for multiple species. 591 
(C) Experimental comparison: Diagram shows two steps to identify excess overlap in climate-592 
associated SNP windows and those that changed in an elevation-dependent manner during an 593 
experiment. Here, first we identify loci/genomic regions associated with the greatest allele-594 
frequency change in an elevational dependent manner in an experiment as those which show 595 
exceptional change as compared to a null expectation (denoted in green line, denoted as “X”). 596 
Second, we compare if these regions (“X”) show excess overlap with the climate-associated SNP 597 
windows (“N”). (D) CHC comparison: Diagram shows two steps to identify excess overlap in 598 
climate-associated SNP windows and genomic regions associated with CHCs. First, we identify 599 
loci/genomic regions associated with greatest effect on CHC traits (denoted in green line, 600 
denoted as “C”). Second, we compare if these regions (“C”) show excess overlap with the 601 
climate-associated SNP windows (“N”).  602 

 603 
Figure 2: Map of species ranges and plots for within-species variation in climate PC scores. (A) 604 
Map of the ranges of the eight species included in the study, where the coloured shapes represent 605 
the geographic ranges of each species. (B) Two hypotheses which we use to test for decay of 606 
parallelism: First diagram shows our prediction for the “shared ecology” hypothesis where we 607 
expect a decay in parallelism with an increase in climate (i.e., habitat and ecological) distance. 608 
Second diagram shows our prediction for the “shared genetics” hypothesis where we expect a 609 
decay in parallelism with an increase in genetic distance. We use these two hypotheses to study 610 
the decay of parallelism. (C-E) Box plots of PC variation for the first three principal components 611 
(PC1, PC2, PC3) for the eight species included in the study (n = 1420 individuals from 53 612 
localities). 613 
 614 

Figure 3: Manhattan plots showing the strength of evidence for association (measured here 615 
using the Bayes factor from the software BayPass [82]) between a SNP window and climate (in 616 
this case, PC3, see Figures S2 and S3 for analogous results for PC1 and PC2). Results are shown 617 
along the 13 linkage groups. In each panel title, the two values in parentheses are the number of 618 
SNP windows in the top 10% quantile (“windows”), followed by the number of linkage groups 619 
with at least 1 SNP window in the top 10% quantile (“LGs”). 620 
 621 
Figure 4: Tests for parallel climate-associated SNP windows between species of Timema stick 622 
insects (all plots are for the top 10% empirical quantile). In this case, PC3, see Figures S4 and S5 623 
for analogous results for PC1 and PC2. Barplot shows x-fold enrichments for number of 624 
overlapping climate-associated SNP windows for PC3 for comparisons between multiple 625 
species, i.e., beyond pairs of species (e.g., 2 or more species, 3 or more species, 4 or more 626 
species). Gray dots denote x-fold values expected under 1000 randomizations for a null 627 
distribution. Black dot denotes median of the x-fold values expected under 1000 randomizations 628 
for a null distribution. Red dot and  N value above each group indicates the observed number of 629 
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overlapping climate-associated SNP windows for each comparison. P-value above each group 630 
denotes whether the overlap is greater than expected by chance from a one-sided randomization 631 
test. * Indicates x-fold enrichments with P-value ≤ 0.05.  632 

 633 
Figure 5: Tests for introgression and “shared ecology” and “shared genetics” hypotheses.  (A) 634 
Population graph from TREEMIX for all Timema populations used in this study (N = 53), 635 
allowing no migration or admixture event (the actual migration edge is not shown due to the 636 
extremely high proportion of variation explained from the admixture model as shown in Table 637 
S9). Terminal nodes are labelled by abbreviations for locations from where samples were 638 
collected and coloured according to species. (B) Scatterplot shows the relationship between 639 
climatic distance (measured as distance in PC3 scores and as distance in climate variables) and 640 
genetic distance (measured as pairwise phylogenetic distance) based on a one-way linear model. 641 
(C) Scatterplot shows the relationship between x-fold enrichment (measure for parallelism) and 642 
climatic distance (measured as distance in PC3 scores) based on a single-factor linear model. (D) 643 
Scatterplot shows the relationship between X-fold enrichment (measure for parallelism) and 644 
genetic distance (measured as pairwise phylogenetic distance) based on a one-way linear model. 645 
(E)  Plot shows parameter estimates with standardized coefficients for the full model for PC3. 646 
Error bars indicate 95% equal-tail probability intervals (ETPIs). Estimates diverging from zero 647 
indicate a positive or negative effect of ecology or genetics on parallelism. This test was 648 
implemented for all eight species and 56 species pairs. Results analogous to those for (B)- (E) 649 
but for PC1 and PC2 are shown in extended figures 8 and 9, respectively. A negative or positive 650 
estimate which deviates from zero is indicative of an effect on parallelism. 651 

 652 

Figure 6. Evidence for excess overlap between 100Kb windows associated with climate in 653 
nature and those that changed in an elevation-dependent manner during an experiment. (A) The 654 
scatterplot shows the mean correlation between change and elevation during an experiment 655 
versus the median Bayes factor measuring SNP-climate (PC3) association in nature for T. 656 
cristinae for 100 Kb windows. Points denoting windows in the top 10% for change-elevation 657 
correlations are shown in orange, those in the top 10% for SNP-climate associations are shown in 658 
blue, and those in the top 10% for both are in purple (other windows are shown with gray 659 
points). We are interested in the top right corner of the plot, that is the purple points denoting 660 
windows were exceptional (top 10%) in the experiment and nature, and we used a randomization 661 
test to ask whether more windows fall in this category than expected by chance. Panels (B), (C) 662 
and (D) show null expectations for the number of windows in the top 10% for the experiment 663 
and nature based on climate PCs 1, 2 and 3, respectively. The null distribution from the 664 
constrained randomization test in each case is denoted by the gray density plot, whereas the 665 
observed value is shown with a vertical purple line. The P-value for the null hypothesis of no 666 
association between SNP-climate and change-elevation correlations is reported in each panel as 667 
well.  668 



 

23 

REFERENCES 669 
 670 
1. Gould, Stephen Jay. 1990. Wonderful Life. London, England: Radius. 671 
2. Blount, Zachary D., Christina Z. Borland, and Richard E. Lenski. 2008. “Historical 672 

Contingency and the Evolution of a Key Innovation in an Experimental Population of 673 
Escherichia Coli.” Proceedings of the National Academy of Sciences of the United States 674 
of America 105 (23): 7899–7906. 675 

3. Meyers, Peter J., Meredith M. Doellman, Gregory J. Ragland, Glen R. Hood, Scott P. 676 
Egan, Thomas H. Q. Powell, Patrik Nosil, and Jeffrey L. Feder. 2020. “Can the Genomics 677 
of Ecological Speciation Be Predicted across the Divergence Continuum from Host 678 
Races to Species? A Case Study in Rhagoletis.” Philosophical Transactions of the Royal 679 
Society of London. Series B, Biological Sciences 375 (1806): 20190534. 680 

4. Stern, David L., and Virginie Orgogozo. 2009. “Is Genetic Evolution Predictable?” 681 
Science (New York, N.Y.) 323 (5915): 746–51. 682 

5. Langerhans, R. Brian. 2010. “Predicting Evolution with Generalized Models of Divergent 683 
Selection: A Case Study with Poeciliid Fish.” Integrative and Comparative Biology 50 684 
(6): 1167–84. 685 

6. Losos, Jonathan B. 2011. “Convergence, Adaptation, and Constraint.” Evolution; 686 
International Journal of Organic Evolution 65 (7): 1827–40. 687 

7. Waldvogel, Ann-Marie, Barbara Feldmeyer, Gregor Rolshausen, Moises Exposito-688 
Alonso, Christian Rellstab, Robert Kofler, Thomas Mock, et al. 2020. “Evolutionary 689 
Genomics Can Improve Prediction of Species’ Responses to Climate Change.” Evolution 690 
Letters 4 (1): 4–18. 691 

8. Lieberman, Tami D., Jean-Baptiste Michel, Mythili Aingaran, Gail Potter-Bynoe, 692 
Damien Roux, Michael R. Davis Jr, David Skurnik, et al. 2011. “Parallel Bacterial 693 
Evolution within Multiple Patients Identifies Candidate Pathogenicity Genes.” Nature 694 
Genetics 43 (12): 1275–80. 695 

9. Grant, Peter R., and B. Rosemary Grant. 2002. “Unpredictable Evolution in a 30-Year 696 
Study of Darwin’s Finches.” Science (New York, N.Y.) 296 (5568): 707–11. 697 

10. Bolnick, Daniel I., Rowan D. H. Barrett, Krista B. Oke, Diana J. Rennison, and Yoel E. 698 
Stuart. 2018. “(Non)Parallel Evolution.” Annual Review of Ecology, Evolution, and 699 
Systematics 49 (1): 303–30. 700 

11. Colosimo, Pamela F., Kim E. Hosemann, Sarita Balabhadra, Guadalupe Villarreal Jr, 701 
Mark Dickson, Jane Grimwood, Jeremy Schmutz, Richard M. Myers, Dolph Schluter, 702 
and David M. Kingsley. 2005. “Widespread Parallel Evolution in Sticklebacks by 703 
Repeated Fixation of Ectodysplasin Alleles.” Science (New York, N.Y.) 307 (5717): 704 
1928–33. 705 

12. Kingsley, Evan P., Marie Manceau, Christopher D. Wiley, and Hopi E. Hoekstra. 2009. 706 
“Melanism in Peromyscus Is Caused by Independent Mutations in Agouti.” PloS One 4 707 
(7): e6435. 708 

13. Manceau, Marie, Vera S. Domingues, Catherine R. Linnen, Erica Bree Rosenblum, and 709 
Hopi E. Hoekstra. 2010. “Convergence in Pigmentation at Multiple Levels: Mutations, 710 
Genes and Function.” Philosophical Transactions of the Royal Society of London. Series 711 
B, Biological Sciences 365 (1552): 2439–50. 712 

14. Linnen, Catherine R., Yu-Ping Poh, Brant K. Peterson, Rowan D. H. Barrett, Joanna G. 713 
Larson, Jeffrey D. Jensen, and Hopi E. Hoekstra. 2013. “Adaptive Evolution of Multiple 714 



 

24 

Traits through Multiple Mutations at a Single Gene.” Science (New York, N.Y.) 339 715 
(6125): 1312–16. 716 

15. Elmer, Kathryn R., and Axel Meyer. 2011. “Adaptation in the Age of Ecological 717 
Genomics: Insights from Parallelism and Convergence.” Trends in Ecology & Evolution 718 
26 (6): 298–306. 719 

16. Stern, David L. 2013. “The Genetic Causes of Convergent Evolution.” Nature Reviews. 720 
Genetics 14 (11): 751–64. 721 

17. Greenway, Ryan, Nick Barts, Chathurika Henpita, Anthony P. Brown, Lenin Arias 722 
Rodriguez, Carlos M. Rodríguez Peña, Sabine Arndt, et al. 2020. “Convergent Evolution 723 
of Conserved Mitochondrial Pathways Underlies Repeated Adaptation to Extreme 724 
Environments.” Proceedings of the National Academy of Sciences of the United States of 725 
America 117 (28): 16424–30. 726 

18. Barrett, Rowan D. H., and Dolph Schluter. 2008. “Adaptation from Standing Genetic 727 
Variation.” Trends in Ecology & Evolution 23 (1): 38–44 728 

19. Papadopulos, Alexander S. T., Andrew J. Helmstetter, Owen G. Osborne, Aaron A. 729 
Comeault, Daniel P. Wood, Edward A. Straw, Laurence Mason, et al. 2021. “Rapid 730 
Parallel Adaptation to Anthropogenic Heavy Metal Pollution.” Molecular Biology and 731 
Evolution 38 (9): 3724–36. 732 

20. Yeaman, Sam. 2015. “Local Adaptation by Alleles of Small Effect.” The American 733 
Naturalist 186 Suppl 1 (S1): S74-89. 734 

21. Yeaman, Sam, Kathryn A. Hodgins, Katie E. Lotterhos, Haktan Suren, Simon Nadeau, 735 
Jon C. Degner, Kristin A. Nurkowski, et al. 2016. “Convergent Local Adaptation to 736 
Climate in Distantly Related Conifers.” Science (New York, N.Y.) 353 (6306): 1431–33. 737 

22. Chaturvedi, Samridhi, Lauren K. Lucas, Chris C. Nice, James A. Fordyce, Matthew L. 738 
Forister, and Zachariah Gompert. 2018. “The Predictability of Genomic Changes 739 
Underlying a Recent Host Shift in Melissa Blue Butterflies.” Molecular Ecology 27 (12): 740 
2651–66. 741 

23. Arendt, Jeff, and David Reznick. 2008. “Convergence and Parallelism Reconsidered: 742 
What Have We Learned about the Genetics of Adaptation?” Trends in Ecology & 743 
Evolution 23 (1): 26–32. 744 

24. Conte, Gina L., Matthew E. Arnegard, Catherine L. Peichel, and Dolph Schluter. 2012. 745 
“The Probability of Genetic Parallelism and Convergence in Natural Populations.” 746 
Proceedings. Biological Sciences 279 (1749): 5039–47. 747 

25. Bailey, Susan F., Nicolas Rodrigue, and Rees Kassen. 2015. “The Effect of Selection 748 
Environment on the Probability of Parallel Evolution.” Molecular Biology and Evolution 749 
32 (6): 1436–48. 750 

26. Lenski, Richard E. 2017. “Experimental Evolution and the Dynamics of Adaptation and 751 
Genome Evolution in Microbial Populations.” The ISME Journal 11 (10): 2181–94. 752 

27. Roda, Federico, Huanle Liu, Melanie J. Wilkinson, Gregory M. Walter, Maddie E. 753 
James, Diana M. Bernal, Maria C. Melo, et al. 2013. “Convergence and Divergence 754 
during the Adaptation to Similar Environments by an Australian Groundsel.” Evolution; 755 
International Journal of Organic Evolution 67 (9): 2515–29. 756 

28. Stuart, Yoel E., Thor Veen, Jesse N. Weber, Dieta Hanson, Mark Ravinet, Brian K. 757 
Lohman, Cole J. Thompson, et al. 2017. “Contrasting Effects of Environment and 758 
Genetics Generate a Continuum of Parallel Evolution.” Nature Ecology & Evolution 1 759 
(6): 158. 760 



 

25 

29. Morales, Hernán E., Rui Faria, Kerstin Johannesson, Tomas Larsson, Marina Panova, 761 
Anja M. Westram, and Roger K. Butlin. 2019. “Genomic Architecture of Parallel 762 
Ecological Divergence: Beyond a Single Environmental Contrast.” Science Advances 5 763 
(12): eaav9963. 764 

30. Manousaki, Tereza, Pincelli M. Hull, Henrik Kusche, Gonzalo Machado-Schiaffino, 765 
Paolo Franchini, Chris Harrod, Kathryn R. Elmer, and Axel Meyer. 2013. “Parsing 766 
Parallel Evolution: Ecological Divergence and Differential Gene Expression in the 767 
Adaptive Radiations of Thick-Lipped Midas Cichlid Fishes from Nicaragua.” Molecular 768 
Ecology 22 (3): 650–69. 769 

31. Rennison, Diana J., Kira E. Delmore, Kieran Samuk, Gregory L. Owens, and Sara E. 770 
Miller. 2020. “Shared Patterns of Genome-Wide Differentiation Are More Strongly 771 
Predicted by Geography than by Ecology.” The American Naturalist 195 (2): 192–200. 772 

32. Schluter, Dolph, Elizabeth A. Clifford, Maria Nemethy, and Jeffrey S. McKinnon. 2004. 773 
“Parallel Evolution and Inheritance of Quantitative Traits.” The American Naturalist 163 774 
(6): 809–22. 775 

33. Roesti, Marius, Sergey Gavrilets, Andrew P. Hendry, Walter Salzburger, and Daniel 776 
Berner. 2014. “The Genomic Signature of Parallel Adaptation from Shared Genetic 777 
Variation.” Molecular Ecology 23 (16): 3944–56. 778 

34. Meyers, Peter J., Meredith M. Doellman, Gregory J. Ragland, Glen R. Hood, Scott P. 779 
Egan, Thomas HQ Powell, Patrik Nosil, and Jeffrey L. Feder. "Can the genomics of 780 
ecological speciation be predicted across the divergence continuum from host races to 781 
species? A case study in Rhagoletis." Philosophical Transactions of the Royal Society 782 
B 375, no. 1806 (2020): 20190534. 783 

35. Matos, Margarida, Pedro Simões, Marta A. Santos, Sofia G. Seabra, Gonçalo S. Faria, 784 
Filipa Vala, Josiane Santos, and Inês Fragata. 2015. “History, Chance and Selection 785 
during Phenotypic and Genomic Experimental Evolution: Replaying the Tape of Life at 786 
Different Levels.” Frontiers in Genetics 6 (February): 71. 787 

36. Good, Benjamin H., Michael J. McDonald, Jeffrey E. Barrick, Richard E. Lenski, and 788 
Michael M. Desai. 2017. “The Dynamics of Molecular Evolution over 60,000 789 
Generations.” Nature 551 (7678): 45–50. 790 

37. Storz, Jay F. 2016. “Causes of Molecular Convergence and Parallelism in Protein 791 
Evolution.” Nature Reviews. Genetics 17 (4): 239–50. 792 

38. Kohler, Annegret, Alan Kuo, Laszlo G. Nagy, Emmanuelle Morin, Kerrie W. Barry, 793 
Francois Buscot, Björn Canbäck, et al. 2015. “Convergent Losses of Decay Mechanisms 794 
and Rapid Turnover of Symbiosis Genes in Mycorrhizal Mutualists.” Nature Genetics 47 795 
(4): 410–15. 796 

39. Haldane, John Burdon. 1990. The Causes of Evolution. Princeton Science Library 5. 797 
Princeton, NJ: Princeton University Press. 798 

40. Gompel, Nicolas, and Sean B. Carroll. 2003. “Genetic Mechanisms and Constraints 799 
Governing the Evolution of Correlated Traits in Drosophilid Flies.” Nature 424 (6951): 800 
931–35. 801 

41. Orgogozo, Virginie. 2015. “Replaying the Tape of Life in the Twenty-First Century.” 802 
Interface Focus 5 (6): 20150057. 803 

42. Blount, Zachary D., Richard E. Lenski, and Jonathan B. Losos. 2018. “Contingency and 804 
Determinism in Evolution: Replaying Life’s Tape.” Science (New York, N.Y.) 362 (6415): 805 
eaam5979. 806 



 

26 

43. Nosil, Patrik. 2007. “Divergent Host Plant Adaptation and Reproductive Isolation 807 
between Ecotypes of Timema cristinae Walking Sticks.” The American Naturalist 169 808 
(2): 151–62. 809 

44. Comeault, Aaron A., Clarissa F. Carvalho, Stuart Dennis, Víctor Soria-Carrasco, and 810 
Patrik Nosil. 2016. “Color Phenotypes Are under Similar Genetic Control in Two 811 
Distantly Related Species of Timema stick Insect.” Evolution; International Journal of 812 
Organic Evolution 70 (6): 1283–96. 813 

45. Comeault, Aaron A., Samuel M. Flaxman, Rüdiger Riesch, Emma Curran, Víctor Soria-814 
Carrasco, Zachariah Gompert, Timothy E. Farkas, et al. 2015. “Selection on a Genetic 815 
Polymorphism Counteracts Ecological Speciation in a Stick Insect.” Current Biology: CB 816 
25 (15): 1975–81. 817 

46. Lindtke, Dorothea, Kay Lucek, Víctor Soria-Carrasco, Romain Villoutreix, Timothy E. 818 
Farkas, Rüdiger Riesch, Stuart R. Dennis, Zach Gompert, and Patrik Nosil. 2017. “Long-819 
Term Balancing Selection on Chromosomal Variants Associated with Crypsis in a Stick 820 
Insect.” Molecular Ecology 26 (22): 6189–6205. 821 

47. Villoutreix, Romain, Clarissa F. de Carvalho, Víctor Soria-Carrasco, Dorothea Lindtke, 822 
Marisol De-la-Mora, Moritz Muschick, Jeffrey L. Feder, Thomas L. Parchman, Zach 823 
Gompert, and Patrik Nosil. 2020. “Large-Scale Mutation in the Evolution of a Gene 824 
Complex for Cryptic Coloration.” Science (New York, N.Y.) 369 (6502): 460–66. 825 

48. Barghi, Neda, Joachim Hermisson, and Christian Schlötterer. 2020. “Polygenic 826 
Adaptation: A Unifying Framework to Understand Positive Selection.” Nature Reviews. 827 
Genetics 21 (12): 769–81. 828 

49. Rockman, Matthew V. 2012. “The QTN Program and the Alleles That Matter for 829 
Evolution: All That’s Gold Does Not Glitter.” Evolution; International Journal of 830 
Organic Evolution 66 (1): 1–17. 831 

50. Law, Jennifer H., and Bernard J. Crespi. 2002. “The Evolution of Geographic 832 
Parthenogenesis in Timema Walking-Sticks.” Molecular Ecology 11 (8): 1471–89. 833 

51. Nosil, Patrik, Romain Villoutreix, Clarissa F. de Carvalho, Jeffrey L. Feder, Thomas L. 834 
Parchman, and Zach Gompert. 2020. “Ecology Shapes Epistasis in a Genotype-835 
Phenotype-Fitness Map for Stick Insect Colour.” Nature Ecology & Evolution 4 (12): 836 
1673–84. 837 

52. Siepielski, Adam M., Michael B. Morrissey, Mathieu Buoro, Stephanie M. Carlson, 838 
Christina M. Caruso, Sonya M. Clegg, Tim Coulson, et al. 2017. “Precipitation Drives 839 
Global Variation in Natural Selection.” Science (New York, N.Y.) 355 (6328): 959–62. 840 

53. De La Torre, Amanda R., Benjamin Wilhite, and David B. Neale. 2019. “Environmental 841 
Genome-Wide Association Reveals Climate Adaptation Is Shaped by Subtle to Moderate 842 
Allele Frequency Shifts in Loblolly Pine.” Genome Biology and Evolution 11 (10): 843 
2976–89. 844 

54. Sprenger, Philipp P., Lars H. Burkert, Bérengère Abou, Walter Federle, and Florian 845 
Menzel. 2018. “Coping with the Climate: Cuticular Hydrocarbon Acclimation of Ants 846 
under Constant and Fluctuating Conditions.” The Journal of Experimental Biology 221 847 
(9): jeb171488. 848 

55. Botella-Cruz, María, Josefa Velasco, Andrés Millán, Stefan Hetz, and Susana Pallarés. 849 
2021. “Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic 850 
Beetles.” Insects 12 (4): 285. 851 



 

27 

56. Heliconius Genome Consortium. 2012. “Butterfly Genome Reveals Promiscuous 852 
Exchange of Mimicry Adaptations among Species.” Nature 487 (7405): 94–98. 853 

57. Henning, Frederico, and Axel Meyer. 2014. “The Evolutionary Genomics of Cichlid 854 
Fishes: Explosive Speciation and Adaptation in the Postgenomic Era.” Annual Review of 855 
Genomics and Human Genetics 15 (1): 417–41. 856 

58. Marburger, Sarah, Patrick Monnahan, Paul J. Seear, Simon H. Martin, Jordan Koch, 857 
Pirita Paajanen, Magdalena Bohutínská, James D. Higgins, Roswitha Schmickl, and Levi 858 
Yant. 2019. “Interspecific Introgression Mediates Adaptation to Whole Genome 859 
Duplication.” Nature Communications 10 (1): 5218. 860 

59. Giska, Iwona, Liliana Farelo, João Pimenta, Fernando A. Seixas, Mafalda S. Ferreira, 861 
João P. Marques, Inês Miranda, et al. 2019. “Introgression Drives Repeated Evolution of 862 
Winter Coat Color Polymorphism in Hares.” Proceedings of the National Academy of 863 
Sciences of the United States of America 116 (48): 24150–56. 864 

60. Menon, Mitra, Justin C. Bagley, Gerald F. M. Page, Amy V. Whipple, Anna W. 865 
Schoettle, Christopher J. Still, Christian Wehenkel, et al. 2021. “Adaptive Evolution in a 866 
Conifer Hybrid Zone Is Driven by a Mosaic of Recently Introgressed and Background 867 
Genetic Variants.” Communications Biology 4 (1): 160. 868 

61. Riesch, Rüdiger, Moritz Muschick, Dorothea Lindtke, Romain Villoutreix, Aaron A. 869 
Comeault, Timothy E. Farkas, Kay Lucek, et al. 2017. “Transitions between Phases of 870 
Genomic Differentiation during Stick-Insect Speciation.” Nature Ecology & Evolution 1 871 
(4): 82. 872 

62. Harvey, Michael G., Brian Tilston Smith, Travis C. Glenn, Brant C. Faircloth, and Robb 873 
T. Brumfield. "Sequence capture versus restriction site associated DNA sequencing for 874 
shallow systematics." Systematic biology 65, no. 5 (2016): 910-924. 875 

63. Schluter, Dolph, and Gina L. Conte. "Genetics and ecological speciation." Proceedings of 876 
the National Academy of Sciences 106, no. Supplement 1 (2009): 9955-9962. 877 

64. Liu, Shenglin, Anne‐Laure Ferchaud, Peter Grønkjær, Rasmus Nygaard, and Michael M. 878 

Hansen. "Genomic parallelism and lack thereof in contrasting systems of three‐spined 879 

sticklebacks." Molecular ecology 27, no. 23 (2018): 4725-4743. 880 
65. Gompert, Zachariah, Lauren K. Lucas, C. Alex Buerkle, Matthew L. Forister, James A. 881 

Fordyce, and Chris C. Nice. 2014. “Admixture and the Organization of Genetic Diversity 882 
in a Butterfly Species Complex Revealed through Common and Rare Genetic Variants.” 883 
Molecular Ecology 23 (18): 4555–73. 884 

66. Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika van der Linde. 885 
2002. “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical 886 
Society. Series B, Statistical Methodology 64 (4): 583–639. 887 

67. Gompert, Zachariah, Aaron A. Comeault, Timothy E. Farkas, Jeffrey L. Feder, Thomas 888 
L. Parchman, C. Alex Buerkle, and Patrik Nosil. 2014. “Experimental Evidence for 889 
Ecological Selection on Genome Variation in the Wild.” Ecology Letters 17 (3): 369–79. 890 

68. Walden, Nora, Kay Lucek, and Yvonne Willi. 2020. “Lineage-Specific Adaptation to 891 
Climate Involves Flowering Time in North American Arabidopsis Lyrata.” Molecular 892 
Ecology 29 (8): 1436–51. 893 

69. Rose, Noah H., Rachael A. Bay, Megan K. Morikawa, and Stephen R. Palumbi. 2018. 894 
“Polygenic Evolution Drives Species Divergence and Climate Adaptation in Corals.” 895 
Evolution; International Journal of Organic Evolution 72 (1): 82–94. 896 



 

28 

70. Blanco-Pastor, José Luis, Isabel M. Liberal, Muhammet Sakiroglu, Yanling Wei, E. 897 
Charles Brummer, Rose L. Andrew, and Bernard E. Pfeil. 2021. “Annual and Perennial 898 
Medicago Show Signatures of Parallel Adaptation to Climate and Soil in Highly 899 
Conserved Genes.” Molecular Ecology, no. mec.16061 (July). 900 
https://doi.org/10.1111/mec.16061. 901 

71. Nosil, Patrik, Romain Villoutreix, Clarissa F. de Carvalho, Timothy E. Farkas, Víctor 902 
Soria-Carrasco, Jeffrey L. Feder, Bernard J. Crespi, and Zach Gompert. 2018. “Natural 903 
Selection and the Predictability of Evolution in Timema Stick Insects.” Science, 904 
February. https://science.sciencemag.org/content/359/6377/765. 905 

72. Wang, Li, Emily B. Josephs, Kristin M. Lee, Lucas M. Roberts, Rubén Rellán-Álvarez, 906 
Jeffrey Ross-Ibarra, and Matthew B. Hufford. "Molecular parallelism underlies 907 
convergent highland adaptation of maize landraces." Molecular biology and evolution 38, 908 
no. 9 (2021): 3567-3580. 909 

73. Bohutínská, Magdalena, Jakub Vlček, Sivan Yair, Benjamin Laenen, Veronika Konečná, 910 
Marco Fracassetti, Tanja Slotte, and Filip Kolář. 2021. “Genomic Basis of Parallel 911 
Adaptation Varies with Divergence in Arabidopsis and Its Relatives.” Proceedings of the 912 
National Academy of Sciences of the United States of America 118 (21): e2022713118. 913 

74. Lobréaux, Stéphane, and Christelle Melodelima. "Detection of genomic loci associated 914 
with environmental variables using generalized linear mixed models." Genomics 105, no. 915 
2 (2015): 69-75. 916 

75. Frachon, Léa, Claudia Bartoli, Sébastien Carrère, Olivier Bouchez, Adeline Chaubet, 917 
Mathieu Gautier, Dominique Roby, and Fabrice Roux. "A genomic map of climate 918 
adaptation in Arabidopsis thaliana at a micro-geographic scale." Frontiers in plant 919 
science 9 (2018): 967. 920 

76. Contreras-Moreira, Bruno, Roberto Serrano-Notivoli, Naheif E. Mohammed, Carlos P. 921 
Cantalapiedra, Santiago Beguería, Ana M. Casas, and Ernesto Igartua. 2019. “Genetic 922 
Association with High-Resolution Climate Data Reveals Selection Footprints in the 923 
Genomes of Barley Landraces across the Iberian Peninsula.” Molecular Ecology 28 (8): 924 
1994–2012. 925 

77. Bay, Rachael A., Eric B. Taylor, and Dolph Schluter. 2019. “Parallel Introgression and 926 
Selection on Introduced Alleles in a Native Species.” Molecular Ecology 28 (11): 2802–927 
13. 928 

78. Zhang, Xiao, Jack G. Rayner, Mark Blaxter, and Nathan W. Bailey. 2021. “Rapid 929 
Parallel Adaptation despite Gene Flow in Silent Crickets.” Nature Communications 12 930 
(1): 50. 931 

79. Marques, David A., Felicity C. Jones, Federica Di Palma, David M. Kingsley, and 932 
Thomas E. Reimchen. "Experimental evidence for rapid genomic adaptation to a new 933 
niche in an adaptive radiation." Nature ecology & evolution 2, no. 7 (2018): 1128-1138. 934 

80. Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor 935 
Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing 936 
Subgroup. 2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics 937 
(Oxford, England) 25 (16): 2078–79. 938 

81. Danecek, Petr, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin 939 
O. Pollard, Andrew Whitwham, et al. 2021. “Twelve Years of SAMtools and BCFtools.” 940 
GigaScience 10 (2). https://doi.org/10.1093/gigascience/giab008. 941 

https://doi.org/10.1111/mec.16061


 

29 

82. Gautier, Mathieu. 2015. “Genome-Wide Scan for Adaptive Divergence and Association 942 
with Population-Specific Covariates.” Genetics 201 (4): 1555–79. 943 

83. Günther, Torsten, and Graham Coop. 2013. “Robust Identification of Local Adaptation 944 
from Allele Frequencies.” Genetics 195 (1): 205–20. 945 

84. Clarke, Ralph T., Peter Rothery, and Alan F. Raybould. 2002. “Confidence Limits for 946 
Regression Relationships between Distance Matrices: Estimating Gene Flow with 947 
Distance.” Journal of Agricultural, Biological, and Environmental Statistics 7 (3): 361–948 
72. 949 

85. Soria-Carrasco, Víctor, Zachariah Gompert, Aaron A. Comeault, Timothy E. Farkas, 950 
Thomas L. Parchman, J. Spencer Johnston, C. Alex Buerkle, et al. 2014. “Stick Insect 951 
Genomes Reveal Natural Selection’s Role in Parallel Speciation.” Science (New York, 952 
N.Y.) 344 (6185): 738–42. 953 



 

 

Figure 1 
 

 

  



 

 

Figure 2 
 

 



 

 

Figure 3 
 

 



 

 

Figure 4 
 

 

2 or more 3 or more 4 or more

0
2

4
6

8

Comparison

X
−f

o
ld

N=375 N=43* N=5*
P=0.613 P=0.020 P=0.001

Median

Observed x−fold



 

 

Figure 5 

 

  



 

 

Figure 6 
 

 


