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ON PICARD GROUPS OF PERFECTOID COVERS OF TORIC
VARIETIES

GABRIEL DORFSMAN-HOPKINS', ANWESH RAY*, AND PETER WEAR*

ABSTRACT. Let X be a proper smooth toric variety over a perfectoid field of
prime residue characteristic p. We study the perfectoid space XP¢"f which cov-
ers X constructed by Scholze, showing that Pic(XP°™) is canonically isomorphic to
Pic(X)[p~']. We also compute the cohomology of line bundles on X7*"f and estab-
lish analogs of Demazure and Batyrev-Borisov vanishing. This generalizes the first

author’s analogous results for projectivoid space.

1. INTRODUCTION

Perfectoid spaces are certain infinitely ramified nonarchimedean analytic spaces
introduced by Scholze [17]. They have played a crucial role in settling a number of
conjectures in arithmetic geometry and led to advances in p-adic Hodge theory, the
Langlands program, and the study of Shimura varieties [3|, [16], not least because
they facilitate a correspondence between characteristic zero objects and their positive
characteristic analogues. Given the paramount importance of perfectoid spaces it is
of interest to develop some algebro-geometric tools to work with these highly non-
noetherian objects.

In positive characteristic, perfectoid spaces arise functorially from varieties over
F,(t) by taking the completed perfection: first taking the perfect closure and then
completing the underlying rings with respect to the t-adic topology. In mixed char-
acteristic, the constructions are more subtle, but there are several known analogues
including constructions for projective space, toric varieties [17, Section 8], and abelian
varieties [2].

In [7], the first author studies the first case, considering the perfectoid analogue of
projective space (dubbed projectivoid space), and shows among other things that it
has Picard group canonically isomorphic to Z[p~!]. In this manuscript, we investigate
whether the methods developed in [7] apply to other classes of naturally arising per-
fectoid spaces, noticing that the construction of projectivoid space is a special case

of the more general construction of perfectoid covers of toric varieties [17, Section 8|.
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In positive characteristic, this construction coincides with the completed perfection.
The following is a generalization of the first author’s result [7, Theorem 3.4].

Theorem 1.1. Let K be a perfectoid field with residue characteristic p > 0, and %
be a complete smooth fan consisting of strongly convex rational cones. Let X = Xy g
be the toric variety over K associated to ¥ and let XP¢F — X be its perfectoid cover.
Then the Picard group Pic(XPe™f) is canonically isomorphic to Pic(X)[p~'].

We prove this in a similar way to [7], noticing first that X7’/ has a natural integral
model whose special fiber is the scheme theoretic perfect closure of the toric variety
associated to X over the residue field of K. The analogous result for scheme theoretic
perfect closures is easily deduced, leaving two steps: first that every line bundle over
the residue deforms uniquely to the integral model, and second that every line bundle
on XP"f extens uniquely to the integral model.

With Theorem 1.1 we may identify a line bundle £ on X"/ with a formal p-power
root M/P" of a line bundle M on X. We then compute the cohomology of £ in terms
of the cohomology of powers of M, generalizing [7, Theorem 3.26].

Theorem 1.2. For every i > 0, there are topologies for which the cohomology group
HY(xPe"f, L) is canonically isomorphic to the completion of colim H (X, MP").

This allows us to deduce cohomological results on XP¢/ from known results about
the cohomology of toric varieties, and allows us to promote to the perfectoid setting
the Demazure vanishing theorem [6] and the Batyrev-Borisov vanishing theorem [1].

The authors point out that Heuer generalizes our results in [10, Theorem 1.5|, using
the v-topology to study the Picard group of perfectoid covers of varieties with good

reduction.
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2. TORIC VARIETIES AND TORIC SCHEMES

We begin by reviewing the construction of a toric scheme associated to a fan and
recalling a few useful properties. One can find a complete reference about the theory

over the complex numbers in [4], and over general fields in [5].

Definition 2.1. Let N be a free abelian group of finite rank. Let M := Hom(N, Z) be
the dual lattice, and denote the canonical pairing Mg x Ng — R by (m,n) := m(n).

(i) A strongly convex polyhedral rational cone (henceforth, cone) o0 C Ng = N @z R
is a set of the form AMR>g + --- 4+ MR>, with \; € IV subject to the condition
that no line through the origin is contained in o. If the set Ay, -+, A\¢ can be
completed to a Z-basis of N then o is called smooth.

(ii) Given a cone o the dual cone of o is

o’ :={m € Mg | (m,u) >0 for all u € o}.

(iii) A cone 7 is said to be a face of o if it is of the form o N H,, where to m € ¢,
we associate the hyperplane H,, = {n € Ny : (m,n) = 0}.

(iv) A nonempty and finite collection of strongly convex polyhedral cones ¥ is called
a fan if it is closed under taking faces and if the intersection of any two cones is
a face of both of them. A fan ¥ is smooth if all of its cones are.

(v) The support of ¥ is the union || := J o5 0. If [£] is all of Ng, then ¥ is called

complete.
The monoid o¥ N M is finitely generated by [4, Proposition 1.2.7].

Definition 2.2. Let A be a commutative ring and ¢ C Ny a strongly convex poly-
hedral cone. The affine toric scheme over A associated to o is

Us.a == Spec Alo” N M].

Each element m € ¥ N M induces an element of the ring of regular functions of Uy 4.
We denote this function by x™ € A[o¥ N M] and call it the character associated to

m. When A is understood we omit it from the notation.
When o is smooth the structure of U, 4 is rather simple.

Example 2.3. [4, Example 1.2.21| Let A be a commutative ring and ¢ a smooth
strongly convex polyhedral cone. Then there is a Z-basis ey, ..., e, of M such that
oV N M is generated by

{e1, - ,ep, Lery1, -+, Lent.
In particular, there is an isomorphism

AloY N M) = Alzy,--- ,mr,xﬁl,--- o

n

n—r

so that Uy 4 is isomorphic to A" x mA-
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If 7 is a face of o then the inclusion ¥ C 7V induces a localization map A[oVNM] —
A[rY N M]. Passing to prime spectra induces an open immersion U, < U,. Gluing
along these open immersions allows us to define the toric scheme over A associated to
a fan 3, which we denote by X 4. As above, when A is understood we omit it from

the notation. Notice also that this construction is compatible with base change in A.

Lemma 2.4. If ¥ is a fan and A — B is a ring homomorphism, then there is a
canonical isomorphism

Xx,A Xspec A Spec B = Xy, .

Proof. The affine case is clear, and since the isomorphisms are canonical over the

affine cover, they glue. O

Remark 2.5. Given a fan ¥ and a base scheme S, one can define the relative toric
scheme Xx, 5 — S by building toric schemes as in Definition 2.2 affine locally on S,
and then gluing canonically via Lemma 2.4.

When A = k is a field, there is a well known structural result.

Definition 2.6. A toric variety over k is a normal separated scheme of finite type
with an action by a split torus 7' = G, such that there exists a point x € X (k) with
trivial stabilizer and open dense orbit. By [13, Chapter 1, Theorem 6| every toric
variety is isomorphic to Xy for a unique fan X, and conversely if ¥ is a fan then
Xy 1 is a toric variety.

Remark 2.7. In the literature one encounters toric varieties which may not be nor-
mal. The toric varieties we study all correspond to fans, and are therefore normal
by [13, Chapter 1, Theorem 7|. Therefore when we say toric variety we shall always

assume normality.
We record a few more results that we will be using throughout the paper.

Proposition 2.8. A relative toric scheme Xx g — S is proper if and only if ¥ is
complete.

Proof. The case where S = Spec A is affine is [6, Section 4 Proposition 4], and proper-
ness is local on the target. O

It is shown in [5, Corollary 7.4] that proper toric varieties have acyclic structure
sheaves, and cohomology and base change theorems extend this property to the rel-
ative setting, implying in particular that a proper toric variety over any ring has an

acyclic structure sheaf.

Proposition 2.9. Let S be a scheme and X a complete fan, and f : Xy g — S the
associated relative toric scheme. Then Rif*OXZ’S =0 for all i > 0. In particular, if

S = Spec A is affine, Oxy, , is acyclic.



Proof. By Lemma 2.4, X is the pullback to S of the proper Z scheme Xx, 7 — SpecZ.
By [5, Corollary 7.4, for each prime p of Z, the module Oxy,, ® k(p) = Oxy iy 18
acyclic. In particular, for ¢ > 0 the function p — dimy,) HZ(Xk(p),OXg,k(p)) is the
constant zero function on SpecZ. Therefore by Grauert’s theorem of cohomology and
base change [19, Theorem 28.1.5] Oxy, , is acyclic and its cohomology commutes with
arbitrary base change, whence the result follows. ([l

A toric variety Xy, comes equipped with an affine cover U = {U, — Xx} as o varies
over the maximal cones of ¥. By [9, Theorem 2.1], every line bundle on Xy trivializes

on 4 so that much of this study reduces to the combinatorics of 3.

Proposition 2.10. Let ¥ be a fan, k a field, and X = Xx . the associated toric
variety. The Picard group of X does not depend on the field k.

Proof. Let {o1,09,---,0,} C X be the set of maximal cones. Set U; = Uy, , and
denote by 4 the cover {U; — X}. The finite intersections of the U; are affine toric
varieties and therefore by [9, Theorem 2.1] all have trivial Picard group. Therefore

the Cech-to-derived functor spectral sequence degenerates to an isomorphism
Pic(X) = HY(X,0%) = H (4, O%).

Consider the first three terms of the Cech sequence,
0 * 50 1 * 5t 2 *
C'(U0%) — C(U,0%) — C(UO0%) — - -

Notice that for any cone o, H(U,,Ox) C klzi', -, zt'. Any f € HO(U,,O%)
must therefore be a monomial f = \a]" -2 = A\x™ for some m € ¢V N M and
A\ € k*. Let D' C ker 8! be the subgroup of all cocycles consisting of monic monomials

(x™i), and let D® = D! Nim 6°. We have the following map of short exact sequences

0 — im¢® —— kerd! —— HY(U,0%) —— 0

[ T

0 » DO » D! H 0

where H is defined as the cokernel of the inclusion D? < D!. As DY and D' consist
only of monic monomials, H does not depend on %, only the combinatorics of X.
Therefore, if we prove the vertical map on the right is an isomorphism, we will be
done.

Fix a cocycle a = (aj) = (AijxX™7) € kerd'. Notice that the class of a does not
depend on the \;;. Indeed, the class (\i;) = 8O (A1ry Agpy - - , Ar—1,r, 1) (noticing that

the cocycle condition implies that Ai./Aj, = Aij). Therefore we may assume that o
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is in D! without changing the associated cohomology class, and so H — H* U, 0%)
surjects (by the commutativity of the diagram above). Let K be the kernel, and let Q°
and Q' be the cokernels of the injections D° — im 6 and D' — ker 6! respectively.

Then the snake lemma gives us the following exact sequence
0— K —Q"— Q'—0.
If we show the map on the right injects we are done. But

Q' = {()\i)\]flxmﬁmj)}/{(xmﬁmj)} = {(Ai/Aj)} = (k,*)(rq)‘

Furthermore, since the \;;x"™" must satisfy the cocycle condition, we can deduce the

Aij once we know them for one fixed j, so that
Q" = D™ ™} = (),
This identifies Q° — Q! with the identity map and so we are done. O

The proof of Proposition 2.10 has a useful corollary which we record here for later

use. We will first need a definition.

Definition 2.11 (The nth power map). Fix a fan ¥ and an integer n. For each 0 € ¥
the multiplication by n on M map induces a homomorphism A[M NoV] — A[MNoV].
This map is compatible with restrictions to faces 7 < o, and therefore glues to a
morphism ¢, : X5 4 — Xx 4, which we will call the nth power map on Xx 4

Corollary 2.12. Let k be a field and ¥ a fan. The nth power map on X = Xx
induces a pullback homomorphism ¢} : Pic X — Pic X which can be identified with

multiplication by n.

Proof. Let 4 be the same cover from the proof of Proposition 2.10, and recall that an
arbitrary Cech cocycle in ﬂl(ﬂ, O%) may be represented by monic monomials, thus
be of the form (x™i7). Then pullback along ¢,, corresponds to multiplication by n on
M so that it takes (x™i) — (x™™i). But this is precisely the multiplication by n map

on (monic monomial) cocycles, so that it descends to the same on cohomology. O

3. PERFECTOID COVERS OF TORIC VARIETIES

To begin this section we review Scholze’s construction of the perfectoid cover of a
toric variety X = Xy . We use Huber’s theory of adic spaces, a non-archimedean
analogue of complex analytic spaces, which are general enough to handle the infinite
ramification required to define perfectoid spaces. We will not develop the entire theory
of adic spaces here, but refer the reader to [11] and [12] where it was introduced, or
to [17, Section 2] for an introduction with more of an emphasis on perfectoid spaces.

We do introduce a few preliminary notions.

Definition 3.1. A Tate ring is a complete topological ring A such that there exists a
topologically nilpotent unit called the pseudouniformizer o € A and an open subring

Ap C A containing w such that Ag has the w-adic topology. A ring of integral
6



elements AT C A is an open integrally closed subring of the power bounded elements
A°.

Associated to such a pair (A4, A1) is the adic spectrum Spa(A, AT) which is a
topological space whose underlying set consists of equivalence classes of valuations
on A which are bounded by 1 on A™. If z € Spa(4, A1) is a point, we suggestively
denote the associated valuation by f +— |f(x)| for f € A. General adic spaces are
locally of the form Spa(A, A™), and all adic spaces come equipped with various sheaves
related to their structure sheaf. We make heavy use of these sheaves so we define them
carefully.

Definition 3.2. Let X be an adic space with structure sheaf Oy. The sheaf of integral
elements 0%, a sheaf of (topological) rings defined by the rule

OL(U)={feOxU) : |f(z)|<1lforallzeU}.

The sheaf of integral elements has an ideal (’)}+ - (’):\; called the sheaf of topologically
nilpotent elements defined by the rule

O3 U)={fe0yU) : |f(z)|<lforallzeU}.

Perfectoid spaces are adic spaces built from special kinds of rings.

Definition 3.3. A topological ring A is a perfectoid Tate ring if it is a Tate ring
containing a pseudouniformizer w € A such that

e A is uniform, i.e. A° is bounded,
e wwP|pin A°,

e the p-power Frobenius map is an isomorphism
®:A° ) = A° /P,

A (Tate) perfectoid space is an adic space which is locally the adic spectrum of per-

fectoid Tate rings.

Remark 3.4. There is a more general framework of so called Huber rings and per-
fectoid rings from which one can construct adic spaces and perfectoid spaces which
are not Tate. The main difference here is that one does not assert the existence of a
pseudouniformizer as in Definitions 3.1 and 3.3. This allows one to apply the theory
to rings which are more integral in nature. Nevertheless, we will not require this level
of generality because we will always be working over a perfectoid base field and will

therefore inherit a pseudouniformizer from this field.
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Let K be a perfectoid field with valuation ring K° and residue characteristic p. To
any cone o we can associate the Tate ring K(oV N M) of convergent power series in

the characters of 0. We form the associated adic space
U, :=Spa (K(c" N M),K°(c” N M)).

As with toric spaces, if 7 is a face of ¢ we have an induced open immersion U, C U,
(we note that this is generally open in the analytic topology rather than the much
coarser Zariski topology). Therefore, if ¥ is a fan we can form an adic space Xx.

Remark 3.5. There is a fully faithful analytification functor X — X from schemes
over K to adic spaces over K, but if Xx. is not proper then Xx is not in general
isomorphic to (Xx). For example, if ¥ is the cone associated to N* C 7", then
X, is the rigid analytic disk whereas (Xx) is affine space. Nevertheless, if ¥ is a
complete fan (so that Xy, is proper), then we do have (Xs) = (Xx)® by [17, Section
8].

As in Definition 2.11, multiplication by p on M induces a map K(cV N M) —
K {oVNM) inducing the p-power map  on the adic spectra. Passing to the completed
direct limit results in the perfectoid algebra K (cV N M[p~!]) and on adic spectra this

translates to a so called tilde inverse limit (as in [17]):

ugerf ~ &Lﬂ uo‘ X

)
This construction globalizes. If 7 is a face of o, then K(oV N M[p~!]) — K(r¥ N
M[p~1]) is a rational localization so that Ut — 12" is an open immersion. There-

fore given a fan >, we can glue the affinoid perfectoid spaces Z/{fferf along their in-

tersections and construct a perfectoid space Xgerf . As in Definition 2.11, the map ¢

commutes with this gluing, so that it induces a map of adic spaces Xgerf — X5, and
. . perf ~ T

checking locally we see that in fact A%, @1@ Xs.

Definition 3.6. Given a complete fan 3 the map Xgerf — Ak is called the perfectoid
cover of the toric variety Xx.

If K has characteristic p > 0 then ¢ can be identified with relative Frobenius over
K and Xgerf is the completed perfection of the adic space Xx.

Remark 3.7. Inverse limits do not exist in general in the category of adic spaces.
That being said, if affinoid locally the completed direct limit of the ring of functions
is perfectoid, then the perfectoid space built from those rings satisfies the universal
property of inverse limit among all perfectoid spaces. It is in this sense that the tilde
mwverse limit is well defined.

The tilde inverse limit agrees with a categorical inverse limit if we enlarge our
category. More precisely, perfectoid spaces embed in the category of diamonds [15]
which do have inverse limits. In this case the diamond in the limit is representable by
a perfectoid space, and this perfectoid space is the tilde inverse limit. We will not use

this formalism.



Example 3.8. Let us see how this works in a couple of examples.

(1) Let o be the cone associated to N C Z". Then K{(cV N M) = K(x1,-- ,x,)
is the Tate algebra, and the associated adic space U, is the rigid analytic unit
disk D™. The map

SD:K<x15"' ,fEn>—>K<,I1,“‘ ,$n>

is the homomorphism taking z; — 2? for each i, and the completed direct

limit along ¢ is the perfectoid Tate algebra
Ko nMp) = K@y 7).

Thus the perfectoid cover U2 is the perfectoid unit disk D27,
(2) Let o be the cone associated to {0}. Then K (oVNM) = K (zi',--- ;') and
U, is the rigid analytic torus T™. Uf,’erf is the perfectoid torus T™P¢" associated

to
K (o' nMlp™ ) = K", a7,
(3) Let o be a smooth cone. As in Example 2.3 we may take ¢¥ N M to be
generated by {e1,es, -+ ,e,,£er41, -+ ,£te,}. Then

K" NM)=K(xq,- - ,xr,xﬁl,--- xi1>,

rrn

so that U, = D" x T"~". Taking limits along ¢ we have

— ~ 1/p> R +1/p=° oS}
K<0’VmM[p 1]>:K<.%'1/p ’...7.%.711/17 ’xr—f—{p ,"',1’%1/17 >7

so that Z/Ig’”f o yrperf  Tnrperf,

(4) Let e1,--- , e, be a basis for the free abelian group N, and let eg = —e; —eg —
-+« —ep. Define ¥ to be the fan generated by proper subsets of {eg, - ,e,}.
Then one can check [4, Example 3.1.10] that Xy = P™. As this is proper, the
discussion in Remark 3.5 implies that the adic space associated to X is also
projective space. One can identify the map ¢ with the map

p

(o - txp) = [ag - 2]

in projective coordinates, so that the associated perfectoid cover is projectivoid

space PP’ which is studied extensively in [7].

Many of our computations will be working explicitly with various Cech complexes
associated to the cover 4 of X7/, They will all be built by taking units and quotients
of the following complex.

Definition 3.9. Let X be a complete fan, and consider the associated perfectoid space
xverf .= X2 Let {01, -+ ,0,} be the maximal cones of ¥ and consider the cover

U= {Uks oy yverf }. We define C%, = C(4, (’):,;perf) to be the Cech complex for

the sheaf Oj(p”f with respect to the cover 4. Concretely, we have
9
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Chpery = 0= [[E° (o7 nMp~]) = [[K° (i n o) n M[p~]) —
i

1<J
= K°{(o1N--Nnap)’ N Mp~') — 0.

Proposition 3.10. With notation as in Definition 3.9, we have H (C

Xperf) 0.

e UE™) = K°(0Y M [p™))
for every o € . Note also that multiplication by p induces an isomorphism on M [p~!],

Proof. We first remark that by construction we have O

and therefore an isomorphism on K°(cV N M[p~!]). This commutes with differentials

on the Cech complex C'% so that passing to cohomology we get an isomorphism on

xrerfs
HY(

cocycles and reduce to the case of Proposition 2.9, but in order to show a finite power

Ypers)- We would like to use this to clear denominators on the exponents of our
of p will clear these denominators, we have to show that it suffices to consider cocycles

represented by polynomials. To do so we construct the following cochain complex:

Copers ;= 0= [[K° [o) nM[p~1] = [[E° [(0:n o))" n M[p~1]] —
%

1<J
= K°[(o1n--noy) N Mpt]] — 0.

Notice that the (termwise) w-adic completion of this complex is C'%,,.,;. The terms
in the sequence are linearly topologized K°-modules with a countable system of fun-
damental neighborhoods of 0 (given by the w"), and the differentials are continuous
maps. Therefore, applying [18, Tag 0ASO] in descending induction, the associated
short exact sequences giving the cohomology of C’;(perﬁ /
tion. In particular, the completion of this sequence commutes with taking cohomology,
so that we have that H( HY( XPe'"ff)
the nonzero cohomology of C3,,..; y vanishes.

Let X := Xy ko be the toric scheme associated to X over K°, and consider the

remain exact upon comple-

Yperf) = . Therefore it suffices to prove that

induced affine cover Yy = {Uy, ko — Xo}. As X is proper, Cech cohomology with
respect to an affine cover computes quasicoherent cohomology, so that applying Propo-
sition 2.9 we have for ¢ > 0,

H' (Lo, Ox,) = H (X0, Ox,) = 0

Furthermore, the natural inclusions K°[o¥ N M] < K°[ocV N M[p~!]] for each o € ¥
induce the following map of cochain complexes:

. 51 ) 5t )
- — Clil(uQ7OX0) 2 Cz(ﬂo,(’)xo) —0 CZ+1(110,0X0) _— -

N

O 8t 8 it
Xperf f Xperfhf XperfJ‘

10
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As above, multiplication by p on M[p~!] induces an isomorphism of C:\epem ; which
commutes with differentials. In particular it induces an isomorphism of H*(C%,,..s f)

with itself. Fix some v = (3] Apux™)1 € Clopery s Where I indexes over the product.
We denote by pxa = (3. A\ x?™);1. If o € ker 8%, then so is p* . For some N we have
pNxa € Ci(iy, Oy,), and thus in ker 56. But Oy, is Cech acyclic so p¥ xa = 5671(@

for some 8. Viewing [ as an element of C’j‘;lerf’  We see that

O p VB =p N x0T (B) =p N xpV xa=a

In particular, C? is exact in the ¢th position and we win.

Aperf, f
]

3.1. Triviality for Picard Groups for Affinoid Perfectoid Toric Spaces. In
order to study the Picard group of XP¢"f := Xgerf , we would like to make use of the
cover Yl = {UF" — XF"} induced by the maximal cones of o € 3. In particular,

if every line bundle on Xgerf trivialized on this cover and its various intersections, it

*
Xxperf

practice. By a limiting argument it will suffice to show that the affinoid neighborhoods

would suffice to study the Cech cohomology group H! (U, O ), which is accessible in

U, of the toric variety Xs; have trivial Picard groups.

Definition 3.11. Let Ay (respectively Xgerf) be the rigid space (resp. perfectoid
space) associated to a fan X. If the Picard groups of the affinoid neighborhoods U,
(resp. UE™) are trivial for each cone o € 3, we say that the Picard group of Xs (resp.
Xgerf ) trivializes on the analytic affinoid cover induced by the fan.

Lemma 3.12. If Xs, is a rigid space associated to a smooth fan, then the Picard group

of X, trivializes on the analytic affinoid cover induced by the fan.

Proof. 1If o is a smooth cone then U, = D" x T"~" as in Example 3.8(3). Then the Pi-
card group of U, corresponds to projective modules on K (zq,--- , x,, xﬁl, ‘e ,x#%

which were shown to be trivial in [14, Satz IJ. O
We spend the rest of the section proving the following result.

Proposition 3.13. Let Xx, be a toric rigid space with perfectoid cover Xgerf, If the
Picard group of Xx, trivializes on the analytic affinoid cover induced by the fan, then
the same can be said for Xgerf.

We will use a limiting argument together with the following theorem of Gabber and

Ramero.

Proposition 3.14 ([8, 5.4.42]). Let R be a commutative ring, t € R a nonzero divisor,
and I C R an ideal. Let R be the (t, I)-adic completion of R, and suppose (R,tI) form
a henselian pair. Then the base extension functor R[t~]-Mod — R[t~]-Mod induces
a bijection between isomorphism classes of finite projective R[t~']-modules and finite

projective R[t~']-modules.
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Let us formulate the specific consequence of Proposition 3.14 in the way we will use
it.

Corollary 3.15. Let R = UR; be the union of t-adically complete rings, and let
R be its t-adic completion. Then the natural map Pic R[t™'] — PicR[t™"] is an
isomorphism. Furthermore, if Pic Ri[t='] = 0 for all i, then Pic ]:Z[t_l] =0

Proof. We first establish the isomorphism Pic R[t~!] — Pic R[t™'], for which it suffices
to show that (R, tR) form a henselian pair so that the result follows immediately from
Proposition 3.14. Suppose f(z) € R[z] is monic, and that after reducing mod ¢, f(z) =
go(x)ho(x) with gg, hg monic. For some large i, we have f(x) € R;[z]. Furthermore,
one checks (using for example [18, Tag 00DD|) that R/tR = colim R;/tR;. Therefore
(perhaps increasing i) we also have go(z), ho(x) € (R;/tR;)[x]. But as R; is t-complete,
(R;, tR;) form a henselian pair [18, Tag 0ALJ|, and so the factorization lifts to f(z) =
g(x)h(z) € R;lx] € R[z]. Therefore (R,tR) form a henselian pair, and we have
established the desired isomorphism

For the second statement it now suffices to show that every invertible R[t~!]-module
is free. By [18, Tag 0B8W], every invertible R[t~!]-module is the base extension of
some invertible R;[t~!]-module, which is free by assumption. O

Proof of Proposition 3.13. Fix o0 € ¥ and let R; = K°(¢V Np*M), and let R = UR;.
Then K(c¥ N M[p~']) = R[1/w] where @ is a pseudouniformizer of K. Therefore by
Corollary 3.15 it suffices to show that every invertible R;[1/w] module is free. But as
these are K(oV Np~ M) = K{c" N M), which have trivial Picard group is trivial by
assumption. ]

Lemma 3.12 gives the following immediate corollary.

Corollary 3.16. Let ¥ be a smooth cone. Then the Picard group of Xgerf trivializes
on the affinoid cover induced by the fan.

Remark 3.17. If X5, is a toric variety (viewed as a scheme), the analogous statement
for the Zariski affine cover of Xs, always holds by |9, Theorem 2.1|. Therefore, if the
Picard group of K[oVNM)| remains trivial after completion, all of the rigid toric spaces
we are studying satisfy Definition 3.11, and the smoothness hypothesis can be dropped.

One might attack this in the following way: Let k = K°/K°° be the special fiber.
Then |9, Theorem 2.1] implies that the Picard group of kloVNM] is trivial, and a simple
deformation argument |7, Corollary 2.15] shows the same can be said for K°{aV N M).

One then must argue that the Picard group remains trivial after inverting w.

4. COMPARISON ISOMORPHISMS

We now prove the main theorem of this manuscript. For the rest of this section
we fix a perfectoid field K with valuation subring K°, maximal ideal m, and residue
field k = K°/m. Set ¥ to be a complete fan, and assume that the Picard group of

the rigid space Xy is trivialized on the affinoid cover induced by ¥ (for example if ¥
12



is smooth). We fix two schemes X = Xy g and Xo = Xy 1, and let xrerf — Xgeg

be the perfectoid cover of X. Also let {01, - ,0,} be the maximal cones of ¥, and

let 4 = {U" el _s XPf} be the induced cover of X7/, For simplicity, we denote by

Llperf Llperf and Z/Izperf =P =uP N AU Our main theorem is the
1%t i1 it 11 1t

following.

Theorem 4.1. There is a canonical isomorphism Pic(XP¢) = Pic(X)[p~].

Our rough strategy consists of 3 main steps.

e Extension Step: In Section 4.1, we show that each line bundle on X7/ ex-
tends uniquely to the integral model. The inclusion O;’;erf > O%pery induces a
map H! (X7, OFr . ) — HY (X7 O%,,....),

e Deformation Step: In Section 4.2, we show that each line bundle on the

which we show is an isomorphism.

special fiber which is trivial on the cover i deforms uniquely to an integral
model. To do this, we take the Cech complex C7%,.,; of OXperf along the

standard cover and compare it with its reduction modulo topological nilpotents

C*.
Xperf:
e Explicit Comparison: In Section 4.3 we directly identify Hl(C}'pe,f) with

the Picard group of the (scheme-theoretic) perfection of X (the toric variety
with the same fan over the special fiber). Since Picard groups of schemes
arising as inverse limits are easily computed using classical techniques, this
gives the result.

In the three steps outlined above we do not work directly with sheaf cohomology
groups, but rather the Cech cohomology groups associated to the cover U induced
by the fan. This allows us to do very explicit computations with cochain complexes.

More precisely, we work with quotients of the Cech complex for OF* . which are not

X perfs
necessarily the same as Cech complexes associated to the quotient sheaves. We will

therefore prove Theorem 4.1 by establishing the following chain of isomorphisms:

(4.1) Picx?™ = HY(xP7 O%,..)
(4.2) = HY(S, Opers)
(4.3) = HY(Y,0%.)
(4.4) ~ HY(CF,..,)
(4.5) = Pic(XO)[pfl]
(4.6) =~ Pic(X)[p 1.

We know isomorphism (4.1) holds for any locally ringed space. Proposition 3.13
shows that all line bundles on U2 are trivial so that the low degree terms of the
Cech-to-derived functor spectral sequence establish isomorphism (4.2). Isomorphism
(4.6) is the content of Proposition 2.10. It remains to establish the isomorphisms

(4.3),(4.4) and (4.5).
13



4.1. Comparison to the Sheaf of Integral Elements. In this section we establish
isomorphism (4.3), completing the extension step of our outline. In fact, we prove
something slightly more general, from which the desired isomorphism follows setting
1=1.

Lemma 4.2. For all i > 0, we have H' (4, O pers) = HE (4, (’):\::M)

Proof. For each o € %, there is a canonical Gauss norm
|- KoV nMp™h]) — [K*[U{0},

which extends the nonarchimedean absolute value of K. It is given by the rule
I AmX™| = sup{|Am|}. Restricting to unit groups induces a surjective homomor-
Uy — | K*| whose kernel consists of invertible elements with absolute
Uy As

the Gauss norm commutes with localization, we have the following exact sequence of

phism O%,..s

value 1. But these are precisely the invertible integral elements OXperf(

cochain complexes:

0 ——— [ Oy U") ———— TL; Oppers UI™) ——— T[; K| ——

0 - Hz<] O+:erf(uperf) — Hz<] Xpe’l‘f(u'gerf) O Hz<] |K*| —
0—— Hi<j<k O}ierf(uﬁirf) B Hi<j<k }pewf(uﬁirf) B Hz’<j<k K| ——

The left and middle sequences are the Cech sequences for (’);’;erf and O%,.. re-
spectively. Furthermore, the sequence on the right has kernel |K*| and is otherwise
exact (arguing for example as in |18, Tag 02UW]). Therefore taking the associated
long exact sequence of cohomology groups completes the proof. O

4.2. Deformations. In this section we establish isomorphism (4.4), completing the

deformation step of our outline.

Definition 4.3. Let C'}},..; denote the Cech complex for OJFperf associated to L. Let

C}'perf denote the reduction mod 1+ 07" Ypers OF ure )

term of C}),.,; is replaced by

In particular, each OF*

Xperf X perf (

O+* (uperf)/( +O

Xxrerf (uperf)) (O+

X perf (uperf) / o pis (uperf) )

X perf Xxperf

See |7, Lemma 3.8] and the discussion directly after for more details on this isomor-

phism.
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The reduction map C%5,..; — cre overf of complexes induces a natural map on coho-

mology
(4'7) 2 Hl( Xperf) — HI(C}.perf)

and the main result of this section is the following:

Proposition 4.4. The map ¢ defined in Equation (4.7) is an isomorphism.
As a first step, we establish surjectivity.

Lemma 4.5. The map ¢ has a natural section . In particular, @ surjects.

Proof. As {0} is a face of each o; there are compatible embeddings

O+

Xperf(uperf) — K° |: itl/pooa e 7x1:i:1/p°°:|

reducing to compatible embeddings

O uperf)/o uperf) sk [ +1/p> o 7xrjl:l/poo} .

X perf ( X perf (

In particular, we may give Cech cocycles those coordinates and observe that invertible

elements must be monomials. Denote by 8 the differentials of the Cech complex

*@®

Yvers> and fix a cocycle

a = () = (Ngay 'm0 € kerd .
We first notice that the cocycle of constants ();;) is a coboundary. Indeed, letting
T = ()‘I,T‘a )‘Q,T‘ e a)‘Tfl,Ta 1),

then the cocycle condition on the );; implies §°(z) = ();;). In particular, the class of
« in cohomology does not depend on the constant terms of the monomial, so we may

mij,1 mz] n

. We therefore define ¢ on the level of cocycles by

() = @)

take aj; = oy

which is certainly a section of . 0

To show that this section is in fact an inverse, we construct some intermediary

Cech complexes to interpolate between C*® ;and C%* . Let w € K be a pseu-

X per) Xperf:
douniformizer. Then for each positive d € Z[p~!] there is a sheaf of principal ideals

( ) — OXperf N xrerfs
of Cech complexes C(i,1 + (w?)) — Cpers- To ease notation, we write (1 + (w?))®
for the complex C'(44,1 + (w?)).

Let C3ers 4 denote the reduction mod (14 (=?))® of

exact sequence of complexes

This induces an injection 1+ (w?) < OT*, . which gives an injection

vers- S0 we have the short

1= (14 (@) = Citers — overr g = 1.
15



Somewhat more explicitly, we have

Citvensa =0 H Ot UL+ (@) = [] OFyUE /(14 () = -
1<j
This is a complex of K°/wmodules. We have natural maps C** Yverfq ;}'perf’ d
whenever d’ > d.
We show that the complexes C*? Yvers interpolate continuously between C*® _ overs and

Xpe'rf'

Lemma 4.6 ([7|] Lemma 3.10). hgﬂ }'pe,nf’d =X opers and L XP”fd = Cerr

Proof. To compute the direct limit, we show that

(48) i (1+ (@) = 1+ 0%
deZlp~>o

We interpret the colimit as a union, and notice that Equation (4.8) follows if
d
OXpe'rf U (w )
deZ[p~']>0

To see this, we fix an affinoid open U C X, and a topologically nilpotent function
fe (9+perf(U). Since f is topologically nilpotent, we can take large 7 so that f?"
lands in the ideal of (’):\:perf(U ) generated by w (as this ideal is an open neighborhood

of 0). We write fP" = gw for g € OF, _ (U). Rephrasing we see

X perf (

Iy
(wl/pr> € OXperf(U)

(U) is integrally closed in O ypers(U), so this in turn implies that f/w/?" €

But (9:,;
o Xpe,f(U) or equivalently, that f is contained in the ideal of O Xperf(U) generated by

perf

w!/P" . In particular, f is contained in the union of the ideals generated by the w? for
d € Z[p~Y>0. This completes the verification of Equation (4.8).

For the inverse limit, notice that @C;(perﬂ d
complete. Since the unit group functor commutes with inverse limits (indeed, it is

= O% e since O3, is w-adically

right adjoint to the group ring functor), we are done. g

We now will deform the Cech cohomology groups in question along these quotient
complexes. The following lemma sets up the argument.

Lemma 4.7 ([7] Lemma 3.12). Let C%,,.,; be the Cech complex for (’):{,pe,f associated to

U; let CFpery 4 be the quotient by (w)®. Foralld € Z[p~']so andi > 0, H (O Svers g) =
0.

Proof. Consider the long exact sequence of Cech complexes induced by the short exact
sequence 0 — (ww?)® — Chvers = Clpers g — 0. Since (w 4y =~ OXperﬂ

tells us that the left and middle complexes are acyclic, so the right one is as well. [

Proposition 3.10

This allows us to show that changing d leaves the cohomology of C*? unchanged,

xverf d
allowing us to deform.
16



Lemma 4.8 ([7] Lemmas 3.13 and 3.14). For all d' > d > 0 in Z[p~ >0 and i > 0,
the natural map

HY(C¥pers qr) — H'(C¥vers 4)
is an isomorphism. When i = 0, the map
0 0
HO (s ) — HO(C s )

18 surjective.

Proof. We first consider the case where d’ = 2d. We have the following diagram whose
rows are exact sequences of Cech complexes,

0—— (14 (@) — Oty — Cxperfog — 0
0 —— 1+ (@) —— Oty —— ety — 0

The snake lemma exhibits the exact sequence

(1+ (=?)*

(4.9) 1— 7(1 (=) — C}'pemd — }'perﬁd — 1.
We claim that the quotient of complexes % is isomorphic to C;(perf7 g To see
this, note that for any open subset U we have:

1+ (@) () = 1+ w?03,.,(U) _ @'03,.40)

(1 + (cz2d))e 1+ WZdO;pe,,f(U) WQdOj\;perf(U) ’

We can then construct a map to the right hand side from O;L(perf(U) by the rule
a — 1+ aw?. The map is a homomorphism because w?/w?? squares to zero, it is
clearly surjective, and the kernel is precisely the ideal generated by w? so that it

induces an isomorphism from C' In particular, by Lemma 4.7, 1 4 w?/w?? has

Xvperf d-
no higher Cech cohomology. Therefore the case of the result for d’ = 2d follows from
the long exact sequence on Cech cohomology associated Sequence (4.9).

For general d’ > d > 0, the previous paragraph allows us to replace d with 2'd, so
we may assume d < d’ < 2d. Then when i > 0, we have the following commutative

diagram, where the top and bottom rows are isomorphisms again by the previous

paragraph.
2 ( j(.peTde) ~ H’( j(‘.perf’d)
H’L ( j(‘.perf72d/ ) = HZ ( j(‘.perf’d/ )

In particular, « is injective and surjective, hence an isomorphism. If ¢ = 0, the bottom

row is surjective, so v must be surjective as desired. O

Lemma 4.9. The map H'(C33,..;) — I&HHI( j\f.perf,d) is an isomorphism.
17



Proof. Form the inverse system C%,.; = (Ciher d)deN- This is an object of the
derived category of Mod(N, (K°/w?)), where Mod(N, (K°/w?)) is the category of
inverse systems (M) of abelian groups such that each My is a K°/w%modules and

d+1

the transition maps Mg, — My is a map of K°/w" " -modules.

By [18, Tag 0CQE]|, we have a short exact sequence of K°-modules:

(4.10) 0— R! L m HY(CFer o) = H (R1im Cypery) = I HY(CYers g) — 0.

d
We first check that Rlim C%,..; & C3)..s, showing the right arrow in the sequence
the map we care about.
Consider the diagram
00— H O;\eperf uperf) H O)(Pevf uperf —

1<J

| |
i |

0 —— H Ochrf uperf)/( I+ (w2) — H Ochrf uperf)/(l + (w2)) —

1<j

J I

0— H@Xpe,f )/ + (@) —— [[Ofs U™/ + (@) —— -
1<j

Here the top row is C'}),..; and everything below it is C%,,.,;. By Lemma 4.6 we see
that each term in the top row is the inverse limit of the modules in that column.

All vertical maps are quotients, so the columns satisfy the Mittag-Leffler condition.
Let CX’f,’e,fd be the pth term of the complex C}'pe,fd Then by [18, Tag 091D(3)],
R'lim Ld Xperfd = 0 for all p. Using this, [18, Tag 091D(5)] implies that Rlim C' is
represented by the complex whose term in degree p is l&l y C’;ge,nf7 4> Which is exactly
the top row of the diagram.

To show that the right map in Equation 4.10 is an isomorphism, we must show that
R!'lim lim HO(C* Yvers, ;) vanishes. By Lemma 4.8, the inverse system (HO(CXperf 2))den
has surjective transition maps. It is therefore Mittag-Leffler, so its R' lim vanishes as

desired.

0

We are now ready to assemble all this work into a proof of Proposition 4.4.
18



Proof of Proposition 4.4. We have shown that ¢ decomposes into the following com-

position of isomorphisms,

(4.11) HY (Chery) = HY(Im Ciherr )
(4.12) = mHY(Ce )
(4.13) = HY(CPrerq)
(4.14) = limHY(CYher )
(4.15) = H'(lim Cyerr )
(4.16) = HY(Cihen)-

That lines (4.11) and (4.16) are isomorphisms is Lemma 4.6. That line (4.12) is an
isomorphism is Lemma 4.9. Lines (4.13) and (4.14) are isomorphisms because they
are inverse and direct limits of a system of isomophisms due to Lemma 4.8. Line

(4.15) is an isomorphims because filtered colimits of abelian groups are exact.

0

As H'(4, O;:erf) HY( “owers) Dy definition, we have now established isomorphism
(4.4).

4.3. Comparison to the Perfection of the Toric Variety over the Residue.
To finish we must establish isomorphism (4.5), between H' (C%?,.,,) and Pic(Xo) [p~].
To do so, we establish a bit of notation. Let U; = Uy, 1, and define 4y = {U; — Xo}
the standard cover of the toric variety X induced by 3. Let Xgerf be the (scheme
theoretic) perfect closure of X (that is, the inverse limit along Frobenius in the
category of schemes). Then $8" = {UP™" — XP'} is an open cover of X2 as

perfect closures commute with base change.

Lemma 4.10. There is a natural isomorphism Hl(C;‘(‘perf) H* (L[gerf, ;perf).
0

Proof. Since k is perfect, there is a natural identification
koY nMp~t]] =HO(UP™, O pert)-

In particular the unit groups and localization maps are identified, so that this passes

to a natural identification of complexes

~ perf *
C;k(.perf = C(ﬂ Xgerf)-

Passing to cohomology completes the proof. O

By [9, Theorem 2.1], every line bundle on Xj trivializes on g, so that the Cech-to-
derived functor spectral sequence gives an isomorphism I:II(ilo, (’)}0) = Pic Xy. Fur-
thermore, we can pass [9, Theorem 2.1] to the colimit along Frobenius (applying, for
example [18, Tag 0B8W]), so that every line bundle on X °rf trivializes on L[perf Again
by the Cech-to-derived functor spectral sequence we see that ﬂl(ﬂgerf (’);perf) o
Pic X,
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Proposition 4.11. Suppose S is a quasicompact quasiseparated scheme over a field
of characteristic p. Let SP™ be its perfect closure. Then Pic(SP!) = Pic(S)[p~!].

Proof. As SPf is perfect, the Frobenius map on O%pert 18 an isomorphism. Passing
to the first cohomology group shows that the p-th power map on Pic(SP®Y) is an
isomorphism. This implies that the pullback map Pic(S) — Pic(SP*'!) factors through
Pic(S)[p~?], so we have,

Pic(S) — Pic(S)[p~!] — Pic(SP).

We must show the righthand map is an isomorphism. We remind ourselves that
gperf — yLnS along Frobenius. As Frobenius is an affine morphism and S is quasi-
compact and quasiseparated, every line bundle on SP°™ is the pullback of a line bundle
from one of the factors [18, Tag 0B8W]. This proves surjectivitiy.

To show injectivity it is equivalent to show that the kernel of Pic(S) — Pic(SPe')
is p-power torsion. Fix some L in the kernel, and represent it by a cover {V; — S} and
gluing functions fj; € Og(Vjx)* C (’)Sperf(V]%erf)*. Then the fact that £ pulls back to
a trivial bundle means that f;, = f;/ fi for various f; € Osperf(‘/;perf)*. There is some
large N such that each for each ¢ we have ffN € Og(V;)*, so that ff,:v = ffN/f,fN. In

N
particular the cocycle ( ffk ) is a coboundary and therefore its gluing data is trivial,
whence LOP" = Ogpr. O

As X is proper, we have established that Pic(Xgerf) 2 Pic(Xp)[p~!], which is
isomorphism 4.5. This was the final link in the proof of Theorem 4.1.

Remark 4.12 (A note on canonicity). Notice that the multiplication by p map is an
isomorphism on Pic(/l’p‘”f). Once we fix a projection map my : XPf — X the isomor-
phism from Theorem 4.1 becomes canonical in the following sense. The construction
of the perfectoid cover produces the following commutative diagram where ¢ = @, is

the pth power map of Definition 2.11

o

Tk

Tk+1

xrerf X 3 x

~
~
~
~
s

Passing to Picard groups this induces by universal property a canonical homomorphism
lim Pic(X) — Pic(A7).
Lp*
By Corollary 2.12, ©* is multiplication by p so that the source is canonically isomorphic
to Pic(X)[p~1]. Composing gives a canonical homomorphism

Pic(X)[p~'] — Pic(x?e)
20



which is an isomorphism by Theorem 4.1. In particular, identifying £ € Pic(xPe™)
with a formal pth tensor root MU/ of some M € Pic(X) in turn identifies L with
the pullback of M from the kth level of the tower: L = 7,

5. COHOMOLOGY OF LINE BUNDLES

We will conclude with a computation of the cohomology of line bundles on the
perfectoid cover of a toric variety. The standard setup will be the following.

Setup 5.1. Let ¥ be a complete fan, K a perfectoid field, and X = Xy, i the associated
toric variety with perfectoid cover XP"f — X . Assume that the Picard group of Xx

trivializes on the affinoid cover induced by ¥ (so that Theorem 4.1 applies). As in
Remark 4.12, fir £ € Pic X7 and a line bundle M € Pic X such that:

LMV =M,
where m is projection onto the k-th factor of the inverse limit.

Theorem 5.2. In the situation of Setup 5.1, for all i > 0, there is a canonical
homomorphism

n—k

v : colim,, H (X, MP" ™) — Hi(xP L),

Furthermore, one can endow the source and target with with the structure of topological
K -vector spaces in a way such that the target is the completion of the source, and =
1s the canonical inclusion. In particular, with this topology fized, we have:

n—k

. AN .
<colimnHZ(X,.Mp )) >~ Hi(xPer, 1),

Remark 5.3. Without loss of generality we may assume that the identification L =
MYP" can be made with k = 0. This is because the p-power map on o : X — xrerf
(Definition 2.11) is an isomorphism, as it is determined affinoid locally by multiplica-
tion by p on the free abelian group MI1/p|. The isomorphism ©*L = LP, (Corollary
2.12) is adjoint to an isomorphism L = @, LP, which as ¢ is an isomorphism passes
to a K-linear isomorphism of the cohomology of L and ¢, LP. This composes to a

canonical isomorphism on the cohomology of L and LP applying Lemma 5.4 below.

5.1. Construction of the Comparison Map. We first construct the canonical

map. We need the following immediate consequence of the Leray spectral sequence.

Lemma 5.4. Let f:Y — Z be a map of topological spaces, and F a sheaf of abelian
groups on Y. For all i there are natural maps H(Z, f,F) — HY(Y,F), which are
isomorphisms if f is.

Proof. This is an immediate consequence of the filtration of the E,, page from the

Leray spectral sequence

EMY.  HP(Z, RUfF) = HPTU(Y,F).
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We will now build the map from Theorem 5.2. We assume the conditions of Setup
5.1, identifying £ € Pic X7/ with M/?" for M € Pic X, By Remark 5.3 we may

assume k = 0.

Proposition 5.5. There is a canonical homomorphism
7 : colim,, H (X, MP") — H (X7 L).

Proof. Let ¢ be the pth power map on X. We know by Corollary 2.12 that there is
an isomorphism @*M = MP  which is adjoint to a map M — @, MP. Passing to
cohomology and composing with the map from Lemma 5.4 gives a homomorphism
p: H(X, M) — HY (X, MP). Arguing similarly, for each m > 0, the isomorphisms
L = ¥ MP™ induce canonical maps 7, : H (X, MP™) — HY (X", L), and these fit
compatibly in the following diagram.

H' (X, M)

p

H' (X, MP)

(5.1) HY (X, M)

colim HY (X, MP").
O

5.2. Topologizing the Cohomology Groups. We will use Cech cohomology with
respect to the usual cover to endow the source and target of v with topologies. We
let {01, ,0,} be the maximal cones of ¥, and consider the covers 4 = {U,, - X}
and 4rerf = {2 —y xverf) - We first record that Cech cohomology is effective with

respect to these covers.
Lemma 5.6. Consider the situation of Setup 5.1, and let 8% and UP°" be the standard
covers of X and XP°" respectively. Then the natural maps:
HY (U £) = HY(XPT L) and  HY(U, MP") =5 HI(X, MP"),
are isomorphisms.
Proof. The U,, and their intersections are affinoid and and the same can be said for the

L[forf . Since locally free sheaves on affinoid adic spaces are acyclic, the Cech-to-derived
functor spectral sequence gives isomorphisms 5.3 and 5.7. ]

Now we can explicitly write down the maps p and ~; from the proof of Proposition

5.5 on Cech cocycles.
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Lemma 5.7. For all maximal cones o € 3, the endomorphism of K[oVNM] prescribed
by X™ = xP™ induces maps Oy, — Ouy,.. These maps glue to the map M — o MP.

Proof. We know that M is given by a cocycle (™) € H (8, O%), (for some m;; €
aivj N M), and MP is given by (xP"4). Therefore it suffices to show that the given
map commutes with the gluing data on U;;. But one can easily check that

X xP™
OUi ; (’)Ui].
| [
(’)Uj, (’)Uj.
commutes, so we are done. O

This has the following immediate consequence:

Lemma 5.8. For any o € %, the map H*(U,, M) — H°(U,, MP) can be identified
with the inclusion

Klo¥NM] = K [¢V np 'M],
i such a way that it is compatible with restrictions to the faces of o. In particular,

one can identify:
colim HO(UU, Mpn) ~ KoV N M[Pil]]’

compatibly with restricting to faces in o.

Proof. This follows immediately from Lemma 5.7 relabelling pM C M as M C p~'M
O

Diagram 5.1 from the proof of Proposition 5.5 can be exhibited as the induced map

on the cohomology of the following composition of Cech complexes:

C(4h, M) = C(8, MP) = -+ — colim C(&, MP") & C(UP*, )

To simplify notation, we give the source and target of 1 the names C* and D* respec-
tively. With Lemma 5.8 in mind, the 1 can be identified with the following inclusion
(now arranged vertically):

(5.2)

Cri=-o — [, K [U‘%mi ﬁM[p_l]} — I . |:0";{)mi+1 ﬁM[p—l]} —
| I

D im e — Hjo.'.iK<ajVO”_i ﬂM[p*1]> — 1Ly . K<JJV0,_,,~+1 ﬂM[p*1]> —

This looks like the inclusion of a complex of topological K-vector spaces into its

termwise completion. Let’s make that precise.
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Proposition 5.9. Let C* and D* be as above. Then C*, D* and their cohomologies
HY(C*),HY(D*) can be equipped with topologies under which:
(1) n : C* < D* can be identified with the map from a complex of topological
K -vector spaces to its (termwise) completion.
(2) For each index i, the map ~ : H(C*) — HY(D*) can be identified with the map

from a topological K -vector space to its completion.

Proof. Because the differentials of the complexes above are generated by alternat-
ing sums of monic monomials, they take take polynomials (resp. power series) with
integral to ones with integral coefficients. In particular, Diagram 5.2 restricts to a

morphism 7° of complexes:

e —— I, , K° [va_ N M[p_l]} — 1 . K° [0\/ i 0 M[p_l]} 0

Jo Jo...

JO...4 Jo...

D*° i — H]Oz K° <0.\/ ﬂM[p71]> —_— HJ'O.”H»I K° <UV i1 mM[p71]> B

Giving the source and target the w-adic topology, we see that n° is the inclusion of
a complex of topological K°-modules into its w-adic completion. Now, for each ¢, we
have that:
Ol = 0" Qo K = C*°[1/w],

and we can therefore give C* the topology making C*° open and bounded (that is, the
topology generated by the subsets w?C%° as d varies), and we do similarly for each
D*. With this topology, then it is clear 1 is the inclusion of a topological K-vector
space into its completion (as it is true in a neighborhood of 0), proving part (1).

Now on to cohomology; the groups H!(C*°) are naturally K°-modules and can
therefore be endowed with the w-adic topology, and similarly for the H?(D*°). Since

K is flat over K°, we have isomorphisms
HI(C*) =2 H{(C*° @ko K) = H(C*°) @go K = H(C*°)[1/w].

Then we can give H(C*) the topology making the image of H!(C*°) open and
bounded, that is, the topology induced by the images of w®H!(C*°) in H!(C*) as
d varies. We do similarly for H*(D*). With these topologies in mind, v is obtained
from the inclusion of C* into its completion D* by passage to cohomology. Part (2)

then follows from the more general Lemma 5.10 below. U

To conclude the proof of we’d like to argue—as in the proof of Proposition 3.10—that
completion of a sequence of linearly topologized modules commutes with cohomology,
(and in fact, this argument immediately implies H(C*°)" = H*(D*°)). As the mod-
ules in question are not linearly topologized, we need the following lemma extending
the commutation of cohomology and completion to generic fibers of linearly topolo-

gized K°-modules.
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Lemma 5.10. Let M* = M° — M' — .. — M" be a sequence of linearly topologized
K°-modules with countable systems of fundamental neighborhoods of 0, and for each
i give M* @ K the topology making the image of M* open and bounded. Then:

H'(M*® K)" ~2H' (M* o K)").

Proof. We collect a few ingredients. First we use that if N is a linearly topologized
K°-module, then

N@K=(N®K)"

This is rather immediate, as N is open in N ® K and the basis of 0 given by the "N
is a basis for both the topology of N and N ® K. We will also use that - ® K is an
exact functor, and that H'(M*) = H!(M*)" since the M are linearly topologized with
countable neighborhood bases of 0 [18, Tag 0AS0|. Putting all this together gives the

following chain of isomorphisms which prove the result,

H(M* @ K)" = HM)eK)"
o Hi(M*)/\®K
~ H(M")® K
~ H(M*®K)

H (M* © K)N) .

12

0

We can now string everything together to prove the main theorem of this section.

Proof of Theorem 5.2. We use the A symbol to represent completion with respect to
the topologies introduced in the previous paragraph. The map from Proposition 5.5

can be identified with the following chain of isomorphisms.

(5.3) H (X7, ) = H(CW, L))

(5.4) = H' (colim (C (s, M""))" )
(5.5) >~ H (colim (C (41, M*")))"
(5.6) >~ (colim H' (C (8, M?™)))"
(5.7) >~ (colim H' (X, M*"))"

To conclude we verify that they are all in fact isomorphisms. Isomorphisms 5.3 and
5.7 are Lemma 5.6 and isomorphism 5.6 follows from the fact that cohomology com-
mutes with directed colimits of abelian groups (|18, Tag 00DB]). Isomorphism 5.4 is
Proposition 5.9(1) and isomorphism 5.5 is Proposition 5.9(2), which completes the

proof. O
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5.3. Vanishing Theorems. The cohomology of line bundles on toric varieties has
been extensively studied, for example in [6],[1],[4, 9.1-9.4]. Therefore, given a line
bundle £ on XP°, we may first use Theorem 4.1 to identify it with MP* for a line
bundle M on X, and then use known results about the cohomology of M together with
Theorem 5.2 to explicitly compute the cohomology of £. We will use this philosophy
to promote Demazure and Batyrev-Borisov vanishing theorems for toric varieties to
the perfectoid setting. These theorems concern globally generated line bundles, so to
deduce them from the classical theorems about toric varieties using Theorem 5.2, we
need the correspondance between line bundles of Theorem 4.1 to preserve the property
of being globally generated.

Proposition 5.11. Let £ € Pic XPf and identify it with M/P* for M € PicX.
Then L is a globally generated O ypers-module if and only if./\/lpt 15 a globally generated
Oy -module for t >> 0.

Proof. As in Remark 5.3 we may assume k = 0. If MP s globally generated, then
we can pick a surjection p : @ Ox — MP Letting ¢ be the p-power map then
7o = ¢' o 1. Therefore (applying Lemma 2.12)
L=mM =1 (o)M= M.

As pulling back by ; is right exact, 7}p : @ O ypers — L gives the desired surjection.

Conversely, suppose that £ is globally generated. As XP°f is compact, £ may be
generated by a finite set of sections s1,---,s,. This proof will have 2 parts. First
we will show that the s; can without loss of generality be assumed to come from
global sections of MP" for some ¢ (under the identification of Theorem 5.2 on zeroth
cohomology). We will then show that (perhaps increasing t) these s; generate MP'
ujperf

Trivialize £ over the , and consider the s; as elements of

OXperf(uiperf) - K <U’l\/ N M[p_1]> .

As U’ s affinoid, the s; generate the unit ideal of Ox (U erf ). Therefore there are
ay, -+ ,ap € Oxperf(uiperf) such that a1s1 + -+ + ans, = 1. Applying Theorem 5.2
on zeroth cohomology, there are global sections §; € I'(X, ./\/(pt) which are arbitrarily
close to the s; (increasing ¢ as necessary). Since there are finitely many U/ “f we may

choose them so that on each L{f erf.

(@151 4+ -+ ansp) — (@151 + -+ andy)|| < 1.

That is, £ := 1—(a151+- - - +a,5,) is topologically nilpotent. Therefore the geometric
series for (1 — &)~ coverges so that (1 —¢) is a unit. As 1—¢ is in the ideal generated
by the 5;, they generate the unit ideal. In particular, we see that the s; generate L.
This completes the first step.

The second step applies a similar argument, but now to the coefficients. We use
that trivializations of £ over the U’ °f and of M over U; are compatible, so that
we can identify the map MP (U;) — E(Uferf) with the inclusion K (¢} Np~'M) —

K <JZV N M[p_1]>, and the §; can be considered as elements of the target. We know
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they generate the unit ideal in K <aiv nM [p*1]>, that is there are coefficients b; such
that b18; + -+ + b,5, = 1. Arguing as above and perhaps increasing k, there are
b; € K <I%Mﬂaiv> so that:

1(b181 + - + buSp) — (b151 + -+ + bpdn)|| < 1.

Therefore £ =1 — (l;l S14+---+ l;nén) is topologically nilpotent so that 1 — ¢’ is a unit
in K <aiv Np tM > But it is also in the ideal generated by the 5;, so they generate the
unit ideal. Doing this over all the U;, perhaps increasing ¢ a finite amount of times,
we see that the 5; generate MP' O

Using this we can promote a well known vanishing theorem to the perfectoid setting.

Theorem 5.12 (Demazure Vanishing in the Perfectoid Setting). If £ is a globally
generated line bundle on XPf, then for all i > 0

H(X, L) = 0.

Proof. By Theorem 4.1 we can find some line bundle M on X such that £ is identified
with M1/ pk, and Proposition 5.11 shows that MP' s globally generated for ¢ >> 0.
Applying Demazure vanishing [4, Theorem 9.2.3] we see that H?(X, M?") = 0 for all
1> 0 and t >> 0, so that taking completed direct limits and applying Theorem 5.2
gives the result. O

The proof of Batyrev-Borisov vanishing will be essentially identical, but the state-
ment requires a bit of setup, and we will summarize without proof the necessary
results. The results are carefully described and proven over the complex numbers in
[4, Sections 3 and 4], and in general in [6] and [5].

Fix a fan 3 and let ¥(1) be the 1 dimensional cones of ¥. To each ray p € X(1) the
orbit cone correspondence [4, Theorem 3.2.6] canonically assigns a divisor D, C X7x.
We also assign to p its minimal generator in IV, which we call u,. With this data, we

can now assign to every m € M the divisor
div(m) = Z (m,up)D,.
peX(1)
The divisor div(m) is the principal divisor associated to the character x™, and the

map div fits into the following exact sequence [4, Theorem 4.1.3|
(5.8) M— @ Z -D,— ClI(X) — 0.
pEX(1)
The term in the middle is the set of Weil divisors of Xy invariant under the torus ac-

tion. Central to the statement of Batyrev-Borisov vanishing is a polyhedron associated

to an torus invariant divisor.

Definition 5.13 ([4, (4.3.2)]). Fix a torus invariant divisor D = )" a,D,. Its associ-
ated polytope is

Pp ={m € Mg : (m,u,) > —a, for all p € 3(1)}.
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Definition 5.14. Let S C Mg. The affine hull of S is

k
Aff(S) := {Zaixi cx; € .5 and Zai = 1} )
i=1
The relative interior Relint(.S) is the interior of the affine hull of S.

We can now state Batyrev-Borisov vanishing, first established in [1].

Theorem 5.15 (Batyrev-Borisov Vanishing [4, Theorem 9.3.5]). Let X = X5 be a
complete toric variety over o field k, and D a basepoint free divisor. Then

e Hi(X,0(-D)) =0 for all i # dim Pp.

e [fi=dim Pp then

H!(X,0(-D)) = a E-x™™
meRelint (Pp)NM
On our perfectoid space we have not yet developed a good notion of divisors, so we

need a dictionary between line bundles and divisors. This isn’t too difficult, because
as X is a normal noetherian scheme, there is a natural injection Pic X — Cl X (see
for example [19, 14.2.7]). Given a line bundle £ € Pic X we can use this injection and
the exact sequence 5.8 to build a divisor D =} a,D, such that £ = O(D), and this
divisor is well defined up to an element of M. Notice that essentially by definition £
is globally generated if and only if D is basepoint free. Furthermore, we can associate
L" to the divisor nD. The dimension of the polytope from Defintion 5.13 isolated
the important cohomological degree in the Batyrev-Borisov vanishing theorem, and

we can now access that integer in the perfectoid setting.

Definition 5.16. Let ¥ be a complete fan, X = Xy and X7/ — X the associated
perfectoid cover. Assume that the Picard group of the rigid space Xx trivializes on
the affinoid cover induced by 3. Fix £ € Pic X*"f and use Theorem 4.1 to identify
it with MY/P" for M € Pic X. Associate to M a divisor D using sequence 5.8, and
consider the polytope Pp. We define

dp = dim Pp.
Lemma 5.17. The integer d is well defined.

Proof. Suppose D and D’ are two torus invariant divisors associated to M. the
sequence 5.8 asserts that D and D’ differ by the divisor of some m € M, so that by [4,
Section 4.3|(1) Pp is a translate of Pp by m, and hence share dimension. The choice
of M is well defined up to a power of p, which may replace D with p'D. Again by [4,
Section 4.3| Pyp = ptPp is a scaling and hence the dimension is unchanged. ]

We can now prove the result.

Theorem 5.18 (Batyrev-Borisov Vanishing in the Perfectoid Setting). Consider the
setup as in Definition 5.16, and suppose L is globally generated. For all i # dp:

HY(x7f L71) =0
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If i = dy we have an isomorphism
A

Hee (xperf £71) = | colim,, EB K-x™
m&Relint(p™ Pp)NM

where the transition maps are induced by x™ — xP™.

Proof. For each n, we have M ™" = O(—p"D), and as in Lemma 5.17 the dimension
of Pynpisdg. As Lis globally generated, Proposition 5.11 implies that MP s globally
generated for t large enough, and therefore for large ¢ the divisor p!D is basepoint
free. The results now follow, applying Theorem 5.15 to all large enough p-powers of
M, passing to the completed direct limit, and applying Theorem 5.2. ([l
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