
ar
X

iv
:2

01
1.

03
61

3v
2 

 [m
at

h.
A

G
]  

1 
N

ov
 2

02
2

ON PICARD GROUPS OF PERFECTOID COVERS OF TORIC

VARIETIES

GABRIEL DORFSMAN-HOPKINS†, ANWESH RAY‡, AND PETER WEAR⋆

Abstract. Let X be a proper smooth toric variety over a perfectoid field of

prime residue characteristic p. We study the perfectoid space X
perf which cov-

ers X constructed by Scholze, showing that Pic(X perf) is canonically isomorphic to

Pic(X)[p−1]. We also compute the cohomology of line bundles on X
perf and estab-

lish analogs of Demazure and Batyrev-Borisov vanishing. This generalizes the first

author’s analogous results for projectivoid space.

1. Introduction

Perfectoid spaces are certain infinitely ramified nonarchimedean analytic spaces
introduced by Scholze [17]. They have played a crucial role in settling a number of
conjectures in arithmetic geometry and led to advances in p-adic Hodge theory, the
Langlands program, and the study of Shimura varieties [3], [16], not least because
they facilitate a correspondence between characteristic zero objects and their positive
characteristic analogues. Given the paramount importance of perfectoid spaces it is
of interest to develop some algebro-geometric tools to work with these highly non-
noetherian objects.

In positive characteristic, perfectoid spaces arise functorially from varieties over
Fp(t) by taking the completed perfection : first taking the perfect closure and then
completing the underlying rings with respect to the t-adic topology. In mixed char-
acteristic, the constructions are more subtle, but there are several known analogues
including constructions for projective space, toric varieties [17, Section 8], and abelian
varieties [2].

In [7], the first author studies the first case, considering the perfectoid analogue of
projective space (dubbed projectivoid space), and shows among other things that it
has Picard group canonically isomorphic to Z[p−1]. In this manuscript, we investigate
whether the methods developed in [7] apply to other classes of naturally arising per-
fectoid spaces, noticing that the construction of projectivoid space is a special case
of the more general construction of perfectoid covers of toric varieties [17, Section 8].
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In positive characteristic, this construction coincides with the completed perfection.
The following is a generalization of the first author’s result [7, Theorem 3.4].

Theorem 1.1. Let K be a perfectoid field with residue characteristic p > 0, and Σ

be a complete smooth fan consisting of strongly convex rational cones. Let X = XΣ,K

be the toric variety over K associated to Σ and let X perf → X be its perfectoid cover.
Then the Picard group Pic(X perf) is canonically isomorphic to Pic(X)[p−1].

We prove this in a similar way to [7], noticing first that X perf has a natural integral
model whose special fiber is the scheme theoretic perfect closure of the toric variety
associated to Σ over the residue field of K. The analogous result for scheme theoretic
perfect closures is easily deduced, leaving two steps: first that every line bundle over
the residue deforms uniquely to the integral model, and second that every line bundle
on X perf extens uniquely to the integral model.

With Theorem 1.1 we may identify a line bundle L on X perf with a formal p-power
root M1/pk of a line bundle M on X. We then compute the cohomology of L in terms
of the cohomology of powers of M, generalizing [7, Theorem 3.26].

Theorem 1.2. For every i ≥ 0, there are topologies for which the cohomology group
Hi(X perf,L) is canonically isomorphic to the completion of colimHi(X,Mpn).

This allows us to deduce cohomological results on X perf from known results about
the cohomology of toric varieties, and allows us to promote to the perfectoid setting
the Demazure vanishing theorem [6] and the Batyrev-Borisov vanishing theorem [1].

The authors point out that Heuer generalizes our results in [10, Theorem 1.5], using
the v-topology to study the Picard group of perfectoid covers of varieties with good
reduction.
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tially supported by NSF grant DMS-1439786 while in residence at the Institute for
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NSF RTG grant DMS-1646385 as part of the Research Training Group in arithmetic
geometry at the University of California, Berkeley. Wear was partially supported by
NSF grant DMS-1502651 and NSF RTG grant #1840190.
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2. Toric Varieties and Toric Schemes

We begin by reviewing the construction of a toric scheme associated to a fan and
recalling a few useful properties. One can find a complete reference about the theory
over the complex numbers in [4], and over general fields in [5].

Definition 2.1. Let N be a free abelian group of finite rank. Let M := Hom(N,Z) be
the dual lattice, and denote the canonical pairing MR ×NR → R by 〈m,n〉 := m(n).

(i) A strongly convex polyhedral rational cone (henceforth, cone) σ ⊆ NR = N ⊗ZR

is a set of the form λ1R≥0 + · · · + λtR≥0 with λi ∈ N subject to the condition
that no line through the origin is contained in σ. If the set λ1, · · · , λt can be
completed to a Z-basis of N then σ is called smooth.

(ii) Given a cone σ the dual cone of σ is

σ∨ := {m ∈ MR | 〈m,u〉 ≥ 0 for all u ∈ σ}.

(iii) A cone τ is said to be a face of σ if it is of the form σ ∩Hm where to m ∈ σ∨,
we associate the hyperplane Hm = {n ∈ NR : 〈m,n〉 = 0}.

(iv) A nonempty and finite collection of strongly convex polyhedral cones Σ is called
a fan if it is closed under taking faces and if the intersection of any two cones is
a face of both of them. A fan Σ is smooth if all of its cones are.

(v) The support of Σ is the union |Σ| :=
⋃

σ∈Σ σ. If |Σ| is all of NR, then Σ is called
complete.

The monoid σ∨ ∩M is finitely generated by [4, Proposition 1.2.7].

Definition 2.2. Let A be a commutative ring and σ ⊆ NR a strongly convex poly-
hedral cone. The affine toric scheme over A associated to σ is

Uσ,A := SpecA[σ∨ ∩M ].

Each element m ∈ σ∨∩M induces an element of the ring of regular functions of Uσ,A.
We denote this function by χm ∈ A[σ∨ ∩M ] and call it the character associated to
m. When A is understood we omit it from the notation.

When σ is smooth the structure of Uσ,A is rather simple.

Example 2.3. [4, Example 1.2.21] Let A be a commutative ring and σ a smooth
strongly convex polyhedral cone. Then there is a Z-basis e1, . . . , en of M such that
σ∨ ∩M is generated by

{e1, · · · , er,±er+1, · · · ,±en}.

In particular, there is an isomorphism

A[σ∨ ∩M ] ∼= A[x1, · · · , xr, x
±1
r+1, · · · , x

±1
n ]

so that Uσ,A is isomorphic to A
r
A ×G

n−r
m,A.
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If τ is a face of σ then the inclusion σ∨ ⊆ τ∨ induces a localization map A[σ∨∩M ] →

A[τ∨ ∩M ]. Passing to prime spectra induces an open immersion Uτ →֒ Uσ. Gluing
along these open immersions allows us to define the toric scheme over A associated to
a fan Σ, which we denote by XΣ,A. As above, when A is understood we omit it from
the notation. Notice also that this construction is compatible with base change in A.

Lemma 2.4. If Σ is a fan and A → B is a ring homomorphism, then there is a
canonical isomorphism

XΣ,A ×SpecA SpecB ∼= XΣ,B .

Proof. The affine case is clear, and since the isomorphisms are canonical over the
affine cover, they glue. �

Remark 2.5. Given a fan Σ and a base scheme S, one can define the relative toric
scheme XΣ,S → S by building toric schemes as in Definition 2.2 affine locally on S,
and then gluing canonically via Lemma 2.4.

When A = k is a field, there is a well known structural result.

Definition 2.6. A toric variety over k is a normal separated scheme of finite type
with an action by a split torus T = G

n
m such that there exists a point x ∈ X(k) with

trivial stabilizer and open dense orbit. By [13, Chapter 1, Theorem 6] every toric
variety is isomorphic to XΣ,k for a unique fan Σ, and conversely if Σ is a fan then
XΣ,k is a toric variety.

Remark 2.7. In the literature one encounters toric varieties which may not be nor-
mal. The toric varieties we study all correspond to fans, and are therefore normal
by [13, Chapter 1, Theorem 7]. Therefore when we say toric variety we shall always
assume normality.

We record a few more results that we will be using throughout the paper.

Proposition 2.8. A relative toric scheme XΣ,S → S is proper if and only if Σ is
complete.

Proof. The case where S = SpecA is affine is [6, Section 4 Proposition 4], and proper-
ness is local on the target. �

It is shown in [5, Corollary 7.4] that proper toric varieties have acyclic structure
sheaves, and cohomology and base change theorems extend this property to the rel-
ative setting, implying in particular that a proper toric variety over any ring has an
acyclic structure sheaf.

Proposition 2.9. Let S be a scheme and Σ a complete fan, and f : XΣ,S → S the
associated relative toric scheme. Then Rif∗OXΣ,S

= 0 for all i > 0. In particular, if
S = SpecA is affine, OXΣ,A

is acyclic.
4



Proof. By Lemma 2.4, X is the pullback to S of the proper Z scheme XΣ,Z → SpecZ.
By [5, Corollary 7.4], for each prime p of Z, the module OXΣ,Z

⊗ k(p) = OXΣ,k(p)
is

acyclic. In particular, for i > 0 the function p 7→ dimk(p)H
i(Xk(p),OXΣ,k(p)

) is the
constant zero function on SpecZ. Therefore by Grauert’s theorem of cohomology and
base change [19, Theorem 28.1.5] OXΣ,Z

is acyclic and its cohomology commutes with
arbitrary base change, whence the result follows. �

A toric variety XΣ comes equipped with an affine cover U = {Uσ → XΣ} as σ varies
over the maximal cones of Σ. By [9, Theorem 2.1], every line bundle on XΣ trivializes
on U so that much of this study reduces to the combinatorics of Σ.

Proposition 2.10. Let Σ be a fan, k a field, and X = XΣ,k the associated toric
variety. The Picard group of X does not depend on the field k.

Proof. Let {σ1, σ2, · · · , σr} ⊂ Σ be the set of maximal cones. Set Ui = Uσi,k, and
denote by U the cover {Ui → X}. The finite intersections of the Ui are affine toric
varieties and therefore by [9, Theorem 2.1] all have trivial Picard group. Therefore
the Čech-to-derived functor spectral sequence degenerates to an isomorphism

Pic(X) ∼= H1(X,O∗
X ) ∼= Ȟ1(U,O∗

X).

Consider the first three terms of the Čech sequence,

C0(U,O∗
X)

δ0
−→ C1(U,O∗

X )
δ1
−→ C2(U,O∗

X) −→ · · ·

Notice that for any cone σ, H0(Uσ ,OX) ⊆ k[x±1
1 , · · · , x±1

n ]. Any f ∈ H0(Uσ,O
∗
X)

must therefore be a monomial f = λxm1
1 · · · xmn

n = λχm for some m ∈ σ∨ ∩ M and
λ ∈ k∗. Let D1 ⊆ ker δ1 be the subgroup of all cocycles consisting of monic monomials
(χmij ), and let D0 = D1 ∩ im δ0. We have the following map of short exact sequences

0 im δ0 ker δ1 Ȟ1(U,O∗
X) 0

0 D0 D1 H̃ 0

where H̃ is defined as the cokernel of the inclusion D0 →֒ D1. As D0 and D1 consist
only of monic monomials, H̃ does not depend on k, only the combinatorics of Σ.
Therefore, if we prove the vertical map on the right is an isomorphism, we will be
done.

Fix a cocycle α = (αij) = (λijχ
mij ) ∈ ker δ1. Notice that the class of α does not

depend on the λij . Indeed, the class (λij) = δ0(λ1r, λ2r, · · · , λr−1,r, 1) (noticing that
the cocycle condition implies that λir/λjr = λij). Therefore we may assume that α
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is in D1 without changing the associated cohomology class, and so H̃ → Ȟ1(U,O∗
X)

surjects (by the commutativity of the diagram above). Let K be the kernel, and let Q0

and Q1 be the cokernels of the injections D0 → im δ0 and D1 → ker δ1 respectively.
Then the snake lemma gives us the following exact sequence

0 −→ K −→ Q0 −→ Q1 −→ 0.

If we show the map on the right injects we are done. But

Q0 = {(λiλ
−1
j χmi−mj )}/{(χmi−mj )} = {(λi/λj)} ∼= (k∗)(r−1).

Furthermore, since the λijχ
mij must satisfy the cocycle condition, we can deduce the

λij once we know them for one fixed j, so that

Q1 = {λijχ
mij}/{χmij} ∼= (k∗)(r−1).

This identifies Q0 → Q1 with the identity map and so we are done. �

The proof of Proposition 2.10 has a useful corollary which we record here for later
use. We will first need a definition.

Definition 2.11 (The nth power map). Fix a fan Σ and an integer n. For each σ ∈ Σ

the multiplication by n on M map induces a homomorphism A[M ∩σ∨] → A[M ∩σ∨].
This map is compatible with restrictions to faces τ ≤ σ, and therefore glues to a
morphism ϕn : XΣ,A → XΣ,A, which we will call the nth power map on XΣ,A

Corollary 2.12. Let k be a field and Σ a fan. The nth power map on X = XΣ,k

induces a pullback homomorphism ϕ∗
n : PicX → PicX which can be identified with

multiplication by n.

Proof. Let U be the same cover from the proof of Proposition 2.10, and recall that an
arbitrary Čech cocycle in Ȟ1(U,O∗

X ) may be represented by monic monomials, thus
be of the form (χmij ). Then pullback along ϕn corresponds to multiplication by n on
M so that it takes (χmij ) 7→ (χnmij ). But this is precisely the multiplication by n map
on (monic monomial) cocycles, so that it descends to the same on cohomology. �

3. Perfectoid Covers of Toric Varieties

To begin this section we review Scholze’s construction of the perfectoid cover of a
toric variety X = XΣ,K . We use Huber’s theory of adic spaces, a non-archimedean
analogue of complex analytic spaces, which are general enough to handle the infinite
ramification required to define perfectoid spaces. We will not develop the entire theory
of adic spaces here, but refer the reader to [11] and [12] where it was introduced, or
to [17, Section 2] for an introduction with more of an emphasis on perfectoid spaces.
We do introduce a few preliminary notions.

Definition 3.1. A Tate ring is a complete topological ring A such that there exists a
topologically nilpotent unit called the pseudouniformizer ̟ ∈ A and an open subring
A0 ⊂ A containing ̟ such that A0 has the ̟-adic topology. A ring of integral
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elements A+ ⊆ A is an open integrally closed subring of the power bounded elements
A◦.

Associated to such a pair (A,A+) is the adic spectrum Spa(A,A+) which is a
topological space whose underlying set consists of equivalence classes of valuations
on A which are bounded by 1 on A+. If x ∈ Spa(A,A+) is a point, we suggestively
denote the associated valuation by f 7→ |f(x)| for f ∈ A. General adic spaces are
locally of the form Spa(A,A+), and all adic spaces come equipped with various sheaves
related to their structure sheaf. We make heavy use of these sheaves so we define them
carefully.

Definition 3.2. Let X be an adic space with structure sheaf OX . The sheaf of integral
elements O+

X , a sheaf of (topological) rings defined by the rule

O+
X (U) = {f ∈ OX (U) : |f(x)| ≤ 1 for all x ∈ U} .

The sheaf of integral elements has an ideal O++
X ⊆ O+

X called the sheaf of topologically
nilpotent elements defined by the rule

O++
X (U) =

{

f ∈ O+
X (U) : |f(x)| < 1 for all x ∈ U

}

.

Perfectoid spaces are adic spaces built from special kinds of rings.

Definition 3.3. A topological ring A is a perfectoid Tate ring if it is a Tate ring
containing a pseudouniformizer ̟ ∈ A such that

• A is uniform, i.e. A◦ is bounded,
• ̟p|p in A◦,
• the p-power Frobenius map is an isomorphism

Φ : A◦/̟
∼

−→ A◦/̟p.

A (Tate) perfectoid space is an adic space which is locally the adic spectrum of per-
fectoid Tate rings.

Remark 3.4. There is a more general framework of so called Huber rings and per-
fectoid rings from which one can construct adic spaces and perfectoid spaces which
are not Tate. The main difference here is that one does not assert the existence of a
pseudouniformizer as in Definitions 3.1 and 3.3. This allows one to apply the theory
to rings which are more integral in nature. Nevertheless, we will not require this level
of generality because we will always be working over a perfectoid base field and will
therefore inherit a pseudouniformizer from this field.

7



Let K be a perfectoid field with valuation ring K◦ and residue characteristic p. To
any cone σ we can associate the Tate ring K〈σ∨ ∩M〉 of convergent power series in
the characters of σ. We form the associated adic space

Uσ := Spa
(

K〈σ∨ ∩M〉,K◦〈σ∨ ∩M〉
)

.

As with toric spaces, if τ is a face of σ we have an induced open immersion Uτ ⊂ Uσ

(we note that this is generally open in the analytic topology rather than the much
coarser Zariski topology). Therefore, if Σ is a fan we can form an adic space XΣ.

Remark 3.5. There is a fully faithful analytification functor X 7→ Xad from schemes
over K to adic spaces over K, but if XΣ is not proper then XΣ is not in general
isomorphic to (XΣ)

ad. For example, if Σ is the cone associated to N
n ⊆ Z

n, then
XΣ is the rigid analytic disk whereas (XΣ)

ad is affine space. Nevertheless, if Σ is a
complete fan (so that XΣ is proper), then we do have (XΣ) = (XΣ)

ad by [17, Section
8].

As in Definition 2.11, multiplication by p on M induces a map K〈σ∨ ∩ M〉 →

K〈σ∨∩M〉 inducing the p-power map ϕ on the adic spectra. Passing to the completed
direct limit results in the perfectoid algebra K〈σ∨ ∩M [p−1]〉 and on adic spectra this
translates to a so called tilde inverse limit (as in [17]):

Uperf
σ ∼ lim

←−
ϕ

Uσ.

This construction globalizes. If τ is a face of σ, then K〈σ∨ ∩ M [p−1]〉 → K〈τ∨ ∩

M [p−1]〉 is a rational localization so that Uperf
τ → Uperf

σ is an open immersion. There-
fore given a fan Σ, we can glue the affinoid perfectoid spaces Uperf

σ along their in-
tersections and construct a perfectoid space X perf

Σ . As in Definition 2.11, the map ϕ

commutes with this gluing, so that it induces a map of adic spaces X perf
Σ → XΣ, and

checking locally we see that in fact X perf
Σ ∼ lim

←−ϕ
XΣ.

Definition 3.6. Given a complete fan Σ the map X perf
Σ → XΣ is called the perfectoid

cover of the toric variety XΣ.

If K has characteristic p > 0 then ϕ can be identified with relative Frobenius over
K and X perf

Σ is the completed perfection of the adic space XΣ.

Remark 3.7. Inverse limits do not exist in general in the category of adic spaces.
That being said, if affinoid locally the completed direct limit of the ring of functions
is perfectoid, then the perfectoid space built from those rings satisfies the universal
property of inverse limit among all perfectoid spaces. It is in this sense that the tilde
inverse limit is well defined.

The tilde inverse limit agrees with a categorical inverse limit if we enlarge our
category. More precisely, perfectoid spaces embed in the category of diamonds [15]
which do have inverse limits. In this case the diamond in the limit is representable by
a perfectoid space, and this perfectoid space is the tilde inverse limit. We will not use
this formalism.
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Example 3.8. Let us see how this works in a couple of examples.

(1) Let σ be the cone associated to N
n ⊆ Z

n. Then K〈σ∨ ∩M〉 = K〈x1, · · · , xn〉

is the Tate algebra, and the associated adic space Uσ is the rigid analytic unit
disk D

n. The map

ϕ : K〈x1, · · · , xn〉 → K〈x1, · · · , xn〉

is the homomorphism taking xi 7→ xpi for each i, and the completed direct
limit along ϕ is the perfectoid Tate algebra

K〈σ∨ ∩M [p−1]〉 = K〈x
1/p∞

1 , · · · , x1/p
∞

n 〉.

Thus the perfectoid cover Uperf
σ is the perfectoid unit disk D

perf
n .

(2) Let σ be the cone associated to {0}. Then K〈σ∨∩M〉 = K〈x±1
1 , · · · , x±1

n 〉 and
Uσ is the rigid analytic torus Tn. Uperf

σ is the perfectoid torus Tn,perf associated
to

K
〈

σ∨ ∩M [p−1]
〉

= K〈x
±1/p∞

1 , · · · , x±1/p∞

n 〉.

(3) Let σ be a smooth cone. As in Example 2.3 we may take σ∨ ∩ M to be
generated by {e1, e2, · · · , er,±er+1, · · · ,±en}. Then

K〈σ∨ ∩M〉 = K〈x1, · · · , xr, x
±1
r+1, · · · , x

±1
n 〉,

so that Uσ
∼= D

r × T
n−r. Taking limits along ϕ we have

K〈σ∨ ∩M [p−1]〉 ∼= K〈x
1/p∞

1 , · · · , x1/p
∞

r , x
±1/p∞

r+1 , · · · , x±1/p∞

n 〉,

so that Uperf
σ

∼= D
r,perf × T

n−r,perf.
(4) Let e1, · · · , en be a basis for the free abelian group N , and let e0 = −e1− e2−

· · · − en. Define Σ to be the fan generated by proper subsets of {e0, · · · , en}.
Then one can check [4, Example 3.1.10] that XΣ = P

n. As this is proper, the
discussion in Remark 3.5 implies that the adic space associated to Σ is also
projective space. One can identify the map ϕ with the map

[x0 : · · · : xn] 7→ [xp0 : · · · : x
p
n]

in projective coordinates, so that the associated perfectoid cover is projectivoid
space P

n,perf, which is studied extensively in [7].

Many of our computations will be working explicitly with various Čech complexes
associated to the cover U of X perf. They will all be built by taking units and quotients
of the following complex.

Definition 3.9. Let Σ be a complete fan, and consider the associated perfectoid space
X perf := X perf

Σ . Let {σ1, · · · , σr} be the maximal cones of Σ and consider the cover
U = {Uperf

σi → X perf}. We define C•
Xperf := Č(U,O+

Xperf) to be the Čech complex for
the sheaf O+

Xperf with respect to the cover U. Concretely, we have
9



C•
Xperf = 0 →

∏

i

K◦
〈

σ∨
i ∩M [p−1]

〉

→
∏

i<j

K◦
〈

(σi ∩ σj)
∨ ∩M [p−1]

〉

→ · · ·

· · · → K◦
〈

(σ1 ∩ · · · ∩ σr)
∨ ∩M [p−1]

〉

→ 0.

Proposition 3.10. With notation as in Definition 3.9, we have Hi(C•
Xperf) = 0.

Proof. We first remark that by construction we have O+
Xperf(U

perf
σ ) = K◦〈σ∨∩M [p−1]〉

for every σ ∈ Σ. Note also that multiplication by p induces an isomorphism on M [p−1],
and therefore an isomorphism on K◦〈σ∨ ∩M [p−1]〉. This commutes with differentials
on the Čech complex C•

Xperf , so that passing to cohomology we get an isomorphism on
Hi(C•

Xperf). We would like to use this to clear denominators on the exponents of our
cocycles and reduce to the case of Proposition 2.9, but in order to show a finite power
of p will clear these denominators, we have to show that it suffices to consider cocycles
represented by polynomials. To do so we construct the following cochain complex:

C•
Xperf,f = 0 →

∏

i

K◦
[

σ∨
i ∩M [p−1]

]

→
∏

i<j

K◦
[

(σi ∩ σj)
∨ ∩M [p−1]

]

→ · · ·

· · · → K◦
[

(σ1 ∩ · · · ∩ σr)
∨ ∩M [p−1]

]

→ 0.

Notice that the (termwise) ̟-adic completion of this complex is C•
Xperf . The terms

in the sequence are linearly topologized K◦-modules with a countable system of fun-
damental neighborhoods of 0 (given by the ̟n), and the differentials are continuous
maps. Therefore, applying [18, Tag 0AS0] in descending induction, the associated
short exact sequences giving the cohomology of C•

Xperf,f
remain exact upon comple-

tion. In particular, the completion of this sequence commutes with taking cohomology,
so that we have that H i(C•

Xperf) = Hi(C•
Xperf,f

)∧. Therefore it suffices to prove that
the nonzero cohomology of C•

Xperf,f
vanishes.

Let X0 := XΣ,K◦ be the toric scheme associated to Σ over K◦, and consider the
induced affine cover U0 = {Uσi,K◦ → X0}. As X0 is proper, Čech cohomology with
respect to an affine cover computes quasicoherent cohomology, so that applying Propo-
sition 2.9 we have for i > 0,

Ȟi(U0,OX0) = Hi(X0,OX0) = 0.

Furthermore, the natural inclusions K◦[σ∨ ∩M ] →֒ K◦[σ∨ ∩M [p−1]] for each σ ∈ Σ

induce the following map of cochain complexes:

· · · Ci−1(U0,OX0) Ci(U0,OX0) Ci+1(U0,OX0) · · ·

· · · Ci−1
Xperf,f

Ci
Xperf,f

Ci+1
Xperf,f

· · ·

δi−1
0 δi0

δi−1 δi

10



As above, multiplication by p on M [p−1] induces an isomorphism of C•
Xperf,f

which
commutes with differentials. In particular it induces an isomorphism of Hi(C•

Xperf,f
)

with itself. Fix some α = (
∑

λmχm)I ∈ Ci
Xperf,f

where I indexes over the product.
We denote by p∗α = (

∑

λmχpm)I . If α ∈ ker δi, then so is p∗α. For some N we have
pN ∗α ∈ Ci(U0,OX0), and thus in ker δi0. But OX0 is Čech acyclic so pN ∗α = δi−1

0 (β)

for some β. Viewing β as an element of Ci−1
Xperf,f

we see that

δi−1(p−N ∗ β) = p−N ∗ δi−1(β) = p−N ∗ pN ∗ α = α

In particular, C•
Xperf,f

is exact in the ith position and we win.
�

3.1. Triviality for Picard Groups for Affinoid Perfectoid Toric Spaces. In
order to study the Picard group of X perf := X perf

Σ , we would like to make use of the
cover U = {Uperf

σ → X perf
Σ } induced by the maximal cones of σ ∈ Σ. In particular,

if every line bundle on X perf
Σ trivialized on this cover and its various intersections, it

would suffice to study the Čech cohomology group Ȟ1(U,O∗
Xperf), which is accessible in

practice. By a limiting argument it will suffice to show that the affinoid neighborhoods
Uσ of the toric variety XΣ have trivial Picard groups.

Definition 3.11. Let XΣ (respectively X perf
Σ ) be the rigid space (resp. perfectoid

space) associated to a fan Σ. If the Picard groups of the affinoid neighborhoods Uσ

(resp. Uperf
σ ) are trivial for each cone σ ∈ Σ, we say that the Picard group of XΣ (resp.

X perf
Σ ) trivializes on the analytic affinoid cover induced by the fan.

Lemma 3.12. If XΣ is a rigid space associated to a smooth fan, then the Picard group
of XΣ trivializes on the analytic affinoid cover induced by the fan.

Proof. If σ is a smooth cone then Uσ = D
r×T

n−r as in Example 3.8(3). Then the Pi-
card group of Uσ corresponds to projective modules on K〈x1, · · · , xr, x

±1
r+1, · · · , x

±1
n 〉,

which were shown to be trivial in [14, Satz I]. �

We spend the rest of the section proving the following result.

Proposition 3.13. Let XΣ be a toric rigid space with perfectoid cover X perf
Σ . If the

Picard group of XΣ trivializes on the analytic affinoid cover induced by the fan, then
the same can be said for X perf

Σ .

We will use a limiting argument together with the following theorem of Gabber and
Ramero.

Proposition 3.14 ([8, 5.4.42]). Let R be a commutative ring, t ∈ R a nonzero divisor,
and I ⊆ R an ideal. Let R̂ be the (t, I)-adic completion of R, and suppose (R, tI) form
a henselian pair. Then the base extension functor R[t−1]-Mod → R̂[t−1]-Mod induces
a bijection between isomorphism classes of finite projective R[t−1]-modules and finite
projective R̂[t−1]-modules.

11



Let us formulate the specific consequence of Proposition 3.14 in the way we will use
it.

Corollary 3.15. Let R = ∪Ri be the union of t-adically complete rings, and let
R̂ be its t-adic completion. Then the natural map PicR[t−1] → Pic R̂[t−1] is an
isomorphism. Furthermore, if PicRi[t

−1] = 0 for all i, then Pic R̂[t−1] = 0

Proof. We first establish the isomorphism PicR[t−1] → Pic R̂[t−1], for which it suffices
to show that (R, tR) form a henselian pair so that the result follows immediately from
Proposition 3.14. Suppose f(x) ∈ R[x] is monic, and that after reducing mod t, f(x) =
g0(x)h0(x) with g0, h0 monic. For some large i, we have f(x) ∈ Ri[x]. Furthermore,
one checks (using for example [18, Tag 00DD]) that R/tR ∼= colimRi/tRi. Therefore
(perhaps increasing i) we also have g0(x), h0(x) ∈ (Ri/tRi)[x]. But as Ri is t-complete,
(Ri, tRi) form a henselian pair [18, Tag 0ALJ], and so the factorization lifts to f(x) =

g(x)h(x) ∈ Ri[x] ⊆ R[x]. Therefore (R, tR) form a henselian pair, and we have
established the desired isomorphism

For the second statement it now suffices to show that every invertible R[t−1]-module
is free. By [18, Tag 0B8W], every invertible R[t−1]-module is the base extension of
some invertible Ri[t

−1]-module, which is free by assumption. �

Proof of Proposition 3.13. Fix σ ∈ Σ and let Ri = K◦〈σ∨ ∩ p−iM〉, and let R = ∪Ri.
Then K〈σ∨ ∩M [p−1]〉 = R̂[1/̟] where ̟ is a pseudouniformizer of K. Therefore by
Corollary 3.15 it suffices to show that every invertible Ri[1/̟] module is free. But as
these are K〈σ∨ ∩ p−iM〉 ∼= K〈σ∨ ∩M〉, which have trivial Picard group is trivial by
assumption. �

Lemma 3.12 gives the following immediate corollary.

Corollary 3.16. Let Σ be a smooth cone. Then the Picard group of X perf
Σ trivializes

on the affinoid cover induced by the fan.

Remark 3.17. If XΣ is a toric variety (viewed as a scheme), the analogous statement
for the Zariski affine cover of XΣ always holds by [9, Theorem 2.1]. Therefore, if the
Picard group of K[σ∨∩M ] remains trivial after completion, all of the rigid toric spaces
we are studying satisfy Definition 3.11, and the smoothness hypothesis can be dropped.

One might attack this in the following way: Let k = K◦/K◦◦ be the special fiber.
Then [9, Theorem 2.1] implies that the Picard group of k[σ∨∩M ] is trivial, and a simple
deformation argument [7, Corollary 2.15] shows the same can be said for K◦〈σ∨∩M〉.
One then must argue that the Picard group remains trivial after inverting ̟.

4. Comparison Isomorphisms

We now prove the main theorem of this manuscript. For the rest of this section
we fix a perfectoid field K with valuation subring K◦, maximal ideal m, and residue
field k = K◦/m. Set Σ to be a complete fan, and assume that the Picard group of
the rigid space XΣ is trivialized on the affinoid cover induced by Σ (for example if Σ

12



is smooth). We fix two schemes X = XΣ,K and X0 = XΣ,k, and let X perf = X perf
Σ,K

be the perfectoid cover of X. Also let {σ1, · · · , σr} be the maximal cones of Σ, and
let U = {Uperf

σi,K
→ X perf} be the induced cover of X perf. For simplicity, we denote by

Uperf
i := Uperf

σi,K
and Uperf

i1···it
:= Uperf

σi1
∩···∩σit

= Uperf
i1

∩ · · · ∩ Uperf
it

. Our main theorem is the
following.

Theorem 4.1. There is a canonical isomorphism Pic(X perf) ∼= Pic(X)[p−1].

Our rough strategy consists of 3 main steps.

• Extension Step: In Section 4.1, we show that each line bundle on X perf ex-
tends uniquely to the integral model. The inclusion O+∗

Xperf →֒ O∗
Xperf induces a

map H1(X perf,O+∗

Xperf) → H1(X perf,O∗
Xperf), which we show is an isomorphism.

• Deformation Step: In Section 4.2, we show that each line bundle on the
special fiber which is trivial on the cover U deforms uniquely to an integral
model. To do this, we take the Čech complex C∗•

Xperf of O+∗

Xperf along the
standard cover and compare it with its reduction modulo topological nilpotents
C∗•
Xperf .

• Explicit Comparison: In Section 4.3 we directly identify H1(C∗•
Xperf) with

the Picard group of the (scheme-theoretic) perfection of X0 (the toric variety
with the same fan over the special fiber). Since Picard groups of schemes
arising as inverse limits are easily computed using classical techniques, this
gives the result.

In the three steps outlined above we do not work directly with sheaf cohomology
groups, but rather the Čech cohomology groups associated to the cover U induced
by the fan. This allows us to do very explicit computations with cochain complexes.
More precisely, we work with quotients of the Čech complex for O+∗

Xperf , which are not
necessarily the same as Čech complexes associated to the quotient sheaves. We will
therefore prove Theorem 4.1 by establishing the following chain of isomorphisms:

PicX perf ∼= H1(X perf,O∗
Xperf)(4.1)

∼= Ȟ1(U,O∗
Xperf)(4.2)

∼= Ȟ1(U,O+∗

Xperf)(4.3)

∼= H1(C∗•
Xperf)(4.4)

∼= Pic(X0)[p
−1](4.5)

∼= Pic(X)[p−1].(4.6)

We know isomorphism (4.1) holds for any locally ringed space. Proposition 3.13
shows that all line bundles on Uperf

σ are trivial so that the low degree terms of the
Čech-to-derived functor spectral sequence establish isomorphism (4.2). Isomorphism
(4.6) is the content of Proposition 2.10. It remains to establish the isomorphisms
(4.3),(4.4) and (4.5).
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4.1. Comparison to the Sheaf of Integral Elements. In this section we establish
isomorphism (4.3), completing the extension step of our outline. In fact, we prove
something slightly more general, from which the desired isomorphism follows setting
i = 1.

Lemma 4.2. For all i > 0, we have Ȟi(U,O∗
Xperf) ∼= Ȟi(U,O+∗

Xperf).

Proof. For each σ ∈ Σ, there is a canonical Gauss norm

| · | : K〈σ∨ ∩M [p−1]〉 −→ |K∗| ∪ {0},

which extends the nonarchimedean absolute value of K. It is given by the rule
|
∑

λmχm| = sup{|λm|}. Restricting to unit groups induces a surjective homomor-
phism O∗

Xperf(U
perf
σ ) → |K∗| whose kernel consists of invertible elements with absolute

value 1. But these are precisely the invertible integral elements O+∗

Xperf(U
perf
σ ). As

the Gauss norm commutes with localization, we have the following exact sequence of
cochain complexes:

0
∏

i O
+∗

Xperf(U
perf
i )

∏

iO
∗
Xperf(U

perf
i )

∏

i |K
∗| 0

0
∏

i<j O
+∗

Xperf(U
perf
ij )

∏

i<j O
∗
Xperf(U

perf
ij )

∏

i<j |K
∗| 0

0
∏

i<j<k O
+∗

Xperf(U
perf
ijk )

∏

i<j<k O
∗
Xperf(U

perf
ijk )

∏

i<j<k |K
∗| 0.

...
...

...

The left and middle sequences are the Čech sequences for O+∗

Xperf and O∗
Xperf re-

spectively. Furthermore, the sequence on the right has kernel |K∗| and is otherwise
exact (arguing for example as in [18, Tag 02UW]). Therefore taking the associated
long exact sequence of cohomology groups completes the proof. �

4.2. Deformations. In this section we establish isomorphism (4.4), completing the
deformation step of our outline.

Definition 4.3. Let C∗•
Xperf denote the Čech complex for O+∗

Xperf associated to U. Let
C∗•
Xperf denote the reduction mod 1+O++

Xperf of C∗•
Xperf . In particular, each O+∗

Xperf(U
perf
σ )

term of C∗•
Xperf is replaced by

O+∗

Xperf(U
perf
σ )/(1 +O++

Xperf(U
perf
σ )) ∼= (O+

Xperf(U
perf
σ )/O++

Xperf(U
perf
σ ))∗.

See [7, Lemma 3.8] and the discussion directly after for more details on this isomor-
phism.
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The reduction map C∗•
Xperf → C∗•

Xperf of complexes induces a natural map on coho-
mology

(4.7) ϕ : H1(C∗•
Xperf) −→ H1(C∗•

Xperf),

and the main result of this section is the following:

Proposition 4.4. The map ϕ defined in Equation (4.7) is an isomorphism.

As a first step, we establish surjectivity.

Lemma 4.5. The map ϕ has a natural section ψ. In particular, ϕ surjects.

Proof. As {0} is a face of each σi there are compatible embeddings

O+
Xperf(U

perf
i ) →֒ K◦

[

x
±1/p∞

1 , · · · , x±1/p∞

n

]

reducing to compatible embeddings

O+
Xperf(U

perf
i )/O++

Xperf(U
perf
i ) →֒ k

[

x
±1/p∞

1 , · · · , x±1/p∞
n

]

.

In particular, we may give Čech cocycles those coordinates and observe that invertible
elements must be monomials. Denote by δ

i
the differentials of the Čech complex

C∗•
Xperf , and fix a cocycle

α = (αij) = (λijx
mij,1

1 · · · x
mij,n
n ) ∈ ker δ

1
.

We first notice that the cocycle of constants (λij) is a coboundary. Indeed, letting

x = (λ1,r, λ2,r · · · , λr−1,r, 1),

then the cocycle condition on the λij implies δ0(x) = (λij). In particular, the class of
α in cohomology does not depend on the constant terms of the monomial, so we may
take αij = x

mij,1

1 · · · x
mij,n
n . We therefore define ψ on the level of cocycles by

ψ
(

(x
mij,1

1 · · · x
mij,n
n )

)

= (x
mij,1

1 · · · x
mij,n
n )

which is certainly a section of ϕ. �

To show that this section is in fact an inverse, we construct some intermediary
Čech complexes to interpolate between C∗•

Xperf and C∗•
Xperf . Let ̟ ∈ K be a pseu-

douniformizer. Then for each positive d ∈ Z[p−1] there is a sheaf of principal ideals
(̟d) →֒ O+

Xperf . This induces an injection 1+(̟d) →֒ O+∗

Xperf , which gives an injection
of Čech complexes Č(U, 1 + (̟d)) →֒ C∗•

Xperf . To ease notation, we write (1 + (̟d))•

for the complex Č(U, 1 + (̟d)).
Let C∗•

Xperf,d
denote the reduction mod (1 + (̟d))• of C∗•

Xperf . So we have the short
exact sequence of complexes

1 → (1 + (̟d))• → C∗•
Xperf → C∗•

Xperf,d → 1.
15



Somewhat more explicitly, we have

C∗•
Xperf,d = 0 →

∏

i

O+∗

Xperf(U
perf
i )/(1 + (̟d)) →

∏

i<j

O+∗

Xperf(U
perf
ij )/(1 + (̟d)) → · · · .

This is a complex of K◦/̟d-modules. We have natural maps C∗•
Xperf,d′

→ C∗•
Xperf,d

whenever d′ > d.
We show that the complexes C∗•

Xperf,d
interpolate continuously between C∗•

Xperf and
C∗•
Xperf .

Lemma 4.6 ([7] Lemma 3.10). lim
−→

C∗•
Xperf,d

∼= C∗•
Xperf and lim

←−
C∗•
Xperf,d

∼= C∗•
Xperf .

Proof. To compute the direct limit, we show that

(4.8) lim
−→

d∈Z[p−1]>0

(1 + (̟d)) = 1 +O++
Xperf .

We interpret the colimit as a union, and notice that Equation (4.8) follows if

O++
Xperf =

⋃

d∈Z[p−1]>0

(̟d).

To see this, we fix an affinoid open U ⊆ X, and a topologically nilpotent function
f ∈ O++

Xperf(U). Since f is topologically nilpotent, we can take large r so that fpr

lands in the ideal of O+
Xperf(U) generated by ̟ (as this ideal is an open neighborhood

of 0). We write fpr = g̟ for g ∈ O+
Xperf(U). Rephrasing we see

(

f

̟1/pr

)pr

∈ O+
Xperf(U).

But O+
Xperf(U) is integrally closed in OXperf(U), so this in turn implies that f/̟1/pr ∈

O+
Xperf(U), or equivalently, that f is contained in the ideal of O+

Xperf(U) generated by
̟1/pr . In particular, f is contained in the union of the ideals generated by the ̟d for
d ∈ Z[p−1]>0. This completes the verification of Equation (4.8).

For the inverse limit, notice that lim
←−

C•
Xperf,d

∼= C•
Xperf since C•

Xperf is ̟-adically
complete. Since the unit group functor commutes with inverse limits (indeed, it is
right adjoint to the group ring functor), we are done. �

We now will deform the Čech cohomology groups in question along these quotient
complexes. The following lemma sets up the argument.

Lemma 4.7 ([7] Lemma 3.12). Let C•
Xperf be the Čech complex for O+

Xperf associated to
U ; let C•

Xperf,d
be the quotient by (̟d)•. For all d ∈ Z[p−1]>0 and i > 0, Hi(C•

Xperf,d
) =

0.

Proof. Consider the long exact sequence of Čech complexes induced by the short exact
sequence 0 → (̟d)• → C•

Xperf → C•
Xperf,d

→ 0. Since (̟d) ∼= O+
Xperf , Proposition 3.10

tells us that the left and middle complexes are acyclic, so the right one is as well. �

This allows us to show that changing d leaves the cohomology of C∗•
Xperf,d

unchanged,
allowing us to deform.
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Lemma 4.8 ([7] Lemmas 3.13 and 3.14). For all d′ > d > 0 in Z[p−1]>0 and i > 0,
the natural map

Hi(C∗•
Xperf,d′) −→ Hi(C∗•

Xperf,d)

is an isomorphism. When i = 0, the map

H0(C∗•
Xperf,d′) −→ H0(C∗•

Xperf,d)

is surjective.

Proof. We first consider the case where d′ = 2d. We have the following diagram whose
rows are exact sequences of Čech complexes,

0 (1 + (̟2d))• C∗•
Xperf C∗•

Xperf,2d
0

0 (1 + (̟d))• C∗•
Xperf C∗•

Xperf,d
0

The snake lemma exhibits the exact sequence

(4.9) 1 −→
(1 + (̟d))•

(1 + (̟2d))•
−→ C∗•

Xperf,2d −→ C∗•
Xperf,d −→ 1.

We claim that the quotient of complexes (1+(̟d))•

(1+(̟2d))•
is isomorphic to C•

Xperf,d
. To see

this, note that for any open subset U we have:

(1 + (̟d))•

(1 + (̟2d))•
(U) ∼=

1 +̟dO+
Xperf(U)

1 +̟2dO+
Xperf(U)

∼= 1 +
̟dO+

Xperf(U)

̟2dO+
Xperf(U)

.

We can then construct a map to the right hand side from O+
Xperf(U) by the rule

a 7→ 1 + a̟d. The map is a homomorphism because ̟d/̟2d squares to zero, it is
clearly surjective, and the kernel is precisely the ideal generated by ̟d so that it
induces an isomorphism from C•

Xperf,d
. In particular, by Lemma 4.7, 1 +̟d/̟2d has

no higher Čech cohomology. Therefore the case of the result for d′ = 2d follows from
the long exact sequence on Čech cohomology associated Sequence (4.9).

For general d′ > d > 0, the previous paragraph allows us to replace d with 2ld, so
we may assume d < d′ < 2d. Then when i > 0, we have the following commutative
diagram, where the top and bottom rows are isomorphisms again by the previous
paragraph.

Hi(C∗•
Xperf,2d

) Hi(C∗•
Xperf,d

)

Hi(C∗•
Xperf,2d′

) Hi(C∗•
Xperf,d′

)

γ

∼

∼

In particular, γ is injective and surjective, hence an isomorphism. If i = 0, the bottom
row is surjective, so γ must be surjective as desired. �

Lemma 4.9. The map H1(C∗•
Xperf) → lim

←−
H1(C∗•

Xperf,d
) is an isomorphism.
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Proof. Form the inverse system C∗
Xperf = (C∗•

Xperf,d
)d∈N. This is an object of the

derived category of Mod(N, (K◦/̟d)), where Mod(N, (K◦/̟d)) is the category of
inverse systems (Md) of abelian groups such that each Md is a K◦/̟d-modules and
the transition maps Md+1 → Md is a map of K◦/̟d+1-modules.

By [18, Tag 0CQE], we have a short exact sequence of K◦-modules:

(4.10) 0 → R1 lim
←−
d

H0(C∗•
Xperf,d) → H1(R limC∗

Xperf) → lim
←−
d

H1(C∗•
Xperf,d) → 0.

We first check that R limC∗
Xperf

∼= C∗•
Xperf , showing the right arrow in the sequence

the map we care about.
Consider the diagram

0
∏

i

O+∗

Xperf(U
perf
i )

∏

i<j

O+∗

Xperf(U
perf
ij ) · · ·

...
... · · ·

0
∏

i

O+∗

Xperf(U
perf
i )/(1 + (̟2))

∏

i<j

O+∗

Xperf(U
perf
ij )/(1 + (̟2)) · · ·

0
∏

i

O+∗

Xperf(U
perf
i )/(1 + (̟))

∏

i<j

O+∗

Xperf(U
perf
ij )/(1 + (̟)) · · · .

Here the top row is C∗•
Xperf and everything below it is C∗

Xperf . By Lemma 4.6 we see
that each term in the top row is the inverse limit of the modules in that column.

All vertical maps are quotients, so the columns satisfy the Mittag-Leffler condition.
Let C∗,p

Xperf,d
be the pth term of the complex C∗•

Xperf,d
. Then by [18, Tag 091D(3)],

R1 lim
←−d

C∗,p
Xperf,d

= 0 for all p. Using this, [18, Tag 091D(5)] implies that R limC is
represented by the complex whose term in degree p is lim

←−d
C∗,p
Xperf,d

, which is exactly
the top row of the diagram.

To show that the right map in Equation 4.10 is an isomorphism, we must show that
R1 lim

←−d
H0(C∗•

Xperf,d
) vanishes. By Lemma 4.8, the inverse system (H0(C∗•

Xperf,d
))d∈N

has surjective transition maps. It is therefore Mittag-Leffler, so its R1 lim vanishes as
desired.

�

We are now ready to assemble all this work into a proof of Proposition 4.4.
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Proof of Proposition 4.4. We have shown that ϕ decomposes into the following com-
position of isomorphisms,

H1(C∗•
Xperf) ∼= H1(lim

←−
C∗•
Xperf,d)(4.11)

∼= lim
←−

H1(C∗•
Xperf,d)(4.12)

∼= H1(C∗•
Xperf,d)(4.13)

∼= lim
−→

H1(C∗•
Xperf,d)(4.14)

∼= H1(lim
−→

C∗•
Xperf,d)(4.15)

∼= H1(C∗•
Xperf).(4.16)

That lines (4.11) and (4.16) are isomorphisms is Lemma 4.6. That line (4.12) is an
isomorphism is Lemma 4.9. Lines (4.13) and (4.14) are isomorphisms because they
are inverse and direct limits of a system of isomophisms due to Lemma 4.8. Line
(4.15) is an isomorphims because filtered colimits of abelian groups are exact.

�

As Ȟ1(U,O+∗

Xperf) = H1(C∗•
Xperf) by definition, we have now established isomorphism

(4.4).

4.3. Comparison to the Perfection of the Toric Variety over the Residue.

To finish we must establish isomorphism (4.5), between H1(C∗•
Xperf) and Pic(X0)

[

p−1
]

.
To do so, we establish a bit of notation. Let Ui = Uσi,k, and define U0 = {Ui → X0}

the standard cover of the toric variety X0 induced by Σ. Let Xperf
0 be the (scheme

theoretic) perfect closure of X0 (that is, the inverse limit along Frobenius in the
category of schemes). Then U

perf
0 = {Uperf

i → Xperf
0 } is an open cover of Xperf

0 as
perfect closures commute with base change.

Lemma 4.10. There is a natural isomorphism H1(C∗•
Xperf) ∼= Ȟ∗(Uperf

0 ,O∗

Xperf
0

).

Proof. Since k is perfect, there is a natural identification

k
[

σ∨ ∩M [p−1]
]

= H0(Uperf
σ ,O

Xperf
0

).

In particular the unit groups and localization maps are identified, so that this passes
to a natural identification of complexes

C∗•
Xperf

∼= Č(Uperf
0 ,O∗

Xperf
0

).

Passing to cohomology completes the proof. �

By [9, Theorem 2.1], every line bundle on X0 trivializes on U0, so that the Čech-to-
derived functor spectral sequence gives an isomorphism Ȟ1(U0,O

∗
X0

) ∼= PicX0. Fur-
thermore, we can pass [9, Theorem 2.1] to the colimit along Frobenius (applying, for
example [18, Tag 0B8W]), so that every line bundle on Xperf

0 trivializes on U
perf
0 . Again

by the Čech-to-derived functor spectral sequence we see that Ȟ1(Uperf
0 ,O∗

Xperf
0

) ∼=

PicXperf
0 .
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Proposition 4.11. Suppose S is a quasicompact quasiseparated scheme over a field
of characteristic p. Let Sperf be its perfect closure. Then Pic(Sperf) ∼= Pic(S)[p−1].

Proof. As Sperf is perfect, the Frobenius map on O∗
Sperf is an isomorphism. Passing

to the first cohomology group shows that the p-th power map on Pic(Sperf) is an
isomorphism. This implies that the pullback map Pic(S) → Pic(Sperf) factors through
Pic(S)[p−1], so we have,

Pic(S) → Pic(S)[p−1] → Pic(Sperf).

We must show the righthand map is an isomorphism. We remind ourselves that
Sperf = lim

←−
S along Frobenius. As Frobenius is an affine morphism and S is quasi-

compact and quasiseparated, every line bundle on Sperf is the pullback of a line bundle
from one of the factors [18, Tag 0B8W]. This proves surjectivitiy.

To show injectivity it is equivalent to show that the kernel of Pic(S) → Pic(Sperf)

is p-power torsion. Fix some L in the kernel, and represent it by a cover {Vi → S} and
gluing functions fjk ∈ OS(Vjk)

∗ ⊆ OSperf (V
perf
jk )∗. Then the fact that L pulls back to

a trivial bundle means that fjk = fj/fk for various fi ∈ OSperf (V
perf
i )∗. There is some

large N such that each for each i we have fpN

i ∈ OS(Vi)
∗, so that fpN

jk = fpN

j /fpN

k . In

particular the cocycle (fpN

jk ) is a coboundary and therefore its gluing data is trivial,

whence L⊗pN ∼= OSperf . �

As X0 is proper, we have established that Pic(Xperf
0 ) ∼= Pic(X0)[p

−1], which is
isomorphism 4.5. This was the final link in the proof of Theorem 4.1.

Remark 4.12 (A note on canonicity). Notice that the multiplication by p map is an
isomorphism on Pic(X perf). Once we fix a projection map π0 : X

perf → X the isomor-
phism from Theorem 4.1 becomes canonical in the following sense. The construction
of the perfectoid cover produces the following commutative diagram where ϕ = ϕp is
the pth power map of Definition 2.11

X perf · · · X X · · · X.

πk+1

πk

π0

ϕ

Passing to Picard groups this induces by universal property a canonical homomorphism

lim
−→
ϕ∗

Pic(X) → Pic(X perf).

By Corollary 2.12, ϕ∗ is multiplication by p so that the source is canonically isomorphic
to Pic(X)[p−1]. Composing gives a canonical homomorphism

Pic(X)[p−1] → Pic(X perf)
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which is an isomorphism by Theorem 4.1. In particular, identifying L ∈ Pic(X perf)

with a formal pth tensor root M1/pk of some M ∈ Pic(X) in turn identifies L with
the pullback of M from the kth level of the tower: L ∼= π∗

kM.

5. Cohomology of Line Bundles

We will conclude with a computation of the cohomology of line bundles on the
perfectoid cover of a toric variety. The standard setup will be the following.

Setup 5.1. Let Σ be a complete fan, K a perfectoid field, and X = XΣ,K the associated
toric variety with perfectoid cover X perf → X. Assume that the Picard group of XΣ

trivializes on the affinoid cover induced by Σ (so that Theorem 4.1 applies). As in
Remark 4.12, fix L ∈ PicX perf and a line bundle M ∈ PicX such that:

L ∼= M1/pk ∼= π∗
kM,

where πk is projection onto the k-th factor of the inverse limit.

Theorem 5.2. In the situation of Setup 5.1, for all i ≥ 0, there is a canonical
homomorphism

γ : colimnH
i(X,Mpn−k

) −→ Hi(X perf,L).

Furthermore, one can endow the source and target with with the structure of topological
K-vector spaces in a way such that the target is the completion of the source, and γ

is the canonical inclusion. In particular, with this topology fixed, we have:
(

colimnH
i(X,Mpn−k

)
)∧

∼= Hi(X perf,L).

Remark 5.3. Without loss of generality we may assume that the identification L =

M1/pk can be made with k = 0. This is because the p-power map on ϕ : X perf → X perf

(Definition 2.11) is an isomorphism, as it is determined affinoid locally by multiplica-
tion by p on the free abelian group M [1/p]. The isomorphism ϕ∗L ∼= Lp, (Corollary
2.12) is adjoint to an isomorphism L ∼= ϕ∗L

p, which as ϕ is an isomorphism passes
to a K-linear isomorphism of the cohomology of L and ϕ∗L

p. This composes to a
canonical isomorphism on the cohomology of L and Lp applying Lemma 5.4 below.

5.1. Construction of the Comparison Map. We first construct the canonical
map. We need the following immediate consequence of the Leray spectral sequence.

Lemma 5.4. Let f : Y → Z be a map of topological spaces, and F a sheaf of abelian
groups on Y . For all i there are natural maps Hi(Z, f∗F) → Hi(Y,F), which are
isomorphisms if f is.

Proof. This is an immediate consequence of the filtration of the E∞ page from the
Leray spectral sequence

Ep,q
2 : Hp(Z,Rqf∗F) =⇒ Hp+q(Y,F).

�
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We will now build the map from Theorem 5.2. We assume the conditions of Setup
5.1, identifying L ∈ PicX perf with M1/pk , for M ∈ PicX , By Remark 5.3 we may
assume k = 0.

Proposition 5.5. There is a canonical homomorphism

γ : colimnH
i(X,Mpn) −→ Hi(X perf,L).

Proof. Let ϕ be the pth power map on X. We know by Corollary 2.12 that there is
an isomorphism ϕ∗M ∼= Mp, which is adjoint to a map M → ϕ∗M

p. Passing to
cohomology and composing with the map from Lemma 5.4 gives a homomorphism
ρ : Hi(X,M) → Hi(X,Mp). Arguing similarly, for each m > 0, the isomorphisms
L ∼= π∗

mMpm induce canonical maps γm : Hi(X,Mpm) → Hi(X perf,L), and these fit
compatibly in the following diagram.

(5.1)

Hi(X,M)

Hi(X,Mp)

Hi(X,Mp2)

... Hi(X perf,L)

colimHi(X,Mpn).

ρ

γ0

γ1

γ2

∃!γ

�

5.2. Topologizing the Cohomology Groups. We will use Čech cohomology with
respect to the usual cover to endow the source and target of γ with topologies. We
let {σ1, · · · , σr} be the maximal cones of Σ, and consider the covers U = {Uσi

→ X}

and Uperf = {Uperf
σi → X perf}. We first record that Čech cohomology is effective with

respect to these covers.

Lemma 5.6. Consider the situation of Setup 5.1, and let U and Uperf be the standard
covers of X and X perf respectively. Then the natural maps:

Ȟi(Uperf,L)
∼

−→ Hi(X perf,L) and Ȟi(U,Mpn)
∼

−→ Hi(X,Mpn),

are isomorphisms.

Proof. The Uσi
and their intersections are affinoid and and the same can be said for the

Uperf
σi . Since locally free sheaves on affinoid adic spaces are acyclic, the Čech-to-derived

functor spectral sequence gives isomorphisms 5.3 and 5.7. �

Now we can explicitly write down the maps ρ and γi from the proof of Proposition
5.5 on Čech cocycles.
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Lemma 5.7. For all maximal cones σ ∈ Σ, the endomorphism of K[σ∨∩M ] prescribed
by χm 7→ χpm induces maps OUσi

→ OUσi
. These maps glue to the map M → ϕ∗M

p.

Proof. We know that M is given by a cocycle (χmij ) ∈ Ȟ1(U,O∗
X), (for some mij ∈

σ∨
ij ∩ M), and Mp is given by (χpmij ). Therefore it suffices to show that the given

map commutes with the gluing data on Uij . But one can easily check that

OUij
OUij

OUji
OUji

·χmij

χm 7→χpm

·χpmij

χm 7→χpm

commutes, so we are done. �

This has the following immediate consequence:

Lemma 5.8. For any σ ∈ Σ, the map H0(Uσ,M) → H0(Uσ ,M
p) can be identified

with the inclusion

K[σ∨ ∩M ] →֒ K
[

σ∨ ∩ p−1M
]

,

in such a way that it is compatible with restrictions to the faces of σ. In particular,
one can identify:

colimH0(Uσ ,M
pn) ∼= K[σ∨ ∩M [p−1]],

compatibly with restricting to faces in σ.

Proof. This follows immediately from Lemma 5.7 relabelling pM ⊆ M as M ⊆ p−1M

�

Diagram 5.1 from the proof of Proposition 5.5 can be exhibited as the induced map
on the cohomology of the following composition of Čech complexes:

Č(U,M) → Č(U,Mp) → · · · → colim Č(U,Mpn)
η
→ Č(Uperf,L)

To simplify notation, we give the source and target of η the names C∗ and D∗ respec-
tively. With Lemma 5.8 in mind, the η can be identified with the following inclusion
(now arranged vertically):
(5.2)

C∗ := · · ·
∏

j0...i
K

[

σ∨
j0...i

∩M [p−1]
]

∏

j0...i+1
K

[

σ∨
j0...i+1

∩M [p−1]
]

· · ·

D∗ := · · ·
∏

j0...i
K

〈

σ∨
j0...i

∩M [p−1]
〉

∏

j0...i+1
K

〈

σ∨
j0...i+1

∩M [p−1]
〉

· · · .

This looks like the inclusion of a complex of topological K-vector spaces into its
termwise completion. Let’s make that precise.
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Proposition 5.9. Let C∗ and D∗ be as above. Then C∗,D∗ and their cohomologies
Hi(C∗),Hi(D∗) can be equipped with topologies under which:

(1) η : C∗ →֒ D∗ can be identified with the map from a complex of topological
K-vector spaces to its (termwise) completion.

(2) For each index i, the map γ : Hi(C∗) → Hi(D∗) can be identified with the map
from a topological K-vector space to its completion.

Proof. Because the differentials of the complexes above are generated by alternat-
ing sums of monic monomials, they take take polynomials (resp. power series) with
integral to ones with integral coefficients. In particular, Diagram 5.2 restricts to a
morphism η◦ of complexes:

C∗,◦ : · · ·
∏

j0...i
K◦

[

σ∨
j0...i

∩M [p−1]
]

∏

j0...i+1
K◦

[

σ∨
j0...i+1

∩M [p−1]
]

· · ·

D∗,◦ : · · ·
∏

j0...i
K◦

〈

σ∨
j0...i

∩M [p−1]
〉

∏

j0...i+1
K◦

〈

σ∨
j0...i+1

∩M [p−1]
〉

· · · .

Giving the source and target the ̟-adic topology, we see that η◦ is the inclusion of
a complex of topological K◦-modules into its ̟-adic completion. Now, for each i, we
have that:

Ci = Ci,◦ ⊗K◦ K = Ci,◦[1/̟],

and we can therefore give Ci the topology making Ci,◦ open and bounded (that is, the
topology generated by the subsets ̟dCi,◦ as d varies), and we do similarly for each
Dk. With this topology, then it is clear η is the inclusion of a topological K-vector
space into its completion (as it is true in a neighborhood of 0), proving part (1).

Now on to cohomology; the groups Hi(C∗,◦) are naturally K◦-modules and can
therefore be endowed with the ̟-adic topology, and similarly for the Hi(D∗◦). Since
K is flat over K◦, we have isomorphisms

Hi(C∗) ∼= Hi(C∗,◦ ⊗K◦ K) ∼= Hi(C∗,◦)⊗K◦ K ∼= Hi(C∗,◦)[1/̟].

Then we can give Hi(C∗) the topology making the image of Hi(C∗,◦) open and
bounded, that is, the topology induced by the images of ̟dHi(C∗,◦) in Hi(C∗) as
d varies. We do similarly for Hi(D∗). With these topologies in mind, γ is obtained
from the inclusion of C∗ into its completion D∗ by passage to cohomology. Part (2)
then follows from the more general Lemma 5.10 below. �

To conclude the proof of we’d like to argue−as in the proof of Proposition 3.10−that
completion of a sequence of linearly topologized modules commutes with cohomology,
(and in fact, this argument immediately implies Hi(C∗,◦)∧ ∼= Hi(D∗,◦)). As the mod-
ules in question are not linearly topologized, we need the following lemma extending
the commutation of cohomology and completion to generic fibers of linearly topolo-
gized K◦-modules.
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Lemma 5.10. Let M∗ = M0 → M1 → · · · → Mn be a sequence of linearly topologized
K◦-modules with countable systems of fundamental neighborhoods of 0, and for each
i give M i ⊗K the topology making the image of M i open and bounded. Then:

Hi(M∗ ⊗K)∧ ∼= Hi
(

(M∗ ⊗K)∧
)

.

Proof. We collect a few ingredients. First we use that if N is a linearly topologized
K◦-module, then

N̂ ⊗K ∼= (N ⊗K)∧.

This is rather immediate, as N is open in N ⊗K and the basis of 0 given by the ̟nN

is a basis for both the topology of N and N ⊗K. We will also use that · ⊗K is an
exact functor, and that Hi(M̂∗) ∼= Hi(M∗)∧ since the M i are linearly topologized with
countable neighborhood bases of 0 [18, Tag 0AS0]. Putting all this together gives the
following chain of isomorphisms which prove the result,

(

Hi(M∗ ⊗K)
)∧ ∼=

(

Hi(M∗)⊗K
)∧

∼= Hi(M∗)∧ ⊗K

∼= Hi(M̂∗)⊗K

∼= Hi(M̂∗ ⊗K)

∼= Hi
(

(M∗ ⊗K)∧
)

.

�

We can now string everything together to prove the main theorem of this section.

Proof of Theorem 5.2. We use the ∧ symbol to represent completion with respect to
the topologies introduced in the previous paragraph. The map from Proposition 5.5
can be identified with the following chain of isomorphisms.

Hi(X perf,L) ∼= Hi(Č(Uperf,L))(5.3)

∼= Hi
(

colim
(

Č
(

U,Mpn
))∧

)

(5.4)

∼= Hi
(

colim
(

Č
(

U,Mpn
)))∧

(5.5)

∼=
(

colimHi
(

Č
(

U,Mpn
)))∧

(5.6)

∼=
(

colimHi
(

X,Mpn
))∧

(5.7)

To conclude we verify that they are all in fact isomorphisms. Isomorphisms 5.3 and
5.7 are Lemma 5.6 and isomorphism 5.6 follows from the fact that cohomology com-
mutes with directed colimits of abelian groups ([18, Tag 00DB]). Isomorphism 5.4 is
Proposition 5.9(1) and isomorphism 5.5 is Proposition 5.9(2), which completes the
proof. �
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5.3. Vanishing Theorems. The cohomology of line bundles on toric varieties has
been extensively studied, for example in [6],[1],[4, 9.1-9.4]. Therefore, given a line
bundle L on X perf, we may first use Theorem 4.1 to identify it with M1/pk for a line
bundle M on X, and then use known results about the cohomology of M together with
Theorem 5.2 to explicitly compute the cohomology of L. We will use this philosophy
to promote Demazure and Batyrev-Borisov vanishing theorems for toric varieties to
the perfectoid setting. These theorems concern globally generated line bundles, so to
deduce them from the classical theorems about toric varieties using Theorem 5.2, we
need the correspondance between line bundles of Theorem 4.1 to preserve the property
of being globally generated.

Proposition 5.11. Let L ∈ PicX perf and identify it with M1/pk for M ∈ PicX .
Then L is a globally generated OXperf-module if and only if Mpt is a globally generated
OX -module for t >> 0.

Proof. As in Remark 5.3 we may assume k = 0. If Mpt is globally generated, then
we can pick a surjection ρ :

⊕

OX ։ Mpt . Letting ϕ be the p-power map then
π0 = ϕt ◦ πt. Therefore (applying Lemma 2.12)

L ∼= π∗
0M = π∗

t (ϕ
t)∗M ∼= π∗

tM
pt .

As pulling back by πt is right exact, π∗
t ρ :

⊕

OXperf ։ L gives the desired surjection.
Conversely, suppose that L is globally generated. As X perf is compact, L may be

generated by a finite set of sections s1, · · · , sn. This proof will have 2 parts. First
we will show that the sj can without loss of generality be assumed to come from
global sections of Mpt for some t (under the identification of Theorem 5.2 on zeroth
cohomology). We will then show that (perhaps increasing t) these sj generate Mpt .

Trivialize L over the Uperf
i , and consider the sj as elements of

OXperf(U
perf
i ) = K

〈

σ∨
i ∩M [p−1]

〉

.

As Uperf
i is affinoid, the sj generate the unit ideal of OX (U

perf
i ). Therefore there are

a1, · · · , an ∈ OXperf(U
perf
i ) such that a1s1 + · · · + ansn = 1. Applying Theorem 5.2

on zeroth cohomology, there are global sections s̃j ∈ Γ(X ,Mpt) which are arbitrarily
close to the sj (increasing t as necessary). Since there are finitely many Uperf

i , we may
choose them so that on each Uperf

i :

||(a1s1 + · · ·+ ansn)− (a1s̃1 + · · ·+ ans̃n)|| < 1.

That is, ξ := 1−(a1s̃1+ · · ·+ans̃n) is topologically nilpotent. Therefore the geometric
series for (1− ξ)−1 coverges so that (1− ξ) is a unit. As 1− ξ is in the ideal generated
by the s̃j, they generate the unit ideal. In particular, we see that the s̃j generate L.
This completes the first step.

The second step applies a similar argument, but now to the coefficients. We use
that trivializations of L over the Uperf

i and of M over Ui are compatible, so that
we can identify the map Mpt(Ui) → L(Uperf

i ) with the inclusion K
〈

σ∨
i ∩ p−tM

〉

→֒

K
〈

σ∨
i ∩M [p−1]

〉

, and the s̃j can be considered as elements of the target. We know
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they generate the unit ideal in K
〈

σ∨
i ∩M [p−1]

〉

, that is there are coefficients bj such
that b1s̃1 + · · · + bns̃n = 1. Arguing as above and perhaps increasing k, there are
b̃j ∈ K

〈

1
ptM ∩ σ∨

i

〉

so that:

||(b1s̃1 + · · ·+ bns̃n)− (b̃1s̃1 + · · ·+ b̃ns̃n)|| < 1.

Therefore ξ′ = 1− (b̃1s̃1 + · · ·+ b̃ns̃n) is topologically nilpotent so that 1− ξ′ is a unit
in K

〈

σ∨
i ∩ p−tM

〉

. But it is also in the ideal generated by the s̃j, so they generate the
unit ideal. Doing this over all the Ui, perhaps increasing t a finite amount of times,
we see that the s̃j generate Mpt . �

Using this we can promote a well known vanishing theorem to the perfectoid setting.

Theorem 5.12 (Demazure Vanishing in the Perfectoid Setting). If L is a globally
generated line bundle on X perf, then for all i > 0

Hi(X,L) = 0.

Proof. By Theorem 4.1 we can find some line bundle M on X such that L is identified
with M1/pk , and Proposition 5.11 shows that Mpt is globally generated for t >> 0.
Applying Demazure vanishing [4, Theorem 9.2.3] we see that Hi(X,Mpt) = 0 for all
i > 0 and t >> 0, so that taking completed direct limits and applying Theorem 5.2
gives the result. �

The proof of Batyrev-Borisov vanishing will be essentially identical, but the state-
ment requires a bit of setup, and we will summarize without proof the necessary
results. The results are carefully described and proven over the complex numbers in
[4, Sections 3 and 4], and in general in [6] and [5].

Fix a fan Σ and let Σ(1) be the 1 dimensional cones of Σ. To each ray ρ ∈ Σ(1) the
orbit cone correspondence [4, Theorem 3.2.6] canonically assigns a divisor Dρ ⊆ XΣ.
We also assign to ρ its minimal generator in N , which we call uρ. With this data, we
can now assign to every m ∈ M the divisor

div(m) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ.

The divisor div(m) is the principal divisor associated to the character χm, and the
map div fits into the following exact sequence [4, Theorem 4.1.3]

(5.8) M −→
⊕

ρ∈Σ(1)

Z ·Dρ −→ Cl(X) −→ 0.

The term in the middle is the set of Weil divisors of XΣ invariant under the torus ac-
tion. Central to the statement of Batyrev-Borisov vanishing is a polyhedron associated
to an torus invariant divisor.

Definition 5.13 ([4, (4.3.2)]). Fix a torus invariant divisor D =
∑

aρDρ. Its associ-
ated polytope is

PD = {m ∈ MR : 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}.
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Definition 5.14. Let S ⊆ MR. The affine hull of S is

Aff(S) :=

{

k
∑

i=1

αixi : xi ∈ S and
∑

αi = 1

}

.

The relative interior Relint(S) is the interior of the affine hull of S.

We can now state Batyrev-Borisov vanishing, first established in [1].

Theorem 5.15 (Batyrev-Borisov Vanishing [4, Theorem 9.3.5]). Let X = XΣ be a
complete toric variety over a field k, and D a basepoint free divisor. Then

• Hi(X,O(−D)) = 0 for all i 6= dimPD.
• If i = dimPD then

Hi(X,O(−D)) =
⊕

m∈Relint(PD)∩M

k · χ−m.

On our perfectoid space we have not yet developed a good notion of divisors, so we
need a dictionary between line bundles and divisors. This isn’t too difficult, because
as X is a normal noetherian scheme, there is a natural injection PicX →֒ ClX (see
for example [19, 14.2.7]). Given a line bundle L ∈ PicX we can use this injection and
the exact sequence 5.8 to build a divisor D =

∑

aρDρ such that L ∼= O(D), and this
divisor is well defined up to an element of M . Notice that essentially by definition L

is globally generated if and only if D is basepoint free. Furthermore, we can associate
Ln to the divisor nD. The dimension of the polytope from Defintion 5.13 isolated
the important cohomological degree in the Batyrev-Borisov vanishing theorem, and
we can now access that integer in the perfectoid setting.

Definition 5.16. Let Σ be a complete fan, X = XΣ and X perf → X the associated
perfectoid cover. Assume that the Picard group of the rigid space XΣ trivializes on
the affinoid cover induced by Σ. Fix L ∈ PicX perf and use Theorem 4.1 to identify
it with M1/pk for M ∈ PicX. Associate to M a divisor D using sequence 5.8, and
consider the polytope PD. We define

dL := dimPD.

Lemma 5.17. The integer dL is well defined.

Proof. Suppose D and D′ are two torus invariant divisors associated to M. the
sequence 5.8 asserts that D and D′ differ by the divisor of some m ∈ M , so that by [4,
Section 4.3](1) PD′ is a translate of PD by m, and hence share dimension. The choice
of M is well defined up to a power of p, which may replace D with ptD. Again by [4,
Section 4.3] PptD = ptPD is a scaling and hence the dimension is unchanged. �

We can now prove the result.

Theorem 5.18 (Batyrev-Borisov Vanishing in the Perfectoid Setting). Consider the
setup as in Definition 5.16, and suppose L is globally generated. For all i 6= dL:

Hi(X perf,L−1) = 0
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If i = dL we have an isomorphism

HdL(X perf,L−1) ∼=



colimn





⊕

m∈Relint(pnPD)∩M

K · χ−m









∧

where the transition maps are induced by χm 7→ χpm.

Proof. For each n, we have M−pn = O(−pnD), and as in Lemma 5.17 the dimension
of PpnD is dL. As L is globally generated, Proposition 5.11 implies that Mpt is globally
generated for t large enough, and therefore for large t the divisor ptD is basepoint
free. The results now follow, applying Theorem 5.15 to all large enough p-powers of
M, passing to the completed direct limit, and applying Theorem 5.2. �
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