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Abstract

Exceptional point degeneracies (EPDs) in the resonant spectrum of non-Hermitian systems have
been recently employed for sensing due to the sublinear response of the resonance splitting when
a perturbant interacts with the sensor. The sublinear response provides high sensitivity to small
perturbations and a large dynamic range. However, the resonant-based EPD sensing abides to the
resolution limit imposed by the resonant quality factors and by the signal-to-noise ratio reduction
due to gain-elements. Moreover, it is susceptible to local mechanical disturbances and
imperfections. Here, we propose a passive non-resonant (NR) EPD-sensor that is resilient to
losses, local cavity variations and noise. The NR-EPD describes the coalescence of Bloch
eigenmodes associated with the spectrum of transfer matrices of periodic structures. This
coalescence enables scattering cross-section cusps with a sublinear response to small detunings
away from an NR-EPD. We show that these cusps can be utilized for enhanced noise-resilient
sensing.

Introduction

Exceptional point degeneracies (EPDs) are spectral singularities corresponding to points in the
parameter space of a non-Hermitian operator at which its eigenvalues and the associated
eigenvectors coalesce [1][2][3]. A prominent example includes EPDs in the resonant spectrum of
non-Hermitian systems [3][4][5][6]. In their proximity, a small perturbation € < 1 leads to a
sublinear response (SLR) in the resonant splitting Aw o« /e > & due to a fractional Puiseux
expansion of the perturbed frequencies around an m™ order EPD [1][2]. Such SLR provides an
enhanced sensitivity to small perturbations € [7][8][9], while also offering an additional advantage
over other sensing schemes relying on high-Q resonances [10]: an enhanced dynamic range, which
is the ability to measure both small and large perturbation-related detunings. This observation has
recently generated a substantial research effort in developing appropriate platforms where resonant
EPDs are realized and their SLR is harvested for enhanced sensing application
[L1][12][13][14][15][16][17][18][19].

That said, the implementation of resonant-based EPD sensing has triggered an ongoing
debate regarding the resolution limit and the signal-to-noise ratio (SNR) efficiency of such
schemes [20][21][22]. Specifically, the EPD sensing schemes based on purely lossy systems have
been hampered by the broadening of the resonance linewidths. The addition of gain-elements can
offset the losses, thereby, improving the resolution limit of the EPD sensing, however, they also
introduce additional noise which becomes enhanced in the vicinity of the EPD and leads to a
degradation of the SNR performance of the sensor. The noise can be intrinsic (e.g., due to
amplification) or fundamental (due to the eigenbasis collapse at the EPD) and in some EPD-
platforms, might offset the enhanced signal sensitivity, thus leading to an SNR which is not



exceptional, but rather conventional [19][20][21]. Importantly, resonant EPD sensors, alike all
resonant-based schemes, are susceptible to local mechanical disturbances (e.g., temperature
variations, vibrations, etc.) and cavity imperfections that hamper their sensitivity.

Here, we propose a non-resonant sensing protocol based on EPDs occurring in the
spectrum of operators other than the effective Hamiltonian of a resonant system. In our paradigm,
the formation of an m™ order non-resonant EPD (NR-EPD) occurs in the spectrum of transfer
matrices of Hermitian periodic structures. Their existence enforces a stationary point in the Bloch
dispersion relation w(k) ~ wgp + (k — ksp)™, where m = 2 Bloch modes coalesce and the group

. ] m-1 . . .
velocity vz = i ~ (w—wgp) m of a propagating wave inside the structure vanishes

[23][24]1[25][26][271[28]1[29]1[30]1[31][32][33][34]1[35][36]. As a result, the differential scattering
cross-section |op|? of a suitably designed incident wavefront shows a SLR with respect to small
global parameter variations Xgp = Xgp + v occurring in the proximity of the stationary point, i.e.,
m-1
lor|? o« Wrvg ~ WyvTm, (1)

where Wr ~ v~% is the energy density of the excited (slow) propagating mode. The exponent
dictates the formation of the cusp in Eq. (1) and its value is controlled by the incident wave via
wavefront shaping techniques [37][38][39][40]. Here, we propose to utilize the sublinear response
Eq. (1) of the differential cross-section, near stationary points, as a protocol for hypersensitive
sublinear sensing. The special case of m = 3 NR-EPDs, known as stationary inflection points
(SIPs) [23][24][27]1[28][29][30][31][32][33], monopolizes our attention because of its resilience
to common mechanical disturbances, structural imperfections [33][41] and losses [33][42].
Importantly, we show that the proposed SIP-sensing protocol exhibits an enhanced noise-resilient
performance, as opposed to existing resonant based-schemes.

Results and Discussion

Implementation of SIP platforms. Unlike resonant EPDs, which rely on local perturbations done
to the EPD-based platform, the proposed sensing platform (see Methods) consists of two distinct
units — the probing element and the SIP sensing element (see Fig.1a). The probing element can be
any type of optical or microwave high-Q frequency selective filter (see Fig. 1b,c) whose resonant
frequency depends on the applied local perturbation (i.e., acceleration, rotation, particle, etc.).
Such arrangement allows to make the probing element extremely compact — thus granting access
to measurements on the microscopic scale in a potentially cramped environment, without affecting
the measured physics. After being probed, the perturbation is then transduced to the sensing SIP
element, which may be placed away from the probe. As a result, the SIP structure can be made
sensitive and robust enough without major concern of its size, making such arrangement useful for
microscale sensing applications. A proposed experimental implementation of stationary-point-
based, on-chip sensors (e.g., accelerometers, gyroscopes, inclinometers), using an
optics/microwave framework, is shown in Fig. 1 (see Methods for elaboration). Importantly, the
proposed platform is scalable and, hence, applicable for various wavelengths ranging from optical
to millimeter-wave and radio frequency. The SIP protocol can be utilized in a variety of
applications ranging from avionics and temperature variation sensing to bio- and chemical sensing.



Transfer matrices and Bloch dispersion relation. The description of a wave propagating in an
M-channel periodic structure with periodicity L is typically done using the 2M —dimensional unit
cell transfer matrix M (w) = M (z = zy + Lo, 2y = 0; w ). This non-normal operator connects the
wave amplitudes @ of a monochromatic wave at two different spatial positions of the structure at
zZ = zy + Ly and z;, through the relation

M (2, zg; )Py (20)= Pr(z = 2y + Ly) = H(w) Py (2o); where A(w) = e'*lo, (2)

where the real part of the Floquet-Bloch wavenumber Re(k) € [—mt/Ly, — /L] is defined up to
a multiple of 2m/L, (first Brillouin zone). At the right-hand-side of Eq. (2) we have imposed the
Bloch theorem that requires ®;(z = z, + Lo) = e'*rod,(z,), reflecting the periodicity of the
underlying structure. Finally, the Bloch dispersion relation w = w(k) is evaluated by calculating
the 2M eigenvalues A(w) of the transfer matrix by solving the following secular equation:

det(M(Z, Zo; (1)) - An((l)) : ’1\2M) = O, n= 11 ) ZM' (3)

where 1,,, is a 2M —dimensional identity matrix. When the eigensystem of Eq. (2) has 2M
independent eigensolutions (and under the assumption that the eigensolutions of Eq. (2) can be
written in the Bloch form) the transfer matrix M (w) is diagonalizable and can be written in the
form M (w) = VAV~ The nonsingular similarity transformation matrix V has columns
consisting of the eigenvectors of M (z, zy; w) while Ay, = A, 65m.

By imposing current conservation, we can show that the transfer matrix M (w) satisfies
the relation M (w)TE M (w) = X where £ = =T is an invertible matrix with 2 = 1, i.e., it belongs
to the pseudo-unitary group U(M, M). Consequently, |det M'(w)| = 1 while for any frequency w
the eigenvalues A,, satisfy the relations {1;1} = {},} corresponding to Bloch wavevectors which
are either real (corresponding to propagating waves), or occur in complex conjugate pairs,
(corresponding to evanescent modes) [23][43]. Below, we will refer to the propagating Bloch
modes with positive (negative) group velocity v > 0 (Vg < 0) and to the evanescent Bloch modes

with Jm(k) > 0 (Jm(k) < 0) as forward (backward) waves.

EPDs in the spectrum of transfer matrices and their relation to stationary points in the Bloch
dispersion relation. The non-normal nature of the transfer matrix M allows for the formation of
NR-EPDs in systems with non-trivial topology. Such degenerate points occur in the spectrum of
M (X) by appropriately tuning one or a few of its parameters X (e.g., frequency w, magnetic field,
etc.). In this case, a complete basis is formed by augmenting the Bloch eigenvectors with
generalized eigenvectors ®;. The latter are found by implementing the standard Jordan chain
procedure [1][2][23][33], defined by the set of vectors that satisfy the recursive equations:

(M(XNR—EPD) — ANR-EPD * izzv)‘l’(g(z) = <I>{1_1, q=1--,m, 4)

where m (2 < m < 2M) is the order of the NR-EPD (NR-EPD—m), ®§ = 0, ®] = ®Pyr_gpp 1S
the regular (Bloch) eigenvector while the remaining m — 1 eigenvectors @g,; are the generalized
eigenvectors. One can show that the generalized eigenvectors diverge along the propagation
direction as ®,(z) 797 1elkz ®,(0). At an NR-EPD—m, the transfer matrix M (Xyr_gpp) is
similar to a Jordan form or a matrix containing Jordan blocks, i.e., M'(Xygr_gpp) = VAV ™1, and
therefore, it is not diagonalizable [1][2][23][33]. The similarity transformation matrix V has



columns consisting of the regular and the generalized eigenvectors. In the case when M has only
one occurrence of an EPD in its spectrum, the matrix A consists of a Jordan block of size m and a
diagonal matrix of size 2M — m with diagonal elements being the eigenvalues A,, with geometric
multiplicity 1. Generally, each Jordan block of size m will include one propagating Bloch mode
with zero group velocity and m — 1 generalized eigenvectors with algebraically diverging
amplitude with respect to the propagation distance z.

An important feature of an NR-EPD is that any perturbation Xyr_gpp = Xnr-gpp + V that
detunes the system away from the degenerate point results in a fractional power series (Puiseux
series) of the eigenvalues with respect to the perturbation parameter v. In other words, when an
NR-EPD—m transfer matrix M (Xnr—gpp), Which is similar to a matrix containing at least a Jordan
block of size m X m, is perturbed as M (Xyr_gpp + V) = M (Xnr_gpp) + V - A, where A is a
constant perturbation matrix, then the degenerate eigenvalues A, will obey the fractional expansion

A = Anrepep + Tig alv/m, (5)

The perturbed eigenvalue A, in Eq. (5) can be also written as A, = exp[i(kyr—gpp + 6k)Lo] =
ANR-EPD T+ Xn=1Cn0k™ which allows us to deduce that the perturbed Bloch wavevector (to the

first order correction in detuning v) is §k ~ "V/v. When the associated detuning v from XNgr_gpp is
identified with the frequency variation from the NR-EPD frequency wyr_gpp = wsp, We get:

w—wsp =V~ (k—ksp)™ (6)

Equation (6) signifies the formation of a stationary point in the Bloch dispersion relation and
connects an NR-EPD—m (and the associated size of the Jordan block) with the order of the
stationary point. From Eq. (6) we deduce the presence of a slow-light mode with a vanishing group
velocity vg

dw(k) m-1
c= 29 gl ()

The most familiar example of a stationary point is the regular band-edge (RBE) corresponding to
m = 2. Higher order stationary points with m > 2 need to be specifically engineered and are
divided into two categories: The stationary points corresponding to even order NR-EPD—m's that
occur at the band-edges, and the odd order NR-EPD—m's that occur inside the band and form an
inflection point in the Bloch dispersion relation. The former are known as degenerate band-edges
(DBESs) while the latter as stationary inflection points [23][24]. As opposed to the RBE, the higher-
order stationary points include the presence of degenerate evanescent modes in addition to the
propagating modes [23][24][31]. These evanescent modes contribute significantly in the formation
of the cusp anomaly in the differential scattering cross-sections. Their engineered excitation allows
us to control the type of divergence that the energy density of the excited (slow) propagating mode
Wt demonstrates, see Eq. (1).

Although these cusp anomalies can occur for both odd and even order-m NR-EPDs, our
focus will be on SIPs. Among all odd m NR-EPDs, the case of m = 3 will be monopolizing our
attention. Various reasons led us to this decision: First, an SIP can be engineered in a way that
shows a symmetric cusp anomaly with respect to a left/right detuning from the NR-EPD conditions
when it is designed to occur in the middle of the band. Second, RBEs and DBEs are often



overwhelmed with much more powerful, giant slow wave resonances when the system is turned
to a scattering set-up [24]. Such high-Q resonances destroy the formation of cusps and result in
sensing protocols with a small dynamic range [10]. Third, SIPs are not particularly sensitive to the
size and shape of the underlying photonic structure and, when compared to Fabry-Perot or
transmission band-edge resonances (where the whole photonic structure acts as a resonator), they
are more resilient to absorption and structural imperfections [33][41][42]. Finally, the SIP of order
m = 3 has been already implemented experimentally using various photonic platforms (see Figs.
1d-f), for efficient slow-light conversion [27][28][29]. While in these latter studies, the SIP of
order m=3 was  promoted due to its  high  conversion  prospects
[23][24][25][26][27][28][29][30][31][34][35][36], our sensing scheme takes advantage of the
opposite scenario i.e., the possibility of total decoupling between the incident light and the slow
mode.

Cusp anomalies in the differential reflectance near a stationary point. Next, we analyze the
differential reflectance AR(v) when a control parameter X (e.g., the frequency w of the incident
wavefront) is detuned away from the NR-EPD conditions by v = X — Xyr_gpp. For the sake of
the argument, we assume only one Jordan block of size m in the similarity matrix A. Furthermore,
we assume the simplest possible scattering scenario of a lossless semi-infinite SIP structure of
order m = 3 occupying the positive semi-infinite space z = 0. The validity of our conclusions in
the case of finite structures (in the presence of losses), has been tested in the next section (see
discussion below).

Our presentation below follows closely the study of A. Figotin and 1. Vitebskiy [24]. At
the interface, the incident W;(w, z), reflected Wr(w, z) and transmitted W7 (w, z) waves, must
satisfy the boundary condition

Y (w,z=0) =% (w,z=0)+WPr(w,z=0), (8)

where the reflection coefficient has been absorbed in Wg. When the system is detuned away from
the NR-EPD (i.e., v # 0), the transmitted wave Wr(w, z) inside the slow-light structure, can be
decomposed into a superposition of the M forward Bloch modes ®; (see Methods). Specifically,

Yo (w,z) =Y df (w,2) 0<z. (9)

Furthermore, the energy conservation condition requires that the transmitted and reflected waves
satisfy the relation S; + Sg(X) = Sp(X), where S;, Sp(X), and Sg(X) are the energy fluxes of the
incident, transmitted and reflected waves. We further assume that the incident wave is normalized
as Sy = 1. Since evanescent modes do not contribute to the energy flux, St is

ST x ZnEproplq)r-'L_ (Z)lzvén)’ (10)

where v indicates the group velocities of the forward propagating Bloch modes inside the

g
structure. In the case that the incident monochromatic wavefront that does not excite any fast-
propagating modes inside the medium, Eq. (10) simplifies to St WTngIOW, where
Wr = |®

corresponding group velocity given by Eq. (7). Therefore, the analysis of the exact form of the St

Jow@I? = |Wr(2)|? is the energy density carried by the slow mode and v§'°" is the



singularity collapses to the investigation of the divergence of the energy density Wr ~ v™% with
respect to the detuning from the NR-EPD.

We first recall that for v # 0, in the specific case of an SIP of order m = 3, the excitation
W.(z) can be written as a superposition of a forward slow-propagating Bloch mode @7, (w, z)
and of a forward evanescent mode ®F,(w,z) ie., Pr(w,z) = ®J,, (0, 2) + ®F (0, 2). Of
course, the decaying evanescent contribution to the transmitted wave becomes negligible at a
certain distance z. « 1/Jm(k) from the interface and this explains the approximation i.c.,
@k, (2)|? ~ |¥r(2)|?. Nevertheless, the excitation of an evanescent mode is detrimental in the
formation of a cusp as it can lead to a finite energy flux St o« |<l>;r10v\,(z)|2vg = const. under the

condition that |®}, ., (2)|> ~|v|7?3. At the same time, we recall that |Wr(2)|? =~
|®},., (2)| leading to the conclusion that |W5(z)|? ~ |v |~?/3. Such a field intensity divergence is
compatible with the boundary condition Eq. (8) (which dictates that Wr(z) at the boundary z = 0
is finite), provided that the incident wave excites both the slow forward propagating and the
forward evanescent modes in a way that they are interfering destructively at the interface i.e.,
@} w2z =0) = —®f (z=0) ~|v| /3 The effect of the dramatic amplitude growth of the
transmitted wave in the vicinity of an SIP is a feature of the frozen mode regime. Past efforts
[23][24][25][26][27][28][29][30][31] utilized this generic property of the frozen mode regime for
enhancing light-matter interactions. Here, however, our interest lies in the opposite scenario where
St o |v|?/? and, therefore, the transmittance (or the differential reflectance) forms a cusp. From
the above discussion, it becomes clear that the formation of the cusp Eq. (1) requires the design of
an incident wavefront which does not excite a Bloch evanescent mode. In this case, the differential

reflectance in the proximity of an SIP of order m = 3 behaves as
AR(v) = |R(wsp) — R(wsp + V)| = T(wsp +v) ~ [v[*/3, (11)
where we have assumed that in the lossless scenario at the SIP the reflectance is R(wgp) = 1 (since

St o |v|?/3 = 0), and T(w) = Sp(w)/S; and R(w) = Sg(w)/S; are the transmittance and
reflectance of the incident wavefront. Equation (11) signifies a sublinear response of the
differential reflectance to frequency detuning and can be used as a measurand for enhanced SLR
sensing protocols that also demonstrate a large dynamic range. In fact, the above SLR is still
applicable for any global parameter variation v = X — Xyr_gpp Which preserves the form Eq. (7)
of the slow-light group velocity. Below, we will demonstrate that one such case is associated with
variations of the external magnetic field applied to a slow-light structure. Let us finally remark,
that a similar argument that led to Eq. (11) for the case of a stationary point of order m = 3, can
also apply for the stationary point of order m = 2 (RBE) leading to a square root cusp i.e., AR(v) ~

V.

Wave simulations and Coupled Mode Theory modeling. We have confirmed our proposed
sensing protocol by performing full-wave simulations with a realistic photonic platform that has
been experimentally shown to demonstrate an SIP of order m = 3 [27][28][29]. We consider a
semi-infinite periodic system whose unit cell consists of a pair of coupled perfectly conductive
microstrip waveguides on a ferrite magnetic substrate (see Fig. 1e and Methods for the design
details). The unit cell contains one straight waveguide and one meandered waveguide. The



waveguides are coupled together in the spatial domain where they are closely separated from one
another. We assumed that there is an applied out-of-plane constant magnetic field H = 86 mT,
resulting in a violation of time-reversal symmetry, necessary for achieving an NR-EPD of order
m = 3 in the Bloch modes of the 4 X 4 transfer matrix M’ which describes the unit cell of the
system. Using COMSOL’s finite element method (FEM) solver, we have calculated the S-
parameters of the unit cell by probing the system with 50 () impedance ports and retrieved the
associated transfer matrix M. This allowed us to calculate the dispersion relation and the Bloch
modes which are required for the analysis of the semi-infinite structure (see Methods for details).

In Fig. 2a, we show the calculated dispersion relation which displays an SIP of order m =
3 (SIP-3) at the frequency fsp = 2.00645 GHz (see the dashed horizontal line). In the inset of Fig.
2b, we also show the reflectance R as a function of frequency f. The SIP-3 frequency fsp, where
the reflectance develops a cusp, is shown in the inset by the vertical dotted line. In the main panel
of the same figure, we report the differential reflectance AR as a function of frequency detuning
v from the SIP frequency fsp. The incident wavefront is designed following the criteria specified
in the previous section to guarantee the SLR of Eq. (11). The best fit (see black dotted line in Fig.
2b) indicates that the differential reflectance varies with the frequency detuning v as AR ~ |v|%7,
which is consistent with the theoretical expectations of Eq. (11). We have also checked the validity
of the SLR of AR with respect to other (global) parameter detunings. In Fig. 2c, we report the
response of the differential reflectance AR with respect to magnetic field variations v = AH from
the value of the applied magnetic field strength Hgp at the SIP. The FEM simulations reveal a
scaling AR ~ |AH|%%® in perfect agreement with Eq. (11).

The scattering properties of the simulated photonic circuit of Fig. le in the proximity of
the SIP can be analyzed using Coupled Mode Theory (CMT) modeling (see Methods). Due to its
generality, CMT modeling allows us to extend our conclusions beyond the specific platform of
Fig. le, to any system that demonstrates stationary points in its Bloch dispersion relation. The
geometry of the model is shown in Fig. 3b while its dispersion relation is reported in the inset of
Fig. 3a.

In the main panel of Fig. 3a, we report the differential reflectance AR(v) versus the
detuning v from the SIP frequency. The analysis required the evaluation of the eigenmodes of the
transfer matrix of the slow-light structure and the decomposition of the incident wavefront ¥ in
this basis, see Eq. (9). Furthermore, a small imaginary part (7m(8011) ~ 1075) has been introduced
(see Methods) to simulate natural losses occurring in the structure and to allow us to lift the NR-
EPD degeneracy in a controllable manner, in order to implement the decomposition process Eq.
(9) numerically.

We have made sure that such a prepared wavefront satisfies the boundary condition Eq. (8)
together with the requirements for the appearance of the cusp anomaly in the reflectance, as
outlined in the previous section. The data confirms nicely the validity of Eq. (11) for at least three
orders of magnitude. The same analysis has been performed using, as a detuning parameter, the
variations of the Peirels’ phase from its NR-EPD value ¢gp and for fixed incident frequency w =
wsp. These results are also presented in the main panel of Fig. 3b. Furthermore, we have tested
that these results are robust for large, but finite, slow-light samples when a small amount of losses
are present in the system. These losses are required to suppress Fabry-Perot resonances in the



reflectance spectrum which can mask the otherwise robust SLR scaling. Achieving successful
scaling in finite samples further indicates the viability of the proposed NR-EPD sensing platform.
However, the optimal local loss strength y with respect to the size of the system L is expected to
be model dependent and determined by the condition that the absorption length &, in the vicinity
of the stationary point is less than the system size. If the loss strength is too high, the impedance
mismatch will inevitably deteriorate the desired SLR response. In Fig. 3¢, we also show how the
finite size of the structure affects the scaling of the differential reflectance AR. From the figure it
is seen that the fractional response is already evident when the number of unit cells is twenty.
Larger system sizes result in an increased dynamic range due to reduction of the lower bound of
the sublinear scaling.

Noise analysis. While enhanced sensitivity to small perturbations is an important metric, the
precision of the measurement is another important characteristic of the efficiency of a sensor. This
is defined as the smallest measurable change of the input quantity given by the noise of the sensor
output. Noise can stem from a variety of sources, including mechanical vibrations and mesoscopic
fluctuations due to environmental thermal fluctuations, signal noise generated by the coupling to
the interrogating channels, quantum uncertainty or fundamental detector resolution limits, and it
can never be fully eliminated. It is therefore vital to study both — sensitivity and noise — in tandem.
Such analysis allows one to estimate how noise in the observable (e.g., AR) is translated to
uncertainty in the measurand (e.g., v), which defines the actual precision of a sensor. The precision
of our stationary point sensing protocol due to noise is scrutinized by the computational simplicity
that the CMT modeling offers and is reconfirmed by COMSOL simulations for the platform shown
in Fig. le. Below we distinguish between two types of noise that might affect the performance of
a sensor [9]: (a) multiplicative noise associated with classical noise sources describing a noisy NR-
EPD, and (b) additive noise associated with noisy input channels. For a better assessment of the
NR-EPD sensing efficiency we also compare the precision provided by SIP-3 and RBE sensing
protocols.

A quantitative description for the precision of the stationary-point-based sensors is
provided by analyzing the detuning error (v) defined as

oar (v)
o, = ———, 12
where 0pg(v) = /(AR2(v)) — (AR(v))? is the standard deviation of AR(v) due to noise

d(AR(V)) .
v

fluctuations and y = is the sensitivity of the sensor, where (-) indicates a noise averaging.

The detuning error Eq. (12) provides an estimation of the uncertainty in the evaluation of the
detuning v (which is the signature that the perturbing agent leaves when it interacts with the
sensing platform) via the output measurement associated with the differential reflectance.

Multiplicative noise. We first analyze the influence of practically inevitable fabrication
imperfections or slow fluctuations of the environment associated with, temperature or pressure
variations that affect the constituent parameters of the materials, and other types of mesoscopic
fluctuations in the system parameters. Such fluctuations are characterized by a very large
correlation time implying (quasi-)static disorder and lead to the existence of additional parasitic



degrees of freedom of the system [44]. Therefore, it is instructive to study how these parametric
fluctuations are translated to the error in the measured detuning. This situation is modeled by
weakly fluctuating frequencies &y + 8¢, and &; + &, of each resonant mode of the CMT model
(see Eq. (22) in Methods). For demonstration purposes, we have assumed that both 8¢, and d¢; are
independent random variables taken from a uniform distribution [—W, W].

We first consider an SIP-3 scenario in a finite-size, disordered system. To mimic the
behavior of a semi-infinite structure, we have introduced losses, in such a way that the associated
absorption length is smaller than the size of the system (see Methods for details). In Fig. 4a, we
report the CMT results for the differential reflectance AR(v) (grey circles) versus the frequency
detuning v from wgp. The ensembled average differential reflectance (AR (v)) is also shown with
a blue solid line. We find that the power law scaling (AR(v)) ~ v* with the best-fitting value of

~ 2/3 persists for three orders of magnitude in detuning, despite the presence of the disorder.
Nevertheless, a smearing of the SIP cusp is unavoidable leading to the formation of a plateau
(AR(v = 0)) ~ WP for very small detunings v, ~ W?35/2 (see inset of Fig. 4a). These detunings
define the sensitivity bound of our SIP-sensors as far as the mesoscopic fluctuations are concerned.
The numerical analysis gives the best-fit of the exponent which is § = 2/3 (see Methods for
further analysis).

Further statistical processing of AR (v) allows us to evaluate oag(v) and y and from there,
via Eq. (12), the detuning error o,,. To get a better appreciation of the robustness of the SIP-3 based
sensing with respect to disorder, we have also calculated o, associated with an RBE. The
comparison is shown in Fig. 4b for three values of the disorder strength W. In this figure, we have
highlighted (red region) the domain where the error in the measured detuning is larger than the
detuning itself and, therefore, the precision of the sensor has completely deteriorated. In all cases,
o0, 1s decreasing as we are approaching the corresponding resolution limit (black dashed line).
However, for the same disorder strength W, the detuning error of the SIP-3 based sensing is smaller
by an order of magnitude than the detuning error of RBE-based sensing protocol indicating its
superiority as far as (long-correlation time) multiplicative noise is concerned.

Additive noise. Next, we analyze the effect of noise due to low-frequency thermal fluctuations in
the input channels. For this purpose, we have performed Monte-Carlo simulations in a semi-
infinite structure associated with the CMT Hamiltonian (see Eq. (22) in Methods). From these
simulations we have extracted the standard deviation gag of AR(V) due to the presence of the
additive noise and the sensitivity y of the sensor, which allowed us to evaluate the detuning error
o, via Eq. (12).

In Fig. 5a we report some typical results of the SIP-based sensing scheme, accounting for
the influence of input signal noise on the measured differential reflectance AR(v). The blue solid
line indicates the mean value of (AR(v)) for each specific value of frequency detuning v. The
height of the grey domain surrounding the blue line represents the standard deviation o of AR(v)
at each value of v. When comparing the evaluated g, for two distant values of v (see black vertical
double-sided arrows) it is found that o,z does not experience noticeable variations as a function
of v and remains approximately constant. At the same time, Eq. (12) implies that for oag(v) =
const., the detuning error will scale inversely proportional to the sensitivity i.e., g, ~ y “1(v).
Therefore, in the limit of small detuning values where the sensitivity is higher, we expect a
decreasing detuning error a,. Figure 5b shows the probability density P(v) of the simulated



detuning measurements performed for two distant values of v (blue lines). The corresponding
values of standard deviation g, are indicated by double-sided blue arrows. As expected, when the
simulated measurements are performed close to the stationary point singularity, the standard
deviation o, decreases, indicating an enhanced precision of the sensor.

A panorama of g, versus the detuning v, for an SIP-based (blue line) and an RBE-based
(red line) sensing protocol is shown in Fig. 5c. In both cases, we have found that g, ~ 1/y (see
the blue and red dashed lines corresponding to o, ~ v/3 and o, ~ v'/2, respectively) which is a
consequence of the fact that the standard deviation o,p remains approximately constant with
respect to the detuning from the stationary point frequency wsp. The smaller detuning error of the
RBE sensor compared to the SIP sensor in case of small detuning, does not imply that the RBE
sensor is superior to the SIP sensor, since the former is extremely fragile to disorder and losses. In
the same subfigure, we report COMSOL results for the case of the coupled microstrip waveguide
of Fig. 1e (light blue line). It is instructive to point out that the results of the noise analysis of the
Monte-Carlo simulations for the RBE sensing protocol agree with the recent experimental findings
of enhanced precision accelerometers operating in the vicinity of a Wigner Cusp Anomaly (WCA)
[45]. The WCAs are square root cusps in the differential scattering cross-section of processes
around the frequency threshold of a newly open channel and they can be seen as a generalization
of RBEs.

Conclusions

We have identified a paradigm of enhanced sensing protocols that utilize non-resonant exceptional
point degeneracies occurring in the spectrum of transfer matrices of periodic structures. Their
presence enforces a stationary point in the Bloch dispersion relation which leads to a cusp in the
reflectance from these structures. We have shown that the reflectance variation with respect to the
frequency detuning (or any other global parameter detuning) from the NR-EPD configuration is
sublinear and can be used as a measurand for enhanced sensing with a large dynamic range. In this
respect, our proposed SLR sensing protocol is complimentary to the resonant-based EPD schemes
that detect local perturbations imposed on the system from a perturbing agent. Furthermore, the
enhanced sublinear sensitivity is resilient to noise generated by the input channels as opposed to
resonant EPDs [S][7][8][9][11][12][13][14][16][17][18][19][20][21][22] where (fundamental)
noise in the proximity of an EPD, due to the resonant eigenbasis collapse, is enhanced and, in some
cases (depending on the underlying platform), might offset the enhanced sensitivity [19][20][21].
Sensors that utilize stationary inflection point NR-EPDs show additional robustness to mesoscopic
fluctuations due to environmental temperature variations and fabrication imperfection. Our
sensing proposal does not involve active elements, and therefore, it does not suffer from excess
noise effects. Although the analysis performed here has been confined to the first two stationary
points of order m = 2, 3, it can be extended to higher-order NR-EPDs where one can achieve an
even higher sensitivity depending on the number of evanescent modes excited by the incident
wavefront. It will be interesting to extend these studies in this direction and analyze the robustness
of these schemes to noise.
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Methods

Proposed experimental implementation of stationary-point-based avionic sensors. In case of
avionic sensing (e.g., acceleration), the probing element can be an optomechanical Fabry-Perot
cavity whose one wall is acting as a test-mass (see Fig. 1b). The same concept can be used in
microwaves where now the variable cavity consists of an LC circuit with a variable capacitor plate
playing the role of the test-mass. When an acceleration is applied, the test-mass is displaced due
to the inertia; thus, inducing a variation in the length of the cavity and, consequently, in its resonant
frequency. Another possible implementation of the sensing protocol is as a hypersensitive
gyroscope. In the optical framework, the probing platform will be a whispering-gallery-mode
whose resonant frequency is changed due to the Sagnac effect, which is a shift of the resonant
mode frequency by an amount proportional to the angular velocity of the rotating platform (see
Fig. 1c¢). A microwave implementation of the whispering-gallery-mode sensing platform might
involve a combination of two microwave accelerometers (see Fig. 1b) which are normal to one
another. In both cases (see Fig. 1b,c), the variable resonators act as filtering devices that turn a
broadband incident signal into a continuous-wave-like signal with a narrow spectral width around
a detuned resonant frequency induced by the motion of the sensing platform. The continuous-
wave-signal transmits through the splitter and is reflected by the sensing element which supports
an NR-EPD of order m = 3 corresponding to a stationary (inflection) point in its Bloch dispersion
relation. The reflected signal is measured by a detector and shows a cusp anomaly in the proximity
of the stationary point frequency fsp. The reflectance variations AR = |R — Rgp| with respect to
the frequency detuning v = |f — fsp| demonstrate a sublinear response 4R ~ v2/3 which is used
as a measurand for the proposed sensing, see Eq. (1).

Our stationary point sensing scheme utilizes intensity variation measurements (i.e.,
transmittance/reflectance) near non-resonant EPDs as opposed to resonant shift measurements.
The latter might be masked by a linewidth broadening of the resonances that appear in the
transmission (or the reflection) spectrum or by the generation of additional noise due to the
presence of gain elements. Furthermore, resonant shift sensing requires broadband frequency
sweeps, which impose an upper bound on the dynamic range. Such measurements are done in two
ways: 1) signal (intensity) measurements, by probing the system at individual frequencies within
the scanned domain, ii) Fourier transform of the temporal signal emitted by the system. In the
former case one needs to perform a large number of intensity measurements for each respective
frequency, which results either in longer sampling time compared to the direct intensity
measurements or worse signal-to-noise ratio. The latter measuring scheme is applicable only to
active systems operating at or above the lasing threshold, which, besides adding extra complexity
to the platform, also results in addition of the quantum noise generated by the system.

Decomposition into Bloch modes and wavefront shaping protocol. The analysis of the transport
characteristics of a semi-infinite structure is typically based on a scattering matrix approach. The
latter can be directly extracted from the analysis of the following three 2M X 2M transfer matrices:
(a) the matrix My that determines the wave propagation from a unit cell to a unit cell inside the
semi-infinite structure; (b) the transfer matrix M, that dictates the wave evolution in free space
(or the leads), and; (c) the transfer matrix M| which describes the boundary conditions Eq. (8) that
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must be satisfied by the field at the interface z = 0. The latter can be expressed in a compact form
as:

lpz = Mllpl, (13)

where ¥; (j = 1, 2) denote the fields before and after the interface respectively.

While the scattering matrix connects incoming to outgoing waves and, therefore, provides
easy access to the transmission/reflection coefficients associated with the scattering process, the
transfer matrix formalism allows us to identify the associated Bloch modes of the semi-infinite
structure and, via this identification, establish an appropriate basis where the conditions which lead
to Eq. (1), for the formation of a cusp in the differential reflectance, can be formulated.

We start with the description of the process that allows us to decompose the fields into the
Bloch eigenmodes (see Eq. (9)). First, we diagonalize the transfer matrices Mg, M}, in order to
extract the Bloch modes and classify them as forward/backward and propagating/evanescent
according to their wavenumbers and group velocities as described in the main text. This mode-
basis is then arranged as columns of 2M X m;" matrices B;*, where m} denotes the number of each
type x of the Bloch eigenmodes at a respective frequency. For example, x = f denotes forward
propagating modes, x = b backward propagating modes, and x = e evanescent modes which
decay away from the interface. Bloch modes that grow away from the interface are excluded from
the decomposition based on the physical requirement that the fields must not diverge as |z| = oo.
The decomposition proceeds as,

w= > B, (4

x €{f,b,e}

where a}‘ contain the expansion coefficients in the basis of the Bloch eigenmodes. Inserting Eq.

(14) in Eq. (13) leads to the following relation
Z Biak = Z MBXa®, (15)
x € {f,b,e} x €{f,b,e}
which, after appropriate re-arrangement, can be written as
Z B¥af — Z MBfaf = MiB] o/ — BZab.  (16)
x € {f.e} x€f{be}

Equation (16) relates the incoming propagating and the outgoing propagating and evanescent
modes on the right and left sides respectively.
Next, we want to rewrite the above relation in terms of the incoming ¢, (defined in an

(m{ + mb)-dimensional space) and outgoing (propagating and evanescent) modes ¢_ (defined in
an (m? + mg + m${ + m$)-dimensional space). To this end, we first introduce the projection

operators &/ ,, &5, and 7, defined as

f N . — b, bFE — b. —
g,0 =i, &P =ay; ¢ = ag; g,y = af,. (17)
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Substituting in Eq. (16) the expressions for (x{ ‘;’ ** from Eqs. (17), we find the relation that connects
the incoming with the outgoing (including the evanescent) modes,
$_ =S, whereS=4_"'4,. (18)
Equation (18) defines the non-unitary scattering matrix S in terms of the operators A, A_
A, =MmBl el —Bbel,  (19)

A_= Z B¥e¥ — 2 M By,
x €{f,e} x €{b,e}
Knowledge of S allows us to extract further information about the expansion coefficients o and,
consequently, identify conditions under which an incident wavefront can (cannot) excite specific
Bloch modes inside the semi-infinite stationary point structure.
Let us, for example, analyze the expansion coefficients of a generic incident wavefront that

is injected into a semi-infinite structure that supports a stationary point from two single-mode
transmission lines. We assume that the wavefront can be written as a linear combination of

. T . . . .
propagating waves (I)Ern) = (61,,1, 62,n) (n =1,2) in each of the transmission lines i.e., ¢, =

(I)Srl) +p (I)Srz). The complex amplitude [ contains information about the relative magnitudes and
phases of the two propagating waves. From superposition principle, we know that the resulting
Bloch modal excitation in the semi-infinite structure can be written as a linear combination of the

modes that are excited by each individual incident propagating wave ¢(+”). Since there is only one
forward evanescent mode in the SIP structure, the amplitude of the expansion coefficients
associated with the evanescent mode a5 (n) are evaluated using Eq. (18). We get

ag(n) = ()5, (20)

The requirement of zero evanescent mode excitation now translates to the condition a5 (1) +
Bas (2) = 0 which allows us to extract the wavefront shaping parameter 3:

()15
T oyise®
()15
The exact value of f might depend on the frequency of the incident wavefront or other parameters
X of the semi-infinite structure. However, our detailed numerical analysis indicated that the
extracted value of § at X = Xsp maintains the sublinear scaling of the differential reflectance.
As a point of caution, Eq. (18) does not assume a flux normalization of the incident
wavefront. The latter is crucial when one needs to evaluate transmission coefficients that describe
scattering processes between channels that support different group velocities. In our case, we focus

on reflectances/transmittances to channels with the same group velocity defined by the dispersion
relation of the single mode transmission lines of equal impedance.

(21)

Geometry of the unit cell and COMSOL simulations. The full-wave simulations have been
performed with a periodic structure which has a unit cell that is shown schematically in Fig. 6. The
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unit cell consists of a ferrite board (green) with a perfectly conductive grounded bottom surface.
The board hosts a pair of perfectly conductive microstrip waveguides indicated with a brown color.
The unit cell consists of two spatial domains of length [; = 4.318 mm, and [, = 5.588 mm, where
the two waveguides are separated by distances S; = 3.5052 mm, and S, = 0.0889 mm
respectively. Within the first spatial domain, the width of the bent waveguide is W; = 1.524 mm,
while the straight one has a constant width W, = 0.762 mm within the whole unit cell. Within the
second spatial domain, the width of the bent waveguide is reduced to W3 = 1.016 mm. Finally,
the board is made from a magnetic garnet G-810 which has thickness T = 1.524 mm. The
dielectric permittivity of the board is eg = 14.6, while the magnetization is 4mMg = 800 G.

Coupled Mode Theory modeling. The lower chain consists of coupled modes with resonant
frequencies &, while the n.n. coupling between them is V; € R. The upper chain consists of
coupled modes with resonant frequencies £; = 0 and n.n. coupling between them which is V; €
R. The same n.n. coupling constant describes the coupling between the modes of the first chain
with the modes of the second chain. Finally, the diagonal coupling between modes of the first and
second chain is V,e!? (V, € R). The Peirels’ phase ¢ models a magnetic flux which is responsible
for violating the time-reversal symmetry of the system. The effective CMT Hamiltonian of the
model has a block-tri-diagonal form,

Hy = 6n,lHn,n + 6n—1,lH1-1r,n+1 + 6n+1,lHn,n+1' (22)

Hm,m’ _

!
where the 2 X 2 block matrices have elements, Hy '~ = 8m 285 m'€0 + Smm/+1V1 and Hy 'ty =

Om10mm' Vi + Om20mm'Vo + 6m10me1m’ V,e'?. The corresponding eigenvalue problem can be
written in the following form,

w|yy) = Hr-ll-,n+1|l/)n—1> + Hn,nll/)n> + Hn,n+1|¢n+1>’ (23)

where w is the eigenfrequency and (m|y,) represents the complex amplitude of the field
occupying the site in the m™ array of the n™ unit cell. Substituting |1,,) = e'¥™|A), where k is
the wavevector and |4) = (4,,4,)7 = A, we get
Toi-ed A0 = (20 100
H(k)A= w(k)A; Hk=(* )
(A= w (k) 0= (200 e
where €; (k) = 2V;cos (k), €,(k) = gy + 2V,ycos (k) and u(k) = V; + V,e'**+®)_ The dispersion
relation w (k) is obtained by solving the associated secular equation det(ﬁ (k) — w(k) - iz) = 0.
We get the following two-band dispersion curve

(24)

80+2[V0—V1
2

wy(k) =2+ [V + V3] cos (k) + J ( ]°°S("))2 + (V2 + V2 + 2V, Vycos[k + ¢]), (25)

which for an appropriate choice of the model parameters (&q; Vy; Vi; Va; d)sp = (45 1; 2; 3; 3.32)
demonstrates an SIP-3 at wgp = 6.328 (ksp = —0.507), see the inset of Fig. 3a.

The system turns to a scattering setup by coupling each of the left-most resonant modes of
the n = 1 unit cell of the sample with transmission lines that consist of coupled resonant modes
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of resonant frequency €, = 0 and n.n. coupling V;, = —3.5. Each of the transmission lines supports
propagating waves with dispersion relation w(k) = g, + 2V; cos(k).

Transfer matrix for the CMT model. The calculations reported in Fig. 3 were performed using
a CMT formalism where we considered a semi-infinite SIP structure with two single-mode
transmission lines attached to each one of the resonant modes of the first unit cell. Our analysis
follows closely the steps presented in the second subsection of the Methods.

The Bloch modes of the leads have a trivial plane waveform with dispersion relation w =
e, + 2V, cos(k a), where a = 1 and (e, V) = (0,—3.5). The Bloch modes of the semi-infinite
structure Eq. (23) are extracted from the transfer matrix of the unit cell, which takes the form,
in &m

", [i w0 =2gw ), @)

1M M

where 1, is the M x M identity matrix, 0, is the M x M matrix of zeroes, |¥,)=

(|¢n+1)r |1/)n))T> fl,n = HT?,:TLL+1(wiM - Hn,n) and Ez,n = _HYZ}L+1H1I,n+1- Finally, the transfer
matrix of the interface is given by Eq. (26) by substituting the 2 X 2 submatrix H;[’n +1 With

the hopping matrix VT that connects the transmission lines with the first unit cell and has matrix
elements [V];; = &;; V..

Coalescence parameter of the transfer matrix eigenvectors and EPD. A detailed analysis of
the eigenmodes of the transfer matrices associated with the CMT model and of the microstrip
waveguide of Fig. 1e and Fig. 6 allows us to establish convincing evidence that the SIP occurring
in the Bloch dispersion relation is associated with the formation of the EPD in the spectrum of the
corresponding transfer matrices.

We start our analysis with the evaluation of the spectrum of the transfer matrix (see Eq.
26) associated with the CMT model. The four eigenvalues of the unit-cell transfer matrix are
expressed in terms of the wavevectors k; as A,(w) = ekalo (see Egs. 2, 3) and can be calculated

via direct diagonalization of M,,. Two of the four eigenvalues correspond to forward and backward
propagating modes and have real k values (red and green solid lines in Fig. 7a,b respectively).
When w is plotted as a function of k, it provides the Bloch dispersion relation of the system w (k),
which demonstrates an SIP (see Fig. 7a). The remaining two eigenvalues are associated with one
forward and one backward evanescent mode and they are characterized by a complex k vector
(blue and orange solid lines in Fig. 7a,b respectively). From Fig. 7a,b, we see a third order EPD
associated with the coalescence of the slow forward propagating mode (red line) and the
forward/backward evanescent modes (blue/orange lines).

In Fig. 7c, we further report the eigenvector coalescence parameter defined as [46],
3

1 e, ,P
Dy == z SIn(Bpn)|, €0S(Opn) = M, (27)
3 4 (@01,
n>’m
where ®,,, refer to the coalescing right eigenvectors of the transfer matrix and |- | and (-, -)

indicate the norm and inner product respectively. When Dy — 0 all vectors involved in the
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summation are parallel. From the plots, we can immediately recognize the formation of the SIP at
frequency wsp (see horizontal dashed line).

In Fig. 7d-f, we again present the same set of plots, which now are associated with the
microstrip system of Fig. le. The scattering parameters have been extracted from COMSOL and
transformed to the transfer matrix of the unit-cell. A behavior similar to the one found in the CMT
model is evident, confirming that the SIP (indicated by a horizontal black dashed line) corresponds
to an EPD.

Reflectance in the presence of disorder. The computation of the reflectance in the presence of
disorder (see Fig. 4) is performed by considering scattering from a large, but finite, sample. Such
a system in principle is modeled by the temporal coupled mode theory equations,

W) -
1 T = Heff|q"> + 1D|5 ), Heff = HO + A
|s7) =DT|¥) —|s*), (28)

where |W) represents the field inside the system and |S*) represents the time-dependent
incoming/outgoing signals to/from the system. Heg is the effective Hamiltonian of the system,
while H, is the Hamiltonian of the isolated system when it is decoupled from the transmission

lines. Finally, A = A — %DDT is a diagonal matrix describing the self-energy term associated with

the presence of the transmission lines which support plane waves with dispersion characteristics
w = g, + 2V, cos k. Here, A is the purely real normalization matrix accounting for resonant shifts,
while the extra loss in the system, due to coupling to the transmission lines, is accounted for by
the purely real coupling matrix D. The matrix elements of the self-energy term are [A];, =
VLeik5jl(5j1 + 6]2 + 6] 2L—1 + 6] ZL)'

The stationary solutions of Eq. (28) admit the following form |¥) = e~'“t|)) where we
have assumed monochromatic incident waves |S*) = e~ 19¢|s®). Substituting these expressions
back in Eq. (28) yields the following equations:

w|p) = Hegrlth) +iDIs*),  |s™) = D7) — [s*). (29)
By solving the first equation for |¢) and then applying the result to the second one, we have
) =1GD|s™), (30)

|S_) = (_iZM + IDTGD)|S+) = S|S+),

. . . . . - -1,
where S is the scattering matrix that describes the scattering process, G = (a) 18 — Heff) is the

Green’s function of the system and 1,,, is the 2M x 2M identity matrix.

This formalism allows us to evaluate the reflectance for any incident wavefront. In the
case of disordered systems, we have injected an appropriately chosen wavefront that produces the
reflectance cusp of Eq. (11) in the corresponding perfect (semi-infinite) case. To mimic the
response of the semi-infinite system, a controllable amount of loss is introduced to the model. The
amount of loss was chosen in such a way that the corresponding absorption length is smaller than
the length of the system. At the same time, we made sure that the loss was gradual along the sample
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in order to avoid smearing of the cusp due to losses. This scheme allows to prevent reflections
from the opposite interface of the finite system and, therefore, leads to the suppression of Fabry-
Perot resonances.

In the case of SIP-structures, we distributed the loss following a quadratically-ramped
spatial profile, resulting in a loss-growth fromy = 0 toy = 1.5 X 1072 over L = 1000 unit cells.
Our analysis indicated that the RBE is more susceptible to local losses than the SIP. For this reason,
in the case of the RBE, we have distributed the quadratically-ramped loss in a way that it increases
with a much slower rate over a larger total distance (L = 5000 unit cells) from y =0toy =
1.5 x 1073,

Phenomenological description of sensitivity bound due to multiplicative noise. The scaling of
the sensitivity bound calls for a general argument for its explanation. The following heuristic
argument provides some understanding of the power-law for v, ~ W. To this end, we consider a
photon propagating inside the semi-infinite structure with velocity vg. During time Ty, related to
the Wigner-Smith delay time, the photon will be propagating a distance ¢, = VzTy inside the
structure where &, is the localization length due to the presence of disorder. On the other hand,
the presence of the SIP singularity is resolved in a scattering experiment, whenever the incident
wave interacts with the sample for times that are, at least, inversely proportional to the detuning
from wgp i.e., Ty ~ 1/v. Substituting this estimation, together with the expression Eq. (7) for the

3
group velocity (for m = 3) we get that v, ~ (fi) . At the same time, previous scaling analysis for

the localization scaling in the proximity of an SIP-3 indicated that &, ~ W ~%4%0-92 [4]1][42] which

eventually gives v, ~ W121906 in reasonable agreement with our numerical findings (see inset
of Fig. 4a).

Additive noise analysis. The results presented in Fig. 5 require considering random fluctuations
in the incident signal s*, generated by thermal noise from the transmission lines. The noise at a
channel n has been characterized by the autocorrelation function of its amplitude f,

1
0% = {fn (01 fm(w7)) = > kBT BOnmd (w1 — w2), (31)

where kg is the Boltzmann constant, and T,, = T is the temperature characterizing the noise
fluctuations which in our simulations has been taken to be the same for all channels. The angular
frequency bandwidth B over which the noise is collected by the detector during the data
acquisition, along with the continuous-wave signal associated with a carrier frequency, is inversely
proportional to the sampling time. In the Monte-Carlo simulations we have accounted for 107
noise realizations for a specific value of the correlation strength o2.

In our CMT (and COMSOL) modeling, this additional noise term f has been accounted for
by assuming that the i*" components f; have real and imaginary parts randomly selected from a
gaussian distribution with zero mean and variance o2 = (Re(f;)?) = (Im(f;)?) = 107°
(5 X 10™%). The noisy outgoing field is evaluated using the scattering matrix formalism of the first
subsection of the Methods,

s™=S(s*+f), (32)
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where the S —matrix appearing in Eq. (32) is unitary after having projected out the evanescent
modes and renormalizing the remaining elements of the non-unitary scattering matrix S (see Eq.

(18)) with the associated group velocities of the respective modes [43]. The reflectance is
Is~I?
Is*]2°

calculated as R = For better statistical processing, we have simulated the reflected signal

over an ensemble of 107 realizations of the noise. The probability distribution of the extracted
detuning P (v) in Fig. 5b is calculated by mapping the ensemble of differential reflectances to the
corresponding detuning values {v}, according to the best power-law fit of the mean value (AR (v)).

Finally, in the COMSOL simulations, we have acquired a smooth curve for the reflectance
data by performing an additional moving averaging window over a length of 25 data points. At the
same time, the resulting detuning error g, was averaged over a length of 10 data points.

Data availability.

The data used to plot the figures are available at Zenodo
(https://doi.org/10.5281/zenodo0.6626113). All other data are available from the corresponding
author upon reasonable request.

Code availability.

Most of the code related to the simulations performed in this study, especially pertaining to the
CMT model, are available at Zenodo (https://doi.org/10.5281/zenodo.6626113). All other codes
are available from the corresponding author upon reasonable request.
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Figure 1: Implementation of an SIP-based sensing protocol. a) The schematic illustration of the sensing
platform. The protocol involves a source which emits a broadband signal to the sensing platform which acts
as a high-Q frequency selective filter, with frequency that depends on the applied perturbation. b) an
optomechanical Fabry-Perot cavity whose one wall is acting as a test-mass. ¢) A whispering-gallery-mode
resonator whose resonant frequency is changed due to the Sagnac effect. (d-f) Different platforms
supporting a stationary inflection point (SIP) singularity: (d) a multilayer structure [25][26][32], (e) a
coupled microstrip-waveguide [27][28][29][35], where H indicates an external magnetic field strength, or
(f) a serpentine waveguide [36].
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Figure 2: Full wave simulations of the coupled microstrip waveguide platform. a) The dispersion
relation of this platform demonstrates a stationary inflection point frequency fsp which is shown by a dotted
black line. b) Logarithmic plot of the differential reflectance AR (blue dots) as a function of the frequency
detuning v from the non-resonant exceptional point degeneracy frequency fsp. The black dashed line
indicates the best fitting corresponding to a power law AR « |v|%7. The inset shows the formation of a cusp
in the reflectance R spectrum, in the vicinity of fsp (vertical black dashed line). ¢) Logarithmic plot of the
differential reflectance AR (blue dots) as a function of the magnetic field detuning AH from the applied
magnetic field strength Hgp where the order m = 3 non-resonant exceptional point degeneracy occurs. The
black dashed line is the best fit AR o |AH |%-6©.
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Figure 3: Effects of disorder in the non-resonant exceptional point degeneracy sensing protocols
based on stationary points in the Bloch dispersion relation. a) Logarithmic plot of the differential
reflectance AR (grey dots) as a function of the detuning v from the frequency wgp for 10* disorder
realizations of the resonant frequencies of the Coupled Mode Theory model. The disorder strength is taken
to be W = 0.01. The average value (AR) (blue line) follows the predicted dependence Eq. (11) (AR) ~
|v|%-6¢ indicated by the black dashed line. Inset: The sensitivity bound v, for three different disorder
strengths (blue dots). The black dashed line indicates the best fit v, ~ W. b) Detuning error o, as a function
of detuning v for three different disorder strengths in case of a regular-band-edge-based sensing scheme
(red lines) and of a stationary-inflection-point-based sensing scheme (blue lines). The red highlighted area
represents the domain a,, > v where the signal cannot be resolved. The resolution limit for each sensing
protocol is defined by the point where the o, line crosses the line g, = v, shown by the black dashed line.
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Figure 4: Differential reflectance near SIP frequency obtained from two-chain CMT model. a)
Logarithmic plot of the differential reflectance AR (blue line) as a function of the frequency detuning v
from the stationary inflection point (SIP) frequency wgp. The black dashed line indicates a variation of the
differential reflectance which is AR o« |v|%®. The inset shows the dispersion relation of the Coupled Mode
Theory (CMT) model. The SIP frequency wsp is indicated by a horizontal dashed line. b) Logarithmic plot
of the differential reflectance AR (blue line) as a function of the Peirels’ phase detuning v = A¢ from the
critical phase ¢gp. The black dashed line indicates a variation of the differential reflectance which is
AR o |v|%68. In the background we show a schematic of the CMT model Eq. (12). ¢) Logarithmic plot of
the differential reflectance AR (color lines) as a function of the frequency detuning v from the SIP frequency
wgp in case of a finite-size system for various number of unit-cells L. The black dashed line indicates a
variation of the differential reflectance which is AR « |v|%6®. In order to optimize the scaling performance,
n—1

2
ﬁ) , where Y ax 1s the amount of loss in the last unit cell and

we have used a ramped loss ¥ (1) = Ymax (

n 1s the number of the unit cell.
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Figure 5: Monte-Carlo precision measurements in case of input signal amplitude noise. a) The
differential reflectance AR as a function of the detuning v. Height of the grey domain represents the
evaluated standard deviation g,y in the measured differential reflectance for each value v of the frequency
detuning. b) Probability density of the detuning measurements P (v) under the influence of input signal
noise for two distant values of v. The blue double-sided arrows indicate the corresponding standard
deviations for the extracted v. ¢) Calculated detuning error o, as a function of the frequency detuning v
from the wgp in case of a stationary-inflection-point-based sensor (blue line with circles), in case of a
regular-band-edge-based sensor (red line with circles) and in the case of the COMSOL simulated stationary-
inflection-point-based sensor shown in Fig. le (light-blue line with squares). The dashed blue and light-
blue lines indicate a scaling |v|'/3, while red dashed line indicates a scaling |v|*/2. The variance of the
input signal noise in the Coupled Mode Theory Monte-Carlo simulations is g2 = 107>, while for the
COMSOL simulations 62 = 5 x 107%.
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Figure 6: The simulated unit-cell of the SIP platform. The platform consists of a board made of a
magnetic material (green), which hosts two coupled microstrip waveguides (brown). The vertical purple
arrows indicate the applied magnetic field H. Here 21; and [, are the lengths of uncoupled and coupled
sections of the waveguide, W; and W; are the widths of the meandered waveguide in the uncoupled and
coupled sections, W, is the width of the straight waveguide, T is the thickness of the magnetic substrate, s,
and s, are the separation distances between the waveguides in the uncoupled and coupled sections
respectively. Parameter values used in the simulations are provided in the corresponding section of the
methods.
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Figure 7: Non-resonant exceptional point degeneracy coalescence at stationary point frequency in
CMT and microstrip models. Frequency vs (a) real and (b) imaginary parts of the wavenumber for each
of the four Bloch modes associated with the transfer matrix (see Eq. 26) of the Coupled Mode Theory
(CMT) model (see Eq. 22). (c) Frequency vs coalescence parameter for the CMT model. (d-f) The same as
(a-c), but now for the microstrip waveguide of Fig le. In (a,b,d,e), red solid/dotted lines correspond to the
slow propagating mode, blue solid/dotted lines correspond to the forward evanescent mode, orange
solid/dotted lines correspond to the backward evanescent mode and green solid/dotted lines correspond to

the backward fast propagating mode. The black horizontal dashed lined indicates the stationary inflection
point frequency.
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