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Abstract 

Exceptional point degeneracies (EPDs) in the resonant spectrum of non-Hermitian systems have 
been recently employed for sensing due to the sublinear response of the resonance splitting when 
a perturbant interacts with the sensor. The sublinear response provides high sensitivity to small 
perturbations and a large dynamic range. However, the resonant-based EPD sensing abides to the 
resolution limit imposed by the resonant quality factors and by the signal-to-noise ratio reduction 
due to gain-elements. Moreover, it is susceptible to local mechanical disturbances and 
imperfections. Here, we propose a passive non-resonant (NR) EPD-sensor that is resilient to 
losses, local cavity variations and noise. The NR-EPD describes the coalescence of Bloch 
eigenmodes associated with the spectrum of transfer matrices of periodic structures. This 
coalescence enables scattering cross-section cusps with a sublinear response to small detunings 
away from an NR-EPD. We show that these cusps can be utilized for enhanced noise-resilient 
sensing.   
 
Introduction 

Exceptional point degeneracies (EPDs) are spectral singularities corresponding to points in the 
parameter space of a non-Hermitian operator at which its eigenvalues and the associated 
eigenvectors coalesce [1][2][3]. A prominent example includes EPDs in the resonant spectrum of 
non-Hermitian systems [3][4][5][6]. In their proximity, a small perturbation 𝜀 ≪ 1 leads to a 
sublinear response (SLR) in the resonant splitting 𝛥𝜔 ∝ √𝜀

𝑚
≫ 𝜀 due to a fractional Puiseux 

expansion of the perturbed frequencies around an 𝑚th order EPD [1][2]. Such SLR provides an 
enhanced sensitivity to small perturbations 𝜀 [7][8][9], while also offering an additional advantage 
over other sensing schemes relying on high-Q resonances [10]: an enhanced dynamic range, which 
is the ability to measure both small and large perturbation-related detunings. This observation has 
recently generated a substantial research effort in developing appropriate platforms where resonant 
EPDs are realized and their SLR is harvested for enhanced sensing application 
[11][12][13][14][15][16][17][18][19]. 

That said, the implementation of resonant-based EPD sensing has triggered an ongoing 
debate regarding the resolution limit and the signal-to-noise ratio (SNR) efficiency of such 
schemes [20][21][22]. Specifically, the EPD sensing schemes based on purely lossy systems have 
been hampered by the broadening of the resonance linewidths. The addition of gain-elements can 
offset the losses, thereby, improving the resolution limit of the EPD sensing, however, they also 
introduce additional noise which becomes enhanced in the vicinity of the EPD and leads to a 
degradation of the SNR performance of the sensor. The noise can be intrinsic (e.g., due to 
amplification) or fundamental (due to the eigenbasis collapse at the EPD) and in some EPD-
platforms, might offset the enhanced signal sensitivity, thus leading to an SNR which is not 
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exceptional, but rather conventional [19][20][21]. Importantly, resonant EPD sensors, alike all 
resonant-based schemes, are susceptible to local mechanical disturbances (e.g., temperature 
variations, vibrations, etc.) and cavity imperfections that hamper their sensitivity.   
 Here, we propose a non-resonant sensing protocol based on EPDs occurring in the 
spectrum of operators other than the effective Hamiltonian of a resonant system. In our paradigm, 
the formation of an 𝑚th order non-resonant EPD (NR-EPD) occurs in the spectrum of transfer 
matrices of Hermitian periodic structures. Their existence enforces a stationary point in the Bloch 
dispersion relation 𝜔(𝑘) ∼ 𝜔SP + (𝑘 − 𝑘SP)𝑚, where 𝑚 ≥ 2 Bloch modes coalesce and the group 

velocity 𝑣g ≡
𝜕𝜔

𝜕𝑘
∼ (𝜔 − 𝜔SP)

𝑚−1

𝑚  of a propagating wave inside the structure vanishes 
[23][24][25][26][27][28][29][30][31][32][33][34][35][36]. As a result, the differential scattering 
cross-section |𝜎T|2 of a suitably designed incident wavefront shows a SLR with respect to small 
global parameter variations 𝑋SP → 𝑋SP ± 𝜈 occurring in the proximity of the stationary point, i.e.,  

|𝜎T|
2 ∝ 𝑊T𝑣g ∼ 𝑊T𝜈

𝑚−1
𝑚 ,           (1) 

where 𝑊T ∼ 𝜈−𝛼 is the energy density of the excited (slow) propagating mode. The exponent 𝛼 
dictates the formation of the cusp in Eq. (1) and its value is controlled by the incident wave via 
wavefront shaping techniques [37][38][39][40]. Here, we propose to utilize the sublinear response 
Eq. (1) of the differential cross-section, near stationary points, as a protocol for hypersensitive 
sublinear sensing. The special case of 𝑚 = 3 NR-EPDs, known as stationary inflection points 
(SIPs) [23][24][27][28][29][30][31][32][33], monopolizes our attention because of its resilience 
to common mechanical disturbances, structural imperfections [33][41] and losses [33][42]. 
Importantly, we show that the proposed SIP-sensing protocol exhibits an enhanced noise-resilient 
performance, as opposed to existing resonant based-schemes. 

 
Results and Discussion 

Implementation of SIP platforms. Unlike resonant EPDs, which rely on local perturbations done 
to the EPD-based platform, the proposed sensing platform (see Methods) consists of two distinct 
units – the probing element and the SIP sensing element (see Fig.1a). The probing element can be 
any type of optical or microwave high-Q frequency selective filter (see Fig. 1b,c) whose resonant 
frequency depends on the applied local perturbation (i.e., acceleration, rotation, particle, etc.). 
Such arrangement allows to make the probing element extremely compact – thus granting access 
to measurements on the microscopic scale in a potentially cramped environment, without affecting 
the measured physics. After being probed, the perturbation is then transduced to the sensing SIP 
element, which may be placed away from the probe. As a result, the SIP structure can be made 
sensitive and robust enough without major concern of its size, making such arrangement useful for 
microscale sensing applications. A proposed experimental implementation of stationary-point-
based, on-chip sensors (e.g., accelerometers, gyroscopes, inclinometers), using an 
optics/microwave framework, is shown in Fig. 1 (see Methods for elaboration). Importantly, the 
proposed platform is scalable and, hence, applicable for various wavelengths ranging from optical 
to millimeter-wave and radio frequency. The SIP protocol can be utilized in a variety of 
applications ranging from avionics and temperature variation sensing to bio- and chemical sensing. 
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Transfer matrices and Bloch dispersion relation. The description of a wave propagating in an 
𝑀-channel periodic structure with periodicity 𝐿0 is typically done using the 2𝑀 −dimensional unit 
cell transfer matrix ℳ(𝜔) ≡ ℳ(𝑧 = 𝑧0 + 𝐿0, 𝑧0 = 0;𝜔 ). This non-normal operator connects the 
wave amplitudes 𝚽 of a monochromatic wave at two different spatial positions of the structure at 
𝑧 = 𝑧0 + 𝐿0 and 𝑧0, through the relation  

ℳ(𝑧, 𝑧0; 𝜔)𝚽𝑘(𝑧0)= 𝚽𝑘(𝑧 = 𝑧0 + 𝐿0) = 𝜆(𝜔)𝚽𝑘(𝑧0);  where   𝜆(𝜔) ≡ 𝑒i𝑘𝐿0 ,     (2)       

where the real part of the Floquet-Bloch wavenumber Re(𝑘) ∈ [−π/𝐿0, − π/𝐿0] is defined up to 
a multiple of  2π/𝐿0 (first Brillouin zone). At the right-hand-side of Eq. (2) we have imposed the 
Bloch theorem that requires 𝚽𝑘(𝑧 = 𝑧0 + 𝐿0) = 𝑒i𝑘𝐿0𝚽𝑘(𝑧0), reflecting the periodicity of the 
underlying structure. Finally, the Bloch dispersion relation 𝜔 = 𝜔(𝑘) is evaluated by calculating 
the 2𝑀 eigenvalues 𝜆(𝜔) of the transfer matrix by solving the following secular equation:  

det(ℳ(𝑧, 𝑧0; 𝜔) − 𝜆𝑛(𝜔) ⋅ 1̂2𝑀) = 0,        𝑛 = 1,⋯ , 2𝑀,               (3)                       

where 1̂2𝑀 is a 2𝑀 −dimensional identity matrix. When the eigensystem of Eq. (2) has 2𝑀 
independent eigensolutions (and under the assumption that the eigensolutions of Eq. (2) can be 
written in the Bloch form) the transfer matrix ℳ(𝜔) is diagonalizable and can be written in the 
form ℳ(𝜔) = 𝒱Λ𝒱−1. The nonsingular similarity transformation matrix 𝒱 has columns 
consisting of the eigenvectors of ℳ(𝑧, 𝑧0; 𝜔) while Λ𝑛𝑚 = 𝜆𝑛𝛿𝑛𝑚.   

By imposing current conservation, we can show that the transfer matrix ℳ(𝜔) satisfies 
the relation ℳ(𝜔)†Σ ℳ(𝜔) = Σ where Σ = Σ† is an invertible matrix with Σ2 = 1, i.e., it belongs 
to the pseudo-unitary group  𝑈(𝑀,𝑀). Consequently, |detℳ(𝜔)| = 1 while for any frequency 𝜔 
the eigenvalues 𝜆𝑛 satisfy the relations {𝜆𝑛−1} = {𝜆𝑛∗ } corresponding to Bloch wavevectors which 
are either real (corresponding to propagating waves), or occur in complex conjugate pairs, 
(corresponding to evanescent modes) [23][43]. Below, we will refer to the propagating Bloch 
modes with positive (negative) group velocity 𝑣g > 0 (𝑣g < 0) and to the evanescent Bloch modes 
with ℐm(𝑘) > 0 (ℐm(𝑘) < 0) as forward (backward) waves. 

EPDs in the spectrum of transfer matrices and their relation to stationary points in the Bloch 
dispersion relation. The non-normal nature of the transfer matrix ℳ allows for the formation of 
NR-EPDs in systems with non-trivial topology. Such degenerate points occur in the spectrum of 
ℳ(𝑋) by appropriately tuning one or a few of its parameters 𝑋 (e.g., frequency 𝜔, magnetic field, 
etc.). In this case, a complete basis is formed by augmenting the Bloch eigenvectors with 
generalized eigenvectors 𝚽𝑞r . The latter are found by implementing the standard Jordan chain 
procedure [1][2][23][33], defined by the set of vectors that satisfy the recursive equations:  

(ℳ(𝑋NR−EPD) − 𝜆NR−EPD ⋅ 1̂2𝑁)𝚽𝑞
r(𝑧) = 𝚽𝑞−1

r ,     𝑞 = 1,⋯ ,𝑚,               (4)        

where 𝑚 (2 ≤ 𝑚 < 2𝑀) is the order of the NR-EPD (NR-EPD−𝑚), 𝚽0r = 0, 𝚽1r = 𝚽NR−EPD is 
the regular (Bloch) eigenvector while the remaining 𝑚 − 1 eigenvectors 𝚽𝑞>1𝑟  are the generalized 
eigenvectors. One can show that the generalized eigenvectors diverge along the propagation 
direction as 𝚽𝑞(𝑧) ∝ 𝑧𝑞−1𝑒i𝑘𝑧𝚽𝑞(0). At an NR-EPD−𝑚, the transfer matrix ℳ(𝑋NR−EPD) is 
similar to a Jordan form or a matrix containing Jordan blocks, i.e., ℳ(𝑋NR−EPD) = 𝒱Λ𝒱−1, and 
therefore, it is not diagonalizable [1][2][23][33]. The similarity transformation matrix 𝒱 has 
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columns consisting of the regular and the generalized eigenvectors. In the case when ℳ has only 
one occurrence of an EPD in its spectrum, the matrix Λ consists of a Jordan block of size 𝑚 and a 
diagonal matrix of size 2𝑀 −𝑚 with diagonal elements being the eigenvalues 𝜆𝑛 with geometric 
multiplicity 1. Generally, each Jordan block of size 𝑚 will include one propagating Bloch mode 
with zero group velocity and 𝑚− 1 generalized eigenvectors with algebraically diverging 
amplitude with respect to the propagation distance 𝑧. 

An important feature of an NR-EPD is that any perturbation 𝑋NR−EPD → 𝑋NR−EPD + 𝜈 that 
detunes the system away from the degenerate point results in a fractional power series (Puiseux 
series) of the eigenvalues with respect to the perturbation parameter 𝜈. In other words, when an 
NR-EPD−𝑚 transfer matrix ℳ(𝑋NR−EPD), which is similar to a matrix containing at least a Jordan 
block of size 𝑚 ×𝑚, is perturbed as ℳ(𝑋NR−EPD + 𝜈) ≈ ℳ(𝑋NR−EPD) + 𝜈 ⋅ Δ̅, where Δ̅ is a 
constant perturbation matrix, then the degenerate eigenvalues 𝜆, will obey the fractional expansion  

𝜆𝑞 = 𝜆NR−EPD + ∑ 𝑎𝑛
(𝑞)
𝜈𝑛/𝑚∞

𝑛=1 .               (5)           

The perturbed eigenvalue 𝜆𝑞 in Eq. (5) can be also written as 𝜆𝑞 = exp[i(𝑘NR−EPD + 𝛿𝑘)𝐿0] ≈
𝜆NR−EPD + ∑ 𝑐𝑛𝛿𝑘

𝑛
𝑛=1  which allows us to deduce that the perturbed Bloch wavevector (to the 

first order correction in detuning 𝜈) is 𝛿𝑘 ∼ √𝜈
𝑚 . When the associated detuning 𝜈 from 𝑋NR−EPD is 

identified with the frequency variation from the NR-EPD frequency 𝜔NR−EPD = 𝜔SP, we get: 

𝜔 − 𝜔SP = 𝜈 ∼ (𝑘 − 𝑘SP)
𝑚.               (6)   

Equation (6) signifies the formation of a stationary point in the Bloch dispersion relation and 
connects an NR-EPD−𝑚 (and the associated size of the Jordan block) with the order of the 
stationary point. From Eq. (6) we deduce the presence of a slow-light mode with a vanishing group 
velocity 𝑣g 

𝑣g =
𝜕𝜔(𝑘)

𝜕𝑘
∼ |𝜔 − 𝜔SP|

𝑚−1

𝑚 .               (7)       

The most familiar example of a stationary point is the regular band-edge (RBE) corresponding to 
𝑚 = 2. Higher order stationary points with 𝑚 > 2 need to be specifically engineered and are 
divided into two categories: The stationary points corresponding to even order NR-EPD−𝑚′𝑠 that 
occur at the band-edges, and the odd order NR-EPD−𝑚′𝑠 that occur inside the band and form an 
inflection point in the Bloch dispersion relation. The former are known as degenerate band-edges 
(DBEs) while the latter as stationary inflection points [23][24]. As opposed to the RBE, the higher-
order stationary points include the presence of degenerate evanescent modes in addition to the 
propagating modes [23][24][31]. These evanescent modes contribute significantly in the formation 
of the cusp anomaly in the differential scattering cross-sections. Their engineered excitation allows 
us to control the type of divergence that the energy density of the excited (slow) propagating mode 
𝑊T demonstrates, see Eq. (1).  

Although these cusp anomalies can occur for both odd and even order-𝑚 NR-EPDs, our 
focus will be on SIPs. Among all odd 𝑚 NR-EPDs, the case of 𝑚 = 3 will be monopolizing our 
attention. Various reasons led us to this decision: First, an SIP can be engineered in a way that 
shows a symmetric cusp anomaly with respect to a left/right detuning from the NR-EPD conditions 
when it is designed to occur in the middle of the band. Second, RBEs and DBEs are often 
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overwhelmed with much more powerful, giant slow wave resonances when the system is turned 
to a scattering set-up [24]. Such high-Q resonances destroy the formation of cusps and result in 
sensing protocols with a small dynamic range [10]. Third, SIPs are not particularly sensitive to the 
size and shape of the underlying photonic structure and, when compared to Fabry-Perot or 
transmission band-edge resonances (where the whole photonic structure acts as a resonator), they 
are more resilient to absorption and structural imperfections [33][41][42]. Finally, the SIP of order 
𝑚 = 3 has been already implemented experimentally using various photonic platforms (see Figs. 
1d-f), for efficient slow-light conversion [27][28][29]. While in these latter studies, the SIP of 
order 𝑚 = 3 was promoted due to its high conversion prospects 
[23][24][25][26][27][28][29][30][31][34][35][36], our sensing scheme takes advantage of the 
opposite scenario i.e., the possibility of total decoupling between the incident light and the slow 
mode.  

Cusp anomalies in the differential reflectance near a stationary point. Next, we analyze the 
differential reflectance Δ𝑅(𝜈) when a control parameter 𝑋 (e.g., the frequency 𝜔 of the incident 
wavefront) is detuned away from the NR-EPD conditions by  𝜈 = 𝑋 − 𝑋NR−EPD. For the sake of 
the argument, we assume only one Jordan block of size 𝑚 in the similarity matrix Λ. Furthermore, 
we assume the simplest possible scattering scenario of a lossless semi-infinite SIP structure of 
order 𝑚 = 3  occupying the positive semi-infinite space 𝑧 ≥ 0. The validity of our conclusions in 
the case of finite structures (in the presence of losses), has been tested in the next section (see 
discussion below). 

Our presentation below follows closely the study of A. Figotin and I. Vitebskiy [24]. At 
the interface, the incident 𝚿I(𝜔, 𝑧), reflected 𝚿R(𝜔, 𝑧) and transmitted 𝚿T(𝜔, 𝑧) waves, must 
satisfy the boundary condition  

𝚿T(𝜔, 𝑧 = 0) = 𝚿I(𝜔, 𝑧 = 0) + 𝚿R(𝜔, 𝑧 = 0),               (8)                          

where the reflection coefficient has been absorbed in 𝚿R. When the system is detuned away from 
the NR-EPD (i.e., 𝜈 ≠ 0), the transmitted wave 𝚿T(𝜔, 𝑧) inside the slow-light structure, can be 
decomposed into a superposition of the 𝑀 forward Bloch modes 𝚽𝑛+ (see Methods). Specifically, 

𝚿T(𝜔, 𝑧) = ∑ 𝚽𝑛
+(𝜔, 𝑧)𝑀

𝑛=1           0 ≤ 𝑧.               (9)                  

Furthermore, the energy conservation condition requires that the transmitted and reflected waves 
satisfy the relation 𝑆I + 𝑆R(𝑋) = 𝑆T(𝑋), where 𝑆I, 𝑆T(𝑋), and 𝑆R(𝑋) are the energy fluxes of the 
incident, transmitted and reflected waves. We further assume that the incident wave is normalized 
as 𝑆I = 1. Since evanescent modes do not contribute to the energy flux, 𝑆T is 

𝑆T ∝ ∑ |𝚽𝑛
+(𝑧)|2𝑣g

(𝑛)
𝑛∈prop ,               (10)            

where 𝑣g
(𝑛) indicates the group velocities of the forward propagating Bloch modes inside the 

structure. In the case that the incident monochromatic wavefront that does not excite any fast-
propagating modes inside the medium, Eq. (10) simplifies to 𝑆T ∝ 𝑊T𝑣gslow, where 
𝑊T ≡ |𝚽slow

+ (𝑧)|2 ≈  |𝚿T(𝑧)|
2 is the energy density carried by the slow mode and 𝑣gslow is the 

corresponding group velocity given by Eq. (7). Therefore, the analysis of the exact form of the 𝑆T 
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singularity collapses to the investigation of the divergence of the energy density 𝑊T ∼ 𝜈−𝛼 with 
respect to the detuning from the NR-EPD.  

We first recall that for 𝜈 ≠ 0, in the specific case of an SIP of order 𝑚 = 3, the excitation 
𝚿T(𝑧) can be written as a superposition of a forward slow-propagating Bloch mode 𝚽slow

+ (𝜔, 𝑧) 
and of a forward evanescent mode 𝚽ev+ (𝜔, 𝑧) i.e., 𝚿T(𝜔, 𝑧) = 𝚽slow

+ (𝜔, 𝑧) + 𝚽ev
+ (𝜔, 𝑧). Of 

course, the decaying evanescent contribution to the transmitted wave becomes negligible at a 
certain distance 𝑧c ∝ 1/ℐm(𝑘) from the interface and this explains the approximation i.e., 
|𝚽slow

+ (𝑧)|2 ≈  |𝚿T(𝑧)|
2. Nevertheless, the excitation of an evanescent mode is detrimental in the 

formation of a cusp as it can lead to a finite energy flux 𝑆T ∝ |𝚽slow
+ (𝑧)|2𝑣g = const. under the 

condition that |𝚽slow
+ (𝑧)|2 ∼ |ν |−2/3. At the same time, we recall that |𝚿T(𝑧)|2 ≈

|𝚽slow
+ (𝑧)| leading to the conclusion that |𝚿T(𝑧)|2 ∼ |ν |−2/3. Such a field intensity divergence is 

compatible with the boundary condition Eq. (8) (which dictates that 𝚿T(𝑧) at the boundary 𝑧 = 0 
is finite), provided that the incident wave excites both the slow forward propagating and the 
forward evanescent modes in a way that they are interfering destructively at the interface i.e., 
𝚽slow
+ (𝑧 = 0) ≈ −𝚽ev

+ (𝑧 = 0) ∼ |ν |−1/3. The effect of the dramatic amplitude growth of the 
transmitted wave in the vicinity of an SIP is a feature of the frozen mode regime. Past efforts 
[23][24][25][26][27][28][29][30][31] utilized this generic property of the frozen mode regime for 
enhancing light-matter interactions. Here, however, our interest lies in the opposite scenario where 
𝑆T ∝ |ν|

2/3 and, therefore, the transmittance (or the differential reflectance) forms a cusp. From 
the above discussion, it becomes clear that the formation of the cusp Eq. (1) requires the design of 
an incident wavefront which does not excite a Bloch evanescent mode. In this case, the differential 
reflectance in the proximity of an SIP of order 𝑚 = 3 behaves as 

Δ𝑅(𝜈) ≡ |𝑅(𝜔SP) − 𝑅(𝜔SP + 𝜈)| = 𝑇(𝜔SP + 𝜈) ∼ |𝜈|
2/3,               (11)    

where we have assumed that in the lossless scenario at the SIP the reflectance is 𝑅(𝜔SP) = 1 (since 

𝑆T ∝ |ν|
2/3

𝜈→0
→  0), and 𝑇(𝜔) ≡ 𝑆T(𝜔)/𝑆I and 𝑅(𝜔) = 𝑆R(𝜔)/𝑆I are the transmittance and 

reflectance of the incident wavefront. Equation (11) signifies a sublinear response of the 
differential reflectance to frequency detuning and can be used as a measurand for enhanced SLR 
sensing protocols that also demonstrate a large dynamic range. In fact, the above SLR is still 
applicable for any global parameter variation 𝜈 = 𝑋 − 𝑋NR−EPD which preserves the form Eq. (7) 
of the slow-light group velocity. Below, we will demonstrate that one such case is associated with 
variations of the external magnetic field applied to a slow-light structure. Let us finally remark, 
that a similar argument that led to Eq. (11) for the case of a stationary point of order 𝑚 = 3, can 
also apply for the stationary point of order 𝑚 = 2 (RBE) leading to a square root cusp i.e., Δ𝑅(𝜈) ∼
√𝜈. 

Wave simulations and Coupled Mode Theory modeling. We have confirmed our proposed 
sensing protocol by performing full-wave simulations with a realistic photonic platform that has 
been experimentally shown to demonstrate an SIP of order 𝑚 = 3 [27][28][29]. We consider a 
semi-infinite periodic system whose unit cell consists of a pair of coupled perfectly conductive 
microstrip waveguides on a ferrite magnetic substrate (see Fig. 1e and Methods for the design 
details). The unit cell contains one straight waveguide and one meandered waveguide. The 
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waveguides are coupled together in the spatial domain where they are closely separated from one 
another. We assumed that there is an applied out-of-plane constant magnetic field 𝐻 ≈ 86 mT, 
resulting in a violation of time-reversal symmetry, necessary for achieving an NR-EPD of order 
𝑚 = 3 in the Bloch modes of the 4 × 4 transfer matrix ℳ which describes the unit cell of the 
system.  Using COMSOL’s finite element method (FEM) solver, we have calculated the S-
parameters of the unit cell by probing the system with 50 Ω impedance ports and retrieved the 
associated transfer matrix ℳ. This allowed us to calculate the dispersion relation and the Bloch 
modes which are required for the analysis of the semi-infinite structure (see Methods for details).  

In Fig. 2a, we show the calculated dispersion relation which displays an SIP of order 𝑚 =
3 (SIP-3) at the frequency 𝑓SP = 2.00645 GHz (see the dashed horizontal line). In the inset of Fig. 
2b, we also show the reflectance 𝑅 as a function of frequency 𝑓. The SIP-3 frequency 𝑓SP, where 
the reflectance develops a cusp, is shown in the inset by the vertical dotted line. In the main panel 
of the same figure, we report the differential reflectance Δ𝑅 as a function of frequency detuning 
𝜈 from the SIP frequency 𝑓SP. The incident wavefront is designed following the criteria specified 
in the previous section to guarantee the SLR of Eq. (11). The best fit (see black dotted line in Fig. 
2b) indicates that the differential reflectance varies with the frequency detuning 𝜈 as Δ𝑅 ∼ |𝜈|0.7, 
which is consistent with the theoretical expectations of Eq. (11). We have also checked the validity 
of the SLR of Δ𝑅 with respect to other (global) parameter detunings. In Fig. 2c, we report the 
response of the differential reflectance Δ𝑅 with respect to magnetic field variations 𝜈 ≡ Δ𝐻 from 
the value of the applied magnetic field strength 𝐻SP at the SIP. The FEM simulations reveal a 
scaling Δ𝑅 ∼ |Δ𝐻|0.66 in perfect agreement with Eq. (11).  
 The scattering properties of the simulated photonic circuit of Fig. 1e in the proximity of 
the SIP can be analyzed using Coupled Mode Theory (CMT) modeling (see Methods). Due to its 
generality, CMT modeling allows us to extend our conclusions beyond the specific platform of 
Fig. 1e, to any system that demonstrates stationary points in its Bloch dispersion relation. The 
geometry of the model is shown in Fig. 3b while its dispersion relation is reported in the inset of 
Fig. 3a.   

In the main panel of Fig. 3a, we report the differential reflectance Δ𝑅(𝜈) versus the 
detuning 𝜈 from the SIP frequency. The analysis required the evaluation of the eigenmodes of the 
transfer matrix of the slow-light structure and the decomposition of the incident wavefront 𝚿I in 
this basis, see Eq. (9). Furthermore, a small imaginary part (ℐm(𝜀0,1) ∼ 10−5) has been introduced 
(see Methods) to simulate natural losses occurring in the structure and to allow us to lift the NR-
EPD degeneracy in a controllable manner, in order to implement the decomposition process Eq. 
(9) numerically. 

We have made sure that such a prepared wavefront satisfies the boundary condition Eq. (8) 
together with the requirements for the appearance of the cusp anomaly in the reflectance, as 
outlined in the previous section. The data confirms nicely the validity of Eq. (11) for at least three 
orders of magnitude. The same analysis has been performed using, as a detuning parameter, the 
variations of the Peirels’ phase from its NR-EPD value 𝜙SP and for fixed incident frequency 𝜔 =
𝜔SP. These results are also presented in the main panel of Fig. 3b. Furthermore, we have tested 
that these results are robust for large, but finite, slow-light samples when a small amount of losses 
are present in the system. These losses are required to suppress Fabry-Perot resonances in the 
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reflectance spectrum which can mask the otherwise robust SLR scaling. Achieving successful 
scaling in finite samples further indicates the viability of the proposed NR-EPD sensing platform. 
However, the optimal local loss strength 𝛾 with respect to the size of the system 𝐿 is expected to 
be model dependent and determined by the condition that the absorption length 𝜉𝛾 in the vicinity 
of the stationary point is less than the system size. If the loss strength is too high, the impedance 
mismatch will inevitably deteriorate the desired SLR response. In Fig. 3c, we also show how the 
finite size of the structure affects the scaling of the differential reflectance Δ𝑅. From the figure it 
is seen that the fractional response is already evident when the number of unit cells is twenty. 
Larger system sizes result in an increased dynamic range due to reduction of the lower bound of 
the sublinear scaling.  

Noise analysis. While enhanced sensitivity to small perturbations is an important metric, the 
precision of the measurement is another important characteristic of the efficiency of a sensor. This 
is defined as the smallest measurable change of the input quantity given by the noise of the sensor 
output. Noise can stem from a variety of sources, including mechanical vibrations and mesoscopic 
fluctuations due to environmental thermal fluctuations, signal noise generated by the coupling to 
the interrogating channels, quantum uncertainty or fundamental detector resolution limits, and it 
can never be fully eliminated. It is therefore vital to study both – sensitivity and noise – in tandem. 
Such analysis allows one to estimate how noise in the observable (e.g., Δ𝑅) is translated to 
uncertainty in the measurand (e.g., 𝜈), which defines the actual precision of a sensor. The precision 
of our stationary point sensing protocol due to noise is scrutinized by the computational simplicity 
that the CMT modeling offers and is reconfirmed by COMSOL simulations for the platform shown 
in Fig. 1e. Below we distinguish between two types of noise that might affect the performance of 
a sensor [9]: (a) multiplicative noise associated with classical noise sources describing a noisy NR-
EPD, and (b) additive noise associated with noisy input channels. For a better assessment of the 
NR-EPD sensing efficiency we also compare the precision provided by SIP-3 and RBE sensing 
protocols.  

A quantitative description for the precision of the stationary-point-based sensors is 
provided by analyzing the detuning error 𝜎(𝜈) defined as  

𝜎𝜈 =
𝜎Δ𝑅 (𝜈)

𝜒(𝜈)
,               (12) 

where 𝜎Δ𝑅(𝜈) ≡ √〈Δ𝑅2(𝜈)〉 − 〈Δ𝑅(𝜈)〉2 is the standard deviation of Δ𝑅(𝜈) due to noise 
fluctuations and 𝜒 ≡ 𝜕〈Δ𝑅(𝜈)〉

𝜕𝜈
 is the sensitivity of the sensor, where 〈⋅〉 indicates a noise averaging. 

The detuning error Eq. (12) provides an estimation of the uncertainty in the evaluation of the 
detuning 𝜈 (which is the signature that the perturbing agent leaves when it interacts with the 
sensing platform) via the output measurement associated with the differential reflectance. 

Multiplicative noise. We first analyze the influence of practically inevitable fabrication 
imperfections or slow fluctuations of the environment associated with, temperature or pressure 
variations that affect the constituent parameters of the materials, and other types of mesoscopic 
fluctuations in the system parameters. Such fluctuations are characterized by a very large 
correlation time implying (quasi-)static disorder and lead to the existence of additional parasitic 
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degrees of freedom of the system [44]. Therefore, it is instructive to study how these parametric 
fluctuations are translated to the error in the measured detuning. This situation is modeled by 
weakly fluctuating frequencies 𝜀0 + 𝛿𝜀0 and 𝜀1 + 𝛿𝜀1 of each resonant mode of the CMT model 
(see Eq. (22) in Methods). For demonstration purposes, we have assumed that both 𝛿𝜀0, and 𝛿𝜀1 are 
independent random variables taken from a uniform distribution [−𝑊,𝑊].  

We first consider an SIP-3 scenario in a finite-size, disordered system. To mimic the 
behavior of a semi-infinite structure, we have introduced losses, in such a way that the associated 
absorption length is smaller than the size of the system (see Methods for details). In Fig. 4a, we 
report the CMT results for the differential reflectance Δ𝑅(𝜈) (grey circles) versus the frequency 
detuning 𝜈 from 𝜔SP. The ensembled average differential reflectance 〈Δ𝑅(𝜈)〉 is also shown with 
a blue solid line. We find that the power law scaling 〈Δ𝑅(𝜈)〉 ∼ 𝜈𝛼 with the best-fitting value of 
𝛼 ≈ 2/3 persists for three orders of magnitude in detuning, despite the presence of the disorder. 
Nevertheless, a smearing of the SIP cusp is unavoidable leading to the formation of a plateau 
〈Δ𝑅(𝜈 → 0)〉 ∼ 𝑊𝛽 for very small detunings 𝜈c ∼ 𝑊3𝛽/2 (see inset of Fig. 4a). These detunings 
define the sensitivity bound of our SIP-sensors as far as the mesoscopic fluctuations are concerned. 
The numerical analysis gives the best-fit of the exponent which is 𝛽 ≈ 2/3 (see Methods for 
further analysis).  

Further statistical processing of Δ𝑅(𝜈) allows us to evaluate 𝜎Δ𝑅(𝜈) and 𝜒 and from there, 
via Eq. (12), the detuning error 𝜎𝜈. To get a better appreciation of the robustness of the SIP-3 based 
sensing with respect to disorder, we have also calculated 𝜎𝜈 associated with an RBE. The 
comparison is shown in Fig. 4b for three values of the disorder strength 𝑊. In this figure, we have 
highlighted (red region) the domain where the error in the measured detuning is larger than the 
detuning itself and, therefore, the precision of the sensor has completely deteriorated. In all cases, 
𝜎𝜈 is decreasing as we are approaching the corresponding resolution limit (black dashed line). 
However, for the same disorder strength 𝑊, the detuning error of the SIP-3 based sensing is smaller 
by an order of magnitude than the detuning error of RBE-based sensing protocol indicating its 
superiority as far as (long-correlation time) multiplicative noise is concerned.  

Additive noise. Next, we analyze the effect of noise due to low-frequency thermal fluctuations in 
the input channels. For this purpose, we have performed Monte-Carlo simulations in a semi-
infinite structure associated with the CMT Hamiltonian (see Eq. (22) in Methods). From these 
simulations we have extracted the standard deviation 𝜎Δ𝑅 of Δ𝑅(𝜈) due to the presence of the 
additive noise and the sensitivity 𝜒 of the sensor, which allowed us to evaluate the detuning error 
𝜎𝜈 via Eq. (12).  

In Fig. 5a we report some typical results of the SIP-based sensing scheme, accounting for 
the influence of input signal noise on the measured differential reflectance Δ𝑅(𝜈). The blue solid 
line indicates the mean value of 〈Δ𝑅(𝜈)〉 for each specific value of frequency detuning ν. The 
height of the grey domain surrounding the blue line represents the standard deviation 𝜎Δ𝑅 of Δ𝑅(𝜈) 
at each value of ν. When comparing the evaluated 𝜎Δ𝑅 for two distant values of ν (see black vertical 
double-sided arrows) it is found that 𝜎Δ𝑅 does not experience noticeable variations as a function 
of ν and remains approximately constant. At the same time, Eq. (12) implies that for 𝜎Δ𝑅(𝜈) ≈
const., the detuning error will scale inversely proportional to the sensitivity i.e., 𝜎𝜈 ∼ 𝜒−1(𝜈). 
Therefore, in the limit of small detuning values where the sensitivity is higher, we expect a 
decreasing detuning error 𝜎𝜈.  Figure 5b shows the probability density 𝒫(𝜈) of the simulated 
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detuning measurements performed for two distant values of ν (blue lines). The corresponding 
values of standard deviation 𝜎𝜈 are indicated by double-sided blue arrows. As expected, when the 
simulated measurements are performed close to the stationary point singularity, the standard 
deviation 𝜎𝜈 decreases, indicating an enhanced precision of the sensor. 

 A panorama of 𝜎𝜈 versus the detuning 𝜈, for an SIP-based (blue line) and an RBE-based 
(red line) sensing protocol is shown in Fig. 5c.  In both cases, we have found that 𝜎𝜈 ∼ 1/𝜒 (see 
the blue and red dashed lines corresponding to 𝜎𝜈 ∼ 𝜈1/3 and 𝜎𝜈 ∼ 𝜈1/2, respectively) which is a 
consequence of the fact that the standard deviation 𝜎Δ𝑅 remains approximately constant with 
respect to the detuning from the stationary point frequency 𝜔SP. The smaller detuning error of the 
RBE sensor compared to the SIP sensor in case of small detuning, does not imply that the RBE 
sensor is superior to the SIP sensor, since the former is extremely fragile to disorder and losses. In 
the same subfigure, we report COMSOL results for the case of the coupled microstrip waveguide 
of Fig. 1e (light blue line). It is instructive to point out that the results of the noise analysis of the 
Monte-Carlo simulations for the RBE sensing protocol agree with the recent experimental findings 
of enhanced precision accelerometers operating in the vicinity of a Wigner Cusp Anomaly (WCA) 
[45]. The WCAs are square root cusps in the differential scattering cross-section of processes 
around the frequency threshold of a newly open channel and they can be seen as a generalization 
of RBEs. 

 
Conclusions 
We have identified a paradigm of enhanced sensing protocols that utilize non-resonant exceptional 
point degeneracies occurring in the spectrum of transfer matrices of periodic structures. Their 
presence enforces a stationary point in the Bloch dispersion relation which leads to a cusp in the 
reflectance from these structures. We have shown that the reflectance variation with respect to the 
frequency detuning (or any other global parameter detuning) from the NR-EPD configuration is 
sublinear and can be used as a measurand for enhanced sensing with a large dynamic range. In this 
respect, our proposed SLR sensing protocol is complimentary to the resonant-based EPD schemes 
that detect local perturbations imposed on the system from a perturbing agent. Furthermore, the 
enhanced sublinear sensitivity is resilient to noise generated by the input channels as opposed to 
resonant EPDs [5][7][8][9][11][12][13][14][16][17][18][19][20][21][22] where (fundamental) 
noise in the proximity of an EPD, due to the resonant eigenbasis collapse, is enhanced and, in some 
cases (depending on the underlying platform), might offset the enhanced sensitivity [19][20][21]. 
Sensors that utilize stationary inflection point NR-EPDs show additional robustness to mesoscopic 
fluctuations due to environmental temperature variations and fabrication imperfection. Our 
sensing proposal does not involve active elements, and therefore, it does not suffer from excess 
noise effects. Although the analysis performed here has been confined to the first two stationary 
points of order 𝑚 = 2, 3, it can be extended to higher-order NR-EPDs where one can achieve an 
even higher sensitivity depending on the number of evanescent modes excited by the incident 
wavefront. It will be interesting to extend these studies in this direction and analyze the robustness 
of these schemes to noise. 
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Methods 

Proposed experimental implementation of stationary-point-based avionic sensors. In case of 
avionic sensing (e.g., acceleration), the probing element can be an optomechanical Fabry-Perot 
cavity whose one wall is acting as a test-mass (see Fig. 1b). The same concept can be used in 
microwaves where now the variable cavity consists of an LC circuit with a variable capacitor plate 
playing the role of the test-mass. When an acceleration is applied, the test-mass is displaced due 
to the inertia; thus, inducing a variation in the length of the cavity and, consequently, in its resonant 
frequency. Another possible implementation of the sensing protocol is as a hypersensitive 
gyroscope. In the optical framework, the probing platform will be a whispering-gallery-mode 
whose resonant frequency is changed due to the Sagnac effect, which is a shift of the resonant 
mode frequency by an amount proportional to the angular velocity of the rotating platform (see 
Fig. 1c). A microwave implementation of the whispering-gallery-mode sensing platform might 
involve a combination of two microwave accelerometers (see Fig. 1b) which are normal to one 
another. In both cases (see Fig. 1b,c), the variable resonators act as filtering devices that turn a 
broadband incident signal into a continuous-wave-like signal with a narrow spectral width around 
a detuned resonant frequency induced by the motion of the sensing platform. The continuous-
wave-signal transmits through the splitter and is reflected by the sensing element which supports 
an NR-EPD of order 𝑚 = 3 corresponding to a stationary (inflection) point in its Bloch dispersion 
relation. The reflected signal is measured by a detector and shows a cusp anomaly in the proximity 
of the stationary point frequency 𝑓SP. The reflectance variations 𝛥𝑅 = |𝑅 − 𝑅SP| with respect to 
the frequency detuning 𝜈 = |𝑓 − 𝑓SP| demonstrate a sublinear response 𝛥𝑅 ∼ 𝜈2/3 which is used 
as a measurand for the proposed sensing, see Eq. (1).  

Our stationary point sensing scheme utilizes intensity variation measurements (i.e., 
transmittance/reflectance) near non-resonant EPDs as opposed to resonant shift measurements. 
The latter might be masked by a linewidth broadening of the resonances that appear in the 
transmission (or the reflection) spectrum or by the generation of additional noise due to the 
presence of gain elements. Furthermore, resonant shift sensing requires broadband frequency 
sweeps, which impose an upper bound on the dynamic range. Such measurements are done in two 
ways: i) signal (intensity) measurements, by probing the system at individual frequencies within 
the scanned domain, ii) Fourier transform of the temporal signal emitted by the system. In the 
former case one needs to perform a large number of intensity measurements for each respective 
frequency, which results either in longer sampling time compared to the direct intensity 
measurements or worse signal-to-noise ratio. The latter measuring scheme is applicable only to 
active systems operating at or above the lasing threshold, which, besides adding extra complexity 
to the platform, also results in addition of the quantum noise generated by the system. 

 
Decomposition into Bloch modes and wavefront shaping protocol. The analysis of the transport 
characteristics of a semi-infinite structure is typically based on a scattering matrix approach. The 
latter can be directly extracted from the analysis of the following three 2𝑀 × 2𝑀 transfer matrices: 
(a) the matrix ℳS that determines the wave propagation from a unit cell to a unit cell inside the 
semi-infinite structure; (b) the transfer matrix ℳL that dictates the wave evolution in free space 
(or the leads), and; (c) the transfer matrix ℳI which describes the boundary conditions Eq. (8) that 
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must be satisfied by the field at the interface 𝑧 = 0. The latter can be expressed in a compact form 
as: 

𝚿2 = ℳI𝚿1,       (13) 

where 𝚿𝑗 (𝑗 = 1, 2) denote the fields before and after the interface respectively. 
While the scattering matrix connects incoming to outgoing waves and, therefore, provides 

easy access to the transmission/reflection coefficients associated with the scattering process, the 
transfer matrix formalism allows us to identify the associated Bloch modes of the semi-infinite 
structure and, via this identification, establish an appropriate basis where the conditions which lead 
to Eq. (1), for the formation of a cusp in the differential reflectance, can be formulated. 

We start with the description of the process that allows us to decompose the fields into the 
Bloch eigenmodes (see Eq. (9)). First, we diagonalize the transfer matrices ℳS, ℳL in order to 
extract the Bloch modes and classify them as forward/backward and propagating/evanescent 
according to their wavenumbers and group velocities as described in the main text. This mode-
basis is then arranged as columns of 2𝑀 ×𝑚𝑗𝑥 matrices 𝐵𝑗𝑥, where 𝑚𝑗𝑥 denotes the number of each 
type 𝑥 of the Bloch eigenmodes at a respective frequency. For example, 𝑥 = 𝑓 denotes forward 
propagating modes, 𝑥 = 𝑏 backward propagating modes, and 𝑥 = 𝑒 evanescent modes which 
decay away from the interface. Bloch modes that grow away from the interface are excluded from 
the decomposition based on the physical requirement that the fields must not diverge as |𝑧| → ∞. 
The decomposition proceeds as, 

𝚿𝑗 = ∑ 𝐵𝑗
𝑥𝛂𝑗

𝑥

𝑥 ∈ {𝑓,𝑏,𝑒}

,       (14) 

where 𝜶𝑗𝑥 contain the expansion coefficients in the basis of the Bloch eigenmodes. Inserting Eq. 
(14) in Eq. (13) leads to the following relation 

∑ 𝐵2
𝑥𝛂2

𝑥

𝑥 ∈ {𝑓,𝑏,𝑒}

= ∑ ℳI𝐵1
𝑥𝛂1

𝑥

𝑥 ∈ {𝑓,𝑏,𝑒}

,       (15) 

which, after appropriate re-arrangement, can be written as 

∑ 𝐵2
𝑥𝛂2

𝑥

𝑥 ∈ {𝑓,𝑒}

 − ∑ ℳI𝐵1
𝑥𝛂1

𝑥

𝑥 ∈ {𝑏,𝑒}

= ℳI𝐵1
𝑓
𝛂1
𝑓
− 𝐵2

𝑏𝛂2
𝑏.       (16) 

Equation (16) relates the incoming propagating and the outgoing propagating and evanescent 
modes on the right and left sides respectively. 

Next, we want to rewrite the above relation in terms of the incoming 𝛟+ (defined in an 
(𝑚1

𝑓
+𝑚2

𝑏)-dimensional space) and outgoing (propagating and evanescent) modes 𝛟̃− (defined in 
an (𝑚1𝑏 +𝑚2

𝑓
+𝑚1

𝑒 +𝑚2
𝑒)-dimensional space). To this end, we first introduce the projection 

operators 𝜀1,2
𝑓 , 𝜀1,2𝑒 , and 𝜀1,2𝑏  defined as 

𝜀1,2
𝑓
𝛟+  ≡ 𝛂1,2

𝑓
;  𝜀2

𝑏𝛟+ ≡ 𝜶2
𝑏;  𝜀1

𝑏𝛟̃− ≡ 𝛂1
𝑏;   𝜀1,2

𝑒 𝛟+ ≡ 𝛂1,2
𝑒 .                (17) 
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Substituting in Eq. (16) the expressions for 𝛂1,2
𝑓,𝑏,𝑒 from Eqs. (17), we find the relation that connects 

the incoming with the outgoing (including the evanescent) modes,  

𝛟̃− = 𝑆̃𝛟+, where 𝑆̃ ≡ 𝐴̃−
−1
𝐴+.     (18) 

Equation (18) defines the non-unitary scattering matrix 𝑆̃ in terms of the operators  𝐴+, 𝐴̃−  

𝐴+ ≡ℳI𝐵1
𝑓
𝜀1
𝑓
− 𝐵2

𝑏𝜀2
𝑏 ,       (19) 

           𝐴̃− ≡ ∑ 𝐵2
𝑥𝜀2
𝑥

𝑥 ∈ {𝑓,𝑒}

 − ∑ ℳ𝐵1
𝑥𝜀1
𝑥

𝑥 ∈ {𝑏,𝑒}

. 

Knowledge of 𝑆̃ allows us to extract further information about the expansion coefficients 𝛂𝑗𝑥 and, 
consequently, identify conditions under which an incident wavefront can (cannot) excite specific 
Bloch modes inside the semi-infinite stationary point structure.  

Let us, for example, analyze the expansion coefficients of a generic incident wavefront that 
is injected into a semi-infinite structure that supports a stationary point from two single-mode 
transmission lines. We assume that the wavefront can be written as a linear combination of 
propagating waves 𝛟+

(𝑛)
= (𝛿1,𝑛, 𝛿2,𝑛)

𝑇
 (𝑛 = 1, 2) in each of the transmission lines i.e., 𝛟+ =

𝛟+
(1)
+ 𝛽𝛟+

(2). The complex amplitude 𝛽 contains information about the relative magnitudes and 
phases of the two propagating waves. From superposition principle, we know that the resulting 
Bloch modal excitation in the semi-infinite structure can be written as a linear combination of the 
modes that are excited by each individual incident propagating wave 𝛟+

(𝑛)
.  Since there is only one 

forward evanescent mode in the SIP structure, the amplitude of the expansion coefficients 
associated with the evanescent mode 𝛼2𝑒(𝑛) are evaluated using Eq. (18). We get 

𝛼2
𝑒(𝑛) ≡ (𝜀2

𝑒)†𝑆̃𝛟+
(𝑛).       (20) 

The requirement of zero evanescent mode excitation now translates to the condition 𝛼2𝑒(1) +
𝛽𝛼2

𝑒(2) = 0 which allows us to extract the wavefront shaping parameter 𝛽: 

𝛽 = − 
(𝜀2
𝑒)†𝑆̃𝛟+

(1)

(𝜀2
𝑒)†𝑆̃𝛟+

(2)
.       (21) 

The exact value of 𝛽 might depend on the frequency of the incident wavefront or other parameters 
𝑋 of the semi-infinite structure. However, our detailed numerical analysis indicated that the 
extracted value of 𝛽 at 𝑋 = 𝑋SP maintains the sublinear scaling of the differential reflectance.  

As a point of caution, Eq. (18) does not assume a flux normalization of the incident 
wavefront. The latter is crucial when one needs to evaluate transmission coefficients that describe 
scattering processes between channels that support different group velocities. In our case, we focus 
on reflectances/transmittances to channels with the same group velocity defined by the dispersion 
relation of the single mode transmission lines of equal impedance.  
 
Geometry of the unit cell and COMSOL simulations. The full-wave simulations have been 
performed with a periodic structure which has a unit cell that is shown schematically in Fig. 6. The 
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unit cell consists of a ferrite board (green) with a perfectly conductive grounded bottom surface. 
The board hosts a pair of perfectly conductive microstrip waveguides indicated with a brown color. 
The unit cell consists of two spatial domains of length 𝑙1 = 4.318 mm, and 𝑙2 = 5.588 mm, where 
the two waveguides are separated by distances 𝑆1 = 3.5052 mm, and 𝑆2 =  0.0889 mm 
respectively. Within the first spatial domain, the width of the bent waveguide is 𝑊1 = 1.524 mm, 
while the straight one has a constant width 𝑊2 = 0.762 mm within the whole unit cell. Within the 
second spatial domain, the width of the bent waveguide is reduced to 𝑊3 = 1.016 mm. Finally, 
the board is made from a magnetic garnet G-810 which has thickness 𝑇 =  1.524 mm. The 
dielectric permittivity of the board is 𝜀R = 14.6, while the magnetization is 4𝜋𝑀s = 800 G. 
 
Coupled Mode Theory modeling. The lower chain consists of coupled modes with resonant 
frequencies 𝜀0 while the n.n. coupling between them is 𝑉0 ∈ ℛ. The upper chain consists of 
coupled modes with resonant frequencies 𝜀1 = 0 and n.n. coupling between them which is 𝑉1 ∈
ℛ. The same n.n. coupling constant describes the coupling between the modes of the first chain 
with the modes of the second chain. Finally, the diagonal coupling between modes of the first and 
second chain is 𝑉2𝑒i𝜙 (𝑉2 ∈ ℛ). The Peirels’ phase 𝜙 models a magnetic flux which is responsible 
for violating the time-reversal symmetry of the system. The effective CMT Hamiltonian of the 
model has a block-tri-diagonal form,  

𝐻𝑛𝑙 = 𝛿𝑛,𝑙𝐻𝑛,𝑛 + 𝛿𝑛−1,𝑙𝐻𝑛,𝑛+1
† + 𝛿𝑛+1,𝑙𝐻𝑛,𝑛+1,               (22) 

where the 2 × 2 block matrices have elements, 𝐻𝑛,𝑛
𝑚,𝑚′ = 𝛿𝑚,2𝛿𝑚,𝑚′𝜀0 + 𝛿𝑚,𝑚′±1𝑉1 and 𝐻𝑛,𝑛+1

𝑚,𝑚′ =

𝛿𝑚,1𝛿𝑚,𝑚′𝑉1 + 𝛿𝑚,2𝛿𝑚,𝑚′𝑉0 + 𝛿𝑚,1𝛿𝑚+1,𝑚′𝑉2𝑒
i𝜙. The corresponding eigenvalue problem can be 

written in the following form, 

𝜔|𝜓𝑛⟩ = 𝐻𝑛,𝑛+1
† |𝜓𝑛−1⟩ + 𝐻𝑛,𝑛|𝜓𝑛⟩ + 𝐻𝑛,𝑛+1|𝜓𝑛+1⟩, (23) 

where 𝜔 is the eigenfrequency and ⟨𝑚|𝜓𝑛⟩ represents the complex amplitude of the field 
occupying the site in the 𝑚th array of the 𝑛th unit cell. Substituting |𝜓𝑛⟩ = 𝑒i𝑘𝑛|𝐴⟩, where 𝑘 is 
the wavevector and |𝐴⟩ = (𝐴1, 𝐴2)𝑇 ≡ 𝑨̅, we get 

𝐻̅(𝑘)𝑨̅= 𝜔(𝑘)𝑨̅;         𝐻̅(𝑘) = (
𝜖1(𝑘) 𝑢(𝑘)
𝑢∗(𝑘) 𝜖2(𝑘)

),               (24) 

where 𝜖1(𝑘) = 2𝑉1cos (𝑘), 𝜖2(𝑘) = 𝜀0 + 2𝑉0cos (𝑘) and 𝑢(𝑘) = 𝑉1 + 𝑉2𝑒i(𝑘+𝜙). The dispersion 
relation 𝜔(𝑘) is obtained by solving the associated secular equation det(𝐻̅(𝑘) − 𝜔(𝑘) ⋅ 1̂2) = 0. 
We get the following two-band dispersion curve 

𝜔±(𝑘) =
𝜀0

2
+ [𝑉0 + 𝑉1] cos (𝑘) ± √(

𝜀0+2[𝑉0−𝑉1] cos(𝑘)

2
)
2

+ (𝑉1
2 + 𝑉2

2 + 2𝑉1𝑉2cos[𝑘 + 𝜙]), (25)  

which for an appropriate choice of the model parameters (𝜀0; 𝑉0; 𝑉1; 𝑉2; 𝜙)SP ≈ (4; 1; 2; 3; 3.32) 
demonstrates an SIP-3 at 𝜔SP ≈ 6.328 (𝑘SP ≈ −0.507), see the inset of Fig. 3a.  

The system turns to a scattering setup by coupling each of the left-most resonant modes of 
the 𝑛 = 1 unit cell of the sample with transmission lines that consist of coupled resonant modes 
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of resonant frequency 𝜀L = 0 and n.n. coupling 𝑉L = −3.5. Each of the transmission lines supports 
propagating waves with dispersion relation 𝜔(𝑘) = 𝜀L + 2𝑉Lcos(𝑘). 
 
Transfer matrix for the CMT model. The calculations reported in Fig. 3 were performed using 
a CMT formalism where we considered a semi-infinite SIP structure with two single-mode 
transmission lines attached to each one of the resonant modes of the first unit cell. Our analysis 
follows closely the steps presented in the second subsection of the Methods.  

The Bloch modes of the leads have a trivial plane waveform with dispersion relation 𝜔 =
𝜀L + 2 𝑉L cos(𝑘 𝑎), where 𝑎 = 1 and (𝜀L, 𝑉L) = (0,−3.5). The Bloch modes of the semi-infinite 
structure Eq. (23) are extracted from the transfer matrix of the unit cell, which takes the form, 

  ℳ𝑛 = [
𝜉1,𝑛 𝜉2,𝑛

1̂𝑀 0̂𝑀
] ;  |Ψ𝑛⟩ = ℳ𝑛|Ψ𝑛−1⟩,        (26) 

where 1̂𝑀 is the 𝑀 ×𝑀 identity matrix, 0̂𝑀 is the 𝑀 ×𝑀 matrix of zeroes, |Ψ𝑛⟩ =
(|𝜓𝑛+1⟩, |𝜓𝑛⟩)

𝑇, 𝜉1,𝑛 = 𝐻𝑛,𝑛+1−1 (𝜔1̂𝑀 − 𝐻𝑛,𝑛) and 𝜉2,𝑛 = −𝐻𝑛,𝑛+1
−1 𝐻𝑛,𝑛+1

† . Finally, the transfer 

matrix of the interface is given by Eq. (26) by substituting the 2 × 2 submatrix 𝐻𝑛,𝑛+1
†  with 

the hopping matrix 𝑉† that connects the transmission lines with the first unit cell and has matrix 
elements [𝑉]𝑖𝑗 = 𝛿𝑖𝑗𝑉L. 
 
Coalescence parameter of the transfer matrix eigenvectors and EPD. A detailed analysis of 
the eigenmodes of the transfer matrices associated with the CMT model and of the microstrip 
waveguide of Fig. 1e and Fig. 6 allows us to establish convincing evidence that the SIP occurring 
in the Bloch dispersion relation is associated with the formation of the EPD in the spectrum of the 
corresponding transfer matrices. 

We start our analysis with the evaluation of the spectrum of the transfer matrix (see Eq. 
26) associated with the CMT model. The four eigenvalues of the unit-cell transfer matrix are 
expressed in terms of the wavevectors 𝑘𝑞 as  𝜆𝑞(𝜔) ≡ 𝑒i𝑘𝑞𝐿0  (see Eqs. 2, 3) and can be calculated 
via direct diagonalization of ℳ𝑛. Two of the four eigenvalues correspond to forward and backward 
propagating modes and have real 𝑘 values (red and green solid lines in Fig. 7a,b respectively). 
When 𝜔 is plotted as a function of k, it provides the Bloch dispersion relation of the system 𝜔(𝑘), 
which demonstrates an SIP (see Fig. 7a). The remaining two eigenvalues are associated with one 
forward and one backward evanescent mode and they are characterized by a complex 𝑘 vector 
(blue and orange solid lines in Fig. 7a,b respectively). From Fig. 7a,b, we see a third order EPD 
associated with the coalescence of the slow forward propagating mode (red line) and the 
forward/backward evanescent modes (blue/orange lines). 

In Fig. 7c, we further report the eigenvector coalescence parameter defined as [46], 

𝐷H =
1

3
∑ |sin(𝜃𝑚𝑛)|

3

𝑚=1,𝑛=2
𝑛>𝑚

,   cos(𝜃𝑚𝑛) =
|⟨𝚽𝑚 , 𝚽𝑛 ⟩|

|𝚽𝑚||𝚽𝑛|
,     (27) 

where 𝚽𝑚 refer to the coalescing right eigenvectors of the transfer matrix and | ⋅ | and ⟨ ⋅ , ⋅ ⟩ 
indicate the norm and inner product respectively. When 𝐷H → 0 all vectors involved in the 
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summation are parallel. From the plots, we can immediately recognize the formation of the SIP at 
frequency 𝜔SP (see horizontal dashed line). 
 In Fig. 7d-f, we again present the same set of plots, which now are associated with the 
microstrip system of Fig. 1e. The scattering parameters have been extracted from COMSOL and 
transformed to the transfer matrix of the unit-cell. A behavior similar to the one found in the CMT 
model is evident, confirming that the SIP (indicated by a horizontal black dashed line) corresponds 
to an EPD. 
 
Reflectance in the presence of disorder. The computation of the reflectance in the presence of 
disorder (see Fig. 4) is performed by considering scattering from a large, but finite, sample. Such 
a system in principle is modeled by the temporal coupled mode theory equations, 

i
𝜕|Ψ⟩

𝜕𝑡
= 𝐻eff|Ψ⟩ + i𝐷|𝒮

+⟩, 𝐻eff = 𝐻0 + Δ 

              |𝒮−⟩ = 𝐷𝑇|Ψ⟩ − |𝒮+⟩,                                          (28)                                                        

where |Ψ⟩ represents the field inside the system and |𝒮±⟩ represents the time-dependent 
incoming/outgoing signals to/from the system. 𝐻eff is the effective Hamiltonian of the system, 
while 𝐻0 is the Hamiltonian of the isolated system when it is decoupled from the transmission 
lines. Finally, Δ = Λ − i

2
𝐷𝐷T is a diagonal matrix describing the self-energy term associated with 

the presence of the transmission lines which support plane waves with dispersion characteristics 
𝜔 = 𝜀L + 2 𝑉L cos 𝑘. Here, Λ is the purely real normalization matrix accounting for resonant shifts, 
while the extra loss in the system, due to coupling to the transmission lines, is accounted for by 
the purely real coupling matrix 𝐷. The matrix elements of the self-energy term are [Δ]𝑗𝑙 =
𝑉L𝑒

i𝑘𝛿𝑗𝑙(𝛿𝑗1 + 𝛿𝑗2 + 𝛿𝑗 2𝐿−1 + 𝛿𝑗 2𝐿).  
The stationary solutions of Eq. (28) admit the following form |Ψ⟩ = 𝑒−i𝜔𝑡|𝜓⟩ where we 

have assumed monochromatic incident waves |𝒮±⟩ = 𝑒−i𝜔𝑡|𝑠±⟩. Substituting these expressions 
back in Eq. (28) yields the following equations: 

𝜔|𝜓⟩ = 𝐻eff|𝜓⟩ + i𝐷|𝑠
+⟩,        |𝑠−⟩ = 𝐷𝑇|𝜓⟩ − |𝑠+⟩.                  (29) 

By solving the first equation for |𝜓⟩ and then applying the result to the second one, we have 

|𝜓⟩ = i𝐺𝐷|𝑠+⟩,                   (30)                        

        |𝑠−⟩ = (−1̂2𝑀 + i𝐷
𝑇𝐺𝐷)|𝑠+⟩ ≡ 𝑆|𝑠+⟩, 

where 𝑆 is the scattering matrix that describes the scattering process, 𝐺 = (𝜔 1̂2𝑁 − 𝐻eff)
−1

 is the 
Green’s function of the system and 1̂2𝑀 is the 2𝑀 × 2𝑀 identity matrix. 

This formalism allows us to evaluate the reflectance for any incident wavefront.  In the 
case of disordered systems, we have injected an appropriately chosen wavefront that produces the 
reflectance cusp of Eq. (11) in the corresponding perfect (semi-infinite) case. To mimic the 
response of the semi-infinite system, a controllable amount of loss is introduced to the model. The 
amount of loss was chosen in such a way that the corresponding absorption length is smaller than 
the length of the system. At the same time, we made sure that the loss was gradual along the sample 
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in order to avoid smearing of the cusp due to losses. This scheme allows to prevent reflections 
from the opposite interface of the finite system and, therefore, leads to the suppression of Fabry-
Perot resonances.  

In the case of SIP-structures, we distributed the loss following a quadratically-ramped 
spatial profile, resulting in a loss-growth from 𝛾 = 0 to 𝛾 = 1.5 × 10−2 over 𝐿 = 1000 unit cells. 
Our analysis indicated that the RBE is more susceptible to local losses than the SIP. For this reason, 
in the case of the RBE, we have distributed the quadratically-ramped loss in a way that it increases 
with a much slower rate over a larger total distance (𝐿 = 5000 unit cells) from  𝛾 = 0 to 𝛾 =
1.5 × 10−3.  
 
Phenomenological description of sensitivity bound due to multiplicative noise. The scaling of 
the sensitivity bound calls for a general argument for its explanation. The following heuristic 
argument provides some understanding of the power-law for 𝜈c ∼ 𝑊. To this end, we consider a 
photon propagating inside the semi-infinite structure with velocity 𝑣g. During time 𝜏W, related to 
the Wigner-Smith delay time, the photon will be propagating a distance 𝜉∞ = 𝑣g𝜏W inside the 
structure where 𝜉∞ is the localization length due to the presence of disorder. On the other hand, 
the presence of the SIP singularity is resolved in a scattering experiment, whenever the incident 
wave interacts with the sample for times that are, at least, inversely proportional to the detuning 
from 𝜔SP i.e., 𝜏W ∼ 1/𝜈. Substituting this estimation, together with the expression Eq. (7) for the 

group velocity (for 𝑚 = 3) we get that 𝜈c ∼ (
1

𝜉∞
)
3

. At the same time, previous scaling analysis for 

the localization scaling in the proximity of an SIP-3 indicated that 𝜉∞ ∼ 𝑊−0.4±0.02 [41][42] which 
eventually gives  𝜈c ∼ 𝑊1.2±0.06 in reasonable agreement with our numerical findings (see inset 
of Fig. 4a). 
 
Additive noise analysis. The results presented in Fig. 5 require considering random fluctuations 
in the incident signal 𝐬+, generated by thermal noise from the transmission lines. The noise at a 
channel 𝑛 has been characterized by the autocorrelation function of its amplitude 𝑓𝑛  

𝜎+
2 = 〈𝑓𝑛

∗(𝜔1)𝑓𝑚(𝜔2)〉 =
1

2π
𝑘B𝑇𝑛𝐵𝛿𝑛𝑚𝛿(𝜔1 − 𝜔2),               (31) 

where 𝑘B is the Boltzmann constant, and 𝑇𝑛 = 𝑇 is the temperature characterizing the noise 
fluctuations which in our simulations has been taken to be the same for all channels. The angular 
frequency bandwidth 𝐵 over which the noise is collected by the detector during the data 
acquisition, along with the continuous-wave signal associated with a carrier frequency, is inversely 
proportional to the sampling time. In the Monte-Carlo simulations we have accounted for 107 
noise realizations for a specific value of the correlation strength 𝜎+2. 

In our CMT (and COMSOL) modeling, this additional noise term 𝐟 has been accounted for 
by assuming that the 𝑖th components 𝑓𝑖 have real and imaginary parts randomly selected from a 
gaussian distribution with zero mean and variance 𝜎+2 = ⟨Re(𝑓𝑖)2⟩ = ⟨ℐm(𝑓𝑖)2⟩ = 10−5 
(5 × 10−4). The noisy outgoing field is evaluated using the scattering matrix formalism of the first 
subsection of the Methods, 

𝐬− = 𝑆(𝐬+ + 𝐟),              (32)        
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where the 𝑆 −matrix appearing in Eq. (32) is unitary after having projected out the evanescent 
modes and renormalizing the remaining elements of the non-unitary scattering matrix 𝑆̃ (see Eq. 
(18)) with the associated group velocities of the respective modes [43]. The reflectance is 

calculated as 𝑅 = |𝐬−|2

|𝐬+|2
. For better statistical processing, we have simulated the reflected signal 

over an ensemble of 107 realizations of the noise. The probability distribution of the extracted 
detuning 𝒫(𝜈) in Fig. 5b is calculated by mapping the ensemble of differential reflectances to the 
corresponding detuning values {𝜈}, according to the best power-law fit of the mean value 〈Δ𝑅(𝜈)〉.  

Finally, in the COMSOL simulations, we have acquired a smooth curve for the reflectance 
data by performing an additional moving averaging window over a length of 25 data points. At the 
same time, the resulting detuning error 𝜎𝜈 was averaged over a length of 10 data points. 

 

Data availability. 

The data used to plot the figures are available at Zenodo 
(https://doi.org/10.5281/zenodo.6626113). All other data are available from the corresponding 
author upon reasonable request. 

 

Code availability. 

Most of the code related to the simulations performed in this study, especially pertaining to the 
CMT model, are available at Zenodo (https://doi.org/10.5281/zenodo.6626113). All other codes 
are available from the corresponding author upon reasonable request. 
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Figure 1: Implementation of an SIP-based sensing protocol. a) The schematic illustration of the sensing 
platform. The protocol involves a source which emits a broadband signal to the sensing platform which acts 
as a high-Q frequency selective filter, with frequency that depends on the applied perturbation. b) an 
optomechanical Fabry-Perot cavity whose one wall is acting as a test-mass. c) A whispering-gallery-mode 
resonator whose resonant frequency is changed due to the Sagnac effect. (d-f) Different platforms 
supporting a stationary inflection point (SIP) singularity: (d) a multilayer structure [25][26][32], (e) a 
coupled microstrip-waveguide [27][28][29][35], where 𝐻 indicates an external magnetic field strength, or 
(f) a serpentine waveguide [36].   
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Figure 2: Full wave simulations of the coupled microstrip waveguide platform. a) The dispersion 
relation of this platform demonstrates a stationary inflection point frequency 𝑓𝑆𝑃 which is shown by a dotted 
black line. b) Logarithmic plot of the differential reflectance 𝛥𝑅 (blue dots) as a function of the frequency 
detuning 𝜈 from the non-resonant exceptional point degeneracy frequency 𝑓𝑆𝑃. The black dashed line 
indicates the best fitting corresponding to a power law 𝛥𝑅 ∝ |𝜈|0.7. The inset shows the formation of a cusp 
in the reflectance 𝑅 spectrum, in the vicinity of 𝑓𝑆𝑃 (vertical black dashed line). c) Logarithmic plot of the 
differential reflectance 𝛥𝑅 (blue dots) as a function of the magnetic field detuning 𝛥𝐻 from the applied 
magnetic field strength 𝐻𝑆𝑃 where the order 𝑚 = 3 non-resonant exceptional point degeneracy occurs. The 
black dashed line is the best fit 𝛥𝑅 ∝ |𝛥𝐻|0.66. 
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Figure 3: Effects of disorder in the non-resonant exceptional point degeneracy sensing protocols 
based on stationary points in the Bloch dispersion relation. a) Logarithmic plot of the differential 
reflectance Δ𝑅 (grey dots) as a function of the detuning 𝜈 from the frequency 𝜔SP for 104 disorder 
realizations of the resonant frequencies of the Coupled Mode Theory model. The disorder strength is taken 
to be  𝑊 = 0.01. The average value 〈Δ𝑅〉 (blue line) follows the predicted dependence Eq. (11) 〈Δ𝑅〉 ∼
|𝜈|0.66 indicated by the black dashed line. Inset: The sensitivity bound 𝜈c for three different disorder 
strengths (blue dots). The black dashed line indicates the best fit 𝜈c ∼ 𝑊. b) Detuning error 𝜎𝜈 as a function 
of detuning 𝜈 for three different disorder strengths in case of a regular-band-edge-based sensing scheme 
(red lines) and of a stationary-inflection-point-based sensing scheme (blue lines). The red highlighted area 
represents the domain  𝜎𝜈 > 𝜈 where the signal cannot be resolved. The resolution limit for each sensing 
protocol is defined by the point where the 𝜎𝜈 line crosses the line 𝜎𝜈 = 𝜈, shown by the black dashed line. 
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Figure 4: Differential reflectance near SIP frequency obtained from two-chain CMT model. a) 
Logarithmic plot of the differential reflectance Δ𝑅 (blue line) as a function of the frequency detuning 𝜈 
from the stationary inflection point (SIP) frequency 𝜔SP. The black dashed line indicates a variation of the 
differential reflectance which is Δ𝑅 ∝ |𝜈|0.66. The inset shows the dispersion relation of the Coupled Mode 
Theory (CMT) model. The SIP frequency 𝜔SP is indicated by a horizontal dashed line. b) Logarithmic plot 
of the differential reflectance Δ𝑅 (blue line) as a function of the Peirels’ phase detuning 𝜈 = Δ𝜙 from the 
critical phase 𝜙SP. The black dashed line indicates a variation of the differential reflectance which is 
Δ𝑅 ∝ |𝜈|0.66. In the background we show a schematic of the CMT model Eq. (12). c) Logarithmic plot of 
the differential reflectance Δ𝑅 (color lines) as a function of the frequency detuning 𝜈 from the SIP frequency 
𝜔SP in case of a finite-size system for various number of unit-cells 𝐿. The black dashed line indicates a 
variation of the differential reflectance which is Δ𝑅 ∝ |𝜈|0.66. In order to optimize the scaling performance, 

we have used a ramped loss 𝛾(𝑛) = 𝛾max (
𝑛−1

𝐿−1
)
2
, where 𝛾max is the amount of loss in the last unit cell and 

𝑛 is the number of the unit cell. 
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Figure 5: Monte-Carlo precision measurements in case of input signal amplitude noise. a) The 
differential reflectance 𝛥𝑅 as a function of the detuning 𝜈. Height of the grey domain represents the 
evaluated standard deviation 𝜎𝛥𝑅 in the measured differential reflectance for each value 𝜈 of the frequency 
detuning. b) Probability density of the detuning measurements 𝒫(𝜈) under the influence of input signal 
noise for two distant values of 𝜈. The blue double-sided arrows indicate the corresponding standard 
deviations for the extracted 𝜈. c) Calculated detuning error 𝜎𝜈 as a function of the frequency detuning 𝜈 
from the 𝜔𝑆𝑃 in case of a stationary-inflection-point-based sensor (blue line with circles), in case of a 
regular-band-edge-based sensor (red line with circles) and in the case of the COMSOL simulated stationary-
inflection-point-based sensor shown in Fig. 1e (light-blue line with squares). The dashed blue and light-
blue lines indicate a scaling |𝜈|1/3, while red dashed line indicates a scaling |𝜈|1/2. The variance of the 
input signal noise in the Coupled Mode Theory Monte-Carlo simulations is 𝜎+2 = 10−5, while for the 
COMSOL simulations 𝜎+2 = 5 × 10−4.  
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Figure 6: The simulated unit-cell of the SIP platform. The platform consists of a board made of a 
magnetic material (green), which hosts two coupled microstrip waveguides (brown). The vertical purple 
arrows indicate the applied magnetic field 𝐻. Here 2𝑙1 and 𝑙2 are the lengths of uncoupled and coupled 
sections of the waveguide, 𝑊1 and 𝑊3 are the widths of the meandered waveguide in the uncoupled and 
coupled sections, 𝑊2 is the width of the straight waveguide, 𝑇 is the thickness of the magnetic substrate, 𝑠1 
and 𝑠2 are the separation distances between the waveguides in the uncoupled and coupled sections 
respectively. Parameter values used in the simulations are provided in the corresponding section of the 
methods. 
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Figure 7: Non-resonant exceptional point degeneracy coalescence at stationary point frequency in 
CMT and microstrip models. Frequency vs (a) real and (b) imaginary parts of the wavenumber for each 
of the four Bloch modes associated with the transfer matrix (see Eq. 26) of the Coupled Mode Theory 
(CMT) model (see Eq. 22). (c) Frequency vs coalescence parameter for the CMT model. (d-f) The same as 
(a-c), but now for the microstrip waveguide of Fig 1e. In (a,b,d,e), red solid/dotted lines correspond to the 
slow propagating mode, blue solid/dotted lines correspond to the forward evanescent mode, orange 
solid/dotted lines correspond to the backward evanescent mode and green solid/dotted lines correspond to 
the backward fast propagating mode. The black horizontal dashed lined indicates the stationary inflection 
point frequency. 


