

Fighting pathogens in two battlefields: Antimicrobial defenses in the African lungfish

Elisa Casadei, Irene Salinas 65*

Center for Evolutionary and Theoretical Immunology Department of Biology, University of New Mexico Albuquerque, New Mexico, United States of America

* isalinas@unm.edu

Many vertebrates have evolved life histories that allow them to colonize unique ecological niches and survive where others cannot. A great example are lungfishes, sarcopterygian fish that hold a key phylogenetic position as the closest relative to all tetrapods [1–4]. Lungfishes include 3 genera, the Australian lungfish (*Neoceratodus forsteri*), South American lungfish (*Lepidosiren paradoxa*), and the genus, *Protopterus* sp. that includes the 4 African lungfish species (*P. annectens*, *P. aethiopicus*, *P. dolloi*, and *P. amphibius*).

The African lungfish, an example of a vertebrate with extreme physiological adaptations

Both South American and African lungfish have the capacity to undergo estivation or terrestrialization, a process by which they form a mucus cocoon around their body to protect themselves from desiccation. This extreme physiological adaptation allows them to survive annual droughts and lack of food by lowering their metabolism until favorable environmental conditions return. The terrestrialization process has been mostly investigated in African lungfish, which can stay in this dormant, terrestrial form for years and then return to freshwater once rains return. Researchers have studied the African lungfish for decades, fascinated by their dual aquatic and terrestrial life history and the complex physiological adaptations needed to survive in both environments [3]. Now that the Australian lungfish, a non-estivating species, and the African lungfish genomes have been sequenced [4,5], we have a better understanding of the genetic adaptations needed to be a vertebrate capable of life on water and land. First, a very large genome, the largest so far sequenced, and second, a unique genomic architecture, with extremely long genes with the longest introns so far identified in vertebrate genomes and many transposable elements that can regulate gene expression in a variety of environments [4].

The African lungfish immune system undergoes dramatic changes during terrestrialization

Extreme physiological adaptations are often tied to extraordinary immunological innovations [6–8]. It was long known that the immune system of African lungfish is very different from that of other jawed vertebrates. *Protopterus* sp. have the largest diversity and numbers of granulocytes of all vertebrates [3,9], a type of innate immune cell well known for their potent microbe-killing functions. African lungfish have large depots of granulocytes in their gonads, guts, and kidneys during the free-swimming phase. We recently discovered that African lungfish invest in maintaining these reservoirs because granulocytes become very important during terrestrialization [9]. Specifically, we demonstrated that during the terrestrialization process,

G OPEN ACCESS

Citation: Casadei E, Salinas I (2023) Fighting pathogens in two battlefields: Antimicrobial defenses in the African lungfish. PLoS Pathog 19(4): e1011302. https://doi.org/10.1371/journal.ppat.1011302

Editor: Neal Silverman, University of Massachusetts, Worcester, UNITED STATES

Published: April 27, 2023

Copyright: © 2023 Casadei, Salinas. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the National Science Foundation award #1938816 and National Science Foundation award #2212077 to I.S. E.C and I.S received salaried from the funder, the National Science Foundation. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

these cells migrate en masse via the blood from their reservoirs (the gonads, gut, and kidneys) into the skin, which becomes inflamed in order to form the cocoon that will protect the animal. Granulocytes do not stop at the skin to defend the lungfish body from pathogenic invaders but leave the body and become an integral part of the cocoon structure where they fight pathogens without causing collateral damage in the lungfish body. Granulocytes are known to form extracellular traps, complex DNA structures decorated with dozens of proteins that have antimicrobial functions [10–12]. Among the proteins that are part of the extracellular trap complex are histones, myeloperoxidase (MPO), neutrophil elastase (ELANE), and several antimicrobial peptides (AMPs) [13]. Not surprisingly, terrestrialized lungfish cocoons contain many granulocytes that form extracellular traps, making the cocoon a structure that concentrates bacteria and stops them from penetrating into the lungfish body [9].

The importance of antimicrobial peptides for lungfish during terrestrialization

From plants to human, AMPs are present in all living organisms. AMPs are small molecules that are generally amphipathic and cationic, and act as a first line of microbial control for metazoans. AMPs display a broad range of activity against different pathogens, and they normally show rapid killing [14–16]. AMPs are constitutively expressed in all animal barrier tissues including the skin. For instance, many amphibians express a diverse array of different AMPs secreted onto the skin surface [17]. In lungfish, our original studies uncovered 4 beta defensin genes named PdDB-1 to -4 identified from *Protopterus dolloi* skin transcriptomes. Constitutive expression of all PdDB genes was detected in the skin of free-swimming lungfish and upon estivation, PdDB expression increased in the skin [9]. Furthermore, we also detected expression of all 4 PdDB genes in the *P. dolloi* cocoon, with PdDB-1 and PdDB-2 being the highest expressed. Whether PdDBs are expressed in other lungfish tissues in free-swimming and estivating lungfish remains to be investigated.

Terrestrialization also drastically changes the environmental conditions that the lungfish skin is exposed. Changes in water content, temperature, salinity, pH, and other environmental factors likely impact AMP structure and function in the terrestrialized lungfish skin and cocoon (Fig 1). Examples in nature have been documented. For instance, oyster AMPs have adapted to high salinity resistance [18] and clavanins (histidine-rich AMPs) have salinity-dependent and pH-dependent biological activities [19]. pH-dependent changes on protein surface electrostatics may not only alter intramolecular bonds and therefore AMP structure but also the way AMPs interact with their membrane targets [20]. Thus, we predict that different beta defensin molecules shift structure and function in freshwater and terrestrialized lungfish skin and that lungfish AMPs have evolved to protect the host against pathogen invasion in both environments. Of particular interest is the cocoon, where we found the presence of many granulocytes undergoing extracellular trap formation [9]. How the physicochemical properties of the cocoon and the external environment impact AMP roles in the extracellular trap complex is yet to be investigated and is an active topic of research.

Perhaps positively charged AMPs in the cocoon may be counterbalanced by the negative charges from reactive oxygen and nitrogen species (ROS and NOS) that are produced in response to pathogens and to the overall oxidative stress generated by the terrestrialization event itself [21,22]. Besides their involvement in the extracellular trap formation, the increased expression of beta defensins in the cocoon may be a response mechanism to dehydration as happens in the amphibian skin in the case of the AMP brevinin-1SY [23]. Since water holes inhabited by lungfish dry out gradually, it is possible that AMP expression in the skin is turned on early during the dry out period, as an anticipatory response before full estivation begins.

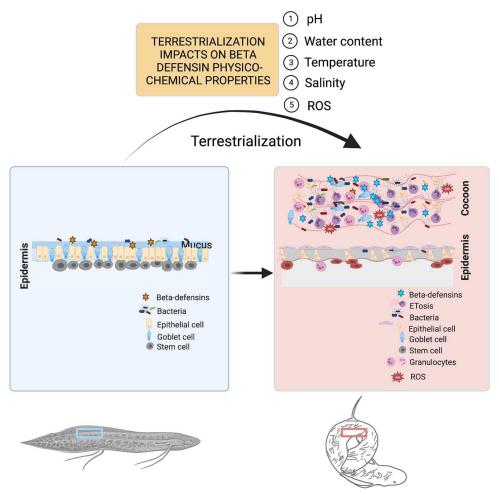


Fig 1. Schematic diagram with the changes that occur in the African lungfish skin upon terrestrialization and the hypothetical environmental factors that may impact AMP structure and function. This figure was made in Biorender.com.

https://doi.org/10.1371/journal.ppat.1011302.g001

AMP responses can be driven by the production of ROS and NOS. Such response helps maintain cellular balance and can inhibit neutrophil apoptosis [24]. The production of NOS is likely further supported by the high presence of myeloperoxidase (MPO) produced mainly by granulocytes, an enzyme that converts H_2O_2 and chloride to produce hypochlorous acid HOCl, a very reactive, oxidizing agent [25].

Pending questions and future directions in lungfish immunity

Investigating the immune system of non-model organisms is not an easy task. Immunologists traditionally rely on species-specific reagents such as antibodies, as well as the ability to breed animals in captivity and genetically manipulate these animals. We currently do not have any of those capabilities when it comes to investigating lungfish immunity. However, technologies that are not tied to the species of study, such as high-throughput sequencing, bulk tissue transcriptomes, single-cell transcriptomes, microbiomes, proteomes, and metabolomes combined with the newly sequenced African and Australian lungfish genomes are excellent ways to delve deeper into the antimicrobial arsenal of African lungfish. Unprecedented protein structure predictions using AlphaFold [26] are now available to model 3D structures of any immune

molecules of interest. Furthermore, predictions of AMPs from genomes and proteomes are now possible using machine learning applications and curated AMP databases [27–29]. However, given the importance of AMPs and granulocytes for the immunobiology of African lungfish, we still believe that developing specific reagents (i.e., recombinant proteins and antibodies) for some molecules of interest is a worthwhile endeavor that will help resolve specific questions about the immunobiology of this animal.

In summary, the diversity of AMPs in lungfishes is yet to be fully uncovered. The ability of African lungfish to survive in extreme and diverse environmental conditions make them a natural resource of AMPs that likely protect lungfish in both aquatic and terrestrial battlefields.

Lungfish AMPs may harness unique physicochemical and biological functions that could result in novel therapeutics against fish pathogens as well as human pathogens.

Author Contributions

Conceptualization: Elisa Casadei, Irene Salinas.

Funding acquisition: Irene Salinas.

Visualization: Irene Salinas.

Writing - original draft: Elisa Casadei, Irene Salinas. Writing - review & editing: Elisa Casadei, Irene Salinas.

References

- Irisarri I, Meyer A. The identification of the closest living relative(s) of Tetrapods: Phylogenomic lessons for resolving short ancient internodes. Syst Biol. 2016; 65(6):1057-1075. https://doi.org/10.1093/ sysbio/syw057 PMID: 27425642
- Takezaki N, Nishihara H. Support for lungfish as the closest relative of Tetrapods by using slowly evolving ray-finned fish as the outgroup. Genome Biol Evol. 2017; 9(1):93-101. https://doi.org/10.1093/gbe/ evw288 PMID: 28082606
- 3. Jordan HE, Speidel CC. Blood formation in the African lungfish, under normal conditions and under conditions of prolonged estivation and recovery. J Morphol. 1931; 51:319–371.
- Meyer A, Schloissnig S, Franchini P, Du K, Wooltering JM, Irisarri I, et al. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature. 2021; 590:284-289. https://doi.org/10.1038/s41586-021-03198-8 PMID: 33461212
- 5. Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan Y, et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell. 2021; 184:1362-1376.e18. https://doi.org/10.1016/j.cell.2021.01. 047 PMID: 33545087
- 6. Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol. 2019; 3:469-478. https://doi.org/10.1038/s41559-019-0812-7 PMID: 30804520
- 7. Swann J, Holland SJ, Petersen M, Pietsch TW, Boehm T. The immunogenetics of sexual parasitism. Science. 2020; 369(6511):1608-1615. https://doi.org/10.1126/science.aaz9445 PMID: 32732279
- Buckley KM, Dooley H. Immunological diversity is a cornerstone of organismal defense and allorecognition across Metazoa. J Immunol. 2022; 208(2):203-211. https://doi.org/10.4049/jimmunol.2100754 PMID: 35017209
- Heimroth RD, Casadei E, Benedicenti O, Munoz P, Amemiya CA, Salinas I. The lungfish cocoon is a living tissue with antimicrobial functions. Sci Adv. 2021; 7(47):eabj0829. https://doi.org/10.1126/sciadv. abi0829 PMID: 34788085
- Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303:1532–1535. https://doi.org/10.1126/science.1092385 PMID: 15001782
- Halverson TW, Wilton M, Poon KK, Petri B, Lewenza S. DNA is an antimicrobial component of neutrophil extracellular traps. PLoS Pathog. 2015; 11(1):e1004593. https://doi.org/10.1371/journal.ppat. 1004593 PMID: 25590621

- Elinor A, Lyon M, Simpson D, Mason D, Beynon RJ, Moots RJ, et al. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Front Immunol. 2019: 10. https://doi.org/10.3389/fimmu.2019.00423 PMID: 30915077
- Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012; 189(6):2689–2695. https://doi.org/10.4049/jimmunol.1201719 PMID: 22956760
- Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol. 2020; 11:582779. https://doi.org/10.3389/fmicb.2020.582779 PMID: 33178164
- Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011; 162(4):363–374. https://doi.org/10.1016/j.resmic.2011.02.005 PMID: 21320593
- Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19:311–332. https://doi.org/10.1038/s41573-019-0058-8 PMID: 32107480
- Wang G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple lengthdependent correlations for peptide design and prediction. Antibiotics (Basel). 2020; 9(8):491. https://doi.org/10.3390/antibiotics9080491 PMID: 32784626
- Loth K, Vergnes A, Barreto C, Voisin SN, Meudal H, Da Silva J, et al. The Ancestral N-Terminal Domain of Big Defensins Drives Bacterially Triggered Assembly into Antimicrobial Nanonets. MBio. 2019; 10(5): e01821–e01819. https://doi.org/10.1128/mBio.01821-19 PMID: 31641083
- Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun. 1997; 65(7):2898–28903. https://doi.org/10.1128/iai.65.7.2898-2903.1997 PMID: 9199465
- Sivasankar S, Subramaniam S, Leckband D. Direct molecular level measurements of the electrostatic properties of a protein surface. Proc Natl Acad Sci U S A. 1998; 95(22):12961–12966. https://doi.org/10.1073/pnas.95.22.12961 PMID: 9789023
- 21. Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014; 20(6):1000–1037. https://doi.org/10.1089/ars.2013.5447 PMID: 23992156
- 22. Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants. 2021; 10(2):313. https://doi.org/10.3390/antiox10020313 PMID: 33669824
- 23. Katzenback BA, Holden HA, Falardeau J, Childers C, Hadj-Moussa H, Avis TJ, et al. Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration. J Exp Biol. 2014; 217:1392–13401. https://doi.org/10.1242/jeb.092288 PMID: 24436376
- Nagaoka I, Niyonsaba F, Tsutsumi-Ishii Y, Tamura H, Hirata M. Evaluation of the effect of human betadefensins on neutrophil apoptosis. Int Immunol. 2008; 20:543–553. https://doi.org/10.1093/intimm/dxn012 PMID: 18308714
- 25. Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Perez-Lebeña E. Impact of reactive species on amino acids—biological relevance in proteins and induced pathologies. Int J Mol Sci. 2022; 23 (22):14049. https://doi.org/10.3390/ijms232214049 PMID: 36430532
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2 PMID: 34265844
- Amaral AC, Silva ON, Mundim NCCR, de Carvalho MJA, Migliolo L, Leite JRSA, et al. Predicting antimicrobial peptides from eukaryotic genomes: In silico strategies to develop antibiotics. Peptides. 2012; 37 (2):301–308. https://doi.org/10.1016/j.peptides.2012.07.021 PMID: 22884922
- Yan J, Bhadra P, Li A, Pooja S, Qin L, Tai HK, et al. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep Learning. Mol Ther Nucleic Acids. 2020; 20:882–894. https://doi.org/10.1016/j.omtn.2020.05.006 PMID: 32464552
- Santos-Júnior CD, Pan S, Zhao XM, Coelho LP. Macrel: antimicrobial peptide screening in genomes and metagenomes. Peer J. 2020; 8:e10555. https://doi.org/10.7717/peerj.10555 PMID: 33384902