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ABSTRACT. Fix a weakly minimal (i.e., superstable U-rank 1) structure M.
Let M* be an expansion by constants for an elementary substructure, and let
A be an arbitrary subset of the universe M. We show that all formulas in the
expansion (M*, A) are equivalent to bounded formulas, and so (M, A) is stable
(or NIP) if and only if the M-induced structure A on A is stable (or NIP).
We then restrict to the case that M is a pure abelian group with a weakly
minimal theory, and A4 is mutually algebraic (equivalently, weakly minimal
with trivial forking). This setting encompasses most of the recent research on
stable expansions of (Z,+). Using various characterizations of mutual alge-
braicity, we give new examples of stable structures of the form (M, A). Most
notably, we show that if (G, +) is a weakly minimal additive subgroup of the
algebraic numbers, A C G is enumerated by a homogeneous linear recurrence
relation with algebraic coefficients, and no repeated root of the characteristic
polynomial of A is a root of unity, then (G, +, B) is superstable for any B C A.

1. INTRODUCTION

Given a structure M, and a set A C M, a common line of investigation concerns
model-theoretic properties of M that are preserved in the expansion (M, A) of M
by a unary predicate naming A. In this situation, the M-induced structure on A,
denoted Aq (see Definition 2.3), is interpretable in (M, A), and so model theoretic
complexity in Apq will persist in (M, A). Altogether, a fundamental question is
when some model theoretic property, satisfied by both M and A4, will be satisfied
by (M, A). In [7], Casanovas and Ziegler define the notion of a set A C M that
is bounded in M (see Definition 2.1), which is a certain “quantifier organization”
property of formulas in the expansion (M, A), and they show that if A is bounded
in M then (M, A) is stable if and only if M and Axq are stable. The analogous
result for NIP was shown by Chernikov and Simon [9].

A notable instance of the situation above concerns expansions of the complex field
(C,+, ) by a finite rank subgroup I of a semi-abelian variety. In this setting, Lang’s
conjecture (now a theorem of Faltings and Vojta) is equivalent to the statement that
(C,+,-,T') is stable and I'(c 4. is 1-based. This equivalence is explained by Pillay
in [29], and also describes the model-theoretic ingredients of Hrushovski’s [18] proof
of Mordell-Lang for function fields. A consequence of Pillay’s work is that if M is
strongly minimal, then any A C M is bounded in M (see [7, Corollary 5.4]).

Drawing from results of Poizat [30] on “beautiful pairs” of models of a stable
theory, Casanovas and Ziegler [7] also isolate the more semantic notion of a small
set in M (see Definition 3.2), and show that if M is stable and has nfcp, then small
sets are bounded. Altogether, this yields a strategy for proving stability (or NIP) of
an expansion (M, A) of an nfcp structure M: one first shows that A is small in M
and then that A, is stable (or NIP). This strategy was used by Palacin and Sklinos
[27] to give the first examples of stable expansions of the group of integers (Z,+)
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(see also Poizat [31]), and again in subsequent generalizations of these examples by
the first author in [10] and [11], and by Lambotte and Point in [21].

The first main result of this paper is that if M is weakly minimal (i.e., superstable
of U-rank 1), then any set A C M is bounded in the expansion of M by constants for
some My =< M (see Theorem 2.9). This generalizes Pillay’s result above on strongly
minimal structures (modulo the extra constants for My, which are necessary; see
Remark 2.14), and yields following conclusion about expansions of weakly minimal
structures by unary predicates.

Theorem 2.10. Suppose M is weakly minimal and A C M.

(a) If Apq is stable of U-rank « then (M, A) is stable of U-rank at most « - w.
(b) If Apq is NIP then (M, A) is NIP.

Returning to the work from [10], [21], and [27] on stable expansions of (Z,+)
by unary predicates, we see that the initial step in the above strategy of proving
smallness of the predicate is unnecessary. Motivated by this situation, we then
focus our attention on abelian groups whose pure theory is weakly minimal (see
Proposition 5.1 for an algebraic characterization of such groups). In Proposition
5.4, we observe that if G = (G, +) is a weakly minimal abelian group, and A C G,
then the induced structure Ag consists of the quantifier-free induced structure,
denoted Agf, together with unary predicates for A N nG for all n > 1. Thus
the task of analyzing Ag decomposes into understanding solutions in A to linear
equations, and the behavior of A modulo any fixed n > 1.

The focus of [21] and [27] is on expansions of Z = (Z,+) by sets A C Z that are
eventually periodic modulo any fixed n > 1, which provides a concrete description
of the unary predicates needed to complete A%f to Az. However, as observed by the
first author in [10, 11], the specific sets A C Z considered in [10], [11], [21], and [27]
have the property that any expansion of A}f by unary predicates is stable, and so
this extra assumption of periodicity is unnecessary. In the present paper, we isolate
a model-theoretic setting for this phenomenon. Specifically, we consider mutually
algebraic structures, which were defined by the second author in [22], and shown to
satisfy the property that any expansion by unary predicates is stable and has nfcp.
For each example of a stable structure (Z, +, A), considered in [10], [11], [21], and
[31], the specific set A has the property that Az is mutually algebraic. In Section
5, we show that if G = (G, +) is a weakly minimal torsion-free abelian group, and
A C G is such that Ag is stable with trivial forking (e.g., mutually algebraic), then
A is automatically small in G. In particular, we show that if Ag is not small then
it interprets the group G; see Corollary 5.9. While smallness of A is irrelevant for
stability of (G, A) by the above, it does allow one to transfer nfcp from G and Ag
to (G, A) (by results from [7]). Using this, we prove the following theorem.

Theorem 5.10. Let G = (G, +) be a weakly minimal abelian group. Fix A C G,
and suppose A(éf is mutually algebraic. Then, for any finite F' C G and any B C

A+ F, (G, B) is superstable of U-rank at most w. Moreover, if G is torsion-free
then (G, B) has nfcp; and if G = (Z,+) and B is infinite then (G, B) has U-rank w.

Finally, in Section 6, we use this result to find several new examples of stable
expansions of weakly minimal abelian groups. In particular, we show that if G =
(G, +) is a weakly minimal abelian group, A is a subset of G, and one of the following
situations holds, then Aqgf is mutually algebraic and so Theorem 5.10 applies.
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* Section 6.1. G is a subgroup of (C,+) and A = {a,}52, where lim,,_,
either diverges or converges to some transcendental 7 € C with |7| > 1.

* Section 6.2. G is a subgroup of the additive group (K, +) of an algebraically
closed field K of characteristic 0, and A is contained in a finite rank multiplicative
subgroup of K*.

* Section 6.3. For any k > 1, there are n; € N and finite Uy, Vi C G such that if
r & Uy, then there are at most ny, tuples a € (+£A4)" satisfying a; +... +ap =7
and ), ; a; ¢ Vi for any nonempty I C [k].

* Section 6.4. G is a subgroup of the additive group of algebraic numbers,
A is enumerated by a linear homogeneous recurrence relation with constant
(algebraic) coefficients, and no repeated root of the characteristic polynomial of
the recurrence is a root of unity.

The examples in Section 6.1 generalize certain families of “sparse sets” considered
in [10], [21], and [27]. In this case, we use methods similar to Lambotte and Point
[21] to show that Agf is interdefinable with A in the language of equality.

The examples in Section 6.2 generalize work of the first author from [11], and
complement many existing results about expansions of the field (C,+,-) by finite
rank multiplicative subgroups (e.g., Belegradek & Zilber [2], and Van den Dries &
Giinaydin [12]). In this case, we use a number-theoretic result of Everste, Schlick-
ewei, and Schmidt [14] to give an extremely quick proof that Agf is mutually alge-
braic. This proof also highlights a pleasing parallel between the original definition
of mutual algebraicity from [22] and the behavior of solutions of linear equations
which lie in a finite rank multiplicative group.

The purpose of Section 6.3 is to give a combinatorial generalization of the be-
havior studied in Section 6.2. One reason for this is to showcase a connection to
recent work of the second author and Terry [23] on a new characterization of mutual
algebraicity. More importantly, the main technical result of this section (Propo-
sition 6.8) is the key tool needed for Section 6.4. Specifically, fix G and A C G
enumerated by a recurrence sequence as described above. To prove A‘éf is mutually
algebraic, we first use the work in Section 6.3 to prove mutual algebraicity of an
auxiliary structure Ng., formulated using a number field over which A is defined.
We then show that Agf is suitably interpreted in Ng. To show that Ng fits into the
combinatorial framework of Section 6.3, we use a quantitative version of work of M.
Laurent [24, 25], due to Schlickwei and Schmidt [33], on the number of solutions to
polynomial-exponential equations over number fields.

Section 6.4 provides a significant generalization of the examples from [10] and
[21] of stable structures of the form (Z, +, A), where A is enumerated by a homoge-
neous linear recurrence relation. These previous examples imposed fairly restrictive
assumptions including irreducibility of the characteristic polynomial pa(z) of the
recurrence. In particular, the question of stability of (Z,+, A) even in the case
that p4(z) is separable was open. In Theorem 6.21, we give a more direct proof
of the separable case, which works with any algebraically closed field of character-
istic 0 in place of Q*8. Beyond this, the division between a separable and non-
separable characteristic polynomial is number-theoretically significant, as there are
many questions about solutions of linear equations from recurrences sequences, in
which the separable case is manageable but the general case is much more difficult
(see, e.g., [?], [13, Section 2.5]). So results about A%, with A and G as in Section
6.4, are interesting in their own right.
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2. BOUNDED SETS IN WEAKLY MINIMAL THEORIES

Throughout this section, let T' be a complete theory with infinite models in some
language £. Given, M |= T, when we say that a set X C M™ is M-definable, we
mean definable with parameters from M.

Let L(P) = L U {P} where P is a unary relation symbol not in £. Given
MET and A C M, let (M, A) be the L(P)-structure expanding M in which P
is interpreted as A.

Definition 2.1.
(1) An L(P)-formula ¢(z1,...,x,) is bounded if it is of the form

Qlyl € Pmem S P¢(x17"‘7xnaylv"~7ym)
for some quantifiers Q1, ..., Q. and some L-formula ¢ (Z, ).
(2) Given M =T, aset A C M is bounded in M if every £(P)-formula is
equivalent, modulo Th(M, A), to a bounded L(P)-formula.

Remark 2.2. Suppose M | T and A C M is M-definable over (). Then A is
bounded in M.

Definition 2.3. Given M = T and a sort S from £, let £ denote a relational
language containing an n-ary relation Ry of sort S”, for any n > 1 and any M-
definable X C (M®)". Given A C M*®, let Ay denote the L£4!-structure, with
universe A, in which each symbol Ry is interpreted as A™ N X. We call Apq the
M-induced structure on A.

The following is Proposition 3.1 of [7].

Proposition 2.4 (Casanovas & Ziegler). Fizt M =T and A C M. If A is bounded
in M, then (M, A) is stable if and only if M and A are stable.

We will use the following characterization of bounded sets in stable theories,
which is part of Proposition 5.3 of [7].

Proposition 2.5 (Casanovas & Ziegler). If T is stable then the following are equiv-
alent for any M =T and A C M.

(1) A is bounded in M.

(ii) If (N, B) =¢(py (M, A) is |T|*-saturated, f is an L-elementary map in N,
which is a finite extension of a permutation of B, and a € N, then there is
be N such that f U {(a,b)} is L-elementary.

For the rest of the paper, we will focus on expansions of weakly minimal theories.

Definition 2.6. T is weakly minimal if it is stable and, for any M =T, B C M,
and p € S1(B), any forking extension of p is algebraic.

In other words, T is weakly minimal if and only if it is stable of U-rank 1. In
this case, we also call models of T' weakly minimal.
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Recall that any stable theory has a U-rank in Ord U {oco}, which is an ordinal if
and only if the theory is superstable. Multiplication of ordinals (denoted -) extends
to Ord U {oo} in the obvious way. The following result is [10, Theorem 2.11], and
is proved using Proposition 2.4 and techniques similar to the work of Palacin and
Sklinos [27] on the expansion of (Z,+) by {2" : n € N}.

Theorem 2.7 (Conant). Assume T is weakly minimal and fit M | T. Suppose
A C M is bounded in M and is such that Aaq is stable of U-rank o. Then (M, A)
is stable of U-rank at most o - w.

Definition 2.8.

(1) Given M =T, let Ly be the expansion of £ by adding a constant symbol
for each element of M, and let T’y be the elementary diagram of M in the
expanded language L.

(2) Fix M =T and My = M. Aset A C M is bounded in M with respect
to Ly, if it is bounded in the canonical £y, -expansion of M, i.e., for all
L(P)-formulas ¢(z;7) and all b € M, there is a bounded L£(P)-formula
Y(z;2) and € € M§ such that (M, A) = VZ(¢(F;b) < ¥(T;¢)).

We now state our first main result.

Theorem 2.9. IfT is weakly minimal, M =T, and My = M, then every A C M
is bounded in M with respect to Ly, .

Before continuing to the proof, we use Theorem 2.9 to establish the second main
result of this section.

Theorem 2.10. Assume T is weakly minimal. Fix M =T and A C M.

(a) If Apq is stable of U-rank «, then (M, A) is stable of U-rank at most o - w.
(b) If Apm is NIP then (M, A) is NIP.

Proof. Fix A C M. By definition of A, we may assume without loss of generality
that £ = Ly and T = Thg. By Theorem 2.9, A is bounded in M. So part (a)
follows from Theorem 2.7, and part (b) follows from [9, Corollary 2.5]. g

The proof of Theorem 2.9 breaks into several pieces. We first note various facts
about weakly minimal theories. First off, note that if T is weakly minimal and
M E T, then Ty, is weakly minimal.

Lemma 2.11. Suppose T is weakly minimal, Mo =T, Mo < M, and My C A C
M. Then acl(A) =T and My < acl(A) < M. Moreover, if My is |T|"-saturated,
then acl(A) is |T|"-saturated as well.

Proof. Without loss of generality, assume A = acl(4). To show A < M, we
choose an L-formula ¢(z;a), with @ C A, that has a solution b € M, and we
show that ¢(z;a) has a solution in A. If b € A we are done, so assume otherwise.
As A = acl(A) and My C A, we have A = aclg,, (A) as well. So, as Ty, is
weakly minimal, b ¢ A implies b |, @ with respect to Tr,. Hence also, b |,
with respect to T. Thus, by ﬁnltely satisfiability, there is b* € My such that
M = p(b*;a), as desired. Next, by the same argument applied to T, we have
A = aclg,, (A) E Tm,, which clearly implies Mo < A.

Now assume M is |T'|"-saturated. We argue that any model N' = M, must
also be |T|"-saturated, which suffices. The proof is essentially the same as [17,
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Proposition 3.5] (in fact, the following argument can be adapted to any non-
multidimensional theory by replacing the use of weak minimality with an appro-
priate version of the “three-model lemma”). Let N™* be the |T|*-prime model over
N. If N = N* we finish, so assume otherwise. Choose b € N*\N. Then tp(b/N) is
a non-algebraic extension of tp(b/My) and so b | v N by weak minimality. Since
N* is dominated by N over My (adapt [28, Lemma 1.4.3.4(4i7)] to the category of
|T|*-saturated models), we have b J/MO N*, which is a contradiction. O

Suppose now that T is weakly minimal. Then a type over a model of T is regular
if and only if it is non-algebraic. Suppose M =< N are |T|*-saturated models of
T. Then, by weak minimality and exchange for algebraic independence, we have
that for any regular p,q € S1(M), if p and ¢ are non-orthogonal, and I C p(N)
and J C q(N) are maximal M-independent sets, then |I| = |J| (note that by |T'|*
saturation, orthogonality and weak orthogonality coincide for regular types over M;
see [28, Lemma 1.4.3.1]). So, for any regular type p over some other model of T', we
have a well-defined dimension dim,(N/M), namely, the cardinality of a maximal
M-independent set of realizations in N of any regular ¢ € S1(M) non-orthogonal to
p. In fact, dim,(N/M) coincides with the cardinality of a maximal M-independent
I C N such that, for any a € I, tp(a/M) is regular and non-orthogonal to p. The
following properties of dim, are standard exercises (see [28], [35]).

Fact 2.12. Assume T is weakly minimal and M < N = T are |T|*-saturated.

Suppose p and q are regular types over models.

(a) If p and q are non-orthogonal then dim,(N/M) = dim,(N/M).

(b) dim,(N/M) < dimaa(N/M).

(¢) If N* = N then dim,(N* /M) is finite if and only if dim,(N*/N) and dim,(N/M)
are finite, and in this case dim,(N*/M) = dim,(N*/N) + dim,(N/M).

We now prove a proposition that carries additional hypotheses, which we subse-
quently remove in the proof of Theorem 2.9.

Proposition 2.13. Suppose T is weakly minimal, Mo = T is |T|*-saturated,
Mo =M, and A C M is Ly, -algebraically closed (so, in particular, My C A C
M ). Then A is bounded in M with respect to Ly, .

Proof. We will apply Proposition 2.5 with respect to the L£;,-theory Th,. Given
A as in the statement, choose any sufficiently saturated (M*, A%) =, (p) (M, A).
Choose any finite b,é¢ C M* and any Lj,-elementary bijection f: A*b — A*e
extending a permutation of A*. Choose any d € M*\A*b. It suffices to find
d' € M* such that fU{(d,d')} is Lpr,-elementary. By Lemma 2.11, the structures
A%, My = acll;MO(A*l;), and My := aclg,, (A*¢) are all |T|"-saturated models
of Thq,- Choose an Ljs,-elementary bijection f*: M; — My extending f. Let
p:=tp(d/My) and p' := f*(p) € S1(Ms). We want to show that p’ is realized by
some d' € M*.

Now, if d € M; then we are done, so assume otherwise. Then p and p’ are regular,
and have the same restriction to My since f* is Lp,-elementary. In particular,
p and p’ are non-orthogonal. To show p’ is realized in M*, it suffices to show
dim, (M*/Ms) > 0. By Fact 2.12(a), it suffices to show dim,(M*/M;) > 0.

By Fact 2.12(b), dim,(M7/A*) and dim,(M2/A*) are both finite. Moreover,
these dimensions are equal since (for the inequality in one direction), if g € S;(A*)
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is regular and non-orthogonal to p, and I C ¢(M;) is A*-independent, then f*(q) €
S1(A*) is regular and non-orthogonal to p, and f*(I) C f*(q)(Mz) is A*-independent.

Suppose first that dim,(M*/A*) is infinite, witnessed by ¢ € Si(A*) and I C
q(M*), where ¢ is regular and non-orthogonal to p, and I is infinite and A*-
independent. Since dim,(My/A*) is finite, there is an infinite Ms-independent
set of realizations of (¢|Ms3)(M*) contained in I. Thus dim,(M*/M;) is infinite
since g|Ma is non-orthogonal to p.

Finally, suppose that dim,(M*/A*) is finite. By Fact 2.12(c), we have

dim,(M™* /M) + dim, (M1 /A™) = dim,(M™*/A*) = dim,(M™ /M) + dim, (Ms/A™),

and all dimensions involved are finite. Since dim,(M;/A*) = dim,(Ms/A*) and p
is realized in M*, we have dim,(M*/M,) = dim,(M* /M) > 0, as desired. O

We can now prove Theorem 2.9.

Proof of Theorem 2.9. Assume T is weakly minimal, M = T, and My, < M.
Choose A C M arbitrarily. We want to show A is bounded in M with respect
to Lp,. Consider the L(P,Q)-structure (M, A, My). Choose a |T|t-saturated
L(P,Q)-elementary extension (M*, A* M), and note that M is the universe of
a |T|*-saturated L-elementary extension M of M.

We now work with the theory T'vqx in the language £* := L. Let (N*,B) =~ (P)
(M*, A*) be T |T-saturated. Let B* = aclg-(B). We have that T' is weakly
minimal, M{ | T is |T|"-saturated, M{ < N*, and B* C N* is L*-algebraically
closed. So we may apply Proposition 2.13 to conclude that B* is bounded in N*
with respect to £*. Now, suppose ¢ d C N* are finite and h: B¢ — Bd is an L*-
elementary bijection in N* extending a permutation of B. Then h extends to an
L*-elementary bijection h*: B*é — B*d. Since B* is bounded in N* with respect
to L£*, Proposition 2.5 implies that for every a € N* there is an a’ € N* such that
h*U{(a,a’)} is L*-elementary in N*. Applying Proposition 2.5 again, we conclude
that B is bounded in N* with respect to £*. By elementarity, A* is bounded in
M* with respect to L£*.

Now, fix any L(P)-formula ¢(Z;y) and let T'(g) be the L(P,Q)-type

{7 € QYU {Vz € Q VZ(¢(Z;7) + ¥(T; Z)) : ¥(T; Z) is a bounded L(P)-formula}.
Since A* is bounded in M* with respect to £*, T'(§) is not realized by N' =
(M*, A*, M§). By saturation of N, I'(y) is inconsistent with Th(N). By compact-
ness, there are finitely many bounded L(P)-formulas 1 (Z;Zz1),...,%¢(T; Z¢) such
that

¢
NEV e\ 37 € QVa(o(z; ) « i 2)).
i=1
So (M, A, My) realizes this sentence, and so we see that for every a € Mg there is
1<i</{andce M such that (M, A) = VZ((Z;b) + :(T;0)).
As the L(P)-formula ¢(Z; ) above was arbitrary, we conclude that A is bounded
in M with respect to Lyy,- O

Remark 2.14. We make some comments on the assumptions in Theorem 2.9

(1) Theorem 2.9 cannot be generalized to arbitrary stable theories. For example,
Poizat [30] constructed an w-stable theory T and models N' < M = T such
that the pair (M, N) is unstable. By stability of T', the induced structure N4
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is the same as N and so, by Proposition 2.4, N is not bounded in M (or in any
expansion of M by constants). In [6], Bouscaren shows that if T is superstable,
then every theory of pairs of models of T is stable if and only if 7" does not
have the dimensional order property.

(2) The additional constants naming a substructure M are necessary in order to
prove Theorem 2.9. For example, let T be the theory of an equivalence relation
E with two infinite classes. Fix M E T and distinct aq,a2,b € M such that
E(a1,a2) and —FE(a1,b). Then A = M\{a1, a2, b} is not bounded in M. To see
this, note that a; and b clearly have different £(P)-types while, on the other
hand, there is an L-elementary map from Aa; to Ab, extending a permutation
of A, and so a; and b satisfy the same bounded £L(P)-formulas.

In [29], Pillay proves that if T is strongly minimal, M = T, and A C M, then
A is bounded in M, without the use of any extra constants (see also [7, Corollary
5.4]). Although it will not be necessary for our later results, it is interesting to see
that the same holds for weakly minimal expansions of groups.

Theorem 2.15. Suppose T is the theory of a weakly minimal expansion of a group,
and M |ET. Then every A C M is bounded in M.

Proof. Fix A € M and let (G,B) =,p) (M,A) be |T|"-saturated. Fix finite
¢,d C G and suppose f: B¢ — Bd is a partial L-elementary map extending a
permutation of B. Fix a € G. We want to find b € G such that f U {(a,b)} is
L-elementary. Given this, we will have that A is bounded in M by Proposition 2.5.

For the rest of the proof, we work in T. Given a strong type p over (J, and sets
B C C C @G, let dim,(C/B) be the cardinality of a maximal B-independent subset
of p(acl(C)) (which is well-defined by weak minimality). We will use properties of
dim,, analogous to parts (b) and (c) of Fact 2.12, along with the following key claim.

Claim: Suppose p, q are non-algebraic strong types over (), and C' C G is such that
p and ¢ are both realized in acl(C'). Then dim,(G/C) = dim,(G/C).

Proof: It suffices to show dim,(G/C) < dim,(G/C). Fix by, ¢y € acl(C) realizing p
and g, respectively. Given any C-independent set I C p(G), let J = {aby'co : a € I}.
Then we clearly have that J is C-independent, and that |J| = |I|. Moreover, for
any a € I, we have stp(a) = stp(by), and so bpat € G° = Stab(q), which implies
ab'co E q. So J C q(G) and, altogether, dim,(G/C) < dim,(G/C). Aelaim

Now let C; = acl(B¢) and Cy = acl(Bd). Without loss of generality, we may
extend f so that it is a map from C; to Co. Let p = stp(a), and let G* be
a sufficiently saturated elementary extension of G. Choose b, € G* such that
fU{(a,b.)} is elementary, and let ¢ = stp(b.). If b* € G then we are done, so
assume otherwise. In particular, b, ¢ Co, which implies a ¢ Cy and b, | 0 Cy. To
find our desired b, it suffices by stationarity of ¢ to find b € G\C5 realizing ¢. In
other words, we want to show dim,(G/C3) > 0.

Suppose first that p is not realized in Cy. Since G is |T|"-saturated, there is a
realization b of ¢ in G. Toward a contradiction, suppose b € Cs. Then stp(b,) =
stp(b), and so bi'b € (G*)°. Then a!f1(b) € G°, and so stp(a) = stp(f1(b)),
which contradicts that p is not realized in Cj.

Next, let 7 € S1(acl® (D)) be the principal generic. Suppose r is not realized in
(. Since r is (-invariant, it is also not realized in Cy. Note that if by, b |= ¢, with
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WEAKLY MINIMAL GROUPS WITH A NEW PREDICATE 9

bi |, b2, then bi'bs |= 7. So we have dimy(C>/0) < 1. Since dim,(G/0) is infinite
(by |T'|"-saturation of G), it follows that dim,(G/Cs) is infinite.

Finally, suppose p and r are both realized in Cy. As above, r is realized in Cs.
Also ¢ is realized in Cy since f(p(Cy)) C ¢(Cs3). By the claim,

dim,(G/C1) = dim,(G/C1) and dim,(G/Cs) = dim,(G/Cs).
In particular, we may assume dim,(G/Cs) is finite. Note also that dim,(Cy/B) is
finite since it is bounded above by dim,q(C2/B). By additivity,
dim,.(G/C4) + dim,.(Cy/B) = dim,.(G/B) = dim,.(G/Cs) + dim,.(Cy/B).

Since f: C; — C5 extends a permutation of B, and r is (-invariant, we also have
dim, (Cy/B) = dim,(C3/B), and so dim,(G/Cy) = dim,(G/C5). Altogether, this
yields dim,(G/C4) = dimy(G/C3). Since dim,(G/Cy) > 0 (witnessed by a), we
have dimy(G/C3) > 0. O

3. SMALL SETS AND NFCP

We again let T denote a complete L-theory. Recall that T has nfcp (no finite
cover property) if for any formula ¢(z;y) there is some k& > 1 such that, for any
M ET and B C MY, the partial type {#(Z;0) : b € B} is consistent if and only if
it is k-consistent.

Fact 3.1.
(a) T has nfep if and only if it is stable and eliminates 3°° in all imaginary sorts.
(b) If T is weakly minimal then it has nfep.

Proof. Part (a) is one of the equivalences of Shelah’s fep theorem [35, Theorem
I1.4.4]. For part (b), it follows from Section 2 of [15] that any weakly minimal
theory eliminates 3°° in all imaginary sorts. (Il

Given M = T and A C M, Casanovas and Ziegler [7] also provide a test for
transferring nfcp from M and Apq to (M, A).

Definition 3.2. Suppose M =T and A C M. Then A C M is small in M if
there is (N, B) =¢(py (M, A) such that, for any finite tuple b from N, any type
p € SE(BD) is realized in N.

Remark 3.3. If M =T and A C M is M-definable, then A is small in M if and
only if it is finite.

Proposition 3.4 (Casanovas & Ziegler). Fizt M =T and A C M.

(a) If M has nfep and A is small in M, then A is bounded in M.

(b) If A is small in M, then (M, A) has nfcp if and only if M and Axq have nfcp.
Proof. These are Propositions 2.1 and 5.7 of [7], respectively. O

Next we will give a characterization of small sets in weakly minimal structures,
and then refine this characterization for the unidimensional case.

Lemma 3.5. Suppose T is weakly minimal and M | T. Given A C M, the
following are equivalent.

(i) A is not small in M.
(i) A is not small in the Lyr-expansion of M by constants.
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10 G. CONANT AND M. C. LASKOWSKI

(131) There is an Lyr-formula ¢(x;y) such that such that {¢p(x;a) : a € AY} is
finitely satisfiable in M but not realized in M.
(iv) There are Lyr-formulas ¥(z) and ¢(z;y) such that p(x) is non-algebraic,
P(x;a) is algebraic for all a € MY, and (M) C U cas ¢(M;a).
(v) There is a non-algebraic Las-formula(x) such that if (N, B) =¢,,(p) (M, A)
then ¢(N) C aclg,,(B).

Proof. We first show (), (i), and (iv) are equivalent. (¢) = (4¢) is clear.

(7i) = (iv). Assume (i7). By elimination of 3°° for T it suffices to find L£y-
formulas +(x) and ¢(z; §) satisfying the desired conditions for some (N, B) =¢,,(p)
(M, A). So fix an |M|*-saturated extension (N,B) >, (p) (M, A). Since A is
not small in the expansion of M by constants, there is a tuple ¢ € N* and a type
pE Sf M (Bc) such that p is not realized in /. In particular, p is not algebraic. Let
po € S5 () be the restriction of p. We claim that po(N) C acle,, (Bé). Suppose
otherwise that there is a € po(NN)\ aclz,, (B¢) and let ¢ = tp,, (a/Bc). Then p and
q have the same restriction to (), and so p = ¢ by stationarity, which contradicts
that p is not realized in N

Since po(NN) C aclg,, (B¢), the following Ly (P)-type is omitted in (N, B):

po(x) U {ng epP (3<°°v d(v; §; ©) = ~p(x; G; E)) :9(x;7; 2) an EM-formula} )

By saturation of (N, B), there are Ly/-formulas ¥(z), ¢1(2;91;2), - - -, On(T; §n; Z)
such that ¢ (z) € py and

t=1

WV, B) E0(c) :==Va <T/J($) — \/ 35 € P (pe(a;5s¢) A IS0 ¢t(v§yt;c))> :

By elementarity there is d € MY such that (N, B) = 0(d). Let ¥ = (41,...,7n)

and set ¢(x;y) = Vi (d1(x; Ge; d) A I<°0vde(v; §r; d)). Then we have (iv).
(tv) = (). If (iw) holds then there are L-formulas ¢ (z;a) and ¢(x;g; Z) such
that the following sentence holds in (M, A):

Judz (3%z ¢ (x; ) AVY € PI~¥z d(x;5;2) AVa(y(z;u) — Iy € Po(z;3;2))) -

Fix (N, B) =¢(p)y (M, A). Then the sentence above holds in (N, B), witnessed by
some (¢,d) € N x N%. Since 9 (z;d) is non-algebraic and ¢(x;b; €) is algebraic for
all b € NY, there is some p € SF(Bed) extending {¢(z;d)} U {=é(z;b;¢) : b € BY}.
By construction, p is not realized in A/, and so A is not small in M.

To finish the proof, we show (iv) = (iit) = (i1) and (iv) = (v) = (i).

(tw) = (di1). Let ¢(z) and ¢(x;y) be as in (iv), and consider the formula
0(z;9) := (x) A —¢(z;y). Then {0(z;a) : a € AY} is finitely satisfiable in M, but
not realized in M.

(4ii) = (i1). Assume (iii) and suppose (N, B) =¢,,(p) (M, A). By (iii), and
nfcp for Ty, it follows that the partial type m(z) := {¢(x;b) : b € BY} is consistent
with Thvy. But m(z) is not realized in N by (i27) and Ly (P)-elementarity.

(iv) = (v). By elimination of 3%, (iv) is an L£j/-elementary property for any
given ¢ (z) and ¢(z;g). So this is implication is clear.

(v) = (i4). Let ¢(x) be an Ly-formula witnessing (v). Fix (N,B) =¢,,(p)
(M, A). Let p € S5 (B) be a non-algebraic type containing ¢ (x). Then p is not
realized in N since ¥(N) C aclg,, (B). O
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WEAKLY MINIMAL GROUPS WITH A NEW PREDICATE 11

Recall that T is unidimensional if any two non-algebraic stationary types are
non-orthogonal. This setting is of interest to us due to the following standard fact.

Fact 3.6. If T is the theory of a weakly minimal expansion of a group, then T is
unidimensional.

Proof. This is essentially contained in the proof of [28, Remark 4.5.11]. It suffices to
show any two non-algebraic 1-types, over a sufficiently saturated G |= T', are non-
orthogonal. So fix such types p and q. Then p and q are generic by weak minimality,
and so ¢ = gp for some g € G. Therefore p and g are non-orthogonal. O

Corollary 3.7. Suppose T is weakly minimal and unidimensional. Given A C M,
the following are equivalent.

(1) A is not small in M.
(i1) There is an Lyr-formula ¢(x;y) such that ¢(x;a) is algebraic for all a € MY
and M = Ucas #(M; a).
(iii) If (N, B) =¢,,(p) (M, A) then N = aclg,,(B).

Proof. (i) = (i¢4). Assuming (i), let t(z) be as in Lemma 3.5(v). Suppose
(N, B) =z,,(p) (M, A) is |Ta|-saturated, and let (N*,B*) =, (p) (N,B) be
|N|*-saturated. Then we have 1)(N*) C aclg,,(B*). Let p € SF(N) be a non-
algebraic type containing ¥ (z), and fix ¢ € N*\N. Then tp(c/N) is non-algebraic,
and thus non-orthogonal to p by unidimensionality. By saturation of A/, tp(c/N)
is not weakly orthogonal to p. So there is a |= p such that a € aclz(¢N) C N*.
By choice of p, we have a € (N*) C aclg,, (B*). So ¢ € aclg(aN) C aclg(B*N).
Altogether, N* = aclz(B*N) and so (N*, B) omits the type

I(z) = {Vj € P (3®u¢(u;§) = ~¢(x;¥)) : ¢(x;%) is an Ly-formula} .

By saturation of (N*, B*), we may choose an L-formula ¢(z; 7; Z), and some ¢ € N*?
such that ¢(z;b;¢) is algebraic for all b € B*, and N* = Use(pys (N b;¢). Now
(44) follows using L(P)-elementarity.

(#4) = (#4¢) is trivial (given elimination of 3% for Th).

(#4i) = (4) is immediate from Lemma 3.5[(v) = ()]. O

Remark 3.8. In Corollary 3.7, the assumption that 7' is unidimensional cannot
be removed. For example, let T" be the theory of an equivalence relation E with
two infinite classes. Fix M =T and let A C M be one E-class. Then T is weakly
minimal (but not unidimensional), A is not small in M by Remark 3.3, and if
(N, B) =¢,,(p) (M, A) is Ry-saturated then N # aclg,,(B).

Remark 3.9. Corollary 3.7 yields an alternate proof that if T is weakly minimal
and unidimensional, M =T, and £ = L), then any A C M is bounded in M (a
special case of Theorem 2.9). The argument splits into two cases. If A is small in
M then it is bounded in M by Proposition 3.4(a) and Fact 3.1. If A is not small in
M then condition (ii) of Corollary 3.7 holds, and one easily sees that Proposition
2.5 applies to conclude A is small in M.

4. MUTUALLY ALGEBRAIC STRUCTURES

The notion of a mutually algebraic structure was introduced in [22] by the second
author, and we now recall the definition. Throughout this section, let M be an
L-structure, with universe M and complete theory T. Let Thy = Thg,, (M).
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12 G. CONANT AND M. C. LASKOWSKI

Definition 4.1.

(1) A set X C M™ is mutually algebraic if there is an integer N > 1 such
that, for any 1 <7 <n and any b € M, the fiber

{(ah...,an,l) S ]\4’”_1 : (al,...7ai,1,b7a¢7...7an,1) S X}

has size at most N.

(2) An Lp-formula ¢(z1,...,2,) is mutually algebraic if ¢(M™) is a mutu-
ally algebraic subset of M™.

(3) M is mutually algebraic if every £j,-formula is equivalent, modulo T,
to a Boolean combination of mutually algebraic £j;-formulas.

This property has many interesting consequences; here are two.

Theorem 4.2 (Laskowski). Suppose M is mutually algebraic.

(a) Any reduct of M is mutually algebraic.
(b) Any expansion of M by unary predicates is mutually algebraic.

Proof. This follows from [22, Theorem 3.3] (and the fact that mutual algebraicity
is preserved by elementary equivalence, see [22, Lemma 2.10]). O

We now recall several useful characterizations of mutual algebraicity, which will
be used in later results. These require the following definitions.

Definition 4.3 (T stable). M has trivial forking if, for any V' =T and A C N,
if @,b,¢ C N are pairwise forking independent over A, then a | N be.

Definition 4.4. Fix an L-formula R(Z), and let Lr be the language containing
just the relation R(Z).

(1) Given a nonempty tuple # C z and a finite set B C M, let SZ(B) be the
set of complete quantifier-free Lg-types realized in M, which are in the
variables Z, and over parameters from B.

(2) Fix m > 1, # C Zz nonempty, and B C M finite. A type p € SE(B)
supports an m-array if there are realizations a, ..., a,, of p in M such
that a; Na; = 0 for all distinct 7,5 < m.

(3) R has uniformly bounded arrays in M if there are m, N € N such that,
for any nonempty tuple T C Z and any finite B C M, at most N types in
SE(B) support an m-array.

Theorem 4.5. The following are equivalent.

(1) M is mutually algebraic.
(it) (Laskowski) Every atomic L-formula is equivalent, modulo Tr, to a Boolean
combination of mutually algebraic L r-formulas.
(#31) (Laskowski) M is weakly minimal with trivial forking.
(v) (Laskowski & Terry) Every atomic L-formula has uniformly bounded arrays

in M.
Proof. See [22, Proposition 2.7], [22, Theorem 3.3], and [23, Theorem 7.3] for the
equivalence of (z) with (i), (4i7), and (iv), respectively. O

Given an L-formula ¢(Z) (possibly over parameters A from some model of T'),
recall the that U-rank of ¢(Z) in T is supremum of the U-ranks of all types (over
A) containing ¢(Z).
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Corollary 4.6. Suppose M is mutually algebraic, and N is a first-order structure
interpretable in M. Assume that the universe of N has U-rank 1 as a definable set
in M®4. Then N is mutually algebraic.

Proof. Let N be the universe of A/, which we view as a definable set in M®4, Then
N is a reduct of the M-induced structure on N and so, by Theorem 4.2(b), we may
assume N = N . Since N is definable, it is bounded in M®4. Since M*®9 is stable
and N has U-rank 1 as a definable set, it follows that A is weakly minimal (see,
e.g., [10, Theorem 2.10]). Since M has trivial forking, so does M®? by [16, Lemma
1]. From this one can show that A has trivial forking (see, e.g., [10, Proposition
2.7]). So N is mutually algebraic by the characterization in Theorem 4.5(i#4). O

Remark 4.7. In the previous corollary, the restriction on the U-rank of the uni-
verse of N is necessary. For example, let M be an infinite set in the language
of equality, and let N be the M-induced structure on M?2. Then M is mutually
algebraic, but N has U-rank 2 and so is not mutually algebraic.

Combining previous results, we obtain the following theorem about expansions
of weakly minimal structures by sets with mutually algebraic induced structure.

Theorem 4.8. Suppose M is weakly minimal and A C M is such that Apq is
mutually algebraic. Then, for any B C A, (M, B) is superstable of U-rank at most
w. Moreover, if B is small in M then (M, B) has nfcp.

Proof. Fix B C A. We may asume B is infinite. By Theorem 4.2(b), the expansion
A = (A, B) is mutually algebraic. Therefore B has U-rank 1 as an A-definable
set. Since B, is interpretable in A as a structure with universe B, we conclude from
Corollary 4.6 that B is mutually algebraic (and, in particular, weakly minimal).
By Theorem 2.10, (M, B) is superstable of U-rank at most w. If B is small in M
then (M, B) has nfcp by Fact 3.1 and Proposition 3.4(b). O

5. WEAKLY MINIMAL ABELIAN GROUPS

The goal of this section is strengthen Theorem 4.8 in the case of pure abelian
groups. By a pure group, we mean a group as a structure in the group language.
Recall that if (G, +) is an abelian group, then the pure theory of (G, +) is stable,
and has quantifier elimination in the expansion by binary relations for equivalence
modulo n, for all n > 1 (see, e.g., [20]). By a weakly minimal abelian group, we
mean an infinite abelian group (G, 4+) whose pure theory is weakly minimal. Tt is not
difficult to give an algebraic characterization of all such groups. Given an abelian
group (G,+) and n > 1, let nG = {nz : v € G} and t,(G) = {z € G : nz = 0}.
Note that nG and t,(G) are (G, +)-definable subgroups of G.

Proposition 5.1. An infinite abelian group (G,+) is weakly minimal if and only
if, for alln > 1, nG and t,,(G) are each either finite or of finite index.

Proof. 1t is a standard fact that a weakly minimal expansion of a group has no
infinite definable subgroups of infinite index (see, e.g., [4, Corollary 8.2]). Con-
versely, suppose that for all n > 1, nG and t,,(G) are each either finite or of finite
index. Let £ be the expansion of the group language by constants for G, and let
M = Thy(G). By quantifier elimination, any definable subset of M is a finite
Boolean combination of sets of one of the following two forms:

(1) Xp(r):={r e M :nz=r}forsomen>1and re M,
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14 G. CONANT AND M. C. LASKOWSKI

(1) Yoo n(r) :={xz € M : mz =, r} for some m,n > 1 and r € M.
We claim that any such set is either finite or L-definable over (), which implies
(G,+) is weakly minimal (e.g., by [1, Theorem 21]). To see this, fix some n > 1.
If ¢,(G) is finite then X,,(r) is finite for any r € M. If ¢,,(G) has finite index then
nM C G, which implies X,,(r) = @ for any » € M\G, and so X,,(r) is #-definable
for any r € M. Next, if nG has finite index then any element of M is equivalent
modulo n to some element of G, and so Y, ,,(r) is @-definable for any m > 1 and
r € M. Suppose nG is finite. Then nM = nG and so, for any » € M and m > 1,
we have Yy, (1) = Useng Xm(r +5). By the above, Y, ,(r) is either finite or
()-definable for any m > 1 and r € M. O

Remark 5.2. In [19, Proposition 2.1], Hrushovski and Loveys show that if M is
an expansion of an abelian group by any number of predicates naming subgroups,
then M is weakly minimal if and only if any infinite definable subgroup has finite
index. It is also worth mentioning the result of Cherlin and Shelah that any weakly
minimal group is definably abelian-by-finite (see [8, Theorem 62]).

The next goal is to give a more explicit description of the induced structure on
subsets of weakly minimal abelian groups.

Definition 5.3. Given an L-structure M, and a set A C M, let A?\ﬁt denote the
reduct of Ay to relations of the form AN X, for any n > 1 and X C M™ definable
by a quantifier-free L£j/-formula.

We say that two structures My and Mo, with the same universe M (but possibly
different languages), are interdefinable if, for any n > 1 and X C M"™, X is M;-
definable if and only if it is Ms-definable.

Proposition 5.4. Suppose G = (G,+) is a weakly minimal abelian group. Then,

for any A C G, Ag is interdefinable with the expansion of Agf by unary predicates
for ANnG, for alln > 1.

Proof. Fix A C G. By quantifier elimination, Ag is interdefinable with its reduct
to relations of the following two forms:
(i) {a€ A*¥ i ciay + ...+ cpap =7} where k > 1, ¢ € {1,-1}* and r € G,

(i1) {a € A¥ :ciay + ...+ cxap =, v} where k,n >1,¢€ {1,-1}F, and r € G.
Note that Agf is interdefinable with the reduct of Ag to type (7) relations. Moreover,
any type (i) relation, where n > 1 is such that nG finite, is a finite union of type
(¢) relations. So, by Proposition 5.1 (really, [4, Corollary 8.2]), it suffices to show
that type (i7) relations, where n > 1 is such that G/nG finite, are definable using
unary predicates for ANnG. This is straightforward, and exactly as in the case of
(Z,+) (see [10, Proposition 5.2] and [11, Proposition 2.11]). O

The final step needed before the main result of this section (Theorem 5.10 be-
low) is a finer analysis of small sets in torsion-free weakly minimal abelian groups.
In light of Theorem 2.10, smallness is no longer relevant in proving stability for
expansions of weakly minimal structures by new predicates. On the other hand, in
light of Proposition 3.4(b), smallness is still relevant for proving nfcp.

Definition 5.5. Let (G,+) be an abelian group, and fix A C G.

(1) Lt A={x € G:z € Aor -z € A}.
(2) Given n > 1, let nA = {na : x € A}.
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3) Givenn>1,let X,,(A) ={a1+...+ax: 1 <k <nanday,...,ax € A}.
(4) A is generic if there is a finite set F' C G such that G = A+ F.
(5) A is sufficiently sparse if ¥,,(+A) is not generic for any n > 1.

Proposition 5.6. Suppose G = (G,+) is a torsion-free weakly minimal abelian
group. Then A C G is small in G if and only if it is sufficiently sparse.

Proof. Let L denote the language of groups. Suppose first that there is F' C G finite
and some n > 1 such that G = %,,(+A) + F. Then, for any (N, B) =£,p) (G, A)
we have N = ¥,(£B) + F C aclg,(B). So A is not small in G by Corollary
3.7[(z1) = (4)].

Now suppose A C G is not small in G. Let (N, B) =, p) (G, A) be saturated.
By Corollary 3.7[(¢) = (ii)], there is a finite set F' C G such that N = aclz(BUF).
Given k,n > 1, set

X ={x € N:mzx € X, (£(BUF)) for some 1 <m < k}.

Note that each X}, ,, is (N, B)-definable. Since G is torsion-free and weakly minimal,
we have nG = G/t,(G) = G for any n > 1. So G is torsion-free and nG is
infinite for all n > 1, which implies acle(BU F) = Uy, Xk,n. By saturation of
(N,B), and since N = aclg(B U F), there are k,n > 1 such that N = X} ,.
By L¢(P)-elementarity, it follows that for any x € G there is m < k such that
mz € X, (£(AUF)).

Given m < k,let C, = {z € G: mz € £,(£(AUF))}. Then G = C1 U...UC},
so we may fix some m < k such that C,, is piecewise syndetic, i.e., there is a finite
set £ C G such that, if D := E + C}, then, for any finite U C G, thereis g € G
such that ¢ + U C D (see, e.g., [3, Theorem 3.5]). In particular, for any v € G,
there is g € G such that {g,g+ u} C D, and so u € D — D. So we have

mG Cm(D—D) CmE—mE+Ya,(£(AUF)) = o, (£A)+ 2o, (£F)+mE —mE.
So Ya,(£A) is generic since mG is generic and Yo, (£F) +mE —mkE is finite. O

Remark 5.7. Using results from [26], one can show that A C Z is sufficiently sparse
if and only if mZ € ¥,,(£A) for all m,n > 1 (see [10, Section 4]). Using Proposition
5.6, it follows that for any A C Z, either A is small in (Z,+) or N = aclz(B) for any
(N, B) =¢(p) (Z,+, A) (where L is the group language). So the same argument as
outlined in Remark 3.9 yields an alternate proof that all subsets of Z are bounded
in (Z,4+), which is a special case of Theorem 2.15.

Proposition 5.8. Suppose G = (G,+) is a torsion-free weakly minimal abelian
group, and A C G is not small in G. Then Ag interprets G.

Proof. Suppose A C G is not small in G. By Proposition 5.6, we may fix a finite
set ' C G and some n > 1 such that G = £,,(+A) + F. We work in the structure
M = Aegq7 and so definable means M-definable with parameters. Fix F, C A,
with |F| = |Fy|, and let o: F. — F be a bijection. Let [3,...,[,,0,n,p, be n +3
pairwise distinct elements of A\ F*. Set

X =F*x LnJ (AP x {0} 7% x {n,p}* x {o}" % x {1,}),
k=1

and note that X is a definable subset of A?2"*2, Given f € F, 1 <k < n, a € AF,
and 5 € {n,p}*, let (f,a,35,k) denote the element (o(f),a,0,”7% 0,5,0,77% 0,1)
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of X. Given 1 <k < n, 5 € {n,p}* and z € Z*, we let X5z denote the integer
$121 + ...+ Skzk, where n = -1 and p = 1.

Let ~ be the equivalence relation on Y such that (f,a,35,) ~ (g,b,%, k) if and
only if f + ¥s@ = g + Xzb. Then ~ is definable (as a subset of Y?) using induced
relations of the form A7k N {(z,9) € ZI x ZF : f + ¥s& = g + Sgy}, for some
fixed f,g € F, 1 < j k<n,5€ {np}, and t € {n,p}*. Let Z = Y/~, which is
definable. Given f € F, 1 <k <n,a c A* and 5 € {n,p}*, let [f,a, 5, k] denote
the ~-class of (f,a, s, k).

For any z € G, we may choose f(z) € F, 1 < k(z) < n, a(z) € A*®), and
5(2) € {n,p}*C) such that = = /() + Sga(2). Let [2] = [£(=),a(2), (= )G
By definition of Y, [z] € Y for all z € G. Note that, for any (f,a,s,k) € Y,
have some z € G such that z = f + X;a, and so [f,a §,k] = [#] by definition of
~. Altogether, we have a surjective function f : G — Z such that f(z) = [z]. It is
easy to check that f is injective.

Given z,y € G, let [z] ® [y] = [z + y]. Since f is a bijection, @ is a well-
defined binary operation on Z, and (Z,®) is isomorphic to (G,+) as structures
in the language of groups. Therefore, to finish the proof, it suffices to show @ is
definable in M. By arguments similar to the above, if W C Y3 is the set of triples
((f,a,s5,i),(g,b,t,7), (h,&u,k)) such that f+ Xsa+ g+ b = h + Xgc, then W is
definable and the graph of @ is defined by W/~. d

Since a stable structure with trivial forking cannot interpret an infinite group,
we obtain the following corollary.

Corollary 5.9. Suppose G = (G, +) is a torsion-free weakly minimal abelian group.
If A C G is such that Ag is stable with trivial forking (e.g., Ag is mutually alge-
braic), then A is small in G.

We now state and prove the main result of this section.

Theorem 5.10. Let G = (G,+) be a weakly minimal abelian group. Fiz A C G,
and suppose Agf is mutually algebraic. Then, for any finite F C G and any B C
A+ F, (G, B) is superstable of U-rank at most w. Moreover, if G is torsion-free
then (G, B) has nfep; and if G = (Z,4) and B is infinite then (G, B) has U-rank w.

Proof. We may assume A is infinite. Fix a finite set F C G. Then (A + F)g
is interpretable in Ag as a structure on (A X F)/E, where E is the Ag-definable
equivalence relation {((ay, f1), (a2, f2)) € (Ax F)? 1 a1 + f1 = az + fa}. Since F is
finite and Ag is mutually algebraic, (A x F')/FE has U-rank 1 as an interpretable set
in Ag. So (A+ F)g is mutually algebraic by Corollary 4.6. So, for any B C A+ F,
(G, B) is superstable of U-rank at most w by Theorem 4.8.

Fix B C A+ F. If G is torsion-free then B is small in G by Corollary 5.9. So
(G, B) has nfcp by Fact 3.1 and Proposition 3.4(b). Note also that if B is infinite
then it is not G-definable by Remark 3.3. So if G = (Z,+) and B is infinite then
(G, B) does not have finite U-rank by [27, Theorem 1]. O

Remark 5.11. Suppose K = (K, +) is an abelian group and A C K is such that
Ac,lcf is mutually algebraic. Let G = (G, +) be a subgroup of K, such that A C G.

Then Agf is a reduct of Aqu and so, if G is weakly minimal, then the conclusion of
Theorem 5.10 holds.
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WEAKLY MINIMAL GROUPS WITH A NEW PREDICATE 17

All examples of stable expansions of (Z,+), considered in [10], [11], [21], and
[27], fall under the umbrella of Theorem 5.10. In particular, given d > 1, let N4
denote the structure (Nd,sl, ...,84), where s, is the successor function on the ith
coordinate and the identity on all other coordinates. Then N ﬁd is mutually algebraic
for any d > 1 (in fact, it follows from [22] that any structure containing only unary
injective functions is mutually algebraic). In each example of a stable expansion
of the form (Z,+, A) considered in the sources above, it is shown that Az 1) is
interpretable in an expansion of N by unary predicates, for some d > 1 (in fact,
d = 1 suffices for all examples considered in [10], [21], and [27]).

It is worth emphasizing that in the sources cited above, a considerable amount of
work is still required to show that Az 1) is interpretable in an expansion of some N, Sd
by unary predicates. On the other hand, as we will see later, there are some cases
where it is significantly easier to just show Az 1) is mutually algebraic. Theorem 6.5
is a notable example. Moreover, once it is shown that Az ) is mutually algebraic,
it then follows rather quickly that Bz 4 is mutually algebraic for any B C A+ F,
with F' C Z finite. This also eliminates a nontrivial amount of technical and tedious
work in some examples considered in the sources above (e.g., [11, Lemma 4.17]).

6. STABLE EXPANSIONS OF WEAKLY MINIMAL ABELIAN GROUPS

In this section, we give several new families of stable expansions of weakly min-
imal abelian groups. The main results are Theorems 6.3, 6.5, 6.6, and 6.14. Each
one of these theorems is formulated for a weakly minimal abelian group G = (G, +)
satisfying certain further properties, which always hold for (Z, +). The conclusion
of each of these theorems is that some expansion of the form (G, B) superstable of
U-rank at most w. For each result, we obtain this by showing that the induced
structure Bg is mutually algebraic. Therefore, if G = (Z,+) and B is infinite, then
(G, B) has U-rank ezactly w by Theorem 5.10.

Given an integer n > 1, we let [n] = {1,...,n}.

6.1. Strongly lacunary sets in C. A strictly increasing sequence (a,,)22, of (pos-
itive) real numbers is often called lacunary if liminf,, “Zﬁ > 1. This motivates
the following definition.

Definition 6.1. A countable set A C C is strongly lacunary if there is an
enumeration A\{0} = {a,}52, such that lim, a;:I either diverges, or converges
to some £ € C with |k > 1.

Suppose A C C is strongly lacunary, witnessed by an enumeration {a,}>,.
Then there is some N > 0 such that |ap41| > |ay| for all n > N. It follows from
this that if {c, }22, is another enumeration witnessing that A is strongly lacunary,
then lim,,_, o “ZW“ and lim,,_, 02:1 either both diverge or are equal. In the former
case we call A divergent, and in the latter case we call A convergent and call this
unique limit the Kepler limit of A (this terminology is often used in the context
of Fibonacci sequence, whose Kepler limit is the golden ratio).

In [10, Theorem 7.16(a)] the first author showed that any divergent strongly
lacunary set A C Z* admits a stable expansion (Z,+, A) (this was shown inde-
pendently by Lambotte and Point [21] under the extra assumption that the set
is eventually periodic modulo any n > 1). We will reprove this below in a more
general setting. On the other hand, there are strongly lacunary sets A C Z such
that (Z,+, A) is unstable (the existence of such sets was questioned in [10] and
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18 G. CONANT AND M. C. LASKOWSKI

[21]). For example, given ¢ > 2, if A, = {¢" +n : n € N}, then (Z,+, 4,) is
interdefinable with (Z, +, <,z + ¢*) (see [11, Theorem 4.8]). The proof generalizes
to {F,, +n:n € N}, where F), is the n'" Fibonacci number, and so we also have a
strongly lacunary set A C Z*, with an irrational Kepler limit, such that (Z, +, A) is
unstable. In this section, we show that this cannot happen for a strongly lacunary
set with a transcendental Kepler limit.

Lemma 6.2. Suppose A C C is strongly lacunary, and either divergent or conver-
gent with transcendental Kepler limit. Then A‘(]‘(f: +) is interdefinable with A in the
language of equality.

Proof. The proof uses techniques similar to those of Palacin and Sklinos [27] and
Lambotte and Point [21] (see also Remark 6.4). Let A = {a,,}52, be an enumeration
of A such that either lim,, o, GZII diverges or converges to a transcendental 7 € C,
with |7| > 1. Without loss of generality, we may assume |a,+1| > |a,| for all n € N.

Let AV be the structure on N induced from A?é, +) via the map a,, — n. It suffices
to show A is interdefinable with the structure N in the language of equality, which
we denote by N. Given k > 1, d € Z*, and r € C, define

k
Xgp = {n eNF.p; £ n; for all distinct ¢, j € [k] and Zdiam = r} i
i=1

Note that any Xg,. is #-definable in V. Let Ny be the reduct of N to symbols for
Xz, where d € (Z*)* and r € C. It is easy to see that A is interdefinable with A,

and so it suffices to show that Nj is interdefinable with N. Fix k > 1, d € (Z*)*,
and r € C. Toward a contradiction, suppose X, is infinite.

By pigeonhole, there are infinitely many tuples in X, of the same order type.
After permuting the coordinates, we may fix an infinite sequence (7(t))72, from
X g.» such that n(t); <... <n(t) for all t € N. Since (n(t));2 is infinite, we may
pass to a subsequence and assume that (n(t)x)s2, diverges. For t € N and i € [k],
let u(t); = n(t)ry — n(t);. Then u(t)y > ... > u(t)y for all t € N. Let ug, = 0, and
note that u(t); = uy for all ¢ € N. If the sequence (u(t)r—1)52, does not diverge
then, by pigeonhole, it contains a constant subsequence. So, after passing to a
subsequence, we may assume that either (u(t)x—1)52, diverges, or u(t)g—1 = Up—1
for all £ € N and some ui_; € N. Repeating this process, we may assume that
for some ¢ € [k] and ug, uk—1,...,us € N, we have u(t); = u; for all ¢ € N and
¢ < i<k, and limy_, o, u(t); = oo for all 1 < i < ¢ (note that £ = 1 is possible,
making the second condition vacuous).

For any 1 <14 < £, since (u(t););2, diverges, we have that, for any u € N,

OS lim |a”(t)i — lim |a’n(t)k_u(t)i < lim |an(t)k—u|.

=00 an(y, | 200 an@y,l T 900 |an),]

So we have lim;_, o, Z"% =0forall 1 <¢ < /¢ (if A is divergent this is clear, and
n(t)g

if A is convergent then this follows from |7| > 1). Recall that n(t) € Xg,. for all
t € N, and that (n(t)x)5>, diverges. Altogether,

A (4), .
(1) 0= lim = lim d; =0 — i d;
t—o0 An(t); t—o0 P A (t) g t—o0 —t An(t)y

A () —u;
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WEAKLY MINIMAL GROUPS WITH A NEW PREDICATE 19

Recall that uy > ... > ug = 0. Therefore, if A is divergent then the rightmost limit
in (}) is dg, and if A is convergent then the rightmost limit in (f) is Ef:z diT™v
In either case, this contradicts d; # 0 for all £ < i < k. ([l

Theorem 6.3. Suppose G = (G,+) is a weakly minimal subgroup of (C,+), and
A C G is strongly lacunary and either divergent or convergent with transcendental
Kepler limit. Then, for any finite F C G and infinite B C A+ F, (G, B) has nfcp
and is superstable of U-rank at most w.

Proof. Apply Lemma 6.2 and Theorem 5.10 (via Remark 5.11). O

Remark 6.4. In [21], Lambotte and Point prove stability of (Z, 4, A) for certain
strongly lacunary sets A C Z% with transcendental Kepler limit, namely, if A is
eventually periodic modulo n, for every n > 1, and is enumerated by a strictly
increasing sequence (a,);Zq such that lim, ., Z% € R-; for some fixed transcen-
dental 7 > 1. Note, however, that this condition does not hold for sets such as
A ={[nt"] : n € N} (where 7 > 1 is transcendental), which is a strongly lacunary
set with Kepler limit 7.

6.2. Finite rank multiplicative groups. Throughout this section, we fix an al-
gebraically closed field K of characteristic 0 and a subgroup G = (G, +) of the
additive group (K, +). Let K* denote the multiplicative subgroup of nonzero ele-
ments of K. Recall that the rank of an abelian group is the cardinality of a maximal
Z-linearly independent set. We will give a short proof of the following theorem.

Theorem 6.5. Suppose G is weakly minimal, and A C G is contained in a finite
rank subgroup of K*. Then, for any finite F C G and any B C A+ F, (G, B) has
nfep and is superstable of U-rank at most w.

For the case G = (Z, +), this was proved by the first author in [11, Theorem 3.1]
(although explicitly only for A C Z* and F' = {0}). The proof relies on results con-
cerning the structure of solutions to linear equations from finite rank multiplicative
groups. This goes back to work of Mann, and is connected to number-theoretic
results around Lang’s Conjecture (proved by Faltings and Vojta) and Schmidt’s
Subspace Theorem. See [29] for a model-theoretic account of this relationship.

In [2], Belegradek and Zilber use these type of results to prove stability for the
expansion of the field (C,+,-) by a finite rank multiplicative subgroup of the unit
circle. Similar results for arbitrary finite rank subgroups of C* were proved by Van
den Dries and Giinaydin [12]. Note however that the full conclusion of Theorem
6.5 does not hold for expansions of fields. For instance, if ' = {2" : n € Z} and
IT = {2" : n € N}, then (C, +, -, T") is stable while (C, +, -, IT) defines the ordering on
II. Note also that I'¢ 4.y is interdefinable with (Z, +), and thus is weakly minimal
but does not have trivial forking.

The work in [11] uses the following result, which is [14, Theorem 1.1].

Theorem 6.6 (Evertse, Schlickewei, Schmidt). Suppose I is a subgroup of (K*)¥ of
rank at most p, for some k,p € N. Then there is an integer N = N(k, p) such that,
for any c1,...,cx € K and any r € K*, there are at most N tuples (x1,...,xx) €T
such that cyxy + ...+ cprp =7 and Y, cixy # 0 for all nonempty I C [k].

We will use this result to directly show that, for A C G as in Theorem 6.5, A(éf
is mutually algebraic.
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Proof of Theorem 6.5. Let A C G be as in the statement. We may assume A is
infinite. By Theorem 5.10, it suffices to show Agf is mutually algebraic. Given
k>1,¢e{l,-1}* and r € G, define A(¢;r) := {a € A* : cia1 + ... + crap = 1}
and define Ag(¢;r) to be the set of a € A(¢;r) such that ), ; cia; # 0 for all
nonempty I C [k]. Note that any A(&r) is a finite Boolean combination of sets of
the form Ag(e’; ") for some k'-tuple ¢ and r' € G. So it suffices to show that, for
any k > 1, ¢ € {1,-1}*, and r € G, Ay(¢;r) is a mutually algebraic subset of A*.

Fix k> 1,c¢€ {1,-1}*, and r € G. Suppose A C T, where I' is a subgroup of K*
of rank p € N. Note that I'* is a subgroup of (K*)¥ of rank kp. Let T'g(¢;7) be the set
of z € T'¥ such that c1z1+. . .+cpzr = r and > ier Ciwi # 0 for all nonempty I C [].
We have Ao(¢;7) C I'g(¢;r), and so if r € K* then Ag(¢; ) is finite by Theorem 6.6.
So we may assume r = 0. Given i € [k], set To; = To(c1,. -+, Cim1, Cig1s - -5 Ch3-Ci)-
By Theorem 6.6, there is some N > 0 such that |T'g;| < N for all i € [n]. Fix
i € [n] and b € A and set

X = {(al,...,ak_l) S Ak_l : (al,...,ai_l,b,ai,...,ak_l) S Ao(E;O)}.
Then b1 X C Ty, and so | X| < N, as desired. O

6.3. The ESS Property. In this section, we generalize the behavior found in
Theorem 6.6 to define a certain combinatorial property of subsets A of weakly
minimal abelian groups (G,+), which implies A(g 4) is mutually algebraic. In
contrast to Section 6.2 however, we will need to use the characterization of mutual
algebraicity involving uniformly bounded arrays (see Theorem 4.5(iv)).

Throughout this section, we fix an infinite set A, an abelian group G = (G, +),
and a set ® of functions from A to G. (For now, we do not assume A C G.)

Definition 6.7.
(1) Given k> 1, p € ® r € G, and V C G, define

Alg;r) :=={a e AR oi(ar) + ..+ orlag) = r}, and

Ay (g;r) = {& € A(g;r): Zcpi(ai) gViorall D #1C [k}} .
il
(2) We say A has the ESS property with respect to ® and G if, for any
k > 1, there are n; € N and finite sets U, Vi, C G such that |Ay, (g;7)] <
ny for any ¢ € ®* and r & Uy,.
(3) Let Ag be the relational structure with universe A and a k-ary relation
Ry, interpreted as A(@;r), for any k > 1, ¢ € ®*, and r € G.

Proposition 6.8. If A has the ESS property with respect to ® and G then Ag 15
mutually algebraic.

Proof. For k > 1, let n € N and Uy, Vi, C G be as Definition 6.7(2). Given k > 1,
pe® reG, 2 Cz=(z,...,2), and finite B C A, set
S77(B) = 87" (B)

(working in Ag). We show, by induction on k > 1, that there are my, N € N such
that, for any ¢ € ®*, r € G, finite B C A, and any nonempty = C z = (21, ..., 2x),
there are at most Ny, types in S¥'"(B) supporting an my-array.

For the base case k = 1, note that any unary relation R(z) has uniformly bounded
arrays. Indeed, given finite B C A, there are at most two types in SF(B) which
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contain z # b for all b € B. So fix k > 1 and suppose we have defined my_; and
Nj_1 satisfying the desired properties. Let z = (21,...,2;). Given ¢ € ok re @,
finite B C A, # C z, and an equivalence relation E on 7, let S7"7(B) be the set of
p € SZ7(B) such that:

(1) zz £#bepforall z; €T and b € B, and

(17) given z;,z; € &, z; = z; € p if and only if E(z;, z;).
We claim that it suffices to find m; and V}; such that, for any ¢ € ®F r € G, finite
B C A, nonempty z C Zz, and any equivalence relation E on Z, at most N types
in S7'1,(B) support an mj-array. Indeed, there are only finitely many choices for z
and E; and if p € S2*"(B) is such that z; = b € p for some 2; € T and b € B, then
p cannot support a 2-array. Therefore, setting my = max{mj,2} and Ny = hN},
where h is the number of pairs (Z, F) as above, it follows that mj and Ny satisfy
the desired properties. Define

Npa =14+ max{Ny_1(2° = 2)|V,| : 1 < £ <k},
Nio =max{|U| : 1 < <k},
Nj = Ni1+ Ni2, and
mj =1+ max{n, + (mp_1 — 1)(2° = 2)[Vy| : 1 < £ < k}.

Fix ¢ € ®F, r € G, finite BC A, C z nonempty, and an equivalence relation I
on Z. Let S* be the set of types in SZ',(B) that support an mj-array. We want to
show |S*| < N} /

For u C z and a € A", let Xga denote ), ., wi(ai). Let § = 2\z. Given t € G,
let S*(t) be the set of types p € S* such that p = Ry, (Z;b) for some b € BY
satisfying Xzb = t. We claim that |S*(¢)| < 1 for any ¢ € G. Indeed, suppose we
have p, ¢ € S*(t) for some ¢t € G. By construction, p and ¢ agree on atomic formulas
in the language of equality. So we just need to show that they agree on instances
of Rz, (Z;7). Let a',a® € A" realize p and g, respectively. Since p,q € S*(t), we
have r — Yza' =t =r — ¥;a%. Given d € BY, we have

P ': R@»T(f, CZ) = 2176?: r— Zi&l = ZQCZZ r— Zidz = q ): R@)T(.'E, CZ)

Altogether, we have p = q.

Let X = {t € G: S*(t) # 0} and, for ¢ € X, let ¢; be the unique type in S*(¢).
Note that there is at most one type in Sfjg(B) which contains —~Rg,.(Z;b) for all
b € BY. Altogether, |S*| < |X|+ 1.

Let ¢ = |z|. Partition X = X3 U Xy where X; = {t € X : r—t & Uy} and
Xo = X\X1. Then |X3| < |Up| < Nga. So, to finish the proof, it suffices to
show | X;| < Ni 1 — 1. Suppose, for a contradiction, that we have pairwise distinct
i1, -stn,, € X1. For 1 <4 < Ny 1, let p; = qq,.

Fix i € [Ny.1]. Since p; € S*, we may fix pairwise disjoint realizations a', ..., a™*
of p; in A®. Moreover, there is b' € BY such that X;b° = t; and p; = Ra.(7;0%).
So we have Yza/ = s; := r —t; for all j € [my]. In particular, at,...,am €
A((@j)z;ex; 81). Since s; ¢ Up, we have |Ay,((¢))z,ez;5:)] < ne and so, after
renaming the tuples, we may assume a',...,a" & Av,((¢5)z,ez; 8i), where m :=
my—ng > 14+ (mg—1— 1)(2°—2)|V;|. Let Q be the set of nonempty proper subtuples
of Z, and note that |Q| = 2° — 2. For each j € [m], there are 27 € Q and v; ; € V¢
such that Xz (a{)zleii,j = v; j. Since m > 1+ (my_1 — 1)(2° — 2)|V4|, there are
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¥ € Q, v; € Vy, and I C [m] such that |I| = my_; and, for all j € I, 27 = 7/
and v; ; = v;. After renaming tuples, we may assume I = [my_1]. Set r; =71 —v;
and 7 = 2\ € Q. For j € [my_1], let al = (a{)zlefi. Then al,...,ay"*!
are pairwise disjoint tuples, which all realize the same type p! € Sf;;” (B), where
P = (¢j)z,ezi- So pi supports an my_j-array. Note also that p} = Ry, (z%, bY).

Since Ni1 > 1+ Np_1(2° — 2)|V;], there are 7* € Q, v € V;, and I C [Ny 1]
such that |I| = N := Nj,_; + 1 and, for all i € I, we have z° = 7* and v; = v.
After renaming the types, we may assume I = [N]. Let ¢* = (¢;).;ez-- Let

*

r* = r —wv. Then pj,...,py are types in S2"(B). For each i € [N], we have
P = Rgeyp (2%,07) and 35" = t;. So, if i,j € [N] are distinct, then p; # p} since
ti # tj. So we have N types in S’f:;T'*(B), each of which supports an my,_i-array.
This is a contradiction, since N = N1 + 1 and |z*] < k — 1. O

Remark 6.9. In the previous proof, we showed that for any atomic relation R
in Ag, the parameters m and N from the definition of uniformly bounded arrays
depend only on the arity of R. Thus the ESS property does not characterize mutual
algebraicity of AZ (ad hoc counterexamples can be constructed).

The canonical example of the above situation is when A is a subset of G and ®
consists of the maps ¢ — x and = — -z, in which case Ag is precisely Agf. So we
introduce specific terminology for this case.

Definition 6.10. A set A C G has the ESS property in G if, for any & > 1,
there are ng € N and finite sets Uy, Vi C G such that if » & Uy, then there are at
most ny, tuples a € (+£A)* satisfying a1 + ... + ax = r and Y, ; a; € Vj for any
nonempty I C [k].

Proposition 6.8 and Theorem 5.10 together imply the following result.

Theorem 6.11. Assume G is weakly minimal, and A C G has the ESS property in
G. Then, for any finite F C G and any B C A+ F, (G, B) is superstable of U-rank
at most w.

Example 6.12.

(1) If G is a subgroup of the additive group (K, +) of an algebraically closed
field K of characteristic 0, and A C G is contained in a finite rank subgroup
of K*, then A has the ESS property in G, with Uy, = Vi, = {0} for all k£ > 1.
This is immediate from Theorem 6.6.

(2) Suppose A C C is strongly lacunary and divergent. Then A has the ESS
property in (C,+), with Us = {0}, Uy, = 0 for all k # 2, and V}, = {0} for
all &k > 1. We leave this as an exercise.

Remark 6.13. It follows from Propositions 5.6 and 6.8 that if G is torsion-free
and A C G has the ESS property in G, then it is sufficiently sparse in G. However,
one can further show that, for all n > 1, 3,,(+A) does not contain arbitrarily large
finite arithmetic progressions. This requires a straightforward modification of [11,
Lemma 3.3]. It is also easy to show that if A C G has the ESS property in G and
F C G is finite, then any B C A 4+ F has the ESS property in G.

6.4. Linear recurrence relations. In this section, we consider sets of algebraic
numbers, which are enumerated by linear homogeneous recurrence relations, with
constant coefficients.
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Let Q& denote the field of algebraic numbers. We say that a set A C Q8 is
enumerated by a linear recurrence relation if A is enumerated by a sequence
(an)$So such that, for some d > 1 and i, ..., B4 € Q¥ we have

An+d = Blan+d—1 +...+ ﬂdan

for any n € N.

Suppose A C Q8 is enumerated by a linear recurrence relation, witnessed by
d>1and B,...,8; € Q¥8. The characteristic polynomial of A is p4(z) :=
¥ — Bt~ — . — Bg_12 — Bg. We assume that d is minimal, and so pa(x) is
uniquely determined. In particular, 84 # 0, and so 0 is not a root of ps(z). Let
Ui, pha, € QM8 be the distinct roots of pa(x), for some d, < d. By the general

theory, there are nonzero polynomials oy (z),...,aq, () € Q¥8[x] such that o;(z)
has degree strictly less than the multiplicity of u; as a root of pa(z), and, for any
n €N,

an = cn()pf + ...+ . (A
As the set A is completely determined by 1, ..., 84, and aq, . . . , ag_1, we sometimes
identify A with the notation LRR(f1, ..., B4; a0, -, Gd—1)-

We are interested in stable expansions of weakly minimal subgroups of Q& by
sets enumerated by a linear recurrence relation. For expansions of (Z,+), the pre-
vious literature on this question is as follows. In [27], Palacin and Sklinos proved
stability for the expansion of (Z,+) by II(¢) = LRR(g;1). In [10], the first author
proved stability of (Z, +, A), for any A C Z, enumerated by linear recurrence rela-
tion, such p4(x) is irreducible over Q (so d. = d) and there is some 1 < ¢ < d such
that u; € Rsq and |p;] < 1foralli # ¢ (e.g., the Fibonacci sequence LRR(1,1,0,1)).
In [21], Lambotte and Point proved stability for a more general class of expansions
of (Z,+), namely when p4(x) is irreducible over Q and there is some 1 <t < d
such that pu; € Ry and |p;| < |pe| for all ¢ # ¢. There are also easy examples of
unstable expansions of (Z, +) by linear recurrences. For instance, given k > 1, the
set Py := {n* : n € N} is enumerated by a linear recurrence with characteristic
polynomial (z — 1)**1. Recall that (Z,+, P) defines the ordering by the Hilbert-
Waring Theorem, and even defines multiplication when k& > 2 (see [5, Proposition
6]). Another unstable example is the expansion of (Z,+) by {¢" +n : n € N}, for
any fixed integer ¢ > 2, which is enumerated by a recurrence relation with char-
acteristic polynomial (z — ¢)(z — 1)? (see [11, Theorem 4.8]). In this section, we
separate the stable examples from the unstable ones using the observation that, in
each unstable example, 1 is a repeated root of p(z).

Theorem 6.14. Suppose G = (G, +) is a weakly minimal subgroup of (Q¥&, +),
and A C G is enumerated by a linear recurrence relation such that no repeated root
of the characteristic polynomial is a root of unity. Then, for any finite F C G and
any BC A+ F, (G, B) has nfcp and is superstable of U-rank at most w.

Note that this is a significant generalization of the previous results described
above, since if p4(z) is irreducible over Q then it is separable (i.e., has no repeated
roots). On the other hand, the absence of roots of unity as repeated roots of p4(z)
does not characterize stability of (G, +, A) (see Remark 6.20).

To prove Theorem 6.14, we will use the material in Section 6.3 together with a
number-theoretic tool of a similar flavor as Theorem 6.6. To state this result, we
need some further notation. For the rest of this section, let A C Q8 be enumerated
by linear recurrence relation. We may assume A is infinite. Fix a number field
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K C Q& containing ju1, . . ., pta, and the coefficients of a1 (z), ..., aq, (z). Given an
integer £ > 1and atuple A = (A1,...,A) € (K*)*, define the function \*: Z¥ — K
such that A(Pume) = XL AP,

The following result (which holds for any number field) is a quantitative version
of work of Laurent [24, 25], due to Schlickewei and Schmidt [33] (see also [34,
Theorem 12.1]).

Theorem 6.15 (Schlickewei & Schmidt). Fiz k,m > 1 and, for each i € [m], fix
X € (K*)F and Pi(z1,...,21) € K[z1,..., 23] of degree 6;. Assume:

(7) no P;(Z) is identically 0, and

(ii) for any n € ZF, if \P = ... = A", then n = 0.
Then there are Ok m k.s,....s.,, (1) tuples i € ZF such that > P,(R)A? = 0 and
Sicr Pi()AT # 0 for any nonempty I C [m].

Given i € [d.], will use the notation aj, (x) for a;(z). Set A = {u1,...,pa, }
and partition A = AgU Ay so that p; € A; if and only if y; is a root of unity. Let ®
denote the set of functions from N to K of the form x — ca} ()" for some X € Ag
and ¢ € {1,-1}. Let K = (K, +) be the additive group in K.

Lemma 6.16. N% 18 mutually algebraic.

Proof. By Proposition 6.8, it suffices to show that N has the ESS property with
respect to @ and K. In particular, we show that for any k > 1, there is some wy € N
such that |No(@;7)| < wy for any @ € ¥ and r € K*. In particular, let § be the
maximum degree of any o;(z), for ¢ € [d.]. Given k > 1, let wy € N be greater
than the Ok x11,x,6,.....5,., (1) bound from Theorem 6.15, for any 01, ..., 0,41 < 0.

Fix k > 1, ¢ € ®* and r € K*. For i € [k], let ¢; € {1,-1} and \; € Ag be
such that ¢;(z) = ¢}, (z)A}, and let Pi(z) € Klz1,...,z%] be the polynomial
cian, (z;). Let Poy1(z) = -r. Fori € [k], let \; = (1,771, 1,0\, 1,578 1) € (K*)k.
Let Apq1 = (1,.%.,1). Note that for any n € Z*, A\, | =1 and Al = A" for any
i € [k]. In particular, No(p; r) is precisely the set of solutions to Y"1~ P;(Z)AF =0
in N¥ such that Y, ; P;(Z)AF # 0 for all nonempty I C [k].

Suppose 71 € Z* is such that Al = ... = A7 ,. Then A\]' =... = A[* =1, and
son; = 0 for all 7 € [k] since ); is not a root of unity. Altogether, by Theorem 6.15,
we have |No(@;7)| < wg. O

We now assume that no A € A; is a repeated root of p4(x), and so a}(z) is a
constant oy € K*. Define

B:{Zaj(n))\":neN} and F:{Zaj)\":neN}.

A€o A€EA;

Note that B, F C K and A C B+ F. Moreover, since any A € A; is a root of unity,
it follows that {\" : n € N} is finite. So F is finite and B is infinite.

Lemma 6.17. B,%f is mutually algebraic.

Proof. Let Ag = {\1,...,\¢} for some ¢ € [d,] Given k > 1, ¢ € {1,-1}*, and
r € K, define

kot
D, = {n e NF: Zthaii(nt))\?t = 7“} .

t=1 i=1
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Then Dy, is (-definable in N since 72 € Dy, if and only if, setting

i’ =(ny,.t,n) and @ = (coy, ()N, ..., con, (@) A7)
for t € [k], we have (a!,...,7*) € A((¢1,...,%k);7). Let E be the equivalence
relation on N such that E(m,n) holds if and only if

¢ ¢
D ax mA =" a3, ()]
1=1 i=1

Then E is defined by Dy .1),0 € N2, and thus is (-definable in N}{E. Note also that,
for any ¢ € {1,-1}* and r € K, D, is E-invariant as a subset of N

Now B,%f is clearly interdefinable with the structure with universe N/E and
relations Dg,./E for all k > 1, ¢ € {1,-1}*, and r € K. So B,%f is mutually

algebraic by Lemma 6.16 and Corollary 4.6. O
Corollary 6.18. A?Cf is mutually algebraic.

Proof. Let M = (B + F)%f Then A%f is a reduct of Apq, and so, as in the proof
of Theorem 5.10, it suffices to show that M is mutually algebraic. Fix a finite set
Fy, C B with |F| = |Fp|, and let o: Fy — F be a bijection. Let D = B x F,, and
note that D C B? is B,%f—deﬁnable of U-rank 1. Given k > 1, ¢ € {1,-1}*, and
r € K, define

k
Dz, = {((blafl)v"'a(bkafk)) € DF: Zci(bi +U(fi)) = 7"} .

i=1
Then, for any k > 1, ¢ € {1,-1}*, and r € K, we have

k k
Der= {((bhfl)a o (b fr) 2 eibi =1 — ZCiU(fi)} :
fer§
and so Dg,, is B,%f—deﬁnable. Moreover, the equivalence relation E on D given
by by + o(f1) = ba + o(f2) is B,%f-deﬁnable by D(i1,1,.1),0, and any D(¢;r) is E-
invariant. Finally, M is clearly interdefinable with the structure with universe D/FE
and relations for D(&;r)/E, for any k > 1, ¢ € {1,-1}*, and r € K. By Lemma
6.17 and Corollary 4.6, M is mutually algebraic. O

As before, Corollary 6.18, Theorem 5.10, and Remark 5.11 yield Theorem 6.14.

Remark 6.19. Theorem 6.14 implies that if G = (G, +) is a weakly minimal abelian
group, A C G is enumerated by a linear recurrence relation, and no repeated root of
pa(z) is a root of unity, then A is sufficiently sparse in (G, +). We expect a direct
proof of this could be given using Theorem 6.15. In fact, if one assumes that p4(z)
has no repeated roots at all then, similar to Remark 6.13, one can use Theorem
6.6 to show that for any n > 1, ¥,,(+A) does not contain arbitrarily large finite
arithmetic progressions (see [11, Remark 3.6]).

Remark 6.20. A root of unity appearing as a repeated root of pa(z) does not
necessarily mean (G, +, A) is unstable. For example, Z = LRR(2,0,-1,0;0,0, 1,-1),
which has characteristic polynomial (z — 1)?(x + 1)2. This situation would likely
be clarified by focusing on recurrence relations which are non-degenerate, i.e., there
do not exist distinct roots p; and g of pa(x) such that p;/p; is a root of unity.
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In general, any recurrence relation can be effectively partitioned into finitely many
non-degenerate pieces (see [13, Theorem 1.2]). Note also that if A is non-degenerate
and some root u of pa(z) is a root of unity, then p is the unique such root and
w € {1,-1}. A tentative conjecture is that if A C Z is enumerated by a linear
recurrence relation as above, and some repeated root of p4(x) is a root of unity,
then either (Z,+, A) is unstable or A is degenerate.

Finally, we point out that the only reason we have restricted to sets of alge-
braic numbers enumerated by linear recurrence relations is so that we can work in
a number field K and apply Theorem 6.15. Suppose instead that we have a set
A, enumerated by a recurrence relation as above, but with ag,...,aq-1,081,--., 84
in an arbitrary algebraically closed field K of characteristic 0. In order to carry
out the work in this section, one would need a version of Theorem 6.15, where
OK,m k.61,....6,m (1) is replaced by some bound depending only on k, m, and A. Such
a result is known to hold in the case that p4(z) is separable, due to various “spe-
cialization” techniques (see [34]). On the other hand, we can use Theorem 6.6, and
arguments similar to the proof of Theorem 6.5, to give a more direct argument.

Theorem 6.21. Let K be an algebraically closed field of characteristic 0, and let
G = (G, +) be a weakly minimal subgroup of the additive group of K. Fiz A C G
enumerated by a linear homogeneous recurrence relation with constant coefficients
in K and separable characteristic polynomial. Then, for any finite F C G and any
B C A+ F, (G, B) has nfep and is superstable of U-rank at most w.

Proof. We use the same notation for A as above, but with Q& replaced by K.
Since pa(z) is separable, we have d. = d. Moreover, for all i € [d], a;(x) is
a constant «; € K*, which we also denote by a7, . Let A = {p1, ..., a}, and
partition A = Ag U A; as above. Let ® denote the set of functions from N to K of
the form z — caf\” for some A € Ag and ¢ € {1,-1}. Let K denote the additive
group of K. If we can show that N is mutually algebraic, then the rest of the proof
follows as above.

To show that N}{% is mutually algebraic, we fix k > 1, ¢ € ®*, and r € K, and
show that No(@;r) is a mutually algebraic subset of N*. Let ¢ = (¢1,...,0r)
where @;: x = c;a} A} for some \; € Ag and ¢; € {1,-1}. Let I" be the sub-
group of K* generated by Ai,..., A\, and let A be the set of Z € I'* such that
Ele cioy, w; =1 and Y ciay x; # 0 for all nonempty I C [k]. Then the map
o — (AT, .., ALY) is well-defined from No(@;7) to A, and is also injective since
no \; is a root of unity. So it suffices to show A is a mutually algebraic subset of
I'k. This follows from Theorem 6.6 exactly as in the proof of Theorem 6.5. [

Remark 6.22. A recurrence sequence (a,)>2, as above can be extended to to
(an)nez using the same recurrence relation, and the representation of a,, using the
roots of pa(z) still holds. Thus the analogues of Theorems 6.14 and 6.21 hold for
a set A C G enumerated in this fashion as well. In the proofs one only needs to
replace N}% by Z%, where the maps in ® are extended to Z in the obvious way.
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