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COUNTING SIBLINGS IN UNIVERSAL THEORIES

SAMUEL BRAUNFELD ANDMICHAEL C. LASKOWSKI

Abstract. We show that if a countable structureM in a finite relational language is not cellular, then
there is an age-preserving N ⊇ M such that 2ℵ0 many structures are bi-embeddable with N. The proof
proceeds by a case division based on mutual algebraicity.

§1. Introduction. The model-theoretic condition of cellularity has appeared
several times as a dividing line in the complexity of universal theories, including
when counting the number of countable models [14], counting the number of finite
models as a function of size [12], and counting the number of non-isomorphic
substructures of countable models [11]. In this paper, we present a general approach
to proving results about cellularity via another model-theoretic condition, mutual
algebraicity. The approach is to first prove that the non-mutually algebraic case is
wild, likely using the Ryll–Nardzewski-type characterization of mutual algebraicity
from [13]. In a companion paper [3], we characterize the mutually algebraic non-
cellular case.Asmutually algebraic structures admit a nice structural decomposition,
it is relatively quick to prove themutually algebraic non-cellular case is still wild. This
approach was already largely present in [12], and we apply it here to the question of
counting siblings.
We call two (not necessarily elementarily) bi-embeddable structures siblings

(f : M ↪→ N is an embedding if R(x1, ... , xn) ⇐⇒ R(f(x1), ... , f(xn)) for every
atomic relation R). Given a countable relational structure M, our goal is to count
the number of siblings of M, up to isomorphism. Thomassé has conjectured the
following, countingM as a sibling of itself.

Conjecture 1 (Thomassé [16]). Given a countable structure M in a countable
relational language, M has either 1, ℵ0, or 2ℵ0 siblings, up to isomorphism.
This conjecture has been proven in the case of linear orders [8], the gap from

1 to ℵ0 proven for ℵ0-categorical structures by making use of the monomorphic
decomposition [7], and the gap from 1 to ℵ0 proven for cographs [5]. The gap from
1 to ℵ0 has also been conjectured in the case of graphs, connected graphs where the
siblings must also be connected [1], and trees where the siblings must also be trees
(as opposed to forests) [2], and some partial results obtained in these cases.
If two structures are siblings, they must have the same finite substructures, and

so satisfy the same universal theory. Thus, we may coarsen Thomassé’s conjecture
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COUNTING SIBLINGS IN UNIVERSAL THEORIES 1131

to considering the maximum number of siblings of any model of a given universal
theory, which may be viewed as a measure of complexity of that theory. Indeed, for a
model to have many siblings, we must produce non-isomorphic structures that look
somewhat alike (the similarity required for siblings may be increased by requiring
elementary bi-embeddability, as in [4]). Complex theories will allow their models to
be nuanced enough to admit many siblings. Uncomplicated theories will not allow
for such nuance, and so whenever models look alike, they will be the same (for
example, the theory of n disjoint unary predicates, where models are isomorphic
once the cardinalities of the predicates match). The complexity gaps of Thomassé’s
conjecture then call to mind model-theoretic dividing lines.
However, we note that it is possible for individual structures to be very

complicated, yet have few siblings. For example, � with successor has only itself
as a sibling. Thus the same is true of any expansion, in particular the expansion by
the graphs of addition and multiplication. So it is difficult to see how model theory
will inform the full conjecture.
Our main theorem confirms the weakening of Thomassé’s conjecture to the level

of universal theories in a finite relational language.

Theorem 1.1 (Theorem 7.11). Let T be a universal theory in a finite relational
language. Then one of the following holds.

1. T is finitely partitioned. Every model of T has one sibling.
2. T is cellular. The finitely partitioned models of T have one sibling and the non-
finitely partitioned models have ℵ0 siblings.

3. T is not cellular. For every non-cellularM |= T , there is someN ⊇M such that
N |= T and N has 2ℵ0 siblings. Furthermore, if T is mutually algebraic, we may
take N �M .

Theorem 1.1 does have implications at the level of structures, confirming some
conjectures of [7].

Corollary 1.2 (Corollary 7.12). Let M be a countable model in a finite relational
language that is universal for its age. Then one of the following holds.

1. M is finitely partitioned, and has one sibling.
2. M is cellular but not finitely partitioned, and has ℵ0 siblings.
3. M is not cellular, and has 2ℵ0 siblings.

This also implies the result for �-categorical M in a finite relational language,
since then we may pass to its model companion. Example 6 shows Corollary 1.2
does not hold for infinite relational languages with finite profile.
We close with some comments connecting our results to previous work on

cellularity. First, we note that Theorem 1.1 is a refinement of the main result of
[14] that non-cellular universal theories have 2ℵ0 non-isomorphic models. Second,
Corollary 1.2may be seen as a dual to themain result of [11] that an atomically stable
non-cellular countable structure has 2ℵ0 non-isomorphic substructures. WhenM is
universal for its age, as in Corollary 1.2, siblings are equivalent to age-preserving
extensions, and we again see cellularity is the dividing line between ℵ0 and 2ℵ0 .

1.1. Proof sketch. The primary intuition behind the proof of the main theorem
is that if a universal theory T is non-cellular, then either it is unstable and so has a

https://doi.org/10.1017/jsl.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.3


1132 SAMUEL BRAUNFELD ANDMICHAEL C. LASKOWSKI

model encoding (Q, <), or has a model that in some sense encodes a partition with
infinitely many infinite parts. We present three examples corresponding to the three
cases of our proof, and explain how to obtain 2ℵ0 many siblings in each.
1. Let M = (Q,≤). Then any countable non-scattered order is a sibling of M,
and there are 2ℵ0 many.

2. Let M be an equivalence relation with infinitely many infinite classes. Then
we may pass to an elementary extensionM ∗ 	M containing infinitely many
new infinite classes {Aq : q ∈ Q }. For each injective f : Q → �, let Mf be
obtained by cutting down each Aq to size f(q). Then eachMf is a sibling of
M, and they are pairwise non-isomorphic, as they have distinct sizes of finite
classes.

3. LetM = (�, s), where s is the successor relation.We first pass to an elementary
extensionM ′ 	M containing infinitely many Z-chains. Then, as in case (2),
we may pass to a further elementary extensionM ∗ 	M ′ containing infinitely
many new Z-chains {Aq : q ∈ Q }. For each injective f : Q → �, we let Mf
be obtained by cutting down each Aq to a connected piece of size f(q).

Our proof follows these three examples. The bulk of the work is in generalizing
Case 2 to the setting of a non-mutually algebraicM. The role played by equivalence
classes is generalized to that of k-cliques in Section 4, while Section 3 guarantees
that if we cannot add such k-cliques toM, then wemay findmany siblings as in Case
1. Otherwise, forM non-mutually algebraic, we may generalize the proof of Case 2
by adding infinitely many k-cliques toM, which is done in Sections 5 and 6. Finally,
forM mutually algebraic but non-cellular, we generalize Case 3 in Section 7.

§2. Conventions and background. The following conventions will be in effect
throughout this paper, unless otherwise noted.
M is a countable structure in a finite relational language L.
Types are quantifier-free types, and indiscernibility is with respect to quantifier-free

formulas.
We now briefly cover the definitions and results from elsewhere that we will need.

Definition 2.1. A structureM is finitely partitioned if it admits a finite partition
{C1, ... , Cn } such that ΠiSym(Ci) ⊂ Aut(M ).
Definition 2.2. A structure M is cellular if, for some n and k1, ... , kn ∈ �, it

admits a partition K � { c̄i,j | i ∈ [n], j ∈ � } satisfying the following.
1. K is finite, and each c̄i,j = (c1i,j , ... , c

ki
i,j) has length ki .

2. For every i ∈ [n] and � ∈ S∞, there is a �∗i ∈ Aut(M ) mapping each c̄i,j onto
c̄i,�(j) by sending c�i,j to c

�
i,�(j) for 1 ≤ � ≤ ki , andfixingM\

⋃
j∈� c̄i,j pointwise.

We call such a partition a cellular partition.

Example 1. LetM be a graph consisting of infinitely many disjoint edges and an
infinite clique. ThenM is cellular—wemay takeK = ∅ and n = 2, let { c̄0,j : j ∈ � }
enumerate the disjoint edges, and let { c1,j : j ∈ � } enumerate the clique.
NoteM is finitely partitioned if and only ifM is cellular aswitnessed by a partition

with each ki = 1. The following definitions are from [10], which builds on results
from [9].
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Definition 2.3. Given a structure M and n ≥ 1, a set S ⊆Mn is mutually
algebraic if there is someK ∈ � such that |{ā ∈ S : m ∈ ā}| ≤ K for everym ∈M .
Let LM be L expanded by constant symbols for every element ofM, andMM the
natural expansion ofM to LM . An LM -formula φ(x1, ... , xn) is mutually algebraic
if it defines a mutually algebraic subset ofMn. We then letMA∗(M ) be the smallest
set of LM -formulas containing the mutually algebraics, closed under adjunction of
dummy variables and Boolean combinations.
Finally, we say M is mutually algebraic if every LM -formula is equivalent to a

formula inMA∗(M ).

Note that every unary relation is mutually algebraic. Less obviously, cellular
structures are mutually algebraic.

Lemma 2.4. Let M be mutually algebraic and N ⊂M a substructure. Then N is
mutually algebraic.

Proof. Let (M,N ) be the expansion ofM formed by adding a unary predicate
U interpreted asN. LetN ind denote the expansion ofN by relations PD naming the
traceD ∩Nn of every (M,N )-definable (with parameters) subsetD ⊆Mn, for all n.
As the set N is definable in (M,N ), it is easily checked that N ind admits elimination
of quantifiers.Moreover, every parameter-definable set ofN ind is 0-definable inN ind,
and is definable in (M,N ).

Claim. N ind is mutually algebraic.

Proof of Claim. We show that every N ind-definable subset B ⊆ Nn is in
MA∗(N ind). Since mutual algebraicity is preserved under unary expansions by
Theorem 3.3 of [10], (M,N ) is mutually algebraic, and so B is inMA∗((M,N )),
as witnessed by a Boolean combination of sets {Y1, ... , Ym }, each realizing an
adjunction of a mutually algebraic formula by dummy variables. As the same is true
for each Yi ∩Nn, B ∈ MA∗(N ind). ♦
It is easily checked that the L-structureN is a reduct ofN ind; henceN is mutually

algebraic by Corollary 7.4 of [13]. �
In addition to mutual algebraicity, the properties of being finitely partitioned and

cellular are preserved under passing to a substructure. Thus, they are properties of a
universal theory, and so we will say a universal theory T has one of these properties
if all of its countable models do.
We record one additional characterization of mutual algebraicity.

Theorem 2.5. [13, Theorem 2.1]M is mutually algebraic if and only if every atomic
L-formula isTh(MM )-equivalent to a Boolean combination of quantifier-freemutually
algebraic LM -formulas.
Example 2. Consider a structure (M,E) where E is an equivalence relation

with n classes, each class infinite. Then the relation E is not mutually algebraic.
However, using the constants m1, ... , mn to name one element from each class, we
have E(x, y) ⇐⇒

∨
i(E(x,mi) ∧ E(y,mi)), which is a Boolean combination of

quantifier-free mutually algebraic LM -formulas. ThusM is mutually algebraic.
Definition 2.6. Given a set A, let QFk(A) be the set of quantifier-free formulas

over A with k variables.
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Given a structure M, c̄ ∈Mk , and A ⊂M , the type of c̄ over A is tp(c̄/A) =
{�(x̄) ∈ QFk(A) :M |= �(c̄)}.
Given a structureM, a k-type over M is some p(x̄) ⊂ QFk(M ) such that there is

some elementary extension N 	M and n̄ ∈ Nk such that p(x̄) = tp(n̄/M ).
Definition 2.7. Given a structure M and a k-type p over M, we say p supports

an infinite array if there is some N 	M and a set of pairwise disjoint k-tuples
{ n̄i ∈ Nk : i ∈ � } such that n̄i |= p, for every i.
We let Suppk(M ) denote the set of k-types overM that support infinite arrays.
We say p(x̄) is coordinate-wise non-algebraic if (xi �= b) ∈ p for every xi ∈ x̄ and

every b ∈M .
Lemma 2.8. LetM be any structure, and p(x̄) a type overM. Then p ∈ Suppk(M )

if and only if p(x̄) is coordinate-wise non-algebraic.

Proof. If (xi = b) ∈ p for some xi and some b ∈M , then any two realizations
of p have non-empty intersection, so p does not support an infinite array (or an array
of length 2, for that matter). Conversely, assume p is coordinate-wise non-algebraic,
but p does not support an infinite array. By compactness, there is some n and some
�(x̄) ∈ p such that in M, there do not exist n pairwise disjoint realizations of �.
Among all such, choose � so that n is minimized, and choose { b̄i : i < n } from
M, pairwise disjoint withM |= �(b̄i) for each i. ChooseM ∗ �M and ā fromM ∗

realizing p. As p is coordinate-wise non-algebraic, ā is disjoint fromM, hence disjoint
from each b̄i . Thus { ā } ∪ { b̄i : i < n } gives (n + 1) pairwise disjoint realizations
of �(x̄), which is impossible sinceM ∗ �M . �
Theorem 2.9. IfM is not mutually algebraic, then there is someM ′ 	M and some

k ∈ � such that Suppk(M ′) is infinite.

Proof. By [13, Theorem 6.1], there is some countableM ∗ ≡M and some k such
that Suppk(M

∗) is infinite. LetM ′ elementarily embedM andM ∗. By compactness,
every p ∈ Suppk(M ∗) extends to some p′ ∈ Suppk(M ′). �
Definition 2.10. Fix a structureM, let S = (b̄i ∈Mk : i ∈ (I,<)) be a sequence

of k-tuples, and let A ⊂M . S is order indiscernible over A if tp(b̄i1 , ... , b̄in /A) =
tp(b̄j1 , ... , b̄jn /A) whenever i1 < ··· < in and j1 < ··· < jn (where, by our conven-
tion, tp is understood to mean quantifier-free type).
S is totally indiscernible over A if tp(b̄i1 , ... , b̄in /A) = tp(b̄j1 , ... , b̄jn /A) whenever

i1, ... , in are pairwise distinct, as are j1, ... jn.
S is strictly order indiscernible over A if it is order indiscernible over A but not

totally indiscernible over A.

Definition 2.11. A countable structure M is universal for its age if every other
countable structure with the same age embeds intoM. Equivalently,M is countable
universal for its universal theory.

§3. Strictly order indiscernible arrays. As we are aiming to prove that cellularity
is the dividing line between having a model with ℵ0 and 2ℵ0 siblings, we expect
non-stability, as manifested by an infinite strictly order-indiscernible sequence of
k-tuples, to provide a model with 2ℵ0 siblings. We prove this in the case of infinite
arrays, but first we need a definition and easy lemma.
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Definition 3.1. For M non-mutually algebraic, M is array-minimal of index k
if Suppk(M ) is infinite and there does not exist a k

′ < k and an age-preserving
N ⊇M for which Suppk′(N ) is infinite.
Example 3. Consider the structureM = (Q× { 0, 1 } ,≺, E), whereE is a binary

relation such that (q, i)E(r, j) iff q = r and i �= j, and ≺ is a quaternary relation
encoding the usual ≤ relation between pairs of E-connected points. Then there
is only one coordinate-wise non-algebraic 1-type over M, namely the type of an
isolated point. The same will be true for any age-preservingN ⊇M . However, there
are infinitely many coordinate-wise non-algebraic 2-types overM—into any cut of
M, we may insert an E-related pair of points. ThusM is array-minimal of index 2.

Lemma 3.2. If M is not mutually algebraic, then for some k ≥ 1, there is an age-
preservingM ′ ⊇M that is array-minimal of index k. Moreover, for every elementary
extensionM ∗ �M ′ and for any substructure N withM ′ ⊆ N ⊆M ∗, N is also array-
minimal of index k.

Proof. As M is not mutually algebraic, by Theorem 2.9 there is some age-
preserving N ⊇M and some � ∈ � such that Supp�(N ) is infinite. Among all
age-preserving extensions of M, there is one with the least k such the extension
has infinitely many k-types that support infinite arrays, and choose that extension
to beM ′.
For the moreover clause, choose anyM ′ ⊆ N ⊆M ∗ withM ∗ �M ′. Every p ∈

Suppk(M
′) has an extension p∗ ∈ Suppk(M ∗). As the restriction of each of these

types p∗ to a type over N also supports an infinite array, N is also array-minimal of
index k. �
Proposition 3.3. Suppose M is not mutually algebraic, M is array-minimal of

index k, and that some p ∈ Suppk(M ) supports an infinite array { āi : i ∈ � } that is
strictly order indiscernible over M. Then there is an age-preserving N ⊇M with 2ℵ0
siblings.

Proof. From our assumption on p and compactness, choose an elemen-
tary extension M ∗ �M containing a strictly order-indiscernible array A =
{ āj : j ∈ Q } of realizations of p. Let N be the substructure of M ∗ with universe
M ∪ A, and let N ∗ =M ∪ { āj : j ≤ 0 } ∪ { āj : j ≥ 1 }. Choose a family F =
{ Jα : α ∈ 2� } of subsets of (0, 1) ∩Q such that the ordered structures (Jα,≤)
are pairwise non-isomorphic and each embed (Q,≤). For each α, let Nα ⊆ N have
universe N ∗ ∪ { āj : j ∈ Jα }. As (Jα,≤) and (J	 ,≤) both embed (Q,≤), they are
bi-embeddable, and these lift to bi-embeddings of Nα and N	 fixing N ∗ pointwise.
It is true that some of the structures Nα,N	 may be isomorphic, but we will

find a subfamily of size 2ℵ0 that are pairwise non-isomorphic, which finishes our
argument. Our method will be to prove that for any given Nα , {N	 : N	 ∼= Nα } is
countable, which suffices. In particular, we will fix a uniform finite set F ⊂ N ∗ and
prove that whenα �= 	 , there is no isomorphism h : N	 → Nα that fixesF pointwise.
Thenwe cannot have h : N	 → Nα and h′ : N	′ → Nα with h(F ) = h′(F ) pointwise,
since h–1 ◦ h′ would fix F. As each Nα is countable, there are only countably many
possible images of F under an isomorphism h : N	 → Nα ; hence { 	 : N	 ∼= Nα } is
countable, as required.
Constructing F and proving its suitability will take the rest of the section. �
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To begin, we have the following definition that involves permutations of k-tuples.
For a given k-tuple āq fromN and a given 
 ∈ Sym(k), let 
(āq) be the permutation
of ā induced by 
.

Definition 3.4. Working in N, a permutation 
 ∈ Sym(k) is permissible if for
some (equivalently for all, by order indiscernibility) q ∈ (0, 1) ∩Q, tp(
(āq)/(N \
āq)) = tp(āq/(N \ āq)).

Equivalently, 
 is permissible if and only if the map sending āq to 
(āq), and
otherwise restricting to the identity, is an automorphism of N.
The following lemma is easy because Sym(k) is finite.

Lemma 3.5. There is a finite set G ⊆ N ∗ such that for any 
 ∈ Sym(k), 

is permissible if and only if for some (equivalently, for every) q ∈ (0, 1) ∩Q,
tp(
(āq)/G) = tp(āq/G).

Proof. Fix any q ∈ (0, 1) ∩Q. For each � ∈ Sym(k) that is not permissible,
choose a finite subset G0� ⊆ N \ { āq } such that tp(�(āq)/G0�) �= tp(āq/G0�).
By order indiscernibility, we may replace G0� by a ‘conjugate’ G� ⊆ N ∗

so that tp(�(āq)/G�) �= tp(āq/G�). Then, by order indiscernibility, G :=⋃
{G� : � ∈ Sym(k), � not permissible } works not only for q but for any

q′ ∈ (0, 1) ∩Q. �

Next, we pinpoint a failure of total indiscernibility over M. Since { āj : j ∈ Q }
is strictly order indiscernible over M there is an integer � ≥ 2, a permutation � ∈
Sym(�), and a formula �(x̄1, ... , x̄� , m̄) (with m̄ fromM and lg(x̄i) = k for each i)
such that

N |= �(ā1, ... , ā� , m̄) ∧ ¬�(ā�(1), ... , ā�(�), m̄).

As � is a product of transpositions, this implies that there is some i, 1 ≤ i < �, such
that

N |= �(ā1, ... , āi–1, āi , āi+1, ... , ā� , m̄) ∧ ¬�(ā1, ... , āi–1, āi+1, āi , ... , ā� , m̄).

Translating by i and adding dummy variables as needed, there is some r ≥ 2 such
that

N |= �(ā–r , ... , ā–1, ā0, ā1, ... , ār , m̄) ∧ ¬�(ā–r , ... , ā–1, ā1, ā0, ... , ār , m̄).

Let H be the parameters { ā–r , ... , ā–1, ā2, ... , ār , m̄ } ⊆ N ∗ and let �(x̄, ȳ) be the
H-definable formula mentioned above.
Take F := G ∪H ∪ { ā0, ā1 } to be our finite subset of N ∗. Put �(x̄) :=∧
tp(āq/F ) for any q ∈ (0, 1) ∩Q. Let

�(x̄) := �(x̄, ā1) ∧ ¬�(x̄, ā0) ∧ (x̄ ∩ F = ∅) ∧ �(x̄).

The following lemma characterizes when N |= �(d̄ ) among all permutations
of āq .

Lemma 3.6. (1) For q, r ∈ [0, 1] ∩Q, N |= �(āq , ār) if and only if q < r.
(2) For q ∈ Q and 
 ∈ Sym(k), N |= �(
(āq)) if and only if q ∈ (0, 1) and 
 is

permissible.
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Proof. (1) From above, this is true with q = 0, r = 1, so the general statement
follows by order indiscernibility.
(2) Suppose N |= �(
(āq)). We first argue that q ∈ (0, 1). Note that q = 0, 1 are

forbidden by �(x̄). If q < 0, then as 〈q, – r, ... , – 1, 0, 2, ... , r〉 has the same order
type as 〈q, – r, ... , –1, 1, 2, ... , r〉, indiscernibility yields

N |= �(
(āq), ā0)↔ �(
(āq), ā1),

so N |= ¬�(
(āq)). Arguing similarly, N |= ¬�(
(āq)) when q > 1 as well. Thus,
q ∈ (0, 1). But now, as N |= �(
(āq)) we have tp(
(āq)/G) = tp(āq/G), so 
 is
permissible by Lemma 3.5.
Conversely, suppose q ∈ (0, 1) and 
 is permissible. ThatN |= �(āq) follows from

(1). As 
 is permissible, N |= �(
(āq)) as well. �

We next show that N |= ¬�(d̄ ) for any d̄ ∈ Nk that is not a permutation
(permissible or otherwise) of some āq . For this, we introduce the notion of a hybrid,
which will be an n-tuple for some n ≤ k that is not (a permutation of) one of
our “intended” tuples āq . In future sections, we will make analogous definitions of
“unintended” tuples and prove analogous lemmas to control their behavior.

Definition 3.7. Any automorphism � of (Q,≤) extends naturally to an
automorphism �∗ ∈ Aut(N ) that fixes M pointwise, and maps each āq to ā�(q).
We call these automorphisms of Aut(N ) the standard automorphisms.

Definition 3.8. For any n ≤ k, d̄ ∈ Nn is a hybrid if no permutation of any āq
is a subsequence of d̄ .

• A hybrid d̄ is from q1 < ··· < qt if d̄ ⊆M ∪ āq1 ∪ ··· ∪ āqt , and d̄ ∩ āqi �= ∅ for
every 1 ≤ i ≤ t.

• If d̄ is from q1 < ··· < qt and d̄ ′ is from r1 < ··· < rt , we say d̄ and d̄ ′ are
associated if �∗(d̄ ) = d̄ ′ for some/any standard automorphism �∗ ∈ Aut(N )
extending any automorphism � ∈ Aut(Q,≤) with �(qi ) = ri for each i.

The next lemma crucially uses thatM is array-minimal of index k.

Lemma 3.9. Suppose b̄q is a proper subsequence of āq , b̄r is a proper subsequence
of ār , and b̄q and b̄r are associated. Then tp(b̄q/(N \ (āq ∪ ār))) = tp(b̄r/(N \ (āq ∪
ār))).

Proof. Assume not. Clearly, q �= r, so assume q < r. Choose a formula φ(x̄, ē)
with ē ⊆ N \ (āq ∪ ār) such that

N |= φ(b̄q , ē) ∧ ¬φ(b̄r , ē).

Choose a dense/codense subset D ⊆ Q and let N0 be the substructure of N with
universeM ∪ { āq : q ∈ (Q \D) }. Clearly, N0 is an age-preserving extension ofM,
sowewill obtain a contradiction toM being array-minimal of indexk byproving that
tp(b̄q′/N0) �= tp(b̄r′/N0) for all pairs q′ < r′ from D, where b̄q′ is the subsequence
of āq′ associated with both b̄q and b̄r and similarly for b̄r′ . (That each of these types
is coordinate-wise non-algebraic is immediate, since each b̄q′ is disjoint from N0.
Thus, each of these supports an infinite array by Lemma 2.8.)
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To see this, fix q′ < r′ from D, and let ē be from s1 < ··· < st . As D
is dense/codense in Q, there is some � ∈ Aut(Q,≤) sending q �→ q′, r �→ r′,
and s1, ... , st into (Q\D). Letting �∗ ∈ Aut(N ) be the corresponding standard
automorphism, we have

N |= φ(b̄q′ , �∗(ē)) ∧ ¬φ(b̄r′ , �∗(ē)).

As �∗(ē) ⊂ N0, we have tp(b̄q′/N0) �= tp(b̄r′/N0), as required. �

Next, we discuss arbitrary hybrids. In the assumptions of the following lemma,
the fact that d̄ , d̄ ′ are associated implies that the t is the same in both places.

Lemma 3.10. For n ≤ k, suppose d̄ , d̄ ′ ∈ Nn are associated hybrids with d̄ from
q1 < ··· < qt and d̄ ′ from r1 < ··· < rt . Then tp(d̄ /N0) = tp(d̄ ′/N0), where N0 =
N \ (āq1 ∪ ··· āqt ∪ ār1 ··· ∪ ārt ).

Proof. This will follow easily from the following special case.

Claim. The statement holds if { q1 ... , qt } and { r1, ... , rt } are disjoint.

Proof of Claim. Under this additional assumption, we argue by induction on t.
First, if t = 0, then d̄ ⊆M . As d̄ ′ is associated with d̄ , d̄ ′ = d̄ so the statement is
trivially true.
Now assume that the statement is true for t – 1. Write d̄ := h̄b̄, where h̄ is from

q1 < ··· < qt–1 and b̄ is from qt . Let �∗ ∈ Aut(N ) be a standard automorphism
extending any automorphism � ∈ Aut(Q,≤) extending the map qi �→ ri for each
i. Let h̄′ := �∗(h̄) and b̄′ := �∗(b̄). As d̄ is a hybrid, we have that b̄ is a proper
subsequence of āqt (up to a permutation, which may be ignored), and so b̄

′ is also
a proper subsequence of ārt , associated with b̄.
To see that tp(d̄ /N0) = tp(d̄ ′/N0), choose any φ(x̄, ē) ∈ tp(d̄ /N0). Thus N |=

φ(h̄, b̄, ē). By our assumption that { q1, ... , qt } is disjoint from { r1, ... , rt }, we have
h̄ ⊆ N \ (āqt ∪ ārt ), and soN |= φ(h̄, b̄′, ē) by Lemma 3.9. But now, as h̄ is a hybrid
from q1 < ··· < qt–1 that is associated with h̄′, our inductive hypothesis implies that
N |= φ(h̄′, b̄′, ē). Thus, φ(x̄, ē) ∈ tp(d̄ ′/N0) as needed. ♦

For the general case where { q1, ... , qt } and { r1 ... , rt } need not be disjoint,
choose any φ(x̄, ē) ∈ tp(d̄ /N0). Choose s1 < ··· < st disjoint from { q1, ... , qt } ∪
{ r1 ... , rt } and such that ē is disjoint from ās1 ∪ ··· ∪ āst . Let d̄ ′′ be the hybrid from
s1 < ··· < st associated with both d̄ and d̄ ′. Because of the disjointness, we can apply
the claim to the pairs d̄ , d̄ ′′ and d̄ ′, d̄ ′′ to obtain

N |= φ(d̄ , ē)↔ φ(d̄ ′′, ē)↔ φ(d̄ ′, ē).

Thus, φ(x̄, ē) ∈ tp(d̄ ′/N0) as required. �

Finally, we can finish off our problem of identifying realizations of �(x̄) in Nk .

Corollary 3.11. For d̄ ∈ Nk , N |= �(d̄ ) if and only if d̄ = 
(āq) for some
q ∈ (0, 1) ∩Q and some permissible 
 ∈ Sym(k).

Proof. First, if d̄ is 
(āq) for some q ∈ Q and 
 ∈ Sym(k), this is proved in
Lemma 3.6. So assume d̄ ∈ Nk is not a permutation of any āq , i.e., d̄ is a hybrid.
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We argue that N |= ¬�(d̄ ). Say d̄ is from q1 < ··· < qt . Choose r1 < ··· < rt < 0
fromQ, and let d̄ ′ be associated with d̄ from r1 < ··· < rt . By order indiscernibility,

N |= �(d̄ ′, ā0)↔ �(d̄ ′, ā1).

In particular,N |= ¬�(d̄ ′). From the definition of �(x̄), we may assume d̄ ∩ F = ∅,
and so by Lemma 3.10 we also have

N |= �(d̄ )↔ �(d̄ ′),

so N |= ¬�(d̄ ) as claimed. �

The following lemma will finish the proof of Proposition 3.3.

Lemma 3.12. If f : Nα → N	 is an isomorphism fixing F pointwise, then (Jα,≤)
∼= (J	 ,≤); hence α = 	 .

Proof. We define a map f∗ : Jα → J	 as follows. Given q ∈ Jα , note that N |=
�(āq). Thus, N |= �(f(āq)) as well. By Corollary 3.11 f(āq) = 
(ās) for some s ∈
(0, 1) and some permissible permutation 
. As f(āq) ⊆ N	 , we must have s ∈ J	 .
Put f∗(q) := s . It is clear that f∗ : Jα → J	 is bijective.
To see that f∗ is order-preserving, choose q < q′ from Jα . Write f(āq) as 
(ās)

and write f(āq′) as 
′(ās′). As both 
, 
′ are permissible, there is a � ∈ Aut(N )
sending 
(ās) �→ ās , 
′(ās′) �→ ās′ , and fixing everything else. Then the composition
g := � ◦ f : Nα → N	 is an isomorphismfixingF pointwise sending āq �→ ās , āq′ �→
ās′ .
By Lemma 3.6(1),N |= �(āq , āq′). As � is quantifier-free,Nα |= �(āq , āq′). Since

g is an isomorphism fixing F pointwise,N	 |= �(ās , ās′), and henceN |= �(ās , ās′).
By Lemma 3.6(1) again, s < s ′. That is, f∗(q) < f∗(q′). �

§4. k-cliques. In this section, we introduce k-cliques, whichwill serve the function
of equivalence classes from Case 2 of Section 1.1.
Fix a finite relational L with maximal arity r and an ambient L-structure M

throughout this section.
For n ≥ r, call a quantifier-free L-formula φ(x1, ... , xn) q.f.-complete if

φ(x1, ... , xn) decides every atomic R(ȳ) for every permutation ȳ of a subsequence
of (x1, ... , xn). As L is finite relational, there is a finite set Sn of q.f.-complete
φ(x1, ... , xn) such that for every L-structure M and every c̄ ∈Mn, tp(c̄) contains
precisely one element of Sn. Fix such a set Sn for every n ≥ r.

Definition 4.1. Fix k ≥ 1 and letM (k) := { ā ∈Mk : ai �= aj for i �= j }.

• Apair ā, b̄ ∈M (k) is exchangeable, written ā ∼ b̄, if ā ∩ b̄ = ∅ and tp(āb̄/(M \
(ā ∪ b̄))) = tp(b̄ā/(M \ (ā ∪ b̄))).

• A k-clique is a non-empty set A = { āi : i ∈ I } ⊆M (k) such that āi , āj are
exchangeable whenever i �= j.

• The size of A is simply its cardinality |A|.
• Given a k-clique A, we denote the set of all a ∈M such that a ∈ āi for some
āi ∈ A by

⋃
A. Because of the disjointness, |

⋃
A| = k · |A|.
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Remark 4.2. Similar to Definition 3.4, for all ā, b̄ ∈M (k) with ā ∩ b̄ = ∅, ā and
b̄ are exchangeable if and only if the bijection swapping them is an automorphism
ofM if and only if

M |= ∀ȳ[ȳ ∩ (ā ∪ b̄) = ∅ → φ(ā, b̄, ȳ)↔ φ(b̄, ā, ȳ)]

for every φ(x̄1, x̄2, ȳ) ∈ S2k+r with lg(ȳ) = r. As S2k+r is finite, it follows that
exchangeability is definable on M (k). However, unless k = 1 exchangeability need
not be transitive, due to the disjointness condition.

Definition 4.3. A set of disjoint k-tuples A = { āi : i ∈ I } ⊆M (k) is totally
indiscernible over its complement if it is totally indiscernible overM\

⋃
A.

Lemma 4.4. Let A ⊆M (k) be totally indiscernible over its complement, and let
B ⊂ A. Then B is totally indiscernible over its complement.

Proof. Let { b̄1, ... , b̄n }, { b̄′1, ... , b̄′n } ⊂ B and let { c1, ... , cm } ⊂M\
⋃

B. By
relabeling, let � be such that ci ∈

⋃
A iff i ≤ �, and let ā1, ... , āj ∈ A be such that

ci ∈ ā1 ∪ ··· ∪ āj for i ≤ �.
As A is totally indiscernible over its complement, we have

tp(b̄1, ... , b̄n, ā1, ... , āj/c�+1, ... cm) = tp(b̄′1, ... , b̄
′
n, ā1, ... , āj/c�+1, ... cm).

Thus, as desired, we have

tp(b̄1, ... , b̄n/c1, ... cm) = tp(b̄′1, ... , b̄
′
n/c1, ... cm).

�

Proposition 4.5. LetA ⊆M (k) be pairwise disjoint. ThenA is totally indiscernible
over its complement if and only if A is a k-clique.

Proof. (⇒) Suppose A is totally indiscernible over its complement, and
let āi , āj ∈ A. Then by Lemma 4.4, { āi , āj } is totally indiscernible over its
complement. Thus āi and āj are exchangeable.
(⇐) Suppose A = { āi : i ∈ I } is a k-clique. Let (i1, ... , in), (i ′1, ... , i ′n) ∈ I n. We

proceed by induction on m = | { āi1 , ... , āin } \ { āi′1 , ... , āi′n } |.
If m = 0 then there is some � ∈ Sym(n) such that �(i1, ... , in) = (i ′1, ... , i ′n). As �

can be written as a product of transpositions, we have tp(āi1 , ... , āin /(M \
⋃

A)) =
tp(āi′1 , ... , āi′n /(M \

⋃
A)).

Now supposem = � + 1. After permuting the tuples, which we have seen does not
affect their type, we may suppose āi1 �∈ { āi′1 , ... , āi′n } and āi′1 �∈ { āi1 , ... , āin }. Using
that ai1 , ai′1 are exchangeable for the first equality and the inductive hypothesis for
the second, we have tp(āi1 , ... , āin /(M \

⋃
A)) = tp(āi′1 , āi2 , ... , āin /(M \

⋃
A)) =

tp(āi′1 , ... , āi′n /(M \
⋃

A)). �

Lemma4.6. SupposeA andB are k-cliques,A ∩ B �= ∅, and
⋃
(A\B) ∩

⋃
(B\A) =

∅. Then A ∪ B is a k-clique.

Proof. First, we show distinct tuples ā, b̄ ∈ A ∪ B are disjoint. If ā, b̄ ∈ A (or
ā, b̄ ∈ B), this follows from the definition of k-cliques. Otherwise ā ∈ (A\B) and
b̄ ∈ (B\A), and so are disjoint by the last assumption.
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Let ā ∈ (A \ B) and b̄ ∈ (B \ A), and choose c̄ ∈ A ∩ B. LetY =M\(ā ∪ b̄ ∪ c̄).
By a sequence of transpositions, each involving c̄, we have

tp(āb̄c̄/Y ) = tp(āc̄b̄/Y ) = tp(c̄āb̄/Y ) = tp(b̄āc̄/Y ).

Thus tp(āb̄/Y c̄) = tp(b̄ā/Y c̄), and so ā ∼ b̄, as desired. �
Infinite k-cliques A inM give rise to types that support infinite arrays.
Definition 4.7. LetA be an infinite k-clique and let x̄ = (x1, ... , xk). The average

type of A, written AvA(x̄), is the set
{φ(x̄, ē) : φ is q.f., ē ∈M<�,M � φ(ā, ē) for some/all ā ∈ A with ā ∩ ē = ∅ } .
Lemma 4.8. If A is an infinite k-clique in M, then AvA(x̄) is well-defined and

AvA(x̄) ∈ Suppk(M ).
Proof. For well-definedness, we must check the “some/all” claim implicit in the

definition. AsA is an infinite k-clique, ā, ā′ ∈ A are exchangeable; hence tp(ā/ē) =
tp(ā′/ē) whenever ā ∩ ē = ∅. It is easily verified that it is a complete (quantifier-free)
type over M. As any finite subset of AvA(x̄) is realized by infinitely many ā ∈ A,
we see that AvA(x̄) ∈ Suppk(M ). �
For the remainder of this section, fix an integer k ≥ 1.
Definition 4.9. LetM be any L-structure.
• For any k′ ≤ k, call a k′-clique A inM sufficiently large if |A| > 2k + r.
• An extension N ⊇M is (≤ k)-clique-preserving if, for every k′ ≤ k, every
sufficiently large k′-clique A inM remains a k′-clique in N.
We will see two ways of obtaining (≤ k)-clique-preserving extensions ofM. The

first follows from the definability of exchangeability.

Remark 4.10. If M ∗ �M , then since exchangeability is definable, M ∗ will be
both age-preserving and (≤ k)-clique-preserving. Moreover, any substructure N
satisfying M ⊆ N ⊆M ∗ will also be an age-preserving, (≤ k)-clique-preserving
extension ofM.

The second method involves extending existing, sufficiently large cliques.

Definition 4.11. Fix an L-structureM and recall k is fixed throughout.
1. A simple clique extension ofM is an extensionN with universeM ∪

⋃
C, where

for some k′ ≤ k, C is a k′-clique inN extending some sufficiently large k′-clique
A inM.

2. A clique extension of M is a continuous, nested union
⋃
Nα of simple clique

extensions, i.e., N0 =M , Nα+1 is a simple clique extension of M, and N
 =⋃
α<
 Nα for limit 
.

Lemma 4.12. Every clique extension N ⊇M is (≤ k)-clique-preserving.
Proof. Arguing by induction on the length of the chain, it suffices to show this

whenN is a simple clique extension ofM. Similarly, arguing by induction on |C \ A|,
it suffices to show this when C = A ∪ { c̄ } andN =M ∪ { c̄ }. So choose any k′ ≤ k
and any k′-clique B inM. To see that B remains a k′-clique in N, choose b̄, b̄′ ∈ B
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and h̄ ∈ (N \ (b̄ ∪ b̄′))r . It suffices to show that N |= φ(b̄, b̄′, h̄)↔ φ(b̄′, b̄, h̄) for
every φ ∈ S2k′+r . Write h̄ = c̄′ē, where c̄′ = h̄ ∩ c̄ and ē = h̄ \ c̄ (so ē ⊆M ). AsA is
sufficiently large, choose ā ∈ A disjoint from b̄b̄′h̄ and let ā′ ⊆ ā be the subsequence
corresponding to c̄′ in c̄. As ēā′ are fromM, b̄ ∼ b̄′ inM, and as φ is quantifier-free,
we have

N |= φ(b̄, b̄′, ē, ā′)↔ φ(b̄′, b̄, ē, ā′).

Since c̄ ∼ ā in N0 and b̄b̄′ē is disjoint from c̄ā, we conclude N |= φ(b̄, b̄′, ē, c̄′)↔
φ(b̄′, b̄, ē, c̄′), as required. �

Consider the case of an equivalence relation with infinitely many infinite classes
from Section 1.1. This was easier than the general non-mutually algebraic case. For
an example closer to the general case, consider whenM is an equivalence relation
with infinitely many infinite classes, as well as infinitely many classes of each finite
size. If we proceed as in Section 1.1, each Mf will be isomorphic to M. In this
case, the problem is easily remedied by first passing to an age-preservingM ′ ⊃M
in which every class is infinite. In the general case, this may not be possible, but we
may find some age-preservingM ′ ⊃M in which every (sufficiently large) maximal
finite k-clique cannot be extended further. This is the notion of fullness discussed
next. Carrying out the construction from Section 1.1 over thisM ′, we will be able to
differentiate the maximal finite k-cliques that come from shrinking some infiniteAq
fromM ∗ with those that were already inM ′, since only the former will be infinitely
extendable.
It is easily seen by Zorn’s Lemma that inside every M, every k′-clique A in M

is contained in a maximal k′-clique B ⊇ A in M. What is less clear is whether a
maximal k′-clique A can be extended in some age-preserving extension N ⊇M .

Definition 4.13. Fix an L-structureM.
1. For k′ ≤ k, call a k′-clique A in M infinitely extendable if there is some
age-preserving N ⊇M and an infinite k′-clique C ⊇ A in N, and call A
unextendable if it is maximal in every age-preserving N ⊇M .

2. M is k-full if, for every k′ ≤ k, every sufficiently large, maximal k′-clique A in
M, A is either infinite or unextendable.

Clearly, if a k′-cliqueA is not infinitely extendable, then there is an age-preserving
N ⊇M and an unextendable (finite) k′-clique C in N extending A. In fact, we can
additionally require that the age-preserving extension be (≤ k)-clique-preserving as
well.

Lemma 4.14. Suppose M is a countable L-structure, and for some k′ ≤ k, A is
a sufficiently large k′-clique in M. Then there is an age-preserving, (≤ k)-clique-
preserving countable N ⊇M and an extension C ⊇ A such that:
1. If A is infinitely extendable, then C is infinite; and
2. If A is not infinitely extendable, then C is unextendable.

Proof. In both cases, choose an age-preserving N ∗ ⊇M and a k′-clique C in
N ∗ extending A that is either infinite, or of largest possible finite size. In either
case, let N be the substructure of N ∗ with universe M ∪

⋃
C. Then N is also an
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age-preserving extension ofM, and moreover N is a clique extension. Thus, N is a
(≤ k)-clique-preserving extension ofM by Lemma 4.12. �
The following lemma now follows by bookkeeping.

Lemma 4.15. Every countable structure M has a countable, k-full, (≤ k)-clique-
preserving, age-preserving extension N ⊇M .
Proof. We first claim that given any countable M, there is a countable, age-

preserving, (≤ k)-clique-preserving M ′ ⊇M such that for each 1 ≤ k′ ≤ k, each
of the (countably many) sufficiently large, finite k′-cliques A inM has an extension
C ⊇M ′ that is either infinite or is unextendable. (M ′ is obtained as union of a
countable chain of age-preserving, (≤ k)-clique-preserving extensions formed by
iterating Lemma 4.14 once for each such A.)
Now, simply iterate the claim above� times, getting a nested sequenceM =M0 ⊆

M1 ⊆M2 ⊆ ··· withMn+1 = (Mn)′ from above. Then N =
⋃
Mn is as desired. �

§5. Grid extensions. Wenowgeneralize the constructionof adding infinitelymany
new equivalence classes from Case 2 of Section 1.1. Throughout this section, we will
work within a finite, relational language L with arity bounded by r and we will be
considering non-mutually algebraic models that are array-minimal of index k (recall
Definition 3.1). These k and r are fixed throughout this section. Thus, e.g., a k′-clique
A will be sufficiently large if |A| > 2k + r.
Lemma 5.1. Suppose M is not mutually algebraic, M is array-minimal of index k,

and there is no age-preservingN ⊇M with 2ℵ0 siblings, and let p ∈ Suppk(M ). Then
there is an age-preserving, clique-preserving N ⊇M containing an infinite k-clique
A = { ā� : � ∈ � } with each ā� realizing p.
Proof. As p ∈ Suppk(M ), we can use Ramsey’s theorem and compactness to

find an elementary extension M ∗ �M containing an order-indiscernible over M
sequence 〈ā� : � ∈ �〉 of realizations of p. This sequencemust be totally indiscernible
overM, as otherwise Proposition 3.3 would give an age-preservingN ⊇M with 2ℵ0
siblings. Take N to be the substructure ofM ∗ with universeM ∪ { ā� : � ∈ � }. As
A = { ā� : � ∈ � } is totally indiscernible over its complement, it is a k-clique by
Proposition 4.5. The fact that N is age-preserving and clique-preserving follows by
Remark 4.10. �
Lemma 5.2. Suppose M is not mutually algebraic, M is array-minimal of index k,

and there is no age-preservingN ⊇M with 2ℵ0 siblings. Then there is anR(x̄, ȳ) ∈ L,
an infinite set {pq : q ∈ Q } ⊆ Suppk(M ), a tuple d̄q,r ∈M lg(ȳ) for all q < r ∈ Q,
and an age-preserving, clique-preservingN ⊇M with infinite k-cliques {Aq : q ∈ Q }
from N such that, letting Aq = { āq,i : i ∈ � }, the following hold.
1.

⋃
Aq ∩

⋃
Ar = ∅ for q �= r.

2. For each q ∈ Q and i ∈ �, āq,i is a realization of pq .
3. For each q < r ∈ Q and i ∈ �, N |= R(āq,i , d̄q,r) ∧ ¬R(ār,i , d̄q,r).
Proof. First fix a sequence 〈pi : i ∈ Q〉 of distinct complete k-types overM, each

of which support an infinite array. As the types are distinct, for each i < j < � there
is an Ri,j(x̄, ȳi,j) ∈ L and d̄i,j from M such that R(x̄, d̄i,j) is in pi but not in pj .
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As L is finite, by Ramsey’s theorem we can choose a specific R(x̄, ȳ) and an infinite
I ⊆ Q such thatRi,j = R whenever i < j from I. Because of this, Clause (3) follows
immediately from Clause (2).
We construct N in � steps, once for each i ∈ I , each time applying Lemma 5.1

to the type pi . Because each of the extensions is clique-preserving, the union of this
sequence suffices. �

Definition 5.3.

• Fix R(x̄, ȳ) ∈ L. A (k,R)-grid extension over M is an age-preserving N ⊇M
satisfying the following conditions.
1. N =M ∪ { āq,i ∈ Nk : q ∈ Q, i ∈ � } ∪ { d̄q,r : q < r ∈ Q }.
2. The āq,i are pairwise disjoint and disjoint fromM.
3. For each q ∈ Q, Aq = { āq,i : i ∈ � } is a k-clique.
4. For all q < r ∈ Q and i ∈ �, N |= R(āq,i , d̄q,r) ∧ ¬R(ār,i , d̄q,r).

• Let ēq,r = d̄q,r\(M ∪
⋃
q∈Q(

⋃
Aq)). Given any order-automorphism � ∈

Aut(Q,≤), let �∗ be the bijection on N defined as follows.
1. For q ∈ Q, �∗(āq,i ) = ā�(q),i .
2. For q < r from Q, �∗(ēq,r) = ē�(q),�(r).
3. �∗ fixesM pointwise.

• An indiscernible (k,R)-grid extension is a (k,R)-grid extension N ⊇M such
that, for every � ∈ Aut(Q,≤), the induced �∗ is an automorphism of N. We
call such �∗ a standard automorphism of N, and any composition of �∗ with an
element of Πq∈QSym(Aq) a permuted standard automorphism of N.

Proposition 5.4. Suppose M is not mutually algebraic, M is array-minimal of
index k, and there is no age-preserving extensionN ⊇M with 2ℵ0 siblings. Then there
is an indiscernible (k,R)-grid extension N ⊇M .

Proof. We proceed by compactness. Expand the language by constant sym-
bols naming every element of M, as well as k-tuples of constant symbols
{ āq,i : q ∈ Q, i ∈ � } and �-tuples of constant symbols { d̄q,r : q < r ∈ Q }, where �
is the length of d̄q,r in Lemma 5.2. Consider the theory T ∗ in this language:

1. The elementary diagram ofM.
2. The āq,i are pairwise disjoint, and no element fromM is in any such tuple.
3. For q < r ∈ Q, R(āq,0, ār,0, d̄q,r) ∧ ¬R(ār,0, āq,0, d̄q,r).
4. Each Aq = { āq,i : i ∈ � } is a k-clique, and is order indiscernible over all the
other constants.

5. For every � ∈ Aut(Q,≤), let �∗ be the induced self-bijection of M ∪
{ āq,i : q ∈ Q, i ∈ � } ∪ { d̄q,r : q < r ∈ Q }. Then �∗ is an automorphism.

Models of finite subsets ofT ∗ are obtained by applying the finite Ramsey theorem
to the model fromLemma 5.2. Thus, by compactness, we obtain amodelM ∗ |= T ∗.
Taking the restriction ofM ∗ to the constant symbols, and letting N be the reduct
to the original language, we are finished. �

Definition 5.5. Let N ⊃M be an indiscernible (k,R)-grid extension. For q <
r ∈ Q, let ēq,r be as in Definition 5.3. By indiscernibility, each ēi,j must be the same
length.
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Define the rank of N ⊇M to be the length of any ēi,j . It is possible for the rank
to be 0.

Example 4. LetM consist of an equivalence relation with infinitely many infinite
classes, and let N =M ∪ { aq,i : q ∈ Q, i ∈ � }, where each Aq = { aq,i : i ∈ � } is
a new class. Then we may take d̄q,r = aq,0, giving rank 0.
Our next example codes equivalence relations in a different language. TakeM in

a language (U,V,R), where U,V are unary and R is binary. Let U and V be infinite
and partitionM, and let R be such that for each u ∈ U there is a unique v ∈ V such
that R(u, v), and for each v ∈ V there are infinitely u ∈ U such that R(u, v). Let
N =M ∪ { uq,i : q ∈ Q, i ∈ � } ∪ { vq : q ∈ Q }, where each uq,i ∈ U , vq ∈ V , and
R(uq,i , vr) holds if q = r. Taking Aq = { uq,i : i ∈ � } and d̄q,r = vq gives rank 1.
We could not have given this extension rank 0, as { uq,i : q ∈ Q, i ∈ � } is totally
indiscernible overM; the vq ’s are needed to break them into distinct k-cliques.

We now show that in an indiscernible (k,R)-grid extension of minimum rank,
each Ai is a maximal k-clique.
Definition 5.6. LetN ⊃M be an indiscernible (k,R)-grid extension. Two tuples

ā1 ⊂ āq,i , ā2 ⊂ ār,j are associated if the natural bijection between āq,i and ār,j maps
ā1 to ā2.

The next lemma is analogous to Lemma 3.9.

Lemma 5.7. Suppose M is not mutually algebraic, M is array-minimal of index k,
andN ⊃M is an indiscernible (k,R)-grid extension. Suppose ā1 � āq,i , ā2 � ār,j are
associated. Then tp(ā1/(N\(āq,i ∪ ār,j))) = tp(ā2/(N\(āq,i ∪ ār,j))).
Proof. We may assume q �= r, since otherwise this follows from āq,i ∼ āq,j , and

for definiteness take q < r. By indiscernibility, it suffices to prove this assuming
i = j = 0. Let N0 = N\ { ā�,0 : � ∈ Q }.
Claim. tp(ā1/N0) = tp(ā2/N0).

Proof of Claim. Each standard automorphism fixes N0 setwise. Suppose
tp(ā1/N0) �= tp(ā2/N0), as witnessed by w̄. Then for any � ∈ Aut(Q,≤), the
standard automorphism �∗(w̄) witnesses that tp(�∗(ā1)/N0) �= tp(�∗(ā2)/N0). But
this contradicts thatM is array-minimal of index k. ♦
Now suppose w̄ witnesses that tp(ā1/(N\(āq,0 ∪ ār,0))) �= tp(ā2/(N\(āq,0 ∪

ār,0))). Let 
 ∈ ΠiSym(Ai) be such that 
(w̄) ∈ N0, and 
 fixes āq,0 and ār,0.
Then 
(w̄) witnesses that tp(ā1/N0) �= tp(ā2/N0), contradicting the Claim. �
Lemma 5.8. Suppose M is not mutually algebraic, M is array-minimal of index k,

and N ⊃M is an indiscernible (k,R)-grid extension of minimum rank. For a given
q ∈ Q and h̄ ∈ Nk , h̄ ∼ āq,0 only if h̄ is a permutation of āq,i for some i.
In particular, for every q, Aq = { āq,i : i ∈ � } is a maximal k-clique.

Proof. Fix q ∈ Q, and suppose h̄ ∈ Nk is not a permutation of some āq,i . Let
N =M � A � E, whereA =

⋃
i(

⋃
Ai) andE = N\(M ∪ A). The proof splits into

two cases.
Case 1: h̄ ∩ E �= ∅. Let ēs,t ⊂ E be such that ēhs,t = h̄ ∩ ēs,t �= ∅, and let ē′s,t =

ēs,t\ēhs,t . As h̄ ∼ āq,0, let āhq,0 ⊂ āq,0 correspond to the entries of ēhq,0. Let d̄s,t witness
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that c̄s,0 �∼ c̄t,0, with ēs,t ⊂ d̄s,t . Let d̄∗s,t be obtained by replacing ēs,t with c̄hq,0ē′s,t . Let
� be large enough that none of the tuples mentioned so far intersect ās,� or āt,� .
We will show d̄∗s,t still witnesses that c̄s,� �∼ c̄t,� , contradicting the fact that N has
minimum rank.
By taking an automorphism replacing āq,0 with some āq,i , we may

assume d̄s,t ∩ āq,0 = ∅. Let d̄ ′s,t = d̄s,t\ēs,t . Since h̄ ∼ āq,0, tp(h̄/ās,� āt,� ē′s,t d̄ ′s,t) =
tp(āq,0/ās,� āt,� ē′s,t d̄

′
s,t). Thus tp(ē

h
s,t/ās,� āt,� ē

′
s,t d̄

′
s,t) = tp(ā

h
q,0/ās,� āt,� ē

′
s,t d̄

′
s,t), and so

tp(d̄s,t/ās,� āt,�) = tp(d̄∗s,t/ās,� āt,�).
Case 2: h̄ ∩ E = ∅. Given an interval [x, y) in �, we define A �[x,y)=⋃
{ āq,i : q ∈ Q, i ∈ [x, y) }. Choose �1 such that h̄ ∩ A ⊂ A �[0,�1). Fix r > q,

and let w̄ witness āq,0 �∼ ār,0. By permuting each Ai , we may choose �2 > �1
so that w̄ ⊂ A �[�1,�2). For any � ≥ �2, we have w̄ also witnesses āq,� �∼ ār,� . Let
N0 = N\(A �[0,�1)). We use x̄ ∼N0 ȳ to mean x̄ and ȳ are exchangeable overN0, i.e.,
for any z̄ from N0, tp(x̄ȳz̄) = tp(ȳx̄z̄).

Claim. h̄ ∼N0 ār,� .

Proof of Claim. As h ∩ E = ∅, let h̄ ⊂ n̄āt1,i1 ... ātj ,ij = ḡ, where n̄ = h̄ ∩M ,
each i < �1, and t1 ≤ ··· ≤ tj . Let s1 ≤ ··· ≤ sj < q, let ḡ2 = n̄ās1,i1 ... āsj ,ij , and let
h̄2 ⊂ ḡ2 be associated with h̄. By Lemma 5.7, we have tp(h̄/N0) = tp(h̄2/N0). In
particular, tp(h̄/c̄q,� c̄r,� d̄ ) = tp(h̄2/c̄q,� c̄r,� d̄ ), for all d̄ ⊂ N0.
Thus we have h̄ ∼N0 āq,� ⇐⇒ h̄2 ∼N0 āq,� , and similarly for ār,� . By assumption,

h̄ ∼ āq,� , so we also have h̄ ∼N0 āq,� . Now let � ∈ Aut(Q,≤) be an automorphism
with �(q) = r and fixing all s ≤ sj , and let �∗ be the corresponding standard
automorphism. This shows h̄2 ∼N0 ār,� , and so we also have h̄ ∼N0 ār,� . ♦

We now handle the fact that h̄ might intersect w̄. As we took w̄ ∈ A �[�1,�2), and
h̄ ∩ E = ∅, we have m̄ = h̄ ∩ w̄ ⊂M . Let h̄ = h̄′m̄ and w̄ = w̄′m̄. Then

tp(āq,� ār,� w̄′h̄) = tp(h̄ār,� w̄′āq,�) = tp(ār,� h̄w̄′āq,�) = tp(ār,� āq,� w̄′h̄),

where we have used h̄ ∼ āq,� in the first and third equalities, and h̄ ∼N0 ār,� in the
second.
Removing h̄′ from the initial and final expressions, and noting w̄ = w̄′(h̄\h̄′), we

contradict that w̄ witnesses āq,� �∼ ār,� . �

Definition 5.9. LetN ⊃M be an indiscernible (k,R)-grid extension. A k-clique
B = { b̄s : s ∈ I } ⊂ Nk is homogeneous if each b̄s ∈ B can be partitioned into n̄s m̄s
(with either part of the partition possibly empty) satisfying the following.

1. n̄s is from (N \M ), and m̄s is fromM.
2. For each 1 ≤ t ≤ k, for all s, s ′ ∈ I , (b̄s)t ∈M iff (b̄s′)t ∈M .
3. For all s, s ′ ∈ I there is some permuted standard automorphism �∗ such that
�∗(n̄s) = n̄s′ .

Lemma 5.10. Suppose that M is k-full and that N ⊃M is an indiscernible (k,R)-
grid extension. There is a constant C ′ so that if B is a maximal k-clique in N that has
size at least C ′ and is infinitely extendable, then B is already infinite.
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Proof. By two applications of the pigeonhole principle, we can compute a C ′ so
that any k-clique of size C ′ contains a homogeneous k-clique B0 with |B0| ≥ 2. The
result will follow by infinitely iterating the following claim to show B0 is infinitely
extendable. By Lemma 4.12 B will remain a k-clique in the corresponding clique-
extension, and so be infinitely extendable by Lemma 4.6.

Claim. Suppose B0 ⊂ N is a finite, homogeneous, infinitely extendable k-clique of
size at least 2. Then there is a proper extension B1 � B0 that is also homogeneous.

Proof of Claim. First, since B0 = { n̄s m̄s : s ∈ I } is a k-clique in N, the
subsequences { m̄s : s ∈ I } form an �-clique in M ′, where � = lg(m̄). Because B0
is infinitely extendable, so is { m̄s : s ∈ I }. As M ′ is �-full, we can find some m̄∗

so that { m̄s : s ∈ I } ∪ { m̄∗ } is an �-clique inM ′, and thus in N, asM ′ ⊂ N is a
k-clique-preserving extension. (If m̄s is empty, this may be ignored.)
Choose a permuted standard automorphism 
 ∈ Aut(N ) such that 
 fixes n̄0 and


(n̄1) is disjoint from
⋃

B0 (the existence of 
 uses the homogeneity ofB0). Let n̄∗ :=

(n̄1). We claim that B0 ∪ { n̄∗m̄∗ } is a homogeneous k-clique. The homogeneity
is clear from the construction. We now show { n0m0, n∗m∗ } is a k-clique, and that
B0 ∪ { n̄∗m̄∗ } is a k-clique will follow by Lemma 4.6.

tp(n̄∗m̄∗n̄0m̄0/(N\n̄∗m̄∗n̄0m̄0)) = tp(n̄∗m̄1n̄0m̄0/(N\n̄∗m̄1n̄0m̄0))
= tp(n̄1m̄1n̄0m̄0/(N\n̄1m̄1n̄0m̄0))
= tp(n̄0m̄0n̄1m̄1/(N\n̄1m̄1n̄0m̄0))
= tp(n̄0m̄0n̄∗m̄1/(N\n̄∗m̄1n̄0m̄0))
= tp(n̄0m̄0n̄∗m̄∗/(N\n̄∗m̄∗n̄0m̄0)).

We have used that { m̄1, m̄∗ } is an �-clique in lines 1 and 5, applied 
–1 to get to
line 2, used that { n0m0, n1m1 } is a k-clique to get to line 3, and applied 
 to get
to line 4. ♦

�

§6. Non-mutually algebraic T .

Theorem 6.1. If M is a non-mutually algebraic model of T, then there is an age-
preserving N ⊇M with 2ℵ0 siblings.

Proof. First take an age-preserving M ′′ ⊇M that is array-minimal of index
k, by Lemma 3.2. Then by Lemma 4.15, let M ′ ⊇M ′′ be a k-full age-preserving,
k-clique-preserving extension. Suppose M ′ has no age-preserving extension with
2ℵ0 siblings, and by Proposition 5.4, let N ⊇M ′ be an indiscernible (k,R)-grid
extension over M ′, for some R ∈ L, of minimum rank. We will show N has 2ℵ0
siblings, which is a contradiction.
Choose a dense/codense subset D ⊆ Q, and let Dc = Q\D. Using the nota-

tion of Definition 5.3, let NDc be the substructure of N with universe M ′ ∪
{ āi,� : i ∈ Dc, � ∈ Q } ∪ { ēi,j : i < j, i, j ∈ Dc }. By the indiscernibility, NDc is
isomorphic to N over M ′. Thus, any model N ∗ satisfying NDc ⊆ N ∗ ⊆ N is a
sibling of N, in fact via embeddings that fixM ′ pointwise.
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Let r be the maximum arity of the language, let C ′ be from Lemma 5.10, and
choose C such that any k-clique of size at least C contains a homogeneous k-clique
of size max(C ′, 2k + r). Given an injective f : D → �\[C ], we construct Nf ⊂ N
by restricting Aq to a subset A∗

q of size f(q), for each q ∈ D. It remains to show
the Nf are pairwise non-isomorphic. The following claim is sufficient, as being an
infinitely extendable k-clique of size n is type-definable.

Claim. For any n ≥ C ,Nf has an infinitely extendable maximal k-clique of size n
if and only if n ∈ Im(f). �

Proof of Claim. (⇐) Let q ∈ Q be such that f(q) = n. First, N is visibly a
clique extension of Nf ; hence N is (≤ k)-clique-preserving by Lemma 4.12. Thus,
as Aq is a maximal k-clique in N by Lemma 5.8, A∗

q is a maximal k-clique in Nf .
As it is infinitely extendable to Aq , we are finished.
(⇒) This will follow immediately from Lemma 6.2. ♦

�

Lemma 6.2. Let C ∈ �, D ⊂ Q, Nf , and {A∗
q : q ∈ D } be as in the proof of

Theorem 6.1. If B ⊂ (Nf)k is a finite infinitely extendable maximal k-clique of size
at least C, then there is some q ∈ D such that each element of B is a permutation of
some element of A∗

q .

Proof. Suppose not. We now work within Nf . Suppose |B| ≥ C , let n =
max(C ′, 2k + r) (where C ′ is from Lemma 5.10 and r is the maximum arity of the
language), and let { b̄i : i < n } = B– ⊂ B be a homogeneous k-clique.We first prove
the conclusion for B–. There must be some q ∈ D such that

⋃
B– intersects

⋃
A∗
q ;

otherwise B– would be infinitely extendable by Lemma 5.10. Pick such a q. There
is at least one j such that b̄0 ∩ āq,j �= ∅, so let c̄0 = b̄0 ∩ āq,j , and let lg(c̄0) = k′ < k
(this inequality is strict by our assumption that b̄0 is not a permutation of āq,j). For
each i, let c̄i be the subtuple of b̄i associated with c̄0, and let C = { c̄i : i < n }. By
relabeling, we may assume c̄i = b̄i ∩ āq,i .

Claim. C is a k′-clique.

Proof of Claim. Suppose c̄0 �∼ c̄1, as witnessed by w̄, with lg(w̄) ≤ r. Then
w̄ ∩ (b̄0 ∪ b̄1) �= ∅; otherwise w̄ would witness b̄0 �∼ b̄1.
As B– is sufficiently large, by relabeling we may suppose w̄ does not intersect b̄2 ∪

b̄3. Let 
 be the automorphism swapping āq,0 with āq,2 and swapping āq,1 with āq,3,
while fixing everything else. Then 
(w̄) witnesses c̄2 �∼ c̄3, but 
(w̄) ∩ (b̄2 ∪ b̄3) = ∅,
which is a contradiction. ♦

Now work in N, and note that C remains a k′-clique in N by Lemma 4.12, since
N is a clique extension of Nf . For each r ∈ Q, let �∗r be a standard automorphism
sending Aq to Ar . Each �∗r (C) is a k′-clique that extends to an infinite k′-clique
within N. However, for r1 �= r2, �∗r1(c̄0) �∼ �

∗
r2
(c̄0), since �∗r1(ā0) �∼ �

∗
r2
(ā0), so the

average types of these infinite extensions are distinct. Thus, by Lemma 4.8, we
conclude that Suppk′(N ) is infinite, contradicting that M is array-minimal of
index k.
Given the conclusion for B–, it follows for B by Lemma 5.8. �
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§7. Mutually algebraic T .

7.1. The non-cellular case. In this subsection, we prove that if M is mutually
algebraic but non-cellular, then it admits a countable elementary extension with 2ℵ0
siblings.
If L is finite relational andM is mutually algebraic, then by Theorem 2.5, there

is another finite relational language L′ in which every atomic relation is mutually
algebraic, and such that L′ is quantifier-free interdefinable with an expansion of L
naming finitely many constants.
Adding finitely many constants to our language changes our sibling count by at

most a factor of ℵ0, and so will not affect this subsection. Adding the constants and
switching language to L′ as above, we may assume the following.
For this subsection, we assumeM is mutually algebraic in a finite relational language

with mutually algebraic atomic relations.

Definition 7.1. GivenM in a language withmutually algebraic atomic relations,
we may construct a corresponding hypergraphGM on the same universe, placing an
edge on a tuple m̄ if R holds on (some permutation of) m̄ for some R ∈ L.
We call A ⊆M anMA-connected part if A is a connected part of GM .
Equivalently, we may use that if �(x, ȳ) and �(x, z̄) are quantifier-free mutually

algebraic with at least one variable symbol x in common, then �(x, ȳ) ∧ �(x, z̄)
is quantifier-free, mutually algebraic. Then A ⊆M is an MA-connected part iff,
for all a, b ∈ A, there are { c2, ... , cn } ⊆ A and a quantifier-free mutually algebraic
φ(x, y, z̄) such thatM |= φ(a, b, c2, ... , cn).
AnMA-connected component is a maximal MA-connected part.

Lemma 7.2. The following points follow from the corresponding facts for connected
parts of hypergraphs.
1. If A,B ⊆M are MA-connected parts and A ∩ B = ∅, then A ∪ B is an MA-
connected part.

2. Every MA-connected part is contained in a unique MA-connected component.
3. If C is an infinite MA-connected part, there is a nested sequence B0 � B1 � ···
such that ∪iBi = C and each Bi is a finite MA-connected part.

SupposeM andN are siblings. Then Age(M ) = Age(N ) and so ifM thinks that
�(x1, ... , xn) is mutually algebraic, then N also thinks this. Using this fact, we have:

Lemma 7.3. Suppose M and N are siblings and f :M → N is an embedding. Then
for any MA-connected part A ⊆M , f(A) is an MA-connected part of N. Thus, if
C ⊆M is anMA-connected component, then f(C ) is contained in anMA-connected
component as well.

Lemma 7.4. Suppose M is mutually algebraic and there is an infinite set
{Ci : i ∈ � } of components such that for each i, Ci properly embeds into Ci+1,
but there is no embedding of Ci+1 into Ci . Then M has 2ℵ0 siblings.

Proof. Call an MA-connected component Z outside the scope if there is no
embedding of Z into any Ci . Let Z∗ =

⋃
{Z : Z is outside the scope }. Note that

any MA-connected component inside the scope embeds into all but finitely many
Ci . For each infinite S ⊆ �, let NS be the substructure of N with universe Z∗ ∪
{Ci : i ∈ S }.

https://doi.org/10.1017/jsl.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.3


1150 SAMUEL BRAUNFELD ANDMICHAEL C. LASKOWSKI

We first argue that each NS is a sibling of M. Fix any infinite S ⊆ �.
Enumerate the MA-connected components {Yj : j ≤ � } of M that are within
the scope. Inductively define a mapping h :M → NS as the union of a chain of
mappings 〈hn : n ∈ �〉 as follows. Let h0 : Z∗ → NS be the identity. Assume that
hj : N ∗ ∪ {Yt : t < j } → NS has been defined.GivenYj , choose some i not already
chosen so that Yj embeds into Ci , and let hj+1 extend hj by mapping Yj into Ci .
To see the NS are pairwise non-isomorphic, note that NS contains an

MA-connected component isomorphic to Ci iff i ∈ S. As isomorphisms must
map MA-connected components to MA-connected components, we are finished.�

Lemma 7.5. IfM contains infinite, pairwise isomorphicMA-connected components
{Ci : i ∈ � }, then M has 2ℵ0 siblings.

Proof. We will produce a sibling N of M satisfying the hypotheses of Lemma
7.4, which suffices.
Let X ⊂ � be infinite/co-infinite. We will produce N by shrinking each Ci with

i ∈ X . We will have that M embeds into N as we leave an infinite collection of Ci
unaltered.
As C0 is infinite, by Lemma 7.2 write C0 =

⋃
{Bi : i ∈ � }, where each Bi is a

finite, MA-connected part and Bi � Bi+1 for each i. We now construct N ⊂M by
restricting Ci down to an isomorphic copy of Bi , for each i ∈ X . �

Theorem 7.6 [3]. Let L be finite relational, and suppose M is a mutually algebraic
but non-cellular countable L-structure. Then there is some M ∗ 	M such that M ∗

contains infinitely many new infinite MA-connected components, pairwise isomorphic
over M.
Furthermore, we may take the universe ofM ∗ to be the universe of M together with

these new components.

Proposition 7.7. If M is not cellular then there is an age-preserving extension N
with 2ℵ0 siblings. In the case where M is mutually algebraic, N can be chosen to be an
elementary extension of M.

Proof. Suppose M is not cellular. If M is not mutually algebraic, then we are
done by Theorem 6.1.
If M is mutually algebraic but non-cellular, then produce M ∗ 	M as in

Theorem 7.6. By Lemma 7.5,M ∗ has 2ℵ0 siblings. �

7.2. The cellular case. In this subsection, we will be able to directly consider the
siblings ofM, rather than of some age-preserving extension.

Example 5. Consider the cellular graph M consisting the disjoint union of
infinitely many disconnected edges and an infinite independent set. Here, we may
obtain ℵ0 siblings as follows. First, we pass to the subgraph N removing the
independent set, which will be a sibling of M. Then, for each i ∈ �, we obtain
a sibling Ni by removing a point from i of the edges.

Note that in a cellular partition (Definition 2.2), for a fixed i ∈ [n], { c̄i,j : j ∈ � }
is a ki -clique.
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Definition 7.8. A cellular partition is separated if for every i ∈ [n], there is no
proper subtuple of c̄i,0 such that the set of associated subtuples among { c̄i,j : j ∈ � }
forms a k-clique.

Given a cellular partition, we may always produce a separated cellular partition
by increasing n and splitting apart any offending tuples.
Suppose M is cellular, with cellular partition K ∪ { c̄i,j : i ∈ [n], j ∈ � }. Given

some c̄i,j andS ⊆ [ki ], let c̄Si,j = (c�i,j |� ∈ S) ⊆ c̄i,j . Then every substructureN ⊆M
is specified by N ∩K as well as, for each i ∈ [n] and S ⊆ [ki ], the number of j such
that N ∩ c̄i,j = c̄Si,j .
Recall thatM is finitely partitioned if and only if |c̄i,j | = 1 for every i.
Lemma 7.9. If M is cellular and not finitely partitioned, then M has ℵ0 siblings.
Proof. By the discussion above, a cellular structure has at most ℵ0 siblings.

Let K ∪ { c̄i,j : i ∈ [n], j ∈ � } be a separated cellular partition ofM. AsM is not
finitely partitioned, there is some i such that |c̄i,j | > 1. Fix some � ∈ �, for each i, j,
let cj be the first element of c̄i,j , and letM� =M\ { c̄i,j\cj : j ≤ � }. For any i ′ such
that |c̄i′,j | = 1 and { cj : j ≤ � } ∪ { c̄i′,j : j ∈ � } is a 1-clique, remove all c̄i′,j , and
letM ∗

� be the resulting structure. NoteM
∗
� is a sibling ofM.

We now show there is no m ∈M ∗
� \K such that m ∼ cj for some j ≤ �. Suppose

there is, and m is the kth element of c̄i′,j′ for some i ′ ∈ [n] and j′ ∈ �. Then cj
will be exchangeable with the kth element of c̄i′,j′′ for every j′′ ∈ �, and so these
elements will form a 1-clique. If |c̄i′,j′ | = 1, this contradicts the construction ofM ∗

� .
If |c̄i′,j′ | > 1, this contradicts that we started with a separated cellular partition.
Let C� be the maximal 1-clique inM ∗

� containing { cj : j ≤ � }. Then C� ⊆ K ∪
{ cj : j ≤ � } by the previous paragraph, so � ≤ |C� | ≤ |K |+ �. InM ∗

� , any 1-clique
containing a point outside K ∪ { cj : j ≤ � } is either a singleton or infinite, since,
as in the previous paragraph, if x ∼ y where y is the kth coordinate of c̄i′,j′ , then
x is exchangeable with the kth element of c̄i′,j′′ for every j′′ ∈ �. Thus for � >
|K |, C� will be the largest maximal finite 1-clique of M ∗

� . By the bounds above
on |C� |, if � ′ > |K |+ �, then |C�′ | > |C� |, and so M ∗

�′ �∼=M ∗
� , since their largest

maximal finite 1-cliques have different sizes. Thus, by varying �, we may produce ℵ0
siblings ofM. �
Lemma 7.10. If M is finitely partitioned, then M has one sibling, namely itself.

Proof. AsM is�-categorical, it admits an�-categorical model-companionM ∗

[15]. ThenM ∗ is a sibling ofM, so it suffices to showM ∗ has only one sibling.
As being finitely partitioned is a universal property,M ∗ is also finitely partitioned,

and so admits a cellular partition with K = acl(∅), and |c̄i,j | = 1 for each i ∈ [n],
so let ci,j be the one element of c̄i,j . We may further assume that we have taken n
minimal (subject to |c̄i,j | = 1), and thus tp(ci,j/K) �= tp(ci′,j/K) for i �= i ′.
AsM ∗ is model-complete, every x ∈ K is algebraic by an existential formula, so

any substructurewith the same agemust contain all ofK. The age ofM ∗ also specifies
{ ci,j } is infinite for each i, so any substructure with the same age is isomorphic
toM ∗. �

7.3. The main theorem. Putting together the results of this section, we have our
main theorem.
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Theorem 7.11. Let T be a universal theory in a finite relational language. Then one
of the following holds.
1. T is finitely partitioned. Every model of T has one sibling.
2. T is cellular. The finitely partitioned models of T have one sibling and the non-
finitely partitioned models have ℵ0 siblings.

3. T is not cellular. For every non-cellularM |= T , there is someN ⊇M such that
N |= T and N has 2ℵ0 siblings. Furthermore, if T is mutually algebraic, we may
take N �M .

If T admits a structure universal for its age, this immediately gives the following
corollary.

Corollary 7.12. Let M be a countable model in a finite relational language that
is universal for its age. Then one of the following holds.
1. M is finitely partitioned, and has one sibling.
2. M is cellular but not finitely partitioned, and has ℵ0 siblings.
3. M is not cellular, and has 2ℵ0 siblings.

A weakening of “finite relational language” is given in the following definition.

Definition 7.13. We say M has finite profile if, for every n, the number of
isomorphism types of substructures of size n is finite.

We now show the assumption of a finite relational language in Corollary 7.12
cannot be weakened to finite profile.

Example 6. Let the language consist of one n-ary relation symbol Rn for each
n ∈ �. Let x̄n = (x1n, ... , xnn ). LetM =

⊔
n∈� x̄n �

⊔
n∈� yn, where Rn(x̄) holds iff

x̄ = x̄n, and the yn form an independent set.
M is not �-categorical, as xin and x

j
m have different (non-quantifier-free) 1-types

for n �= m. For each n, the isomorphism type of n points is determined by which
tuples x̄i for i ≤ n they contain, and soM has finite profile. ThatM is universal for
its age is clear by inspection.
Age-preserving extensions ofM can only add further points to the independent

set, and so the only sibling ofM is itself. AsM is not �-categorical, it is not finitely
partitioned, nor even cellular.

As noted in [7], Corollary 7.12 implies the same conclusion with the hypothesis
thatM is universal for its age replaced with the hypothesis thatM is �-categorical,
since we may then pass to the model companion ofM.
We also obtain a positive answer to a question from [7] as another corollary of our

result. The proof simply goes through each case of Theorem 7.11, which immediately
implies the corresponding case of the corollary.

Corollary 7.14. For an age A in a finite relational language, let (Mod (A),≤) be
the countable structures with age A, quasi-ordered by embeddability. Then for every
M ∈Mod (A), the number of structures ≤-above M is equal to |Mod (A)|.

§8. Open questions.

Conjecture 1 (Thomassé [16]). Given a countable structure M in a countable
relational language, M has either 1, ℵ0, or 2ℵ0 siblings, up to isomorphism.
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As mentioned in the introduction, Conjecture 1 seems outside the scope of
the model-theoretic approach of this paper. However, an interesting special case
to consider may be when M is mutually algebraic. After naming finitely many
constants, we may decompose M into MA-connected components, which seem
easy to analyze. However, the effect of naming the constants is mysterious.

Problem 1. Confirm Conjecture 1 when M is mutually algebraic.

As noted in the introduction, the arguments in this paper bear out the following
intuition: if a universal theory T is non-cellular, then either it is unstable and so
has a model encoding (Q, <), or has a model that in some sense encodes an infinite
partition, i.e., a partition with infinitely many infinite parts.

Question 1. What is the proper notion of “encodes an infinite partition” to
formalize the intuition above?

Even attempting to plausibly refine Conjecture 1 to describe which structures
fall into which of the three cases seems difficult, but answering Question 1 may be
helpful. We know that there are two reasons for a universal theory to have a model
with 2ℵ0 siblings: either there is a model encoding a linear order with 2ℵ0 siblings
(namely (Q, <)) or a model “encoding an infinite partition.” Perhaps the same is
essentially true at the level of individual models, although we must weaken the
requirement of an infinite partition, since an equivalence relation with arbitrarily
large finite classes also has 2ℵ0 siblings.

Question 2. If a countable relational structure M has 2ℵ0 siblings, must M either
encode a linear order with 2ℵ0 siblings, or either “encode an infinite partition” or
“encode a partition with arbitrarily large finite parts” in the sense of Question 1?

From [8], we know exactly which countable linear orders have 2ℵ0 siblings;
furthermore, the linear orders with 2ℵ0 siblings seem to either encode infinite
partitions or partitions with arbitrarily large finite parts.
The final section of [7] and the introduction of [14] contain several open problems,

some of which we mention below.
A positive answer to the following conjecture would answer Problem 2 of [14]. As

mentioned there, Lachlan has proven that an age A has a unique countable model
up to elementary equivalence iff A is finitely partitioned [6].

Conjecture 2. All cases of Theorem 7.11 can be strengthened to pairwise non-
elementarily equivalent siblings. In particular, given an age A, there are 2ℵ0 non-
elementarily equivalent countable structures of age A iff A is non-cellular.

The place where our proof falls short of this conjecture is that whether a k-
clique is infinitely extendable does not seem to be definable. However, in some cases,
considering infinite extendability is unnecessary; for example, ifM has only finitely
many 1-types, in particular if M is ℵ0-categorical, then there is a bound C on the
size of k-cliques appearing in M. When constructing Nf in Theorem 6.1, we may
always shrink our k-cliques aboveC, and distinguishNf fromNg by whether it has a
maximal k-clique of some particular size above C. Thus we have proven Conjecture
2 in the case A is the age of an ℵ0-categorical structure.
Given an age A, letMod (A)/≡ denote the bi-embeddability classes of countable

structures with ageA. Thomassé’s conjecture is concerned with the size of any single
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≡-class. There are several conjectures regarding the number of≡-classes in [7], from
which we mention the following.

Conjecture 3 [7]. For an age A in a finite relational language, |Mod (A)/≡| is
finite if and only if |Mod (A)/≡| = 1 if and only if A is cellular.
If the conjecture above is true, then the only possibilities for |Mod (A)/≡| are

{ 1,ℵ0,ℵ1, 2ℵ0 } [7]. Classifying which ages fall into which case would be a natural
next step.
For problems involving model-counting in an age, such as in this paper or the

problem of determining |Mod (A)| in [14], the dividing lines are preserved under
arbitrary expansions by (finitely many) unary relations. This is clear after proving
that these dividing lines correspond to being finitely partitioned or being cellular.
However, if this could be proven as a first step, then the approach taken in this
paper could be drastically simplified, since a non-mutually algebraic theory admits
a model such that in a unary expansion there is a definable equivalence relation on
singletons with infinitely many infinite classes. We then would not have to use grid
extensions to mimic the behavior of such an equivalence relation, and would not
have to worry about hybrid tuples.

Question 3. Let M be a countable structure in a finite relational language, and let
M ∗ be an expansion by finitely many unary relations. Let A and A∗ be their respective
ages. Can any of the following statements be proven without first classifying the dividing
lines?
1. If |Mod (A∗)| = 2ℵ0 , then |Mod (A)| = 2ℵ0 .
2. IfMod (A∗) has a structure with 2ℵ0 siblings, then so doesMod (A).
3. If |Mod (A∗)/≡| is infinite, then so is |Mod (A)/≡|.
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