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COUNTING SIBLINGS IN UNIVERSAL THEORIES

SAMUEL BRAUNFELD AND MICHAEL C. LASKOWSKI

Abstract. We show that if a countable structure M in a finite relational language is not cellular, then
there is an age-preserving N D M such that 280 many structures are bi-embeddable with N. The proof
proceeds by a case division based on mutual algebraicity.

§1. Introduction. The model-theoretic condition of cellularity has appeared
several times as a dividing line in the complexity of universal theories, including
when counting the number of countable models [14], counting the number of finite
models as a function of size [12], and counting the number of non-isomorphic
substructures of countable models [11]. In this paper, we present a general approach
to proving results about cellularity via another model-theoretic condition, mutual
algebraicity. The approach is to first prove that the non-mutually algebraic case is
wild, likely using the Ryll-Nardzewski-type characterization of mutual algebraicity
from [13]. In a companion paper [3], we characterize the mutually algebraic non-
cellular case. As mutually algebraic structures admit a nice structural decomposition,
it is relatively quick to prove the mutually algebraic non-cellular case is still wild. This
approach was already largely present in [12], and we apply it here to the question of
counting siblings.

We call two (not necessarily elementarily) bi-embeddable structures siblings
(f: M < N is an embedding if R(x1,....x,) < R(f(x1)...., f(x,)) for every
atomic relation R). Given a countable relational structure M, our goal is to count
the number of siblings of M, up to isomorphism. Thomassé has conjectured the
following, counting M as a sibling of itself.

CoNJECTURE 1 (Thomassé [16]). Given a countable structure M in a countable
relational language, M has either 1, Xy, or 220 siblings. up to isomorphism.

This conjecture has been proven in the case of linear orders [8], the gap from
1 to Xy proven for Ny-categorical structures by making use of the monomorphic
decomposition [7]. and the gap from 1 to Xy proven for cographs [5]. The gap from
1 to Wy has also been conjectured in the case of graphs, connected graphs where the
siblings must also be connected [1]. and trees where the siblings must also be trees
(as opposed to forests) [2], and some partial results obtained in these cases.

If two structures are siblings, they must have the same finite substructures, and
so satisfy the same universal theory. Thus, we may coarsen Thomassé’s conjecture
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COUNTING SIBLINGS IN UNIVERSAL THEORIES 1131

to considering the maximum number of siblings of any model of a given universal
theory, which may be viewed as a measure of complexity of that theory. Indeed, for a
model to have many siblings, we must produce non-isomorphic structures that look
somewhat alike (the similarity required for siblings may be increased by requiring
elementary bi-embeddability, as in [4]). Complex theories will allow their models to
be nuanced enough to admit many siblings. Uncomplicated theories will not allow
for such nuance, and so whenever models look alike, they will be the same (for
example, the theory of n disjoint unary predicates, where models are isomorphic
once the cardinalities of the predicates match). The complexity gaps of Thomassé’s
conjecture then call to mind model-theoretic dividing lines.

However, we note that it is possible for individual structures to be very
complicated, yet have few siblings. For example, « with successor has only itself
as a sibling. Thus the same is true of any expansion, in particular the expansion by
the graphs of addition and multiplication. So it is difficult to see how model theory
will inform the full conjecture.

Our main theorem confirms the weakening of Thomassé’s conjecture to the level
of universal theories in a finite relational language.

THEOREM 1.1 (Theorem 7.11). Let T be a universal theory in a finite relational
language. Then one of the following holds.

1. Tis finitely partitioned. Every model of T has one sibling.

2. T is cellular. The finitely partitioned models of T have one sibling and the non-
finitely partitioned models have X siblings.

3. Tis not cellular. For every non-cellular M = T, there is some N 2 M such that
N = T and N has 2% siblings. Furthermore, if T is mutually algebraic, we may
take N = M.

Theorem 1.1 does have implications at the level of structures, confirming some
conjectures of [7].

COROLLARY 1.2 (Corollary 7.12). Let M be a countable model in a finite relational
language that is universal for its age. Then one of the following holds.

1. M is finitely partitioned, and has one sibling.
2. M is cellular but not finitely partitioned, and has X siblings.
3. M is not cellular, and has 20 siblings.

This also implies the result for w-categorical M in a finite relational language,
since then we may pass to its model companion. Example 6 shows Corollary 1.2
does not hold for infinite relational languages with finite profile.

We close with some comments connecting our results to previous work on
cellularity. First, we note that Theorem 1.1 is a refinement of the main result of
[14] that non-cellular universal theories have 2%0 non-isomorphic models. Second.,
Corollary 1.2 may be seen as a dual to the main result of [11] that an atomically stable
non-cellular countable structure has 2%0 non-isomorphic substructures. When M is
universal for its age, as in Corollary 1.2, siblings are equivalent to age-preserving
extensions, and we again see cellularity is the dividing line between X, and 2.

1.1. Proof sketch. The primary intuition behind the proof of the main theorem
is that if a universal theory T is non-cellular, then either it is unstable and so has a
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model encoding (Q, <), or has a model that in some sense encodes a partition with
infinitely many infinite parts. We present three examples corresponding to the three
cases of our proof, and explain how to obtain 2% many siblings in each.

1. Let M = (Q, <). Then any countable non-scattered order is a sibling of M,
and there are 280 many.

2. Let M be an equivalence relation with infinitely many infinite classes. Then
we may pass to an elementary extension M* >~ M containing infinitely many
new infinite classes { A, : ¢ € Q}. For each injective f': Q — w. let M, be
obtained by cutting down each A, to size f(¢). Then each M is a sibling of
M, and they are pairwise non-isomorphic, as they have distinct sizes of finite
classes.

3. Let M = (. s), where s is the successor relation. We first pass to an elementary
extension M’ = M containing infinitely many Z-chains. Then, as in case (2),
we may pass to a further elementary extension M* = M’ containing infinitely
many new Z-chains { A, : ¢ € Q }. For each injective f': Q — . we let M,
be obtained by cutting down each A, to a connected piece of size f(g).

Our proof follows these three examples. The bulk of the work is in generalizing
Case 2 to the setting of a non-mutually algebraic M. The role played by equivalence
classes is generalized to that of k-cliques in Section 4, while Section 3 guarantees
that if we cannot add such k-cliques to M, then we may find many siblings as in Case
1. Otherwise, for M non-mutually algebraic, we may generalize the proof of Case 2
by adding infinitely many k-cliques to M, which is done in Sections 5 and 6. Finally,
for M mutually algebraic but non-cellular, we generalize Case 3 in Section 7.

§2. Conventions and background. The following conventions will be in effect
throughout this paper, unless otherwise noted.

M is a countable structure in a finite relational language L.

Types are quantifier-free types, and indiscernibility is with respect to quantifier-free
formulas.

We now briefly cover the definitions and results from elsewhere that we will need.

DEFINITION 2.1. A structure M is finitely partitioned if it admits a finite partition
{C1..... Cy, } such that I1;Sym(C;) C Aut(M).

DEFINITION 2.2. A structure M is cellular if, for some n and ky,... .k, € w, it
admits a partition K LI {¢;; | i € [n].j € w } satisfying the following.

1. K is finite, and each ¢; ; = (Cil.,/" . clk’l) has length k;.

2. Foreveryi € [n]and ¢ € Sw, thereisa o € Aut(M) mapping each ¢; ; onto

Cio(;) by sending ¢/ ; to cfﬂ(j) for1 < £ < k;.and fixing M\ |J,,, ¢ pointwise.
We call such a partition a cellular partition.

Jjew

ExampLE 1. Let M be a graph consisting of infinitely many disjoint edges and an
infinite clique. Then M is cellular—we may take K = Qandn =2.let{¢p; : j e w }
enumerate the disjoint edges, and let { ¢1; : j € w } enumerate the clique.

Note M is finitely partitioned if and only if M is cellular as witnessed by a partition
with each k; = 1. The following definitions are from [10], which builds on results
from [9].
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DeriNITION 2.3. Given a structure M and n > 1, a set S C M" is mutually
algebraic if there is some K € wsuch that |[{a € S :m € a}| < K foreverym € M.
Let £, be L expanded by constant symbols for every element of M, and M,, the
natural expansion of M to Ly;. An Ly-formula ¢(x, ..., x,,) is mutually algebraic
if it defines a mutually algebraic subset of M. We then let MA* (M ) be the smallest
set of £y-formulas containing the mutually algebraics, closed under adjunction of
dummy variables and Boolean combinations.

Finally, we say M is mutually algebraic if every Lj,-formula is equivalent to a
formula in MA*(M).

Note that every unary relation is mutually algebraic. Less obviously, cellular
structures are mutually algebraic.

LEmMMmA 2.4, Let M be mutually algebraic and N C M a substructure. Then N is
mutually algebraic.

PrOOF. Let (M, N) be the expansion of M formed by adding a unary predicate
U interpreted as N. Let N'"¢ denote the expansion of N by relations P, naming the
trace D N N of every (M, N)-definable (with parameters) subset D C M™", for all n.
As the set N is definable in (M, N), it is easily checked that N admits elimination
of quantifiers. Moreover, every parameter-definable set of N is 0-definable in N9,
and is definable in (M, N).

Cram. N™ js mutually algebraic.

ProOF OF CrLAIM. We show that every N™d-definable subset B C N” is in
MA*(N™™) . Since mutual algebraicity is preserved under unary expansions by
Theorem 3.3 of [10]. (M, N) is mutually algebraic, and so B is in MA*((M,N)).
as witnessed by a Boolean combination of sets { Y1, ..., Y}, }, each realizing an
adjunction of a mutually algebraic formula by dummy variables. As the same is true
foreach Y; " N", B € MA*(Nd), O

It is easily checked that the L-structure N is a reduct of N'"; hence N is mutually
algebraic by Corollary 7.4 of [13]. -

In addition to mutual algebraicity, the properties of being finitely partitioned and
cellular are preserved under passing to a substructure. Thus, they are properties of a
universal theory, and so we will say a universal theory T has one of these properties
if all of its countable models do.

We record one additional characterization of mutual algebraicity.

THEOREM 2.5. [13. Theorem 2.1] M is mutually algebraic if and only if every atomic
L-formula is Th(M yr)-equivalent to a Boolean combination of quantifier-free mutually
algebraic L yr-formulas.

ExampLE 2. Consider a structure (M, E) where E is an equivalence relation
with n classes, each class infinite. Then the relation E is not mutually algebraic.
However, using the constants m;, ..., m, to name one element from each class, we
have E(x,y) <= V/,(E(x,m;) N E(y.m;)). which is a Boolean combination of
quantifier-free mutually algebraic £ ,,-formulas. Thus M is mutually algebraic.

DEFINITION 2.6. Given a set A4, let QF, (A4) be the set of quantifier-free formulas
over A with k variables.
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Given a structure M, ¢ € M*, and 4 C M, the type of ¢ over A is tp(¢/A) =
{0(x) € QF(4) : M = 0(¢)}.

Given a structure M, a k-type over M is some p(x) C QF, (M) such that there is
some elementary extension N = M and 7i € N* such that p(X) = tp(i7/M).

DEerINITION 2.7. Given a structure M and a k-type p over M, we say p supports
an infinite array if there is some N > M and a set of pairwise disjoint k-tuples
{#i; € N¥:i € w} such that 7; |= p, for every i.

We let Supp, (M) denote the set of k-types over M that support infinite arrays.

We say p(X) is coordinate-wise non-algebraic if (x; # b) € p for every x; € X and
every b € M.

LEMMA 2.8. Let M be any structure, and p(X) a type over M. Then p € Supp, (M)
if and only if p(X) is coordinate-wise non-algebraic.

Proor. If (x; = b) € p for some x; and some b € M, then any two realizations
of p have non-empty intersection, so p does not support an infinite array (or an array
of length 2, for that matter). Conversely, assume p is coordinate-wise non-algebraic,
but p does not support an infinite array. By compactness, there is some n and some
6(x) € p such that in M, there do not exist n pairwise disjoint realizations of 6.
Among all such, choose 0 so that n is minimized. and choose {b; i< n} from
M, pairwise disjoint with M |= 0(b;) for each i. Choose M* = M and a from M*
realizing p. As p is coordinate-wise non-algebraic.  is disjoint from M. hence disjoint
from each b;. Thus {a } U {b; : i < n} gives (n + 1) pairwise disjoint realizations
of #(x). which is impossible since M* = M. =

THEOREM 2.9. [f M is not mutually algebraic, then there is some M’ = M and some
k € w such that Supp, (M) is infinite.

ProOF. By [13, Theorem 6.1]. there is some countable M* = M and some k such
that Supp, (M *) is infinite. Let M’ elementarily embed M and M *. By compactness,
every p € Supp, (M*) extends to some p’ € Supp, (M’). =

DEFINITION 2.10. Fix a structure M. let S = (b; € M* : i € (1. <)) be a sequence
of k-tuples, and let 4 C M. S is order indiscernible over A if tp(b,'1 v by [A) =
tp(bj,.....bj,/A) whenever i; < - < i, and j; < - < j, (where, by our conven-
tion, tp is understood to mean quantifier-free type). B B

S is totally indiscernible over A if tp(b,,.....b;, /A) = tp(b;,.....bj, /A) whenever
i1, ..., I, are pairwise distinct, as are ji, ... j,.

S is strictly order indiscernible over A if it is order indiscernible over 4 but not
totally indiscernible over A.

DEerINITION 2.11. A countable structure M is universal for its age if every other
countable structure with the same age embeds into M. Equivalently, M is countable
universal for its universal theory.

§3. Strictly order indiscernible arrays. As we are aiming to prove that cellularity
is the dividing line between having a model with R, and 2% siblings. we expect
non-stability, as manifested by an infinite strictly order-indiscernible sequence of
k-tuples, to provide a model with 2% siblings. We prove this in the case of infinite
arrays, but first we need a definition and easy lemma.
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DeriNiTION 3.1. For M non-mutually algebraic, M is array-minimal of index k
if Supp, (M) is infinite and there does not exist a k' < k and an age-preserving
N D M for which Supp,/(N) is infinite.

ExampLE 3. Consider the structure M = (Q x {0,1}, <, E), where E is a binary
relation such that (¢.i)E(r, j) iff ¢ = r and i # j, and < is a quaternary relation
encoding the usual < relation between pairs of E-connected points. Then there
is only one coordinate-wise non-algebraic 1-type over M, namely the type of an
isolated point. The same will be true for any age-preserving N O M. However, there
are infinitely many coordinate-wise non-algebraic 2-types over M—into any cut of
M, we may insert an E-related pair of points. Thus M is array-minimal of index 2.

LemmA 3.2. If M is not mutually algebraic, then for some k > 1, there is an age-
preserving M' O M that is array-minimal of index k. Moreover, for every elementary
extension M* = M’ and for any substructure N with M' C N C M*, N is also array-
minimal of index k.

PrOOF. As M is not mutually algebraic, by Theorem 2.9 there is some age-
preserving N 2 M and some £ € o such that Supp,(N) is infinite. Among all
age-preserving extensions of M, there is one with the least k& such the extension
has infinitely many k-types that support infinite arrays, and choose that extension
tobe M.

For the moreover clause, choose any M’ C N C M* with M* = M’. Every p €
Supp, (M) has an extension p* € Supp, (M*). As the restriction of each of these
types p* to a type over N also supports an infinite array, N is also array-minimal of
index k. -

ProposiTION 3.3. Suppose M is not mutually algebraic, M is array-minimal of
index k. and that some p € Supp, (M) supports an infinite array { a; : i € w } that is
strictly order indiscernible over M. Then there is an age-preserving N O M with 280
siblings.

ProoF. From our assumption on p and compactness, choose an elemen-
tary extension M* = M containing a strictly order-indiscernible array A4 =
{a; : j € Q} of realizations of p. Let N be the substructure of M* with universe
MUA, and let N* =M U{a;:j<0}uU{a;:j>1}. Choose a family F =
{Jo:a €2?} of subsets of (0,1) NQ such that the ordered structures (J,, <)
are pairwise non-isomorphic and each embed (Q, <). For each o, let N, C N have
universe N* U {d; : j € Jo }. As (Jo. <) and (Jp, <) both embed (Q. <). they are
bi-embeddable, and these lift to bi-embeddings of N, and Ny fixing N* pointwise.

It is true that some of the structures N,, Ny may be isomorphic, but we will
find a subfamily of size 280 that are pairwise non-isomorphic, which finishes our
argument. Our method will be to prove that for any given N,. { Ny : Ny = N, } is
countable, which suffices. In particular, we will fix a uniform finite set ¥ C N* and
prove that when a # f, thereis no isomorphism 4 : Ny — N, that fixes F pointwise.
Then we cannothave i: Ny — Ngand h': Ny — N, with h(F) = h'(F) pointwise,
since 1! o A’ would fix F. As each N, is countable, there are only countably many
possible images of F under an isomorphism /1: Ny — No: hence { f : Ny = N, } is
countable, as required.

Constructing F and proving its suitability will take the rest of the section. -
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To begin, we have the following definition that involves permutations of k-tuples.
For a given k-tuple a, from N and a given = € Sym(k). let n(a,) be the permutation
of @ induced by 7.

DEFINITION 3.4. Working in N, a permutation 7 € Sym (k) is permissible if for
some (equivalently for all, by order indiscernibility) ¢ € (0.1) N Q. tp(z(a,)/(N \
a;)) = tp(ﬁ,,/(N \ dg)).

Equivalently, 7 is permissible if and only if the map sending a, to n(a,), and
otherwise restricting to the identity, is an automorphism of N.
The following lemma is easy because Sym (k) is finite.

LemMmA 3.5. There is a finite set G C N* such that for any n € Sym(k).
is permissible if and only if for some (equivalently, for every) q € (0,1)NQ,
tp(”(dq)/G) = tp(dq/G)'

Proor. Fix any ¢ € (0,1) N Q. For each ¢ € Sym(k) that is not permissible,
choose a finite subset G2 C N\ {a,} such that tp(s(a,)/G?) # tp(a,/G?).
By order indiscernibility, we may replace G? by a ‘conjugate’ G, C N*
so that tp(o(a,)/G,)#tp(d,/G,). Then, by order indiscernibility, G :=
U{G, : o € Sym(k). o not permissible } works not only for ¢ but for any
¢ €(0,1)NQ. 5

Next, we pinpoint a failure of total indiscernibility over M. Since {a; : j € Q}
is strictly order indiscernible over M there is an integer £ > 2, a permutation g €
Sym(£), and a formula 0 (%, ..., X, m) (with m from M and lg(%;) = k for each i)
such that

N E 0(ay,....dap.m) A _‘H(C_la(l)a e c_la(g),m).

As ¢ is a product of transpositions, this implies that there is some i, | < i < £, such
that

N ): 9((21, e i 1, Ay Aig s e ,dg,n_/l) AN ﬁ@(&l, e i1, i1, iy e dl,ffl).

Translating by i and adding dummy variables as needed, there is some r > 2 such
that

N ’: H(G_,r, e d_1, 4o, Ay, ... ,a',,,n'q) AN ﬂﬁ(d,,, e, d_1, 4y, do, .. n'1)

.. ay
Let H be the parameters {a,,...,d 1,ay,....a,,m} C N* and let 0(x, y) be the
H-definable formula mentioned above.
Take F:=GUHU{ap.a;} to be our finite subset of N*. Put yp(x):=
Atp(a,/F) forany ¢ € (0,1) N Q. Let

5(%) = 0(%.a) A—0(%.d) A(XNF =0) A p(%).

The following lemma characterizes when N = ¢ (d) among all permutations
of a.

LEmMA 3.6. (1) Forq.r € [0.11NQ. N = 0(a,.a,) if and only if g < r.
(2) For q € Q and = € Sym(k), N |=d(n(a,)) if and only if ¢ € (0.1) and = is
permissible.
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ProOF. (1) From above, this is true with ¢ = 0,7 = 1, so the general statement
follows by order indiscernibility.

(2) Suppose N |=d(r(a,)). We first argue that ¢ € (0, 1). Note that ¢ = 0,1 are
forbidden by y(x). If ¢ < 0, then as {g,—r,....— 1,0,2,....r) has the same order
type as (¢,— r,...,—1,1,2, ..., r), indiscernibility yields

N | 0(n(d,). a) < 0(n(a,). a).

so N = —d(n(a,)). Arguing similarly, N = —6(n(a,)) when ¢ > 1 as well. Thus,
g € (0.1). But now, as N | y(n(a,)) we have tp(z(a,)/G) = tp(a,/G). so = is
permissible by Lemma 3.5.

Conversely, suppose ¢ € (0. 1) and z is permissible. That N = §(a,) follows from
(1). As 7 is permissible, N = d6(n(a,)) as well. -

We next show that N = —6(d) for any d € N¥ that is not a permutation
(permissible or otherwise) of some a,. For this, we introduce the notion of a hybrid,
which will be an n-tuple for some n < k that is not (a permutation of) one of
our “intended” tuples a,. In future sections, we will make analogous definitions of
“unintended” tuples and prove analogous lemmas to control their behavior.

DEFINITION 3.7. Any automorphism ¢ of (Q.<) extends naturally to an
automorphism ¢* € Aut(N) that fixes M pointwise, and maps each @, to Ay (g)-
We call these automorphisms of Aut(N) the standard automorphisms.

DEFINITION 3.8. Forany n < k, d € N” is a hybrid if no permutation of any ay
is a subsequence of d.
e Ahybrid d is from q; < - < q;ifd C M Udg, U--Udg,. andd Nay # 0 for
every 1 <i <. B B B
o If d is from ¢; < -+ < ¢; and d’ is from r| < --- <r,, we say d and d’ are
associated if 0*(d) = d' for some/any standard automorphism ¢* € Aut(N)
extending any automorphism ¢ € Aut(Q, <) with o(g;) = r; for each i.

The next lemma crucially uses that M is array-minimal of index k.

Lemma 3.9. Suppose Z-Jq is a proper subsequence of a. b, is a proper subsequence
of a,, and by and b, are associated. Then tp(b,/(N \ (a, U a,))) = tp(b, /(N \ (a, U
a))).

PrOOF. Assume not. Clearly, g # r. so assume ¢ < r. Choose a formula ¢(x, ¢)
with ¢ C N \ (@, U a,) such that

N = ¢(b,. é) A —=p(b,. é).

Choose a dense/codense subset D C Q and let Ny be the substructure of N with
universe M U {d, : g € (Q\ D) }. Clearly, Ny is an age-preserving extension of M.
so we will obtain a contradiction to M being array-minimal of index k by proving that
tp(by /No) # tp(b,//No) for all pairs ¢’ < r’ from D, where b, is the subsequence
of a, associated with both I;q and b, and similarly for b,,. (That each of these types
is coordinate-wise non-algebraic is immediate, since each 13,1/ is disjoint from Ny.
Thus, each of these supports an infinite array by Lemma 2.8.)
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To see this, fix ¢’ <’ from D, and let ¢ be from s; <. <s;. As D
is dense/codense in Q, there is some o € Aut(Q, <) sending g+ q', r — ',
and sp,....s, into (Q\D). Letting * € Aut(N) be the corresponding standard
automorphism, we have

N & ¢(by.a"(2)) A =g (by.a"(2)).
As 0*(&) C Ny, we have tp(b,/No) # tp(b,//Ny), as required. .

Next, we discuss arbitrary hybrids. In the assumptions of the following lemma,
the fact that d, d’ are associated implies that the ¢ is the same in both places.

Lemma 3.10. Forn <k, suppose d.d' € N" are associated hybrids with d from
q1 < - <q; and d' from ry < - < r,. Then tp(d/Ny) = tp(d’/Ny). where Ny =
N\ (aql U dg, Uy, - Uap,).

Proor. This will follow easily from the following special case.
CLAM. The statement holds if { q\ ....q, } and {ry, ..., r, } are disjoint.

Proor oF Cramm. Under this additional assumption, we argue by induction on 7.
First, if t = 0, then d C M. As d’ is associated with d, d’ = d so the statement is
trivially true. o B

Now assume that the statement is true for # — 1. Write d := hb, where & is from
g1 < --<gq, and b is from ¢,. Let 6* € Aut(N) be a standard automorphism
extendlng any automorphism o € Aut(Q, <) extending the map ¢; — r; for each
i. Let i’ :=o*(h) and b’ := 6*(b). As d is a hybrid, we have that b is a proper
subsequence of d,, (up to a permutation, which may be ignored), and so b is also
a proper subsequence of &,,, associated with b. B

To see that tp(d /Ny) = tp(d’/Ny), choose any ¢(x,¢) € tp(d/Ny). Thus N =
cb(h b.&). By our assumption that {4q1.....q; } is disjoint from { r1.....r, }. we have
h C N\ (a;,Ja,) andso N |= ¢(h.b’. &) by Lemma 3.9. But now, as / is a hybrid
from g1 < --- < ¢, that is associated with h'. our inductive hypothesis implies that
N = ¢(h'.b',e). Thus, ¢(x.e) € tp(d’/Ny) as needed. O

For the general case where {¢i.....q,; } and {r;....r; } need not be disjoint.
choose any ¢(x.¢) € tp(d/Ny). Choose s; < -+ < s, disjoint from {¢i.....q, } U
{r1....r, } and such that ¢ is disjoint from a,, U --- U ay,. Let d” be the hybrid from

s1 < --- < s; associated with both 97 and d’. Because of the disjointness, we can apply
the claim to the pairs d.d” and d’. d"” to obtain

N E¢d.e) & ¢(d".e) < ¢(d'.e).
Thus. ¢(x.&) € tp(d’/Ny) as required. =
Finally, we can finish off our problem of identifying realizations of 6(X) in N¥.

COROLLARY 3.11. For d € N*, N |=3(d) if and only if d = n(a,) for some
q € (0.1) N Q and some permissible n € Sym(k).

ProOF. First, if d is 7(d,) for some ¢ € Q and 7 € Sym(k). this is proved in
Lemma 3.6. So assume d € N is not a permutation of any 4,. i.e., d is a hybrid.
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We argue that N |= —d(d). Say d is from ¢; < - < g;. Choose rj < - <r, <0
from Q, and let d’ be associated with d from r; < --- < r,. By order indiscernibility,

N E0(d'. ay) + 0(d'.ay).

In particular, N |= —d(d’). From the definition of 6(X), we may assume d N F = (),
and so by Lemma 3.10 we also have

N Ed(d) < o(d').
so N = —6(d) as claimed. 4
The following lemma will finish the proof of Proposition 3.3.

LemMA 3.12. If f : Ny — Ny is an isomorphism fixing F pointwise, then (Jo. <)
>~ (Jg, <): hence oo = f.

Proor. We define a map /™ : J, — Jj as follows. Given ¢ € J,, note that N |=
d(ay). Thus, N =6(f(a,)) as well. By Corollary 3.11 f(a,) = n(ay) for some s €
(0,1) and some permissible permutation 7. As f (ﬁq) C Ng. we must have s € Jg.
Put f*(¢) := s. Itis clear that /* : J, — Jj is bijective.

To see that f* is order-preserving, choose ¢ < ¢’ from J,,. Write f(a,) as n(a;)
and write f(a,) as n’(a@, ). As both 7.n" are permissible, there is a 0 € Aut(N)
sending n(ay) + a,, n'(ay) — a, . and fixing everything else. Then the composition
g:=00o f: Ny — Ngisanisomorphism fixing F pointwise sending @, + d,. a,
Agr.

By Lemma 3.6(1), N |= 0(a,.d, ). As 0 is quantifier-free, N, |= 6(a,. a, ). Since
g is an isomorphism fixing F pointwise, Ny |= 0(dy. d,/). and hence N |= 0(ay. ay ).
By Lemma 3.6(1) again, s < s’. That is, /*(q) < /*(¢’). 5

§4. k-cliques. In thissection, we introduce k-cliques, which will serve the function
of equivalence classes from Case 2 of Section 1.1.

Fix a finite relational L with maximal arity r and an ambient L-structure M
throughout this section.

For n>r, call a quantifier-free L-formula ¢(xi.....x,) gq.f.-complete if

¢(x1. ..., x,) decides every atomic R(7) for every permutation 7 of a subsequence
of (x1.....x,). As L is finite relational, there is a finite set S, of q.f.-complete
¢(x1, ..., x,) such that for every £L-structure M and every ¢ € M", tp(¢) contains

precisely one element of S,,. Fix such a set S, for every n > r.
DeFINITION 4.1, Fix k > Land let M%) := {d € M* :a; # a;fori # j }.

e Apaira, be M_(k) is exchangeable, written a ~ b.ifanb = Pand tp(&l_)/(M \
(@ub))) =tp(ba/(M \ (a Ub))).

o A k-clique is a non-empty set A={a;:i €1} C M%) such that a,. aj are
exchangeable whenever i # j.

e The size of A is simply its cardinality |.A|.

e Given a k-clique A, we denote the set of all « € M such that a € a; for some
a; € Aby |J A. Because of the disjointness, || J A| =k - | A].
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_ ReEmMARK 4.2. Similar to Definition 3.4, for all a. be M® withanb =0, aand
b are exchangeable if and only if the bijection swapping them is an automorphism
of M if and only if

M EVH[FN(aub)=0— ¢(a.b.y)« ¢(b.a.y)

for every ¢(X1.%x2.7) € Soxor with Ig(y) = r. As Sy, is finite, it follows that
exchangeability is definable on M ). However. unless k = 1 exchangeability need
not be transitive, due to the disjointness condition.

DEFINITION 4.3. A set of disjoint k-tuples A= {a; :i eI} C MW is totally
indiscernible over its complement if it is totally indiscernible over M\ | 4.

Lemma 4.4. Let AC MY be totally indiscernible over its complement. and let
B C A. Then B is totally indiscernible over its complement.

ProOF. Let {by.....b, }. {b!.....b.} C B and let {c|.....c,, } € M\ |JB. By
relabeling, let £ be such that ¢; € | J A iff i < £, and let 4. ....a; € A be such that
cieaqU--—-Ua;fori <2

As A is totally indiscernible over its complement, we have

tp(Bl, ,Bn, ai, ..., dj/C(.,_], Cm) = tp(_{, e E,/q, ai.,..., ﬁj/Cg.H., Cm).

Thus, as desired, we have

tp(by.....bpJc1. ...cm) =tp(b].....b. [c1. ...cm).
_{

ProposITION4.5. Let A C M%) be pairwise disjoint. Then A is totally indiscernible
over its complement if and only if A is a k-clique.

Proor. (=) Suppose A is totally indiscernible over its complement, and
let a;.a; € A. Then by Lemma 4.4, {a;.a;} is totally indiscernible over its
complement. Thus &; and a; are exchangeable.

(<) Suppose A = {a; :i € I} is a k-clique. Let (i\.....10,). (if.....i}) € I". We

proceed by induction onm = |{ a;,..... a;, } \ { ... dy H.
If m = 0 then there is some ¢ € Sym(n )suchthato(ll,..., ) = (if.....0)). Aso
can be written as a product of transpositions, we have tp(a,. ... @;,/ M \ U A)) =

p(ay..... iy /(M \ U A)).

Now suppose m = £ + 1. After permuting the tuples, which we have seen does not
affect their type, we may suppose @;, & { . ..oy, }and ay Z{a....a, }. Using
that a;, . ay are exchangeable for the first equality and the inductive hypothesis for
the second. we have tp(a;,. ..., /(M \ U A)) = tp(ay. a,. ... a;, /(M \ U A)) =

tp(éi{v'--v&i{,/(M\UA))' —

LemMMA 4.6. Suppose Aand B are k-cliques, AN B # 0, and | J(A\B) N J(B\A) =
(). Then AU B is a k-clique.

ProOF. First, we show distinct tuples @.b € AU B are disjoint. If @.b € A (or
a.b € B), this follows from the definition of k-cliques. Otherwise @ € (A\B) and

b € (B\\A), and so are disjoint by the last assumption.
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Leta € (A\ B)andb € (B\ A).andchooseé € ANB.LetY = M\(aUb UZ).
By a sequence of transpositions, each involving ¢, we have

tp(abé/Y) = tp(ach/Y) =tp(cab/Y) = tp(haé]Y).
Thus tp(ab/Y¢) = tp(ha/YE). and so @ ~ b. as desired. -
Infinite k-cliques A in M give rise to types that support infinite arrays.

DEerFINITION4.7.  Let A be an infinite k-clique and let X = (xq, ..., x; ). The average
type of A, written Av 4(X), is the set

{¢(x.e):pisqf.e € M<° M FE ¢(a.e) forsome/alla € Awithane=0}.

LemMaA 4.8. If A is an infinite k-clique in M, then Av(X) is well-defined and
Ava(%) € Supp, (M),

ProOF. For well-definedness, we must check the “some/all” claim implicit in the
definition. As A is an infinite k-clique, a, @’ € A are exchangeable: hence tp(a/e) =
tp(a’/e) whenever a N e = (. Itis easily verified that it is a complete (quantifier-free)
type over M. As any finite subset of Av4(X) is realized by infinitely many a € A,
we see that Av4(x) € Supp, (M). 4

For the remainder of this section, fix an integer k > 1.

DErFINITION 4.9. Let M be any L-structure.

e For any k’ < k, call a k'-clique A in M sufficiently large if | A| > 2k + r.

e An extension N D M is (< k)-clique-preserving if, for every k' <k, every
sufficiently large k’-clique A in M remains a k’-clique in N.

We will see two ways of obtaining (< k)-clique-preserving extensions of M. The
first follows from the definability of exchangeability.

REMARK 4.10. If M* = M, then since exchangeability is definable, M* will be
both age-preserving and (< k)-clique-preserving. Moreover, any substructure N
satisfying M C N C M* will also be an age-preserving, (< k)-clique-preserving
extension of M.

The second method involves extending existing, sufficiently large cliques.

DEerFmNITION 4.11.  Fix an £-structure M and recall & is fixed throughout.

1. A simple clique extension of M is an extension N with universe M U [ JC, where
forsome k' < k,Cisak’-cliquein N extending some sufficiently large k’-clique
Ain M.

2. A clique extension of M is a continuous, nested union (_J N, of simple clique
extensions, i.e., Ng = M, N, is a simple clique extension of M, and N, =
U<, No for limit 4.

LemMa 4.12. Every clique extension N D M is (< k)-clique-preserving.

PrOOF. Arguing by induction on the length of the chain, it suffices to show this
when N is a simple clique extension of M. Similarly, arguing by induction on |C \ A|.
it suffices to show thiswhenC = AU {¢ }and N = M U {¢ }.Sochooseany k' < k
and any k’-clique B in M. To see that B remains a k’-clique in N, choose b,b’ € B
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and 1 € (N \ (bUb'))". Tt suffices to show that N |= ¢(b.b". h) <> ¢(b'.b. h) for
every ¢ € Syry,. Writeh = ¢'é, where¢’ = hNcande =h\ ¢ (soe C M).As Ais
sufficiently large. choose @ € A disjoint from bb’h and let @’ C a be the subsequence
corresponding to ¢’ in ¢. As éa’ are from M, b ~ b’ in M, and as ¢ is quantifier-free,
we have

N Eo¢b.b'.e.a") ¢b'.b.é.a).

Since ¢ ~ @ in Ny and bb'é is disjoint from ¢a. we conclude N |= ¢(b.b'.2.¢')
o(b'.b.e.¢'), as required. 4

Consider the case of an equivalence relation with infinitely many infinite classes
from Section 1.1. This was easier than the general non-mutually algebraic case. For
an example closer to the general case, consider when M is an equivalence relation
with infinitely many infinite classes, as well as infinitely many classes of each finite
size. If we proceed as in Section 1.1, each M, will be isomorphic to M. In this
case, the problem is easily remedied by first passing to an age-preserving M’ > M
in which every class is infinite. In the general case, this may not be possible, but we
may find some age-preserving M’ D M in which every (sufficiently large) maximal
finite k-clique cannot be extended further. This is the notion of fullness discussed
next. Carrying out the construction from Section 1.1 over this M, we will be able to
differentiate the maximal finite k-cliques that come from shrinking some infinite A,
from M * with those that were already in M’ since only the former will be infinitely
extendable.

It is easily seen by Zorn’s Lemma that inside every M, every k’-clique A in M
is contained in a maximal k’-clique B D A in M. What is less clear is whether a
maximal k’-clique A can be extended in some age-preserving extension N D M.

DEFINITION 4.13. Fix an £-structure M.

1. For k' <k, call a k’-clique A in M infinitely extendable if there is some
age-preserving N 2 M and an infinite k’-clique C 2 A in N, and call A
unextendable if it is maximal in every age-preserving N O M.

2. M is k-full if, for every k' < k., every sufficiently large, maximal k’-clique A in
M., A is either infinite or unextendable.

Clearly, if a k’-clique A is not infinitely extendable, then there is an age-preserving
N D M and an unextendable (finite) k’-clique C in N extending A. In fact, we can
additionally require that the age-preserving extension be (< k)-clique-preserving as
well.

LEMMA 4.14. Suppose M is a countable L-structure, and for some k' <k, A is
a sufficiently large k'-clique in M. Then there is an age-preserving, (< k)-clique-
preserving countable N O M and an extension C 2 A such that:

1. If A is infinitely extendable, then C is infinite; and
2. If Ais not infinitely extendable, then C is unextendable.

PrROOF. In both cases, choose an age-preserving N* O M and a k’-clique C in
N* extending A that is either infinite, or of largest possible finite size. In either
case, let N be the substructure of N* with universe M U [ JC. Then N is also an
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age-preserving extension of M, and moreover N is a clique extension. Thus, N is a
(< k)-clique-preserving extension of M by Lemma 4.12. -

The following lemma now follows by bookkeeping.

LemMMA 4.15. Every countable structure M has a countable, k-full, (< k)-clique-
preserving, age-preserving extension N 2O M.

Proor. We first claim that given any countable M, there is a countable, age-
preserving, (< k)-clique-preserving M’ O M such that for each 1 < k' < k, each
of the (countably many) sufficiently large, finite k’-cliques A in M has an extension
C D M’ that is either infinite or is unextendable. (M’ is obtained as union of a
countable chain of age-preserving, (< k)-clique-preserving extensions formed by
iterating Lemma 4.14 once for each such A.)

Now, simply iterate the claim above w times, getting a nested sequence M = M, C
M, C M, C --- with M1 = (M,,)" from above. Then N = |J M,, is as desired.

§5. Grid extensions. We now generalize the construction of adding infinitely many
new equivalence classes from Case 2 of Section 1.1. Throughout this section, we will
work within a finite, relational language £ with arity bounded by r and we will be
considering non-mutually algebraic models that are array-minimal of index k (recall
Definition 3.1). These k and r are fixed throughout this section. Thus, e.g., a k'-clique
A will be sufficiently large if |A| > 2k + r.

LeEMMA 5.1. Suppose M is not mutually algebraic, M is array-minimal of index k,
and there is no age-preserving N 2 M with 280 siblings, and let p € Supp, (M ). Then
there is an age-preserving, clique-preserving N O M containing an infinite k-clique
A={a,: £ € w} witheach a, realizing p.

PROOF. As p € Supp, (M). we can use Ramsey’s theorem and compactness to
find an elementary extension M* = M containing an order-indiscernible over M
sequence (a, : £ € w) of realizations of p. This sequence must be totally indiscernible
over M, as otherwise Proposition 3.3 would give an age-preserving N O M with 280
siblings. Take N to be the substructure of M* with universe M U{d;: £ € w }. As
A={a;: ¢ € w} is totally indiscernible over its complement, it is a k-clique by
Proposition 4.5. The fact that N is age-preserving and clique-preserving follows by
Remark 4.10. -

LEmMMA 5.2, Suppose M is not mutually algebraic, M is array-minimal of index k,
and there is no age-preserving N O M with 280 siblings. Then there is an R(x.7) e L,
an infinite set { p, 1 q € Q} C Supp, (M), a tuple d,, € M) for all g < r € Q,
and an age-preserving, clique-preserving N O M with infinite k-cliques { A, : ¢ € Q }
Srom N such that, letting A, = {d,; 1 i € w}. the following hold.

L UANUA =0forqg#r.

2. Foreachq € Qandi € w. a,; is a realization of p,.

3. Foreachq <r € Qandi € w, N = R(d,;.d,,) N—R(a,;.d,,).

ProorF. First fix a sequence (p; : i € Q) of distinct complete k-types over M, each
of which support an infinite array. As the types are distinct, for each i < j < w there
isan R;;(x.7;;) € £ and d; ; from M such that R(xX.d, ;) is in p; but not in p;.
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As L is finite, by Ramsey’s theorem we can choose a specific R(%. 7) and an infinite
I C Qsuchthat R;; = R whenever i < j from I. Because of this, Clause (3) follows
immediately from Clause (2).

We construct N in w steps, once for each i € I, each time applying Lemma 5.1
to the type p;. Because each of the extensions is clique-preserving, the union of this
sequence suffices. o

DEFINITION 5.3.

o Fix R(x, y) € L. A (k. R)-grid extension over M is an age-preserving N O M
satisfying the following conditions. B
LN=MU{a,; eNF:qeQicwlU{d, :q<recQ}.
2. The ag; are pairwise disjoint and disjoint from M.
3. Foreachq € Q. Ay, ={ay,; :i € w}is a k-clique.
4. Forallg<rcQandi € . N |= R(Gy;.dg,) N—R(dr;.dy,).

o Let ¢y, =d,,\(MUU qu(U Ay)). Given any order-automorphism o €

Aut(Q. <), let ¢* be the bijection on N defined as follows.
1. For qc Q, O'*(C_lq,,') = c_la(q).i‘
2. For g < r from Q, 6*(¢4.,) = €,(4) 5 (r)-
3. o* fixes M pointwise.

e An indiscernible (k, R)-grid extension is a (k, R)-grid extension N O M such
that, for every ¢ € Aut(Q. <), the induced ¢* is an automorphism of N. We
call such o* a standard automorphism of N, and any composition of ¢* with an
element of I,cqS ym(Ay) a permuted standard automorphism of N.

PrROPOSITION 5.4. Suppose M is not mutually algebraic, M is array-minimal of
index k. and there is no age-preserving extension N O M with 2%0 siblings. Then there
is an indiscernible (k, R)-grid extension N D M.

Proofr. We proceed by compactness. Expand the language by constant sym-
bols naming every element of M. as well as k-tuples of constant symbols
{d.i:q € Q.,i € w} and £-tuples of constant symbols { d,, : ¢ < r € Q }, where ¢
is the length of ciqAr in Lemma 5.2. Consider the theory 7™ in this language:

1. The elementary diagram of M.
2. The a,; are pairwise disjoint, and no element from M is in any such tuple.
3. For g<rec Q, R(a'q,o, C_lr)(), dq,r) A —\R(dno, C_Zq_o, dq,r).
4. Each A, ={a,; :i € w } is a k-clique, and is order indiscernible over all the
other constants.
5. For every o € Aut(Q, g)_., let ¢* be the induced self-bijection of M U
{ai:qeQicw}tu{d,, g<recQ}. Theno*isan automorphism.
Models of finite subsets of T* are obtained by applying the finite Ramsey theorem
to the model from Lemma 5.2. Thus, by compactness, we obtain a model M* = T*.
Taking the restriction of M™* to the constant symbols, and letting N be the reduct
to the original language, we are finished. o

DEFINITION 5.5. Let N D M be an indiscernible (k, R)-grid extension. For ¢ <
r € Q. let ¢;, be as in Definition 5.3. By indiscernibility, each ¢; ; must be the same
length.
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Define the rank of N © M to be the length of any ¢; ;. It is possible for the rank
to be 0.

ExaMPLE4. Let M consist of an equivalence relation with infinitely many infinite
classes, andlet N =M U{a,; :q € Q,i € w}, whereeach A, = {a,, :i € w}is
a new class. Then we may take d,, = a0, giving rank 0.

Our next example codes equivalence relations in a different language. Take M in
a language (U, ¥, R), where U, V are unary and R is binary. Let U and V be infinite
and partition M, and let R be such that for each u € U there is a unique v € V such
that R(u.v), and for each v € V there are infinitely ¥ € U such that R(u,v). Let
N=MU{ug:qcQicw}U{v,:qcQ} whereeachu,; € U,v, € V. and
R(uy;.v,) holds if ¢ = r. Taking A, = {u,; :i € ®} and d,, = v, gives rank 1.
We could not have given this extension rank 0, as {u,, : ¢ € Q.7 € w } is totally
indiscernible over M: the v,’s are needed to break them into distinct k-cliques.

We now show that in an indiscernible (k, R)-grid extension of minimum rank,
each A; is a maximal k-clique.

DEFINITION 5.6. Let N D M be anindiscernible (k, R)-grid extension. Two tuples
ay C ag;. a» C a,; are associated if the natural bijection between a,; and a, ; maps
a to as.

The next lemma is analogous to Lemma 3.9.

LEmMMA 5.7. Suppose M is not mutually algebraic, M is array-minimal of index k,
and N D M is an indiscernible (k, R)-grid extension. Suppose @y C dq;.d> S a,; are
associated. Then tp(a,/(N\(a,; U ay;))) = tp(az/(N\(a,; Ua,;))).

PrOOF. We may assume ¢ # r, since otherwise this follows from a,,; ~ a, ;. and
for definiteness take ¢ < r. By indiscernibility, it suffices to prove this assuming
i=j=0.Let Ny ZN\{CYL()ZE EQ}

CLAIM. tp(c_ll/No) = tp(ﬁz/No).

Proor oF Cram. Each standard automorphism fixes Ny setwise. Suppose
tp(a;/No) # tp(az/No), as witnessed by w. Then for any o € Aut(Q. <), the
standard automorphism ¢ * (w) witnesses that tp(a*(a;)/No) # tp(a*(a,)/No). But
this contradicts that M is array-minimal of index k. %

Now suppose w witnesses that tp(a;/(N\(d,oU aro))) # tp(az/(N\(@go U
aro))). Let = € II;Sym(A;) be such that n(w) € Ny. and 7 fixes @, and a.
Then n(w) witnesses that tp(a; /No) # tp(aa/No), contradicting the Claim. -

LEmmA 5.8. Suppose M is not mutually algebraic, M is array-minimal of index k,
and N D M is an indiscernible (k, R)-grid extension of minimum rank. For a given
q € Qandh € N, h ~ G, only if h is a permutation of a,; for some i.

In particular, for every q. Ay = { aq; : i € o} is a maximal k-clique.

ProOF. Fix ¢ € Q. and suppose & € N* is not a permutation of some ag;. Let
N=MUAUE. where 4 =J;({JA;) and E = N\(M U A). The proof splits into
two cases. B

Cast 1: hNE # (. Let &, C E be such that ¢, =hneé;, #0, and let &/, =

e\ Ash ~ agy. let Ez;’.o C ay correspond to the entries of e"g,o. Let d,, witness
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that ¢, # ¢, with &5, C d_s,,. Let d_f, be obtained by replacing é,, with Egoe'g,,. Let
£ be large enough that none of the tuples mentioned so far intersect @, or a,.
We will show d, still witnesses that ¢, ¢ ¢, 4. contradicting the fact that N has
minimum rank.

By takmg an automorphlsm replacing dq0 with some a,;, we may
assume d,; N ago=10. Let d!, = d;\é,,. Since h ~ aqo, tp(h/as e ,d!,) =
tp(ag0/dsedreé. d!,). Thus tp(e!,/aea,ce,,d.,) = tp(a" o0 o/@sedie@,,d.,). and so
tp(ds1/dsedse) = tp(dy,/dsedye)-

CasE 2: hNE =10. Given an interval [x,y) in w, we define 4 Mey)=
U{éd,.i:q9€Q.ic[x.y)}. Choose £ such that hnN4C A4 Mo Fix r>gq.
and let w witness a,o 7 dro. By permuting each A;, we may choose ¢, > ¢;
so that w C A4 [y, 4,). For any £ > £, we have w also witnesses dg s % a,¢. Let
No = N\(4 [[O‘[l)). We use X ~y, y tomean X and y are exchangeable over Ny, i.e.,
for any z from Ny, tp(Xyz) = tp(yxZ).

CLAIM. h ~p, dpg.

PrOOF OF CLAIM. As hNE =0, let E C Ay iy -y i, = §. Where 7i = hnM,
eachi< /. and ¢y < - <t;. Lets; < - <s; <gq.let & = nay as], and let
hy C g» be associated with . By Lemma 5.7, we have tp(ii/No) = tp(hy/Np). 1
particular, tp(h/ngCrgd) tp(hz/cqg(,’,gd) foralld C Ny.

Thus we have 4 ~No aq,g — I ~N, dq..and similarly for a,,. By assumption,

h ~ a4, so we also have /: ~N, g Now let 0 € Aut(Q, <) be an automorphism
with o(¢q) = r and fixing all s <s;, and let ¢* be the corresponding standard
automorphism. This shows hy ~ Ny dre. and so we also have h ~ No Gre- O

We now handle the fact that 7 might intersect w. As we took w € 4 1¢,.0,)- and
hNE =0, wehaverim =hnNw C M.Leth = h'i and @ = @’m. Then

tp(ag.edrew'h) = tp(haew'ag,) = tp(aneh’'dge) = tp(aredg'h).

where we have used /& ~ dq in the first and third equalities, and h o~ Np dre in the

second.
Removing 4’ from the initial and final expressions, and noting w = w’(h\h’), we
contradict that w witnesses d,¢ % dry. =

DEFINITION 5.9. Let N D M be an indiscernible (k, R)-grid extension. A k-clique
B={bs:sel}C N*ishomogeneousifeach b, € B can be partitioned into 7,7,
(with either part of the partition possibly empty) satisfying the following.

1. 71, is from (N \ M), and s is from M. .

2. Foreach1 <t <k, foralls s’ €1, (by), € Miff (by), € M.

3. For all s, s’ € I there is some permuted standard automorphism ¢* such that

o*(fi;) = ngr.

LEMMA 5.10. Suppose that M is k-full and that N > M is an indiscernible (k, R)-
grid extension. There is a constant C' so that if B is a maximal k-clique in N that has
size at least C' and is infinitely extendable, then B is already infinite.
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Proor. By two applications of the pigeonhole principle, we can compute a C’ so
that any k-clique of size C’ contains a homogeneous k-clique By with |By| > 2. The
result will follow by infinitely iterating the following claim to show By is infinitely
extendable. By Lemma 4.12 B will remain a k-clique in the corresponding clique-
extension, and so be infinitely extendable by Lemma 4.6.

CrLam. Suppose By C N is a finite, homogeneous, infinitely extendable k-clique of
size at least 2. Then there is a proper extension By 2 By that is also homogeneous.

ProofF ofF Cram. First, since By = {n;m,:s € [} is a k-clique in N. the
subsequences {m, : s € I } form an £-clique in M’, where £ = 1g(r). Because By
is infinitely extendable, so is {m, : s € I }. As M is £-full, we can find some m*
so that {my :s € I } U{m*}isan £-clique in M’, and thusin N,as M’ C N isa
k-clique-preserving extension. (If 72, is empty, this may be ignored.)

Choose a permuted standard automorphism # € Aut(N ) such that = fixes 779 and
n(ny) is disjoint from | By (the existence of 7 uses the homogeneity of By). Let n* :=
n(ny). We claim that By U { a*m* } is a homogeneous k-clique. The homogeneity
is clear from the construction. We now show { nomyg, n*m* } is a k-clique, and that
By U {n*m* } is a k-clique will follow by Lemma 4.6.

tp(a*m* gy /(N \in*m* iging)) = tp(i*myagme /(N \i* i figing) )

= tp(n
= tp(m A itgrng /(N \ iy figiing))
= tp(fgrigi 1iny /(N \7iy 1ty fig g ))
= tp(agmon* iy /(N \i* iy iigring) )
= tp(p

p(iomoi*m* /(N \it* m*figimg) ).

We have used that { sy, m* } is an £-clique in lines 1 and 5. applied 7' to get to
line 2, used that { nomyg, nym, } is a k-clique to get to line 3, and applied 7 to get
to line 4. O

_|

§6. Non-mutually algebraic 7.

THEOREM 6.1. If M is a non-mutually algebraic model of T, then there is an age-
preserving N D M with 280 siblings.

ProorF. First take an age-preserving M” O M that is array-minimal of index
k, by Lemma 3.2. Then by Lemma 4.15, let M’ D M" be a k-full age-preserving,
k-clique-preserving extension. Suppose M’ has no age-preserving extension with
2% siblings. and by Proposition 5.4, let N O M’ be an indiscernible (k, R)-grid
extension over M’. for some R € L. of minimum rank. We will show N has 2%o
siblings, which is a contradiction.

Choose a dense/codense subset D C Q, and let D¢ = Q\D. Using the nota-
tion of Definition 5.3, let Npc be the substructure of N with universe M’ U
{ais:ieD . LeQlu{é;: i< jijeD}. By the indiscernibility, Npc is
isomorphic to N over M’. Thus, any model N* satisfying Npc CN* C N is a
sibling of N, in fact via embeddings that fix M’ pointwise.
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Let » be the maximum arity of the language, let C’ be from Lemma 5.10, and
choose C such that any k-clique of size at least C contains a homogeneous k-clique
of size max(C’. 2k + r). Given an injective /: D — w\[C]. we construct Ny C N
by restricting A, to a subset A7 of size f (¢). for each ¢ € D. It remains to show
the N, are pairwise non-isomorphic. The following claim is sufficient, as being an
infinitely extendable k-clique of size n is type-definable.

CLamM. Foranyn > C, Ny has an infinitely extendable maximal k-clique of size n
if and only if n € Im(f). -

Proor oF CLam. (<) Let ¢ € Q be such that f(g) = n. First, N is visibly a
clique extension of N: hence N is (< k)-clique-preserving by Lemma 4.12. Thus,
as A, is a maximal k-clique in N by Lemma 5.8, A7 is a maximal k-clique in N.
As it is infinitely extendable to A,, we are finished.

(=) This will follow immediately from Lemma 6.2. O

#

LeMMA 6.2. Let C € w, D C Q. Ny, and { A} : q € D } be as in the proof of
Theorem 6.1. If B C (N f)k is a finite infinitely extendable maximal k-clique of size
at least C, then there is some q € D such that each element of B is a permutation of
some element of Aj.

PrOOF. Suppose not. We now work within N,. Suppose |B| > C. let n =
max(C’, 2k + r) (where C’ is from Lemma 5.10 and r is the maximum arity of the
language), andlet { b; : i < n} = B~ C B be ahomogeneous k-clique. We first prove
the conclusion for B~. There must be some ¢ € D such that | J B~ intersects  J A;:
otherwise B~ would be infinitely extendable by Lemma 5.10. Pick such a g. There
is at least one j such that by N d, ; # 0. so let ¢y = by N d, ;. and let 1g(ép) = k' < k
(this inequality is strict by our assumption that b, is not a permutation of a ;). For
each i, let ¢; be the subtuple of l__),- associated with ¢y, and let C ={¢; :i <n}. By
relabeling, we may assume ¢; = b; N ag,;.

Cram. Cis a k’-clique.

PROOF OF CLAIM. Suppose ¢y o¢ ¢. as witnessed by w. with Ig(w) < r. Then
w N (by Uby) # 0; otherwise w would witness by % b;. )
_ As B is sufficiently large. by relabeling we may suppose w does not intersect b U
b3. Let  be the automorphism swapping d, o with d,» and swapping a, with a,3.
while fixing everything else. Then 7(w) witnesses & o4 &3, but z(@w) N (b, U b3) = 0,
which is a contradiction. O

Now work in N, and note that C remains a k’-clique in N by Lemma 4.12, since
N is a clique extension of N,. For each r € Q, let ¢ be a standard automorphism
sending A, to A,. Each ¢;(C) is a k’-clique that extends to an infinite k’-clique
within N. However, for r| # ra. 6, (Go) # a;;(¢o). since g, (@) + a;;,(d). so the
average types of these infinite extensions are distinct. Thus, by Lemma 4.8, we
conclude that Supp,,(N) is infinite, contradicting that M is array-minimal of
index k.

Given the conclusion for B, it follows for B by Lemma 5.8. =
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§7. Mutually algebraic 7.

7.1. The non-cellular case. In this subsection, we prove that if M is mutually
algebraic but non-cellular, then it admits a countable elementary extension with 2%
siblings.

If £ is finite relational and M is mutually algebraic, then by Theorem 2.5, there
is another finite relational language £’ in which every atomic relation is mutually
algebraic, and such that £’ is quantifier-free interdefinable with an expansion of £
naming finitely many constants.

Adding finitely many constants to our language changes our sibling count by at
most a factor of Ry, and so will not affect this subsection. Adding the constants and
switching language to £’ as above, we may assume the following.

For this subsection, we assume M is mutually algebraic in a finite relational language
with mutually algebraic atomic relations.

DEerINITION 7.1. Given M in a language with mutually algebraic atomic relations,
we may construct a corresponding hypergraph G, on the same universe, placing an
edge on a tuple m if R holds on (some permutation of) m for some R € L.

We call A C M an M A-connected part if A is a connected part of Gy,.

Equivalently, we may use that if §(x, ) and 0(x, Z) are quantifier-free mutually
algebraic with at least one variable symbol x in common, then J(x,7) A 8(x, Z)
is quantifier-free, mutually algebraic. Then A C M is an MA-connected part iff,
forall a.b € A, there are { ¢2,....¢, } C A4 and a quantifier-free mutually algebraic
¢(x.y,Z) such that M |= ¢(a.b.ca,....cp).

An M A-connected component is a maximal MA-connected part.

LEMMA 7.2. The following points follow from the corresponding facts for connected
parts of hypergraphs.
1. If A, B C M are MA-connected parts and AN B =), then AU B is an MA-
connected part.
2. Every MA-connected part is contained in a unique M A-connected component.
3. If Cis an infinite M A-connected part, there is a nested sequence By C By C -
such that U; B; = C and each B; is a finite M A-connected part.

Suppose M and N are siblings. Then Age(M) = Age(N) and so if M thinks that
d(x1., ..., x,) is mutually algebraic, then NV also thinks this. Using this fact, we have:

Lemma 7.3. Suppose M and N are siblings and f : M — N is an embedding. Then
for any MA-connected part A C M, f(A) is an MA-connected part of N. Thus. if
C C M is an M A-connected component, then f(C) is contained in an M A-connected
component as well.

LemMMmA 7.4. Suppose M is mutually algebraic and there is an infinite set
{C;:i €w} of components such that for each i, C; properly embeds into Cii,
but there is no embedding of C; 1 into C;. Then M has 2% siblings.

Proor. Call an MA-connected component Z outside the scope if there is no
embedding of Z into any C;. Let Z* = [ J{ Z : Z is outside the scope }. Note that
any MA-connected component inside the scope embeds into all but finitely many
C;. For each infinite S C w, let Ng be the substructure of N with universe Z* U
{ C:iefS }
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We first argue that each Ng is a sibling of M. Fix any infinite S C w.
Enumerate the MA-connected components { Y, : j <} of M that are within
the scope. Inductively define a mapping /& : M — Ng as the union of a chain of
mappings (h, : n € w) as follows. Let hy : Z* — Ng be the identity. Assume that
hj : N*U{Y,:t< j} — Ngshasbeendefined. Given Y;, choose some i not already
chosen so that Y; embeds into C;, and let /4,4 extend /; by mapping Y; into C;.

To see the Ng are pairwise non-isomorphic, note that Ng contains an
MA-connected component isomorphic to C; iff i € S. As isomorphisms must
map MA-connected components to MA-connected components, we are finished. -

LemMA 7.5. If M contains infinite, pairwise isomorphic M A-connected components
{C; i €w}, then M has 2™ siblings.

Proor. We will produce a sibling N of M satisfying the hypotheses of Lemma
7.4, which suffices.

Let X C w be infinite/co-infinite. We will produce N by shrinking each C; with
i € X. We will have that M embeds into N as we leave an infinite collection of C;
unaltered.

As () is infinite, by Lemma 7.2 write Cyp = | J{ B; : i € w }, where each B; is a
finite, MA-connected part and B; C B, for each i. We now construct N C M by
restricting C; down to an isomorphic copy of B;, foreachi € X. o

THEOREM 7.6 [3]. Let L be finite relational, and suppose M is a mutually algebraic
but non-cellular countable L-structure. Then there is some M* = M such that M*
contains infinitely many new infinite M A-connected components, pairwise isomorphic
over M.

Furthermore, we may take the universe of M* to be the universe of M together with
these new components.

ProOPOSITION 7.7. If M is not cellular then there is an age-preserving extension N
with 280 siblings. In the case where M is mutually algebraic, N can be chosen to be an
elementary extension of M.

PrOOF. Suppose M is not cellular. If M is not mutually algebraic, then we are
done by Theorem 6.1.

If M is mutually algebraic but non-cellular, then produce M* = M as in
Theorem 7.6. By Lemma 7.5, M * has 2%0 siblings. —

7.2. The cellular case. In this subsection, we will be able to directly consider the
siblings of M, rather than of some age-preserving extension.

ExampLE 5. Consider the cellular graph M consisting the disjoint union of
infinitely many disconnected edges and an infinite independent set. Here, we may
obtain N, siblings as follows. First, we pass to the subgraph N removing the
independent set, which will be a sibling of M. Then, for each i € w, we obtain
a sibling N; by removing a point from i of the edges.

Note that in a cellular partition (Definition 2.2), forafixedi € [n]. {¢;; : j € 0 }
is a k;-clique.
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DEeFINITION 7.8. A cellular partition is separated if for every i € [n], there is no
proper subtuple of ¢; o such that the set of associated subtuplesamong { ¢;; : j € w }
forms a k-clique.

Given a cellular partition, we may always produce a separated cellular partition
by increasing n and splitting apart any offending tuples.

Suppose M is cellular, with cellular partition K U {¢;; : i € [n]. j € w }. Given
some ¢;jand S C [k;]. let Ef/ = (cfj\é € S) C ¢; ;. Then every substructure N C M
is specified by N N K as well as, for each i € [n] and S C [k;], the number of j such
that N N Ei,j = C_’ISJ

Recall that M is finitely partitioned if and only if |¢; ;| = 1 for every i.

LemmA 7.9. If M is cellular and not finitely partitioned, then M has X siblings.

Proor. By the discussion above, a cellular structure has at most X, siblings.
Let KU{¢;;:i €[n].j € w} bea separated cellular partition of M. As M is not
finitely partitioned. there is some i such that |¢; ;| > 1. Fix some ¢ € w. for each i, j.
let ¢; be the first element of ¢; ;, and let M, = M\ {¢; ;\c; : j < £ }. Forany i’ such
that ¢/ ;| =1land {¢;: j <L} U{¢y;:j € w}isal-clique removeall ¢; ;. and
let M be the resulting structure. Note M is a sibling of M.

We now show there is no m € M;\K such that m ~ ¢; for some j < £. Suppose
there is, and m is the k" element of ¢; ; for some i’ € [n] and ;' € w. Then ¢;
will be exchangeable with the k" element of ¢, for every j” € w. and so these
clements will form a 1-clique. If [¢;/ j+| = 1. this contradicts the construction of M.
If |¢;s j| > 1, this contradicts that we started with a separated cellular partition.

Let C; be the maximal 1-clique in M, containing {¢; : j < £ }. Then C; C K U
{¢j 1 j < £} bythe previous paragraph, so £ < |Cy| < |K| 4+ £.In M/, any l-clique
containing a point outside K U { ¢; : j < £ } is either a singleton or infinite, since,
as in the previous paragraph. if x ~ y where y is the k" coordinate of ¢y jr. then
x is exchangeable with the k" element of ¢; ;» for every j” € w. Thus for ¢ >
|K|. C; will be the largest maximal finite 1-clique of M. By the bounds above
on |Cyl. if £/ > |K|+£. then |Cy| > |Cy|. and so M ; 2 M. since their largest
maximal finite 1-cliques have different sizes. Thus, by varying £, we may produce ¥
siblings of M. -

Lemma 7.10. If M is finitely partitioned, then M has one sibling, namely itself.

ProOF. As M is w-categorical, it admits an w-categorical model-companion M *
[15]. Then M * is a sibling of M, so it suffices to show M * has only one sibling.

As being finitely partitioned is a universal property, M * is also finitely partitioned,
and so admits a cellular partition with K = acl(0). and |¢; ;| = 1 for each i € [n].
so let ¢;; be the one element of ¢; ;. We may further assume that we have taken n
minimal (subject to |¢; ;| = 1), and thus tp(c; j/K) # tp(cy j/K) fori # i’

As M* is model-complete, every x € K is algebraic by an existential formula, so
any substructure with the same age must contain all of K. The age of M * also specifies
{¢i; } is infinite for each i, so any substructure with the same age is isomorphic
to M*. —

7.3. The main theorem. Putting together the results of this section, we have our
main theorem.
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THEOREM 7.11. Let T be a universal theory in a finite relational language. Then one
of the following holds.

1. T is finitely partitioned. Every model of T has one sibling.

2. T is cellular. The finitely partitioned models of T have one sibling and the non-
finitely partitioned models have X siblings.

3. Tis not cellular. For every non-cellular M |= T . there is some N O M such that
N |= T and N has 2™ siblings. Furthermore, if T is mutually algebraic, we may
take N - M.

If 7' admits a structure universal for its age, this immediately gives the following
corollary.

COROLLARY 7.12. Let M be a countable model in a finite relational language that
is universal for its age. Then one of the following holds.

1. M is finitely partitioned, and has one sibling.

2. M is cellular but not finitely partitioned, and has X siblings.

3. M is not cellular, and has 280 siblings.

A weakening of “finite relational language” is given in the following definition.

DerINITION 7.13. We say M has finite profile if, for every n, the number of
isomorphism types of substructures of size # is finite.

We now show the assumption of a finite relational language in Corollary 7.12
cannot be weakened to finite profile.

ExaMmPLE 6. Let the language consist of one n-ary relation symbol R, for each
new. Let X, = (x,.....x}). Let M = |,.,, Xu UL l,c,, Y. Where R, (%) holds iff
X = X,. and the y, form an independent set.

M is not w-categorical, as x! and x;, have different (non-quantifier-free) 1-types
for n £ m. For each n, the isomorphism type of n points is determined by which
tuples x; for i < n they contain, and so M has finite profile. That M is universal for
its age is clear by inspection.

Age-preserving extensions of M can only add further points to the independent
set, and so the only sibling of M is itself. As M is not w-categorical, it is not finitely

partitioned, nor even cellular.

As noted in [7], Corollary 7.12 implies the same conclusion with the hypothesis
that M is universal for its age replaced with the hypothesis that M is w-categorical,
since we may then pass to the model companion of M.

We also obtain a positive answer to a question from [7] as another corollary of our
result. The proof simply goes through each case of Theorem 7.11, which immediately
implies the corresponding case of the corollary.

COROLLARY 7.14. For an age 2 in a finite relational language. let (Mod (), <) be
the countable structures with age U, quasi-ordered by embeddability. Then for every
M € Mod (), the number of structures <-above M is equal to |Mod (2)].

§8. Open questions.

CoNJECTURE 1 (Thomassé [16]). Given a countable structure M in a countable
relational language, M has either 1, g, or 280 siblings, up to isomorphism.
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As mentioned in the introduction, Conjecture 1 seems outside the scope of
the model-theoretic approach of this paper. However, an interesting special case
to consider may be when M is mutually algebraic. After naming finitely many
constants, we may decompose M into MA-connected components, which seem
easy to analyze. However, the effect of naming the constants is mysterious.

ProBLEM 1. Confirm Conjecture 1 when M is mutually algebraic.

As noted in the introduction, the arguments in this paper bear out the following
intuition: if a universal theory T is non-cellular, then either it is unstable and so
has a model encoding (Q, <), or has a model that in some sense encodes an infinite
partition, i.e., a partition with infinitely many infinite parts.

QUESTION 1. What is the proper notion of “encodes an infinite partition” to
formalize the intuition above?

Even attempting to plausibly refine Conjecture 1 to describe which structures
fall into which of the three cases seems difficult, but answering Question 1 may be
helpful. We know that there are two reasons for a universal theory to have a model
with 2%0 siblings: either there is a model encoding a linear order with 2%0 siblings
(namely (Q. <)) or a model “encoding an infinite partition.” Perhaps the same is
essentially true at the level of individual models, although we must weaken the
requirement of an infinite partition, since an equivalence relation with arbitrarily
large finite classes also has 20 siblings.

QUESTION 2. If a countable relational structure M has 2% siblings. must M either
encode a linear order with 280 siblings. or either “encode an infinite partition” or
“encode a partition with arbitrarily large finite parts” in the sense of Question 1?

From [8]. we know exactly which countable linear orders have 2% siblings:
furthermore, the linear orders with 2% siblings seem to either encode infinite
partitions or partitions with arbitrarily large finite parts.

The final section of [7] and the introduction of [14] contain several open problems,
some of which we mention below.

A positive answer to the following conjecture would answer Problem 2 of [14]. As
mentioned there, Lachlan has proven that an age 2[ has a unique countable model
up to elementary equivalence iff 2 is finitely partitioned [0].

CONIJECTURE 2. All cases of Theorem 7.11 can be strengthened to pairwise non-
elementarily equivalent siblings. In particular, given an age 2. there are 2% non-
elementarily equivalent countable structures of age 2 iff A is non-cellular.

The place where our proof falls short of this conjecture is that whether a k-
clique is infinitely extendable does not seem to be definable. However, in some cases,
considering infinite extendability is unnecessary; for example, if M has only finitely
many 1-types. in particular if M is Ry-categorical, then there is a bound C on the
size of k-cliques appearing in M. When constructing N, in Theorem 6.1, we may
always shrink our k-cliques above C, and distinguish N, from N, by whether it hasa
maximal k-clique of some particular size above C. Thus we have proven Conjecture
2 in the case 2 is the age of an Ny-categorical structure.

Given an age 2, let Mod (21) /= denote the bi-embeddability classes of countable
structures with age 2(. Thomassé’s conjecture is concerned with the size of any single
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=-class. There are several conjectures regarding the number of =-classes in [7], from
which we mention the following.

CONJECTURE 3 [7]. For an age 2 in a finite relational language, |Mod (1) /=] is
finite if and only if |Mod () /=| = 1 if and only if A is cellular.

If the conjecture above is true, then the only possibilities for |Mod () /=| are
{ 1,8, Ny, 2% } [7]. Classifying which ages fall into which case would be a natural
next step.

For problems involving model-counting in an age, such as in this paper or the
problem of determining |Mod ()| in [14], the dividing lines are preserved under
arbitrary expansions by (finitely many) unary relations. This is clear after proving
that these dividing lines correspond to being finitely partitioned or being cellular.
However, if this could be proven as a first step, then the approach taken in this
paper could be drastically simplified, since a non-mutually algebraic theory admits
a model such that in a unary expansion there is a definable equivalence relation on
singletons with infinitely many infinite classes. We then would not have to use grid
extensions to mimic the behavior of such an equivalence relation, and would not
have to worry about hybrid tuples.

QUESTION 3. Let M be a countable structure in a finite relational language, and let
M™ be an expansion by finitely many unary relations. Let A and A* be their respective
ages. Can any of the following statements be proven without first classifying the dividing
lines?

1. If |[Mod (A*)| = 280, then |Mod (21)| = 2%,

2. If Mod (A*) has a structure with 220 siblings. then so does Mod ().

3. If [Mod (A*) /=] is infinite, then so is |Mod () /=|.
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