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THEORIES WITH FEW NON-ALGEBRAIC TYPES OVER
MODELS, AND THEIR DECOMPOSITIONS

SAMUEL BRAUNFELD AND MICHAEL C. LASKOWSKI
{Comtnunicated by Vera Fischer)

ABSTRACT. We consider several ways of decomposing models into parts of
bounded size forming a congruence over a base, and show that admitting any
such decomposition is equivalent to mutual algebraicity at the level of theories.
We also show that a theory T is mutually algebraic if and only if there is a
uniform bound on the number of coordinate-wise non-algebraic types over
every model, regardless of its cardinality.

1. INTRODUCTION

A key theme in model theory is to identify which theories have models that
admit a structure theory, in the sense that their models can be decomposed into
simple pleces that relate to each other in a controlled way. Intertwined with this
is the theme of determining the complexity of theories by counting the number of
types over models. The archetypal example of a structure theory is for classifiable
theories, whose models are determined by a well-founded tree of countable elemen-
tary substructures [5,9]. Integral to the analysis of classifiable thecries are the
properties of stability and superstability, both initially defined by type-counting.

Here we investigate a family of much stronger decompositions for models, and
show that they are all equivalent at the level of theories. In particular, for each type
of decomposition, the property that sll models of T admit such a decomposition is
equivalent to T being mutvelly olgebroic. (Mutual algebraicity is a condition gen-
eralizing bounded-degree graphs, and already has several characterizations [7]. For
this note, all we need is contained in Facts 2.3 and 2.4.) Type-counting plays a fun-
damental role in the proof, and we almost simultaneously obtain a characterization
of mutual algebraicity in terms of a very strong type-counting condition.

Stability in a cardinal k is defined by there being only s consistent types over
every model M of size k. This is as low as possible since for every m € M, there
exists the algebraic type containing z = m. But by only considering types p(Z) that
are coordinate-wise non-algebraic over M, i.e. with no variable in Z set equal to an
element of M, we may do better for some theories. Following [1, Corollary 6.1.8],
we call a theory bounded if there is a uniform bound on the number of coordinate-
wise non-algebraic types over every model, regardless of its size. We show a theory
is bounded if and only if it is mutually algebraic, and in fact the bound on the
number of coordinate-wise non-algebraic types is 2/71.
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Our decornposition conditions are more involved, but they are also rooted in
ideas from [1]. There, it is shown for a monadically stable theory T, i.e. every
expansion of I by unary predicates remains stable, every model of 7 admits a
decomposition into an independent tree of countable elementary submodels, as in
the classifiable case but without any need to complete to prime models. Our notion
of decomposition (in particular, what we call a (|7, QF)-model decomposition)
corresponds to such a tree-decomposition of depth one.

Thus a corcllary of our result on decompositions is that the monadically stable
theories of depth one are the same as the mutually algebraic theories. This gen-
eralizes the corresponding result for the w-categorical case, which follows from the
classification of w-categorical monadically stable theories in [6] and the characteri-
zation of w-categorical mutually algebraic theories in [2].

2. PRELIMINARIES

»  Rather than work with the coordinate-wise non-algebraic types from the intro-
duction, we recall a notion of complexity rtp, (IV, B) that was used by the authors
in [3], which counts the number of A-types over B that are realized in (N — B)<%,

When B is a model and N is |B|"-saturated, then rtp, (N, B) counts the number
of consistent coordinate-wise non-algebraic A-types over B.

Definition 2.1. For a fixed language L, a set A of L-formulas is reasonable if it
contains all quantifier-free formulas and is closed under permutation of variables
and boolean combinations. Examples include the set of quantifier-free formulas
QF, boolean combinations of ©,,, or the set of all Z-formulas FQ.

For an L-structure N and a subset B C NV, and & € (N — B)*, let

tpa(E/B) = {6(2,8) : $(2) € A, TP a partition of 2,b € BED N k= ¢(2.5)}

and let 1tp, (N, B) denote the number of A-types over B realized in (N — B)<«.
When A = FO, we simply write rip(NV, B).

We record the following facts about rtp(N, B).

Fact 2.2, Let B C N be arbitrary.
(1) If QF € A C FO, then rtpge(N, B) <rtpa (N, B) < 1tppo (N, B);
(2) 1tp(N. B) < Juy1 (rtpoe(N, B)).
(3) Let L™ be an expansion of L by finitely many unary predicates, and N* a
corresponding expansion of N. Then rtpy+ (N1, B} < J,11(rtpgr(N, B)).

Proof. (1) is immediate as for any 2,d € (N — B)*, tp(¢/B) = tp(d/B) implies
tpa(€/B) = tpa(d/B) implies tpqr(&/B) = tpgr(d/B).

{2) This is Lemma 4.6 of [3].

(3} This follows from the proof of Lemma 4.7 of [3]. 0

‘We now state the two facts we will need about mutually algebraic theories, the
first a non-structure theorem and the second a structure theorem.

Fact 2.3 ([4, Theorem 3.2]). Suppose T is not mutually algebraic. Then there is
some expansion T of T by finitely many unary predicates and a model N¥ = T+
with a definable X C N+ and definable E C X? such that E is an equivalence
relation with infinitely many classes, each infinite.
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Fact 2.4 ([7, Propositions 4.2, 4.4]). Suppose T is mutually algebraic, and M =
N =T. Then N —M is partitioned into components { C; : i € I } forming a forking-
independent set over M, and such that each C; = acl{c;) \ M for any ¢; € C; and
MuUC; X N.

From each fact we prove a corresponding lemma, which together will guickly
vield our main results.

Lemma 2.5. Suppose T is a non-mutuclly olgebroic L-theory, and let A be o
reasonable set of L-formulas. Then for every cordinel p, there is a cordinal ) >
w and models M < N k= T with |M| = X and |N| = AT such that for every
intermediate set M CY C N with |Y| = X, we have rtp, (N,Y) > . )

Proof. Consider an expansion TT of T by finitely many unary predicates, N*
T+, and B C (N1)? as in Fact 2.3. Fix A > max{Jy41(1),|T]). By possibly
passing to an élementary extension, we may assume that F has at least \ classes
and each E-class has size AT. By possibly adding another unary predicate, we may
assume F has exactly A classes.

Let M+ < N7 be a Skolem hull of a transversal of F, so |[M*| = X. Then for

any intermediate set Mt CY C N¥ with |Y| = A, both ¥ and N* — Y contain a
point from each E-class, so rtp{N™,Y) > A.
Finally, we take M, N to be the L-reducts of M+, N*. By Fact 2.2, rtpa (N, Y) >
. il
Remark 2.6. An alternate proof of Lemma 2.5 follows from Theorem 6.1 of {8]. One
can use the infinitely many infinite arrays given by that theorem to obtain many
types, in place of the infinitely many infinite E-classes.

Before Lemma 2.8, we introduce a doubly parameterized family of decomposi-
tions, where we vary the size of the sets using « and the strength of the congruence
{see Definition 2.7) by A, and we may also vary whether the decomposition is into
subsets or elementary substructures. Pleasingly, we will see in Theorem 3.1 that at
the level of theories, admitting essentially any of these decompositions is equivalent
to mutual algebraicity.

Definition 2.7. Given a language L, fix a set A of L-formulas and fix a cardinal
K.

A k-partition of an L-structure N = AU | {B; : ¢ € I} with

A g-partition induces an equivalence relation ~a on (N\A)<, defined as follows.
As notation, for z € (N — A)*, if we write & = ¢1;...;Cy, then there are distinct
{11, ..., i) from I such that each ¢, C B,,. To ease notation, we write e.g., ¢y as
being an initial segment of &, although it need not be.

Given ¢,d € (N — A)<¥, we say ¢ ~a d if and only if there are no repeated
elements in either tuple taken individually and we can write € = ¢y;...; ¢, and
d=di;...;d, with tps{ce/A) = tpa(de/A) for every 1 < £ < n.

A n-partition N = AU HB; : ¢ € I} is a A-congruence over A if, for all
2,d € (N — A)<¥, & ~a d implies tp, (¢/A) = tp(d/A).

A (r, A)-decomposition of N is a «-partition N = AU {B; : i € I} that
is a A-congruence over A, and a {x,A)-model decomposition of N is a (x, A)-
decomposition of N in which A and each AU B; are universes of elementary sub-
structures of V.

A] € x and each
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For ain L-theory T, we say the pair (x, A) is viable if k > |T| and A is reasonable
as in Definition 2.1.

We say an L-theory T admits (x, A)-decompositions if every N =T with |N| >
IT| has a {x, A)-decomposition, and T admits {k, A)-model decompositions if every
N =T with |[N| > |7 has a {x, A)-model decomposition.

Lemma 2.8. Let T be mutually algebraic and let M < N =T with |M| < |T|. Let
{C; i€ I} be the partition of N — M into components (},3 in Fact 2.4. Then jfor
any reasonable A\, this partition s o (|T), A)-model decomposition over M.

Proof. By Fact 2.4, for each i we have M UC; < N and |G| < |T| since C; C acl{c)
for some singleton. So it remains to check that the partition is a A-congruence
over M. In fact, we will show the stronger statement that for any formula ¢, the
partition is a ¢-congruence over M. This will follow from the fact that in a stable
theory, if a tuple can be partitioned into two independent subtuples over a model
M, then the ¢-type of the tuple over M is determined by the ¢-type uf the two
independent, subtuples over M. We write the details below.

Fix a formula ¢(2) and tuples &,d € (N — M)=?l with & ~, d. As in Definition

27, let £=c1;...;¢, and d = dy;...;d, with tpy(c/M) = tp,(de/M) for every
1 < £ < n. Choose a (possibly trivial) partition of Z to give ¢(Z; 7). Choose

m € M and ¢ C e¢ico with Ic'l = |Z|, and let ¢} = ¢/ Ney, ¢y = ¢ Nes.
Since ¢ Ly ¢z, and forking-independence agrees with finite satisfiability over a
model (since mutually algebraic theories are stable}, we have N |= ¢(c)ch,m) if
and only if there exists some M’ C M such that N |= ¢{c{m/, 7). Using analogous
notation for d, we have that N f= ¢(d;ds, ) if and only if there exists some

m C M such that N k= ¢{d|®/,m). Since tpyle1/M) = tp,(di/M), this gives
N | ¢(cies,m) <= N | ¢(dids, m), so tpy(eiea/M) = tpy(dida/M). By
continuing inductively, we may show tpy((cicejes/M) = cpc,((dldz yds /M), and
eventually that tpy(c/M) = tpg(d/M). O

Lemma 2.9 will be useful when using decompositions to bound the number of
realized types.

Lemma 2.9. Let T be a theory and ( (K, A) be viable. 'Let N =T and let {B; :
€' I} be any (x, A)-decomposition of N over A. For any non-empty J C I let
B‘]—-—UJ.CJB Then for any J C I, ripa{lN,ABj) < 2%,

Proof. As |A| < &, there are at most 2% ~x-classes in (W — A)" for each n. Thus
it will suffice to show that & ~a d = tpa(6/ABj;) = tpA{d/ABJ) for every ¢,d C
N\AB;. From the original congruence condition and the fact that ¢, d are disjoint
from By, we have tp, (€Bs/A) = tpa(dBs/A), and so tpa (G/AB;) = tpa (d/AB).

’ O

3. MAIN RESULTS

In this section, we give some characterizations of mutual algebraicity for a the-
ory. One is in terms of type-counting, while the others concern various types of
decomposition.

Theorem 3.1. The fo_llowz'ng are equivalent for any theory T.

(1) For some viable (x,A), T admits (k, A)-decompositions.
(2) For all vicble (s, ), T edmits {x, A):decompositions.

Lisensad to Univ of Marvland, College Park. Prepared on Thu Apr 27 13:0&:11 EDT 2023 for downinag from 1P 129.2.192.37.
License or copyright restrictions may apply o rédisiibation: ses hitps/iwww. ams.orgjournal-térms-ci-use



THECRIES WITH FEW NON-ALGEBRAIC TYPES OVER MODELS 4025

{3} For some viable (x, A}, T admits (x, A)-model decompositions.
(4) For all viable (k, A}, T admits (k, A)-model decompositions.
(8) T is mutually algebraic.

Proof. 1t is clear that (1) — (3) follow from (4}, and (5) = (4) is immediate from
Lemma 2.8. '

We now verify (1) = (5). By way of contradiction, suppose there is some viable
(v, A) such that T admits (s, A}-decompositions, but 7 is not mutually algebraic.

Let u > 27 Jet M < N =T and A > p be as in Lemma 2.5, and let A U
L{B::i€ I} bea (k,A)-decomposition of N. Let J C I be minimal such that
AByj, in the notation of Lemma 2.9, covers M. Then M C ABj; and |ABj;| = },
so rtpa (N, AByY > p > 2% by Lemma 2.5. But this contradicts Lerama 2.9.7 0O

In proving (1) = (5) in Theorem 3.1, there is a tension between taking A = QF
and A = FO. On the one hand, our non-structure result for non-mutually al-
gebraic theories yields an FO-definable equivalence relation in a unary expan-
sion. However, although it is easy that taking a unary expansion preserves admit-
ting (k, QF)-congruences, this is not clear for (k, FO)-congruences, which prevents
pulling the non-structure back to the original theory. By instead passing through
type-counting, Lemma 2.9 allows us to relate A = QF and A = F(Q. We now also
characterize mutual algebraicity in terms of this sort of type counting.

Definition 3.2. Call a (possibly incomplete) theory T bounded if there is some
cardinal « such that for any M =T (of any size), there are at most x coordinate-
wise non-algebraic types over M. Equivalently, rtp(V, M) < xforall M < N =T

The notion of a theory being bounded was investigated in [1, Corollary 6.1.8],
which proves that T is bounded if and only if it is strongly decomposable (i.e.
admits ({7'], QF)-model decompositions).

Theorem 3.3. A theory T is mutually algebraic if and only if T s bounded. Fur-
thermore, if T is bounded then it is bounded by 27!, and if T is not bounded then
z't is n.ot hounded even for quantiﬁer—free types:

Proof. First, assume T is mutually algebraic and let M = N = T. Let My <
M with |M,| < |7, and consider the partition of N over M, into components
{C;:ie I} asin Fact 2.4. By Lemma 2.8, this is a (|7, FO)-decomposition of N
over My. Since M is algebraically closed, we have M = My(C;, in the notation of
Lemma 2.9, for some J C 7. Thus by Lemma 2.9, rtp(N, M) < 2T,

Conversely, if 7" is not mutually algebraic, the statement holds by Lemma 2.5, 0O

Remark 3.4.

(1) In the definition of boundedness, it is crucial that the base be restricted to
elementary submodels of N. As an examnple, take L = {R} and let N be an
infinite model of ‘mated pairs,” i.e., R is symmetric, irreflexive, and every
element of NV is R-related to exactly one element. Then ThA(N) is mutually
algebraic and totally categorical. But, for any infinite cardinal A, taking NV
to be the model of size A and B to be a set of R-representatives, we have
rtp(N, B} = rtpgp(N, B} = A

The bound of 27! in Thecrem 3.3 is sharp, as witnessed by the theory T of
% independent unary predicates. Then || = & and is mutually algebraic.

o~
(%]
-,
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However, if N = T realizes all of the 2* types over @ and if M < N is any
elementary substructure of size < 27, then rtp(N, M) = rtpop(N, M) = 27,

{3) Theorem 3.3 is similar to the main result of [8], which, for a finite re-
lational language, characterizes mutual algebraicity by there being only
finitely many quantifier-free coordinate-wise non-algebraic n-types for each
72, over every model.

We close with a question. Even though many notions of decompositions men-
tioned in Theorem 3.1 are all equivalent to mutual algebraicity at the level of
theories, requiring that the base set A = @ is more restrictive. That is, define an
@-(k, A)-decomposition of N to be a (k, A)-decomposition of N in which A = §.
As an easy example, take L = {E'} and let T be the complete L-theory asserting
that F is an equivalence relation with two classes, both infinite. Then T is mnutu-
ally algebraic, but if IV is the saturated model of size Ry, then N does not have
an B-(Ng, QF)-decomposition since there is only one 1-type over the empty set. It
would be desirable to characterize those {mutually algebraic) theories that admit
#-(x, A)-decompositions.
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