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Abstract— Wearable technologies are increasingly being used
to help runners improve their performance and reduce the risk
of injuries. While off-the-shelf devices are typically limited to
interval-based cueing and post training analysis, the emerging
wearable biofeedback systems (WBSs) can provide closed-loop
feedback during training. However, most existing WBSs for run-
ners are inaccurate for real-time spatiotemporal gait analysis,
limited to temporal gait parameters, or not suitable for out-of-
the-lab use. This paper introduces a novel WBS that leverages
on-line gait analysis capabilities and continuous music modula-
tion to elicit a target time-varying running speed on the wearer.
We compared the effectiveness of two alternative auditory
feedback strategies (play-back rate modulation – PRM, noise
amplitude modulation – NAM) against a conventional training
strategy (running watch discrete alarms – WA), in terms of
stride-by-stride velocity errors in a group of competitive and
recreational runners, using an out-of-the-lab High-Intensity
Interval Training (HIIT) protocol. Results indicate that PRM
and NAM may elicit significantly better adherence to both
low and high-intensity target velocities compared to WA. NAM
outperformed PRM in terms of velocity errors, but participants
found the latter modality to be more enjoyable. Overall, these
results highlight the potential of WBS and continuous music
modulation as effective means to provide accurate, granular,
and meaningful feedback to runners, and pave the way for
future studies focusing on the long-term training effects of this
technology.

Index Terms— Wearable Technology, Biofeedback, Instru-
mented Footwear, Human-in-the-loop Control, Gait Analysis.

I. INTRODUCTION

Running is a popular sport for both recreational and
competitive endeavors. In 2017, approximately 60 million
Americans participated in running or jogging [1]. Correcting
form, modifying cadence and foot landing, and training to
improve running economy are all significant steps towards
improving running performance [2]. However, the current
training methods to improve performance, which consist of
personal or technology-based coaching, remain either inaccu-
rate or expensive. Personal coaches can provide constructive
feedback conducive to a runner’s progression, however they
are not accessible to most runners due to their sheer costs,
and results largely depend on the coach’s expertise and abil-
ity to create a personalized training plan, ever-changing with
an individual’s progress [3]. Technology-assisted coaching
includes off-line gait-analysis systems [4], running parameter
cueing [5], or closed-loop feedback methods and devices
[6]. Wearable systems for gait analysis, such as instrumented
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insoles, can accurately record gait metrics and provide the
summary performance data post-training, through a phone
application. However, they are often restricted to off-line
analyses [4]. Consumer-grade running watches and mobile
applications are more affordable than instrumented insoles.
They can measure running speed, cadence, and step count
and also provide interval target cueing. However, running
watches are often inaccurate, especially within smaller radii
of operation or GPS-denied environments [5]. Moreover, the
cues provided by those devices cannot self-adjust to changes
in the wearer’s performance.

Emerging biofeedback systems are capable of providing
both on-line gait analysis and closed-loop visual, haptic,
or auditory feedback modulated by the errors between a
measured running metric and a predefined target value.
Visual feedback devices utilize a screen to deliver feedback
to runners. Depictions of graphs [7], colors [8], or shapes
[9]–[11] are projected to allow the runner to react and
understand what needs to change in their running style [7],
[9], [10], performance, and foot loading patterns [8], [11].
Most systems based on visual feedback rely on a fixed
screen or monitor [7], [8], [10], [11]. Training through this
method has been shown to be effective in a laboratory
setting, especially in the short-term. However, this modality
is dependent on an obtrusive screen, making it less applicable
to out-of-the-lab environments.

Haptic-based wearable biofeedback systems (WBSs) pro-
vide the runner with augmented somatosensory feedback
through vibrations or resistive forces to modify running
biomechanics. Vibrotactile feedback has been integrated with
running watches, whereby vibrating motors were controlled
on-line using custom software, to reduce peak tibial acceler-
ation [12]. Resistive feedback was implemented on a belt
instrumented with cables applying resistive forces to the
legs [13]. The feedback, calculated from inertial measure-
ment units (IMUs), was shown to be effective at modifying
sagittal-plane kinematics and cadence, to minimize tibial
stresses [13]. Because haptic-based WBSs are minimally in-
vasive and relatively affordable, they can be easily deployed
in out-of-the-lab environments [12]. However, evidence of
the effectiveness of somatosensory feedback as a training
method for runners is still very limited [6].

Auditory-based WBSs provide prescriptive or descriptive
feedback in the form of discrete audio signals, such as
metronome beats and prerecorded cues, or continuous music
modulation. Auditory beeps or metronome beats have been
used to indicate if a target value is not being met. In these
methods, pitch variation is usually employed to enable bidi-
rectionality [11], [14], [15]. Using inputs from accelerom-20
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eters or IMUs, these modalities have proven successful in
helping the wearer modify their running biomechanics, e.g.,
alter their peak positive tibial or foot acceleration, which
are surrogate measures of impact force [11], [14], [15].
In [7], prerecorded verbal instructions were used to cue
the runner to reduce the vertical displacement of the body
center of mass and the stride frequency, showing significant
immediate effects (20% and 10% reductions, respectively).
In [16], a phone application was developed to deliver di-
rectional prerecorded cues every 5 seconds, to help the
wearer adjust their running speed towards a predetermined
target pace. While results indicated that auditory cueing
was more effective than traditional mental tracking [16],
the accuracy of the device in estimating running speed was
not evaluated, the feedback modality did not provide the
wearer any information about their current running speed,
and the experimental protocol only explored relatively slow
speeds (i.e., 1.9 m/s - 2.7 m/s) that are not representative
of high-intensity exercises. Unlike discrete prerecorded cues,
continuous music modulation takes an existing sound track
and modifies the track’s parameters (playback rate, volume,
pitch, etc.) on-the-fly, according to the wearer’s performance.
While this method has been successfully integrated with
WBSs for runners, most studies are limited to modulating the
wearer’s cadence based on the music tempo [17], [18], and no
research to date has investigated the use of continuous music
modulation to elicit a target running speed on the wearer in
out-of-the-lab settings.

This paper introduces a novel auditory-based WBS for
runners called CyberCoach. The CyberCoach consists of
custom-engineered instrumented insoles, a single-board com-
puter embedded in a running belt, and running earbuds to
provide closed-loop auditory feedback to help the wearer
adjust their running speed to a target pace. To the best of
the authors’ knowledge, the CyberCoach is the first WBS
capable of accurately estimating stride-by-stride running
speed in real-time, while providing intuitive feedback to help
the runner to maintain a time-varying target velocity. In this
study, we validate the device by comparing the immediate
effects of two alternative auditory feedback modalities (play-
back rate modulation – PRM, noise amplitude modulation
– NAM) against a conventional training strategy (running
watch discrete alarms – WA), in terms of stride-by-stride
velocity errors during a simulated High-Intensity Interval
Training (HIIT) protocol. The remainder of this paper is
organized as follows. Section II describes the CyberCoach;
Section III details the experimental protocol; Sections IV and
V present the statistical analysis and results, respectively; and
Section VI covers the discussion and conclusions.

II. SYSTEM DESCRIPTION

The CyberCoach consists of custom-designed instru-
mented insoles with shoe-mounted logic units, a Linux
single-board computer, and a pair of running earbuds (Fig. 1).
The software architecture of the CyberCoach includes online
gait analysis module, offline music track selection module,
and closed-loop biofeedback engine with remote control
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Fig. 1. The CyberCoach consists of (A) Custom-engineered instrumented
insoles (SportSole) featuring embedded IMU (A1), FSR array (A2), and
logic units; (B) a running belt with embedded single-board computer (B1),
Li-Po battery, and miniature Wi-Fi router (B2); (D) sport earbuds to deliver
the auditory feedback. An off-the-shelf running watch (C) was used for
comparison, but it is not part of the proposed system.

capability through a custom graphical user interface (GUI).
The following sections describe the hardware and software
modules of the CyberCoach system.

A. Hardware

The instrumented insoles build upon the SportSole, a de-
vice developed in the Wearable Robotic Systems Laboratory
at Stevens Institute of Technology [19]–[21]. Each insole is
equipped with a 24g inertial measurement unit (IMU, Yost
Labs Inc., OH, US) and an 8-cell array of force sensitive
resistors (FSR). The IMU is placed under the medial arch
of the foot. The FSR array (IEE S.A., Luxemburg) measures
ground reaction forces under the calcaneous, lateral arch,
heads of the metatarsals, toes, and hallux. All sensors are
pancaked together using anti-abrasion, flexible foam.

The custom-designed logic modules are each mounted on
the lateral collar of the subject’s footwear via plastic clips.
Each logic module is safely enclosed in 3D printed boxes.
It consists of a custom-designed PCB and programmable
µ-controller (32-bit ARM Cortex-M4, PJRC, OR, USA)
powered by a small Li-Po battery. These on-board logic units
extract stride-by-stride gait parameters from raw sensors data
using the methods described in [19], [21] and transmit these
metrics to the Linux single-board computer through a UDP
network via WLAN, as described in Sec. II-B.

The single-board computer is a 64-bit ARM v8 quad-core
CPU (Hardkernel, GyeongGi, South Korea) that fits inside a
running pouch fashioned on the subject’s waist. A miniature
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a n d f e d t o t h e a u dit or y f e e d b a c k e n gi n e t h at d eli v ers c o nti n u o us sti m uli t o t h e r u n n er t hr o u g h e ar b u ds.

Wi- Fi r o ut er c o n n e ct e d t o t h e si n gl e- b o ar d c o m p ut er is als o
e m b e d d e d i n t h e r u n ni n g p o u c h a n d s er v es as a n a c c ess p oi nt
f or t h e W B S. T h e si n gl e- b o ar d c o m p ut er s er v es as a d at a-
l o g g er t o st or e stri d e- b y-stri d e g ait p ar a m et ers as w ell as r a w
s e ns or d at a ( 3 3 3 H z). It als o r u ns t h e al g orit h ms r es p o nsi bl e
f or t h e a u dit or y f e e d b a c k m o d ul ati o n, as d es cri b e d i n S e c. II-
D. R u n ni n g e ar b u ds c o n n e ct e d t o t h e si n gl e- b o ar d c o m p ut er
d eli v er t h e a u dit or y sti m uli t o t h e w e ar er.

W hil e t h e C y b er C o a c h m a y w or k as a st a n d- al o n e,
f ull y- p ort a bl e s yst e m, t h e Wi- Fi c o n n e cti o n all o ws t h e e x-
p eri m e nt er t o a dj ust t h e bi of e e d b a c k p ar a m et ers a n d e n-
a bl e/ dis a bl e t h e d e vi c e r e m ot el y, usi n g a l a pt o p.

B. O n-li n e S p ati ot e m p or al G ait A n al ysis

T h e g ait a n al ysis c a p a biliti es of t h e i ns ol e s yst e m f or
w al ki n g a n d r u n ni n g t as ks w er e d e v el o p e d a n d v ali d at e d i n
pr e vi o us w or ks [ 1 9], [ 2 1]. I n s h ort, C y b er C o a c h’s esti m at es
of stri d e ti m e ( S T) ar e c o m p ut e d o n-li n e b as e d o n F S R
si g n als, fr o m w hi c h t h e ti mi n g of i niti al c o nt a cts a n d t o e- off
e v e nts ar e als o d eri v e d. Stri d e- b y-stri d e esti m at es of stri d e
l e n gt h ( S L) ar e als o c o m p ut e d o n-li n e, b y first r e m o vi n g
t h e c o ntri b uti o n of gr a vit y fr o m t h e a c c el er o m et er r e a di n gs
(i. e., b y m e a ns of ori e nt ati o n esti m at es o bt ai n e d wit h a n
E xt e n d e d K al m a n Filt er), f oll o w e d b y d o u bl e i nt e gr ati o n
of a c c el er o m etri c si g n als wit h z er o- v el o cit y- u p d at es ( Z U P T)
a n d v el o cit y drift c o m p e ns ati o n ( V D C), as d et ail e d i n [ 2 2].
At e a c h stri d e, stri d e v el o cit y ( S V) is d et er mi n e d as t h e r ati o
b et w e e n S L a n d t h e c orr es p o n di n g S T. T h e c al c ul at e d S V is
tr a ns mitt e d t o t h e Li n u x c o m p ut er o v er U D P, f or d at al o g gi n g
a n d f or us e i n t h e bi of e e d b a c k e n gi n e.

C. Pers o n aliz e d M usi c Tr a c k S el e ct or

B ef or e a tr ai ni n g s essi o n t a k es pl a c e, t h e w e ar er’s n at ur al
r u n ni n g c a d e n c e a n d t h eir stri d e-t o-stri d e v ari a bilit y m ust b e
esti m at e d, t o m at c h t h eir n at ur al r h yt h ms t o t h e t e m p o of a
m usi c tr a c k a n d s et a n a p pr o pri at e d e a d- b a n d f or t h e a u dit or y
sti m uli. T o t his e n d, t h e w e ar er’s a v er a g e n at ur al c a d e n c e
( C A D) a n d t h e st a n d ar d d e vi ati o n of t h eir stri d e v el o cit y
( S DS V ) ar e esti m at e d of fli n e, aft er a b as eli n e r u n ni n g s essi o n
is c oll e ct e d wit h t h e C y b er C o a c h (s et t o n o-f e e d b a c k m o d e).
C A D is esti m at e d as t h e d o mi n a nt fr e q u e n c y of t h e s u m
of all F S R si g n als, r estri ct e d t o t h e i nt er v al 2- 3. 5 H z a n d
c o n v ert e d t o st e ps p er mi n ut e [ 2 3]. T o o bt ai n S D S V w e a p pl y
d etr e n d e d fl u ct u ati o n a n al ysis ( D F A) t o t h e stri d e- b y-stri d e
S V ti m e s eri es a n d c al c ul at e t h e st a n d ar d d e vi ati o n of t h e
r es ulti n g d etr e n d e d s eri es [ 2 4]. T his a p pr o a c h c a n c a pt ur e t h e

a p pr o xi m at e stri d e-t o-stri d e v ari a bilit y w hil e filt eri n g o ut a n y
eff e ct d u e t o l o c al c h a n g es i n t h e m e a n stri d e. As d es cri b e d
i n S e c. II- D, S DS V d et er mi n es t h e m a xi m u m v el o cit y err ors
t h at ar e r e g ar d e d as a c c e pt a bl e d uri n g a tr ai ni n g e x er cis e. T o
miti g at e u n w a nt e d g ait r etr ai ni n g d u e t o c o n fli cti n g r h yt h ms
[ 1 8], a n d t o f urt h er p ers o n ali z e t h e f e e d b a c k m o d alit y, t h e
esti m at e d C A D is us e d t o s el e ct a m usi c tr a c k t h at a p-
pr o xi m at el y m at c h es t h e r u n n er’s r h yt h m. T o t his e n d, w e
d e v el o p e d a s o n g d at a b as e s ort e d b y m usi c g e nr e a n d t e m p o
( b e ats p er mi n ut e, B P M). T h e t e m p o a n d t e m p o v ari a bilit y of
e a c h s o n g w er e esti m at e d usi n g b e at tr a c ki n g m et h o ds [ 2 5].
C a n di d at e m usi c tr a c ks w h os e t e m p o v ari a bilit y e x c e e d e d
a pr e d e fi n e d t hr es h ol d w er e a ut o m ati c all y e x cl u d e d fr o m
t h e d at a b as e. T h e t ot al n u m b er of m usi c tr a c ks i n cl u d e d
i n t h e fi n al d at a b as e e x c e e d e d 7 5 s o n gs. A c ust o m M atl a b
s cri pt us es t h e r u n n er’s C A D a n d f a v orit e m usi c g e nr e as
i n p uts, a n d o ut p uts a list of m usi c tr a c ks wit hi n t h e c h os e n
m usi c g e nr e, w h os e t e m p o is wit hi n 1 0 % of t h e r u n n er’s
C A D, s ort e d b y l o w est t o hi g h est a bs ol ut e p er c e nt diff er e n c e
b et w e e n t h e r u n n er’s C A D a n d t h e m usi c t e m p o. P arti ci p a nts
ar e t h e n as k e d t o c h o os e a s o n g fr o m t h e list, b as e d o n t h eir
p ers o n al pr ef er e n c e.

D. A u dit or y Fe e d b a c k E n gi n e

T h e bi of e e d b a c k e n gi n e r u ns o n t h e Li n u x si n gl e- b o ar d
c o m p ut er. It c o nsists of a l o w er-l e v el s oft w ar e m o d ul e a n d a
hi g h-l e v el s o u n d s y nt h esis e n gi n e. T h e f or m er is r es p o nsi bl e
f or c o m p uti n g stri d e- b y-stri d e S V err ors a n d f or l o g gi n g
t h e i ns ol e d at a f or off-li n e pr o c essi n g. W h e n i niti ali zi n g t h e
s yst e m, t h e l o w er-l e v el m o d ul e r e c ei v es t h e t ar g et S V v al u es
f or t h e n e xt tr ai ni n g s essi o n a n d S DS V as i n p uts. D uri n g
o p er ati o n, t h e w e ar er’s stri d e- b y-stri d e S V m e as ur e d b y t h e
i ns ol es is c o m p ar e d wit h t h e t ar g et s p e e d S Vd es t o c al c ul at e
t h e p er c e nt err or ε % , w hi c h is t h e n s e nt t o t h e s o u n d s y nt h esis
e n gi n e t hr o u g h a l o c al U D P s o c k et.

At t h e hi g h er l e v el, s o u n ds ar e g e n er at e d t hr o u g h a n o p e n
s o ur c e vis u al pr o gr a m mi n g l a n g u a g e f or m ulti m e di a ( P ur e-
D at a, [ 2 6]). T his s oft w ar e w as c h os e n f or its c o m p ati bilit y
wit h A R M- b as e d d e vi c es a n d r e al-ti m e s o u n d-s y nt h esis c a-
p a bilit y [ 2 7]. T h e s o u n d s y nt h esis m o d ul e c o n v erts t h e err or
ε % t o a c orr es p o n di n g f e e d b a c k si g n al ξ % a c c or di n g t o a
li n e ar m a p wit h a dj ust a bl e sl o p e, d e a d- b a n d, a n d s at ur ati o n
p oi nt, Fi g. 2. I n t ur n, ξ % c o ntr ols t h e a u dit or y sti m uli
a c c or di n g t o o n e of t h e f oll o wi n g f e e d b a c k m o d aliti es:

1) Pl a y b a c k R at e M o d ul ati o n ( P R M): P R M c h a n g es t h e
pit c h of a m usi c tr a c k bi dir e cti o n all y, tr e n di n g dir e ctl y wit h

A ut h ori z e d li c e n s e d u s e li mit e d t o: St e v e n s I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A pril 2 7, 2 0 2 3 at 1 9: 1 9: 2 3 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  



playback rate [17], [18]. In our implementation, PRM is
achieved by modifying the original sampling rate of a music
track (44.1 kHz) on-the-fly, so that a positive ξ% (indicating
that the wearer is running too fast) results in a corresponding
% increase of playback rate, and vice versa.

2) Noise Amplitude Modulation (NAM): NAM is achieved
through the overlay of white noise onto a music track. The
amplitude of the noise relative to the music track volume
is determined by |ξ%|. The sign of the velocity errors is
rendered through sound spatialization, whereby a positive
(negative) ξ% affects the noise volume delivered to the right
(left) ear.

The CyberCoach is controlled remotely via a Matlab GUI,
which allows the experimenter to configure the auditory
feedback parameters (volume, music track selection, width of
dead-band, saturation point, and slope of the linear mapping),
initialize the WBS, and activate the data-logger. The GUI
also enables the experimenter to record the audio heard by
the wearer for offline analysis. In our implementation, a
unitary slope was selected between ε% and ξ% for simplicity,
the width of the dead-band was set to 2SDSV such that
small velocity errors falling within ±1 SDSV would not
produce alterations in the auditory stimuli, and the saturation
point was determined empirically during preliminary tests,
so that large velocity errors would not result in excessively
unpleasant auditory stimuli.

III. EXPERIMENTAL PROTOCOL

A total of 8 young adults (age: 23 ± 5 years, height: 164.8
± 21.5 cm, weight: 69.2 ± 4 kg, 7 males) volunteered for
this study, which was designed to compare the immediate
effects of PRM and NAM (CyberCoach auditory feedback
strategies) relative to running watch discrete alarms (conven-
tional method, WA) in terms of SV errors, during a simulated
HIIT protocol. Prospective participants were included if they
were recreational or competitive runners who ran at least 15
km per week. The protocol was approved by the Stevens
Institutional Review Board and all subjects gave written
informed consent prior to the experimental sessions.

After fitting the CyberCoach and an off-the-shelf running
watch (Garmin Forerunner 35), each subject was asked to
perform the 800-meter run test at their best pace (baseline
running bout, BL), followed by a 5-minute break (Fig. 3).
During the break, the experimenter extracted the participant’s
CAD and SDSV following the methods outlined in Sec. II-
C, and calculated the target training speeds for the HIIT
protocol, which were indicated as SVH and SVL (high-
and low-intensity training speed, respectively). The HIIT
paradigm alternates a rapid sequence of high- and low-
intensity running bouts. It was selected because of its ef-
fectiveness in improving running economy, peak speed, and
VO2 max of both recreational and competitive runners [28]–
[32]. SVH and SVL were determined from the time of the
800-meter run test through a widely used training pace
calculator [33], by setting the target paces to interval and
marathon, respectively.

Fig. 3. Experimental Protocol. BL = Baseline bout, FM = Familiarization
bout, WA = Watch Alarms, PRM = Playback Rate Modulation, NAM =
Noise Amplitude Modulation. Each feedback modality was tested over a
total of 3 repetitions of low- and high-intensity running bouts.

Subsequently, the subject was allowed to familiarize with
each feedback modality (WA, PRM, NAM) for a total of 10
minutes (familiarization bout, FM). The saturation point and
slope of the linear mapping for both PRM and NAM were
set to the same values for all participants. The WA consisted
of vibratory cues informing the wearer that his/her pace was
not being kept at the target value. This modality was included
in the protocol as representative of conventional technology-
based training methods for runners. However, because WA
simply indicates a discrepancy between the current and the
target running speed, without regard to the magnitude and
directionality of the error, we expected this modality to be
the least effective one. After FM, participants underwent
three HIIT bouts, each corresponding to a feedback modality.
Each HIIT bout consisted of three repetitions of low- and
high-intensity running, for a total of 9 minutes per HIIT
bout. Within each repetition, the target speed SVdes was
set at SVL for the first 110 seconds, followed by a 10-
second ramp up period to SVH. SVdes was then maintained
at SVH for 50 seconds, after which a 10-second ramp down
period brought it back to SVL. The sequence of the feedback
modalities (WA, PRM, NAM) was assigned to participants
using a Latin square design. To mitigate effects of fatigue,
participants were required to rest for at least 5 minutes in-
between the HIIT bouts. All running tests were conducted
in an outdoor flat area. The length of the running perimeter
was approximately 400m.

IV. STATISTICAL ANALYSIS

To compare the immediate effects of the three feedback
modalities on the wearer’s running gait we computed steady-
state mean absolute errors (MAE) in SV from each study
participant, for each modality, separately for low- and high-
intensity intervals. To approximate steady-state conditions,
only the last 60 seconds of the low-intensity intervals and the
last 30 seconds of the high-intensity intervals were included
in the analysis. For each participant, MAE was defined
as the average of the stride-by-stride absolute difference
between the subject’s current running speed (SV) and the
corresponding target speed (SVL or SVH).

A two-way repeated measure ANOVA was carried out
to check for significant (α = 0.05) effects of feedback
modality (WA, PRM, NAM) and training intensity (low vs.
high intensity) on the MAE, as well as potential interactions
between the two factors. Mauchly’s test was applied to check
sphericity, and the Huynh-Feldt correction was applied if
Mauchly’s test indicated that the assumption of sphericity
had been violated. When significant effects were identified,
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Fig. 4. Data from a representative participant, showing the time history of SV for the three feedback modalities. Red lines indicate the target training
speed SVdes (dashed lines) as well as the associated dead-bands (solid lines).

post-hoc comparisons using the Bonferroni-Holm correction
were applied as appropriate.

V. RESULTS

Participant’s baseline metrics were 167.1 ± 8.5 steps/min
(mean ± SD) and 0.042 ± 0.010 m/s for CAD and SDSV,
respectively. SVL ranged from 2.33 to 3.12 m/s (2.69 ±
0.28 m/s, mean ± SD) and SVH ranged from 2.85 to 3.81
m/s (3.38 ± 0.34 m/s). Figure 4 shows the stride-by-stride
SV of a representative participant for the three feedback
modalities, along with SVdes and the corresponding dead-
bands. Figure 5 shows the group averages of MAE. The
MAE was significantly larger for the high-intensity task
than it was for the low-intensity task (principal effect of
training intensity, p<0.05). However, kinematic errors varied
with the feedback modality, regardless of training intensity
(principal effect of feedback modality, p<0.001). Post-hoc
analysis evidenced that WA resulted in significantly larger
MAE compared to both PRM and NAM (corrected p<0.05
for both), while NAM resulted in smaller errors than PRM
(corrected p<0.05). No significant interaction was found
between training intensity and feedback mode.

VI. DISCUSSION AND CONCLUSION

This work introduced the CyberCoach, a minimally ob-
trusive WBS designed to help runners improve their run-
ning speed performance in out-of-the-lab environments. The
CyberCoach leverages validated instrumented insoles [19]–
[21] and a new auditory feedback engine to capture real-

Fig. 5. Group averages of the Mean absolute errors (MAE) in stride
velocity, for different training intensities and feedback modalities. Error
bars indicate ± SE. ∗ indicate p < 0.05.

time SV and deliver auditory stimuli modulated by the
deviations between the wearer’s current running speed and a
target training speed. Unlike similar WBSs for runners, the
CyberCoach is capable of accurately estimating stride-by-
stride running speed in real-time, while providing intuitive
feedback to help the runner adjust their speed to a time-
varying target velocity.

Experimental results suggest that the CyberCoach can
promote better adherence to both low- and high-intensity run-
ning speeds compared to an off-the-shelf running watch. We
argue that this improved efficacy is due to the system’s stride-
by-stride granularity in modulating the feedback provided to
the wearer, as opposed to the WA’s discrete cueing. This
is in line with previous studies that evidenced the benefits
of continuous and intuitive feedback modalities compared to
discrete (interval-based) cueing [7], [8], [11], [14], [15], [17],
[18]. NAM was the most effective among the 3 feedback
strategies, possibly due to its straightforward nature, which
made it easily discernible regardless of the magnitude of the
errors. Indeed, in post-training surveys, the study participants
rated the NAM as the most intuitive modality. This result is
in line with [17], which used a similar noise-based auditory
strategy to elicit changes in runners’ cadence. PRM promoted
significantly increased adherence compared to WA, however
performed worse than NAM. We explain this result by noting
that the performance of PRM was likely dependent on the
subject’s familiarity with the music track, and their ability to
detect, interpret, and recall small variations in playback rate
and pitch. Nonetheless, the PRM modality was rated as the
most enjoyable one by the study participants. In line with
[16], the auditory feedback was able to elicit desired speed
modifications during HIIT sessions. However, unlike [16],
our HIIT protocol was more challenging, being designed
upon training tools that are commonly used by competitive
and recreational runners [33]. Moreover, although we tested
the effectiveness of PRM and NAM in terms of running
speed adaptations, those feedback modalities lend themselves
to other gait metrics (e.g., cadence, peak foot accelerations,
and foot loading patterns), since the input to the biofeedback
engine is a normalized error parameter.

This preliminary study has several limitations. First, the
small homogeneous sample does not allow us to draw any
conclusions about the benefits of this technology for the gen-
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eral populations of competitive and recreational runners. Sec-
ond, the study focused on immediate effects of augmented
auditory feedback, as opposed to long-term training effects
that are critical for competitive runners. Third, the study
investigated unimodal feedback strategies, which limited the
amount of information that could be provided to the wearer
[34]. Future research is warranted to explore how multimodal
strategies may overcome this problem and help runners adjust
multiple biomechanical parameters concurrently [6]. Future
work should also compare the effectiveness of continuous
auditory and haptic feedback modalities for runners, and
develop new adaptive feedback strategies that better conform
to the wearer’s evolving running performances.
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