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Multimodal high-resolution nano-DESI MSI and
immunofluorescence imaging reveal molecular signatures of
skeletal muscle fiber types
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The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The
complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 um) and their mosaic distribution across the tissue
thereby requires high-resolution imaging to differentiate one from another. Herein, we use a multimodal approach to characterize the
chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. We paired our high-resolution nanospray desorption electrospray
ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image
registration and segmentation approaches were used to integrate the information obtained with both techniques. Our results revealed that
the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly,
we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a
switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow
variations in chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated
phospholipids (PLs), and oxidized PLs, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related
compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in PLs
was found in oxidative fibers whereas more saturated acyl chains in PLs were found in glycolytic fibers which suggests an effect of the

membrane fluidity on the metabolic properties of skeletal myofibers.

metabolic, contractile and physiological properties. Based on these
Introduction properties, myofibers are classified as slow-oxidative (type 1), fast-
oxidative (type lla), fast-intermediate (type 1Ix), and fast-glycolytic

(type 1Ib).2% Understanding of the chemical composition of muscle

Skeletal muscle plays a primary role in human physiology enabling

locomotion, maintenance of posture, metabolic homeostasis, and

respiration.! The contractile muscle cells also known as muscle fibers, fibers and how it is linked to their biochemical and contractile

are responsible for the wide array of capabilities that a muscle
displays. Muscle fibers are generally classified according to their
speed of contraction into two major groups: slow-twitch (type 1) and
fast-twitch (type Il) fibers.? Type | fibers are least powerful and most
fatigue-resistant, and therefore are involved in endurance activities.
In contrast, type Il fibers include three subtypes (I3, lIx, lIb) that are
sequentially more powerful but fatigue more quickly, and therefore
are mainly used to deliver rapid bursts of force. This classification of
fiber types (I, lla, l1x, llb) are based on myosin heavy chain (MyHC)
isoforms as the common molecular motor present in a fiber type.?
Another classification of fibers into oxidative/aerobic (I, 1la) or
glycolytic/anaerobic (lIx, Ilb) types is based on the metabolic
properties through which they generate ATP.* The diversity that
myofibers display is a result of the combination of different
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properties provides the basis for the design of physical therapies,
intervention, and treatments targeting a wide variety of muscle-
related pathologies including sarcopenia,® metabolic syndrome’
among others.

A skeletal muscle typically contains heterogeneous myofibers
that are arranged in a mosaic-like pattern. This feature makes it
difficult to separate the individual myofiber types to examine their
molecular signatures using traditional bulk characterization
approaches. Metabolic profiling of skeletal myofibers typically
involves liquid chromatography mass spectrometry (LC-MS) analysis
of tissue extracts from a muscle enriched in a specific fiber type.®®
However, this approach does not provide information on the spatial
localization of molecules enhanced in a specific fiber type. Other
strategies such as histochemical staining provide the localization of
some lipid classes but cannot identify individual lipid or metabolite
species.

Mass spectrometry imaging (MSI) is a powerful label-free
technique that enables the visualization of molecular distributions
across biological samples.’® In contrast to traditional staining
approaches, MSI provides spatial maps of hundreds of compounds in
a single experiment which can be used to track organ development,
the progression of disease and the effectiveness of treatment.!!
Several studies used matrix assisted laser desorption ionization

Please do not adjust margins




(MALDI) and secondary ion mass spectrometry (SIMS) for imaging of
bundles of different types of muscle fibers thereby providing
important insights into key biochemical processes in these
systems.”12716 Most of MALDI MSI studies were carried out using
moderate spatial resolution of ~100 pm and therefore could not
differentiate fibers that coexist within the same bundle. Tsai et al.,
demonstrated that it is possible to distinguish individual muscle
fibers using MALDI MSI performed with a spatial resolution of 10
um.'” They noted that both the crystal size and uniformity of the
matrix influence the spatial resolution of these experiments.
Meanwhile, Song et. used SIMS with a spatial resolution of 0.2 um to
examine the distribution of a several intracellular lipids across
different myofibers.'® Despite the impressive resolution achieved in
the two studies discussed above, the molecular coverage was limited
either because of the reduced sensitivity of MALDI MSI performed
with high spatial resolution or fragmentation of molecules in SIMS,
which limits metabolite identification

Ambient ionization techniques do not require matrix application
and provide a softer ionization thereby expanding lipid and
metabolite coverage, which is advantageous for high-resolution MSI
applications. Nanospray Desorption Electrospray lonization (nano-
DESI) used in this study is an ambient ionization technique, in which
analytes are extracted from tissues into a dynamic liquid bridge
formed between two glass capillaries.’® The spatial resolution of
nano-DESI MSI experiments is mainly determined by the size of the
liquid bridge formed between the nano-DESI probe and sample
surface. A spatial resolution of 10 um has been achieved using a
nano-DESI probe composed of two finely pulled capillaries.® High
spatial resolution nano-DESI MSI experiments have been used for
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mapping lipids and metabolites in small tissue samples including
pancreatic islets (~100 pum diameter),?® lung airways (~50 pm
diameter),?! and mouse uterine tissues (~1000 pm diameter),®??
which cannot be performed with moderate spatial resolution.
Herein, we used high resolution nano-DESI MSI for imaging of
individual skeletal muscle fibers that have a diameter of ~30-50 um.
This tissue represents one of the most challenging systems for MSI
experiments as the fibers are distributed in a mosaic-like pattern. We
used immunofluorescence (IF) imaging of serial tissue sections to
distinguish between different types of fibers in mouse muscle
tissues. IF images were subsequently used as roadmaps for
identifying molecular signatures of different fiber types in adjacent
sections analyzed using nano-DESI MSI. Image registration between
IF and nano-DESI MSl is particularly challenging for this system given
the lack of major anatomical markers which have been traditionally
used to train a variety of computational models for feature
detection,?® co-localization?* and segmentation.? Furthermore, high
spatial resolution imposes additional constraints on the accuracy of
image registration. To address these challenges, we have developed
arobust computational method for image registration and extraction
of ion abundances from well-defined regions of interest (ROls) and
performed relative quantification across different fiber types guided
by IF imaging data. Using this approach, we have identified groups of
molecules that are enhanced in specific fibers. Our results indicate
that myofibers display shallow variations in their chemical gradients
in a progression from more oxidative (type 1) to the most glycolytic
fibers (type Ilb). The lack of drastic changes in the chemical
composition may be attributed to metabolic flexibility of muscle

100

Fig. 1. Multimodal imaging of skeletal muscle fibers which combines IF imaging with MSI in a) positive mode and b) negative mode. The results
are shown for three biological replicates examined in this study. IF images are displayed on the left of ion images showing the distribution of type
| (green), type lla (red), type lix (black) and type Ilb (blue) fibers in GAS tissue. lon images selected for visualization of fiber patterns are PC 40:6
observed as a [M+Na]* adduct at m/z 856. 5830 and [M-H] ion of PC 22:1;02 at m/z 622. 3716 for positive and negative mode nano-DESI MSI,
respectively. Scale bars are displayed inside each ion image. The color bar is displayed on the right side indicating that the intensity scale changes

from black (low) to yellow (high).
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fibers allowing them to switch from one type to another in response
to different stimuli.

Results

In this study, we performed multimodal imaging of mouse
gastrocnemius (GAS) muscle tissues using a combination of IF with
nano-DESI MSI on adjacent serial cross-sections to elucidate
differences in the chemical composition of different fiber types.
Table S1 provides a summary of all the annotated species whose
identity was confirmed by matching their exact mass with open
databases and manual analysis of their MS/MS spectra. The
gastrocnemius (GAS) muscle contains all four fiber types (type I, type
Ila, type lix and type lIb) that are intermixed in the tissue making their
molecular imaging particularly challenging.

Fig.1 shows the results of IF and nano-DESI imaging obtained for
three biological replicates. For each replicate, we used three
adjacent 12 um-thick sections: one for IF imaging, one for positive
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Fig. 2. Multimodal workflow for the IF-guided analysis of nano-
DESI MSI of skeletal muscle fibers. a) Optical image of a GAS tissue
section. Yellow square indicates the region of the tissue analyzed
in the MSI experiments. b) IF image collected of an adjacent
section corresponding to the region analyzed in MSI. c) lon images
of tissue-related peaks. d) RGB representation of all ion images
using PCA analysis. e) ROl image created from IF segmentation. f)
Registration of segmented image to RGB images yields fiber-
specific ROl masks that enables feature extraction in each fiber
type. g) Data analysis using extracted ion abundances enables
comparison of the chemical composition of different fiber types.
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Fig. 3. LDA analysis of all the features extracted in GAS tissue in positive
mode. Green circles are indicative of type | fibers, red circles are
indicative of type lla fibers, black circles are indicative of type lIx and blue
circles are indicative of type llb fibers.

mode and one for negative mode nano-DESI MSI. Representative
positive and negative mode nano-DESI MSI data are displayed along
with the corresponding IF images in Figs. 1a and 1b, respectively.
Moreover, additional ion images from replicate 1 can be found in
Figure S1. A complete view of the optical image and IF images are
provided in Figure S2. We use IF images as roadmaps of fiber
localization. A mosaic pattern of fibers is observed in all the IF
images, in which type | fibers are labelled in green, type lla are
labelled in red, type lIx are labelled in black, and type llb are labelled
in blue. As observed in Figs. 1 and S2, GAS tissue displays fiber
regionalization with the largest proportion of oxidative fibers present
in the deep region closer to the blood supply. Meanwhile, glycolytic
fibers are mainly found on the edges of the muscle.?® Despite that,
little or no fiber segregation is observed in IF images. The IF data
were used to guide nano-DESI experiments to areas where a
transition from the deep region to the surface region of GAS tissue
was observed. Representative ion images normalized to the total ion
current (TIC) of ions at m/z 856.5830 corresponding to
phosphatidylcholine (PC) 40:6 and m/z 622.3716 corresponding to
the oxidized PC 22:1;02 observed in positive and negative mode,
respectively, are also shown in Fig. 1. These ions correspond to two
phospholipids enriched in the deep region of the tissue. There is a
good qualitative correspondence between the patterns observed in
the ion images and IF images. Fig. S3 shows the calculation of the
spatial resolution using the 20/80 rule.'®?” In this approach, the
spatial resolution is estimated by examining the distance over which
the signal along the steepest chemical gradient in the sample
changes between 20 and 80% of its maximum value. Our
indicate that the spatial
experiments is about 6 um, which is the best value reported for nano-
DESI MSI so far. We accomplished this value by using a slightly

measurements resolution of our

smaller diameter for the nano-DESI capillaries of 20 um instead of 25
um used in previous work.?> We also used a slower scanning rate of
10 um/s, which reduces the pixel size in the direction of the scan.

J. Name., 2013, 00, 1-3 | 3
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High spatial resolution is critical to the visualization of chemical
gradients generated by individual muscle fibers.

Despite the high quality of high-resolution nano-DESI ion images,
the complex distribution of muscle fibers observed in Fig. 1 presents
a challenge for feature extraction and image registration to specific
fiber types. Although the chemical gradient between the deep region
and outer part of the tissue is evident in ion images, the absence of
anatomical markers and small dimensions of individual fibers make
it difficult to discern the individual fibers and perform image
registration with an accuracy comparable to the spatial resolution of
nano-DESI MSI experiments. To address this problem, we have
developed a robust image registration and segmentation approach,
which is summarized in Fig. 2. A yellow box in the optical image of
the tissue (Fig. 2a) marks the region analyzed using nano-DESI MSI.
First, the IF image (Fig. 2b) is cropped to roughly cover the same
region. Next, we generate MSI images (Fig. 2c) using a mass list of
peaks. We use principal component analysis (PCA) to reduce data
dimensionality of ion images and generate an RGB representation of
the chemical gradients in the sample (Fig. 2d). A grey representation
of the IF image is used for the affine registration to the PCA image as
shown in Fig. S4. This step resizes and reorients the IF image to align
it with the pattern displayed by the PCA image. Next, we perform
segmentation of the IF image to obtain fiber type-specific ROIs (Fig.
2e) using a robust image segmentation approach developed by our
group.?® Finally, the segmented ROl image is registered to the RGB
representation image and hence to all the ion images using a
stochastic gradient descent algorithm thereby yielding well-defined
ROIs specific to each fiber type (Fig. 2f). A closer view of this step is
depicted in Fig. S5. The segmented ROl image is subjected to an
erosion step to avoid the extraction of pixels from fibers located in
the vicinity of the fiber of interest (Fig. S5b). As a result, fiber-specific
masks for type | fibers (Fig. S5c), type lla fibers (Fig. $5d), type lIx
fibers (Fig. S5e), and type lIb fibers (Fig. S5f) are generated. Although
the cellular outlines for type Ilb are difficult to visualize in the
glycolytic region, in which type llb is the dominant fiber, individual
type llb fibers are clearly visible in the oxidative region where all
Fig.5f shows that our registration approach
successfully extracts pixels corresponding to type llb fibers
generating a mask specific for type llb fibers across the entire

fibers coexist.

scanned area. In order to validate our approach of identifying fiber-
specific pixels in ion images, we performed additional correlation
analysis of the patterns observed in ion images with ROI-generated
masks. This process is described in detail in Fig.S6 using type lla fibers
as an example. Briefly, a dilation morphology operation is used to
define contour ROIs surrounding each fiber type at different
distances away from the fiber ROI. An overlay of the fiber and
contour ROIs onto ion images confirms that fiber ROI is colocalized
with an ion image of an abundant species at m/z 856.5835. We also
performed a quantitative analysis of the correlation between ion
signals in the fiber ROl and contour ROI as a function of the spatial
distance between them. This analysis found a statistically significant
linear relationship (r = -0.86, p value < 0.001), which indicates the
decrease of ion signal in tissue locations with an increase in the
distance from fiber ROI. This change is in agreement with the
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chemical gradient extending from a specific fiber type into the
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Fig. 4. a) Representative ion images of the distinct patterns observed in
skeletal muscle tissue: red-green (RG) stands for a distribution enriched
in type | and type lla fibers which is displayed by PC 0-44:11 at m/z
904.5596. Red-Green-Black (RGBK) stands for a distribution enriched in
type |, lla and type lIx fibers which is displayed by PC 38:4 at m/z
832.5827. Blue (BL) stands for a distribution enriched in type Ilb fibers
which is displayed by carnosine at m/z 227.1138. “No pattern” indicates
a uniformly distribution across all the tissue which is displayed by PC
32:0at m/z 756.5514. b) Bar graph showing the sorting of species based

on the different patterns observed in their spatial distribution.

surrounding tissue. Subsequent ROl analysis generates ion

abundances for each fiber type. This workflow allowed us to evaluate
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differences between molecular markers of different myofiber types
based on high-resolution nano-DESI MSI data (Fig. 2g).

Table 1. Set of conditions used to classify the different patterns observed
in GAS tissue. Green (G) represent type | fibers, red (R) represent type lla
fibers, black (BK) represent type lIx fibers, and blue (BL) represent type llb
fibers.

Conditions
R-G R/BL>1.2,R/BK>1.2, G/BL>1.2, G/BK > 1.2, R/G< 1.5
R-G-BK| R/BL>1.2,G/BL>1.2, BK/BL>1.2, G/BK < 1.5, R/BK<1.5
BL BL/R > 1.05, BL/G > 1.05, BL/BK > 1.05
No Does not meet any conditions
pattern

In this work, we only report molecular markers that were
detected in all three biological replicates and identified using
MS/MS. Based on these criteria, we analyzed a total of 140 unique
species observed in both positive and negative ionization mode.

Fig. 3 shows the results of a linear discriminant analysis (LDA)

performed on muscle fibers which provided a separation of all the
observed m/z features into two large groups. The blue circles
corresponding to type llb fibers are well separated from the rest of
the fibers across the LD1 and LD2 axis. In contrast, type | (green
circles), type lla (red circles) and type lIx (black circles) display
overlapping regions indicating a greater overlap between the
chemical composition of these fibers. These results provide a general
overview of the distribution of the analyzed m/z features and their
association with specific fiber types.
For each feature, we calculated its mean abundances in different
fiber types as a percent of its maximum abundance across the fibers.
The relative abundances obtained in this analysis are summarized in
Table S1. Following an approach described in a recent proteomics
study where a series of criteria were used to discriminate specific
fiber patterns,?® we established several criteria for the identification
of myofibers based on the high-resolution spatial lipidomics
experiments performed in this study. We then used these criteria to
discriminate between myofibers.

First, we used a stringent criterion for identifying unique fiber-
specific markers. We define a unique marker as a species that shows
more than a 2.5-fold change in abundance in one fiber type in
comparison with other fibers. This criterion provided only one
unique marker of type Ilb fibers at m/z 175.0245 corresponding to
the ascorbate (Fig. S7a). Confirmation of the identity of this molecule
was performed by comparison with MS/MS reported in the
literature.3%3! lon images of m/z 175.0245 in all three replicates show
a gradual decrease of the abundance of ascorbate when moving from
the more glycolytic region to the more oxidative region (Fig. S7b). No
other unique markers of fiber types have been identified, which is
consistent with the results of the LDA analysis discussed earlier.

Next, we use less stringent criteria to identify groups of
molecular markers that display distinct spatial patterns. Fig. 4a
shows representative ion images of the four patterns that we
observed which we refer to as red-green (RG) displayed by PC O-
44:11, red-green-black (RGBK) displayed by PC 38:4, blue (BL)
displayed by carnosine, and “no pattern” displayed by PC 32:0. The

This journal is © The Royal Society of Chemistry 20xx

conditions used to define each pattern are summarized in Table 1.
The RG pattern corresponds to species enhanced in type | and type
lla fibers by at least 1.2-fold in comparison to type lIx and type llb,
and with a ratio between type | and type lla of less than 1.5. The
RGBK pattern corresponds to molecules enhanced in type I, type lla
and type lIx fibers by at least 1.2-fold relative to type Ilb, and with
ratios between type |, lla and lIx of less than 1.5. The BL pattern
corresponds to molecules enhanced in type Ilb fibers. Because
chemical gradients in the glycolytic region are very shallow, we set a
criterion that any molecule, for which the abundance in type llb is by
at least 1.05 higher than in other types of fibers is assigned to this
pattern. Finally, molecules that do not meet any of these criteria are
classified as species with “no pattern” indicating that they are
uniformly distributed across the tissue. Fig. 4b shows a bar graph
summarizing the results of this analysis. A detailed summary
obtained for all the replicates is provided in Table S1. The RGBK
pattern (orange bar) is the most dominant pattern observed for 47
species, followed by the BL (blue bar) with 28 species, and RG (red
bar) pattern with 15 species. Interestingly, 50 species (magenta bar)
do not display a specific localization across the tissue. None of the
molecules observed in nano-DESI MSI data displayed a distinct
localization to either type | (green), type lla (red), or type lIx (black)
fibers making it difficult to differentiate between these three types
of fibers.

In order to uncover statistically significant differences between
these fibers, we use volcano plots that compare p-values and fold-
change (FC) of different species identified in nano-DESI MSI
experiments. The results are shown in Fig. S8 for type | Vs. type lla,
Fig. S9 for type | Vs. type lIx and Fig. S10 for type lla Vs. type lIx for
all replicates. Using log2(FC) of less than -0.5 or greater than 0.5 and
p-value <0.05, we observe the decreased abundance (left side) of
SM(d36:1), PE(36:1), PC(36:4), PC(32:2), PC (30:0) and PE(36:1) and
enhanced abundance (right side) of PC(20:2/12-HETE), CAR(14:2),
CAR(18:2), PC(e44:11) and PC(36:1) when comparing type | Vs. type
Ila, type | Vs. type lIx and type lla Vs. type lIx. These molecules are
highlighted in blue to indicate their reproducibility across all
replicates. The fact that similar molecules are suppressed or
enhanced across these fibers suggests a gradual change in their
abundance from more oxidative fibers to more glycolytic fiber (type
| -> type lla -> type IIx -> type llb) and vice versa.

Fig. 5 shows a heatmap summarizing the variations in the
abundance of species in each fiber type. A z-score is calculated
indicating the number of standard deviations from the mean
abundance. In this plot, the more positive z-score highlighted in red
indicates that the abundance of a molecule in a specific fiber type is
higher than the mean abundance across all fibers. Meanwhile, a
more negative z-score highlighted in blue indicates an abundance
lower than the mean value across the fibers. Finally, a z-score closer
to zero shown in white indicates an abundance close to the mean
value. The calculated z-scores across all replicates are provided in
Table S2. Molecules were sorted out based on the spatial localization
they showed across the three replicates. If a molecule was assigned
to either RG or RGBK pattern in more than 2 two replicates, it is
considered to correspond to oxidative metabolism. The RG pattern

J. Name., 2013, 00, 1-3 | 5
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Fig. 5. a) Heatmap of all the molecules identified in GAS tissue. Abundances are shown using a z-score scale with the blue-white-red color bar indicating z-
scores ranging from -1.5 to 1.5. TIC normalized ion images of b) [M+H]* adduct of PC 36:2 at m/z 786.6007, c) [M-H] ion of PE 40:6 at m/z 790.5787, d)
[M+Na]" adduct of PC 34:0 at m/z 784.5850, e) [M+Na]* adduct of SM d36:1 at m/z 753.5894 and f) [M-H] ion of PC 16:0_5:0(COOH) at m/z 608.3565.
Scale bars are displayed inside each ion image. The color bar is displayed on the right side indicating that the intensity scale changes from black (low) to

yellow (high).

clusters type | and type lla fibers which are known to rely on oxidative
phosphorylation for energy supply. The RGBK pattern adds type lIx
into the group of oxidative fibers given the overlap in the chemical
composition as displayed in Fig. 3. Meanwhile, molecules assigned to
the BL pattern in more than two replicates are part of glycolytic
metabolism. The BL pattern only clusters type Ilb fibers which rely on
glycolysis for energy supply. When extending this classification to the
heatmap (Fig. 5), we observe three distinct blocks depicting different
trends: the top block contains all the molecules associated with
oxidative metabolism (light yellow), the middle block contains all the
molecules associated with mixed metabolism (intermediate yellow),
and the bottom block contains the molecules associated with
glycolytic metabolism (dark yellow).

A complete list of molecules and their classification are provided
in Table S2. Overall, there is a larger number of molecules depicting
oxidative metabolism than glycolytic metabolism. Specifically,
species like cardiolipins (CL), monoacylglycerols (MG), oxidized lipids
and fatty acids (FA), acylcarnitines and highly polyunsaturated

6 | J. Name., 2012, 00, 1-3

phospholipids are detected as fingerprints of oxidative metabolism
as shown in Figs. S11 and S12. In contrast, saturated and
monounsaturated phospholipids and histidine-related compounds
including carnosine, anserine, and histidine are mainly identified as
fingerprints of glycolytic metabolism Fig. S13. Regardless of the type
of metabolism, it is evident that there is always a gradual transition
in molecular abundances from type I/type lla>type lIx>type llb
across all the replicates (Table S2). These observations are also
confirmed by ion images shown in Fig. 5. For example, the
abundances of PC 36:2 (Fig. 5b) and PE 40:6 (Fig. 5c) increase from
left (glycolytic) to right (oxidative). Meanwhile, PC 34:0 (Fig. 5d) does
not show a specific localization. Lastly, SM d36:1 and PC
16:0/5:0(COOH) display a decreasing chemical gradient from left to
right. In summary,
composition across fiber types does not change dramatically but

these results confirm that the chemical
rather undergoes relatively small changes especially in the region

where all the fiber types coexist such as the deep region of GAS
tissue.
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Fig.6. Acyl chain composition of all the phospholipids detected in GAS
tissue with a carbon length ranging from 12C to 24C. Length of the bars
indicates the number of species containing a specific acyl chain. Red bars
indicate oxidative species whereas blue bars indicate glycolytic species.

A deeper look at the structural information of membrane
components such as phospholipids, revealed different acyl chain
composition in fibers with oxidative or glycolytic metabolism. Fig.6
displays the distribution of all the constituent fatty acids from 12C to
24C found in phospholipid species. A detailed list of all acyl chains
can be found in Table $3. Among the 91 identified phospholipids
(including isomers with different acyl chain compositions), 52 are
more abundant in oxidative fibers, 16 are enhanced in glycolytic
fibers, and 23 are uniformly distributed across the tissue.
Interestingly, a higher number of polyunsaturated fatty acids (PUFAs)
including docosahexaenoic acid (DHA) FA 22:6, docosapentaenoic
acid (DPA) FA 22:5, FA 22:4, and arachidonic acid (AA), FA 20:4 were
identified in phospholipids associated with oxidative metabolism in
comparison with phospholipids associated to glycolytic fibers, which
do not contain these acyl chains. This trend in the acyl chain
composition in phospholipids suggests an important relationship of
their structures to the function of the fiber.

Discussion

The approach developed in this study uses high-precision
registration of IF and high-resolution nano-DESI MSI data to provide
unique insights into lipid signatures of different fiber types in muscle
tissues. This approach is particularly advantageous for muscle
tissues, in which heterogeneous fibers are intermingled making it
difficult to separate individual fiber types for traditional bulk
lipidomics and metabolomics analyses. Indeed, omics analyses are

This journal is © The Royal Society of Chemistry 20xx

typically performed using muscle tissues enriched in a specific fiber
type.”1232 |n contrast, chemical gradients observed using high-
resolution nano-DESI MSI enable a direct comparison of the chemical
composition of different types of myofibers in the same experiment.

The results reported herein provide a global overview of the
chemical composition of the four main myofibers identified in
mammals: type |, type lla, type llx, and type Ilb. Our results indicate
that although myofibers are classified into discrete categories
expressing distinct MyHC isoforms, their chemical signatures are not
drastically different. Instead, we observe a gradual change in the
relative abundance of lipids and metabolites between oxidative and
glycolytic fibers. The lack of fiber-specific patterns and prevalence of
species that are uniformly distributed across the muscle tissue (50
species in Fig. 4b) supports this claim thereby suggesting that a
substantial fraction of molecules is conserved across different
myofiber types for a proper function of the muscle. The shallow
chemical gradients observed in muscle fibers are likely linked to their
inherent ‘muscle plasticity’, a term used to describe the ability of
muscles to modify their fiber structure or fine-tune their aerobic
capacity in response to changes in their contractile activity, loading
conditions, substrate supply among others.%33 For example,
endurance training increases the oxidative capacity of all fibers
types,3 which we propose is facilitated by the relatively small
chemical differences between myofibers. Another example is found
in our previous study in which the influence of defective fatty acid
oxidation due to the loss of carnitine palmitoyltransferase 2 (CPT2)
was tested in different muscles.3® The lack of CPT2 caused a shift in
mitochondrial energy metabolism to non-lipid substrates. As a result,
oxidative fibers underwent metabolic change towards a more
glycolytic metabolic profile without necessarily changing their
myosin heavy chain isoform which is more connected to myofiber
contractile properties. Hence, it is reasonable to assume that from
the metabolic point of view, the lack of substantial chemical
gradients across myofibers makes it possible for the muscle to adapt
to meet the needs that the new activity/condition demands and, in
some cases, undergo metabolic transformation.

Among the four myofiber types analyzed in this study, type llb
fibers are the most chemically distinct (Fig. 3). Indeed, type Ilb is the
only fiber type for which we detected a specific molecular marker:
ascorbate. Aside of being a powerful antioxidant, it has been
suggested that ascorbate breakdown through the pentose
phosphate pathway can be a potential substrate for glycolysis,337
the dominant metabolism of type Ilb fibers. In contrast, type |, type
Ila, and type lIx do not have a specific molecular marker and may be
distinguished using an in-depth statistical analysis of the relative
abundances of lipids and metabolites (Fig. $8-S10). One key finding
of this study is that although type IIx fibers are more similar to type
Ilb in their contractile properties and are traditionally considered to
present a glycolytic metabolism,3%3° their chemical composition is
more comparable to oxidative fibers: type | and type lla as shown in
Fig. 3 and Fig.4. Indeed, 47 species are present in comparable
abundances in fibers type |, type lla and type lIx (RGBK pattern in Fig.
4b) in contrast to only 15 species present with similar abundances in
fibers type | and type lla (RG pattern in Fig. 4b). These results are
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consistent with recent studies acknowledging the oxidative
properties of type lIx fibers which may allow to sustain high running
speeds for long periods of time in sprinting wild animals.*%*! Of note
is that this is the first MSI study that reports the chemical profile of
the type lIx fiber, which could only be obtained using our accurate

image registration approach.
Molecular fingerprints linked to energy metabolism

Substrate-level phosphorylation is one of the main pathways that
fast-glycolytic skeletal muscles use to produce ATP. Anaerobic
degradation of phosphocreatine is used for the immediate
phosphorylation of ADP to ATP during sudden bursts of exercise.* In
this study, we found that creatinine, a direct product of the
breakdown of phosphocreatine, was mainly enriched in fast-
glycolytic fibers indicating a high phosphocreatine utilization in this
fiber type. Our findings are consistent with several reports indicating
a higher consumption of phosphocreatine stores by fast-glycolytic
fibers in comparison to slow-oxidative fibers during intense short-
term exercises.*>*3

Increased breakdown of ATP triggers the glycolytic pathway in an
effort to keep up with the energy demand.* In anaerobic glycolysis,
glycogen is broken down to produce three ATP molecules and lactic
acid. Accumulation of lactic acid causes a decrease in the pH thereby
promoting muscle fatigue, disrupting phosphocreatine recycling, and
causing muscle injury during high-intensity exercise.** Therefore, it is
not surprising that fast-glycolytic fibers have some mechanisms to
protect themselves against oxidatively-induced tissue damage. Our
results indicate that histidine-related compounds (Fig. $13) including
histidine, methyl histidine, carnosine, and anserine are enhanced in
type Ilb fibers. These histidine-related compounds species act as
antioxidants thereby preventing tissue damage due to the oxidative
stress.*> The antioxidant capacity of these compounds derive from
the imidazole ring, which efficiently scavenges reactive oxygen
species (ROS) and harmful alpha—beta-unsaturated aldehydes.*>4¢
Moreover, the presence of the imidazole moiety results in a high
muscle buffering capacity of histidine-related compounds that helps
regulate the acidosis conditions during glycolysis. For example,
carnosine with a pK,=6.72 is an efficient antioxidant that also helps
maintaining the pH around physiological values thereby delaying the
onset of fatigue following short bouts of exercise.*” The acidosis
environment promoted by glycolysis also favors the synthesis of
creatinine through the breakdown of phosphocreatine that
consumes H* for the phosphorylation of ADP.484°

Oxidative phosphorylation becomes the main source of energy in
events lasting from minutes to hours and is mainly manifested in
slow-oxidative (type 1) and fast-oxidative-intermediate (type lla and
type lIx) fibers. In this pathway, ATP is generated through the
oxidation of fats and carbohydrates.* The enhanced abundance of
acylcarnitines including CAR 18:2, CAR 18:1, CAR 16:0 and CAR 14:2
in oxidative fibers is a fingerprint of this dynamic metabolism (Fig.
$12). The conversion of fatty acyl-coAs into acylcarnitines enables
the transport of fatty acids across the mitochondrial membrane to
support energy production through B-oxidation. Because of the
higher content of mitochondria in oxidative fibers, it is reasonable to
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observe greater B-oxidation activity in these fibers. Our findings are
consistent with a study by Yu-Hsuan et al. that reported a higher
abundance of acylcarnitines in fibers with an oxidative metabolism
in a gastrocnemius muscle tissue.'? Interestingly, free carnitine and
acetylcarnitine, CAR 2:0, do not show a specific localization and are
uniformly distributed across all the tissue. Because of the efficient
enzymatic conversion between carnitine and acetylcarnitine, it is
reasonable to observe that these two molecules have a similar
spatial distribution. These results may be attributed to another
important role of carnitine aside from translocating long-chain fatty
acids from cytosol to the mitochondrial matrix discussed earlier. In
particular, carnitine is also involved in the formation of
acetylcarnitine from acetyl-CoA thereby preventing extreme
fluctuations in acetyl-CoA and free CoA that otherwise can be
deleterious to cellular function.®>>! Our results indicate that
acetylcarnitine maintains this metabolic flexibility in all the fiber
types.

Another molecular marker of oxidative metabolism is observed
in the distributions of MG 18:2, MG 18:1, and MG 16:0 which are
enhanced in oxidative fibers (Fig. $12). We believe that the presence
of MGs might reflect the lipolysis state of triglycerides (TGs)
The

enzymes adipose triglyceride lipase (ATGL), hormone-sensitive lipase

contained in these fibers which serve as energy reservoirs.

(HSL) and monoacylglycerol lipase (MGL) sequentially hydrolyze TG,
DG, and MG, respectively, thereby releasing fatty acids at every
step.>? This lipolysis activity is known to be enhanced in oxidative
fibers.5® Moreover, the high expression of ATG and HSL enzymes in

type | fibers reported in the literature further supports our findings.
52,54

Differences in membrane composition in muscle fibers

Membrane architecture of muscle fibers is strongly linked to
their contractile capabilities and fatigue resistance.>>® Most of the
properties of skeletal muscle membranes are determined by the
composition of their phospholipid components. Our results shown in
Fig.6 indicate a higher abundance of phospholipids in oxidative fibers
in comparison to glycolytic fibers (52 species vs 16 species). The
higher content of phospholipids in oxidative fibers may be attributed
to the larger number of membrane-bound organelles like
mitochondria, which are known to be more abundant in oxidative
fibers as compared to glycolytic fibers.””*® Because oxidative
phosphorylation takes place in the mitochondria, these organelles
are more abundant in oxidative fibers.>® In our experiments, we
found that two abundant cardiolipins (CL), CL 72:8 and CL 72:7, are
enhanced in the oxidative fibers (Fig. S11). CLs are unique dimeric
phospholipids exclusively located in the mitochondria and hence can
be used as mitochondrial markers.

The acyl chain composition of most abundant phospholipids
shown in Fig. 6 indicates that palmitic and stearic acids (PA and SA)
are the most abundant acyl chains found in the total pool of
phospholipids. This result is consistent with the known prevalence of
PA and SAin cellmembranes. ®° Furthermore, highly polyunsaturated
acyl tails such as DHA and DPA are exclusively found in oxidative
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fibers. Considering that all FAs can serve as energy source via B-
oxidation, the observed preference towards specific acyl chains in
different fiber types is likely attributed to their role as membrane
building blocks than their energy
production.’2®2 The degree of unsaturation of acyl tails in

rather involvement in
phospholipids directly affects membrane fluidity. In particular, the
presence of unsaturated acyl chains decreases the packing efficiency
of membrane phospholipids thereby keeping the membrane more
fluid at physiological temperatures.®®%* The fluidity of skeletal
muscle membranes plays an important role in regulating the local
lipid environment and protein conformations involved in multiple
signaling processes. These may include Ca?* signaling, which
regulates the contractile properties and fatigue resistance,®
activation of carnitine palmitoyltransferases, which regulates fatty
acid oxidation,®® and insulin-mediated glucose metabolism which
regulates glucose disposal and hence blood sugar levels,*® among
others. Given the prevalence of PUFAs in oxidative fibers, it is
reasonable to assume that the high content of polyunsaturated acyl
chains in oxidative fibers, especially DPA and DHA, results in a more
fluid thus
protein/receptor associated with an endurance

and permeable membrane facilitating  many
interactions
phenotype.®’ In contrast, the prevalence of PA and relatively small
number of PUFA in lipids observed in glycolytic fibers increases the
rigidity and thereby constrains molecular diffusion in the lateral
plane of the membrane, which may inhibit the activation of oxidative
metabolism. Indeed, it has been reported that a more rigid
membrane can impair insulin ability to buffer plasma glucose
concentration by altering the insulin receptor binding and affinity or
the ability to translocate glucose transporters.®®70 As a result, rigid
membranes likely present greater insulin resistance, a feature
displayed mainly by glycolytic fibers.>® In contrast, the incorporation
of DHA and DPA into membrane phospholipids through dietary
supplementation has been reported to enhance insulin action,”73
improve fatigue resistance and oxidative capacity. Moreover, EPA
and DHA are natural ligands of the peroxisome proliferator-activated
receptors (PPARs) that regulate the expression of genes associated
with lipid metabolism.%” All these properties are found in an
endurance/oxidative fiber profile.

We have also observed a series of truncated oxidized
phospholipids that display the same enhancement in oxidative fibers
as phospholipids with highly unsaturated acy! tails Fig. $11 and S12.
Oxidized phospholipids are known to be formed under oxidative
stress conditions.”* ROS formed during aerobic respiration attack C=C
bonds in PUFAs thereby promoting lipid radical peroxidation. In this
study, we observed multiple oxidized species including PC
18:0_5:0(COOH) and PC 18:0_4:1 (COOH) produced by oxidation of
PC 18:0_20:4; PC 18:0_9:0(COOH) and PC 18:0_12:1;0;COOH
produced by oxidation of PC 18:0_18:2; and PC 18:0_22:6;0
produced by oxidation of PC 18:0_22:6.7> These assignments were
manually confirmed using MS/MS as shown in Fig. $14 and are also
listed in Table S3. The enhanced abundance of PUFAs in oxidative
fibers can also lead to the formation of oxylipins, another important
group of lipid mediators.”® Because precursor FAs are enhanced in

oxidative fibers, it is likely that this fiber type is also enriched in

This journal is © The Royal Society of Chemistry 20xx

oxylipins as reported in a previous study.”” In this study, we identified
9-HODE and its derivative 9-oxoODE, which are produced from the
oxidation of linoleic acid, LA (Fig. S11). In summary, these results
indicate that the membrane acyl chain composition is strongly linked
to the regulation of metabolic properties of oxidative and glycolytic
skeletal muscles.

Conclusions

In this work, we demonstrate the power of high-resolution
molecular imaging using nano-DESI MSI in combination with
immunohistochemical fiber typing to examine molecular signatures
of skeletal muscle fibers. The high specificity towards each fiber type
allows us to accurately measure chemical gradients across muscle
tissue, especially in complex regions where multiple myofiber types
coexist. Our results indicate that moderate chemical gradients are
present between oxidative and glycolytic fibers. We found that only
type llb myofiber may be differentiated from other fiber types based
on the LDI analysis. The molecular signatures of type llb myofibers
are consistent with glycolytic metabolism. Interestingly, molecular
signatures of type lIx fibers, which are commonly categorized as
glycolytic fibers, are indicative of oxidative metabolism. Finally, we
provide insights into the biological role of the species detected in this
study either as membrane components, energy-related compounds,
or antioxidants. Our results provide important insights into the
skeletal muscle physiology by linking the biochemical pathways with
the known contractile properties of different types of myofibers. The
multimodal workflow established in this study may be extended to
the analysis of other highly heterogenous and complex tissues such
as pancreatic islets.

Experimental
Materials
LC-MS grade methanol (MeOH) and LC-MS water were purchased

from Sigma-Aldrich (St. Louis, MO). Lipid standards lyso-
phosphatidylcholine (LPC) 19:0, lyso-phosphatidylethalonamine
(LPE) 17:1, lyso-phosphatidylglycerol  (LPG) 17:1, lyso-

phosphatidylserine (LPS) 17:1 and lyso-phosphatidylinositol (LPI)
17:1 were purchased from Avanti Polar Lipids (Alabaster, AL).
Arachidonic Acid (AA)-d8 standard was purchased from Cayman (Ann
Arbor, Ml).

Primary antibodies used for fiber types staining were purchased from
Developmental Studies Hybridoma Bank (DSHB) (lowa City, IA): Myh7
MyHC-1 (BA-F8) for type | fiber, Myh2 MyHC-2A (2F7) for type IIA
fiber, and Myh4 MyHC-2B (10F5) for type IIB fiber. Secondary
antibodies used in the staining were purchased from Thermo Fisher
Scientific (Waltham, MA): goat anti-mouse IgG1, Alexa Fluor 568 (A-
21124); goat anti-mouse 1gG2b, Alexa Fluor 647 (A-21242); goat anti-
mouse IgM, Alexa Fluor 488 (A-210420).

Tissue collection

C57BL/6 mice (X month old) used in this study were originally
obtained from Jackson Laboratory (Bar Harbor, ME) and maintained
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in the animal facility with free access to standard rodent chow and
water. All the procedures involving mice were approved by the
Purdue University Animal Care and Use Committee (Protocol#
1112000440). Whole gastrocnemius muscle was dissected and
frozen immediately in liquid nitrogen. Frozen muscle was fixed on
Optimal cutting temperature compound (OCT compound) with 60%
of the tissue intact from OCT compound. The muscle was cross-
sectioned with a thickness of 12 um using a Leica CM1850 cryostat.

Immunofluorescence staining

Gastrocnemius sections were directly incubated in blocking buffer
(5% goat serum, 2% bovine serum albumin, 0.1% Triton X-100 and
0.1% sodium azide in PBS) for 1 h at room temperature. Samples
were then incubated with primary antibodies diluted in blocking
buffer overnight at 4 °C. After washing with PBS, the samples were
incubated with secondary antibodies for 1 h at room temperature.
Images were captured using a Leica DM 6000B microscope with a x
20 objective and merged by Photoshop software.

Nano-DESI MSI

Nano-DESI MSI experiments were carried out on a Q-Exactive HF-X
Orbitrap mass spectrometer from Thermo Fisher Scientific
(Waltham, MA) using a custom-designed nano-DESI source.?>7® The
high-resolution nano-DESI probe was assembled by forming a ~90°
angle between two finely pulled capillaries with o.d. ~20 um: the
primary and nanospray capillaries. A third finely pulled capillary was
placed next to the nano-DESI probe to serve as a shear force probe.
Detailed explanation of the preparation of the primary, nanospray
and shear force capillaries and their assembling can be found in our
previous work.® A solution of MeOH:H,0 (9:1) (v/v) containing 200
nM of lipid standards was used as the extraction solvent and was
infused using a syringe pump at 0.5 puL/min. lonization was achieved
by applying a 4 kV potential to the syringe needle. The heated
capillary inlet was held at 30 V and 250 °C.

For all the data reported in this study, we used a scan rate of 10
um/s, a step between the lines of 15 um and an acquisition rate of 7
Hz resulting in an average pixel size of 0.7 pm x 15 um. The spatial
resolution of 6 um was estimated using the 20/80 rule as shown in
Fig. S2. Both positive and negative mode data were collected for each
biological replicate (n=3) using a mass resolution of 60,000 at m/z
200 with a mass range of m/z 133-2000. MS/MS data for the
endogenous species observed in nano-DESI MSI experiments were
acquired directly from tissue sections using the data dependent
MS/MS mode at a normalized collision energy of 25 V and mass

isolation window of 0.5 m/z.

MSI Data processing

MS data from nano-DESI experiments were acquired as .RAW files
using Xcalibur software (Thermo Electron, Bremen, Germany). lon
images were generated from .RAW files for a list of m/z values using
a custom Python script (https://github.com/LabLaskin/MSI-image-
generator) . We used a mass window of 10 ppm to extract peak
intensities and aligned MS signals with respect to the acquisition
time. In each pixel, peak intensities were normalized to the total ion
current (TIC) to compensate for signal fluctuations during imaging
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experiments. lons in the m/zlist were annotated by searching
against METLIN database (https://metlin.scripps.edu) using accurate
mass and MS/MS data.

Image Registration

Computational image registration was used to correlate the
molecular information from both MSI and immunofluorescence
experiments. We used a strategy reported in previous studies.”®#
Herein, we regarded the MSI image as the fixed image and
immunofluorescence image as the moving image, respectively. A
linear transformation model was adopted, in which translation and
affine transformations were performed in tandem. To optimize the
parameters in the transformation model, we selected mutual
information as a criterion and adaptive stochastic gradient descent
as an optimizer in this computation. After the optimal parameters
were determined, the linear model can transform the moving
immunofluorescence image to spatially align it to the fixed MSI
image. Since the mutual information metric only evaluates intensity
similarity between two images with the same dimensions, we
converted both MSI and immunofluorescence images into grayscale
images before the registration. For MSI data, we used principal
component analysis (PCA) to compress the hyperspectral data into a
low-dimensional space while preserving molecular distribution
information in the original high-dimensional data.® Additional
details of the PCA analysis of nano-DESI MSI data can be found in our
previous report.2®

We validated the fiber ROI generated from IF images for ion imaging
analysis using quantitative correlation analysis. Surrounding contour
ROIs with varying spatial distance away from fiber locations were
obtained using dilation morphology algorithm with registered IF
imaging data. This enables the extraction of MS signals in locations
surrounding fiber ROI. Finally, the ion signals were correlated with
their spatial distances away from fiber locations using a linear
regression analysis.

Statistical Analysis

Both multivariate and univariate statistics were exploited for the
exploratory analysis of muscle biomarkers. To create a heatmap of
metabolite abundance in different muscle fibers, MS signals were
scaled by a z-score transformation, representing the number of
standard deviations from the mean value. Linear discriminant
analysis (LDA) was used to map mass spectra from muscle fibers into
a 2D space of the co-registered immunofluorescence images. In
univariate analysis, the difference between metabolite MS signals in
muscle fibers was analyzed using the volcano plot by plotting a log2
fold change versus p-value. Herein, the p-value of one metabolite
observed in mass spectra of two types of muscle fibers was
calculated using the t-test.

Abbreviations

AA Arachidonic Acid

ATGL Adipose Triglyceride Lipase
CAR Carnitine

CID Collision-induced dissociation
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CL Cardiolipin

DG Diglyceride

DHA Docosahexaenoic Acid

DPA Docosapentaenoic Acid

FA Fatty Acid

FC Fold-change

GAS Gastrocnemius muscle

HSL Hormone Sensitive Lipase

IF Immunofluorescence

LA Linoleic Acid

LC-MS Liquid Chromatography-Mass Spectrometry
LDA Linear Discriminant Analysis

LDs Lipid Droplets

MALDI Matrix Assisted Laser Desorption lonization
MG Monoglyceride

MGL Monoacylglycerol Lipase

MS/MS Tandem Mass Spectrometry

MSI Mass Spectrometry Imaging

MUFA Monounsaturated Fatty Acid

MyHC Mpyosin Heavy Chain

Nano-DESI Nanospray Desorption Electrospray lonization
PA Palmitic Acid

PC Phosphatidylcholine

PCA Principal Component Analysis

PE Phosphatidylethanolamine

PL Phospholipid

PPARs Peroxisome proliferator-activated receptors
PUFA Polyunsaturated Fatty Acid

ROI Region of Interest

ROS Reactive Oxygen Species

SA Stearic Acid

SFA Saturated Fatty Acid

TG Triglyceride

TIC Total lon Current
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