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Multimodal high-resolution nano-DESI MSI and 
immunofluorescence imaging reveal molecular signatures of 

skeletal muscle fiber types 
Daisy Unsihuay,a Hang Hu,b Jiamin Qiu,c Alessandra Latorre-Palomino,d Manxi Yang,b Feng Yue,c  
Ruichuan Yin, a Shihuan Kuang c and Julia Laskin*b 

The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The 

complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 µm) and their mosaic distribution across the tissue 

thereby requires high-resolution imaging to differentiate one from another. Herein, we use a multimodal approach to characterize the 

chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. We paired our high-resolution nanospray desorption electrospray 

ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image 

registration and segmentation approaches were used to integrate the information obtained with both techniques. Our results revealed that 

the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, 

we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a 

switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow 

variations in chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated 

phospholipids (PLs), and oxidized PLs, were identified as molecular signatures  of oxidative metabolism. In contrast, histidine-related 

compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in PLs 

was found in oxidative fibers whereas more saturated acyl chains in PLs were found in glycolytic fibers which suggests an effect of the 

membrane fluidity on the metabolic properties of skeletal myofibers.  

Introduction 

Skeletal muscle plays a primary role in human physiology enabling 

locomotion, maintenance of posture, metabolic homeostasis, and 

respiration.1 The contractile muscle cells also known as muscle fibers, 

are responsible for the wide array of capabilities that a muscle 

displays. Muscle fibers are generally classified according to their 

speed of contraction into two major groups: slow-twitch (type I) and 

fast-twitch (type II) fibers.2 Type I fibers are least powerful and most 

fatigue-resistant, and therefore are involved in endurance activities. 

In contrast, type II fibers include three subtypes (IIa, IIx, IIb) that are 

sequentially more powerful but fatigue more quickly, and therefore 

are mainly used to deliver rapid bursts of force. This classification of 

fiber types (I, IIa, IIx, IIb) are based on myosin heavy chain (MyHC) 

isoforms as the common molecular motor present in a fiber type.3 

Another classification of fibers into oxidative/aerobic (I, IIa) or 

glycolytic/anaerobic (IIx, IIb) types is based on the metabolic 

properties through which they generate ATP.4 The diversity that 

myofibers display is a result of the combination of different 

metabolic, contractile and physiological properties. Based on these 

properties, myofibers are classified as slow-oxidative (type I), fast-

oxidative (type IIa), fast-intermediate (type IIx), and fast-glycolytic 

(type IIb).2,5 Understanding of the chemical composition of muscle 

fibers and how it is linked to their biochemical and contractile 

properties provides the basis for the design of physical therapies, 

intervention, and treatments targeting a wide variety of muscle-

related pathologies including sarcopenia,6 metabolic syndrome7 

among others.  

A skeletal muscle typically contains heterogeneous myofibers 

that are arranged in a mosaic-like pattern. This feature makes it 

difficult to separate the individual myofiber types to examine their 

molecular signatures using traditional bulk characterization 

approaches. Metabolic profiling of skeletal myofibers typically 

involves liquid chromatography mass spectrometry (LC-MS) analysis 

of tissue extracts from a muscle enriched in a specific fiber type.8,9 

However, this approach does not provide information on the spatial 

localization of molecules enhanced in a specific fiber type. Other 

strategies such as histochemical staining provide the localization of 

some lipid classes but cannot identify individual lipid or metabolite 

species.  

Mass spectrometry imaging (MSI) is a powerful label-free 

technique that enables the visualization of molecular distributions 

across biological samples.10 In contrast to traditional staining 

approaches, MSI provides spatial maps of hundreds of compounds in 

a single experiment which can be used to track organ development, 

the progression of disease and the effectiveness of treatment.11 

Several studies used matrix assisted laser desorption ionization 
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(MALDI) and secondary ion mass spectrometry (SIMS) for imaging of 

bundles of different types of muscle fibers thereby providing 

important insights into key biochemical processes in these 

systems.7,12–16 Most of MALDI MSI studies were carried out using 

moderate spatial resolution of ~100 µm and therefore could not 

differentiate fibers that coexist within the same bundle. Tsai et al.,  

demonstrated that it is possible to distinguish individual muscle 

fibers using MALDI MSI performed with a spatial resolution of 10 

µm.17 They noted that both the crystal size and uniformity of the 

matrix influence the spatial resolution of these experiments. 

Meanwhile, Song et. used SIMS with a spatial resolution of 0.2 µm to 

examine the distribution of a several intracellular lipids across 

different myofibers.16 Despite the impressive resolution achieved in 

the two studies discussed above, the molecular coverage was limited 

either because of the reduced sensitivity of MALDI MSI performed 

with high spatial resolution or fragmentation of molecules in SIMS, 

which limits metabolite identification 

Ambient ionization techniques do not require matrix application 

and provide a softer ionization thereby expanding lipid and 

metabolite coverage, which is advantageous for high-resolution MSI 

applications. Nanospray Desorption Electrospray Ionization (nano-

DESI) used in this study is an ambient ionization technique, in which 

analytes are extracted from tissues into a dynamic liquid bridge 

formed between two glass capillaries.18 The spatial resolution of 

nano-DESI MSI experiments is mainly determined by the size of the 

liquid bridge formed between the nano-DESI probe and sample 

surface. A spatial resolution of 10 µm has been achieved using a 

nano-DESI probe composed of two finely pulled capillaries.19 High 

spatial resolution nano-DESI MSI experiments have been used for 

mapping lipids and metabolites in small tissue samples including 

pancreatic islets (~100 µm diameter),20 lung airways (~50 µm 

diameter),21 and mouse uterine tissues (~1000 µm diameter),19,22 

which cannot be performed with moderate spatial resolution.  

 Herein, we used high resolution nano-DESI MSI for imaging of 

individual skeletal muscle fibers that have a diameter of ~30-50 µm. 

This tissue represents one of the most challenging systems for MSI 

experiments as the fibers are distributed in a mosaic-like pattern. We 

used immunofluorescence (IF) imaging of serial tissue sections to 

distinguish between different types of fibers in mouse muscle 

tissues. IF images were subsequently used as roadmaps for 

identifying molecular signatures of different fiber types in adjacent 

sections analyzed using nano-DESI MSI. Image registration between 

IF and nano-DESI MSI is particularly challenging for this system given 

the lack of major anatomical markers which have been traditionally 

used to train a variety of computational models for feature 

detection,23 co-localization24 and segmentation.25 Furthermore, high 

spatial resolution imposes additional constraints on the accuracy of 

image registration. To address these challenges, we have developed 

a robust computational method for image registration and extraction 

of ion abundances from well-defined regions of interest (ROIs) and 

performed relative quantification across different fiber types guided 

by IF imaging data. Using this approach, we have identified groups of 

molecules that are enhanced in specific fibers. Our results indicate 

that myofibers display shallow variations in their chemical gradients 

in a progression from more oxidative (type I) to the most glycolytic 

fibers (type IIb). The lack of drastic changes in the chemical 

composition may be attributed to metabolic flexibility of muscle 

 

 

Fig. 1. Multimodal imaging of skeletal muscle fibers which combines IF imaging with MSI in a) positive mode and b) negative mode. The results 

are shown for three biological replicates examined in this study. IF images are displayed on the left of ion images showing the distribution of type 
I (green), type IIa (red), type IIx (black) and type IIb (blue) fibers in GAS tissue. Ion images selected for visualization of fiber patterns are PC 40:6 
observed as a [M+Na]+ adduct at m/z 856. 5830 and [M-H]- ion of PC 22:1;O2 at m/z 622. 3716 for positive and negative mode nano-DESI MSI, 
respectively. Scale bars are displayed inside each ion image. The color bar is displayed on the right side indicating that the intensity scale changes 
from black (low) to yellow (high). 
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fibers allowing them to switch from one type to another in response 

to different stimuli.  

 

Results 

In this study, we performed multimodal imaging of mouse 

gastrocnemius (GAS) muscle tissues using a combination of IF with 

nano-DESI MSI on adjacent serial cross-sections to elucidate 

differences in the chemical composition of different fiber types. 

Table S1 provides a summary of all the annotated species whose 

identity was confirmed by matching their exact mass with open 

databases and manual analysis of their MS/MS spectra. The 

gastrocnemius (GAS) muscle contains all four fiber types (type I, type 

IIa, type IIx and type IIb) that are intermixed in the tissue making their 

molecular imaging particularly challenging.    

Fig.1 shows the results of IF and nano-DESI imaging obtained for 

three biological replicates. For each replicate, we used three 

adjacent 12 µm-thick sections: one for IF imaging, one for positive 

mode and one for negative mode nano-DESI MSI.  Representative 

positive and negative mode nano-DESI MSI data are displayed along 

with the corresponding IF images in Figs. 1a and 1b, respectively.  

Moreover, additional ion images from replicate 1 can be found in 

Figure S1. A complete view of the optical image and IF images are 

provided in Figure S2. We use IF images as roadmaps of fiber 

localization. A mosaic pattern of fibers is observed in all the IF 

images, in which type I fibers are labelled in green, type IIa are 

labelled in red, type IIx are labelled in black, and type IIb are labelled 

in blue. As observed in Figs. 1 and S2, GAS tissue displays fiber 

regionalization with the largest proportion of oxidative fibers present 

in the deep region closer to the blood supply. Meanwhile, glycolytic 

fibers are mainly found on the edges of the muscle.26 Despite that, 

little or no fiber segregation is observed in IF images. The IF data 

were used to guide nano-DESI experiments to areas where a 

transition from the deep region to the surface region of GAS tissue 

was observed. Representative ion images normalized to the total ion 

current (TIC) of ions at m/z 856.5830 corresponding to 

phosphatidylcholine (PC) 40:6 and m/z 622.3716 corresponding to 

the oxidized PC 22:1;O2 observed in positive and negative mode, 

respectively, are also shown in Fig. 1. These ions correspond to two 

phospholipids enriched in the deep region of the tissue.  There is a 

good qualitative correspondence between the patterns observed in 

the ion images and IF images. Fig. S3 shows the calculation of the 

spatial resolution using the 20/80 rule.19,27 In this approach, the 

spatial resolution is estimated by examining the distance over which 

the signal along the steepest chemical gradient in the sample 

changes between 20 and 80% of its maximum value. Our 

measurements indicate that the spatial resolution of our 

experiments is about 6 µm, which is the best value reported for nano-

DESI MSI so far. We accomplished this value by using a slightly 

smaller diameter for the nano-DESI capillaries of 20 µm instead of 25 

µm used in previous work.22 We also used a slower scanning rate of 

10 µm/s, which reduces the pixel size in the direction of the scan. 

 

Fig. 3. LDA analysis of all the features extracted in GAS tissue in positive 

mode. Green circles are indicative of type I fibers, red circles are 

indicative of type IIa fibers, black circles are indicative of type IIx and blue 

circles are indicative of type IIb fibers. 

 

 

Fig. 2. Multimodal workflow for the IF-guided analysis of nano-
DESI MSI of skeletal muscle fibers. a) Optical image of a GAS tissue 
section. Yellow square indicates the region of the tissue analyzed 
in the MSI experiments. b) IF image collected of an adjacent 
section corresponding to the region analyzed in MSI. c) Ion images 
of tissue-related peaks. d) RGB representation of all ion images 
using PCA analysis. e) ROI image created from IF segmentation. f) 
Registration of segmented image to RGB images yields fiber-
specific ROI masks that enables feature extraction in each fiber 
type. g) Data analysis using extracted ion abundances enables 
comparison of the chemical composition of different fiber types.   
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High spatial resolution is critical to the visualization of chemical 

gradients generated by individual muscle fibers.  

 Despite the high quality of high-resolution nano-DESI ion images, 

the complex distribution of muscle fibers observed in Fig. 1 presents 

a challenge for feature extraction and image registration to specific 

fiber types. Although the chemical gradient between the deep region 

and outer part of the tissue is evident in ion images, the absence of 

anatomical markers and small dimensions of individual fibers make 

it difficult to discern the individual fibers and perform image 

registration with an accuracy comparable to the spatial resolution of 

nano-DESI MSI experiments.  To address this problem, we have 

developed a robust image registration and segmentation approach, 

which is summarized in Fig. 2. A yellow box in the optical image of 

the tissue (Fig. 2a) marks the region analyzed using nano-DESI MSI. 

First, the IF image (Fig. 2b) is cropped to roughly cover the same 

region. Next, we generate MSI images (Fig. 2c) using a mass list of 

peaks. We use principal component analysis (PCA) to reduce data 

dimensionality of ion images and generate an RGB representation of 

the chemical gradients in the sample (Fig. 2d). A grey representation 

of the IF image is used for the affine registration to the PCA image as 

shown in Fig. S4. This step resizes and reorients the IF image to align 

it with the pattern displayed by the PCA image. Next, we perform 

segmentation of the IF image to obtain fiber type-specific ROIs (Fig. 

2e) using a robust image segmentation approach developed by our 

group.28 Finally, the segmented ROI image is registered to the RGB 

representation image and hence to all the ion images using a 

stochastic gradient descent algorithm thereby yielding well-defined 

ROIs specific to each fiber type (Fig. 2f). A closer view of this step is 

depicted in Fig. S5.  The segmented ROI image is subjected to an 

erosion step to avoid the extraction of pixels from fibers located in 

the vicinity of the fiber of interest (Fig. S5b). As a result, fiber-specific 

masks for type I fibers (Fig. S5c), type IIa fibers (Fig. S5d), type IIx 

fibers (Fig. S5e), and type IIb fibers (Fig. S5f) are generated.  Although 

the cellular outlines for type IIb are difficult to visualize in the 

glycolytic region, in which type IIb is the dominant fiber, individual 

type IIb fibers are clearly visible in the oxidative region where all 

fibers coexist. Fig.5f shows that our registration approach 

successfully extracts pixels corresponding to type IIb fibers 

generating a mask specific for type IIb fibers across the entire 

scanned area. In order to validate our approach of identifying fiber-

specific pixels in ion images, we performed additional correlation 

analysis of the patterns observed in ion images with ROI-generated 

masks. This process is described in detail in Fig.S6 using type IIa fibers 

as an example. Briefly, a dilation morphology operation is used to 

define contour ROIs surrounding each fiber type at different 

distances away from the fiber ROI. An overlay of the fiber and 

contour ROIs onto ion images confirms that fiber ROI is colocalized 

with an ion image of an abundant species at m/z 856.5835. We also 

performed a quantitative analysis of the correlation between ion 

signals in the fiber ROI and contour ROI as a function of the spatial 

distance between them. This analysis found a statistically significant 

linear relationship (r = -0.86, p value < 0.001), which indicates the 

decrease of ion signal in tissue locations with an increase in the 

distance from fiber ROI. This change is in agreement with the 

chemical gradient extending from a specific fiber type into the 

surrounding tissue. Subsequent ROI analysis generates ion 

abundances for each fiber type. This workflow allowed us to evaluate 

 

Fig. 4. a) Representative ion images of the distinct patterns observed in 

skeletal muscle tissue:  red-green (RG) stands for a distribution enriched 

in type I and type IIa fibers which is displayed by PC O-44:11 at m/z 

904.5596. Red-Green-Black (RGBK) stands for a distribution enriched in 

type I, IIa and type IIx fibers which is displayed by PC 38:4 at m/z 

832.5827. Blue (BL) stands for a distribution enriched in type IIb fibers 

which is displayed by carnosine at m/z 227.1138. “No pattern” indicates 

a uniformly distribution across all the tissue which is displayed by PC 

32:0 at m/z  756.5514. b) Bar graph showing the sorting of species based 

on the different patterns observed in their spatial distribution. 
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differences between molecular markers of different myofiber types 

based on high-resolution nano-DESI MSI data (Fig. 2g).  

 

Table 1. Set of conditions used to classify the different patterns observed 
in GAS tissue. Green (G) represent type I fibers, red (R) represent type IIa 
fibers, black (BK) represent type IIx fibers, and blue (BL) represent type IIb 
fibers. 

 

In this work, we only report molecular markers that were 

detected in all three biological replicates and identified using 

MS/MS. Based on these criteria, we analyzed a total of 140 unique 

species observed in both positive and negative ionization mode. 

Fig. 3 shows the results of a linear discriminant analysis (LDA) 

performed on muscle fibers which provided a separation of all the 

observed m/z features into two large groups. The blue circles 

corresponding to type IIb fibers are well separated from the rest of 

the fibers across the LD1 and LD2 axis. In contrast, type I (green 

circles), type IIa (red circles) and type IIx (black circles) display 

overlapping regions indicating a greater overlap between the 

chemical composition of these fibers. These results provide a general 

overview of the distribution of the analyzed m/z features and their 

association with specific fiber types. 

For each feature, we calculated its mean abundances in different 

fiber types as a percent of its maximum abundance across the fibers. 

The relative abundances obtained in this analysis are summarized in 

Table S1. Following an approach described in a recent proteomics 

study where a series of criteria were used to discriminate specific 

fiber patterns,29 we established several criteria for the identification 

of myofibers based on the high-resolution spatial lipidomics 

experiments performed in this study. We then used these criteria to 

discriminate between myofibers.  

First, we used a stringent criterion for identifying unique fiber-

specific markers.  We define a unique marker as a species that shows 

more than a 2.5-fold change in abundance in one fiber type in 

comparison with other fibers. This criterion provided only one 

unique marker of type IIb fibers at m/z 175.0245 corresponding to 

the ascorbate (Fig. S7a). Confirmation of the identity of this molecule 

was performed by comparison with MS/MS reported in the 

literature.30,31 Ion images of m/z 175.0245 in all three replicates show 

a gradual decrease of the abundance of ascorbate when moving from 

the more glycolytic region to the more oxidative region (Fig. S7b). No 

other unique markers of fiber types have been identified, which is 

consistent with the results of the LDA analysis discussed earlier. 

Next, we use less stringent criteria to identify groups of 

molecular markers that display distinct spatial patterns. Fig. 4a 

shows representative ion images of the four patterns that we 

observed which we refer to as red-green (RG) displayed by PC O-

44:11, red-green-black (RGBK) displayed by PC  38:4, blue (BL) 

displayed by carnosine, and “no pattern” displayed by PC  32:0. The 

conditions used to define each pattern are summarized in Table 1. 

The RG pattern corresponds to species enhanced in type I and type 

IIa fibers by at least 1.2-fold in comparison to type IIx and type IIb, 

and with a ratio between type I and type IIa of less than 1.5.  The 

RGBK pattern corresponds to molecules enhanced in type I, type IIa 

and type IIx fibers by at least 1.2-fold relative to type IIb, and with 

ratios between type I, IIa and IIx of less than 1.5.  The BL pattern 

corresponds to molecules enhanced in type IIb fibers. Because 

chemical gradients in the glycolytic region are very shallow, we set a 

criterion that any molecule, for which the abundance in type IIb is by 

at least 1.05 higher than in other types of fibers is assigned to this 

pattern. Finally, molecules that do not meet any of these criteria are 

classified as species with “no pattern” indicating that they are 

uniformly distributed across the tissue.  Fig. 4b shows a bar graph 

summarizing the results of this analysis. A detailed summary 

obtained for all the replicates is provided in Table S1. The RGBK 

pattern (orange bar) is the most dominant pattern observed for 47 

species, followed by the BL (blue bar) with 28 species, and RG (red 

bar) pattern with 15 species. Interestingly, 50 species (magenta bar) 

do not display a specific localization across the tissue. None of the 

molecules observed in nano-DESI MSI data displayed a distinct 

localization to either type I (green), type IIa (red), or type IIx (black) 

fibers making it difficult to differentiate between these three types 

of fibers.   

In order to uncover statistically significant differences between 

these fibers, we use volcano plots that compare p-values and fold-

change (FC) of different species identified in nano-DESI MSI 

experiments. The results are shown in Fig. S8 for type I Vs. type IIa, 

Fig. S9 for type I Vs. type IIx and Fig. S10 for type IIa Vs. type IIx for 

all replicates. Using log2(FC) of less than -0.5 or greater than 0.5 and 

p-value <0.05, we observe the decreased abundance (left side) of 

SM(d36:1), PE(36:1), PC(36:4), PC(32:2), PC (30:0) and PE(36:1) and 

enhanced abundance (right side) of PC(20:2/12-HETE), CAR(14:2), 

CAR(18:2), PC(e44:11) and PC(36:1) when comparing type I Vs. type 

IIa, type I Vs. type IIx and type IIa Vs. type IIx. These molecules are 

highlighted in blue to indicate their reproducibility across all 

replicates. The fact that similar molecules are suppressed or 

enhanced across these fibers suggests a gradual change in their 

abundance from more oxidative fibers to more glycolytic fiber (type 

I -> type IIa -> type IIx -> type IIb) and vice versa.   

Fig. 5 shows a heatmap summarizing the variations in the 

abundance of species in each fiber type. A z-score is calculated 

indicating the number of standard deviations from the mean 

abundance. In this plot, the more positive z-score highlighted in red 

indicates that the abundance of a molecule in a specific fiber type is 

higher than the mean abundance across all fibers. Meanwhile, a 

more negative z-score highlighted in blue indicates an abundance 

lower than the mean value across the fibers. Finally, a z-score closer 

to zero shown in white indicates an abundance close to the mean 

value. The calculated z-scores across all replicates are provided in 

Table S2. Molecules were sorted out based on the spatial localization 

they showed across the three replicates. If a molecule was assigned 

to either RG or RGBK pattern in more than 2 two replicates, it is 

considered to correspond to oxidative metabolism. The RG pattern 
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clusters type I and type IIa fibers which are known to rely on oxidative 

phosphorylation for energy supply. The RGBK pattern adds type IIx 

into the group of oxidative fibers given the overlap in the chemical 

composition as displayed in Fig. 3. Meanwhile, molecules assigned to 

the BL pattern in more than two replicates are part of glycolytic 

metabolism. The BL pattern only clusters type IIb fibers which rely on 

glycolysis for energy supply. When extending this classification to the 

heatmap (Fig. 5), we observe three distinct blocks depicting different 

trends: the top block contains all the molecules associated with 

oxidative metabolism (light yellow), the middle block contains all the 

molecules associated with mixed metabolism (intermediate yellow), 

and the bottom block contains the molecules associated with 

glycolytic metabolism (dark yellow).  

A complete list of molecules and their classification are provided 

in Table S2. Overall, there is a larger number of molecules depicting 

oxidative metabolism than glycolytic metabolism. Specifically, 

species like cardiolipins (CL), monoacylglycerols (MG), oxidized lipids 

and fatty acids (FA), acylcarnitines and highly polyunsaturated 

phospholipids are detected as fingerprints of oxidative metabolism 

as shown in Figs. S11 and S12. In contrast, saturated and 

monounsaturated phospholipids and histidine-related compounds 

including carnosine, anserine, and histidine are mainly identified as 

fingerprints of glycolytic metabolism Fig. S13. Regardless of the type 

of metabolism, it is evident that there is always a gradual transition 

in molecular abundances from type I/type IIa→type IIx→type IIb 

across all the replicates (Table S2).  These observations are also 

confirmed by ion images shown in Fig. 5. For example, the 

abundances of PC 36:2 (Fig. 5b) and PE 40:6 (Fig. 5c) increase from 

left (glycolytic) to right (oxidative). Meanwhile, PC 34:0 (Fig. 5d) does 

not show a specific localization. Lastly, SM d36:1 and PC 

16:0/5:0(COOH) display a decreasing chemical gradient from left to 

right. In summary, these results confirm that the chemical 

composition across fiber types does not change dramatically but 

rather undergoes relatively small changes especially in the region 

where all the fiber types coexist such as the deep region of GAS 

tissue.   

 

Fig. 5. a) Heatmap of all the molecules identified in GAS tissue. Abundances are shown using a z-score scale with the blue-white-red color bar indicating z-

scores ranging from -1.5 to 1.5. TIC normalized ion images of b) [M+H]+ adduct of PC 36:2 at m/z 786.6007, c) [M-H]- ion of PE 40:6 at m/z 790.5787, d) 

[M+Na]+ adduct of PC 34:0 at m/z 784.5850,  e) [M+Na]+ adduct of SM d36:1 at m/z 753.5894 and  f) [M-H]- ion of PC 16:0_5:0(COOH) at m/z 608.3565. 

Scale bars are displayed inside each ion image. The color bar is displayed on the right side indicating that the intensity scale changes from black (low) to 

yellow (high).  
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A deeper look at the structural information of membrane 

components such as phospholipids, revealed different acyl chain 

composition in fibers with oxidative or glycolytic metabolism.  Fig.6 

displays the distribution of all the constituent fatty acids from 12C to 

24C found in phospholipid species.  A detailed list of all acyl chains 

can be found in Table S3. Among the 91 identified phospholipids 

(including isomers with different acyl chain compositions), 52 are 

more abundant in oxidative fibers, 16 are enhanced in glycolytic 

fibers, and 23 are uniformly distributed across the tissue. 

Interestingly, a higher number of polyunsaturated fatty acids (PUFAs) 

including docosahexaenoic acid (DHA) FA 22:6, docosapentaenoic 

acid (DPA) FA 22:5, FA 22:4, and arachidonic acid (AA), FA 20:4 were 

identified in phospholipids associated with oxidative metabolism in 

comparison with phospholipids associated to glycolytic fibers, which 

do not contain these acyl chains. This trend in the acyl chain 

composition in phospholipids suggests an important relationship of 

their structures to the function of the fiber.  

 

Discussion 

The approach developed in this study uses high-precision 

registration of IF and high-resolution nano-DESI MSI data to provide 

unique insights into lipid signatures of different fiber types in muscle 

tissues. This approach is particularly advantageous for muscle 

tissues, in which heterogeneous fibers are intermingled making it 

difficult to separate individual fiber types for traditional bulk 

lipidomics and metabolomics analyses. Indeed, omics analyses are 

typically performed using muscle tissues enriched in a specific fiber 

type.7,12,32 In contrast, chemical gradients observed using high-

resolution nano-DESI MSI enable a direct comparison of the chemical 

composition of different types of myofibers in the same experiment.  

The results reported herein provide a global overview of the 

chemical composition of the four main myofibers identified in 

mammals: type I, type IIa, type IIx, and type IIb. Our results indicate 

that although myofibers are classified into discrete categories 

expressing distinct MyHC isoforms, their chemical signatures are not 

drastically different. Instead, we observe a gradual change in the 

relative abundance of lipids and metabolites between oxidative and 

glycolytic fibers. The lack of fiber-specific patterns and prevalence of 

species that are uniformly distributed across the muscle tissue (50 

species in Fig. 4b) supports this claim thereby suggesting that a 

substantial fraction of molecules is conserved across different 

myofiber types for a proper function of the muscle. The shallow 

chemical gradients observed in muscle fibers are likely linked to their 

inherent ‘muscle plasticity’, a term used to describe the ability of 

muscles to modify their fiber structure or fine-tune their aerobic 

capacity in response to changes in their contractile activity, loading 

conditions, substrate supply among others.2,33 For example, 

endurance training  increases the oxidative capacity of all fibers 

types,34 which we propose is facilitated by the relatively small 

chemical differences between myofibers. Another example is found 

in our previous study in which the influence of defective fatty acid 

oxidation due to the loss of carnitine palmitoyltransferase 2 (CPT2) 

was tested in different muscles.35 The lack of CPT2 caused a shift in 

mitochondrial energy metabolism to non-lipid substrates. As a result, 

oxidative fibers underwent metabolic change towards a more 

glycolytic metabolic profile without necessarily changing their 

myosin heavy chain isoform which is more connected to myofiber 

contractile properties. Hence, it is reasonable to assume that from 

the metabolic point of view, the lack of substantial chemical 

gradients across myofibers makes it possible for the muscle to adapt 

to meet the needs that the new activity/condition demands and, in 

some cases, undergo metabolic transformation.   

Among the four myofiber types analyzed in this study, type IIb 

fibers are the most chemically distinct (Fig. 3). Indeed, type IIb is the 

only fiber type for which we detected a specific molecular marker: 

ascorbate. Aside of being a powerful antioxidant, it has been 

suggested that ascorbate breakdown through the pentose 

phosphate pathway can be a potential substrate for glycolysis,36,37   

the dominant metabolism of type IIb fibers. In contrast, type I, type 

IIa, and type IIx do not have a specific molecular marker and may be 

distinguished using an in-depth statistical analysis of the relative 

abundances of lipids and metabolites (Fig. S8-S10). One key finding 

of this study is that although type IIx fibers are more similar to type 

IIb in their contractile properties and are traditionally considered to 

present a glycolytic metabolism,38,39 their chemical composition is 

more comparable to oxidative fibers: type I and type IIa as shown in 

Fig. 3 and Fig.4. Indeed, 47 species are present in comparable 

abundances in fibers type I, type IIa and type IIx (RGBK pattern in Fig. 

4b) in contrast to only 15 species present with similar abundances in 

fibers type I and type IIa (RG pattern in Fig. 4b). These results are 

 

Fig.6. Acyl chain composition of all the phospholipids detected in GAS 

tissue with a carbon length ranging from 12C to 24C. Length of the bars 

indicates the number of species containing a specific acyl chain. Red bars 

indicate oxidative species whereas blue bars indicate glycolytic species. 
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consistent with recent studies acknowledging the oxidative 

properties of type IIx fibers which may allow to sustain high running 

speeds for long periods of time in sprinting wild animals.40,41 Of note 

is that this is the first MSI study that reports the chemical profile of 

the type IIx fiber, which could only be obtained using our accurate 

image registration approach.  

Molecular fingerprints linked to energy metabolism 

Substrate-level phosphorylation is one of the main pathways that 

fast-glycolytic skeletal muscles use to produce ATP. Anaerobic 

degradation of phosphocreatine is used  for the immediate 

phosphorylation of ADP to ATP during sudden bursts of exercise.4 In 

this study, we found that creatinine, a direct product of the 

breakdown of  phosphocreatine, was mainly enriched in fast-

glycolytic fibers indicating a high phosphocreatine utilization in this 

fiber type. Our findings are consistent with several reports indicating 

a higher consumption of phosphocreatine stores by fast-glycolytic 

fibers in comparison to slow-oxidative fibers during intense short-

term exercises.42,43  

Increased breakdown of ATP triggers the glycolytic pathway in an 

effort to keep up with the energy demand.4 In anaerobic glycolysis,  

glycogen is broken down to produce three ATP molecules and lactic 

acid.  Accumulation of lactic acid causes a decrease in the pH thereby 

promoting muscle fatigue, disrupting phosphocreatine recycling, and 

causing muscle injury during high-intensity exercise.44 Therefore, it is 

not surprising that fast-glycolytic fibers have some mechanisms to 

protect themselves against oxidatively-induced tissue damage. Our 

results indicate that histidine-related compounds (Fig. S13) including 

histidine, methyl histidine, carnosine, and anserine are enhanced in 

type IIb fibers.  These histidine-related compounds species act as 

antioxidants thereby preventing tissue damage due to the oxidative 

stress.45 The antioxidant capacity of these compounds  derive from 

the imidazole ring, which efficiently scavenges reactive oxygen 

species (ROS)  and harmful alpha–beta-unsaturated aldehydes.45,46 

Moreover, the presence of the imidazole moiety results in a high 

muscle buffering capacity of histidine-related compounds that helps 

regulate the acidosis conditions during glycolysis. For example, 

carnosine with a pKa=6.72 is an efficient antioxidant that also helps 

maintaining the pH around physiological values thereby delaying the 

onset of fatigue following short bouts of exercise.47 The acidosis 

environment promoted by glycolysis also favors the synthesis of 

creatinine through the breakdown of phosphocreatine that 

consumes H+ for the phosphorylation of ADP.48,49 

Oxidative phosphorylation becomes the main source of energy in 

events lasting from minutes to hours and is mainly manifested in 

slow-oxidative (type I) and fast-oxidative-intermediate (type IIa and 

type IIx) fibers. In this pathway, ATP is generated through the 

oxidation of fats and carbohydrates.4 The enhanced abundance of 

acylcarnitines including CAR 18:2, CAR 18:1, CAR 16:0 and CAR 14:2 

in oxidative fibers is a fingerprint of this dynamic metabolism (Fig. 

S12). The conversion of fatty acyl-coAs into acylcarnitines enables 

the transport of fatty acids across the mitochondrial membrane to 

support energy production through β-oxidation. Because of the 

higher content of mitochondria in oxidative fibers, it is reasonable to 

observe greater β-oxidation activity in these fibers. Our findings are 

consistent with a study by Yu-Hsuan et al. that reported a higher 

abundance of acylcarnitines in fibers with an oxidative metabolism 

in a gastrocnemius muscle tissue.12 Interestingly, free carnitine and 

acetylcarnitine, CAR 2:0, do not show a specific localization and are 

uniformly distributed across all the tissue. Because of the efficient 

enzymatic conversion between carnitine and acetylcarnitine, it is 

reasonable to observe that these two molecules have a similar 

spatial distribution. These results may be attributed to another 

important role of carnitine aside from translocating long-chain fatty 

acids from cytosol to the mitochondrial matrix discussed earlier. In 

particular, carnitine is also involved in the formation of 

acetylcarnitine from acetyl-CoA thereby preventing extreme 

fluctuations in acetyl-CoA and free CoA that otherwise can be 

deleterious to cellular function.50,51 Our results indicate that 

acetylcarnitine maintains this metabolic flexibility in all the fiber 

types. 

Another molecular marker of oxidative metabolism is observed 

in the distributions of MG 18:2, MG 18:1, and MG 16:0 which are 

enhanced in oxidative fibers (Fig. S12). We believe that the presence 

of MGs might reflect the lipolysis state of triglycerides (TGs) 

contained in these fibers which serve as energy reservoirs.  The 

enzymes adipose triglyceride lipase (ATGL), hormone-sensitive lipase 

(HSL) and monoacylglycerol lipase (MGL) sequentially hydrolyze TG, 

DG, and MG, respectively, thereby releasing fatty acids at every 

step.52 This lipolysis activity is known to be enhanced in oxidative 

fibers.53 Moreover, the high expression of ATG and HSL enzymes in 

type I fibers reported in the literature further supports our findings. 
52,54  

Differences in membrane composition in muscle fibers 

Membrane architecture of muscle fibers is strongly linked to 

their contractile capabilities and fatigue resistance.55,56 Most of the 

properties of skeletal muscle membranes are determined by the 

composition of their phospholipid components. Our results shown in 

Fig.6 indicate a higher abundance of phospholipids in oxidative fibers 

in comparison to glycolytic fibers (52 species vs 16 species). The 

higher content of phospholipids in oxidative fibers may be attributed 

to the larger number of membrane-bound organelles like 

mitochondria, which are known to be more abundant in oxidative 

fibers as compared to glycolytic fibers.57,58 Because oxidative 

phosphorylation takes place in the mitochondria, these organelles 

are more abundant in oxidative fibers.59 In our experiments, we 

found that two abundant cardiolipins (CL), CL 72:8 and CL 72:7, are 

enhanced in the oxidative fibers (Fig. S11).  CLs are unique dimeric 

phospholipids exclusively located in the mitochondria and hence can 

be used as mitochondrial markers.  

The acyl chain composition of most abundant phospholipids 

shown in Fig. 6 indicates that palmitic and stearic acids (PA and SA) 

are the most abundant acyl chains found in the total pool of 

phospholipids. This result is consistent with the known prevalence of 

PA and SA in cell membranes. 60 Furthermore, highly polyunsaturated 

acyl tails such as DHA and DPA are exclusively found in oxidative 
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fibers. Considering that all FAs can serve as energy source via β-

oxidation, the observed preference towards specific acyl chains in 

different fiber types is likely attributed to their role as membrane 

building blocks rather than their involvement in energy 

production.61,62 The degree of unsaturation of acyl tails in 

phospholipids directly affects membrane fluidity. In particular, the 

presence of unsaturated acyl chains decreases the packing efficiency 

of membrane phospholipids thereby keeping the membrane more 

fluid at physiological temperatures.63,64 The fluidity of skeletal 

muscle membranes plays an important role in regulating the local 

lipid environment and protein conformations involved in multiple 

signaling processes. These may include Ca2+ signaling, which 

regulates the contractile properties and fatigue resistance,65 

activation of carnitine palmitoyltransferases, which regulates fatty 

acid oxidation,66 and insulin-mediated glucose metabolism which 

regulates glucose disposal and hence blood sugar levels,56 among 

others. Given the prevalence of PUFAs in oxidative fibers, it is 

reasonable to assume that the high content of polyunsaturated acyl 

chains in oxidative fibers, especially DPA and DHA, results in a more 

fluid and permeable membrane thus facilitating many 

protein/receptor interactions associated with an endurance 

phenotype.67 In contrast, the prevalence of PA and relatively small 

number of PUFA in lipids observed in glycolytic fibers increases the 

rigidity and thereby constrains molecular diffusion in the lateral 

plane of the membrane, which may inhibit the activation of oxidative 

metabolism. Indeed, it has been reported that a more rigid 

membrane can impair insulin ability to buffer plasma glucose 

concentration by altering the insulin receptor binding and affinity or 

the ability to translocate glucose transporters.68–70 As a result, rigid 

membranes likely present greater insulin resistance, a feature 

displayed mainly by glycolytic fibers.56 In contrast, the incorporation 

of DHA and DPA into membrane phospholipids through dietary 

supplementation has been reported to enhance insulin action,71–73 

improve fatigue resistance and oxidative capacity. Moreover, EPA 

and DHA are natural ligands of the peroxisome proliferator-activated 

receptors (PPARs) that regulate the expression of genes associated 

with  lipid metabolism.67 All these properties are found in an 

endurance/oxidative fiber profile.  

We have also observed a series of truncated oxidized 

phospholipids that display the same enhancement in oxidative fibers 

as phospholipids with highly unsaturated acyl tails Fig. S11 and S12. 

Oxidized phospholipids are known to be formed under oxidative 

stress conditions.74 ROS formed during aerobic respiration attack C=C 

bonds in PUFAs thereby promoting lipid radical peroxidation. In this 

study, we observed multiple oxidized species including PC 

18:0_5:0(COOH) and PC 18:0_4:1 (COOH) produced by oxidation of 

PC 18:0_20:4; PC 18:0_9:0(COOH) and PC 18:0_12:1;O;COOH 

produced by oxidation of PC 18:0_18:2; and PC 18:0_22:6;O 

produced by oxidation of PC 18:0_22:6.75 These assignments were 

manually confirmed using MS/MS as shown in Fig. S14 and are also 

listed in Table S3. The enhanced abundance of PUFAs in oxidative 

fibers can also lead to the formation of oxylipins, another important 

group of lipid mediators.76 Because precursor FAs are  enhanced in 

oxidative fibers, it is likely that this fiber type is also enriched in 

oxylipins as reported in a previous study.77 In this study, we identified 

9-HODE and its derivative 9-oxoODE, which are produced from the 

oxidation of linoleic acid, LA (Fig. S11). In summary, these results 

indicate that the membrane acyl chain composition is strongly linked 

to the regulation of metabolic properties of oxidative and glycolytic 

skeletal muscles. 

Conclusions 

In this work, we demonstrate the power of high-resolution 

molecular imaging using nano-DESI MSI in combination with 

immunohistochemical fiber typing to examine molecular signatures 

of skeletal muscle fibers. The high specificity towards each fiber type 

allows us to accurately measure chemical gradients across muscle 

tissue, especially in complex regions where multiple myofiber types 

coexist. Our results indicate that moderate chemical gradients are 

present between oxidative and glycolytic fibers. We found that only 

type IIb myofiber may be differentiated from other fiber types based 

on the LDI analysis. The molecular signatures of type IIb myofibers 

are consistent with glycolytic metabolism. Interestingly, molecular 

signatures of type IIx fibers, which are commonly categorized as 

glycolytic fibers, are indicative of oxidative metabolism. Finally, we 

provide insights into the biological role of the species detected in this 

study either as membrane components, energy-related compounds, 

or antioxidants. Our results provide important insights into the 

skeletal muscle physiology by linking the biochemical pathways with 

the known contractile properties of different types of myofibers.  The 

multimodal workflow established in this study may be extended to 

the analysis of other highly heterogenous and complex tissues such 

as pancreatic islets. 

 

Experimental 
Materials 

LC-MS grade methanol (MeOH) and LC-MS water were purchased 

from Sigma-Aldrich (St. Louis, MO). Lipid standards lyso-

phosphatidylcholine (LPC) 19:0, lyso-phosphatidylethalonamine 

(LPE) 17:1, lyso-phosphatidylglycerol (LPG) 17:1, lyso-

phosphatidylserine (LPS) 17:1 and lyso-phosphatidylinositol (LPI) 

17:1 were purchased from Avanti Polar Lipids (Alabaster, AL). 

Arachidonic Acid (AA)-d8 standard was purchased from Cayman (Ann 

Arbor, MI). 

Primary antibodies used for fiber types staining were purchased from 

Developmental Studies Hybridoma Bank (DSHB) (Iowa City, IA): Myh7 

MyHC-1 (BA-F8) for type I fiber, Myh2 MyHC-2A (2F7) for type IIA 

fiber, and Myh4 MyHC-2B (10F5) for type IIB fiber. Secondary 

antibodies used in the staining were purchased from Thermo Fisher 

Scientific (Waltham, MA): goat anti-mouse IgG1, Alexa Fluor 568 (A-

21124); goat anti-mouse IgG2b, Alexa Fluor 647 (A-21242); goat anti-

mouse IgM, Alexa Fluor 488 (A-210420). 

 

Tissue collection 

C57BL/6 mice (X month old) used in this study were originally 

obtained from Jackson Laboratory (Bar Harbor, ME) and maintained 
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in the animal facility with free access to standard rodent chow and 

water. All the procedures involving mice were approved by the 

Purdue University Animal Care and Use Committee (Protocol# 

1112000440). Whole gastrocnemius muscle was dissected and 

frozen immediately in liquid nitrogen. Frozen muscle was fixed on 

Optimal cutting temperature compound (OCT compound) with 60% 

of the tissue intact from OCT compound. The muscle was cross-

sectioned with a thickness of 12 μm using a Leica CM1850 cryostat. 

 

Immunofluorescence staining  

Gastrocnemius sections were directly incubated in blocking buffer 

(5% goat serum, 2% bovine serum albumin, 0.1% Triton X-100 and 

0.1% sodium azide in PBS) for 1 h at room temperature. Samples 

were then incubated with primary antibodies diluted in blocking 

buffer overnight at 4 °C. After washing with PBS, the samples were 

incubated with secondary antibodies for 1 h at room temperature. 

Images were captured using a Leica DM 6000B microscope with a x 

20 objective and merged by Photoshop software.  

 

Nano-DESI MSI 

Nano-DESI MSI experiments were carried out on a Q-Exactive HF-X 

Orbitrap mass spectrometer from Thermo Fisher Scientific 

(Waltham, MA) using a custom-designed nano-DESI source.21,78 The 

high-resolution nano-DESI probe was assembled by forming a ~90˚ 

angle between two finely pulled capillaries with o.d. ~20 µm: the 

primary and nanospray capillaries. A third finely pulled capillary was 

placed next to the nano-DESI probe to serve as a shear force probe. 

Detailed explanation of the preparation of the primary, nanospray 

and shear force capillaries and their assembling can be found in our 

previous work.19 A solution of MeOH:H2O (9:1) (v/v) containing 200 

nM of lipid standards was used as the extraction solvent and was 

infused using a syringe pump at 0.5 µL/min. Ionization was achieved 

by applying a 4 kV potential to the syringe needle. The heated 

capillary inlet was held at 30 V and 250 °C. 

For all the data reported in this study, we used a scan rate of 10 

μm/s, a step between the lines of 15 μm and an acquisition rate of 7 

Hz resulting in an average pixel size of 0.7 μm x 15 μm. The spatial 

resolution of 6 µm was estimated using the 20/80 rule as shown in 

Fig. S2. Both positive and negative mode data were collected for each 

biological replicate (n=3) using a mass resolution of 60,000 at m/z 

200 with a mass range of m/z 133-2000. MS/MS data for the 

endogenous species observed in nano-DESI MSI experiments were 

acquired directly from tissue sections using the data dependent 

MS/MS mode at a normalized collision energy of 25 V and mass 

isolation window of 0.5 m/z. 

 

MSI Data processing 
MS data from nano-DESI experiments were acquired as .RAW files 
using Xcalibur software (Thermo Electron, Bremen, Germany). Ion 
images were generated from .RAW files for a list of m/z values using 
a custom Python script (https://github.com/LabLaskin/MSI-image-
generator) . We used a mass window of 10 ppm to extract peak 
intensities and aligned MS signals with respect to the acquisition 
time. In each pixel, peak intensities were normalized to the total ion 
current (TIC) to compensate for signal fluctuations during imaging 

experiments. Ions in the m/z list were annotated by searching 
against METLIN database (https://metlin.scripps.edu) using accurate 
mass and MS/MS data. 
 

Image Registration 

Computational image registration was used to correlate the 

molecular information from both MSI and immunofluorescence 

experiments. We used a strategy reported in previous studies.79,80 

Herein, we regarded the MSI image as the fixed image and 

immunofluorescence image as the moving image, respectively. A 

linear transformation model was adopted, in which translation and 

affine transformations were performed in tandem. To optimize the 

parameters in the transformation model, we selected mutual 

information as a criterion and adaptive stochastic gradient descent 

as an optimizer in this computation. After the optimal parameters 

were determined, the linear model can transform the moving 

immunofluorescence image to spatially align it to the fixed MSI 

image. Since the mutual information metric only evaluates intensity 

similarity between two images with the same dimensions, we 

converted both MSI and immunofluorescence images into grayscale 

images before the registration. For MSI data, we used principal 

component analysis (PCA) to compress the hyperspectral data into a 

low-dimensional space while preserving molecular distribution 

information in the original high-dimensional data.80 Additional 

details of the PCA analysis of nano-DESI MSI data can be found in our 

previous report.28 

We validated the fiber ROI generated from IF images for ion imaging 

analysis using quantitative correlation analysis. Surrounding contour 

ROIs with varying spatial distance away from fiber locations were 

obtained using dilation morphology algorithm with registered IF 

imaging data. This enables the extraction of MS signals in locations 

surrounding fiber ROI. Finally, the ion signals were correlated with 

their spatial distances away from fiber locations using a linear 

regression analysis. 

Statistical Analysis 
Both multivariate and univariate statistics were exploited for the 

exploratory analysis of muscle biomarkers. To create a heatmap of 

metabolite abundance in different muscle fibers, MS signals were 

scaled by a z-score transformation, representing the number of 

standard deviations from the mean value. Linear discriminant 

analysis (LDA) was used to map mass spectra from muscle fibers into 

a 2D space of the co-registered immunofluorescence images. In 

univariate analysis, the difference between metabolite MS signals in 

muscle fibers was analyzed using the volcano plot by plotting a log2 

fold change versus p-value. Herein, the p-value of one metabolite 

observed in mass spectra of two types of muscle fibers was 

calculated using the t-test. 

Abbreviations 

AA    Arachidonic Acid 

ATGL   Adipose Triglyceride Lipase 

CAR   Carnitine 

CID    Collision-induced dissociation 

https://github.com/LabLaskin/MSI-image-generator)
https://github.com/LabLaskin/MSI-image-generator)
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CL    Cardiolipin 

DG    Diglyceride 

DHA   Docosahexaenoic Acid 

DPA   Docosapentaenoic Acid 

FA    Fatty Acid 

FC    Fold-change 

GAS   Gastrocnemius muscle 

HSL   Hormone Sensitive Lipase 

IF    Immunofluorescence  

LA    Linoleic Acid 

LC-MS   Liquid Chromatography-Mass Spectrometry  

LDA   Linear Discriminant Analysis 

LDs    Lipid Droplets 

MALDI   Matrix Assisted Laser Desorption Ionization   

MG   Monoglyceride 

MGL   Monoacylglycerol Lipase 

MS/MS   Tandem Mass Spectrometry 

MSI   Mass Spectrometry Imaging 

MUFA   Monounsaturated Fatty Acid 

MyHC    Myosin Heavy Chain  

Nano-DESI  Nanospray Desorption Electrospray Ionization 

PA    Palmitic Acid 

PC    Phosphatidylcholine 

PCA   Principal Component Analysis 

PE    Phosphatidylethanolamine 

PL     Phospholipid 

PPARs   Peroxisome proliferator-activated receptors 

PUFA   Polyunsaturated Fatty Acid 

ROI    Region of Interest 

ROS   Reactive Oxygen Species 

SA     Stearic Acid 

SFA   Saturated Fatty Acid 

TG    Triglyceride 

TIC    Total Ion Current 
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