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The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two

dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time

and frequency dimensions in these spectroscopies provides access to rich information on the electronic and vibrational

states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in

linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While

the exact quantum expression for the third-order response is well established it is incompatible with the methods that are

practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both

classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the sym-

metries of classical dynamics, such as LSC-IVR, Centroid Molecular Dynamics (CMD) and Ring Polymer Molecular

Dynamics (RPMD) naturally provide short-time approximations to the multi-time symmetrized Kubo transformed cor-

relation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized

Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it

can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD.

In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak

shifts while providing a physically transparent framework for understanding multidimensional spectroscopies.

I. INTRODUCTION

Linear spectroscopies, ranging from electronic, terahertz,

Raman, SFG, and infra-red are the workhorse methods used to

interrogate time and energy scales of chemical systems. How-

ever, in disordered condensed phase systems the presence of

many overlapping features makes decoding the information

present to obtain the individual processes and states present,

the timescales of their interconversion, and the molecular mo-

tions they arise from extremely challenging. Nonlinear spec-

troscopies provide much richer information,1–3 with the 2D

counterparts of the aforementioned spectroscopies (2D-IR,4,5

2D-Raman-Thz,6 2D-Raman,7 2D-SFG8) giving access to ex-

tra time and frequency dimensions that allow for easier iden-

tification of the states present and the rates of their intercon-

version. However, while these methods yield information on

the timescales present in condensed phase chemical systems

linking these to the microscopic structural changes that give

rise to them often poses a significant challenge. One of the

most powerful ways to achieve this link between dynamics

and structure for linear spectrocopies in the condensed phase

has been through the use of theory and simulation where a

plethora of classical and semi-classical techniques have been

introduced.9–19 However, the accurate and efficient simula-

tion of nonlinear spectroscopies still presents significant chal-

lenges. In particular, 2D spectroscopies (2D-IR, 2D-ES, and

2D-SFG) can be simulated and understood in the impulsive
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limit via the third-order response function,20,21

R(3)(t1, t2, t3) =
(−i
h̵
)
3

Tr{D̂(t3)[Ĉ(t2), [B̂(t1), [Â(0), ρeq]]]}, (1)

which describes how a system with an initial distribution ρeq

evolves in time following the effect of successive interactions

with the experimentally applied fields (at times 0, t1, t2) and

the probe (at t3) the nature of which determine the operators

Â, B̂, Ĉ, and D̂. These operators are determined by the partic-

ular spectroscopy of interest, for example if all operators are

taken to be electronically off-resonant dipole operators then

this measurement would correspond to 2D-IR. Given the in-

sights that have been obtained into linear spectroscopies from

molecular simulation and the recent advent of efficient ab ini-

tio molecular dynamics schemes22–26 and machine learning

representations of ab initio potential energy surfaces27–31 hav-

ing an efficient and tractable route to compute the third-order

response from molecular dynamics simulations would further

our ability to understand and design 2D spectroscopic exper-

iments in the condensed phase. However, unlike the single

time correlation functions needed to capture linear spectro-

scopies if one were to expand the nested commutators to ob-

tain a difference of correlation functions in Eq. (1) this would

yield a zero third order response since one would obtain a dif-

ference of correlations functions that are all identical in the

classical limit.

The lack of a straightforward approach to obtain the third-

order response has spawned a number of methods to obtain

it that are compatible with atomistic simulations. For cases

in which only information on a particular mode is of interest

(e.g. an OH or CO stretch coordinate) the use of frequency
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maps and cumulant approaches have proven useful.32,33 How-

ever, when the response function is required across the en-

tire frequency range one must resort to other methods. Many

of these methods arise from the Poisson bracket method34,35

where the commutators in the response function are replaced

with Poisson brackets, which arise from truncating the Wigner

representation of the commutator keeping only the leading or-

der term, and then replacing quantum observables with clas-

sical ones. Doing this gives a non-zero classical limit for the

third-order response but requires the calculation of the stabil-

ity matrix, a measure of the sensitivity of trajectories to their

initial conditions, for the entire system. The elements of the

stability matrix are known to grow rapidly with time making

simulations increasingly difficult to converge at longer times

and as the system becomes larger.

To make the Poisson bracket based approaches more fea-

sible finite field methods36–38 have been introduced as an al-

ternative way to compute the response. These methods apply

explicit perturbations to the system to generate nonequilib-

rium trajectories that replace the chaotic measure with sud-

den kicks in the momenta. However, introducing nonequilib-

rium trajectories creates a parametric dependence of the ap-

plied perturbation which needs to be carefully chosen adding

a further challenge to converging the results. While more re-

cent work has shown that hybrid approaches39–41 combining

nonequilibrium kicks with equilibrium trajectories can give

improvements in simulation efficiency these methods remain

computationally costly limiting their ability to treat large con-

densed phase systems especially those that involve long cor-

relation times.

An alternative approach to obtaining the third-order re-

sponse is to approximately cast it in terms of a single equilib-

rium multi-time correlation function multiplied by a correc-

tion factor. In this approach one first expands the commuta-

tors in Eq. (1) to yield a series of multi-time correlation func-

tions and then obtains the correction factor by deriving con-

nections between them in the frequency domain. The correc-

tion factor thus attempts to encode the interference between

the multi-time correlation functions that appear in the non-

linear response that ultimately gives rise to the observed sig-

nal. Previous work has provided a route to achieve this for the

second and third-order response functions based on the stan-

dard quantum multi-time correlation functions allowing sim-

ple classical limits to be defined.42–44 However, the standard

quantum multi-time correlation function is generally complex

valued and doesn’t allow for arbitrary permutations of oper-

ators. These properties of the standard correlation function,

are highly undesirable as they are not satisfied by classical

mechanics or semi-classical methods combining quantum sta-

tistical properties with classical-like evolution such as LSC-

IVR,45 Centroid Molecular Dynamics46–48 (CMD) and Ring

Polymer Molecular Dynamics49,50 (RPMD), which are some

of the most practical methods currently available to treat nu-

clear quantum effects in condensed phase systems.

For single-time correlation functions the issues associated

with the classical and semi-classical approximation of the

standard correlation function has been long appreciated and

thus instead of approximating the standard correlation func-

tion one first recasts the property of interest in terms of the

Kubo transformed correlation function51,52 before approxi-

mating the Kubo correlation function classically or semi-

classically. The symmetrized Kubo transformed correlation

function53,54 (SKTCF) extends this concept to the multi-time

case since it is a quantum mechanical correlation function that

possess the symmetries of a classical correlation function i.e.

it is real valued, invariant to permutations of the operators and

is time reversible. This makes it the natural correlation func-

tion to approximate using classical and semiclassical meth-

ods. Recent work has derived a correction factor that con-

nects the second-order response to the two-time SKTCF.55

Since this approach only requires calculating an equilibrium

two-time correlation function, which can be easily done using

standard molecular dynamics software, this approach can be

applied to study the second-order response in large condensed

phase systems and has recently been combined with RPMD

to elucidate the role of nuclear quantum effects (NQEs) in the

two-dimensional Raman spectrum of liquid Neon.56 However,

formulating the third-order response in terms of SKTCFs has

remained a challenge.

Here we show how the third-order response can be obtained

by utilizing a further generalization of the SKTCF. This al-

lows us to express the third-order response function in the

frequency domain in terms of a correction factor that can be

applied to convert the equilibrium multi-time correlation func-

tions generated by one’s method of choice to the third-order

response. We find that when our correction factor is combined

with classical dynamics, LSC-IVR, CMD or RPMD it cor-

rectly recovers the vanishing of the third-order response in the

harmonic limit for linear operators. Finally, we demonstrate

the ability of our approach to capture the features present in

the exact third-order response of a mildly anharmonic poten-

tial and a model of the O-H stretch of water when used with

RPMD or classical dynamics.

II. THEORY

A. Symmetrized Kubo transformed correlation functions

To begin we first introduce the framework of the SKTCF

that will motivate the later approximations to the third-order

response function. For transparency we consider a 1D system

(the generalization to higher dimensions is straightforward)

with the Hamiltonian

H =
p2

2m
+ V (q), (2)

where p and q are the momentum and position. The SKTCF

is54

⟨A0;A1;⋯;An−1;An⟩sym
=

1

βnZ
∫

β

0

dλ0 ∫
β

0

dλ1⋯∫
β

0

dλn−1

×⟨Ð→T βÂ0(−ih̵λ0)Â1(−ih̵λ1+t1)⋯Ân−1(−ih̵λn−1+tn−1)Ân(tn)⟩,
(3)
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where

⟨⋯⟩ = 1

Z
Tr [e−βĤ⋯] , (4)

Z = Tr[e−βĤ] is the partition function and Ô(α) =
eiĤα/h̵Ôe−iĤα/h̵ denotes the Heisenberg time evolved oper-

ators, which in this case are generally a mixture of real and

imaginary time evolution. The imaginary time ordering oper-

ator
Ð→

T β when applied to the imaginary time evolved operators

following it gives the sum of all unique permutations of these

operators and is as defined in Ref. 54. The SKTCF possesses

the properties of invariance to permutations of the operators,

time reversal symmetry, and is always real valued. These are

properties classical multi-time correlation functions posses as

well. Appendix A gives further evidence of the correspon-

dence between the SKTCF and classical multi-time correla-

tion functions by showing that they yield the same result for a

harmonic potentials with linear operators. The standard Kubo

transformed correlation,51 which forms the basis for calculat-

ing linear spectroscopies,

⟨A;B⟩ = 1

βZ
∫

β

0

dλ Tr [e−(β−λ)ĤÂ(0)e−λĤB̂(t)] (5)

can be viewed as a special case of Eq. (3) when Âi = 1̂ (the

identity operator) for i > 1. Previous work has shown how the

symmetrized double Kubo transform can be used to approxi-

mate the second-order response function55,56

⟨A;B;C⟩sym
=

1

β2Z
∫

β

0

dλ∫
λ

0

dµ Tr[e−(β−λ)Ĥ

× (Â(0)e−(λ−µ)ĤB̂(t1) + B̂(t1)e−(λ−µ)ĤÂ(0))
× e−µĤĈ(t2)]. (6)

Eq. (3) also reduces to this result when Âi = 1̂ for i > 2. The

correlation function that will be of interest for us to derive an

approximation to the third-order response function will be the

three-time SKTCF

⟨A;B;C;D⟩sym
= ⟨A;B;C;D⟩+⟨A;C;B;D⟩+⟨C;A;B;D⟩

+ ⟨B;A;C;D⟩ + ⟨B;C;A;D⟩ + ⟨C;B;A;D⟩
≡Ksym(t1, t2, t3), (7)

where we introduce the shorthand notation for a general triple

Kubo transformed multi-time correlation function,

⟨A;B;C;D⟩ = 1

β3Z
∫

β

0

dλ∫
λ

0

dµ∫
µ

0

dν Tr[e−(β−λ)Ĥ

× Â(0)e−(λ−µ)ĤB̂(t1)e−(µ−ν)ĤĈ(t2)e−νĤD̂(t3)], (8)

the “;” is used to denote the imaginary time averaging of the

operator it follows where it is implied that the averaging is

done in the order ν, µ, and then λ.

B. Third-order response function

The third-order response function is defined in Eq. (1).

Here we define the initial distribution to be the equilibrium

density matrix ρeq =
e−βĤ

Z
. Expanding the commutators al-

lows one to see that the third-order response can be written in

terms of standard correlation functions (Si) as

R(3)(t1, t2, t3) = − 2

h̵3
Im[SDCBA(t1, t2, t3)−

SCDBA(t1, t2, t3)+SACDB(t1, t2, t3)−SADCB(t1, t2, t3)],
(9)

where

SDCBA(t1, t2, t3) = ⟨D(t3)C(t2)B(t1)A(0)⟩, (10)

SCDBA(t1, t2, t3) = ⟨C(t2)D(t3)B(t1)A(0)⟩, (11)

SACDB(t1, t2, t3) = ⟨A(0)C(t2)D(t3)B(t1)⟩, (12)

SADCB(t1, t2, t3) = ⟨A(0)D(t3)C(t2)B(t1)⟩, (13)

“Im” denotes the imaginary part and the subscripts on the cor-

relation functions denotes the ordering of the operators. The

time variables t1, t2, t3 are always associated with their re-

spective operators B,C,D (i.e. B(t1) etc.). Obtaining a clas-

sical limit of Eq. (9) is difficult for two reasons. First, since in

the classical limit all operators commute the correlation func-

tions in Eqs. (10)-(13) are all the same and the third order

response (Eq. (9)) vanishes. Second, the standard multi-time

quantum correlation functions (Eqs. (10)-(13)) don’t possess

the symmetries of classical correlation functions i.e. they are

complex valued and do not allow arbitrary permutation of the

operators. This motivates rewriting Eq. (9) in terms of SK-

TCFs. In the following section we show that by doing this in

the time domain one can recover the Poisson bracket method.

We then show that if one works in the frequency domain it

is possible to derive a generalized detailed balance correction

factor that can be used to convert SKTCFs to the third-order

response function.

1. Time domain approach to expressing the third-order
response in terms of SKTCFs

Working in the time domain one can express Eq. (1)

in terms of SKTCFs by making repeated use of the Kubo

identity57

[Â, e−βĤ] = −ih̵∫
β

0

dλ e−(β−λ)Ĥ
˙̂
Ae−λĤ , (14)

which yields

R(3)(t1, t2, t3) = −β3⟨Ȧ; Ḃ; Ċ;D⟩sym
−

β2

h̵
[⟨Ȧ; i[C, Ḃ];D⟩sym

+ ⟨Ḃ; i[C, Ȧ];D⟩sym
+ ⟨Ċ; i[B, Ȧ];D⟩sym]
+

β

h̵2
⟨[C, [B, Ȧ]];D⟩. (15)
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One can take the classical limit of Eq. (15) by using the clas-

sical version of the operators and replacing the commutators

with Poisson brackets, [X,Y ] → ih̵{X,Y }PB upon perform-

ing the integrals over ν, µ, and λ the Poisson bracket approach

is recovered34,35

R(3)(t1, t2, t3) = −β3⟨ȦḂĊD⟩ + β2[⟨{C, ȦḂ}PBD⟩
+ ⟨Ċ{B, Ȧ}PBD⟩] − β⟨{C,{B, Ȧ}PB}PBD⟩. (16)

This approach has previously been introduced and used

to study water clusters and intramolecular vibrations in

water.58,59 However, as discussed in the introduction, this

method involves measures of chaos making it challenging to

apply. Working with Eq. (15) directly is also difficult since

it requires the ability to evaluate time correlation functions of

commutators. In order to remove the dependence on the com-

mutators in the following section we move to the frequency

domain where these can be avoided.

2. Frequency domain approach to expressing the
third-order response in terms of a single SKTCF

To avoid the commutators that arise in the time domain ap-

proach to formulating the third-order response in terms of SK-

TCFs we can move to the frequency domain. As shown in

Appendix B the third-order response in Eq. (9) can be trans-

formed to the frequency domain to give

R̃(3)(ω1, ω2, ω3) = i

h̵3
tanh(βh̵ω̄/2)[(S̃DCBA + S̃ADCB)

− (S̃CDBA + S̃ACDB) + (S̃∗DCBA + S̃
∗

ADCB)
− (S̃∗CDBA + S̃

∗

ACDB)], (17)

where the tilde denotes a three dimensional temporal Fourier

transform of a generic function, i.e. W (t1, t2, t3)
W̃ (ω1, ω2, ω3) = ∫

∞

−∞

dt1 ∫
∞

−∞

dt2 ∫
∞

−∞

dt3e
−i(ω1t1+ω2t2+ω3t3)

×W (t1, t2, t3). (18)

through the further use of frequency domain relationships

(see Appendix B) we can exactly remove the dependence on

the S̃ACDB(ω1, ω2, ω3) and S̃ADCB(ω1, ω2, ω3) correlation

functions to yield

R̃(3)(ω1, ω2, ω3) = i

h̵3
[(eβh̵ω̄ − 1)(S̃DCBA − S̃CDBA) −

(e−βh̵ω̄ − 1)(S̃∗DCBA − S̃
∗

CDBA)], (19)

where ω̄ = ω1 + ω2 + ω3. Unlike the expressions previously

derived for the second-order response function55 where the re-

sponse only depended on a single two-time correlation func-

tion the expression for the third-order response involves a

difference of two correlation functions necessitating further

approximation to obtain an expression that is tractable to be

combined with classical-like methods.

Up to this point all the manipulations we have performed

are exact. However, since classical correlation functions are

agnostic to the ordering of operators we want to obtain an

expression that expresses the third-order response in terms of

a single correlation function rather than a difference of two

correlation functions to avoid it vanishing. To achieve this

one can show that in the harmonic limit (V (q) = mΩ
2

2
q2) with

linear operators S̃DCBA = g(ω1, ω2, ω3)S̃CDBA
43 where

g(ω1, ω2, ω3) = 1 + e−βh̵(ω1+ω3)/2

1 + e−βh̵(ω1+ω2)/2
. (20)

Note that in what follows we use lowercase letters to de-

note frequency dependent factors while uppercase letters are

used for time correlation functions. Using the relationship in

Eq. (20) to relate S̃DCBA and S̃CDBA gives

R̃(3)(ω1, ω2, ω3) = i

h̵3
[(eβh̵ω̄ − 1)(g(ω1, ω2, ω3) − 1)S̃

− (e−βh̵ω̄ − 1)(g(−ω1,−ω2,−ω3) − 1)S̃∗], (21)

where we have defined S̃(ω1, ω2, ω3) = S̃CDBA(ω1, ω2, ω3)
since it is now the only correlation function involved in ob-

taining the third-order response.

We can then derive (see Appendix C) and use the exact re-

lation between the three-time Kubo transformed correlation

function and the standard correlation function in frequency

space

S̃(ω1, ω2, ω3) = K̃(ω1, ω2, ω3)
f(ω1, ω2, ω3) , (22)

and

S̃∗(ω1, ω2, ω3) = K̃∗(ω1, ω2, ω3)
f(−ω1,−ω2,−ω3) , (23)

to obtain an expression for the third order response in terms

of Kubo transformed correlation functions

R̃(3)(ω1, ω2, ω3) = i[a(ω1, ω2, ω3)K̃(ω1, ω2, ω3)
− a(−ω1,−ω2,−ω3)K̃∗(ω1, ω2, ω3)], (24)

where K = ⟨B;A;C;D⟩ is the three-time Kubo transformed

correlation function and K̃ is its three dimensional temporal

Fourier transform with

a(ω1, ω2, ω3) = [e
βh̵ω̄
− 1][g(ω1, ω2, ω3) − 1]
h̵3f(ω1, ω2, ω3) , (25)

and

f(ω1, ω2, ω3) = 1

β3h̵3

⎡⎢⎢⎢⎢⎣
eβh̵ω̄ − 1

ω1ω̄(ω1 + ω3) +
eβh̵ω2

− 1

ω2ω3(ω1 + ω3)

−

eβh̵(ω2+ω3)
− 1

ω1ω3(ω2 + ω3)
⎤⎥⎥⎥⎥⎦
. (26)
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<latexit sha1_base64="C6+Zf0o7+ESBbaOYGDUtAvCCzyU=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PL1lUzq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/Y5OB</latexit>

<latexit sha1_base64="Sd1fAdGImujQjtIHJ2VcqyozzvE=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PWVfMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/aZOB</latexit>

<latexit sha1_base64="bwNKqRXEQYBb+9AxeAfMaEXb0tU=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PLq1Yzq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/ZJOB</latexit>

<latexit sha1_base64="vIczFwAvRs/vnt50t4i68OKuuPw=">AAACBXicbVC5TsNAEF2HK4TLQAmFRYREQ2QDAsoIGsogkUOKTTTejJNV1od210iR5YaGX6GhACFa/oGOv2FzFJDwpJGe3pvRzDw/4Uwq2/42CguLS8srxdXS2vrG5pa5vdOQcSoo1mnMY9HyQSJnEdYVUxxbiUAIfY5Nf3A98psPKCSLozs1TNALoRexgFFQWuqY+3ifHbs+KnD7PghXV+bGIfYgz0sds2xX7DGseeJMSZlMUeuYX243pmmIkaIcpGw7dqK8DIRilGNeclOJCdAB9LCtaQQhSi8bf5Fbh1rpWkEsdEXKGqu/JzIIpRyGvu4MQfXlrDcS//PaqQouvYxFSaowopNFQcotFVujSKwuE0gVH2oCVDB9q0X7IIAqHdwoBGf25XnSOKk455XT27Ny9WoaR5HskQNyRBxyQarkhtRInVDySJ7JK3kznowX4934mLQWjOnMLvkD4/MHiveYnA==</latexit>

~!̄

<latexit sha1_base64="Olp+RzYa+ePN+08ODACXN4JPHk4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0/agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0m/utJ1Sax/LRjBP0IzqQPOSMGis9hKVeueJW3SnIMvHmpAJz1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1n00sn5MQqfRLGypY0ZKr+nshopPU4CmxnRM1QL3q5+J/XSU147WdcJqlByWaLwlQQE5P8bdLnCpkRY0soU9zeStiQKsqMDScPwVt8eZk0z6reZfX8/qJSu5nHUYQjOIZT8OAKanAHdWgAgxCe4RXenJHz4rw7H7PWgjOfOYQ/cD5/AAIOjQY=</latexit>

f

<latexit sha1_base64="vIczFwAvRs/vnt50t4i68OKuuPw=">AAACBXicbVC5TsNAEF2HK4TLQAmFRYREQ2QDAsoIGsogkUOKTTTejJNV1od210iR5YaGX6GhACFa/oGOv2FzFJDwpJGe3pvRzDw/4Uwq2/42CguLS8srxdXS2vrG5pa5vdOQcSoo1mnMY9HyQSJnEdYVUxxbiUAIfY5Nf3A98psPKCSLozs1TNALoRexgFFQWuqY+3ifHbs+KnD7PghXV+bGIfYgz0sds2xX7DGseeJMSZlMUeuYX243pmmIkaIcpGw7dqK8DIRilGNeclOJCdAB9LCtaQQhSi8bf5Fbh1rpWkEsdEXKGqu/JzIIpRyGvu4MQfXlrDcS//PaqQouvYxFSaowopNFQcotFVujSKwuE0gVH2oCVDB9q0X7IIAqHdwoBGf25XnSOKk455XT27Ny9WoaR5HskQNyRBxyQarkhtRInVDySJ7JK3kznowX4934mLQWjOnMLvkD4/MHiveYnA==</latexit>

~!̄

<latexit sha1_base64="ZCgS9C2QsU/Y70bChUOR37RkotA=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9OrVvMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/apOB</latexit>

<latexit sha1_base64="Sd1fAdGImujQjtIHJ2VcqyozzvE=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PWVfMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/aZOB</latexit>

<latexit sha1_base64="2S0m+oAivQ3eztpozTeSMQomi6k=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWNF+4FtKJvNpF262YTdjVBC/4UXD4p49d9489+4aXPQ6oOBx3szzMzzE86Udpwvq7S0vLK6Vl6vbGxube9Ud/faKk4lxRaNeSy7PlHImcCWZppjN5FIIp9jxx9f537nEaVisbjXkwS9iAwFCxkl2kgPfc14gNndtDKo1py6M4P9l7gFqUGB5qD62Q9imkYoNOVEqZ7rJNrLiNSMcpxW+qnChNAxGWLPUEEiVF42u3hqHxklsMNYmhLanqk/JzISKTWJfNMZET1Si14u/uf1Uh1eehkTSapR0PmiMOW2ju38fTtgEqnmE0MIlczcatMRkYRqE1Iegrv48l/SPqm75/XT27Na46qIowwHcAjH4MIFNOAGmtACCgKe4AVeLWU9W2/W+7y1ZBUz+/AL1sc3RZWQqQ==</latexit>

˜

<latexit sha1_base64="AT9UOjq6xTOilv0yySmvMtAQGvY=">AAAB6nicdVDLSsNAFJ3UV42vqks3g0VwFZI0tHVXdOOyon1AG8pkOkmHTiZhZiKU0E9w40IRt36RO//GSVtBRQ9cOJxzL/feE6SMSmXbH0ZpbX1jc6u8be7s7u0fVA6PujLJBCYdnLBE9AMkCaOcdBRVjPRTQVAcMNILpleF37snQtKE36lZSvwYRZyGFCOlpdvINEeVqm1dNOuuV4e2ZdsNx3UK4ja8mgcdrRSoghXao8r7cJzgLCZcYYakHDh2qvwcCUUxI3NzmEmSIjxFERloylFMpJ8vTp3DM62MYZgIXVzBhfp9IkexlLM40J0xUhP52yvEv7xBpsKmn1OeZopwvFwUZgyqBBZ/wzEVBCs20wRhQfWtEE+QQFjpdIoQvj6F/5Ouazl1q3bjVVuXqzjK4AScgnPggAZogWvQBh2AQQQewBN4NpjxaLwYr8vWkrGaOQY/YLx9ApghjV0=</latexit>

g

<latexit sha1_base64="3Nqfp+OqvJuLhNElpWXqdRFXMM0=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiRpaOuu6MZlFfuANpTJdNIOnTyYmQgl9A/cuFDErX/kzr9x0lZQ0QMXDufcy733+AlnUlnWh1FYW9/Y3Cpul3Z29/YPyodHHRmngtA2iXksej6WlLOIthVTnPYSQXHoc9r1p1e5372nQrI4ulOzhHohHkcsYAQrLd36pWG5YpkXjZrj1pBlWlbdduycOHW36iJbKzkqsEJrWH4fjGKShjRShGMp+7aVKC/DQjHC6bw0SCVNMJniMe1rGuGQSi9bXDpHZ1oZoSAWuiKFFur3iQyHUs5CX3eGWE3kby8X//L6qQoaXsaiJFU0IstFQcqRilH+NhoxQYniM00wEUzfisgEC0yUDicP4etT9D/pOKZdM6s3bqV5uYqjCCdwCudgQx2acA0taAOBAB7gCZ6NqfFovBivy9aCsZo5hh8w3j4BXAmNRA==</latexit>

b

<latexit sha1_base64="WOu5o6n/5XZCk+EZ6lspNJFf3os=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxC3ZTEirosunFZxT6gjWUymbRDJw9mboQa8iVuXCji1k9x5984bbPQ1gMXDufcy733uLHgCizr2yisrK6tbxQ3S1vbO7tlc2+/raJEUtaikYhk1yWKCR6yFnAQrBtLRgJXsI47vp76nUcmFY/Ce5jEzAnIMOQ+pwS0NDDLfeDCY+ld9pBW6yfZwKxYNWsGvEzsnFRQjubA/Op7EU0CFgIVRKmebcXgpEQCp4JlpX6iWEzomAxZT9OQBEw56ezwDB9rxcN+JHWFgGfq74mUBEpNAld3BgRGatGbiv95vQT8SyflYZwAC+l8kZ8IDBGepoA9LhkFMdGEUMn1rZiOiCQUdFYlHYK9+PIyaZ/W7PNa/fas0rjK4yiiQ3SEqshGF6iBblATtRBFCXpGr+jNeDJejHfjY95aMPKZA/QHxucPS4OS2w==</latexit>

R̃
(3)

<latexit sha1_base64="hSQ9b5pjQLtjK9VHlKiaX2L7m2U=">AAACAXicbVBNS8NAEN34WetX1YvgJVgETyVRUY9FL4KXCvYD2lg2m0m7dPPB7kQsIV78K148KOLVf+HNf+O2zUFbHww83pthZp4bC67Qsr6NufmFxaXlwkpxdW19Y7O0td1QUSIZ1FkkItlyqQLBQ6gjRwGtWAINXAFNd3A58pv3IBWPwlscxuAEtBdynzOKWuqWdjvIhQfpdXaXdhAeUAapGgZZ1i2VrYo1hjlL7JyUSY5at/TV8SKWBBAiE1Sptm3F6KRUImcCsmInURBTNqA9aGsa0gCUk44/yMwDrXimH0ldIZpj9fdESgOlz3J1Z0Cxr6a9kfif107QP3dSHsYJQsgmi/xEmBiZozhMj0tgKIaaUCa5vtVkfSopQx1aUYdgT788SxpHFfu0cnxzUq5e5HEUyB7ZJ4fEJmekSq5IjdQJI4/kmbySN+PJeDHejY9J65yRz+yQPzA+fwAf2pf7</latexit>

K̃
sym

<latexit sha1_base64="XJINY/sxyQgYRPiqqaG6H0vH94M=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi+Clgv3ANpTNZtIu3WzC7kYoof/CiwdFvPpvvPlvTNoctPpg4PHeDDPzvFhwbWz7yyotLa+srpXXKxubW9s71d29to4SxbDFIhGprkc1Ci6xZbgR2I0V0tAT2PHG17nfeUSleSTvzSRGN6RDyQPOqMmkh77hwsf0dloZVGt23Z6B/CVOQWpQoDmofvb9iCUhSsME1brn2LFxU6oMZwKnlX6iMaZsTIfYy6ikIWo3nV08JUeZ4pMgUllJQ2bqz4mUhlpPQi/rDKkZ6UUvF//zeokJLt2UyzgxKNl8UZAIYiKSv098rpAZMckIZYpntxI2oooyk4WUh+AsvvyXtE/qznn99O6s1rgq4ijDARzCMThwAQ24gSa0gIGEJ3iBV0tbz9ab9T5vLVnFzD78gvXxDTllkKE=</latexit>

K̃

<latexit sha1_base64="ZCgS9C2QsU/Y70bChUOR37RkotA=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9OrVvMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/apOB</latexit>

S̃DCBA

<latexit sha1_base64="C6+Zf0o7+ESBbaOYGDUtAvCCzyU=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PL1lUzq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/Y5OB</latexit>

S̃ACDB

<latexit sha1_base64="Sd1fAdGImujQjtIHJ2VcqyozzvE=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PWVfMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/aZOB</latexit>

S̃CDBA

<latexit sha1_base64="bwNKqRXEQYBb+9AxeAfMaEXb0tU=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PLq1Yzq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/ZJOB</latexit>

S̃ADCB

<latexit sha1_base64="ZCgS9C2QsU/Y70bChUOR37RkotA=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9OrVvMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/apOB</latexit>

S̃DCBA

<latexit sha1_base64="Sd1fAdGImujQjtIHJ2VcqyozzvE=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpyoBBBxLy4FjEfQhtVHkOE5r1XEi2wFVIZ/ChQMIceVLuPE3OG0OUBhppdHMrnZ3vJhRqSzryygtLa+srpXXKxubW9s7ZnW3K6NEYNLBEYtE30OSMMpJR1HFSD8WBIUeIz1v0sr93j0Rkkb8Tk1j4oRoxGlAMVJacs3qUFHmk/Q2c9PWVfMyq7hmzapbM8C/xC5IDRRou+bn0I9wEhKuMENSDmwrVk6KhKKYkawyTCSJEZ6gERloylFIpJPOTs/goVZ8GERCF1dwpv6cSFEo5TT0dGeI1Fguern4nzdIVHDhpJTHiSIczxcFCYMqgnkO0KeCYMWmmiAsqL4V4jESCCudVh6CvfjyX9I9rttn9ZOb01qjWcRRBvvgABwBG5yDBrgGbdABGDyAJ/ACXo1H49l4M97nrSWjmNkDv2B8fAN/aZOB</latexit>

S̃CDBA

<latexit sha1_base64="2S0m+oAivQ3eztpozTeSMQomi6k=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWNF+4FtKJvNpF262YTdjVBC/4UXD4p49d9489+4aXPQ6oOBx3szzMzzE86Udpwvq7S0vLK6Vl6vbGxube9Ud/faKk4lxRaNeSy7PlHImcCWZppjN5FIIp9jxx9f537nEaVisbjXkwS9iAwFCxkl2kgPfc14gNndtDKo1py6M4P9l7gFqUGB5qD62Q9imkYoNOVEqZ7rJNrLiNSMcpxW+qnChNAxGWLPUEEiVF42u3hqHxklsMNYmhLanqk/JzISKTWJfNMZET1Si14u/uf1Uh1eehkTSapR0PmiMOW2ju38fTtgEqnmE0MIlczcatMRkYRqE1Iegrv48l/SPqm75/XT27Na46qIowwHcAjH4MIFNOAGmtACCgKe4AVeLWU9W2/W+7y1ZBUz+/AL1sc3RZWQqQ==</latexit>

S̃

<latexit sha1_base64="U43cIzN0fzGbf4rfqf9NumtbSyE=">AAACJnicbVDLSgNBEJz1GeMr6tHLYhC8GHZV1EsgUQ8eIxoVsjH0TjrJkNkHM71CWPZrvPgrXjxERLz5KU5iDr4KGoqqama6/FgKTY7zbk1Nz8zOzecW8otLyyurhbX1ax0limOdRzJStz5olCLEOgmSeBsrhMCXeOP3T0f+zT0qLaLwigYxNgPohqIjOJCRWoWyR0K2Mb3MWunZ6Uk1K+Nduuv5SOD1fFCemdSLAuxCln3LVk04y7cKRafkjGH/Je6EFNkEtVZh6LUjngQYEpegdcN1YmqmoEhwiVneSzTGwPvQxYahIQSom+n4zMzeNkrb7kTKTEj2WP2+kUKg9SDwTTIA6unf3kj8z2sk1DlupiKME8KQfz3USaRNkT3qzG4LhZzkwBDgSpi/2rwHCjiZZkcluL9P/kuu90ruYWn/4qBYOZnUkWObbIvtMJcdsQo7ZzVWZ5w9sCc2ZC/Wo/VsvVpvX9Epa7KzwX7A+vgEZ7SmVw==</latexit>
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Figure 1. Diagram depicting the mathematical relationships used

in Sec. II B 2 to connect the correlation functions required to com-

pute the third-order response function (R̃(3)) to the SKTCF (K̃sym).

Black lines denote exact relationships while red lines are only for-

mally satisfied in the harmonic limit for linear operators.

In the SM Sec. I we demonstrate the analytic properties of

Eq. (26).

At this stage it is worth noting some desirable features of

Eq. (24). Whereas Eq. (21) has a prefactor of 1/h̵3 by con-

verting from the standard to the Kubo transformed correla-

tion functions the factor of h̵3 that appears in the denom-

inator of f(ω1, ω2, ω3) cancels that in the denominator of

a(ω1, ω2, ω3) thus ensuring a well defined classical (h̵ → 0)

limit. Additionally, even though we made one harmonic ap-

proximation to derive the connection used in Eq. (21) the over-

all expression we have derived for the third-order response

still retains its overall odd symmetry with respect to the fre-

quency variables, which can be seen by noting that from the

general properties of Fourier transforms K̃∗(ω1, ω2, ω3) =
K̃(−ω1,−ω2,−ω3) and inserting this into Eq. (24). This sym-

metry is important to capture the physical properties of signals

governed by the third-order response by ensuring the response

averaged over all times is zero.

To obtain a third-order response expression that is in

terms of the Fourier transformed SKTCF K̃sym(ω1, ω2, ω3),
which is a real quantity, we now separate K̃(ω1, ω2, ω3) and

K̃∗(ω1, ω2, ω3) into their even and odd components and ex-

ploit the fact that in the harmonic limit the odd component

vanishes (see SM Sec. II for proof) to obtain the third or-

der response purely in terms of the real part of the correlation

function Re[K̃],
R̃(3)(ω1, ω2, ω3) =

− i[a(ω1, ω2, ω3) − a(−ω1,−ω2,−ω3)]Re[K̃]. (27)

To express the response in terms of the SKTCF we utilize one

final harmonic approximation to relate K̃sym(ω1, ω2, ω3) and

Re[K̃(ω1, ω2, ω3)] (see SM Sec. II) to arrive at our main

result

R̃(3)(ω1, ω2, ω3) = −ih(ω1, ω2, ω3)K̃sym(ω1, ω2, ω3),
(28)

where

h(ω1, ω2, ω3) =
b(ω1, ω2, ω3)[a(ω1, ω2, ω3) − a(−ω1,−ω2,−ω3)]. (29)

and

b(ω1, ω2, ω3) = sinh(βh̵ω̄) − βh̵ω̄
βh̵ω̄[cosh(βh̵ω̄) − 1] . (30)

The correction factor we have derived in Eq. (29) guarantees

the response vanishes when ω̄ = 0 which is in agreement with

the exact response function. When the SKTCF is computed

either classically, with LSC-IVR, CMD or RPMD in the har-

monic limit with linear operators it also gives the correct limit

of zero response. The function defined in Eq. (30) is non-

negative and serves as a scaling factor for the intensities as it

cannot change the sign or zero out any peaks in the frequency

domain. It is also an even function and thus keeps the overall

odd symmetry of the response. Figure 1 outlines the mathe-

matical connections that were used in our derivation with the

relationships shown as black lines being exact and those as

shown as red lines only being formally satisfied in the har-

monic limit for linear operators.

The limit as h̵ → 0, i.e. the classical limit of the correction

factor is

hcl(ω1, ω2, ω3) = lim
h̵→0

h(ω1, ω2, ω3) = β3

4
ω̄(ω2

3 − ω
2

2). (31)

One key advantage of the classical limit of the correction fac-

tor is that it can be applied in the time domain since it can be

analytically inverse Fourier transformed yielding a sequence

of derivatives. An alternative correction factor shown in Ap-

pendix D can be obtained by starting from Eq. (21) and rather

than moving to the Kubo transformed correlation functions

one instead performs the frequency space connections be-

tween the standard quantum correlation functions in the har-

monic limit. This approach was first described in Ref. 43 and

despite the two approaches yielding different correction fac-

tors the form of the classical limit of each factor is the same.

Connecting the third-order response to the standard quantum

correlation function leads to a different scaling in h̵ for the real

and imaginary components of the standard correlation func-

tion which necessitates the use of an approximate relationship

between the real and imaginary components of the correla-

tion function so as to give a consistent scaling of h̵ to the
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entire response function.43 The use of this approximate con-

nection is avoided when connecting the third-order response

to the SKTCF, since as shown in Eq. (24) the 1/h̵3 prefactor

inherent to the response function naturally cancels due to the

thermal factor introduced by the multi-time Kubo transform

(see Eq. (26)).

Finally, we note that in the derivations above, for math-

ematical convenience, we use the absolute time convention

(t1, t2, t3). 2D experiments are typically often analyzed in

the relative time convention (t1, t1 + t2, t1 + t2 + t3). To con-

vert between the two one makes a simple change of variables

of t1 → t′1, t2 → t′1 + t′2, and t3 → t′1 + t′2 + t′3 where the

primed variables are those given in the relative convention.

This change of time variables changes the frequency variables

to ω̄ → ω′1, ω2 + ω3 → ω′2, and ω3 → ω′3.

III. COMPUTATIONAL DETAILS

To test the accuracy of our correction factor and its classical

limit when combined with the exact and approximate SKCTF

we performed simulations of two systems of differing levels

of anharmonicity. The first is a mildly anharmonic potential

(MAP) that has been used in a number of previously studies to

benchmark the performance of dynamics methods for single-

time correlation functions.48,49,60 To provide a more challeng-

ing test we also consider a O-H stretch potential (OHP) that is

more strongly anharmonic potential where the parameters and

functional form were based on those from the qTIP4P/F O-H

stretch potential.61 In atomic units the the MAP model is:

V (q) = 1

2
q2 +

1

10
q3 +

1

100
q4 (32)

and the OHP is

V (q) = 1

2
q2 −

α

2
q3 +

7α2

24
q4 (33)

with α = 1.21. For both of these systems we performed sim-

ulations at an inverse temperature of β = 8, where only the

ground state is appreciably populated, and β = 1, where states

up to the fifth vibrational level have significant population in

both models.

For each of these models we applied our correction factor

to the exact SKTCF and the TRPMD62,63 and classical ap-

proximations to the SKTCF and compared them to the ex-

act third-order response function. The exact calculations of

the SKTCF and third-order response function were performed

by first constructing the Hamiltonian in a discrete variable

representation64 comprised of 1550 grid points, diagonalizing

the Hamiltonian and then evaluating the trace in the energy-

eigenbasis using the lowest eight eigenvalues and their cor-

responding eigenvectors. The TRPMD and classical approx-

imations of the SKTCF63,65,66 were obtained using the same

settings employed in Ref. 55 with 32 beads used in all of the

TRPMD simulations.

All of the simulations of the correlation functions were per-

formed in the time domain. A multi-dimensional Hann win-

dow was applied to these time domain functions such that

they decayed to zero at t1, t2, t3 = ±15 and then the FFT al-

gorithm was used to perform the multi-dimensional Fourier

transforms.

IV. RESULTS AND DISCUSSION

To test the approximations made in deriving our correc-

tion factor to convert the SKTCF into the third-order response

given in Eq. (28) we applied it to SKTCFs obtained from ex-

act and approximate (TRPMD and classical) dynamics for the

two potentials of varying anharmonicity, denoted MAP and

OHP, defined in Eqs. (32) and (33). All operators are taken to

be linear position operators (i.e. Â = B̂ = Ĉ = D̂ = q̂). With

this choice of operators a purely harmonic potential would

yield a zero third-order response which would be exactly cap-

tured by our correction factor with RPMD, exact or classi-

cal dynamics. Hence the responses probed in the following

section leading to peak splittings arise purely from the anhar-

monic nature of the potential energy.

We first present the effects of applying the correction fac-

tor in Eq. (29) to the exact three-time SKTCF in Fig. 2 for

both the low and high temperature regimes of the MAP. By

comparing the left hand panels of Fig. 2 which shows the ex-

act SKTCF, Ksym(ω1, ω2, ω3), to the right hand panels which

show the exact 3rd order response R
(3)
exact(ω1, ω2, ω3) at β = 1

and 8 it is clear that the SKTCF itself does not resemble

the response function. In particular the SKTCF only con-

tains positive features while the third-order response contains

both positive and negative ones. Applying our correction fac-

tor, h(ω1, ω2, ω3), (middle-left panel) derived in Sec. II B 2 to

the exact SKTCF yields the approximate third-order response

R
(3)
approx(ω1, ω2, ω3) shown in the middle-right panel. With

the correction factor applied to the SKTCF the characteristic

positive-negative splittings that arise from the anharmonicity

of the potential emerge. The role that the correction factor

plays in higher order spectroscopies is thus distinct from that

in linear spectroscopy in that it no longer simply modulates

intensities, but can additionally change the sign of peaks.

Figure 3 compares the effects on the third-order response

of applying the full correction factor and its classical limit,

hcl(ω1, ω2, ω3), given in Eq. (31) on differing levels of dy-

namical approximations to the SKTCF in the low tempera-

ture regime. In comparing the left panels with the middle

panels it can be seen that using the SKTCF obtained from

TRPMD rather than the exact SKTCF to compute the third-

order response in this regime introduces virtually no extra er-

rors on top of those already arising from the correction fac-

tors h(ω1, ω2, ω3) and hcl(ω1, ω2, ω3). In contrast, classical

dynamics fails to capture some features and underestimates

others such as the peak at (ω1 = 0, ω2 = 1, ω3 = 0) and

the feature at (ω1 = −1, ω2 = 1, ω3 = 0). Comparing the

full correction factor to its classical limit (top row vs. bot-

tom row) the main difference observed is for the feature near

(ω1 = 1, ω2 = 1, ω3 = −1) which is eliminated by the full cor-

rection factor but not by its classical limit. Comparing these

results to the exact third order response for this system (Fig. 2

bottom-right panel) one observes that this feature is present in
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R
(3)
exact(ω1,ω2,ω3)

Figure 2. Construction of the third-order response for the MAP model from the SKTCF according to Eq. (28) at inverse temperatures β = 1

(top row) and β = 8 (bottom row) for ω2 = 1. The first column shows the 3D Fourier transform of the SKTCF calculated using exact quantum

dynamics. The second column shows our correction factor at that temperature. The third column shows approximate third-order response

obtained from multiplying the exact SKTCF (first column) by our correction factor (second column). This approximation to the third-order

response can be compared to that computed exactly in the fourth column obtained from Eq. (9). Since the SKTCF is computed exactly all the

error in comparing the third-order response in columns three and four arises from inaccuracies in our correction factor for the MAP model.
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exact SKTCF

Figure 3. Third-order response obtained for the MAP model at β = 8 and ω2 = 1 using the full correction factor (top row) and its classical limit

(bottom row). The columns show the effect of three levels of dynamics used to compute the SKTCF to which the correction factor is applied

to yield the third-order response: exact quantum dynamics (first column), TRPMD (second column), and classical dynamics (third column).

the exact result but inverted in sign compared to what is pre-

dicted by the classical limit of the correction factor and hence

both the full and classical correction factors are incorrectly

capturing this feature. The results of applying the standard

quantum correlation function correction factor introduced in

Ref. 43 and derived in Appendix D to the exact and approx-

imate SKTCF correlations functions is shown in the SM and

is observed to perform worse than the full correction factor

introduced here or its classical limit.

So far we have demonstrated the performance of our for-

malism in capturing the response function entirely in the fre-

quency domain, R(3)(ω1, ω2, ω3). However, spectroscopic

measurements are frequently reported as a function of the

population time delay, t2, i.e as R(3)(ω1, t2, ω3). To as-

sess how the errors introduced by the correction factors man-

ifest in this form of the third-order response Fig. 4 compares

R(3)(ω1, t2, ω3) computed exactly to the results obtained us-

ing the exact SKTCF and applying our correction factor as

well as using TRPMD and classical approximations to the

SKTCF. In all cases the main anharmonic splitting feature

centered around (ω1 = 1, t2 = 0, ω3 = 1) is captured by

all of the dynamics methods used as well as the feature at
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exact SKTCF

Figure 4. Third-order order response for the MAP model with the ω2 axis transformed to the time domain, R(3)(ω1, t2, ω3) at t2 = 0 and

β = 8. The top row uses the full correction factor while the bottom row uses its classical limit. The columns correspond to the levels of

dynamics used to which the correction factor is applied to yield the third-order response: exact quantum dynamics (first column), TRPMD

(second column), and classical dynamics (third column).

(ω1 = 0, t2 = 0, ω3 = 1). We show the results only at t2 = 0

since the model is one dimensional and hence, due to the lack

of interaction with other degrees of freedom, there are no new

features that appear at later time delays.

By comparing the top and bottoms panels of Fig. 4 with the

former using the full correction factor, h(ω1, ω2, ω3), and the

latter its classical limit, hcl(ω1, ω2, ω3), one sees that while

both capture the main anharmonic feature the full correction

factor gives a better description of the vanishing signal at

(ω1 = 0, t2 = 0, ω3 = 0). While some of the features present

in exact signal (e.g. those at (ω1 = 1.8, t2 = 0, ω3 = 0) and

(ω1 = 0, t2 = 0, ω3 = 1.8)) are not captured by any of the dy-

namics approaches (including the exact SKTCF) when com-

bined with our correction factor it is remarkable that given

that the connections used to derive it invoked harmonic lim-

its that the dominant anharmonic splitting centered around

(ω1 = 1, t2 = 0, ω3 = 1) which consists of a negative lobe

above the diagonal and a corresponding positive one below it

is captured. These positive and negative regions arise from

the smaller spacings of the energy levels of the anharmonic

potential such that the bleach and stimulated emission peaks

appear shifted and opposite in sign to the excited state absorp-

tion. The ability of even classical dynamics combined with the

classical limit of our correction factor to capture these physics

is thus notable. The results for the high temperature regime

are shown in SM Figs. 2 and 3 and exhibit similar features.

Finally, to test the performance of our correction factor

when pushed outside the limits it was derived in we consider

the third-order response (R(3)(ω1, t2, ω3)) in the more anhar-

monic OHP potential. Fig. 5 shows that even with this in-

creased anharmonicity using the TRPMD SKTCF combined

with our correction factor one is again able to capture the main

positive and negative features split about the diagonal which

for this system in the higher temperature case (β = 1) gives

rise to an extended oblong feature arising from overlapping

transitions. However, as one would expect given the more

anharmonic potential the spurious peaks at (ω1 = 1.5, t2 =
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TRPMD

Figure 5. Third-order response for the more strongly anharmonic

OHP model at β = 1 (top row) and β = 8 (bottom row) at t2 = 0. The

left column contains the exact third-order response while the right

column shows the third-order response obtained using the TRPMD

approximated SKTCF in conjunction with the full correction factor.

0, ω3 = 0) and (ω1 = 0, t2 = 0, ω3 = 1.5) have much higher

intensity than they did in the MAP case due to the correc-

tion factors not properly dampening these peaks in spectral

representation of the SKTCF, and similar failures can also be

observed in the all frequency representation of the third-order

response, R(3)(ω1, ω2, ω3), shown in SM Fig. 4. The compar-

ison using the classical limit of the correction factor is shown

in SM Fig. 5.

V. CONCLUSION

Using the formalism of the SKTCF we have provided a

tractable approach to compute third-response functions from
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equilibrium trajectory based methods. The ability to do this

allows for the simulation of spectroscopies that arise from

third-order response, such as 2D-IR, from trajectories ob-

tained using methods such as TRPMD, CMD, LSC-IVR or

classical molecular dynamics without having to perform addi-

tional simulations with explicit field perturbations or nonequi-

librium trajectories. Our correction factor is able to exactly

capture the zero third-order response in the harmonic limit

and despite invoking harmonic connections between correla-

tion functions it can be combined with TRPMD or classical

dynamics to reproduce the positive-negative splittings present

in the third-order response of anharmonic systems which are

a hallmark of higher order spectroscopies. These positive and

negative splittings, which are not captured by simpler 2D cor-

relation methods,67,68 arise from the action of our correction

factor on the SKTCF and hence in these higher order spectro-

scopies the correction factor plays a more crucial role than in

linear spectroscopies where it modulates intensities and does

not lead to sign changes. There are limits on the success one

can expect from such an approach. As demonstrated in our

results pushing the current correction factor into highly anhar-

monic regimes leads to a notable degradation in the quality of

the results obtained. The current strategy however provides

a tractable approach to utilize the latest developments in ef-

ficient ab initio path integral methods69 and machine learned

potentials to describe the nonlinear spectroscopy of complex

systems that have recently been studied experimentally by 2D-

IR ranging from protonated water70 to ionic solutions.71
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Appendix A: Harmonic Limit of Ksym(t1, t2, t3) for linear
operators

In the harmonic limit one can analytically evaluate the sym-

metrized Kubo transform. While the expressions are generally

unwieldy when nonlinear operators are involved it gives a sim-

ple expression for linear position operators, namely

Ksym(t1, t2, t3) = 1

(βmΩ2)2 { cos[Ω(t1 − t2 − t3)]+
cos[Ω(t1 + t2 − t3)] + cos[Ω(t1 − t2 + t3)]}, (A1)

which is identical to the result one would obtain for the classi-

cal correlation ⟨q(0)q(t1)q(t2)q(t3)⟩. This is analgous to the

relationship that is found in the single time case i.e., the Kubo

transformed correlation function and the classical correlation

function of linear position operators both give the same result

of

K(t) = 1

βmΩ2
cos(Ωt). (A2)

This behavior is in general true for any SKTCF of the har-

monic oscillator involving linear operators reinforcing the

idea that the SKTCF behaves more similar to its classical

counterpart than other forms of multi-time correlation func-

tions. When nonlinear operators are involved the agreement

between the SKTCF and classical ones no longer holds. The

RPMD and CMD approximations to the symmetrized Kubo

transform are also exact in this limit since in the case of linear

operators only the centroid of the ring polymer contributes to

the correlation function yielding the classical result.

Appendix B: Fourier relationships between standard
three-time correlation functions

Each of the standard correlation functions defined in the

response function can be expanded in the eigenbasis of the

Hamiltonian and then subsequently Fourier transformed. The

results are as follows:

S̃DCBA(ω1, ω2, ω3) = 1

Z
∑

klmn

e−βEkDklClmBmnAnk (B1)

×δ(ω1 − ωmn)δ(ω2 − ωlm)δ(ω3 − ωkl),
S̃CDBA(ω1, ω2, ω3) = 1

Z
∑

klmn

e−βEkCklDlmBmnAnk (B2)

×δ(ω1 − ωmn)δ(ω2 − ωkl)δ(ω3 − ωlm),
S̃ACDB(ω1, ω2, ω3) = 1

Z
∑

klmn

e−βEkAklClmDmnBnk (B3)

×δ(ω1 − ωnk)δ(ω2 − ωlm)δ(ω3 − ωmn),
S̃ADCB(ω1, ω2, ω3) = 1

Z
∑

klmn

e−βEkAklDlmCmnBnk (B4)

×δ(ω1 − ωnk)δ(ω2 − ωmn)δ(ω3 − ωlm),
where ωkl = (Ek − El)/h̵ and Okl = ⟨k∣Ô∣l⟩. Enforcing the

delta functions in Eq. (B1) we obtain

S̃DCBA =
e−βh̵ω̄

Z
∑

klmn

e−βEnDklClmBmnAnk

×δ(ω1 − ωmn)δ(ω2 − ωlm)δ(ω3 − ωkl),
= e−βh̵ω̄S̃ADCB . (B5)
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Similarly one can also show

S̃CDBA = e
−βh̵ω̄S̃ACDB . (B6)

Using the fact that

W̃ (−ω1,−ω2,−ω3) = ∫
∞

∞

dt1 ∫
∞

∞

dt2 ∫
∞

∞

dt3

× e−i(ω1t1+ω2t2+ω3t3)W ∗(t1, t2, t3) (B7)

i.e. the Fourier transform of the complex conjugate gives the

same frequency space function but with negative arguments

we immediately get

S̃∗DCBA = e
βh̵ω̄S̃∗ADCB , (B8)

S̃∗CDBA = e
βh̵ω̄S̃∗ACDB . (B9)

Combining these frequency relationships it is possible to re-

late differences of correlation functions to sums as

S̃DCBA − S̃ADCB = tanh(βh̵ω̄/2) [S̃DCBA + S̃ADCB] ,(B10)

S̃∗DCBA − S̃
∗

ADCB = − tanh(βh̵ω̄/2) [S̃∗DCBA + S̃
∗

ADCB] ,(B11)

S̃CDBA − S̃ACDB = tanh(βh̵ω̄/2) [S̃CDBA + S̃ACDB] ,(B12)

S̃∗CDBA − S̃
∗

ACDB = − tanh(βh̵ω̄/2) [S̃∗CDBA + S̃
∗

ACDB] .(B13)

Which are the relationships that ultimately allow us to write

Eq. (9) as Eq. (19).

Appendix C: Relation between K̃(ω1, ω2, ω3) and

S̃(ω1, ω2, ω3)

Here we derive the f(ω1, ω2, ω3) conversion factor. Start-

ing from the Kubo transformed correlation function

K(t1, t2, t3) = 1

Zβ3 ∫
β

0

dλ∫
λ

0

dµ∫
µ

0

dν

×Tr[e−(β−λ)ĤĈ(t2)e−(λ−µ)ĤD̂(t3)
×e−(µ−ν)ĤB̂(t1)e−νĤÂ(0)], (C1)

then writing it in the energy eigenbasis and Fourier transform-

ing gives

K̃(ω1, ω2, ω3) = 1

Zβ3
∑

klmn

e−βEk[∫
β

0

dλ∫
λ

0

dµ∫
µ

0

dν

× eλh̵ωkleµh̵ωlmeνh̵ωmn]CklDlmBmnAnk

× δ(ω1 − ωmn)δ(ω2 − ωkl)δ(ω3 − ωlm). (C2)

Enforcing the delta functions allows us to move the bracketed

term outside of the sum giving

K̃(ω1, ω2, ω3) = f(ω1, ω2, ω3) ∑
klmn

e−βEnCklDlmBmnAnk

×δ(ω1 − ωmn)δ(ω2 − ωkl)δ(ω3 − ωlm),(C3)

where

f(ω1, ω2, ω3) = 1

β3 ∫
β

0

dλ∫
λ

0

dµ∫
µ

0

dνeλh̵ω2eµh̵ω3eνh̵ω1 .

(C4)

Renaming the indices gives

K̃(ω1, ω2, ω3) = f(ω1, ω2, ω3)S̃(ω1, ω2, ω3), (C5)

which is Eq. (22). The three iterated integrals in f(ω1, ω2, ω3)
can be performed analytically giving the explicit form of the

conversion factor as

f(ω1, ω2, ω3) = 1

β3h̵3

⎡⎢⎢⎢⎢⎣
eβh̵ω̄ − 1

ω1ω̄(ω1 + ω3) +
eβh̵ω2

− 1

ω2ω3(ω1 + ω3)

−

eβh̵(ω2+ω3)
− 1

ω1ω3(ω2 + ω3)
⎤⎥⎥⎥⎥⎦
. (C6)

Appendix D: Method of Devane et. al. using the standard
correlation function

Here we will derive a correction factor using the method

presented in Ref. 43 for standard quantum correlation func-

tions. Beginning from

R(3)(ω1, ω2, ω3) = i

h̵3
[(eβh̵ω̄ − 1)(g(ω1, ω2, ω3) − 1)S̃

− (e−βh̵ω̄ − 1)(g(−ω1,−ω2,−ω3) − 1)S̃∗], (D1)

then separating each term into its even and odd part

R(3)(ω1, ω2, ω3) =
i

h̵3
[(k(ω1, ω2, ω3) − k(−ω1,−ω2,−ω3))Re[S̃]

+ (k(ω1, ω2, ω3) + k(−ω1,−ω2,−ω3))Im[S̃]], (D2)

where

k(ω1, ω2, ω3) = (eβh̵ω̄ − 1)(g(ω1, ω2, ω3) − 1). (D3)

Since the terms k(ω1, ω2, ω3) − k(−ω1,−ω2,−ω3) and

k(ω1, ω2, ω3) + k(−ω1,−ω2,−ω3) have a different depen-

dence on h̵ one needs to find an approximate relationship be-

tween Re[S̃] and Im[S̃]which yields a consistent h̵→ 0 limit.

One relationship that accomplishes this is43

l(ω1, ω2, ω3) = − tanh [βh̵
4
(ω1 + 3ω2 + 2ω3)] . (D4)

which assures that in the classical limit each term is indepen-

dent of h̵, giving the response as

R(3)(ω1, ω2, ω3) = i

h̵3
[(k(ω1, ω2, ω3)−k(−ω1,−ω2,−ω3))

+ l(ω1, ω2, ω3)(k(ω1, ω2, ω3) + k(−ω1,−ω2,−ω3))]Re[S̃]
= hS(ω1, ω2, ω3)Re[S̃]. (D5)
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The classical limit of the hS(ω1, ω2, ω3) correction factor is

lim
h̵→0

hS(ω1, ω2, ω3) = β3

8
ω̄(ω2

3 − ω
2

2), (D6)

which differs from the classical limit derived using the Kubo

transformed correlation functions in the main text by a factor

of two. It is reassuring that the two methods yield the same

frequency dependence in the classical limit despite the differ-

ing forms of the two correction factors.
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