2D spectroscopies from condensed phase dynamics: Accessing
third-order response properties from equilibrium multi-time correlation

functions

Kenneth A. Jung' and Thomas E. Markland™
Department of Chemistry, Stanford University, Stanford, California, 94305, USA

(Dated: April 28, 2023)

The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two
dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time
and frequency dimensions in these spectroscopies provides access to rich information on the electronic and vibrational
states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in
linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While
the exact quantum expression for the third-order response is well established it is incompatible with the methods that are
practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both
classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the sym-
metries of classical dynamics, such as LSC-IVR, Centroid Molecular Dynamics (CMD) and Ring Polymer Molecular
Dynamics (RPMD) naturally provide short-time approximations to the multi-time symmetrized Kubo transformed cor-
relation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized
Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it
can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD.
In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak
shifts while providing a physically transparent framework for understanding multidimensional spectroscopies.

. INTRODUCTION

Linear spectroscopies, ranging from electronic, terahertz,
Raman, SFG, and infra-red are the workhorse methods used to
interrogate time and energy scales of chemical systems. How-
ever, in disordered condensed phase systems the presence of
many overlapping features makes decoding the information
present to obtain the individual processes and states present,
the timescales of their interconversion, and the molecular mo-
tions they arise from extremely challenging. Nonlinear spec-
troscopies provide much richer information,'™ with the 2D
counterparts of the aforementioned spectroscopies (2D-IR,*>
2D-Raman-Thz,® 2D-Raman,’ 2D-SFG®) giving access to ex-
tra time and frequency dimensions that allow for easier iden-
tification of the states present and the rates of their intercon-
version. However, while these methods yield information on
the timescales present in condensed phase chemical systems
linking these to the microscopic structural changes that give
rise to them often poses a significant challenge. One of the
most powerful ways to achieve this link between dynamics
and structure for linear spectrocopies in the condensed phase
has been through the use of theory and simulation where a
plethora of classical and semi-classical techniques have been
introduced.”'® However, the accurate and efficient simula-
tion of nonlinear spectroscopies still presents significant chal-
lenges. In particular, 2D spectroscopies (2D-IR, 2D-ES, and
2D-SFQG) can be simulated and understood in the impulsive
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limit via the third-order response function,?%>!
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which describes how a system with an initial distribution peq
evolves in time following the effect of successive interactions
with the experimentally applied fields (at times O, ¢, t2) and
the probe (at t3) the nature of which determine the operators
121, B s C ,and D. These operators are determined by the partic-
ular spectroscopy of interest, for example if all operators are
taken to be electronically off-resonant dipole operators then
this measurement would correspond to 2D-IR. Given the in-
sights that have been obtained into linear spectroscopies from
molecular simulation and the recent advent of efficient ab ini-
tio molecular dynamics schemes®*~® and machine learning
representations of ab initio potential energy surfaces>’ ! hav-
ing an efficient and tractable route to compute the third-order
response from molecular dynamics simulations would further
our ability to understand and design 2D spectroscopic exper-
iments in the condensed phase. However, unlike the single
time correlation functions needed to capture linear spectro-
scopies if one were to expand the nested commutators to ob-
tain a difference of correlation functions in Eq. (1) this would
yield a zero third order response since one would obtain a dif-
ference of correlations functions that are all identical in the
classical limit.

The lack of a straightforward approach to obtain the third-
order response has spawned a number of methods to obtain
it that are compatible with atomistic simulations. For cases
in which only information on a particular mode is of interest
(e.g. an OH or CO stretch coordinate) the use of frequency



maps and cumulant approaches have proven useful.*>** How-
ever, when the response function is required across the en-
tire frequency range one must resort to other methods. Many
of these methods arise from the Poisson bracket method**
where the commutators in the response function are replaced
with Poisson brackets, which arise from truncating the Wigner
representation of the commutator keeping only the leading or-
der term, and then replacing quantum observables with clas-
sical ones. Doing this gives a non-zero classical limit for the
third-order response but requires the calculation of the stabil-
ity matrix, a measure of the sensitivity of trajectories to their
initial conditions, for the entire system. The elements of the
stability matrix are known to grow rapidly with time making
simulations increasingly difficult to converge at longer times
and as the system becomes larger.

To make the Poisson bracket based approaches more fea-
sible finite field methods**® have been introduced as an al-
ternative way to compute the response. These methods apply
explicit perturbations to the system to generate nonequilib-
rium trajectories that replace the chaotic measure with sud-
den kicks in the momenta. However, introducing nonequilib-
rium trajectories creates a parametric dependence of the ap-
plied perturbation which needs to be carefully chosen adding
a further challenge to converging the results. While more re-
cent work has shown that hybrid approaches**! combining
nonequilibrium kicks with equilibrium trajectories can give
improvements in simulation efficiency these methods remain
computationally costly limiting their ability to treat large con-
densed phase systems especially those that involve long cor-
relation times.

An alternative approach to obtaining the third-order re-
sponse is to approximately cast it in terms of a single equilib-
rium multi-time correlation function multiplied by a correc-
tion factor. In this approach one first expands the commuta-
tors in Eq. (1) to yield a series of multi-time correlation func-
tions and then obtains the correction factor by deriving con-
nections between them in the frequency domain. The correc-
tion factor thus attempts to encode the interference between
the multi-time correlation functions that appear in the non-
linear response that ultimately gives rise to the observed sig-
nal. Previous work has provided a route to achieve this for the
second and third-order response functions based on the stan-
dard quantum multi-time correlation functions allowing sim-
ple classical limits to be defined.*>~** However, the standard
quantum multi-time correlation function is generally complex
valued and doesn’t allow for arbitrary permutations of oper-
ators. These properties of the standard correlation function,
are highly undesirable as they are not satisfied by classical
mechanics or semi-classical methods combining quantum sta-
tistical properties with classical-like evolution such as LSC-
IVR,* Centroid Molecular Dynamics***® (CMD) and Ring
Polymer Molecular Dynamics***° (RPMD), which are some
of the most practical methods currently available to treat nu-
clear quantum effects in condensed phase systems.

For single-time correlation functions the issues associated
with the classical and semi-classical approximation of the
standard correlation function has been long appreciated and
thus instead of approximating the standard correlation func-

tion one first recasts the property of interest in terms of the
Kubo transformed correlation function®'>? before approxi-
mating the Kubo correlation function classically or semi-
classically. The symmetrized Kubo transformed correlation
function™-* (SKTCF) extends this concept to the multi-time
case since it is a quantum mechanical correlation function that
possess the symmetries of a classical correlation function i.e.
it is real valued, invariant to permutations of the operators and
is time reversible. This makes it the natural correlation func-
tion to approximate using classical and semiclassical meth-
ods. Recent work has derived a correction factor that con-
nects the second-order response to the two-time SKTCF.%
Since this approach only requires calculating an equilibrium
two-time correlation function, which can be easily done using
standard molecular dynamics software, this approach can be
applied to study the second-order response in large condensed
phase systems and has recently been combined with RPMD
to elucidate the role of nuclear quantum effects (NQEs) in the
two-dimensional Raman spectrum of liquid Neon.’® However,
formulating the third-order response in terms of SKTCFs has
remained a challenge.

Here we show how the third-order response can be obtained
by utilizing a further generalization of the SKTCF. This al-
lows us to express the third-order response function in the
frequency domain in terms of a correction factor that can be
applied to convert the equilibrium multi-time correlation func-
tions generated by one’s method of choice to the third-order
response. We find that when our correction factor is combined
with classical dynamics, LSC-IVR, CMD or RPMD it cor-
rectly recovers the vanishing of the third-order response in the
harmonic limit for linear operators. Finally, we demonstrate
the ability of our approach to capture the features present in
the exact third-order response of a mildly anharmonic poten-
tial and a model of the O-H stretch of water when used with
RPMD or classical dynamics.

Il. THEORY
A. Symmetrized Kubo transformed correlation functions

To begin we first introduce the framework of the SKTCF
that will motivate the later approximations to the third-order
response function. For transparency we consider a 1D system
(the generalization to higher dimensions is straightforward)
with the Hamiltonian
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where p and ¢ are the momentum and position. The SKTCF
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where
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Z = Tr[e "] is the partition function and O(«) =
eifla/hQe-iHalh denotes the Heisenberg time evolved oper-
ators, which in this case are generally a mixture of real and
imaginary time evolution. The imaginary time ordering oper-
ator T s when applied to the imaginary time evolved operators
following it gives the sum of all unique permutations of these
operators and is as defined in Ref. 54. The SKTCF possesses
the properties of invariance to permutations of the operators,
time reversal symmetry, and is always real valued. These are
properties classical multi-time correlation functions posses as
well. Appendix A gives further evidence of the correspon-
dence between the SKTCF and classical multi-time correla-
tion functions by showing that they yield the same result for a
harmonic potentials with linear operators. The standard Kubo
transformed correlation,’’ which forms the basis for calculat-
ing linear spectroscopies,

(A;B) = 612/06d>\Tr [N TAO)eMB(1)] )

can be viewed as a special case of Eq. (3) when A; =1 (the
identity operator) for ¢ > 1. Previous work has shown how the
symmetrized double Kubo transform can be used to approxi-
mate the second-order response function’>-
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Eq. (3) also reduces to this result when Ai =1 fori > 2. The
correlation function that will be of interest for us to derive an
approximation to the third-order response function will be the
three-time SKTCF

(A; B; C; D)™ = (A; B; C; D)+(A; C; B; D)+(C; A; B; D)
+(B;A;C; D) +(B;C; A; D)+ (C; B; A; D)

EKsym(tlatQ;tl?o)a (7)

where we introduce the shorthand notation for a general triple
Kubo transformed multi-time correlation function,
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the “;” is used to denote the imaginary time averaging of the
operator it follows where it is implied that the averaging is
done in the order v, i, and then \.

B. Third-order response function

The third-order response function is defined in Eq. (1).
Here we define the initial distribution to be the equilibrium

density matrix peq = <—. Expanding the commutators al-
lows one to see that the third-order response can be written in
terms of standard correlation functions (S;) as
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where
Spcpa(ti,ta,ts) = (D(t3)C(t2) B(t1)A(0)), (10)
Scppa(ti,ta,t3) = (C(t2) D(t3)B(t1)A(0)), (1)
Sacpp(tista,t3) = (A0)C(t2) D(t3)B(t1)), (12)
Sapcp(ti,ta,t3) = (A(0)D(t3)C(t2)B(t1)), (13)

“Im” denotes the imaginary part and the subscripts on the cor-
relation functions denotes the ordering of the operators. The
time variables tq,t2,t3 are always associated with their re-
spective operators B, C, D (i.e. B(t1) etc.). Obtaining a clas-
sical limit of Eq. (9) is difficult for two reasons. First, since in
the classical limit all operators commute the correlation func-
tions in Egs. (10)-(13) are all the same and the third order
response (Eq. (9)) vanishes. Second, the standard multi-time
quantum correlation functions (Eqs. (10)-(13)) don’t possess
the symmetries of classical correlation functions i.e. they are
complex valued and do not allow arbitrary permutation of the
operators. This motivates rewriting Eq. (9) in terms of SK-
TCFs. In the following section we show that by doing this in
the time domain one can recover the Poisson bracket method.
We then show that if one works in the frequency domain it
is possible to derive a generalized detailed balance correction
factor that can be used to convert SKTCFs to the third-order
response function.

1. Time domain approach to expressing the third-order
response in terms of SKTCFs

Working in the time domain one can express Eq. (1)
in terms of SKTCFs by making repeated use of the Kubo
identity®’
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One can take the classical limit of Eq. (15) by using the clas-
sical version of the operators and replacing the commutators
with Poisson brackets, [ X,Y] - ih{X,Y }pg upon perform-
ing the integrals over v, i, and A the Poisson bracket approach
is recovered®**

RO (11,15, t5) = -8 ABCD) + B2[({C, AB}es D)
+(C{B, A}p D) | - B{{C, {B, A}es}esD). (16)

This approach has previously been introduced and used
to study water clusters and intramolecular vibrations in
water.”%° However, as discussed in the introduction, this
method involves measures of chaos making it challenging to
apply. Working with Eq. (15) directly is also difficult since
it requires the ability to evaluate time correlation functions of
commutators. In order to remove the dependence on the com-
mutators in the following section we move to the frequency
domain where these can be avoided.

2. Frequency domain approach to expressing the
third-order response in terms of a single SKTCF

To avoid the commutators that arise in the time domain ap-
proach to formulating the third-order response in terms of SK-
TCFs we can move to the frequency domain. As shown in
Appendix B the third-order response in Eq. (9) can be trans-
formed to the frequency domain to give

. i N .
R(B) (wl,wg,wg,) = ﬁ tanh(ﬁhw/Q)[(SDCBA +SADCB)
— (Scppa+Sacos) + (Spepa+Siper)
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where the tilde denotes a three dimensional temporal Fourier
transform of a generic function, i.e. W (t1,t2,t3)

W(w1,w2,W3):[ dtl[ dtg[ dtge_i(w1t1+w2t2+w3t3)
XW(tl,tQ,tg). (18)

through the further use of frequency domain relationships
(see Appendix B) we can exactly remove the dependence on
the Sacpp(wi,ws,ws) and Sapcp(wi,ws,ws) correlation
functions to yield
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R® (wy,wg,w3) = ﬁ[(eﬁhw -1)(Spcpa—Scppa) -

(e - 1)(Shopa - SE‘DBA):Iv (19)

where W = wy + wy + w3. Unlike the expressions previously
derived for the second-order response function® where the re-
sponse only depended on a single two-time correlation func-
tion the expression for the third-order response involves a
difference of two correlation functions necessitating further
approximation to obtain an expression that is tractable to be
combined with classical-like methods.

Up to this point all the manipulations we have performed
are exact. However, since classical correlation functions are
agnostic to the ordering of operators we want to obtain an
expression that expresses the third-order response in terms of
a single correlation function rather than a difference of two
correlation functions to avoid it vanishing. To achieve this
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one can show that in the harmonic limit (V' (¢) = %(f) with
linear operators Spcpa = g(wi,ws,ws)Scppa® where
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g(wlaw27w3) = (20)

1 + efﬁh(w1+UJ2)/2 :
Note that in what follows we use lowercase letters to de-
note frequency dependent factors while uppercase letters are
used for time correlation functions. Using the relationship in
Eq. (20) to relate Spcpa and Scppa gives
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where we have defined g(wl,wg,w;;) = §CDBA(w17w27w3)
since it is now the only correlation function involved in ob-
taining the third-order response.

We can then derive (see Appendix C) and use the exact re-
lation between the three-time Kubo transformed correlation
function and the standard correlation function in frequency
space

R(W:L,LUQ,W?,)
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S* (w1, w2, w3) = (23)

to obtain an expression for the third order response in terms
of Kubo transformed correlation functions

R(3) (w17w27w3) = i[a(wl,WQ,W3)K(W1,WQ,W3)
—a(—OJ1,—WQ,_M?,)R*(W17W2,W3):|, (24)

where K = (B; A; C; D) is the three-time Kubo transformed
correlation function and K is its three dimensional temporal
Fourier transform with
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Figure 1. Diagram depicting the mathematical relationships used
in Sec. II B2 to connect the correlation functions required to com-
pute the third-order response function (R(3)) to the SKTCF (K V™).
Black lines denote exact relationships while red lines are only for-
mally satisfied in the harmonic limit for linear operators.

In the SM Sec. I we demonstrate the analytic properties of
Eq. (26).

At this stage it is worth noting some desirable features of
Eq. (24). Whereas Eq. (21) has a prefactor of 1/ by con-
verting from the standard to the Kubo transformed correla-
tion functions the factor of A® that appears in the denom-
inator of f(wy,ws,w3) cancels that in the denominator of
a(w1,ws,ws) thus ensuring a well defined classical (h — 0)
limit. Additionally, even though we made one harmonic ap-
proximation to derive the connection used in Eq. (21) the over-
all expression we have derived for the third-order response
still retains its overall odd symmetry with respect to the fre-
quency variables, which can be seen by noting that from the
general properties of Fourier transforms K*(wi,ws,w3) =
K (~w1, —w2, —~w3) and inserting this into Eq. (24). This sym-
metry is important to capture the physical properties of signals
governed by the third-order response by ensuring the response
averaged over all times is zero.

To obtain a third-order response expression that is in
terms of the Fourier transformed SKTCF K*™ (w1, ws,ws),
which is a real quantity, we now separate K (w1,ws2,ws) and
K*(w1,ws,ws) into their even and odd components and ex-
ploit the fact that in the harmonic limit the odd component
vanishes (see SM Sec. II for proof) to obtain the third or-
der response purely in terms of the real part of the correlation

function Re[ K],

R(B) (CU1 , W2, ("-)3) =
—i[a(wy,ws,w3) — a(~wr, -wy, —ws)Re[K].  (27)
To express the response in terms of the SKTCF we utilize one
final harmonic approximation to relate K*¥™ (w1, ws,ws) and

Re[K (w1, wa,ws)] (see SM Sec. 1II) to arrive at our main
result

R® (W, wa,w3) = —ih(wr, w2, ws) KV (w1, w2, ws3),
(28)
where

h(wy,wa,ws) =
b(w1,we, ws)[a(wr,ws,w3) — a(~wi, —ws, —w3)].  (29)
and

sinh(8hw) — Bho
Bho[cosh(Bhw) - 1]

b(w1 ,Wo, LLJ3) = (30)

The correction factor we have derived in Eq. (29) guarantees
the response vanishes when w = 0 which is in agreement with
the exact response function. When the SKTCF is computed
either classically, with LSC-IVR, CMD or RPMD in the har-
monic limit with linear operators it also gives the correct limit
of zero response. The function defined in Eq. (30) is non-
negative and serves as a scaling factor for the intensities as it
cannot change the sign or zero out any peaks in the frequency
domain. It is also an even function and thus keeps the overall
odd symmetry of the response. Figure 1 outlines the mathe-
matical connections that were used in our derivation with the
relationships shown as black lines being exact and those as
shown as red lines only being formally satisfied in the har-
monic limit for linear operators.

The limit as h — 0, i.e. the classical limit of the correction
factor is

3

R (w1, wa,ws) = }liir(l) h(w1,ws,w3) = %@(wg ~w?). (31)
One key advantage of the classical limit of the correction fac-
tor is that it can be applied in the time domain since it can be
analytically inverse Fourier transformed yielding a sequence
of derivatives. An alternative correction factor shown in Ap-
pendix D can be obtained by starting from Eq. (21) and rather
than moving to the Kubo transformed correlation functions
one instead performs the frequency space connections be-
tween the standard quantum correlation functions in the har-
monic limit. This approach was first described in Ref. 43 and
despite the two approaches yielding different correction fac-
tors the form of the classical limit of each factor is the same.
Connecting the third-order response to the standard quantum
correlation function leads to a different scaling in A for the real
and imaginary components of the standard correlation func-
tion which necessitates the use of an approximate relationship
between the real and imaginary components of the correla-
tion function so as to give a consistent scaling of h to the



entire response function.** The use of this approximate con-
nection is avoided when connecting the third-order response
to the SKTCF, since as shown in Eq. (24) the 1/h? prefactor
inherent to the response function naturally cancels due to the
thermal factor introduced by the multi-time Kubo transform
(see Eq. (20)).

Finally, we note that in the derivations above, for math-
ematical convenience, we use the absolute time convention
(t1,t2,t3). 2D experiments are typically often analyzed in
the relative time convention (t1,%t1 + to,t1 + to + t3). To con-
vert between the two one makes a simple change of variables
of t1 — t], ta » t} +t5, and t3 — t| + t5 + t5 where the
primed variables are those given in the relative convention.
This change of time variables changes the frequency variables
to @ - wi, wa + w3 — wh, and wy - wj.

. COMPUTATIONAL DETAILS

To test the accuracy of our correction factor and its classical
limit when combined with the exact and approximate SKCTF
we performed simulations of two systems of differing levels
of anharmonicity. The first is a mildly anharmonic potential
(MAP) that has been used in a number of previously studies to
benchmark the performance of dynamics methods for single-
time correlation functions.***>%Y To provide a more challeng-
ing test we also consider a O-H stretch potential (OHP) that is
more strongly anharmonic potential where the parameters and
functional form were based on those from the qTIP4P/F O-H
stretch potential.’! In atomic units the the MAP model is:

1 1 1
V(Q)= =+ —¢° + —q* 32
(@) =50+ 154+ 7504 (32)
and the OHP is
1 o Ta?
1% =—?-—¢*+ —¢* 33
(9) 54 4+ 5 d (33)

with a = 1.21. For both of these systems we performed sim-
ulations at an inverse temperature of S = 8, where only the
ground state is appreciably populated, and 3 = 1, where states
up to the fifth vibrational level have significant population in
both models.

For each of these models we applied our correction factor
to the exact SKTCF and the TRPMD®*%* and classical ap-
proximations to the SKTCF and compared them to the ex-
act third-order response function. The exact calculations of
the SKTCF and third-order response function were performed
by first constructing the Hamiltonian in a discrete variable
representation® comprised of 1550 grid points, diagonalizing
the Hamiltonian and then evaluating the trace in the energy-
eigenbasis using the lowest eight eigenvalues and their cor-
responding eigenvectors. The TRPMD and classical approx-
imations of the SKTCF%3%% were obtained using the same
settings employed in Ref. 55 with 32 beads used in all of the
TRPMD simulations.

All of the simulations of the correlation functions were per-
formed in the time domain. A multi-dimensional Hann win-
dow was applied to these time domain functions such that

they decayed to zero at t1,t2,t3 = £15 and then the FFT al-
gorithm was used to perform the multi-dimensional Fourier
transforms.

IV. RESULTS AND DISCUSSION

To test the approximations made in deriving our correc-
tion factor to convert the SKTCF into the third-order response
given in Eq. (28) we applied it to SKTCFs obtained from ex-
act and approximate (TRPMD and classical) dynamics for the
two potentials of varying anharmonicity, denoted MAP and
OHP, defined in Egs. (32) and (33). All operators are taken to
be linear position operators (i.e. A=B=C=D-= 3). With
this choice of operators a purely harmonic potential would
yield a zero third-order response which would be exactly cap-
tured by our correction factor with RPMD, exact or classi-
cal dynamics. Hence the responses probed in the following
section leading to peak splittings arise purely from the anhar-
monic nature of the potential energy.

We first present the effects of applying the correction fac-
tor in Eq. (29) to the exact three-time SKTCF in Fig. 2 for
both the low and high temperature regimes of the MAP. By
comparing the left hand panels of Fig. 2 which shows the ex-
act SKTCF, K™ (w1, wa,ws), to the right hand panels which

show the exact 3rd order response Ré,il)cl(wl ,wo,ws)at B =1
and 8 it is clear that the SKTCEF itself does not resemble
the response function. In particular the SKTCF only con-
tains positive features while the third-order response contains
both positive and negative ones. Applying our correction fac-
tor, h(wy,ws,ws), (middle-left panel) derived in Sec. [I B 2 to
the exact SKTCF yields the approximate third-order response
Rég’gmx(wl,wg,wg) shown in the middle-right panel. With
the correction factor applied to the SKTCF the characteristic
positive-negative splittings that arise from the anharmonicity
of the potential emerge. The role that the correction factor
plays in higher order spectroscopies is thus distinct from that
in linear spectroscopy in that it no longer simply modulates
intensities, but can additionally change the sign of peaks.
Figure 3 compares the effects on the third-order response
of applying the full correction factor and its classical limit,
he (w1, ws,ws), given in Eq. (31) on differing levels of dy-
namical approximations to the SKTCF in the low tempera-
ture regime. In comparing the left panels with the middle
panels it can be seen that using the SKTCF obtained from
TRPMD rather than the exact SKTCF to compute the third-
order response in this regime introduces virtually no extra er-
rors on top of those already arising from the correction fac-
tors h(wi,ws,ws) and h® (w1, ws,ws). In contrast, classical
dynamics fails to capture some features and underestimates
others such as the peak at (w; = O,wy = 1l,ws = 0) and
the feature at (w; = -1,ws = 1,ws = 0). Comparing the
full correction factor to its classical limit (top row vs. bot-
tom row) the main difference observed is for the feature near
(w1 = 1,ws = 1,ws = —1) which is eliminated by the full cor-
rection factor but not by its classical limit. Comparing these
results to the exact third order response for this system (Fig. 2
bottom-right panel) one observes that this feature is present in
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Figure 2. Construction of the third-order response for the MAP model from the SKTCF according to Eq. (28) at inverse temperatures 3 = 1
(top row) and 8 = 8 (bottom row) for wy = 1. The first column shows the 3D Fourier transform of the SKTCF calculated using exact quantum
dynamics. The second column shows our correction factor at that temperature. The third column shows approximate third-order response
obtained from multiplying the exact SKTCF (first column) by our correction factor (second column). This approximation to the third-order
response can be compared to that computed exactly in the fourth column obtained from Eq. (9). Since the SKTCF is computed exactly all the
error in comparing the third-order response in columns three and four arises from inaccuracies in our correction factor for the MAP model.
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Figure 3. Third-order response obtained for the MAP model at 8 = 8 and w2 = 1 using the full correction factor (top row) and its classical limit
(bottom row). The columns show the effect of three levels of dynamics used to compute the SKTCF to which the correction factor is applied
to yield the third-order response: exact quantum dynamics (first column), TRPMD (second column), and classical dynamics (third column).

the exact result but inverted in sign compared to what is pre-
dicted by the classical limit of the correction factor and hence
both the full and classical correction factors are incorrectly
capturing this feature. The results of applying the standard
quantum correlation function correction factor introduced in
Ref. 43 and derived in Appendix D to the exact and approx-
imate SKTCF correlations functions is shown in the SM and
is observed to perform worse than the full correction factor
introduced here or its classical limit.

So far we have demonstrated the performance of our for-
malism in capturing the response function entirely in the fre-

quency domain, R(3)(w1,wQ,W3). However, spectroscopic
measurements are frequently reported as a function of the
population time delay, to, i.e as R®)(wy,to,ws). To as-
sess how the errors introduced by the correction factors man-
ifest in this form of the third-order response Fig. 4 compares
R®) (wy, to,ws) computed exactly to the results obtained us-
ing the exact SKTCF and applying our correction factor as
well as using TRPMD and classical approximations to the
SKTCEF. In all cases the main anharmonic splitting feature
centered around (w; = 1,t2 = O,ws = 1) is captured by
all of the dynamics methods used as well as the feature at
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Figure 4. Third-order order response for the MAP model with the w» axis transformed to the time domain, R® (wl,tz, wg) at to = 0 and
[ = 8. The top row uses the full correction factor while the bottom row uses its classical limit. The columns correspond to the levels of
dynamics used to which the correction factor is applied to yield the third-order response: exact quantum dynamics (first column), TRPMD

(second column), and classical dynamics (third column).

(w1 = 0,t2 = 0,ws = 1). We show the results only at t5 = 0
since the model is one dimensional and hence, due to the lack
of interaction with other degrees of freedom, there are no new
features that appear at later time delays.

By comparing the top and bottoms panels of Fig. 4 with the
former using the full correction factor, h(w1,ws,ws), and the
latter its classical limit, h®'(w;,ws,ws), one sees that while
both capture the main anharmonic feature the full correction
factor gives a better description of the vanishing signal at
(w1 = 0,t3 = 0,ws = 0). While some of the features present
in exact signal (e.g. those at (wq = 1.8,%2 = 0,ws = 0) and
(w1 = 0,2 = 0,w3 = 1.8)) are not captured by any of the dy-
namics approaches (including the exact SKTCF) when com-
bined with our correction factor it is remarkable that given
that the connections used to derive it invoked harmonic lim-
its that the dominant anharmonic splitting centered around
(w1 = 1,t2 = 0,ws = 1) which consists of a negative lobe
above the diagonal and a corresponding positive one below it
is captured. These positive and negative regions arise from
the smaller spacings of the energy levels of the anharmonic
potential such that the bleach and stimulated emission peaks
appear shifted and opposite in sign to the excited state absorp-
tion. The ability of even classical dynamics combined with the
classical limit of our correction factor to capture these physics
is thus notable. The results for the high temperature regime
are shown in SM Figs. 2 and 3 and exhibit similar features.

Finally, to test the performance of our correction factor
when pushed outside the limits it was derived in we consider
the third-order response (R® (w1, t2,ws)) in the more anhar-
monic OHP potential. Fig. 5 shows that even with this in-
creased anharmonicity using the TRPMD SKTCF combined
with our correction factor one is again able to capture the main
positive and negative features split about the diagonal which
for this system in the higher temperature case (8 = 1) gives
rise to an extended oblong feature arising from overlapping
transitions. However, as one would expect given the more
anharmonic potential the spurious peaks at (w; = 1.5ty =
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Figure 5. Third-order response for the more strongly anharmonic
OHP model at 5 = 1 (top row) and 5 = 8 (bottom row) at t2 = 0. The
left column contains the exact third-order response while the right
column shows the third-order response obtained using the TRPMD
approximated SKTCF in conjunction with the full correction factor.

0,w3 = 0) and (w; = 0,ty = 0,ws = 1.5) have much higher
intensity than they did in the MAP case due to the correc-
tion factors not properly dampening these peaks in spectral
representation of the SKTCEF, and similar failures can also be
observed in the all frequency representation of the third-order
response, R(*) (wy,ws,ws), shown in SM Fig. 4. The compar-
ison using the classical limit of the correction factor is shown
in SM Fig. 5.

V. CONCLUSION

Using the formalism of the SKTCF we have provided a
tractable approach to compute third-response functions from



equilibrium trajectory based methods. The ability to do this
allows for the simulation of spectroscopies that arise from
third-order response, such as 2D-IR, from trajectories ob-
tained using methods such as TRPMD, CMD, LSC-IVR or
classical molecular dynamics without having to perform addi-
tional simulations with explicit field perturbations or nonequi-
librium trajectories. Our correction factor is able to exactly
capture the zero third-order response in the harmonic limit
and despite invoking harmonic connections between correla-
tion functions it can be combined with TRPMD or classical
dynamics to reproduce the positive-negative splittings present
in the third-order response of anharmonic systems which are
a hallmark of higher order spectroscopies. These positive and
negative splittings, which are not captured by simpler 2D cor-
relation methods,®”%8 arise from the action of our correction
factor on the SKTCF and hence in these higher order spectro-
scopies the correction factor plays a more crucial role than in
linear spectroscopies where it modulates intensities and does
not lead to sign changes. There are limits on the success one
can expect from such an approach. As demonstrated in our
results pushing the current correction factor into highly anhar-
monic regimes leads to a notable degradation in the quality of
the results obtained. The current strategy however provides
a tractable approach to utilize the latest developments in ef-
ficient ab initio path integral methods® and machine learned
potentials to describe the nonlinear spectroscopy of complex
systems that have recently been studied experimentally by 2D-
IR ranging from protonated water’’ to ionic solutions.”!
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Appendix A: Harmonic Limit of K°Y™(¢1,t2,t3) for linear
operators

In the harmonic limit one can analytically evaluate the sym-
metrized Kubo transform. While the expressions are generally
unwieldy when nonlinear operators are involved it gives a sim-

ple expression for linear position operators, namely

KSym(tl,tQ,tg) = {COS[Q(tl —19 — t3)]+

1
(Bm2)?
cos[Q(ty +to —t3)] + cos[Q(ty —ta + ts)]}, (A1)

which is identical to the result one would obtain for the classi-
cal correlation (q(0)q(¢1)q(t2)q(¢3)). This is analgous to the
relationship that is found in the single time case i.e., the Kubo
transformed correlation function and the classical correlation
function of linear position operators both give the same result
of

K(t) = cos(2t). (A2)

Bm2
This behavior is in general true for any SKTCF of the har-
monic oscillator involving linear operators reinforcing the
idea that the SKTCF behaves more similar to its classical
counterpart than other forms of multi-time correlation func-
tions. When nonlinear operators are involved the agreement
between the SKTCF and classical ones no longer holds. The
RPMD and CMD approximations to the symmetrized Kubo
transform are also exact in this limit since in the case of linear
operators only the centroid of the ring polymer contributes to
the correlation function yielding the classical result.

Appendix B: Fourier relationships between standard
three-time correlation functions

Each of the standard correlation functions defined in the
response function can be expanded in the eigenbasis of the
Hamiltonian and then subsequently Fourier transformed. The
results are as follows:

N 1 B
Spopa(wi,wz,ws) = 7 > € P DiCimBrnAne (B

klmn

><(S(‘Ul - wmn)(S(WQ - Wlm)d(w?; - wk‘l)7

5 1 B
Seppa(wi,wa,ws) = — > € PP ClyDy B A (B2)

klmn

X0 (w1 = Wmn )0 (w2 — wii)d(wWs = Wim ),

N 1 B
Sacpp(wi,wa,wz) = — > e PP ALClnDin By (B3)

klmn

%0 (w1 = Wik )0 (W2 — wWim ) (W3 = Wimn ),

N 1 )
Sapcp(wi,wa,ws) =— > € PP AyDyCrun B (B4)

klmn
x6(w1 = Wk )0 (W2 = Wimn)d (W3 = Wim),
where wy; = (Ex — E;)/h and Oy = (k|O|l). Enforcing the
delta functions in Eq. (B1) we obtain
o~ Phi
VA
6 (w1 = Wimn )0 (wa = Wim )8 (ws — W),

— h7 ~
=e " Supos.

Spcpa = > e PP DiCun Bin Ak

klmn

(BS)



Similarly one can also show
Scopa =" Sacps. (B6)

Using the fact that

W(—wl7—WQ,—W3)=/ dtl[ dtgf dtg

% e—i(w1t1+w2t2+w3t3)W*(tht2’ t3) (B7)

i.e. the Fourier transform of the complex conjugate gives the
same frequency space function but with negative arguments
we immediately get

Shepa =€"Shpep; (BS)
SZJDBA = 65th:lCDB' (B9)

Combining these frequency relationships it is possible to re-
late differences of correlation functions to sums as

Spcpa—Sapce = tanh(Bha/2) [Spcpa + SapcsB10)
Shopa = Shpep = —tanh(8ha/2) [Shopa + ShpdBl)
Scppa-Sacpp = tanh(8hw/2) [Scppa + SacpsB12)
SE'DBA - SZCDB = —tanh(Bhw/2) [SE‘DBA + 5201@13)

Which are the relationships that ultimately allow us to write
Eq. (9) as Eq. (19).

Appendix C: Relation between K (w1,ws,w3) and
S(w1>w27w3)

Here we derive the f(wj,ws,ws) conversion factor. Start-
ing from the Kubo transformed correlation function

Lo Can [a
Z5 Jy D, ]

xTr[e_(’B_)‘)ﬁCA’(tg)6_()‘_”)1915(&3)

K(t17t27t3) =

xe U B(t)e T A(0)], el

then writing it in the energy eigenbasis and Fourier transform-
ing gives

K = e s e [T [Can [Ma
= — S v
w12, Z33 c 0 o Mo

klmn
x e)\hwkleuhwlmrethmn]ClelmanAnk
x §(w1 — Wi )0(w2 —wiy)0(w3 — wim ). (C2)

Enforcing the delta functions allows us to move the bracketed
term outside of the sum giving

K (wi,wa,ws) = f(wi,wa,ws) Y. € PP ClyDipy B An;

klmn

X(S(wl - wmn)é(wg - wkl)§(W3 - wlm)QC3)
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where

L s A Y hws _vh
flwy,wa,wsg) = @f d/\f d,u/ dpe'W2 ghthws gV wn
0 0 0

(C4
Renaming the indices gives

K(wi,w2,ws) = f(wi,ws,ws)S(wr,ws,ws), (&%)

which is Eq. (22). The three iterated integrals in f (w1, wa,w3)
can be performed analytically giving the explicit form of the
conversion factor as

ePhwz _q

f(wlaw2aw3) =

33h3

eﬁh(WQ+LU3) _ 1
w1W3(WQ + W3) '

wows(wy +ws)

1 ePhe 1
wiw(wy +w3)

(Co)

Appendix D: Method of Devane et. al. using the standard
correlation function

Here we will derive a correction factor using the method
presented in Ref. 43 for standard quantum correlation func-
tions. Beginning from

RO (n, iz, 05) = 2 [ (€21 = 1) (g o, 00,8) ~ 1)
= (7% ~1)(g(-wr, w2, ~w3) - 1)5*], (D1
then separating each term into its even and odd part
R(3)(w1,w2,w3) =
%[(k(wl,wg,W3) — k(-w1, -wa, —ws))Re[S]
+ (k(wy,wa,ws) + k(—w, —wa, —wg))Im[S']], (D2)
where
k(wy,wse,ws) = (€7 - 1) (g(wy,we,ws) - 1). (D3)

Since the terms k(wi,wz,w3) — k(-wi,-wa,—-ws) and
k(w1,wo,ws) + k(-w1,-wa,—ws) have a different depen-
dence on / _one needs to find an approximate relationship be-

tween Re[.S] and Im[S] which yields a consistent 4 — 0 limit.
One relationship that accomplishes this is*}

I(w1,wa,ws) :—tanh[%(wl +3w2+2W3)]. (D4)

which assures that in the classical limit each term is indepen-
dent of £, giving the response as

7
R® (w1, wy,w3) = ﬁ[(k‘(wlaW%WS)_k(_Wla ~wa,~ws3))

+ Z(W1,W2,W3)(1€(OJ1,W2,W3) + k(—wl, —wa, —wd))]Re[S]

= hg(wy,ws,w3)Re[S]. (D3)



The classical limit of the hg(w1,ws,ws) correction factor is

3
lim s (w1, wn, ws) = %w(wi -w3), (D)

which differs from the classical limit derived using the Kubo
transformed correlation functions in the main text by a factor
of two. It is reassuring that the two methods yield the same
frequency dependence in the classical limit despite the differ-
ing forms of the two correction factors.
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