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Obtaining the atomistic structure and dynamics of disordered condensed phase systems from first principles remains
one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and
provide a data efficient approach to obtain machine learned condensed phase potential energy surfaces using AFQMC,
CCSD, and CCSD(T) from a very small number (<200) of energies by leveraging a transfer learning based scheme
starting from lower tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid
water by performing both classical and path integral molecular dynamics simulations on these machine learned potential
energy surfaces. By doing this we uncover the interplay of dynamical electron correlation and nuclear quantum effects
across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated
electronic structure methods to explore disordered condensed phase systems.

. INTRODUCTION

Ab initio molecular dynamics (AIMD) simulations, where
the forces and energies are generated at each time-step by
performing an electronic structure calculation, provide an ap-
pealing route to simulate reactive chemical dynamics. How-
ever, for disordered condensed phase systems an accurate de-
scription typically requires many 100’s of atoms to obtain a
chemically reasonable description of bulk systems (e.g., wa-
ter) and this grows into the 1000’s for more heterogeneous
systems (e.g., those with interfaces). Since AIMD simula-
tions require an electronic structure calculation to be per-
formed at each time-step, to statistically converge even sim-
ple thermodynamic properties necessitates many tens of thou-
sands of ab initio calculations (10’s of picosecond timescale
at a ~1 fs time step) and for slower converging proper-
ties many millions are needed (nanosecond timescale). The
computational expense of these simulations is further com-
pounded if one wants to incorporate nuclear quantum effects
(NQE) via ab initio path integral molecular dynamics simu-
lations (PIMD). Due to its reasonable compromise between
accuracy and efficiency, density functional theory (DFT) is
currently the most frequently employed electronic structure
method in condensed phase AIMD studies. However, the re-
sults depend—sometimes sensitively—on the choice of the
exchange-correlation functional and the inclusion of disper-
sion corrections."? This issue motivates the use of beyond-
DEFT electronic structure theories, such as those based on the
many-electron wavefunction. For example, work performed
almost a decade ago demonstrated the AIMD simulations of
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liquid water using second-order Moller-Plesset perturbation
theory (MP2).?> However, the high cost of more accurate meth-
ods precludes their direct use in AIMD.

Machine learned potentials (MLPs) have emerged as an
extremely promising approach to accurately model ab initio
potential energy surfaces of condensed phase systems while
being orders of magnitude more computationally efficient to
evaluate. For liquid water, MLPs have been successfully de-
veloped at various levels of electronic structure ranging from
different levels of DFT*'” to more recently using the random
phase approximation (RPA)!' and MP2.!>!3 The modeling of
liquid water and other molecular systems with more accurate
electronic structure methods, such as coupled-cluster theory
or quantum Monte Carlo, has been so far limited to training on
finite clusters of molecules.'*?% When training on small clus-
ters, higher-order many-body interactions have to be included
by other means such as by using the TTM4-F potential®’
as is done for the MB-Pol water model.'>"'® Other cluster-
based models for water have gone on to explicitly include
4-body terms?*2? and also train on larger water clusters.”’
MLPs fit to periodic electronic structure offer the opportunity
to readily capture many-body electronic structure effects since
these are naturally included in the electronic structure calcu-
lation. Recent advances have opened the door to efficiently
calculating the properties of periodic condensed phase sys-
tems using higher-level methods like coupled cluster singles
and doubles without and with perturbative triples (CCSD and
CCSD(T))?®?° and phaseless auxiliary-field quantum Monte
Carlo (AFQMC).3° However, while these advances allow the
energies of many 100’s of condensed phase configurations to
be evaluated, this is still considerably less than what would be
typically required to train an accurate MLP.

Here, we demonstrate that by using an approach based on
transfer learning starting from a variety of lower tier electronic
structure methods one can generate a highly data-efficient ap-
proach to training MLPs using high level electronic struc-



ture methods. With this approach, we show that only 200
high-quality energies obtained from small periodic boxes con-
taining 16 water molecules provide sufficient data for train-
ing our MLPs. Specifically, we train MLPs to periodic elec-
tronic structure calculations performed with AFQMC, CCSD,
and CCSD(T). The MLPs are then used to perform AIMD
and PIMD simulations of larger water boxes for the long
times necessary to statistically converge structural and dy-
namic properties using both classical and quantum mechan-
ical treatment of nuclei. This allows us to achieve a careful
comparison of the quality of the underlying electronic struc-
ture theories in describing water across its entire liquid tem-
perature range and uncover the changes in the properties of
liquid water as the dynamical electron correlation captured is
increased. In addition, we provide a set of MLPs and a curated
training set that can form the basis of future studies of water
and aqueous systems. Our data-efficient approach provides a
route to accurately obtain the properties of other disordered
condensed-phase systems by combining high-level electronic
structure theory and machine learning.

Il. METHODS
A. Machine learning

To develop a highly data efficient strategy that only re-
quires a minimal number of energies from periodic high level
electronic structure methods, such as CCSD, CCSD(T), and
AFQMC, and produce accurate MLPs, we exploited a com-
bination of approaches including an active learning procedure
for curating a small but comprehensive training set, the train-
ing of MLPs to energies for small periodic boxes (16 wa-
ters) and showing that they reproduce properties when used
for larger simulations (64 waters) and a transfer learning ap-
proach that leverages the transferability of physics from lower
tier electronic structure methods.

1. Developing an efficient training set by leveraging a
committee of machine learning potentials

We first applied an active learning procedure to curate
a data efficient set of configurations to train our MLPs.
We invoked the commonly employed Query-by-Committee
(QbC)33132 approach to iteratively add configurations to the
training set. At every iteration, the current dataset of config-
uration energies was used to train a committee of 8§ MLPs,
each a Behler-Parrinello neural network potential**} with a
different random initialization of weights and random train-
validation (90-10) splits of the dataset. To mitigate overfit-
ting, we applied early stopping to each of these MLPs in the
committee, monitoring the energy prediction error over a val-
idation set. The mean potential energy surface obtained for
this committee MLP was used to run a short MD simulation
(ST Sec. III) that was terminated either when the system be-
comes unphysical (i.e., reaching a temperature greater than
400K) or when 50 ps of simulation trajectory was generated.

We then selected the 10 configurations where the committee
MLP had the largest standard deviation in its potential energy
prediction to recalculate at the target level of electronic struc-
ture theory and add to the training set for the next iteration of
this procedure. To prevent selected configurations from being
overly correlated with one another, no two selected configu-
rations were closer than 100 fs apart. The initial dataset of
50 configurations used to initialize this procedure was also se-
lected via an iterative QbC procedure, as applied to a single
100 ps SCC-DFTB>* (SI Sec. III) trajectory, that started with
10 randomly selected configurations and added 10 additional
configurations for each of 4 subsequent iterations.

We generated 5 different 200 configuration datasets by run-
ning 5 instances of our QbC active learning scheme where
the target level of electronic structure theory was DFT using
the revPBE0-D335-37 functional (SI Sec. I A) which was cho-
sen due to being computationally efficient compared to the
high level electronic structure methods and since it has pre-
viously been shown to produce the properties of liquid water
accurately when combined with path integral simulations.3
To select the generated dataset on which the higher tier elec-
tronic structure methods would be used we then used each
of the 5 datasets to train a committee MLP using revPBEO-
D3. We then selected the one that gave the lowest force pre-
diction error (RMSE) when evaluated on a test set of 1000
water configurations (64 water molecules) drawn from previ-
ously published AIMD simulations.*® To check the transfer-
ability of the selected 200 configuration dataset, we recalcu-
lated the energies and forces for the generated datasets and
the test set using the BLYP3*? functional (SI Sec. IA). Af-
ter training and evaluating a new set of BLYP trained MLPs,
the same dataset that resulted in the lowest error revPBEO-D3
trained MLP also gave the lowest error BLYP trained MLP (SI
Fig. 3). Given the transferability of the relative utility of this
dataset, we used this same 200 configuration dataset to train
our CCSD, CCSD(T), and AFQMC MLPs.

2. Training machine learned potentials on configurations of
small systems

Given the significant scaling of CCSD, CCSD(T), and
AFQMC’s computational cost with system size, we sought to
reduce the system size of the configurations used in our train-
ing set. We investigated the feasibility of training our com-
mittee MLP to the energies of a set configurations for small
periodic boxes to accurately predict for properties associated
with a larger simulation box. For liquid water running peri-
odic molecular dynamics simulations of small water boxes (32
water molecules or fewer) leads to significant artifacts even in
simple properties such as RDFs when compared to larger sys-
tem sizes.*! However, as demonstrated in SI Sec. VI for the
revPBEQ-D3 functional, if one trains a MLP on energies of
small (16 molecule) periodic water configurations and then
uses the resulting model to perform dynamics of a larger sys-
tem (64 molecule), then the results obtained are in excellent
agreement with those obtained from performing a AIMD sim-
ulation at the larger system size. Based on this demonstration
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FIG. 1. Oxygen-oxygen RDFs for liquid water when running classical and PIMD simulations using NNPs fitted to either CCSD, CCSD(T),
and AFQMC energies at both 300K and 370K. The PIMD oxygen-oxygen RDFs when using the CCSD(T) and AFQMC correspond closely

with the experimental results shaded in grey at 295K and 366K.

we therefore trained the MLPs for the higher level methods on
periodic configurations of 16 water molecules using the trans-
fer learning approach described in the following section and
then report the properties obtained in Sec. III by performing
MBD and PIMD simulations using 64 water molecules.

3. Transfer learning approach to train the MLPs

With only hundreds of energies from the higher tier peri-
odic electronic structure methods available, to make efficient
use of this data we employed a transfer learning approach.*?
To achieve this we first trained a committee MLP at a lower
level of electronic structure theory, DFT or Hartree Fock (HF)
on 531 configurations using both energies and gradients to im-
prove the fitting. The parameters obtained for these MLPs
were then used as the starting point for the fits to the higher
level methods. This strategy exploits the idea that while the
lower level methods may not reach the levels of chemical ac-
curacy required for some applications they do contain funda-
mental physical information (e.g., about the fact that O and
H when in close proximity form a high frequency chemical
bond) that can be used to structure the neural network that
underlies the MLP. Hence while the high level data is used
to tune the accuracy of the MLP, it is leveraging the physics
learnt by the initial training to the lower level method.

While using transfer learning to make efficient use of very
small amounts of high level electronic structure data has dis-
tinct advantages over starting from a randomly initialized
MLP, one must be mindful of the risk of hysteresis in the fi-
nal MLP, i.e., that by biasing the weights by taking them from
a model trained on a low level electronic structure method,
that the final MLP will incorrectly contain remnants of the
failures of the low level method. Hence to assess our trans-
fer learning approach’s ability to produce a final model that
accurately reproduces the properties of the target high level
electronic structure method, we initialized the procedure start-
ing from a range of different low level methods that each give
very different properties of liquid water. By comparing the

structural and dynamical properties of liquid water obtained
by performing MD and PIMD simulations on the final mod-
els obtained from these different starting points, one can thus
evaluate which properties are obtained universally across the
models initialized from different low level methods and thus
accurately reflect the high level electronic structure approach.

In practice, following the convergence of the lower level
fits to both energy and gradient data (see SI Sec. II), we re-
trained the committee MLP (8 separate MLPs) to the energies
of the higher level method employing the extended Kalman
filter optimizer as implemented in the n2p2* package and us-
ing a 90-10 train-validation split in order to monitor the pre-
diction error over the validation set for early-stopping each
individual fit to prevent overfitting. Before applying this trans-
fer learning approach to the high level CCSD, CCSD(T) and
AFQMC methods for which AIMD is not possible for the
timescales required, in SI Sec. VI we tested it by training an
MLP with revPBEO-D3 as the higher level method and BLYP
and HF as the lower level methods from which the transfer
learning was performed and evaluated how well these result-
ing MLPs reproduced the properties obtained from revPBEO-
D3 (SI Figs. 4-10). We chose DFT with the revPBEO-D3
exchange-correlation functional as the higher level in this
benchmark due to its accurate description of the properties of
liquid water and since we can compare the results of the trans-
fer learned MLPs to AIMD and AI-PIMD trajectories that
we have previously obtained.’® We chose BLYP and HF as
the lower level methods since the former gives an incredibly
overstructured and dynamically sluggish description of water
while the latter gives the opposite.

As shown in SI Sec. VI, MD simulations using the final
transfer learned MLP models of revPBEO-D3 using only 200
energies starting from either BLYP or HF correctly capture
the target RDFs and VDOS for liquid water at 300K obtained
from AIMD simulations, which are both markedly different
from those given by low level methods themselves (BLYP
water has a more structured oxygen-oxygen RDF and higher
wavenumber hydrogen VDOS bend and stretch peak positions
than revPBE(O-D3 water, and vice-versa for HF water). The



agreement with the reference revPBEO-D3 results for both
models is particularly strong for the RDFs. For the VDOS, the
BLYP-initialized model outperforms the HF-initialized model
in capturing the high frequency O-H stretch peak. Both mod-
els also accurately reproduce the RDFs obtained from Al-
PIMD simulations of revPBE0-D3 for liquid water®® at 300K
(SIFig. 5) with the only discrepancy again being in the VDOS
(ST Fig. 10) where the BLYP-initialized MLP captures the
full spectrum whereas HF shows an overstructured and blue
shifted OH stretch region.

Additionally, we compared our transfer learning approach
to two common alternative machine learning approaches: di-
rectly training a committee MLP on the high level energies
starting from randomly initialized weights and training a com-
mittee delta-learning model that corrects from the lower to
higher level method. To allow for a fair comparison, all three
types of models were trained to the same 200 configuration
training set of energies (revPBEO-D3) for liquid water using
the same MLP architecture and optimization settings. The
randomly initialized model resulted in a potential that was un-
stable for the purposes of running MD for a periodic simula-
tion box of 64 water molecules, with the instantaneous tem-
perature drifting severely after the first simulation step. For
the delta-learning model, we trained a committee MLP to cap-
ture the energy difference between revPBEO-D3 and another
committee MLP trained to BLYP. The delta-learning model
was similarly as unstable as the randomly initialized model.
Hence for liquid water with 200 energies at the higher level
we found that the transfer learning approach we have detailed
above provides the most accurate results.

Given the demonstrated efficacy of our transfer learning
procedure, in Sec. III we applied this approach to train com-
mittee MLPs to CCSD, CCSD(T), and AFQMC energies for
liquid water using three different sets of MLP initializations:
HF, BLYP, and revPBEO-D3.

B. Correlated electronic structure methods

We perform correlated electronic structure calculations of
liquid water with periodic boundary conditions at the I'-
point using AFQMC, CCSD, and CCSD(T). Periodic CCSD
and CCSD(T) calculations were performed using PySCF*43
where electron-repulsion integrals are handled using the
range-separated density fitting method,***” and AFQMC cal-
culations were performed using QMCPACK*# and ipie.>”
These calculations all began with a periodic spin-restricted HF
calculation also perfomed using PySCF. We provide brief de-
tails here, and further information can be found in SI Secs. I B
and I C.

AFQMC is a projector Monte Carlo method where the
ground state of a given Hamiltonian is obtained via imaginary
time evolution. Without any approximations, it scales expo-
nentially as the system size grows due to the fermionic sign
problem. We use the phaseless approximation to obtain an
algorithm that scales with the system size N as O(N H-0W*
for each sample at the expense of introducing errors in the
final ground state energy estimate. The phaseless approxi-

mation sets a boundary condition in imaginary time evolution
using a priori chosen wavefunction called the trial wavefunc-
tion. The bias from this approximation becomes smaller as
one improves the quality of trial wavefunctions. In this work
we employ the simplest trial wavefunction, the spin-restricted
Hartree-Fock determinant. A recent benchmark study exam-
ined the accuracy of AFQMC with Hartree-Fock trial wave-
functions over 1004 data points,51 and based on these re-
sults at this level of approximation we expect the accuracy of
AFQMC to be between CCSD and CCSD(T) for the problems
considered here.

Coupled cluster (CC) parameterizes the electronic wave-

function using an exponential ansatz, [Ycc) = el |®Our), where
T creates all possible particle-hole excitations from the HF
reference and is determined by iteratively solving a set of
coupled non-linear equations.’> CCSD approximates the full
CC ansatz by truncating the T-operator at single and double-
excitation levels, T = T + 7,.2 CCSD(T) improves upon
CCSD by further including the contribution from triple exci-
tations in a perturbative (non-iterative) manner?® and is often
referred to as the “gold standard” in the quantum chemistry
of simple molecules. The computational cost of CCSD and
CCSD(T) scales more steeply than that of AFQMC, as O(N®)
and O(N”), respectively. In this work, we avoid the high com-
putational cost of full CCSD and full CCSD(T) by systemat-
ically compressing the virtual space using the frozen natural
orbital (FNO) approximation,’*>* which we confirmed to in-
troduce a negligible error (SI Sec. IB).

lll. RESULTS AND DISCUSSION

Having established the applicability of our data efficient ap-
proach to training MLPs that accurately reproduce the tar-
get potential energy surfaces on DFT, we now apply it to
obtain the structural and dynamic properties of liquid wa-
ter using three correlated methods: CCSD, CCSD(T), and
AFQMC. We trained a committee MLP, which as described in
Sec. ITA 1 is formed of the mean of 8 independently trained
MLPs, for each correlated electronic structure method. By
performing MD and PIMD simulations in the NVT ensemble
at 300 K and 370 K using the committee MLP for each elec-
tronic structure method, here we evaluate how different treat-
ments of dynamical electron correlation affect the selected
properties when the nuclei are treated classically or quantum
mechanically.

To provide an assessment of the accuracy of our transfer
learned committee MLPs on different structural and dynam-
ical properties as discussed in Sec. IIA3 we can compare
the consistency of the results obtained from models that have
been initially trained to different lower level electronic struc-
ture methods. Hence, for each of the correlated methods we
trained three transfer learned committee MLPs starting from
HFE, BLYP, and revPBEO-D3 as our lower level methods which
are known to understructure, overstructure, and accurately re-
produce the properties of water respectively. Performing clas-
sical MD at 300K from MLPs starting from these three dif-
ferent methods SI Fig. 13 shows that regardless of the lower
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FIG. 2. Tetrahedral order parameter g distributions as sampled via classical and PIMD simulations via NNPs fitted to either CCSD, CCSD(T),

and AFQMC energies at both 300K and 370K.

level that the transfer learning was initialized with, the proper-
ties obtained at the high level, AFQMC in this case, coincide
closely although the O-H stretch for the HF-initialized model
is blue-shifted slightly. This demonstrates that our training
set of 200 energies of periodic boxes consisting of 16 wa-
ter molecules is large and diverse enough to train an accurate
model of liquid water under these conditions using our trans-
fer learning protocol. When nuclear quantum effects are in-
cluded by peforming PIMD simulations using the committee
MLPs, the oxygen-oxygen RDF and VDOS for the revPBEO-
D3 and BLYP initialized transfer learning models remain con-
sistent with one another (SI Fig. 14).

In this section we show the results from the committee
MLP generated using transfer learning from revPBE0O-D3 for
each of the correlated methods since, as shown in SI Fig. 2,
revPBEO-D3 shows the strongest correlation with the training
set energies of CCSD, CCSD(T), and AFQMC out of the three
initialization methods we used (HF, BLYP, and revPBE(O-D3).
We note that the AFQMC and CCSD(T) energies computed in
this work and their correlations with other methods in SI Fig.
2 can also be used to provide a benchmark for electronic struc-
ture methods in the condensed phase. By comparing all the
other methods’ energies to those from AFQMC one observes
the following strength of correlations: CCSD(T) > CCSD >
revPBEO-D3 > MB-Pol > BLYP > HF. For the other high
tier electronic structure method used here, CCSD(T), a sim-
ilar trend is observed: CCSD > AFQMC > revPBE(0-D3 >
MB-Pol > BLYP > HF.

For our AFQMC results, it is important to note that the
AFQMC energies contain stochastic error, with each of our
N=200 training set AFQMC energies having a corresponding
estimate for the standard error that ranges from 1-2 mH de-
pending on the specific training set configuration. To evaluate
how this level of error might affect our reported properties,
we employed a test where we sample new training sets where
the same N=200 configuration are used but a random value
is added to each AFQMC energy to reflect the uncertainty of
our AFQMC energies (see SI Sec. VII for details). In total, 12
training sets were sampled and a transfer learned committee
MLP was fit to each. SI Figs. 11 and 12 serve to quantify the
variations in the oxygen-oxygen RDF and hydrogen VDOS

obtained from the 12 separate training sets due to the stochas-
tic error in the AFQMC energies, with the grey shading rep-
resenting the standard deviations. From this test we found
that the stochastic error in our AFQMC calculations does in-
troduce noticeable variations in the OH stretch peak of the
hydrogen VDOS, particularly around the top of the peak, but
the RDFs and VDOS are otherwise consistent for the different
training sets.

A. Structural properties of water from correlated electronic
structure methods

We first compare the structural equilibrium properties for
liquid water at 300 K and 370 K obtained via classical MD
and PIMD simulations using the committee MLP for each
correlated electronic structure method. For these properties
PIMD exactly includes the NQE:s for distinguishable particles,
which is a highly reliable assumption for nuclei at this tem-
perature. Figure 1 shows the oxygen-oxygen RDFs for each
of CCSD, CCSD(T), and AFQMC as compared to the experi-
mental results at 295 K>3 and 366 K.5® At 300 K, classical MD
CCSD(T) and AFQMC both give a first peak that is slightly
higher than observed experimentally suggesting the liquid is
overstructured. However, once NQEs are accounted for in
the PIMD simulations both RDFs become slightly less struc-
tured and show better agreement with experiment, with that of
CCSD(T) coinciding quantitatively. CCSD gives good agree-
ment with experiment when used in classical MD simulations
but is understructured when NQEs are included which is con-
sistent with this electronic structure approach starting from
a HF reference which gives a severely understructured lig-
uid with the additional dynamical correlation added through
the tiers of CC theory progressively structuring the liquid. At
370 K when used in PIMD simulations all methods give good
agreement with the experiment with AFQMC again exhibit-
ing a first peak that is higher than CCSD, CCSD(T) and ex-
periment. SI Fig. 15 and Fig. 16 show the hydrogen-hydrogen
and oxygen-hydrogen RDFs at 300 K sampled via classical
MD and PIMD, respectively, where all three electronic struc-
ture methods give similar results but AFQMC again exhibits
a more structured hydrogen bond network with the first inter-



molecular OH peak at ~1.85 A, which corresponds to hydro-
gen bonds, being slightly higher than the other methods.

The tetrahedral order parameter provides a measure of
higher order structural correlations within water’s hydrogen
bond network beyond the purely radial information encoded
in the RDFs. The tetrahedral order parameter ¢ is defined for
a given water molecule as,>’

3 4 1
> &msaﬁ4-—), (1)
=1 3

q=1—§
j=1 k=j+1

J

where 6 is the angle that a given water molecule’s oxygen
atom makes with two neighboring oxygen atoms j and k.
The tetrahedral order parameter thus ranges from O to 1 with
higher values indicating that the hydrogen bond network pos-
sesses angles closer to that of a perfect tetrahedral arrange-
ment of the four nearest neighbour oxygen atoms around a
central water molecule. As shown in Fig. 2 at 300 K for
both classical MD and PIMD this property further highlights
the understructured hydrogen bond network of CCSD com-
pared to the more accurate correlated methods, CCSD(T) and
AFQMUC, that are in close agreement. At 370 K the distribu-
tion of the tetrahedral order parameter for all three methods
shifts to lower values.

The comparison of these structural equilibrium properties
suggests that the inclusion of higher order electron correlation
contributions in methods like CCSD(T) and AFQMC, as com-
pared to CCSD or HF, results in a greater degree of structur-
ing in liquid water at 300 K and 370 K. Given the directional
nature of this additional structuring, as seen from the greater
probability density at higher ¢ in Figure 2, this arises from
slightly stronger hydrogen bonds being formed when using
the two higher level methods. Our comparisons of the oxygen-
oxygen RDFs obtained from classical and PIMD simulations
at 300 K also show that for these correlated methods the inclu-
sion of NQEs works to slightly destructure liquid water. The
relatively subtle overall effect of NQEs on liquid water around
300 K is known to arise from the close balance of competing
quantum effects in this system.>®

B. Dynamical properties of water from correlated
electronic structure methods

We now turn our attention to how the different correlated
electronic structure methods behave when used to compute
dynamical properties of liquid water, namely the self diffu-
sion coefficient and VDOS. For these properties we compare
the results obtained from classical MD and thermostatted ring
polymer molecular dynamics (TRPMD). For these properties,
since real time quantum dynamics is intractable for such a
large atomistic condensed phase system for the timescales re-
quired to compute these properties, we use TRPMD to ap-
proximate the role of NQEs. TRPMD has previously been
shown to be an accurate way for treating NQEs in the dy-
namics of condensed phase systems, however it is known to
spuriously broaden high-frequency vibrational modes.8¢!

| H AFQMC [ CCSD(T) [ CCSD ]
Classical T=300K

(107° m?/s) 2.09 (0.05) [2.21 (0.06) [2.60 (0.08)
TRPMD T=300K

(107° m?/s) 2.16 (0.09) {2.30(0.08) [2.80(0.11)
TRPMD T=370K

(107° m?/s) 7.09 (0.11) |8.16 (0.14) [8.29 (0.14)

TABLE 1. Diftusion coefficients for liquid water when running clas-
sical and TRPMD simulations using NNPs fitted to either CCSD,
CCSD(T), and AFQMC energies at both 300K and 370K. Mean dif-
fusion coeflicients and standard errors of the mean are reported and
are calculated using 20 ps length trajectories taken from 1 ns classical
MD or 500 ps TRPMD trajectories. The experimental diffusion coef-
ficient for water at 300 K and 370 K are 2.41+0.05%° and 8.26+0.02
(107 m?%/s),% respectively.

The diffusion coefficients obtained for the three correlated
methods are shown in Table I at 300 K and 370 K. Unlike
the other properties we report, diffusion coefficients exhibit
a notable scaling with system size that must be corrected for
to make comparisons with experiment. Hence, as described
in SI Sec. IV A, the diffusion coefficients were computed us-
ing simulations of 64 water molecules and then extrapolated
to the infinite system size limit using the previously derived
system size scaling relation®” and the experimental viscos-
ity of water.%> At 300 K, where the experimentally measured
diffusion coefficient is 2.41+0.05x10~? m?/s,>® when classi-
cal MD is used AFQMC and CCSD(T) yield smaller dif-
fusion coefficients than observed experimentally, 2.09+0.05
and 2.21+0.06 x10~° m?/s respectively, while CCSD gives
a larger value 2.60+0.08 x10™° m?/s. This behavior is con-
sistent with the trends observed for the electronic structure
approaches in the structural properties, where CCSD formed
a slightly understructured hydrogen bond network compared
to the more accurate correlated methods, which here leads
to faster dynamics. Upon including NQEs using TRPMD,
the diffusion coefficients for all three electronic methods in-
crease, consistent with the disruption of the hydrogen bond
network upon including zero-point energy, which brings the
CCSD(T) result (2.30+0.08 x10~ m?/s) to within the statis-
tical error bar of the experimentally observed value. Even
with NQEs included the AFQMC diffusion coefficient is lower
(2.16+0.09 x10~° m?/s) than experiment, consistent with it
forming a more structured liquid. However, it should be noted
that the discrepancy in the diffusion coefficient is very small;
to change water’s diffusion coefficient from that observed at
300 K via classical MD using our CCSD(T) model to the value
obtained by performing TRPMD dynamics would require less
than a 2 K change in the temperature of the liquid.®° In ad-
dition, for dynamical properties TRPMD only approximately
includes NQEs and hence the better agreement of CCSD(T)
with the experimental value could be changed if a different
approach was used to treat the quantum dynamics of the nu-
clei. At 370 K, when TRPMD is used CCSD and CCSD(T)
give similar results (8.29+0.14 and 8.16+0.14 x10~° m?/s, re-
spectively), both of which are close to the experimental value
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FIG. 3. The hydrogen VDOS for liquid water when running clas-
sical and TRPMD simulations using NNPs fitted to either CCSD,
CCSD(T), and AFQMC energies at both 300K and 370K.

of 8.26+0.02 x107° m?/s.%° The diffusion of AFQMC water is
again considerably slower, which is consistent with the rela-
tively greater degree of structure we saw in the latter’s respec-
tive oxygen-oxygen RDF and ¢ distribution.

The VDOS in Figure 3 provides more information on the
frequency dependence of the dynamics of water for the three
electronic structure methods, since the diffusion coefficient
is simply proportional to its zero frequency limit. All three
methods give qualitatively similar VDOS around the lower
frequency librational band (~500 cm™') and peak associated
with the H-O-H bending mode (~1600 cm™!). At 300 K us-
ing classical MD, the main qualitative difference lies in the
OH stretch peak (3000-4000 cm™!), with CCSD(T) giving
a peak that is redshifted by ~80 cm™' with respect to the
CCSD peak, while the AFQMC peak is slightly broader than
the others and is centered closer to the CCSD result. At the
low-frequency end of the O-H stretch peak, the VDOS for
CCSD(T) and AFQMC coincide with one another. Low fre-
quency O-H stretches are typically associated with stronger
hydrogen bonds and the frequency of the O-H stretch peak has
previously been demonstrated to be inversely correlated with
the tetrahedrality parameter.> Hence, the consistency between
CCSD(T) and AFQMC at the low frequency part of their re-
spective O-H stretch peaks is consistent with the structural
evidence in Sec. III A showing that these two methods simi-

larly structure water via slightly stronger hydrogen bonds as
compared to CCSD. The TRPMD simulations at 300 K, which
include NQEs via TRPMD simulations, lead to a ~120 cm™!
red-shift and broadening of the stretch peak and a ~100 cm™!
shift in the bend for all three methods, which is consistent
with observations from previous studies.?®®! Although some
of the broadening likely arises from physical effects, TRPMD
is known to introduce spurious broadening of high-frequency
vibrational modes.*®%! At 370 K the most significant differ-
ence is the shift in the zero frequency intensity, which we
expect since this is directly related to the self-diffusion co-
efficient and otherwise the VDOS is qualitatively similar with
respect to the 300 K results. This is expected since for the
high frequency modes the zero point energy greatly exceeds
the thermal energy in the the mode, i.e. k3T << hiw/2 where
kp is the Boltzmann constant, 7 is the temperature and w is
the frequency of the mode.

Overall, the trends we observe in the dynamical properties
largely mirror the evidence we presented for the structural
properties showing that CCSD results in an understructured
description of liquid water at 300 K, as compared to CCSD(T)
and AFQMC, while at 300 K and 370 K AFQMC overstruc-
tures water. The differences in the diffusion coefficients in
Table I reflect this trend, with CCSD overestimating the ex-
perimental diffusion coefficient at 300 K with its understruc-
tured description of water and AFQMC underpredicting the
diffusion coefficient at 370 K. With the VDOS the main dif-
ferences between the three correlated methods manifest in the
O-H stretch peak positions and breadth, with peaks given by
MD at 300 K for both CCSD(T) and AFQMC skewed more to
lower frequencies that are associated with stronger hydrogen
bonds.

Finally, in SI Figs. 15-22 we compare the results obtained
using our MLPs for CCSD, CCSD(T), and AFQMC to the
MB-Pol model and revPBEO-D3. While the RDFs obtained
for all closely match, in the VDOS we observe that MB-Pol
has an OH stretch band that is narrower and slightly blue-
shifted when compared to CCSD(T) and AFQMC, and which
is more similar to that obtained from CCSD. MB-Pol, which
was fit to calculations on gas phase dimers and trimers at the
CCSD(T) level of electronic structure,>~'® also gives stronger
agreement with the CCSD results for the tetrahedrality dis-
tribution which is consistent with the stronger correlation of
its energies with CCSD (0.873) than CCSD(T) (0.852) in SI
Fig. 2. revPBE(O-D3 also possesses a hydrogen VDOS with
an OH stretch band that is narrow and blue-shifted like that
of MB-Pol and CCSD, but has a tetrahedrality distribution in
closer agreement with that of CCSD(T) and AFQMC.

IV. CONCLUSION

In summary, we leveraged developments in high-level pe-
riodic electronic structure theory and exploited methods to
improve the data efficiency of fitting MLPs to investigate the
structural and dynamical properties of liquid water at the level
of CCSD, CCSD(T), and AFQMC. We devised a data efficient
protocol for training MLPs that uses small periodic boxes of



water (16 molecules) sampled judiciously via an iterative QbC
active learning procedure. To make the most out of the few
configuration energies we can afford to compute, we also em-
ployed a transfer learning approach that leverages the trans-
ferability of physics between lower level electronic structure
methods (e.g. DFT with the BLYP functional, revPBEO-D3
functional, or HF) and our target higher-level methods, us-
ing MLPs fit to the former to initialize a fine-tuning transfer
learning fit to the latter. Using this approach we showed that
we can train stable MLPs with as few as 50 configuration en-
ergies, capture the RDFs with 100 (SI Fig. 4), and with 200
configuration energies obtain both accurate structural and dy-
namical properties such as the diffusion constant and VDOS
(ST Fig. 9). In contrast, with these same 200 energies we were
unable to train stable models using delta learning or using ran-
dom initialization of the model.

We used our MLPs trained to CCSD, CCSD(T), and
AFQMC to examine how different structural and dynamical
properties of liquid water are affected by the level of dynamic
electron correlation accounted for and the inclusion of NQEs.
Our results indicate that CCSD tends to understructure liquid
water and overpredict the diffusion coefficient, as compared to
experiment. On the other hand, both CCSD(T) and AFQMC
give oxygen-oxygen RDFs and diffusion coefficients that are
more consistent with experimental values at 300 K, suggest-
ing that the more accurate treatment of dynamical correlation
present in these methods is sufficient for describing liquid wa-
ter. The inclusion of NQEs for our 300 K simulations bring
the CCSD(T) and AFQMC results in even closer agreement
with experiment and seems to generally manifest as a slight
destructuring of liquid water for all three electronic structure
descriptions. This small destructuring upon including NQEs
for these correlated methods is in contrast to some DFT ex-
change correlation functionals where due to the overpredic-
tion of the anharmonicity of the O-H coordinate the inclusion
of NQEs works to structure the liquid phase.*®

Ultimately, we envision that the configurations and energies
that form the training dataset, the resulting MLPs, and the pro-
tocols we employed here will be useful in their own separate
respects for future work in modeling potential energy surfaces
for condensed phase systems.
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