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The dynamics of many-body fermionic systems are important in problems ranging from catalytic reactions at electro-
chemical surfaces, to transport through nanojunctions, and offer a prime target for quantum computing applications.
Here we derive the set of conditions under which fermionic operators can be exactly replaced by bosonic operators that
render the problem amenable to a large toolbox of dynamical methods while still capturing the correct dynamics of the
n-body operators. Importantly, our analysis offers a simple guide on how one can exploit these simple maps to calcu-
late nonequilibrium and equilibrium single- and multi-time correlation functions essential in describing transport and
spectroscopy. We use this to rigorously analyze and delineate the applicability of simple yet effective Cartesian maps
that have been shown to correctly capture the correct fermionic dynamics in select models of nanoscopic transport. We
illustrate our analytical results with exact simulations of the resonant level model. Our work provides new insights as to
when one can leverage the simplicity of bosonic maps to simulate the dynamics of many-electron systems, especially
those where an atomistic representation of nuclear interactions becomes essential.

. INTRODUCTION

Dynamical processes involving many electrons are ubiqui-
tous. These range from magnetism and superconductivity,'
to catalytic reactions at electrochemical interfaces®® and
at molecular centers,”'? electric transport in bulk sys-
tems as well as through nanojunctions,'*'% and quantum
computing.'>~'® However, because the Hilbert space of many-
fermion problems scales exponentially with the number of
available single-particle states, these systems pose unique
challenges to existing theories and simulation methodolo-
gies. Trajectory-based path integral-based approaches and
quantum-classical theories provide an approach to potentially
alleviate this problem. These approaches offer a hierarchy
of exact and approximate solutions to the dynamics that pro-
vide tradeoffs in accuracy and efficiency that have been suc-
cessfully applied to problems ranging from excitation energy
transport in molecular systems,'>?° to quantum optics and
cavity electrodynamics,?'>? and interacting spin phenomena
(e.g., frustration and magnetism) and in quantum informa-
tion science.?>2> At the heart of these theories is the ability
to cast the Hamiltonian and observables in terms of contin-
uous degrees of freedom, such as action-angle and Cartesian
variables. Once a problem can be articulated in terms of such
variables, one can then apply the rich hierarchy of semi- and
quantum-classical methods to these problems.

To create a robust simulation methodology for many-
fermion problems based on the quantum-classical hierarchy,
it is essential to have either an exact quantum mechanical map
connecting fermionic operators and continuous variables from
which one can devise approximate solution schemes, or an
approximate map where the limits of applicability are clearly
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known. We have recently introduced an exact quantum me-
chanical map for individual fermionic creation and annihila-
tion operators that allows one to map any many-fermion prob-
lem to bosonic operators, which can then be cast in terms
of Cartesian variables.2® In this work, we demonstrated that
it is possible to first perform a Jordan-Wigner transforma-
tion to exactly rewrite fermionic creation and annihilation op-
erators in terms of spin 1/2 operators and then employ the
Schwinger theory of angular momentum to exactly encode the
two-dimensional Hilbert space of spin 1/2 operators in terms
of coupled bosons, thus allowing us to define an exact quan-
tum mechanical map linking the algebras and Hilbert spaces
of these various particles. While this map is exact and is there-
fore guaranteed to maintain the exact structure and dynamics
of the original fermionic problem, it also presents challenges
from the quantum-classical perspective, including nonlocal
operators that encode anticommutivity and the fact that each
fermionic degree of freedom is associated with two correlated
bosonic ones. It is thus desirable to have a controlled means
to map many-fermion problems to a Cartesian representation
that avoids the complexities of our previous map and is com-
patible with systematically improvable quantum-classical the-
ories.

Recently a series of physically motivated quasiclassical
Cartesian maps>’~2° have been suggested and shown numer-
ically to perform well in reproducing the dynamics of model
problems. These maps provide expressions either for indi-
vidual fermionic creation and annihilation operators®® or their
quadratic products?’?° in terms of Cartesian variables. How-
ever, each approach is beset by specific difficulties. In the
former case, as we show here, the previously proposed map
results in operators that obey bosonic, rather than fermionic,
commutation relations. In the latter, the lack of a well de-
fined map for single creation and annihilation operators ob-
scures the physical basis necessary for the application of
a broad class of quantum-classical methods.>*->* However,
despite violating the fundamental anticommutivity of indi-



vidual fermionic operators, these quasiclassical maps have
been shown numerically to accurately capture some time-
dependent observables for several commonly used models of
nanoscopic transport.>’2%336 In addition, recent work>’-8
has established that use of the Meyer-Miller-Stock-Thoss
map,’>% traditionally used to replace outer products of dis-
crete states with bosonic degrees of freedom, when combined
with a classical evolution accurately captures the quantum dy-
namics of the one-body density of non-interacting fermionic
Hamiltonians, provided the system starts from an occupied or
unoccupied state.

This motivates the fundamental question: when do maps
that directly replace fermionic creation and annihilation oper-
ators {é;, ¢;} with bosonic ones {b;, b;}, work?

Here using exact quantum mechanical arguments we ana-
Iytically establish the specific sets of conditions under which
this seemingly naive map is guaranteed to provide the exact
matrix elements and dynamical observables for many-fermion
problems. In particular, we demonstrate that the bosonic rep-
resentation permits the exact calculation of the diagonal ma-
trix elements of:

1. Static operators where the resulting string of bosonic
operators are at most an even permutation away from
. o . At A A At
being pairwise-ordered, i.e., []; ¢;ejor I1; ¢j;.

2. Dynamical operators subject to a quadratic Hamil-
tonian consisting of, at most, the product of two
creation-annihilation pairs in similar order, i.e.,

EOEDE] (en(D) or &N D).

In doing this, we also derive the types of observables, ranging
from static expectation values to single and multi-time cor-
relation functions, that one can correctly capture using such
approximate maps. By considering the classical limit of our
analytic results, we are able to show when the classical dy-
namics of mapped bosonic systems correctly capture the ex-
act fermionic result. Finally, we demonstrate the validity of
our analytical insights with numerical results for the transport
characteristics of the resonant level model.

Our analysis provides insights as to the origin of the success
of previous maps which, at first inspection, could have been
expected to violate important properties of fermionic algebra;
elucidates why the classical limit of these maps is capable of
reproducing the exact quantum dynamics of non-interacting
fermionic systems; and establishes clear rules for determin-
ing whether a static or dynamical fermionic problem can be
solved in terms of bosonic variables and how to articulate the
fundamental expressions to be solved in the bosonic represen-
tation. This lays the foundation for the controlled application
of such maps to more complex systems, such as those coupled
to nuclear motions or exhibiting correlation effects, with the
more complete quantum-classical hierarchy.

Il. FERMION TO BOSON MAPPING

The basic assumption we want to test is conditions under
which it is valid to make the following substitution,
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¢; bj, (1a)

“ s
& “ 7 by (1b)

SO

Clearly, in most cases this does not constitute an exact
map since bosonic and fermionic operators follow fundamen-
tally different algebras, i.e., fermionic operators anticommute,
while bosonic ones commute,

(6,61 =¢8] + ] =6, (2a)

1. = B]E;E - EIEBJ =0jk- (2b)

Here we show when this inexact map can exactly capture
the static and dynamical observables of systems described by
quadratic fermionic Hamiltonians of the form,

H= )" hiéls, 3)
Jik

where hj; are the matrix elements of the single-particle
Hamiltonian. Such Hamiltonians form the basis of
the description of a variety of phenomena, ranging
from elastic charge transport in crystals®’~%* and through
nanojunctions'>'* to catalytic activity at electrochemical
interfaces.>8 However, while such Hamiltonians form the ba-
sis of mean-field treatments of correlation effects, these cannot
account for significant correlation effects, such as the Kondo
effect,®* Coulomb blockades,?>%3%¢ or superconductivity.'
Despite the inability of quadratic Hamiltonians to account for
these more exotic effects, showing when the bosonic represen-
tation in Eq. (1), and therefore any quantum-classical theories
derived based on it, can capture the statics and dynamics of
these systems represents an essential first step in the develop-
ment of more advanced, even if approximate, treatments that
can account for additional complexity, such as coupling to nu-
clear motions and correlation effects.

Before detailing how the map in Eqs. (1a) and (1b) can be
used to calculate static and dynamical observables, we first
summarize a few formal results about quadratic fermionic
Hamiltonians and set the notation for our derivations. In par-
ticular, access to the unitary transformation, U, that diago-
nalizes the single-particle Hamiltonian, h — U~'hU = E,
where E;; = g0, allows one to exactly calculate any dy-
namical property of the system. This is because U allows one
to reexpress Eq. (3) as a collection of noninteracting fermions,
H =3 I jé ;C‘k, where the new fermionic creation and an-
nihilation operators can be expressed as a linear combina-
tion of the old fermionic operators, C; = 3 U;,iék and

CA’]T = > Uk, jéz. The time-dependence of the noninteracting
fermions, C‘(t) = e7&!C, can then be used to construct the



time-dependence of the original fermions,
&l =G, e, (4a)

&) = ) Gin(®em, (4b)

where and the time-dependence of an operator is given by
the Heisenberg picture, O(t) = e'O(t)e ', and the time-
dependent coeficients take the form

Gum = ) Unpe ™'U,), &

Because any operator can be written as a linear combination
of products of individual creation and annihilation operators,
Egs. (4a), (4b), and (5) can be used to construct the time de-
pendence of arbitrary operators, thus allowing one to evaluate
any dynamical observable in the original representation.

Applying the map in Egs. (1) to the quadratic fermionic
Hamiltonian in Eq. (3) yields,

H H= Z hj,kg-;l;b (6)
Jjik

where {IA);., b ;) are bosonic creation and annihilation operators.
Subject to this Hamiltonian, the time evolution of the bosonic
operators is given by the same time-dependent coefficients as
in the fermionic case,

O Z G;, (b}, (Ta)

m

bit)= " Gim(®bn, (7b)

and G, ,,(¢) is given by Eq. (5).

From Egs. (4), (5), and (7) it can be seen that the bosonic
representation in Eq. (1) provides an exact means to calcu-
late the time-dependence of any mapped fermionic operator.
However, just observing that the bosonic representation cap-
tures the exact time-dependence of fermionic operators is not
sufficient to actually evaluate their matrix elements. It is also
necessary to have a well defined basis with respect to which
one can calculate matrix elements.

To define an appropriate basis for the bosonic representa-
tion that allows one to evaluate the matrix elements of static
and dynamic observables of fermionic operators, it is neces-
sary to have a prescription that maps the fermionic basis to a
physically restricted bosonic one. Specifically, due to the an-
ticommutivity of fermions, Eq. (2a), their Hilbert space con-
sists of only two states per fermionic mode. In contrast, the
commutivity of bosons, Eq. (2b), results in an infinite dimen-
sional Hilbert space for every bosonic mode. To connect the
sizes of these two Hilbert spaces, one can restrict the size of
the bosonic Hilbert space to match that of fermions. While
there are several ways of enforcing this restricted Hilbert
space,! 206768 here we focus on one which simply truncates
the Hilbert space of each bosonic mode two its unoccupied
and singly occupied states. Such a truncation naturally arises

in lattice models where bosons on the same site repel strongly,
i.e., a Bose-Hubbard model® in the limit of U — co, where U
is the on-site two-boson interaction. In these cases, the Hilbert
space of the jth bosonic mode contains only two states,

{lnp} = (10,0, 117}, ®)

where n indicates the occupation of the kth mode, which ex-
actly matches the Hilbert space of the kth fermionic mode.
Bosons whose Hilbert space spans only the unoccupied and
first occupied states are called hard-core bosons. As in the
fermionic case, for a system consisting of M hard-bosonic
modes, the many-body Fock state, [n) = |nj,ny,...,np) is
determined by the occupation number of each mode. Now
with commensurate Hilbert spaces, the main difference be-
tween the fermionic and bosonic cases lies in the statistics of
the operators which, upon acting on the many-body state, can
lead to occupation dependent phases. Specifically, fermionic
anticommutivity implies that,

& nynjonyy = 6y, 1 (=" + Lony),  (9a)
&jlny.njeny) = 8, 0(-1"P Inyn; — Lony),  (9b)
where
j-1
h(jlky =) n (10)
2k

is a counter function that accounts for the exponent of the neg-
ative phase acquired when the jth creation or annihilation op-
erator acts on a many-body state containing excitations in in-
dices / < j. For cases where additional indices are specified
after the vertical line, e.g., k in Eq. (10), the sum excludes
these indices. In contrast, the commutative nature of bosonic
operators does not lead to these phases,

ZAJI [ny..nj.ny) = Opj1 In1.ny + 1), (11a)

bilny..nj..ny) = 8,0 lny..nj — Lny). (11b)

As we discuss below, there is a subset of problems where
the bosonic representation in Eq. (1) coupled with the hard-
core truncation of the Hilbert space in Eq. (8) allows one to
correctly calculate certain matrix elements of static and time-
dependent fermionic operators. The bosonic representation
leads to difficulties only when occupation-dependent phases
arise in the fermionic representation. Thus, here we provide
a simple guide for when the hard-core bosonic representation
allows one to correctly capture the matrix elements and cor-
relation functions of fermionic systems subject to a quadratic
Hamiltonian of the form given by Eq. (3).

Before turning to this analysis, we briefly note the rela-
tion of the map in Eq. (1) to other techniques used previ-
ously, albeit in generally different contexts. We note, for in-
stance, that the replacement of fermionic creation and anni-
hilation operators examined here is distinctly different from
bosonization,”%’! a technique that has been used with great
success to interrogate the dynamics of fermionic problems
and spin-chains in one dimension. Bosonization is based on



the insight that particle-hole excitations are bosonic in char-
acter. As such, it is the density fluctuations, not the individual
fermionic creation and annihilation operators, that are mapped
to bosonic creation and annihilation opf:rators.m’72 In contrast,
the approach considered here directly replaces fermionic cre-
ation and annihilation operators by bosonic ones.

The map in Eq. (1) also differs from maps based on multi-
level systems, which often reduce to adopting the commonly
used independent electron approximation.’>~’® This approxi-
mation replaces creation-annihilation pair products with their
single-particle orbitals,

e o7 iyl 12)

Once expressed in this form, one can then apply the Meyer-
Miller-Stock-Thoss transformation,’>® which maps outer
products of the form in Eq. (12) to bosonic variables. Indeed,
following this procedure, one would again obtain the mapped
Hamiltonian in Eq. (6). However, the M-dimensional physi-
cal basis for this problem spans the singly occupied bosonic
Fock states, where the kth vector consists of the product of the
singly occupied state of the kth boson and the ground state of
all other modes. As we show in Appendix A, this approxi-
mation only allows one to get, at most, the expectation value
single-time correlation functions of one-body operators. In
contrast, as we demonstrate below, the fermion to boson map
in Eq. (1) permits for the calculation of single and multi-time
correlation functions of up to two-body operators.

Finally, we remark that, once a problem is expressed in
terms of bosonic creation and annihilation operators, one can
employ the Cartesian coordinate representation of these oper-
ators, i.e.,

(13a)
(13b)

bt =g -ip)/ V2,
b= @q+ip)/ V2,

to express the mapped observables and Hamiltonian in terms
of Cartesian phase space operators,

1 R o o o
H = 3 ;hj,k[Qij + Djbr— 6k + i(G;Dx —quk)], (14)

A particularly advantageous property of quadratic Hamiltoni-
ans of the form in Eq. (14) is that the classical dynamics of the
resulting Cartesian variables captures the exact quantum dy-
namics of such systems,?>-%¢0 allowing one to calculate quan-
tum correlation functions at the cost of classical calculations.
When considering more complex situations, such as those
where fermionic degrees or freedom are coupled to nuclear
motions, the phase space formulation provides a convenient
starting place for quantum-classical approximations. This
compatibility with the quantum-classical hierarchy,!®-20:77-80
which ranges from efficient but generally inaccurate mean-
field approaches®'® to more accurate but resource intensive
approaches,'?#1:444786 i5 particularly compelling, as one can
treat the effect of an external environment, such as nuclear
motions, on the same theoretical footing. In addition, as re-
cent work has demonstrated,**87-%® quantum-classical meth-
ods can be successfully combined with the generalized quan-
tum master equation framework to improve the efficiency and

accuracy of quantum-classical schemes. Thus, elucidating
when the map in Eq. (1) can be exploited to exactly calcu-
late observables in many-fermion problems can set the stage
for the controlled extension and application of such a map to
more complex systems of interest where an exact solution is
difficult to obtain.

A. Matrix elements of static operators

Perhaps one of the simplest and most fundamental ques-
tions one must ask about the the feasibility of replacing
fermionic by bosonic operators according to Eq. (1) concerns
the criteria that an arbitrary operator needs to satisfy for its
matrix elements both in the fermionic and bosonic represen-
tations to be equivalent. Unfortunately, the matrix elements
of most fermionic operators contain occupation-dependent
phases which the bosonic representation does not capture. In
contrast, as we show below, the class of fermionic operators
for which the matrix elements are equivalent in either repre-
sentation is limited.

We begin this discussion by specifying the fermionic op-
erators for which one may expect matrix elements to contain
occupation-dependent phases. For example, consider the ma-
trix elements of a single creation (or annihilation) operator for
the jth mode,

(n| &’y = (=1)" 6, 41 F(n, 0], 5)

where n = (ny,ny,...,ny,) and n’ = (n},n,...,n),) denote
two arbitrary sets of occupation numbers which determine the
Fock states used to obtain the value of all matrix elements,
and

F,n') = [ | 6nn (16)

k=1

k#{j}
enforces the equal occupation of the modes across the n and
n’ sets, with the exception of excluded indices j. The matrix
element in Eq. (15) contains an occupation-dependent phase,

(=1)Z51 7, which would not arise if one evaluated the matrix
element in the bosonic representation,

(|5} ') = 6,1 F(0, 1)), (17)
Previous fermion mapping approaches?®* that explicitly ac-
count for fermionic anticommutivity contain the appropriate
nonlocal factors that account for the phase. Despite not recov-
ering the correct value of matrix elements with a finite weight,
it is noteworthy matrix elements with zero weight are cor-
rectly captured in the bosonic representation. It is straightfor-
ward to extend this conclusion to any fermionic operator con-
taining a lone creation or annihilation operator corresponding
to an arbitrary mode j. Instead, the only way to reliably re-
move these occupation-dependent phases is to restrict one’s
attention to operators consisting of products of single mode
creation-annihilation pairs. However, even within this family,
we must place certain restrictions on the way these products
are ordered.



To understand the restrictions that one must place on
operators consisting of products of single mode creation-
annihilation pairs, it is essential to consider the orderings of
operators that do not lead to occupation-dependent phases.
Perhaps the simplest type of operator that allows for the eval-
uation of its matrix elements in the bosonic representation
is one which is pairwise-ordered. Pairwise-ordered opera-
tors are those where single mode creation-annihilation pairs
appear next to each other, e.g., Ejétézﬁk, 6:6,6;{6; Ejézékéz,
where j # k. In fact, one can exdctly evaluate the matrix
elements of any ordering of products of single mode creation-
annihilation pairs in the bosonic representation only if the op-
erator product requires at most an even number of permuta-
tions to achieve a pairwise ordered form. The proof of this
statement is provided in Appendix B. These operators include

normal and anti-normal ordered operators, such as 6;6;6@ i

and ¢ jékézéj, respectively, where j < k. Normal-ordered
products are those where all creation operators appear to the
left in increasing order from left to right, while annihilation
operators appear to the right, in decreasing order from left to
right.

Because of their central importance, we call orderings of
products of single mode creation-annihilation pairs proper-
ordered if their matrix elements can be it calculated in the
bosonic representation, i.e., if it takes an even number of per-
mutations to rearrange the operators into a pairwise ordered
form. An important consequence of this is that one can also
use the bosonic representation to evaluate the matrix elements
of any power of proper-ordered operators (see Appendix B),
and therefore functions of such operators.

In summary, using the inexact bosonic map of Eq. (1),
it is possible to exactly recover (i) the diagonal and off-
diagonal matrix elements of products containing odd numbers
of single-mode creation or annihilation operators as long as
these are equal to zero and (ii) a/l matrix elements of proper-
ordered products of single mode creation-annihilation pairs
and their functions. Hence, the only nonzero elements that
one can capture in the bosonic representation are the diagonal
matrix elements of proper-ordered operators. In contrast, the
nonzero matrix elements of operators containing products of
odd numbers of creation or annihilation operators and prod-
ucts of single mode creation-annihilation pairs are not proper-
ordered will generally contain occupation-dependent phases,
which are not captured in the bosonic representation.

B. Matrix elements of time-dependent operators

Guided by the fact that the time-dependence of fermionic
is equivalent to that of bosonic operators subject to an analo-
gous Hamiltonian, one might imagine that, as in the case of
static operators, it should be possible to calculate the diagonal
matrix elements of all time-evolved proper-ordered operators
in the bosonic representation. However, evolving a proper-
ordered operator results in a linear combination of operators
with time-dependent coefficients, some of which may not be
proper-ordered.

For example, consider the time evolution of a single product
of creation-annihilation pair,

2020 = Z G, (DG 4(024eh, (18)
P4

where the time-dependence of the creation and annihilation
operators is given by Egs. (4a) and (4b), respectively. We can
then split this sum into two contributions, one coming from
cases where p = ¢ and one from cases where p # g,

(| &,¢) 0’y = F(n,n)5,, o, (19a)

I’y = F,0'|p, )8y 41, Oy n, 1 (= 1P TP,
(19b)

(n| &4eh

The case where p = g in Eq. (19a) corresponds to a proper-
ordered static operator whose matrix elements can be cap-
tured in the bosonic representation. In contrast, the case where
p # q in Eq. (19b) is not proper-ordered, leads to occupation-
dependent phases on its finite off-diagonal matrix elements,
and can therefore not be captured by the bosonic represen-
tation. However, the bosonic representation is able to capture
the diagonal matrix elements of the operator in this latter case,
which are equal to zero. In other words, the bosonic repre-
sentation is able to capture the diagonal matrix elements of
arbitrary creation-annihilation pairs correctly, which implies
that it captures the diagonal matrix elements of time-evolved
creation-annihilation pairs whether these arise from the same
or different modes,

MlelEedn) ) = 3" Gl (1)Grie ()07 kb 1
7k

= (| b (1)bi(1) In), (20a)
(n| ék(lz)@j»(ll) In) = Z G j(t)Grw (12)6 kO 0
7K
= (| b(12)b' (1)) In). (20b)

This conclusion is consistent with the statement in the pre-
vious section which states that one can recover the both the
nonzero matrix elements of proper-ordered products of time-
independent operators and the zero matrix elements of prod-
ucts containing an odd number of single-mode creation and/or
annihilation operators.

One may then ask whether the time-dependent operator of
interest can take a more complex form. In the following, we
demonstrate that the most complicated form an operator can
have for which one can still recover the diagonal matrix ele-
ments correctly in the bosonic representation is one containing
at most a quartic product of two creation-annihilation pairs.
This product can be ordered in at most two configurations,

(0]&}e12 ]2} = (8401mOn1 + (1 = 6m)Sjn0k1610)00,.1
= (0| bbyb] by ), (21a)
(0] &85 82] 1) = (801mOn,.0 + (1 = Gim)® Ok 16,1 )3 0

= (0| bbby by In). (21b)



where the order of the first creation-annihilation (Eq. (21a))
or annihilation-creation (Eq. (21b)) sequence determines the

J

(Il eRIe] B)en(t) Iy = Y G (11, 10,13, 14) (0l € 0] G I = (0] B (0)BR(12)D] (1) b (1) I,

j’,k’,l',m’

(0| ()2 Hen()e] () Iy = Y G (11, 10, 13, 14) 0l G0 8 1) = (0] Di(22)B ] (1)Di(24)B] (15) I,

Jk U

where
Gt 1, 13,14) = Gy [(1)Gip ()G, (3G (1a). (23)

We have used different time indices, {t;,f,,#3, 74}, to empha-
size these operators can indeed be evolved to different time,
yielding the same sum over quartic products of creation-
annihilation pairs in Eqgs. (21), albeit with different time-
dependent coefficients.

If one tries to go beyond the product of two creation-
annihilation pairs of the form given in Egs. (21), the diagonal
matrix elements start to contain occupation-dependent phases
and therefore cannot be reliably captured by the bosonic rep-
resentation. For instance, consider the matrix elements of the
three creation-annihilation pair product,

(n|&&e]encie, ), 24)

where the operator indices can take any value in {1, ..., M}. In
this case, one of the distinct pair contractions of the indices
that contributes to the diagonal matrix elements, i.e., j = m,
k = p,and | = g, where j # k # [, leads to an occupation-
dependent phase,

AAAAAA

I (25)
# (0| bbb} b;blbi m).

As the operator products increase in complexity, i.e., consist
of a larger number of creation-annihilation pairs, the number
of contributions that contain negative phases becomes more
significant. This finding implies that operators of the form
given in Eq. (22) are the most complex operators for which
one can recover diagonal matrix elements correctly in the
bosonic representation. Furthermore, because expansion of
a function in its Taylor series leads to a sum over different
powers of its arguments, the bosonic representation is gener-
ally unable to correctly capture the matrix elements of func-
tions of operators, except in special cases where the expan-
sion can be truncated at a low order where the resulting oper-
ators conform to the criterion of Egs. (20) and (22). Since the
bosonic representation is able to correctly capture only the di-
agonal matrix elements of operators consisting of one or two
creation-annihilation pairs, such as those given by Egs. (20)
and (22), we refer to these operators and their allowed order-
ings as time-proper-ordered.

sequence of the second pair. These products can arise from the
time evolved versions of the following two types of operators,

(22a)

(22b)

(

C. Observables and initial conditions

In Secs. IT A and 11 B, we showed which matrix elements of
static and dynamical operators can be obtained via the bosonic
representation in Eq. (1). In this section, we exploit these in-
sights to determine the types of initial conditions and observ-
ables for which one can exactly calculate nonequilibrium av-
erages and general time-correlation functions when using the
transformation in Eq. (1).

We begin by considering a system whose many-body
Hilbert space is constructed using M single-particle states and
is thus contains 2" many-body states. As done previously,
we restrict our attention to Hamiltonians of the form given by
Eq. (3). We are interested in considering the calculation of
time-dependent averages such as correlation functions of the
form,

(B(t)) = Tr[pB(b)], (26)

where p encodes the initial condition of the system, Bt) =
B j(O)Bk(t] )...By(ty) consists of a product of operators {B,) cor-
responding to individual creation or annihilation operators and
t = (t, 11, ..., ty) is the set of time arguments of each operator.
We have maintained distinct indices for the time arguments of
these operators to emphasize that there is no restriction on the
identity of these arguments.

Equation (26) encompasses a wide range of observables
and physical situations. For example, p can correspond to a
nonequilibrium state normally associated with charge trans-
port setups where the leads are in local thermal and chemical
equilibrium while the impurity is either occupied or unoccu-
pied, or an equilibrium one where p assumes the form of the
canonical density of the entire system. The operators B j can
take the form of a population, e.g., of the impurity or reservoir
level(s), current, or the unit operator, 1. As such, by elucidat-
ing the criteria that Eq. (26) needs to satisfy, we also determine
the restrictions on the nonequilibrium averages and time cor-
relation functions that one may calculate in the bosonic repre-
sentation.

As we demonstrated in Secs. I A and II B, the only nonzero
elements that are correctly captured for any operator, static or
time-dependent, are the diagonal matrix elements of a sub-
set of operators. Specifically, in the case of static opera-
tors, only proper-ordered products of single mode creation-
annihilation pairs allows for the replacement of fermionic
by bosonic operators with a limited Hilbert space, while for



time-dependent operators, these need to conform to a more
stringent standard, i.e., proper-time-ordered operators consist-
ing of, at most, two products of creation-annihilation pairs.
Hence, diagonal proper-ordered initial conditions, p, would
allow one to reexpress the trace operation as a sum over the
diagonal matrix elements in the basis of all Fock states,

(B(v) = ) (nlpn) (nl B(®) In). 27
{n}
In general, these initial conditions take the form
M
p = [on@en. (28)
m=1
where
Pm(@hem) = (1= pu)eme), + pmehém, (29)

and p, = Tr[pELém]. The form for p in Eq. (28) encom-
passes widely used initial conditions, such as that correspond-
ing to an nonequilibrium state of an impurity in its occupied
(om = éfném) or unoccupied (p,, = ¢,C,,) state initially un-
coupled to one or more electron reservoirs or leads. The ini-
tial condition of the reservoirs is often taken to be their grand
canonical distribution.

Accounting for the restrictions on the matrix elements of
time-dependent operators discussed in Sec. I B, when the ini-
tial condition is diagonal, the bosonic representation permits
the calculation of correlation functions where B(t) can as-
sume the forms of the proper-time-ordered operators shown
in Egs. (20) and (22). Examples of these correlation func-
tions include time dependent populations, currents, and their
second moments.

In addition to the dynamical quantities characterized above,
there are two special cases which can also be treated using the
bosonic representation. First, one can extend the treatment to
non-diagonal initial conditions that can be factored into diago-
nal, p4, and simple non-diagonal, p,,;, components, 0 = Pg0nd>
that can be included in the time-dependent product,

Bllhy = )"l palm) @l puaBUDMY. (30,
{n}

Consistent with the restrictions on the time-dependent opera-
tors that a time-dependent operator needs to obey for its ma-
trix elements to be correctly captured in the bosonic represen-
tation, the product [),,dﬁ(t) needs to be time-proper-ordered at
t = 0. The second case of interest allows one to extend the
treatment to cases where the product of B(t) consists of a di-
agonal operator B ;(0) and a product of proper-time-ordered
operators, Ek(tl)...Bl(tN). In this case, the diagonal nature of
B /(0) allows one to incorporate it into the initial condition,
thereby allowing one to probe a product of time-dependent
operators that conform to the time-proper-ordered form, i.e.,

(Byy = Z (0| pB,(0) ) (| Bi(11)... Bi(en) ) . G1)
n}

Thus, with the analysis above, we have outlined in what cases
the bosonic representation permits the exact calculation of dy-
namical quantities for both systems in and out of equilibrium.

lll. NUMERICAL ILLUSTRATIONS

To numerically demonstrate the validity of the conclusions
derived in Sec. II, here we consider elastic charge transport in
a model nanojunction as described via the nonequilibrium res-
onant level model.!?*!%! One of the most widely used forms of
the quadratic fermionic Hamiltonian, the resonant level model
is conventionally used to model elastic electron transfer from
a molecule or quantum dot, commonly called an impurity, to a
nearby lead which functions as an electron reservoir, and elas-
tic transport across a nanojunction consisting of an impurity
placed between two leads. The Hamiltonian for the resonant
level is of the form in Eq. (3), but can be subdivided into im-
purity, leads, and impurity-lead coupling components,

_ AT A AT A
Hym = Z 8mc:fncm + Z €, Cp Cry
m /l,k,l

AT A AT A
+ Z i (ECicy + Ef Cm),
m,A.ky

(32)

where the first term corresponds to the impurity part of the
system, the second term to the lead(s), and the third connects
the impurity and leads. As such, g, is the energy of an elec-
tron on the mth impurity state, g, is the energy of the states
in the free electron Ath reservoir, and #,,, is the hybridization
between the impurity and reservoir states which is responsi-
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FIG. 1. Single-time three-body moments for the same parameteriza-
tion of the resonant level model in Fig. 2. The top panel corresponds
to the current arising from the left lead; the middle panel to the cur-
rent from the right lead; and d) the bottom panel to the total current.
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FIG. 2. Three-body moments for the resonant level model, where &; = 0, 8, = Bz = 1/3I"", u; = —ug = I'. The second time-index has been
held constant at £, = 2.5I""'. The leads have been discretized into N, = Nr = 100 states, and the impurity state is initially assumed to be
unoccupied. The top row is the exact result obtained using the fermionic representation, the middle row corresponds to the bosonic result, and
the bottom row to the difference between the two: Cre(#;, 12, 3) — Chos(t1, 12, 13) . Each column corresponds to the third moment of different
current operators. The leftmost column corresponds to the third moment of the current arising from the left lead, middle column to the current
from the right lead, and the rightmost column to the total current. See Eqgs. (36) and (38) for expressions for these currents.

ble for electron hopping from the impurity to the reservoir

Here we use the resonant level model as a numerical test-
ing ground for the insights developed in later parts of the pa-
per. To fully characterize the model, we take the wide-band
limit'®! with sharp cutoffs at high and low energy values for
the hybridization between the impurity and leads,

Ta(8) =27 ) It f5(e - &)
ka
) Tt (33)

N (1 + eA(s—B/Z))(l +A—A+B/2)'

For all numerical results presented here, we use I'y, = I'y = %,

T, = Ty + g T = max[T,], A = 5T, and B = 20

and vice versa.

Although this describes a continuum of states, we employ a
uniform discretization of the leads into N, states with the hy-
bridization parameters given by,

1—‘m,lq A“':m,/’q

2’ (34)

tm,kg (sk/l) =

where Ag,, ; = 2B/(N,; — 1) is the energy difference between
adjacent lead states.

While our subsequent discussion is general and applies to
a diverse set of observables, we demonstrate the validity of
our conclusions with a few observables of interest in systems
conventionally modelled using the resonant level model, in-



cluding the population on impurity states
Pyu(t) = Trlpé}, (D2n(1)], (35)

which are useful in studying the rate of elastic electron trans-
fer at an electrochemical interface. When considering electron
transport across a junction connected to two (or more) reser-
voirs, the current coming into the Ath lead takes the form,

d N
() = ETF[PNA(I)]
= Tr[ply (1],

(36)

for 1 € {R,L}. In Eq. (36), the total occupation and current
operators for lead A take the forms,

N, = Z & &, (37a)
ka
b= il N0 =0 ) tmg €56, — 8 Gl (37D)

mk,

Finally, the total current coming from the left reservoir, going
through the junction or impurity, and into the right reservoir
takes the form,

1
I(r) = E(IR(I) = 1.(D). (38)

In Egs. (35) and (36), the trace operation Tr[...] =
2y 0| ...|n) is done over all 2M many-body states {|n)} in
the Hilbert space, where n = (n;, ny, ..., ny) is the vector that
specifies the occupation of each single-particle state.

The initial condition for nonequilibrium charge transport in
nanojunctions often takes the form,

p=p| |en. (39)
a1

The impurity is often assumed to be in its occupied or unoc-
cupied states, p; = [1,, ® pm, Where p,, = 6,];16," or Py = Eméfn,
respectively, while the leads in thermal and chemical equilib-
rium, ie., Py = e—ﬂ(lfh—ml%)/Tr/][e—ﬁ(ﬁ,l—u,ll%)] = 1k, Pk,
Figure 1 shows the third moments of the impurity popula-
tions and currents, subject to a diagonal initial condition of the
form in Eq. (39). Third moments of one-body operators such
as those shown in this figure are of a form that require the eval-
uation of three creation-annihilation pairs of the form given
by Eq. (24), which immediately suggests that, even when cal-
culating exact quantum dynamics, the bosonic representation
should lead to deviations from the expected fermionic result.
While a priori knowledge of this failure does not necessar-
ily suggest that the deviation will be significant, the results in
Fig. 1 demonstrate that the results can be markedly different.
Now we turn to a dynamical version of the third moments
of the currents shown in Fig. 1. These dynamical objects
quantify correlation when these operators are measured at dif-
ferent times. Specifically, Fig. 2 shows the full 3-time cor-
relation functions of the currents, subject to the same initial
conditions as in Fig. 1. Importantly, these types of correla-
tion functions are important dynamical quantities necessary

for the calculation of, for example, third-order nonlinear spec-
troscopies. The figure shows that, while the fermionic (top
row) and bosonic (middle row) versions recapitulate similar
features, i.e., oscillatory features and a dominant negative cor-
relation at #; = t3 = 3!, the difference between these two
treatments (bottom row) demonstrates that the size of the error
is comparable to the size of the signal. Hence, it is crucial to
distinguish when the simple bosonic replacement of fermionic
operators in Eq. (1) is guaranteed to capture the exact result,
even in the noninteracting electron limit, especially if one in-
tends to use this approximate map as a starting point for the
subsequent application of semiclassical treatments when the
Hamiltonian parameters depend parametrically on nuclear po-
sitions.

IV. CONCLUSIONS

Here we have shown how direct replacement of fermionic
creation and annihilation operators can form an exact quantum
mechanical map for systems described by quadratic fermionic
Hamiltonians. Specifically, we have shown when this using
this map with a restricted Hilbert space corresponding to the
physical fermionic Hilbert space can be used to evaluate ma-
trix elements of a wide class of operators. In particular, we
have determined the criteria that static and time-dependent op-
erators need to satisfy for the bosonic representation to be able
to produce correct matrix elements.

We have also demonstrated the ability of our analytical
framework to determine when one can use the bosonic repre-
sentation to calculate time-dependent observables, including
nonequilibrium and equilibrium single- and multi-time corre-
lation functions. In particular, we have shown that when work-
ing with diagonal initial conditions the bosonic representation
fails to capture greater than 2-body time-dependent observ-
ables, such as the third moments of the populations and cur-
rents in the resonant level model. When initial conditions con-
tain off-diagonal elements, the bosonic representation is able
to capture only up to 1-body time-dependent observables.

The analysis presented here establishes the best case sce-
nario limitations for the application of simple bosonic maps
to fermionic problems and opens the door for the controlled
combination of these maps with the quantum-classical hierar-
chy. In addition, our analytical framework lays the founda-
tion for the extension of these simple bosonic maps to more
complex situations, including those where fermionic degrees
of freedom are coupled to complex nuclear motions and may
exhibit correlation effects. Especially in these cases, our anal-
ysis offers a starting point for the future exploration of how
alternative boson representations,'?>-1% spin maps,'%-1% and
coherent state representations!%~!13 could be used as alterna-
tives to the approximate bosonic map interrogated here.
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Appendix A: Independent electron approximation

A closely related approach used to simplify many-fermion
problems described by quadratic fermionic Hamiltonians is
the independent electron approximation.”*!'*117 This ap-
proximation replaces creation-annihilation pair products with
their single-particle orbitals (see Eq. (12)),

éTe_k 113 — i)

; 1) <K . (A)

A direct consequence of this approximation, which transforms
the original many-body problem into a one-body multi-state
problem, is that the trace operation also changes,

M
D mliny o >l 1) (A2)
{n} j=1

where the vector |n) is a particular instance of a many-body
state in a 2V dimensional Hilbert space, whereas |j) is one
single-particle state in the M dimensional Hilbert space for
the M-level system.

Using Eq. (12) the many-fermion in Eq. (3) becomes the
single-particle Hamiltonian, h, which is an M X M matrix in
the basis of the single-particle orbitals,

Jik

As shown in Sec. II, one can diagonalize this single-particle
Hamiltonian matrix with the same unitary transformations
used for the many-fermion problem to obtain E = U~'hU.
This allows one to calculate the time-evolution of an arbitrary
one-body fermionic operator

0'(n = Y &0 e

i | (A4)
= > comefe,
as
0' (1) > > 0l (kl(x)
H (A5)
= D.CoMIN G,
where
Co0 = ). G} (104G, (A6)

Jk
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and G, (?) is given by Eq. (5). As Egs. (A4) and (AS5) demon-
strate, the time-dependence of one-body operators can be ob-
tained exactly within the independent electron approximation.

While the independent electron approximation correctly
captures the time-dependence of one-body operators, it re-
quires one to change important details in the way that one
calculates observables for many-body problems. To see the
relevant differences, we consider the nonequilibrium average
of the one-body operator in Eq. (A4) in its original second
quantized formulation,

©'(0) = ) CODTrlpe]e,]. (A7)

Using Eqgs. (A2) and (A3), one obtains the following expres-
sion for the mapping of Eq. (A7),

(©O'@) = ) L rialp ) ol (AS)

where p is the mapped density. Clearly, for this mapping to
be valid, the many-electron density must be mapped to the
sum of one-electron operators. To illustrate this, we consider
a common nonequilibrium initial condition for electron con-
duction in the resonant level model corresponding to the non-
interacting bath at thermal equilibrium and an occupied cen-
tral impurity:

o Bler—1ié
pam(0) = &0 | | (A9)

. Trk[e_ﬁ(gk—ﬂ)f‘zék] ’

where the subscript O denotes the impurity and k # 0 the states
in the fermionic bath. Substituting Eq. (A9) into Eq. (A7), one
obtains,

0'(0) = Z C2.(06,s 1, AL0)
where
1 forr =0,
BT All
! {% for r # 0. (ALD)

This example allows us to identify the mapped density, g, as

Bam = D S 1P (. (A12)

Interestingly, this density matrix is normalized to the average
particle number in the system, N, rather than 1. Since the den-
sity must be mapped to a one-body operator in the indepen-
dent electron approximation, the many-body problem should
be rotated to a basis where the full density can be written as
the product of one-electron operators that can be mapped us-
ing a similar procedure as in the resonant-level model above.

Attempts to go beyond one-body operators illustrate some
of the limitations of the independent electron approximation.
We consider a generic two-body operator as an example,

o atata a
O = Z OJ;k,mejckcmcz.
Jik,Lm

(A13)



For simplicity, we consider the time-independent case as it il-
lustrates the difficulty in using the independent electron ap-
proximation and its time dependence can be obtained triv-
ially using the protocol outlined above for the 1-body opera-
tor. Evaluating the average of this operator using the resonant
level model example above yields,

@)= ) 0%, 16;8km

Jik,m

= 0mOki1fjfe- (A14)

Yet, this result is incompatible with the mapping in Eq. (12),
which would require decomposing the two-body operator into
one-body pairs that could be mapped unambiguously, say

&iemes = —(@em)@en
=1 Cmlke) 1
1) U S

(A15)

or

date o= diayete
¢ ¢ lmt (cjc/)(ckcm)

=17 Uik (m|
= —|j) (m| 6.

(A16)

Thus, while the independent electron approximation can cap-
ture the correct expectation value of one-body operators sub-
ject to initial conditions constructed from the product of one-
body densities, it cannot be used to calculate the expectation
value of many-body operators or the multi-time correlation
functions of one-body operators.

Appendix B: Proof: pairwise ordering for static operators

Here, we prove that when a static operator consists of prod-
ucts of single-mode creation-annihilation pairs that appear
only once, the property that determines whether one can cal-
culate its matrix element in the bosonic representation is if the
operator can be made pairwise ordered in an even number of
permutations.

To prove this statement, we first show that action of a pair-
wise ordered operator never leads to negative (occupation-
dependent) phases. To do this, it is sufficient to consider the
action of a one single-mode creation-annihilation pair acting
on an arbitrary many-body state, |n),

&lejiny = (1?95, 1 Iny =

eje L) = (=15, o In) =

(Bla)
(B1b)

n, 1 |l'l> >

6n/,0 |Il> .

Note that single-mode creation annihilation pairs are just oc-
cupation operators, 71; = el cj m) =1 —cjc |n), and the many-
body states in the occupation basis form their eigenbasis. As
such, the action of creation-annihilation pairs does not mod-
ify the many-body state itself, other than acquiring a weight
of zero or one depending on the specific occupation of the jth
mode. Besides being diagonal, these operators lead to no neg-
ative phases due to their immediate proximity, i.e., there are
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no additional creation or annihilation operators corresponding
to other modes in between those forming the pair of interest
that could change occupation of other single-particle modes
and hence prevent the doubling of each operator’s contribu-
tion to the phase in Eq. (B1). Because for the purpose of this
proof we are only interested in whether the action of creation-
annihilation pairs lead to negative phases and, as Eq. (B1)
shows, the order of creation vs annihilation operator in the
pair only changes the acquired zero or unity weight 6,1 or
0n,0 corresponding to the occupation of mode j, we ignore the
identity of individual operators as creation or annihilation op-
erators as long as we consider pairs corresponding to a single
mode. Thus, we represent both ¢ c ¢jand ¢ ch as 7. Using this
notation, it is clear that when we consrder the action of an ar-
bitrary product of pairwise ordered operators on a many-body
state [n), one obtains the same state multiplied by a coefficient,
|| > 0, which does not change the sign of the state,
7 7kk...lTm) = |a|m). (B2)

Thus, a pairwise ordered operator consisting of a product of
single-mode creation-annihilation pairs always leads to diag-
onal matrix elements with either positive or zero weights.

The second part of this proof then requires one to show that
any operator consisting of products of single-mode creation-
annihilation pairs also lead to diagonal elements with positive
or zero weights only if these can be rearranged into a pair-
wise ordered form using an even number of permutations. For
such operators, the permutations necessary to achieve pair-
wise ordering occur only over operators of different indices.
For example, to rearrange / kijkl} into a pairwise ordered form,
one needs to permute the j operator in the middle twice to the
right over the & and [ operators, and then the leftmost / operator
once to the right over its neighboring k operator, thus requiring
a total of P = 3 permutations. In addition, the anticommutiv-
ity of fermions dictates that every time a permutation of two
operators with different indices occurs, the reordered operator
acquires a phase of —1. Thus,

AAAAA ANAAA

kljki7 = (-1)P=2klki};

B3
= (-1 kkiljj, ®

where the exponent of the phase, —1, accounts for the number
of permutations necessary to bring the operator into a pairwise
ordered form. In its pairwise ordered form, evaluation of the
matrix elements of the operator acquire no additional negative
phases. Therefore, the matrix element of the operator type in
Eq. (B3) contains a negative phase which cannot be captured
by the bosonic representation,

AAANAA

(| kIjkijm) = (=1)° (B4)
Here, we have chosen a given configuration of the creation
and annihilation operators corresponding to the generic order
given by Eq. (B3). In contrast, the bosonic representation is
able to capture the matrix elements of operators which only

require an even number of permutations, such as,
lkjkl] = (—=1)P=21kkl}; B5)

= (=D kdT]].



which do not acquire negative phases.

A simple yet important consequence of the fact that no neg-
ative phases emerge when evaluating the diagonal matrix el-
ements proper-ordered operators, i.e., operators consisting of
products of single-mode creation-annihilation pairs in any or-
der that leads to pairwise ordering in an even number of per-
mutations, is that powers of proper-ordered operators are also
proper-ordered. To see this, it is sufficient to consider the ac-
tion of the operator O on a many-body state in the occupation
basis,

Oln) = |ao| ), (B6)

where, as was shown above, results in a weight that is zero
or positive, |ap| > 0 and which encodes the occupation of the
modes appearing in the operator O. Using Eq,. (B6), one can
see that the action of any power of O on the same many-body
state also results in a weight that is positive or zero,

0" In) = |aol" [m). (B7)

Hence, when an operator consisting of products of single-
mode creation-annihilation pairs arranged in an arbitrary or-
der requires an even number of permutations to bring it to a
pairwise ordered form, its diagonal matrix elements do not
acquire negative phases. These operators and their powers,
denoted as proper-ordered for compactness and clarity, are
therefore compatible with the bosonic representation. Con-
versely, when an operator of the type described above requires
an odd number of permutations to achieve a pairwise ordered
form, evaluation of its matrix elements result in a negative
phase, which the bosonic representation does not capture.

Appendix C: Relation to previous quasiclassical maps

In this Appendix, we show that several previous quasiclas-
sical maps for many-fermion problems?’~>° follow bosonic
statistics and that the conclusions we draw in Sec. II are ap-
plicable, allowing us to understand on a rigorous footing the
source of their success and outline their limitations.

a. Li-Miller-Levy-Rabani map

We begin with the quasiclassical map presented in Ref. 28,
where fermionic operators are mapped as

~ 13 2 1 ~ A A A
C; = 5((61”' + pyj) + l(‘br‘j - ij))
= (b}, +ib} )/ V2 (Cla)
~ 13 2 1 ~ 2~ A A
cj = 5((‘1}61‘ + Pyj) - l(%‘j + ij))
= (byj - iby))/ V2. (C1b)

Although it may initially appear that this mapping is distinct
from that explored in this work, one can define new bosonic
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operators
N 1 . A
b, = —(by; - iby)), (C2a)
J \/z xJ yJ
. 1 .~ .
bj = _(bxj - lbyj), (C2b)

V2
which obey the bosonic commutation relations in Eq. (2b).

Thus, one can simplify the mapping in Ref. 28 to

(C3a)
¢ “m 7 by, (C3b)

which is equivalent to the map in Eq. (1). This means that the
analysis provided in the main part of the paper applies directly
to this map.

b. Li-Miller & Levy-Dou-Rabani-Limmer maps

We can perform a similar analysis of the mapping approach
presented in Ref. 27 and revisited recently in Ref. 29. In these
quasiclassical mappings, quadratic products of creation and
annihilation operators are mapped as,

i 1
C,J;Cm = E[Q)mpym = Pxn9ym + PynGxm — GynPxm
+ l(‘bcnpxm = Pxnqxm + q_vnpym - pynQym)} (C4a)
Quantizing these classical variables, we can translate the
Cartesian operators into combinations of bosonic operators,

1

@llém = E[@xnﬁym - ﬁxn@ym + ﬁynq;rm - ‘?ynﬁxm

+ i(anﬁxm = PxnGm + Qynﬁym - ﬁyn@ym)]

17~ ~ o N
5|5 = bl by + ib) ©3)

— (byn = ibu)(B},, + ib,)]

= Z\)(Tmladm - Eﬁnlagm,
where

A 1 . A

btm = _(b n t+ ibxn)a (C6a)
\/i y

~ 1 .. .

b;, = —=(bi, — i), (C6b)
\/5 y

A 1 . N

b n = _(b n ibxn)7 (C6C)

ﬁ ‘\/E Vi
A 1 . N
bt = —@bi +ibl). (C6d)

Bn \/z yn

Since the @ and 8 modes arise from orthogonal combina-
tions of the x and y modes, these are orthogonal, independent
bosons, which means that they follow conventional commuta-
tion relations,

(C7a)
(C7b)

[EWZ’ E;rm] = 67,7/6}1,111’
[l;yny Ey/m =0= [B:;y“ l;'y/m]'



Although in this quasiclassical turned quantum mechanical
map individual fermionic creation and annihilation operators
are not directly mapped to bosonic ones, we demonstrate that
the major conclusions that we draw in Sec. II also apply to
this map. To do this, we first note that, writing a quadratic
Hamiltonian of the form in Eq. (3) in terms of the map given
by Eq. (C5), one can separate the Hamiltonian into two com-
muting terms corresponding to the & and 8 modes,

Hw- H"+HF, (C8)
where
H =" hjab!, bra (C9a)
ik
HP == bbbl (C9b)

To obtain the time-dependence of arbitrary operators, we
first calculate the time-dependence of individual bosonic cre-
ation and annihilation operators. Using the same transforma-
tions as those used in Sec. II, one can show that

Blj(t) = Z GZ,j(t)Bf;k, (C10a)
k

baj(t) = D G b (C10b)
k

bl(1) = Zk: G (b}, (C10c)

bgj(1) = Z Gy (Dbg (C10d)
k

where G (7) is given by Eq. (5).

Equation (C10) allows one to construct the time-
dependence of any operator. However, since the original
quasiclassical map of Ref. 27 provides expressions only for
quadratic operators, we begin our analysis with such opera-
tors. When using the Li-Miller map in the quantum mechani-
cal form provided in the last line of Eq. (C5), one can separate
time-dependent one-body operators into contributions arising
from the @ and 8 modes,

0'(1) = )" /(n0;xex(1)

I (C11)
= 0" + 0%,
where
0"(5) = Y bl (0uba(t) = > COOb] by, (C122)
ik r,s
0%t = - Z bis(0;xb (1) = - Z CO\(t)b,ghY . (C12b)
Jik r,s
and
(C13)

CoD = )G} (0G0,
ik
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One can therefore express the time-evolved version of this
one-body operator as

ZIOEDY

s

)y Gij(f)Oj,ka,s(t)]éjes
H (C14)

=0+ 0",

which demonstrates that this quasiclassical turned quantum
mechanical map captures the correct quantum dynamics of
many-fermion problems described by quadratic Hamiltoni-
ans of the form in Eq. (3) when applied to quadratic opera-
tors. In fact, since the time-dependence of a single creation-
annihilation product is captured correctly in this quantum me-
chanical map, it also correctly captures the time-dependence
of any operator consisting of products of single-creation-
annihilation pairs. To illustrate this point, we consider the
product of two one-body operators of the form in Eq. (C11),

O (1) = 0'(HQ' (1)

D 05k Qun i (0e0)2] ()en(1)
jkdm (C15)

o) At A At A
> elmcl weleele,

7,8,U,V

where O and Q are arbitrary one-body operators. Upon map-
ping, the time-dependence of these operators takes the form,

O*(H) - [0"(t) + 0¥ )[Q" () + Q¥ (1)]
= > ¢ome,m

7,8,U,V

X [B] by — B;,zsﬁx][z}jmiyw - B;uzs,,,,],

(C16)

which exactly corresponds to the result one would obtain by
mapping the two creation-annhilation pairs in the last line of
Eq. (C15).

To complete our analysis of this map, we provide the phys-
ical basis on which it acts, which we derive by considering the
action of the fermionic occupation number operator on the oc-
cupied and unoccupied states, and of a fermion transfer term
on an appropriate state. We begin by applying the fermionic
number operator on an occupied state, which should return the
same state multiplied by unity,

&ien I,y =111,)

> (Bl yban = bl gy = D) g, yen) — (C17)
= (1 + Xpn — yan) |xﬁn,ycm> B
where x,y € Z. This implies that
Xpn = Yan (C18)

for an occupied state. In contrast, upon applying the fermionic
occupation number operator to an empty state, one should re-
cover same state multiplied by zero,

&eq10,) = 010,)
= (Bjmz;(m - Bz‘ml;ﬁn -D |xﬁnsyarn>
— (1 + Xpn — yrm) |xﬁna y(m> B

(C19)



which implies that

Yan = Xgn T L. (C20)

6‘2&" |1nu 0n> = |0m7 1n>
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Hence,

(C21a)
(C21b)

|1n> = |xﬁm x(m) B

[0,) = |(y - l)ﬂn’yrm>-

While this analysis does not establish the relation between
x and y, it is straightforward to determine it by considering
the action of the quadratic product that removes an electron
from the mth orbital and places one in the nth orbital on the
fermionic basis,

= (I;jml;mn - B;gmlaﬁn) |(y - l),Bm’ Yams Xgn» Xan)

= Bjmz;(lm |(y - l)ﬂma Yams Xgn» x(l/l‘l) - l/;;ml;ﬂn |(y - 1)ﬁm’ Yams Xgn» x(m>

(C22)

= Vx+ 1\/5|(y - l)ﬁm’(y - l)am;xﬁns ()C + 1)an> - \/y\/zlyﬁm’yam;(x - 1)ﬁm xan)

This expression allows us to determine that x = O and y = 1,
implying that the physical basis for the Li-Miller map takes
the form,

(C23a)
(C23b)

|ln> and |Oﬁm 0(111) >
|0n> and |0ﬁnv l(m) B

where an occupied fermionic orbital is encoded by a fully
unoccupied many-body state corresponding to the o and 8
bosons, while the unoccupied fermionic orbital corresponds
to the many-body state where the @ boson has one excitation
and the 5 boson is in the ground state.

Appendix D: Phase space formulation and the classical limit

Below we demonstrate that for the types of continuous vari-
able Hamiltonians that one obtains from the bosonic represen-
tation in Eq. (1), classical dynamics are certain to recover the
exact quantum mechanical result when calculating one-time
correlation functions and nonequilibrium averages.

When the bosonic representation for quadratic fermionic
Hamiltonians of the form in Eq. (3) is also quadratic, as is the
case when using Eq. (1), the resulting bosonic Hamiltonian in
Eq. (6) can be rewritten in terms of Cartesian operators (see
Eq. (14), reproduced here),

1 A A A a A A s n
H=5 %: hir| @i + bk — 0 + @i — Pia)], (1)

where we have used the fact that 131- = (q; + iﬁj)/\/i
and l;; = (q; — ip))/ V2. Although several phase space
formulations, corresponding to different operator orderings,
exist,”>!!8 in the following we focus on the Wigner phase
space formulation.''®

(

In the Wigner phase space formulation, a single-time cor-
relation function (and nonequilibrium averages, when p # p,

and A = 1) takes a particularly straightforward form,
Cap(t) = TrlpA0)B(1)]

) X D2
fdxdp [PAT" (x, p)IB1)]" (x, p), b

1
© Q)N
where N is the number of modes which are transformed, the

superscript W denotes the Wigner transform of an operator,
which takes the form,

AV = f dse P (x +5/2| Alx — 5/2). (D3)
and the Wigner transform of products of operators
(A"E)W - Aweh[\/ziBW (D4)
involves the Moyal bracket
A=V, V,-V, -V, (D5)

which is of the same form as the classical Poisson bracket,
ie., AYABY = —{AY BY}pp.

To calculate the time-dependence of a Wigner transformed
operator, [B(H1Y, one can Wigner transform its quantum me-
chanical equation of motion,

d . oA A w
B =LA, B

@/
3! A

(D6)
[By”.

= [F]]W[A + + ..

When the Hamiltonian, HY (x, p), is at most quadratic in the
positions and momenta, only the first term in the expansion



above yields a finite contribution, i.e., HYA"[B(1)]" = 0 for
n > 3. This renders the quantum mechanical equation of
motion of an arbitrary Wigner-transformed operator [B(r)]"
equivalent to its classical equation of motion,

d . ~
d—t[B(t)]W = —{H"(x,p), [BOIV (x, p)lps, (D7)

given by Hamilton’s equation.''®!1° Because the Wigner-
transformed Hamiltonians that arise from the bosonic repre-
sentation, Eq. (14), are quadratic, classical evolution of the
Cartesian variables is sufficient to capture the exact dynam-
ics of the original quantum mechanical problem, as has been
observed numerically previously.?’-2%378 Indeed, this is also
true for other mapping approaches suggested previously,?’~2
which we show in Appendix C can also be written in terms
of quadratic bosonic operators. Thus, the analysis that we
provide here for determining when a simple replacement of
fermionic operators by bosonic ones can yield exact dynam-
ics applies directly to quasiclassical mappings which can be
demonstrated to behave bosonically.

'A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-
Verlag, New York, 1998).
2E. Dagotto, Reviews of Modern Physics 66, 763 (1994).
3J. Orenstein and A. J. Millis, Science 288, 468 (2000).
4P A. Lee, N. Nagaosa, and X.-G. Wen, Reviews of Modern Physics 78,
17 (2006).
5C. E. D. Chidsey, Science 251, 919 (1991).
67. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Ngrskov,
and T. F. Jaramillo, Science 355, eaad4998 (2017).
7R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, Chemical
Reviews 122, 10599 (2022).
8E. Santos and W. Schmickler, Chemical Reviews 122, 10581 (2022).
IA. Migliore, N. E. Polizzi, M. J. Therien, and D. N. Beratan, Chemical
Reviews 114, 3381 (2014).
10y L. Yuly, C. E. Lubner, P. Zhang, D. N. Beratan, and J. W. Peters, Chem-
ical Communications 55, 11823 (2019).
WA, Pannwitz and O. S. Wenger, Chemical Communications 55, 4004
(2019).
I2H. L. Rutledge and F. A. Tezcan, Chemical Reviews 120, 5158 (2020).
I3E, Evers, R. Korytdr, S. Tewari, and J. M. van Ruitenbeek, Reviews of
Modern Physics 92, 35001 (2019), arXiv:1906.10449.
14G. Cohen and M. Galperin, J. Chem. Phys. 152, 090901 (2020),
arXiv:2001.06008.
15y, Atia and D. Aharonov, Nature Communications 8, 1572 (2017).
1. Lamm and S. Lawrence, Physical Review Letters 121, 170501 (2018).
17§ -N. Sun, M. Motta, R. N. Tazhigulov, A. T. Tan, G. K.-L. Chan, and
A. J. Minnich, PRX Quantum 2, 010317 (2021).
181, B. Oftelie, R. Van Beeumen, E. Younis, E. Smith, C. lancu, and W. A.
de Jong, Materials Theory 6, 13 (2022).
19R. Kapral, J. Phys.: Condens. Matter 27, 073201 (2015).
20M. K. Lee, P. Huo, and D. F. Coker, Annu. Rev. Phys. Chem. 67, 639
(2016).
2IWolfgang P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Ver-
lag, Berlin, 2001).
22C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold Atoms and
Light: Foundations of Quantum Optics (Imperial College Press, London,
2014).
23 A. Polkovnikov, Ann. Phys. 325, 1790 (2010).
24]. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 11022
(2015).
2B, Swingle, Nature Physics 14, 988 (2018).
26A. Montoya-Castillo and T. E. Markland, Sci. Rep. 8, 12929 (2018),
arXiv:1803.05561.
27B. Li and W. H. Miller, J. Chem. Phys. 137, 154107 (2012).
28B. Li, W. H. Miller, T. J. Levy, and E. Rabani, J. Chem. Phys. 140, 204106
(2014).

15

2A. Levy, W. Dou, E. Rabani, and D. T. Limmer, J. Chem. Phys. 150,
234112 (2019).

30X. Sun and W. H. Miller, J. Chem. Phys. 106, 916 (1997).

31U, Miiller and G. Stock, J. Chem. Phys. 108, 7516 (1998).

32U, Miiller and G. Stock, J. Chem. Phys. 111, 65 (1999).

33H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726 (1998).

3X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998).

35M. Thoss and G. Stock, Phys. Rev. A 59, 64 (1999).

36M. Thoss, W. H. Miller, and G. Stock, J. Chem. Phys. 112, 10282 (2000).

37Y. L. Volobuev, M. D. Hack, M. S. Topaler, and D. G. Truhlar, J. Chem.
Phys. 112, 9716 (2000).

3E. A. Coronado, J. Xing, and W. H. Miller, Chem. Phys. Lett. 349, 521
(2001).

37 -L. Liao and G. A. Voth, J. Phys. Chem. B 106, 8449 (2002).

40Q. Shi and E. Geva, J. Chem. Phys. 120, 10647 (2004).

415 Bonella and D. F. Coker, J. Chem. Phys. 122, 194102 (2005).

“2N. Ananth, C. Venkataraman, and W. H. Miller, J. Chem. Phys. 127,
084114 (2007).

43E. R. Dunkel, S. Bonella, and D. E. Coker, J. Chem. Phys. 129, 114106
(2008).

4H. Kim, A. Nassimi, and R. Kapral, J. Chem. Phys. 129, 84102 (2008).

4N. Ananth and T. F. Miller, J. Chem. Phys. 133, 234103 (2010).

46P. Huo and D. F. Coker, J. Chem. Phys. 135, 201101 (2011).

47C. Y. Hsieh and R. Kapral, J. Chem. Phys. 137, 22A507 (2012).

48A. Kelly, R. van Zon, J. Schofield, and R. Kapral, J. Chem. Phys. 136,
84101 (2012), arXiv:arXiv:1201.1042v2.

49N. Ananth, J. Chem. Phys. 139, 124102 (2013).

503 0. Richardson and M. Thoss, J. Chem. Phys. 139, 31102 (2013).

318, J. Cotton and W. H. Miller, J. Phys. Chem. A 119, 12138 (2015).

52T, J. H. Hele and N. Ananth, Faraday Discuss. 195, 269 (2016).

33S. N. Chowdhury and P. Huo, J. Chem. Phys. 147, 214109 (2017),
arXiv:1706.08403.

S4M. S. Church, T. J. H. Hele, G. S. Ezra, and N. Ananth, J. Chem. Phys.
148, 102326 (2018), arXiv:1709.07474.

55B, Li, T.J. Levy, D. W. H. Swenson, E. Rabani, and W. H. Miller, J. Chem.
Phys. 138, 104110 (2013).

56B. Li, E. Y. Wilner, M. Thoss, E. Rabani, and W. H. Miller, J. Chem. Phys.
140, 104110 (2014).

577 Liu, J. Chem. Phys. 146, 024110 (2017).

587, Sun, S. Sasmal, and O. Vendrell, The Journal of Chemical Physics 155,
134110 (2021).

S9H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979).

90G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).

61T Holstein, Annals of Physics 8, 325 (1959).

62 A Troisi and G. Orlandi, Physical Review Letters 96, 086601 (2006).

63§, Fratini, D. Mayou, and S. Ciuchi, Advanced Functional Materials 26,
2292 (2016).

%4 A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge Uni-
versity Press, Cambridge, 1993).

65D, V. Averin and K. K. Likharev, Journal of Low Temperature Physics 62,
345 (1986).

66C. W. J. Beenakker, Physical Review B 44, 1646 (1991).

7], Schwinger, in Quantum theory of angular momentum, edited by L. C.
Biedenharn and H. V. Dam (Academic Press, New York, 1965) pp. 229-
279.

98T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

%M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Physical
Review B 40, 546 (1989).

70T, Giamarchi, Quantum Physics in One Dimension (Oxford University
Press, New York, 2004).

71D, Sénéchal, A.-M. Tremblay, and C. Bourbonnais, eds., Theoretical
Methods for Strongly Correlated Electrons, CRM Series in Mathematical
Physics.

72D, Sénéchal, A.-M. Tremblay, and C. Bourbonnais, eds., Theoretical
Methods for Strongly Correlated Electrons, The CRM series in mathemat-
ical physics (Springer-Verlag, New York, 2004).

3A. A. Kornyshev and W. Schmickler, J. Electroanal. Chem. 185, 253
(1985).

74K. L. Sebastian, J. Chem. Phys. 90, 5056 (1989).

73]. K. Ngrskov, Rep. Prog. Phys. 53, 1253 (1990).



761. Kondov, M. CiZek, C. Benesch, H. Wang, and M. Thoss, J. Phys. Chem.
C 111, 11970 (2007).

77W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).

78G. Stock and M. Thoss, in Adv. Chem. Phys., Vol. 131 (2005) p. 243.

R. Crespo-Otero and M. Barbatti, Chem. Rev. 118, 7026 (2018).

801, Bonnet, Journal of Chemical Physics 153 (2020), 10.1063/5.0023137.

81 A. D. McLachlan, Mol. Phys. 8, 39 (1964).

82G. Stock, J. Chem. Phys. 103, 1561 (1995).

83X. Sun and W. H. Miller, J. Chem. Phys. 106, 6346 (1997).

84Q. Shi and E. Geva, J. Chem. Phys. 121, 3393 (2004).

85S.J. Cotton and W. H. Miller, J. Phys. Chem. 139, 234112 (2013).

86p, Huo and D. F. Coker, J. Chem. Phys. 137, 22A535 (2012).

87A. Kelly and T. E. Markland, J. Chem. Phys. 139, 014104 (2013).

88 A, Kelly, N. Brackbill, and T. E. Markland, J. Chem. Phys. 142, 094110
(2015).

89W. C. Pfalzgraff, A. Kelly, and T. E. Markland, J. Phys. Chem. Lett. 6,
4743 (2015).

N Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104
(2016).

N Kelly, A. Montoya-Castillo, L. Wang, and T. E. Markland, J. Chem.
Phys. 144, 184105 (2016).

92A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 146, 024107
(2017).

93W. C. Pfalzgraff, A. Montoya-Castillo, A. Kelly, and T. E. Markland, J.
Chem. Phys. 150, 244109 (2019).

94E. Mulvihill, A. Schubert, X. Sun, B. D. Dunietz, and E. Geva, J. Chem.
Phys. 150, 034101 (2019).

95E. Mulvihill, X. Gao, Y. Liu, A. Schubert, B. D. Dunietz, and E. Geva,
The Journal of Chemical Physics 151, 074103 (2019).

96E. Mulvihill, K. M. Lenn, X. Gao, A. Schubert, B. D. Dunietz, and
E. Geva, Journal of Chemical Physics 154, 204109 (2021).

97E. Mulvihill and E. Geva, Journal of Physical Chemistry B 125, 9834
(2021).

98E. Mulvihill and E. Geva, The Journal of Chemical Physics 156, 044119

16

(2022).

9W. H. Miller and K. A. White, J. Chem. Phys. 84, 5059 (1986).

100G, D. Mahan, Many-Particle Physics (Plenum Press, 1990).

10TH. J. W. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics
of Semiconductors, 2nd ed. (Springer, Berlin, 2008).

102p Garbaczewski, Physics Reports 36, 65 (1978).

1037 P, Blaizot and E. R. Marshalek, Nuclear Physics A 309, 422 (1978).

104M. Thoss and G. Stock, Physical Review A 59, 64 (1999).

1057 Liu, The Journal of Chemical Physics 145, 204105 (2016).

106y E. Runeson and J. O. Richardson, The Journal of Chemical Physics 151,
044119 (2019).

1075 E. Runeson and J. O. Richardson, The Journal of Chemical Physics 152,
084110 (2020).

108 Bossion, W. Ying, S. N. Chowdhury, and P. Huo, The Journal of Chem-
ical Physics 157, 084105 (2022).

1093 M. Radcliffe, Journal of Physics A: General Physics 4, 313 (1971).

1oy, Kuratsuji and T. Suzuki, Journal of Mathematical Physics 21, 472
(1980).

HIA. Lucke, C. H. Mak, and J. T. Stockburger, The Journal of Chemical
Physics 111, 10843 (1999).

112X Song and T. Van Voorhis, The Journal of Chemical Physics 124, 134104
(2006).

IBE. Pollak and E. Martin-Fierro, The Journal of Chemical Physics 126,
164107 (2007).

114D M. Newns, Phys. Rev. 178, 1123 (1969), arXiv:arXiv:1011.1669v3.

5B, B. Smith and J. T. Hynes, The Journal of Chemical Physics 99, 6517
(1993).

116y G. Boroda and G. A. Voth, J. Chem. Phys. 104, 6168 (1996).

7M. Thoss, I. Kondov, and H. Wang, Chem. Phys. 304, 169 (2004).

18\, Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep.
106, 121 (1984).

19K Tmre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, J. Math. Phys. 8,
1097 (1967).



