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The ability to predict and understand the complex molecular motions

occurring over diverse timescales ranging from picoseconds to sec-

onds and even hours occurring in biological systems remains one

of the largest challenges to chemical theory. Markov State Mod-

els (MSMs), which provide a memoryless description of the transi-

tions between different states of a biochemical system, have pro-

vided numerous important physically transparent insights into bi-

ological function. However, constructing these models often ne-

cessitates performing extremely long molecular simulations to con-

verge the rates. Here we show that by incorporating memory via the

time-convolutionless generalized master equation (TCL-GME) one

can build a theoretically transparent and physically intuitive memory-

enriched model of biochemical processes with up to a three order of

magnitude reduction in the simulation data required while also pro-

viding a higher temporal resolution. We derive the conditions under

which the TCL-GME provides a more efficient means to capture slow

dynamics than MSMs and rigorously prove when the two provide

equally valid and efficient descriptions of the slow configurational

dynamics. We further introduce a simple averaging procedure that

enables our TCL-GME approach to quickly converge and accurately

predict long-time dynamics even when parameterized with noisy ref-

erence data arising from short trajectories. We illustrate the advan-

tages of the TCL-GME using alanine dipeptide, the human argonaute

complex, and FiP35 WW domain.

Markov State Models | Master equation | Biomolecular dynamics

B iomolecules, such as proteins, dynamically change con-
formations to perform their functions and thus play a

critical role in processes such as protein misfolding and aggre-
gation and protein-ligand recognition. Therefore, investigating
biomolecular dynamics is essential for discovering next gen-
eration therapeutics, developing novel antibiotic targets, and
elucidating protein folding mechanisms that underlie diseases
such as Alzheimer’s, Parkinson’s, and Cystic Fibrosis (1). In-
deed, all-atom molecular dynamics (MD) computer simulations
can offer insight at resolutions beyond standard experimental
setups. However, since small atomic motions such as vibra-
tions occur on the order of femtoseconds, whereas the complex
motions at the heart of large conformational changes that drive
processes such as protein folding and allostery span timescales
from microseconds to seconds, a direct atomistic simulation
of such long-timescale motions is only feasible for relatively
small biological systems.

Markov state models (MSMs) are a powerful approach that
have emerged to tackle this grand challenge (2–12). Currently,
widely used open-source libraries offer robust implementations
for constructing MSMs (13–15). MSMs benefit from massive
parallelism by exploiting many short molecular dynamics simu-

lations to capture the long-time configurational dynamics that
reveal the mechanisms of biomolecular processes (16). This
is accomplished by partitioning configuration space into a set
of states: distinct structures whose component configurations
interconvert on a faster timescale than with those belonging
to different structures. Identifying the slowest interconverting
structures, however, remains a formidable problem (17–25).
This difficulty arises from the fact that, to perform a perfect
partitioning, one needs detailed knowledge of the full free
energy landscape of a complex condensed phase system. In-
stead, one is generally limited to a set of states that evolve
on slow timescales but are not optimally partitioned (16, 26).
With such a set of configurations, an MSM then provides a
discrete-time kinetic description of the interstate conversion,
enforcing an effective separation of timescales by requiring
transitions between states have no dependence on the history
of the system. In this memory-less, or Markovian, limit the
rate constants in the kinetic scheme are time-independent.
This kinetic description provides an approximation to the true
dynamics and its accuracy depends on the extent of timescale
separation. For a sufficiently accurate (‘valid’) MSM, the max-
imum resolution in time (minimum time step) allowed by the
approximate description is termed the ‘Markovian lag time’.
Formally, the intrastate relaxation establishes a lower bound

to the lag time (16), which is the minimum simulation time
required for MD data to parameterize the model.

Ultimately, what one would want is a handful of states

Significance Statement

Developing a mechanistic understanding of complex biomolec-

ular processes occurring over long timescales presents a

formidable challenge. While state-of-the-art techniques like

Markov State models are a vital tool in decoding these pro-

cesses they require a substantial amount of simulation data

to construct an accurate model. Here we introduce an ap-

proach that goes beyond previous Markovian (memoryless)

theories which dramatically reduces the amount of simulation

data required to construct a simple and interpretable model

of biomolecular processes based on physically transparent

time-dependent rates. By deriving a rigorous bound for the

simulation times required to construct non-Markovian models

of these processes we show that such models provide a much

more data efficient approach to understand the dynamics of

complex biomolecular systems.

1To whom correspondence should be addressed. E-mail: Andres.MontoyaCastillocolorado.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | April 28, 2023 | vol. XXX | no. XX | 1–10



that provide chemical interpretability for understanding com-
plex biomolecular mechanisms. However, algorithms designed
to maximize this timescale separation usually produce many,
physically obscure states. This is because downfolding to a bi-
ologically intuitive space subsumes slower interstate dynamics
of the many-state space into the intrastate dynamics of the
reduced space (27), increasing the lag time. For example, to
model the millisecond folding of the NTL9 peptide using the
available simulation data, Pande and coworkers required an
MSM containing 2,000 states (with a lag time of 12 ns) (28),
while recent work on the RNA Polymerase (RNAP) II back-
tracking necessitated MSMs consisting of 800 states to reach
Markovianity within the affordable trajectory (29). Therefore
there is a balance to be drawn: one wants to coarse-grain
aggressively to facilitate interpretability, yet this generally
leads to long lag times, which result in both poor temporal
resolution and the need to perform longer MD simulations.

Recent work has demonstrated that one can employ non-
Markovian theories to resolve the tensions at the heart of the
MSM, increasing the resolution to be equal to the MD time
step (30–34), while simultaneously using only a fraction of the
data in the models’ construction (35). Of these, the GME,
recently used in its time-convolution form as a quasi-MSM
(qMSM), provides a particularly useful tool. Indeed, qMSMs
have proven useful in tackling important problems such as
the gate opening motion of a bacterial RNAP (36) and the
mechanism of messenger RNA recognition and inhibition via
the RNA-induced silencing complex (37). Like MSMs, GMEs
are most efficient when there is a separation of timescales
between intra- and interstate dynamics. Unlike MSMs, GMEs
encode the intrastate dynamics into a time-dependent friction
function—a memory kernel—removing the approximation of
perfect timescale separation. It is this explicit description
of the non-Markovianity that allows the improved resolution
in time. Yet, the time-nonlocal GME formulation precludes
simple interpretation of the dynamics in terms of ‘states and
rates’, which are typically used to describe the mechanisms of
biological processes. This motivates the question: is it possible
to combine the interpretability of the MSM with the improved
accuracy, resolution, and efficiency of GMEs?

In this work, we employ a time-convolutionless (TCL) GME
approach that, like the qMSM, encodes the non-Markovian
dynamics associated with intrastate motions but, unlike the
qMSM, conserves the chemically intuitive nature of MSMs
through the action of a generalized non-Markovian rate ma-
trix. We show this easy, accurate, and efficient GME-based
approach can capture the biomolecular dynamics of systems of
varying complexity, with the resulting dynamics constituting
an improvement that combines the advantages, while removing
the limitations, of both qMSM and MSM approaches. Indeed,
not only does the TCL-GME approach perform just as well
as the qMSM on systems that can be exhaustively sampled,
but in more difficult cases where all methods struggle to treat
statistically underconverged MD data, the TCL-GME can
be systematically improved in a manner that has no appar-
ent analogue in the qMSM (or MSM) case. We achieve this
through a simple averaging protocol that leverages the onset
of Markovian behavior to tame the deleterious effect of noise.
Upon reformulating the TCL-GME in discrete-time (38), our
averaging procedure provides a simple and robust scheme to
capture the complex dynamics of biomolecular motions, even

in cases that suffer from poor temporal resolution. Finally,
in the extreme case where our averaging procedure includes
the entire non-Markovian region, our TCL-GME reduces to a
high-resolution version of the analogous MSM, recapitulating
its identity as the non-Markovian generalization of the conven-
tional MSM and fully elucidating the source of improvement
over the traditional time-local approach. We demonstrate that
our discrete-time method remains robust even when bench-
marked against MD data that extends into the microsecond
regime: two orders of magnitude longer than the time required
to parameterize the model in question. The strict improve-
ment of our time-local approach is epitomized by its ability to
converge an computational sensitive experimental observable
(the folding time) using less than half of the data required by
the traditional MSM.

Connecting Markovian and non-Markovian Evolution

Whether one wants to directly use a long MD trajectory or
many short MD simulations to elucidate complex biomolecular
processes, the first task is to find the states that will provide
one with the basis of a mechanistic interpretation. The second
task is to construct an accurate and efficient description of
the dynamics of such configurations. As we mentioned in the
Introduction, below we do not consider how one identifies
these configurational basins (the interested reader can see, for
instance, Refs. (18–21, 23–25, 39)), but rather focus on the
second problem: given a set of configurations whose dynamics
one can only afford for only short times, how does one construct
a dynamical framework to accurately and efficiently capture
the dynamics of these configurations over all time?

To characterize the time-dependent transitions connect-
ing states, it is natural to focus on their equilibrium time-
correlation functions,

Ck,j(t) = π−1
j

∫

dp0

∫

dq0 feq(q0,p0)χk(qt)χj(q0), [1]

where feq(q0,p0) = feq(qt,pt) = e−βH(q,p)/Z is invariant to
time evolution, the MD Hamiltonian H is dependent on the
coordinates (qt = e−iLt

q0) and momenta (pt = e−iLt
p0) of

all atoms in the system at time t, and L = i{H, ...}PB is the
Poisson bracket that generates the evolution of the system.
Here, {χk} are mutually orthogonal indicator functions that
define the continuous sets of configurations that compose each

state, and πj =
∫

dp

∫

dq
e−βH(q,p)

Z
χj(q) is the equilibrium

probability of state j with Z being the canonical partition
function of the system. Since the states are mutually disjoint,
C(0) = 1. These correlation functions, together the transition
probability matrix (TPM), correspond to the conditional prob-
ability of finding the biomolecular complex in configuration
k at time t given that it started in configuration j at t = 0.
We now turn to both Markovian (MSMs) and non-Markovian
(GMEs) descriptions of the dynamics of the TPM, C(t).

MSMs and qMSMs. After configuration space has been par-
titioned into non-overlapping states (22), to obtain a valid
Markovian description of the TPM dynamics, the MSM frame-
work requires one to identify the smallest timescale τL such
that the TPM satisfies the Chapman-Kolmogorov condition
(18, 40),

C[(n+ 1)τL] = eMτL C(nτL). [2]
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Here, M is a time-independent rate matrix and τL is defined
to be the Markovian lag time. In practice, Eq. 2 is rearranged
such that τL is found by identifying the onset of a plateau in
the implied timescale (ITS), defined as

ITS(t) = −t[log C(t)]−1. [3]

This timescale is associated with the time taken for degrees of
freedom within the aggregated states to achieve equilibrium
and thus for the systems to become memoryless, or Markovian.
Once τL is identified, the configurational dynamics can be
predicted at integer multiples of τL. In other words, τL defines
the interval at which a given (non-Markovian) biomolecular
process can be viewed as Markovian. Consequently, the re-
sulting dynamics are discontinuous (40), thus obscuring the
observations of dynamical processes which may occur on the
interval [nτL, (n+ 1)τL]. Furthermore, Eq. (2) implies τL sets
the lower bound on MD simulation time required to parame-
terize the MSM that describes C(t) (20). There is, however,
no guarantee that intrastate equilibration will occur within an
affordable timescale to perform MD (16).

Recent work has shown that it is possible to employ a
GME approach to account for the effect of memory (non-
Markovian) behavior at early times, allowing one to construct
a quasi-Markov State Model (qMSM), given by

d

dt
C(t) = Ċ(0)C(t) +

∫ t

0

dsK(s)C(t− s). [4]

We note Eq. 4 does not contain an “inhomogeneous term”
(analogous to the random force in the language of the Gen-
eralized Langevin Equation (41, 42)) because the GME is
parameterized with equilibrium MD simulations, which is con-
sistent with the correlation functions of interest given by Eq. 1
(35, 43, 44). In Eq. 4, the potentially complex intrastate dy-
namics are encoded into the time dependent memory kernel K
(35). Crucially, K decays to zero on a characteristic time-scale
τK , termed the kernel cutoff time, enabling one to approximate
the upper limit of the integral in Eq. (4) as min {τK , t}. It has
been further shown that τK ≤ τL, illustrating that the qMSM
approach strictly improves upon the MSM. It does this by
reducing the amount of simulation time needed to capture the
exact dynamics, while simultaneously giving access to the dy-
namical events occurring between multiples of τL. Indeed, the
qMSM offers remarkable accuracy, temporal resolution, and
often requires much less MD simulation time to fully construct
the generator of the dynamics, i.e., the memory kernel K(t)
(35). The qMSM has been profitably applied to, for example,
understand the significance of the β-lobe of RNA polymerase
during transcriptional initiation (36), and elucidate the mecha-
nisms used by the RNA-induced silencing complex to recognize
and target mRNA molecules in a sequence specific manner
(45).

Unfortunately, the qMSM is not without its problems. First,
evaluation of a convolution integral becomes computationally
cumbersome as the dimension of the TPM increases. Second,
constructing K requires the first and second derivatives of
C (46), giving rise to numerical instabilities which we will
analyze in a later section. Third, from a qualitative perspective,
the qMSM approach obfuscates the physical interpretation
of the MSM in terms of “states and rates”. Specifically, the
MSM provides a physically intuitive rate matrix, M, whose
diagonals can be interpreted as the likelihood of remaining

in a particular state, and whose off-diagonals describe the
probability of making a transition from one state to another.
In contrast, the memory kernel appears under a convolution
integral in the equation of motion for the TPM, Eq. 4, and
therefore cannot be understood separately from its cumulative
effect over the history of the TPM. Hence, the qMSM does not
appear to offer a simple way to interpret the memory kernel
matrix elements in terms of instantaneous transition rates, e.g.,
where a number twice as large can be immediately identified
as taking half as long to move between two states in a given
chemical scheme. These complications motivate the search for
an alternative method that accurately and efficiently captures
the exact dynamics in a robust, accurate, and intuitive manner.

The TCL-GME. For a non-Markovian theory, such as the qMSM,
to be interpreted in terms of rates one would want to write it
in a time-local form, comparable to Eq. (2). For this reason,
we perform the formally exact rewriting of Eq. (4) as a time-
convolutionless (TCL) GME (47–49),

d

dt
C(t) = R(t)C(t), [5]

where R is the time-local generator that encodes the non-
Markovian dynamics arising from imperfect timescale sepa-
ration between intra- and interstate dynamics, and can be
understood as a generalized time-dependent rate matrix. Fur-
thermore, the matrix elements of the time-local generator
plateau at a characteristic timescale, τR (38, 49), allowing one
to separate the time over which non-Markovian evolution takes
place (0 ≤ t < τR) and when Markovian evolution begins,

C(t ≥ τR) = eR∞(t−τR)C(τR), [6]

where C(τR) = exp→[
∫ τR

0
dsR(s)]C(0) is the value of the TPM

at τR given by the action of the time-ordered propagator on
the initial condition, C(0) = 1, and R∞ ≡ R(t ≥ τR) is the
long-time limit of the time-local generator. R∞ is the time-
independent rate matrix that encodes the true Markovian
evolution of C(t) beyond τR and elucidates the connection
with Eq. (2).

Since the two timescales, τL and τR, determine the minimal
amount of simulation data required to fully construct the MSM
and TCL-GME, respectively, it would be profitable to derive
a relationship connecting the two quantities. In Appendix A,
we analytically demonstrate that

ITS(t ≥ τR) = −

(

R∞ +
Λ

t

)−1

, [7]

where Λ =
∫ τR

0
[R(s) − R∞] ds quantifies the deviation that

intrastate motions cause on otherwise Markovian interstate
transition rates. Comparing this to Eq. (3) allows us to state
that

τR ≤ τL. [8]

Importantly, Eq. (8) demonstrates that the only cases where
an MSM can be as data-efficient as the TCL-GME, albeit at
the cost of a lower temporal resolution, is when Λ = 0. This
inequality thus enforces a new lower bound on the amount
of required simulation time and is one of the central results
to the paper, demonstrating that the TCL-GME always pro-

vides a description that is more data-efficient or, at worst,

as data-efficient, as the MSM while retaining a high temporal
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resolution. What remains to be shown is the relative accuracy
and efficiency of the TCL-GME approach in comparison with
the qMSM. We will achieve this by comparing the perfor-
mance of each dynamical approach on three different protein
systems of varying levels of complexity: alanine dipeptide
(35), the human argonaute complex (45), and the FiP35 WW
domain (35, 50).

All-atom Protein Systems

In what follows, we apply the TCL-GME to three systems of
varying complexity—alanine dipeptide, argonaute, and FiP35
WW domain—and compare these predicted dynamics to those
calculated by both the MSM and qMSM. Here, as previously
stated, we do not consider the specifics of how to construct the
reduced space but rather restrict our attention to their dynam-
ics. Firstly, for alanine dipeptide we consider a 4-state model
with metastable states corresponding to the molecule’s free
energy projected onto the backbone torsional angles {ψ, φ},
as constructed in Ref. (35). Secondly, for argonaute, we use
another 4-state model from structures corresponding to local
minima in the free energy landscape of the first two slowest
modes, as constructed in Ref. (45). Finally, for FiP35 WW
domain, we use two reduced models: the first contains 3 states
and its construction is detailed in Appendix B; the second con-
tains 4 states corresponding to a folded state composed of two
β-hairpins, an unfolded state, and structures corresponding
to both on- and off-pathways, and its construction is outlined
in Ref. (35). To clearly benchmark each method while illus-
trating its advantages and disadvantages, we show only one
of the time-dependent conditional probabilities for each pro-
tein system. The full time-dependent conditional probability
matrices are available in the Supporting Information.

Alanine Dipeptide. We begin our analysis of the TCL-GME
and illustrate the utility of the inequality in Eq. (8) using a
simple test system, alanine dipeptide. After obtaining TPM
dynamics from MD simulation, we construct an MSM as
discussed in Ref. (35), and we construct both the qMSM and
TCL-GME as described in the Materials and Methods section.
In Fig. 1(a) we identify the values of τR, τK , and τL using a
root mean square error (RMSE) analysis (see Appendix F)
that quantifies the deviation of the dynamics predicted as a
function of τL, τR, and τK from the reference dynamics. We
use a convergence threshold of 5% of the final value in the
RMSE, which leads to graphical accuracy in the resulting
dynamics This corresponds to quantitative agreement between
the predicted dynamics and the MD data (open circles) as
shown in Figs. 1(b),(c). For the qMSM and the TCL-GME,
this leads to τR = τK = 1.5 ps, while for the MSM the lag time
at the same error is τL = 10 ps. The results in Fig. 1(b) show
the dynamics that would result if one could only use TPM
data, obtained from the MD, for the first 1.5 ps; such a choice
of τL leads the MSM to severely overestimate the equilibration
rate. In contrast, Fig. 1(c) shows how a valid MSM is able
to capture the exact dynamics, albeit with severely reduced
temporal resolution. The drawback of the finite resolution is
visible at earlier times, where the (negative) curvature of the
MD data is neglected by the MSM but captured by the GMEs.
Together, the results of Fig. 1 show that the TCL-GME suffers
no loss of performance with respect to the qMSM, with both
GMEs able to make accurate high resolution predictions using
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Fig. 1. Application of the TCL-GME to alanine dipeptide with comparisons to the

MSM and qMSM (a) Root mean square error (RMSE) curves for the MSM, qMSM,

and TCL-GME quantifying the deviation from the MD data (open circles) as the model

is parameterized with increasing amounts of data (see Appendix F). Vertical lines

show the errors associated with cutoffs (τ) of 1.5 ps and 10 ps. Alanine dipeptide is

shown (2 residues). (b) State 1 TPM dynamics, C11(t), computed with MSM, qMSM,

and TCL-GME approaches parameterized with 1.5 ps of MD data, i.e., τL = τK =

τR = 1.5 ps. (c) State 1 TPM dynamics computed with τL = τK = τR = 10 ps.

The 4-state TPMs parameterized with τK = τR = 1.5 ps and τL = 10 ps are

shown in Fig. S1. MD error bars were obtained using a bootstrapping approach as

discussed in Ref. (35).

only 15% of the MD data required to construct a valid MSM.

Argonaute. Will the simplistic form of Eq. (6) maintain a
comparable level of performance to the qMSM for a much
more complicated system? To address this, we consider the
target recognition of human argonaute 2 complex (37, 51).
It is challenging to obtain sufficient MD sampling to model
the dynamics of this complex process, which involves coupled
conformational changes of messenger RNA, microRNA, and
the Argonaute protein. In fact, the ITS curves shown in Fig. 2
do not plateau over the available time window, demonstrating
that the available TPM time is not sufficient to construct
a valid MSM. That is to say, constructing an MSM is unaf-
fordable at the same level of dimensionality reduction as the
faithful qMSM (45).

Owing to the statistical noise that arises from averaging
over limited MD data to construct the TPM (45), the nu-
merically extracted K(t) and R(t) in Fig. 3(a) and (c) also
display noise that makes it difficult to graphically identify their
cutoff times, τK and τR, respectively. To illustrate how both
GMEs behave as the cutoff time τ is increased, we display the
dynamics predicted from each method using representative
cutoff choices of τR, τK ∈ {25, 35, 45, 55} ns in Fig. 3(b),(d).
Interestingly, the qMSM and TCL-GME perform similarly,
with K and R predicting dynamics within the MD error bars
using cutoff times of 35 ns. We emphasize that the ultimate
goal is to identify the value of τR or τK such that the predicted
dynamics match the MD reference data (open circles) exactly.
Disappointingly, neither GME exhibits stability with respect
to increasing τR or τK , and the resulting RMSE curves do
not monotonically converge towards zero (see Fig. S2). For
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example, when we parameterize either model with the longer
value of τK = τR = 45 ns, the resulting dynamics do not lead
to an equilibrium value. This suggests that this truncation
of the memory kernel or time-local generator fails to recover
detailed balance.

This lack of controlled convergence can be rationalized by
recalling that constructing the GME requires time derivatives
of the MD data (See Materials and Methods, Eq. (14)). This is
true for both K and R. One might hypothesize that the noise
in these under-converged MD data is sufficient to compromise
the stability of both GME approaches for argonaute. Since
TPMs at longer times—like other equilibrium time correlation
functions (6, 52)—are constructed from averaging over less
MD data, TPMs at longer times are beset by worse statis-
tical errors. Hence, working with the hypothesis that the
fluctuations at later times correspond to noise from statisti-
cally under-converged dynamics, we posit a method which
averages the noise in R at long times. In fact, during the
qMSM approach, truncation at τK equates to replacing K
with its long-time average. However, while K(t → ∞) → 0 for
dissipative problems that equilibrate, we can only estimate it
for R.

Visually, Fig. 3(c) suggests that R(t) starts to oscillate
around its long-time limit around t = 10 ns. Thus we introduce
an averaging scheme where at τR we replace R with 〈R∞〉,
its time average over the interval [tr, τR]. Here, we choose
tr to be the time where the time-local generator appears to
have plateaued (See Appendix D). We identify tr = 10 ns and
show the corresponding R22 matrix element for τR = 30 ns
in Fig. 3(e). As Fig. 3(f) shows, with this simple adjustment
the TCL-GME converges to the reference dynamics within
55 ns, which strictly improves upon both the MSM and qMSM
constructed from the same data. Moreover, the convergence of
the TCL-GME with increasing values of τR is monotonically
decreasing (see Fig. S3).

A closer look at Fig. 3(f) reveals that the averaging scheme
approaches the reference dynamics from below, but does not
actually obtain perfect agreement within these 150 ns. To
remedy this, one could average R(t) for longer to get a better
estimate for R(τR). However, this would run counter to our
objective of working with the minimal possible MD data.
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Fig. 2. Demonstration that the massive spatial and temporal scales of the argonaute

protein present a challenge to MSMs. Left: Implied timescales (ITS) plot of Eq. 3, for

the three non-unitary eigenvalues, whose plateau time corresponds to the Markovian

lag time, τL. Diamonds show the choice of τL in Fig. 3, but one can appreciate that

no choice for this window of MD data would be satisfactory. Using the 〈U〉-GME

approach (discussed in this section), Markovianity is found to require ∼ 1200 times

as much simulation data. Right: Rendering of the argonaute protein containing the

mRNA strand used to obtain the MD data. The protein itself is composed of 831

residues.
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Fig. 3. Instability of the qMSM and TCL-GME in the case of the argonaute protein

and demonstration of the robustness of our 〈U〉-GME approach. (a) The transparent

line shows the state 2 memory kernel K22(t) as a function of time. From the RMSE

[see Fig. S2(a)], we observe that K(t) converges by 35 ns. The solid line shows

the replacement of K22(t) with zero after this time. (b) Time-dependent conditional

probability of starting in state 2 and remaining in state 2 (state 2 dynamics) predicted

using the qMSM with τK ∈ {25, 35, 45, 55} ns, where increasing transparency

corresponds to decreasing values of τK . (c) Similar to (a), the transparent line

shows the state 2 time-local generator R22(t) as a function of time, and the solid

line shows the replacement of R(t) with R(τR) after τR = 30 ns. (d) State 2

dynamics predicted using the TCL-GME with τR ∈ {25, 35, 45, 55} ns, where

increasing transparency corresponds to decreasing values of τR. (e) Like (c), the

transparent line shows R22(t) as a function of time. Here, the solid line is instead

illustrating the replacement of R(t) with its time average over the window [20, 30] ns

afterτR = 30 ns, i.e., (tr, τR) = (20, 30) ns. (f) Dynamics predicted using the

〈R〉-GME. (g) The transparent line shows the propagator U22(t) as a function of

time, and the solid line shows the replacement of U(t) with its average over the

window [20, 30] ns after τR = 30 ns. (h) Dynamics predicted using the 〈U〉-GME.

In (b), (d), (f), and (h) we show an MSM parameterized with τL = 50 ns. The MD

data and error bars were computed using the bootstrapping approach (see Ref.(45)

for details).

Additionally, as one can appreciate from Eq. (6), error in
the estimation of 〈R∞〉 is exponentiated when predicting the
GME dynamics. To this end, we propose an alternative route
to employ the TCL-GME formalism without requiring any
time derivatives or exponentiation of noisy data (38). This
simply requires re-casting Eq. (6) as

C(t) = U(t, t0) C(t0). [9]

That is, we now work directly with the time-dependent prop-
agator (53), U(t, t0), whose construction is detailed in Ap-
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Fig. 4. Ability of our 〈U〉-GME to accurately predict the dynamics of the FiP35 WW

domain. (a) RMSE curves for the MSM and the 〈U〉-GME as a function of τL and

τR, while varying choices of tr to illustrate convergence. The structure of the FiP35

WW domain is shown (35 residues). (b) TPM dynamics (C22(t)) computed using

〈U〉-GME and MSM approaches with τR = 25 ns (ℓ = 5 ns) and τL = 25 ns. (c)

The propagator U22(t) as a function of time, showing that U has been replaced with

its average at 25 ns.

pendix E. This obviates integration of Eq. (5), and so the
noise in the data is never exponentiated during our calcula-
tions. Moreover, this method has shown to be robust with
respect to low resolution dynamical data in quantum dynami-
cal problems (38). Importantly for the protein folding problem,
both the time-local interpretability and frugality that result
from the plateau at τR are unaffected by this manipulation.

Here we extend the protocol proposed in Ref. (38) by com-
bining the direct calculation of U with the aforementioned
averaging scheme. This results in our most direct and noise re-
silient TCL-GME formulation. We identify tr to be 10 ns and,
in Fig. 3(g)–(h), we show the results of this 〈U〉-GME. Here,
with only minimal adjustments to the original formulation,
the 〈U〉-GME monotonically converges to the MD data within
55 ns, maintaining the strict improvements of the TCL-GME
over both MSM and qMSM approaches.

With the convergent and stable 〈U〉-GME dynamics ob-
tained above, we can now determine the true lag time required
for a valid MSM description of the dynamics of the 4 states
used to elucidate mRNA recognition in the argonaute complex
in Ref. (45). To do this, we employ the 〈U〉-GME to predict
the TPM dynamics at long times and use Eq. (3) to obtain
the ITS plot (Fig. S4). We observe that the ITS curves only
plateau by t ∼ 60 µs, indicating that τL is 1200 times larger
than the MSM constructed Ref. (45). By comparison the time-
local generator cutoff used in our 〈U〉-GME, τR ∼ 50 ns, is
more than 3 orders of magnitude smaller, demonstrating that
our approach provides a highly compact and efficient means
to fully capture the short- as well as long-time dynamics of
complex biomolecular systems.

FiP35 WW-domain. The 〈U〉-GME method requires two conver-
gence parameters: tr, the beginning of the averaging window,
and τR, the total amount of MD simulation time required

to parameterize the model (see Appendix E). This begs an
important practical question: how does one choose tr when
the onset of the plateau in U is hidden under the noise? After
all, one might expect to observe a lack of convergence when
tr is chosen to be too early. However, by considering a 4-
state model of FiP35 WW domain, we find that this is not
the case. In this system, where the plateau is not visually
obvious (see Fig. 4(c)), we observe that for every choice of
tr, there is a value of τR capable of accurately capturing the
reference dynamics. In Fig. 4(a) we demonstrate that the
τR required for the 〈U〉-GME to provide accurate dynamics
merely increases as tr is reduced to zero. Indeed, since we
know from Eq. (8) that τR is bounded above by τL, if tr is
given the extreme value of zero then the 〈U〉-GME reduces
to the MSM, with the important distinction that it is able
to capture the dynamics between MSM points (see Fig. S5;
we also give the mathematical justification for this result in
Appendix E). In this sense, the 〈U〉-GME parameterized with
tr = 0 constitutes a higher-resolution MSM. The practical
implication of this is that while one may make a poor choice
of tr to begin averaging from, one will only pay for this in the
length of MD data required to construct the model, τR, and
not in the final accuracy of the 〈U〉-GME dynamics.

The best, earliest choice of τR is therefore parametrically
dependent on tr, but well defined. Since all choices of tr
converge to the same RMSE value, τR is robustly identified
by a common convergence threshold. To identify the optimal
(tr, τR) pair, we simply find the minimum of the plot of τR as
a function tr. Choosing a value of 5% error as converging to
the MD dynamics within visual accuracy (see Appendix F),
for these FiP35 WW domain data we identify tr = 20 ns,
τR = 25 ns, and τL = 200 ns, as shown in Fig. 4(a). For
comparison, we display the dynamics predicted by both the
MSM and 〈U〉-GME when parameterized using only these 30 ns
of MD data in Fig. 4(b). In Fig. 4(c), we show the replacement
of U with its average 〈U〉 (obtained over the averaging interval
of [20, 25] ns). We observe that MSM dynamics predicted using
only 25 ns of the MD data set overestimates the equilibration
rate, as was the case with alanine dipeptide and the argonaute
complex, whereas the 〈U〉-GME parameterized with the same
amount of reference data accurately captures the MD data
until ∼ 375 ns. The small deviation that starts at ∼ 375 ns
disappears at longer times, where the 〈U〉-GME correctly
captures the long-time limit (see Fig. S6). Thus, our analysis
shows that accurate predictions of the dynamics from the 〈U〉-
GME require only 15% of the MD data needed to construct a
valid MSM.

We now consider the ability of the 〈U〉-GME to capture the
long-time dynamics through a different, experimentally acces-
sible measure: the folding time of the protein. For this, we will
consider a 3-state model of FiP35 WW domain (for construc-
tion details, see Appendix B) with states one, two, and three
corresponding to misfolded, unfolded, and folded structures of
the protein, respectively (50). Here, we compute the folding
time using the mean first passage time (MFPT) procedure
outlined in Appendix G. First, we use the reference dynamics
(Fig. S7) to compute the folding time to be τref = 18.65 µs
(Fig. S8), which is taken to be the exact result for this model,
which is in reasonable agreement with the experimentally mea-
sured value of 14 ± 1.5 µs (54). In particular, if the clustering
algorithm does not correctly identify configurations with the
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folded, unfolded, and misfolded states, this may cause the
folding time to appear artificially long. Hence, we focus not
on the deviation from the experimental value but rather on
the internal consistency between the reference dynamics and
the predictions from the 〈U〉-GME and the MSM approaches.
To obtain the 〈U〉-GME predictions of the MFPT, we first
identify tr = 50 ns. As described in Appendix G, we compute
the MFPTs corresponding to increasing values of τR and τL

and observe that both the 〈U〉-GME and MSM approaches
converge to the reference result at long times (see Fig. S8). We
also find that the MSM continuously underestimates τref and
appears to continue increasing at times beyond 1000 ns (see
Fig. S8). In contrast, the 〈U〉-GME remains within 8% of the
reference value for the duration of available MD data. Indeed,
to converge within 5% error, the 〈U〉-GME requires data up
to 168 ns, whereas the MSM does not reach this threshold
until 452 ns, suggesting that the 〈U〉-GME provides, even in
the estimation of folding times, a more efficient means to cap-
ture the long-time dynamics of complex biomolecular systems.
This is in agreement with previous works demonstrating that
a purely Markovian process fails to faithfully capture barrier
crossing phenomena (31, 55).

Conclusion

In this work, we have developed and applied the 〈U〉-GME
and demonstrated that it is an accurate, chemically intu-
itive, and systematically improvable approach to modeling
non-Markovian biomolecular dynamics. While previous work
had exploited the memory of the MSM’s intrastate motions to
construct an exact qMSM that could significantly reduce the
computational cost required to efficiently predict protein dy-
namics at long times, it eluded a simple and intuitive chemical
interpretation and, as we show here, is highly sensitive to statis-
tical noise in the reference TPM dynamics from which it must
be constructed. Here, we have abandoned the time-nonlocal
qMSM by moving to a time-convolutionless formulation which
admits a simple formal integration, elucidating the analytical
connection between GMEs and MSMs and permits a simple
interpretation. In particular, not only does this allow the time-
local generator to be interpreted as a time-dependent rate
matrix, it also allows for systematic improvement in regimes
of noisy data. Specifically, we have identified that for cases
where the reference TPM suffers from statistical noise (e.g., the
argonaute system), a straightforward averaging scheme allows
our time-convolutionless approaches (both R(t) and U(t)) to
uniformly converge to the reference dynamics. In contrast, the
time-nonlocal approach displays instabilities with increasing
simulation time that have no comparable solution without
resorting to manipulations of the qMSM formalism such as
the introduction of an integrative form of the GME (56). Fur-
thermore, using alanine dipeptide, FiP35 WW Domain, and
argonaute, we have demonstrated that the time-local GME
can accurately and efficiently capture short-, intermediate-,
and long-time dynamics with no loss of performance. Not only
does this approach require an equivalent amount of data as the
qMSM, the 〈U〉-GME requires minimal numerical and physical
complexity by eliminating the need for both time-convolution
integrals and numerical time derivatives of potentially noisy
data. By providing a rigorous and physically transparent
method to capture the non-Markovian dynamics of a given set
of states, we expect the 〈U〉-GME to provide a robust scaffold

to construct novel methods to find optimal configuration clus-
ters and offer a framework to investigate the mechanisms of
complex biomolecular conformational changes.

Materials and Methods

A. Rigorous Connection of MSM with TCL-GME. Here, we de-
rive Eq. (7) and Eq. (8) from the main text, which rigorously
connect the MSM to the TCL-GME. We begin by considering
some time t that is strictly greater than τR and re-writing C(t)
as

C(t) = exp→

(
∫ t

0

R(s) ds

)

C(0)

= exp
(

R∞(t− τR)
)

exp→

(
∫ τR

0

R(s) ds

)

= exp
(

R∞(t− τR)
)

UnM (τR, 0) [10]

where we have used the fact that the initial condition is the
identity matrix, C(0) = 1 and have introduced UnM (τR, 0)
as the propagator over the non-Markovian region. This is
equivalent to Eq. (6) in the main text. We insert the above
result into the implied timescale equation, defined in Eq. (3),
to obtain the result in the main text,

ITS(t) = −

(

R∞ +
Λ

t

)−1

, [7]

where
eΛ ≡ e−R∞τRUnM (τR, 0). [11]

Equation Eq. (11) is exact and easy to calculate given the
framework presented here for obtaining the non-Markovian
propagator; it can be interpreted as the total deviation in the
propagation due to non-Markovian behavior. Keeping in mind
that the MSM lag time is taken to be the minimum time-scale
associated with the onset of a plateau in an ITS plot, we see
see that the right-hand-side of Eq. (7) does not necessarily
stabilize for times immediately after τR. This allows us to
conclude the inequality presented in the main text, that

τR ≤ τL. [8]

To further simplify its interpretation, one can neglect the
effect of time-ordering in the definition of the non-Markovian
propagator, which yields the following, modified expression
for Λ,

Λ ≈

∫ τR

0

[R(s) − R∞] ds. [12]

Here, it is clear that Λ approximately corresponds to the
integral deviation between the time-local generator over its
non-Markovian variation, and its long-time limit.

B. TPM Construction. The transition probability matrix
(TPM) is computed from the transition count matrix (TCM).
We first computed the TCM from the MD trajectories. For
each lag time τ , the raw TCMs (T raw) were first counted from
transition pairs between frames at t and t + τ : T raw

ij (τ) =
〈χi(t + τ)χj(t)〉, where χi(t) is the indicator function that
determines if the frame at time t is in state i. Here, t = 0, ∆t,
2∆t, ...,(Ntraj − 1)∆t− τ , where ∆t is the saving interval of
trajectories, and Ntraj is the length of trajectories. Normally,
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detailed balance requires that the TCM be symmetric, i.e.,
Tij = Tji. However, since the raw TCMs are normally not
symmetric, we further symmetrize the raw TCMs to enforce
detailed balance: Tij(τ) = (T raw

ij (τ) + T raw
ji (τ))/2 (57). Fi-

nally, we calculated TPMs by column-normalizing the TCM:
Cij(τ) = Tij(τ)/

∑

j
Tij(τ).

In our TPM construction, the raw TCM was directly
counted from the macrostate models. The 4-state model of ala-
nine dipeptide was constructed with a splitting-and-lumping
approach. We first split all the available MD conformations
into 1000 microstates using the K-Centers clustering algo-
rithm (58–60). Then we lumped the 1000 microstates into
4 macrostates via the PCCA+ (Perron Cluster Cluster Analy-
sis) (61, 62), with the lag time of 2 ps.

We constructed the 3-state model of the FiP35 WW domain
using tICA (Time-lagged Independent Component Analysis)
(57, 63), K-Centers clustering (58–60) and PCCA+ (Perron
Cluster Cluster Analysis) (61, 62) lumping from MD trajecto-
ries provided by D. E. Shaw research. We first performed tICA
with pairwise distances between all α carbon atoms of the
peptide with a lag time of 10 ns. Then we used the K-Centers
algorithm to generate a 1000-state model based on the top
three tICs (Time-lagged Independent Components) from tICA.
Finally, we performed the PCCA+ clustering to generate the
3-state model based on the 1000-state TPM computed at the
lag time of 10 ns.

We constructed the 4-state model of the argonaute using
spectral oASIS (64), tICA, APLoD clustering, and PCCA
(61, 65). We employed spectral oASIS to reduce the number
of input features, followed by tICA for the dimensionality
reduction. Then we grouped the conformations into 81 clusters
from the APLoD clustering algorithm, based on the top 4 tICs
from tICA. Finally, we used the PCCA+ algorithm to group
the 81 microstates into four macrostates.

C. qMSM Construction. To solve the integro-differential equa-
tion in Eq. (4), we must first construct the memory kernel,
K(t), as a function of time directly from the TPM data. We
follow Ref. (46) and derive the classical analogue of the self-
consistent expansion of the memory kernel

K(t) = K(1)(t) +

∫ t

0

dτ K(3)(t− τ)K(τ), [13]

where

K(1)(t) = C̈(t) − {Ċ(0), Ċ(t)} + Ċ(0)C(t)Ċ(0)

K(3)(t) = Ċ(0)C(t) − Ċ(t)
[14]

are the projection-free auxiliary kernels.

To compute both Ċ and C̈, and to thus compute K(1)(t)
and K(3b)(t), we numerically differentiate the TPM data, C(t).
With these auxiliary kernels, we compute K according to
Eq. (13) using the discretization procedure in Ref. (66). For
completeness, we summarize the algorithm. At the initial time
and first timestep, K(t0) = K(1)(t0) and

K(t1) =
[

1 − ∆t
2

K(3)(t0)
]−1
[

K(1)(t1)

+ ∆t
2

K(3)(t1)K(t0)
]

.
[15]

For all subsequent times (n ≥ 2),

K(tn) =
[

1 − ∆t
2

K(3)(t0)
]−1
[

K(1)(tn)

+ ∆t
2

K(3)(tn)K(t0) + ∆t

n−1
∑

j=1

K(3)(tn−j)K(tj)
]

.
[16]

Here 1 is the identity matrix and we employ equally spaced
time intervals, such that ∆t ≡ tj+1 − tj .

Once we construct K(t), we employ Heun’s method (second-
order accurate with respect to ∆t) to integrate Eq. (4) and
obtain C(t). Then we identify an appropriate memory kernel
cutoff time, τK , by applying the RMSE analysis in Appendix C.
We approximate the upper limit of the integral in Eq. (4) with
τK , enabling us to predict the dynamics for times beyond the
duration of the MD simulation.

D. TCL-GME Construction. To reap the benefits of the time-
local formalism, we first calculate R(t) from the TPMs ob-
tained from MD simulation. We do this by rearranging Eq. (5)
via matrix inversion to obtain

R(t) = Ċ(t)[C(t)]−1, [17]

where we calculate Ċ by numerically differentiating the TPM
data. As we have discussed, the matrix elements of R plateau
on a timescale, τR, associated with the conclusion of non-
Markovian evolution, allowing us to set R(t > τR) = R∞ ≡
R(τR). With this definition, we can describe the dynamics
after the onset of Markovian evolution, as shown in Eq. (6).

Once we find R(t), we employ Heun’s method to integrate
Eq. (5) and obtain C(t). Similar to the discussion in Ap-
pendix C, we identify an appropriate generator cutoff time,
τR, using the RMSE analysis discussed in Appendix F.

E. 〈U〉-GME Construction. We first formally integrate the
TCL-GME in Eq. (5) to obtain

C(t+ ∆t) = U(t+ ∆t, t)C(t), [18]

where we have defined U(t+∆t, t) ≡ exp→[
∫ t+∆t

t
dsR(s)] with

the “+” subscript denoting the chronological time-ordering
of the exponential, as above. We then compute the value of
U(t+ ∆t, t) through direct matrix inversion

U(t+ ∆t, t) = C(t+ ∆t)[C(t)]−1, [19]

as introduced in Ref. (38). Because R becomes constant at τR,
the propagator U also becomes a constant. Hence, we define
U∞(∆t) ≡ exp[R∞∆t]. We compute the dynamics beyond τR

according to

C(τR + n∆t) = [U∞(∆t)]nC(τR). [20]

As discussed in our analysis of the argonaute complex, we
developed and implemented a simple averaging scheme capa-
ble of taming noise arising from statistically underconverged
MD estimates of the TPM. We begin by applying the RMSE
stability analysis in Appendix F to determine a valid gener-
ator cutoff time; here, we denote this cutoff by tr. We then
introduce another parameter ℓ that represents the number of
high quality TPMs after tr and denote the corresponding time
as tr+ℓ. This number is, of course, limited by data availability.
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To predict the dynamics beyond tr+ℓ, we compute the time
average of U on the time interval [tr, tr+ℓ] using

〈U〉 =
1

ℓ

r+ℓ−1
∑

n=r

U(tn+1, tn). [21]

Because our 〈U〉-GME requires at least r + ℓ data points to
circumvent the instabilities imposed by noise in biomolecular
systems, we generalize our the definition of the generator cutoff
time to be τR = tr+ℓ, representing not the generator cutoff

but rather the minimum amount of data needed to accurately

predict the true TPM dynamics. Ultimately, we recommend
that the user performs a rigorous stability analysis with respect
to the choices of r and ℓ.

It can be seen by equating expressions Eq. (6) and Eq. (2)
given the same first time step (τ = τL = τR),

exp Mτ = exp→

(
∫ τ

0

R(s) ds

)

≈ exp

(
∫ τ

0

R(s) ds

)

,

[22]

where the right-hand side of Eq. (22) uses the explicit form
of the propagator (see Appendix A for details). If this time-
ordering of the exponential can be neglected, then we can
identify M ≈ 〈R〉. The practical implication of this is that, if
we can replace 〈exp Rτ〉 with exp 〈R〉τ in the 〈U〉-GME, we
will obtain exact agreement with the MSM parameterized by
the same τ (at integer multiples of τ). The requirement for
this to be true is that U ∼ 1, which we show to be satisfied
by panel (c) of Fig. 4. Since R and therefore U are formally
exact before cutoff (by construction they return the reference
dynamics (38)), the dynamics between these MSM points is
also accessible to the 〈U〉-GME. This explains why Fig. 4(c)
shows that limtr→0(τR) = τL.

F. RMSE Analysis. To determine values of τx ∈ {τL, τR, τK},
we find the lowest time by which the time-averaged root mean
squared error (RMSE), given by

RMSE(τx) =

(

1

Nt

Nt
∑

i=0

n
∑

j,k

[

CMD
jk (i) − Cjk(i; τx)

]2

)1/2

, [23]

becomes and stays sufficiently small. We identify τx to be this
minimum amount of time. The RMSE quantifies the error
associated with the dynamics predicted by a method (i.e.,
MSM, qMSM, TCL-GME, and 〈U〉-GME) as a function of τx

by comparing it pointwise to the reference dynamics obtained
from MD over the length of the trajectory, Nt, which we take
to be the ‘exact’ result. Here, n corresponds to the total
number of macrostates, i.e. we sum over all elements of the
C(t) matrix, not just the representative elements we display.
In the absence of noise, these error curves are expected to
monotonically tend towards zero. In practice, however, this
is not the case [See SI Fig 2(a)]. Therefore, the user must
determine an acceptable threshold for a particular application.
In our results, we choose the RMSE to be ∼ 5%, which results
in graphical agreement between the reference and GME or
MSM dynamics.

G. MFPT method. We apply our newly developed 〈U〉-GME
to compute folding times for FiP35 WW Domain. To do so,
we consider a 3-state model where states one, two, and three
are defined to be the misfolded, folded, and unfolded struc-
tures, respectively. To employ Meyer’s mean-first passage time
(MFPT) method (67, 68), we construct the time-dependent
MFPT matrix, M , as

Mij(t) = t+
∑

k 6=i

Mik(t)Ckj(t). [24]

The element M32 then corresponds to the folding time in this
problem.

Practically, one solves Eq. (24) as a system of linear equa-
tions (69). To solve for the MFPT corresponding to passage to
state 3, the folded state, we consider the row 3 MFPT matrix
elements and obtain the following system of equations

M31(τ) = τ +M31(τ)C11(τ) +M32(τ)C21(τ)

M32(τ) = τ +M31(τ)C12(τ) +M32(τ)C22(τ),
[25]

We recast the system in terms of matrices and obtain the final
form by matrix inversion,

[

M31

M32

]

= τ

[

1 − C11 C21

C12 1 − C22

]−1 [

1
1

]

. [26]

As the dynamics approach equilibrium, the inverse matrix on
the right-hand-side of Eq. (26) becomes constant. In practice,
we define the folding time to be when M32/τ is within 5% of
M32(τfinal)/τfinal for the rest of time.
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