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Cluster Prediction for Opinion Dynamics From
Partial Observations

Zehong Zhang and Fei Lu

Abstract—We present a Bayesian approach to predict the cluster-
ing of opinions for a system of interacting agents from partial obser-
vations. The Bayesian formulation overcomes the unobservability
of the system and quantifies the uncertainty in the prediction. We
characterize the clustering by the posterior of the clusters’ sizes and
centers, and we represent the posterior by samples. To overcome the
challenge in sampling the high-dimensional posterior, we introduce
an auxiliary implicit sampling (AIS) algorithm using two-step ob-
servations. Numerical results show that the AIS algorithm leads to
accurate predictions of the sizes and centers for the leading clusters,
in both cases of noiseless and noisy observations. In particular, the
centers are predicted with high success rates, but the sizes exhibit a
considerable uncertainty that is sensitive to observation noise and
the observation ratio.

Index Terms—Bayesian approach, clustering prediction, opinion
dynamics, sequential Monte Carlo, state space model.

I. INTRODUCTION

C LUSTERING behavior in a network of interacting agents
or particles arises in a vast range of disciplines [1]–[3].

In the context of opinion dynamics of social networks, local
interactions among agents cause opinions to evolve, formulating
one or more clusters of opinions. While the striking phenomenon
of consensus (one cluster) has attracted long-standing interest,
non-consensus clustering, in which multiple stable clusters co-
exist, has attracted increasing interest to resemble the real-life
social network [4]–[7]. Such clustering of opinions or commu-
nities have a profound impact on the network, so it is of great
importance to predict these clusters from observations, which
are often partial, at an early stage.

We investigate the prediction of clusters for multi-agent opin-
ion dynamics with multiple clusters, from short-time partial
observations which may be contaminated by white noise. In
particular, our objective is to predict the sizes and centers of
the leading clusters. We assume the system is known (we refer
to [8]–[10] and the references therein for the learning of the
governing equation from data). To predict the clustering, one
may estimate all agents’ current opinions and use them as an
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initial configuration for prediction. However, we show that it is
an ill-posed inverse problem to estimate the current state from
partial observations (widely-studied as observability in control,
see e.g., [11]). We propose a Bayesian formulation to make
the problem well-posed: we estimate the posterior distribution
of the states conditional on the observations. We represent the
posterior by samples, which provide initial configurations for
prediction. This procedure yields a posterior for the clusters’
sizes and centers, quantifying the uncertainty in prediction.

The major challenge in the Bayesian approach is to generate
samples for the high-dimensional posterior. Due to the intrinsic
symmetry of the nonlinear opinion dynamics, the non-Gaussian
posterior has multiple local extrema, which posed a hurdle for the
performance of Sequential Monte Carlo (SMC) methods [12]–
[14], including the optimal (one-step-observation) importance
sampling methods such as implicit sampling [15]. The symmetry
and weak correlation between the states also prevent the feed-
back control or nudging methods [16]–[22] based on dominating
modes in the observation.

We overcome the challenge by introducing an Auxiliary
Implicit Sampling (AIS) algorithm that makes use of two-step
observations, which is a sequential Monte Carlo method that
combines the ideas from auxiliary particle filters [23], implicit
sampling [15] and feedback control [20]. We also introduce
an MCMC-move step to reduce sample degeneracy and an
information move step to reject non-physical samples.

Numerical tests show that our AIS algorithm leads to accurate
prediction of the sizes and centers for the leading clusters, in
both cases of noiseless and noisy observations. In particular, the
centers of the leading clusters are predicted with a high success
rate, but the size of the leading cluster exhibits a considerable
uncertainty that is sensitive to observation noise and the obser-
vation ratio. Our AIS algorithm brings improvement to implicit
sampling, and both outperform the sequential importance sam-
pling with resampling (SIR) method.

Our AIS algorithm is applicable to general state-space models
with Gaussian noises and linear observation models, particularly
to those with symmetric and weakly correlated state variables. It
derives effective importance densities using two-step observa-
tions. It supplies an efficient SMC component to the algorithms
that combine SMC with MCMC, such as the particle MCMC
methods or the nested particle filters [24]–[26]. Our importance
densities also provide effective candidates for algorithms with
multiple importance densities [27]–[29].

The exposition in our manuscript proceeds as follows. In
Section II, we define clusters for opinion dynamics with local
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interactions, prove that the inverse problem of state estimation
from partial observation is ill-posed, and propose a Bayesian
formulation for cluster prediction. To represent the posterior, we
introduce in Section III an auxiliary implicit sampling algorithm
that designs importance densities based on two-step observa-
tions. Section IV examines the performance of the AIS algorithm
in numerical simulations. Finally, Section V concludes the paper
with discussions.

II. BAYESIAN APPROACH TO CLUSTER PREDICTION

Consider a group of N agents, each with an opinion at time t
quantified by xi

t ∈ Rd, interacting with each other according to
a first-order difference system:

xi
t+1 = xi

t +
α

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t). (1)

Here, the positive constant α is a scaling parameter and the
interaction kernel φ is a non-negative function supported on
[0, R]. The agents interact locally, only with those opinions that
are “close” in the sense that the pairwise distance ‖xi

t − xj
t‖ is

less than R.
Our goal is to predict the clustering of the opinion dynamics,

particularly the sizes and the centers of the leading clusters, from
partial data. The data consists of trajectories of partial agents for
a relatively short time, far before the system forms clusters. To
quantify the uncertainty due to the random initial condition and
the measurement error in data (which we assume to be Gaussian),
we present a Bayesian approach. More specifically, we would
like to numerically approximate the posteriors of the sizes and
the centers of the largest clusters in the steady-state of the system
(see Eq.(4) for a precise description).

In this section, we provide a quantitative definition for cluster-
ing and discuss clustering prediction from partial observations.
We show that it is an ill-posed inverse problem to predict the
clustering by estimating all agents’ trajectories. We introduce a
Bayesian approach to make the problem well-posed, providing a
probabilistic quantification of the uncertainty in the prediction.

A. Definition of Clusters

Due to the local interaction between agents, clusters of opin-
ions will emerge, in which each agent only interacts with agents
within the same cluster. More precisely, we define the system is
in a clustered status as follows:

Definition 1. (Clustered status): Let xt ∈ RdN be the state
of the system (1) with a local interaction kernel φ supported
on [0, R]. We say the system is clustered if the index set
{1, 2, . . . , N} of agents can be partitioned into disjoint clusters
C1(t), . . ., Cm(t) such that for any i ∈ Ck1(t) and j ∈ Ck2(t):

i) if k1 = k2, then ‖xi
t − xj

t‖ < R,
ii) if k1 $= k2, then ‖xi

t − xj
t‖ > R.

An essential feature of the clustered status is that it is invariant
in time: a clustered system will remain clustered with the same
clusters. In particular, each cluster is isolated from other clusters;
in each cluster, the agents formulate self-contained dynamics
and concentrate towards a local consensus, the center of the

TABLE I
NOTATION OF VARIABLES IN THE STATE-SPACE MODEL

cluster, since the interaction is symmetric (we refer to [3] for
detailed discussions on clustering for local interactions). We
summary this invariant feature as a property of the system.

Property 1. (Invariants of a clustered system): Suppose that
at time tc, the system (1) is clustered into {C1, . . ., CK}. Then,
the system will remain clustered with the same clusters for all
t ≥ tc. In particular, the sizes and the centers of the clusters are
invariant in time: for all t ≥ tc,

|Ck| : = |Ck(t)| = |Ck(tc)|,

xCk : =
1

|Ck(t)|
∑

i∈Ck(t)

xi
t =

1

|Ck(t)|
∑

i∈Ck(t)

xi
tc . (2)

for each k = 1, . . . ,K, where |Ck| and xCk denote the size
(number of agents) and center (mean opinion of agents) of cluster
Ck, respectively.

These invariants characterize the clustering (the large time be-
havior) of the opinion system. Therefore, our goal of clustering
prediction is to estimate these invariants: the sizes and centers
of the clusters, particularly those of the largest clusters.

B. Cluster Identification From Partial Observations

In practice, it is often the case that we can only observe or
track partial of the agents. We consider the case that N1 out
of the N agents are observed, with z1:T ∈ RTdN1 denoting
their trajectories. We will consider either noiseless or noisy
observations. The original model (1) with initial distribution µ,
together with an observation equation, can be written as the
following state space model:

{
xt+1 = g(xt), x1 ∼ µ(·),

zt = Hxt + ξt,
(3)

where g(xt) is the right-hand-side of (1), andH : RdN → RdN1

is a projection operator mapping the vector of opinions of all
agents to its observed part, and ξt are independent identical dis-
tributed (i.i.d.) Gaussian with distribution N (0,σ2

ξIdN1) (with
σξ = 0 if the observations are noiseless).

Without lost of generality, we assume that the first N1

agents are observed. For simplicity of notation, we denote
Hx = (x1, . . ., xN1) ∈ RdN1 with H = [IdN1 | 0× IdN2 ] and
with Hix = xi as the i-th observed agent. Similarly, for the
unobserved agents, we define projection operator G : RdN →
RdN2 from the state x to its unobserved part, denoting Gx =
(xN1+1, . . ., xN ) ∈ RdN2 with G = [0× IdN1 | IdN2 ] and with
Gix = xN1+i as the i-th unobserved agent. We summarize the
notation in Table I.
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Fig. 1. Illustration of symmetric trajectories: same observed trajectories (blue
points) are generated from different configurations (with different unobserved
trajectories in green). The color changes from light to dark to indicate time
increasing from initial to end-time of observation.

To predict the clustering, which is the large time behavior
of the dynamics, based on observations up to time T , a natural
idea is to (i) estimate the state of the system at time T , and
(ii) use the estimated state as an initial condition for a long
time simulation until the system is clustered. For Step (i), one
may wish to find a trajectory of the state variable that fits
the observation data. However, the following section shows
that even with noiseless partial observations, it is an ill-posed
inverse problem to identify the trajectory x1:T from observation
z1:T . Also, whereas a regularization can make the problem
well-posed in a variational approach, it leads to a challenging
high-dimensional optimization problem on the path space and
there may be many local minima caused by the symmetry of
the system. Instead, we adopt a Bayesian approach that avoids
high-dimensional optimization and quantifies the uncertainty in
prediction.

C. State Estimation and Observability

In general, it is an ill-posed inverse problem to estimate the
trajectory of all agents from partial noiseless observations. We
demonstrate this by an example of symmetric trajectories and
by proving that the unobserved trajectories can not be uniquely
determined in linear systems, referred to as unobservability in
control (see e.g., [11]), when more than one agents are unob-
served.

The next example shows that as long as more than two agents
are unobserved, there could be symmetric trajectories, making
it an ill-posed problem to identify the trajectories.

Example 1. (Symmetric trajectories): Consider a system with
N = 4 agents in R2 and suppose that we observe N1 = 2 of
them. Fig. 1 illustrates that two different configurations can lead
to the same observations. The symmetric positions of the two
unobserved agents canceled out their different influence on the
observed agents.

The following theorem show that it is an ill-posed problem to
estimate the states of the system when more than one agents is
unobserved in the case of linear systems.

Theorem 1. (Observability for linear opinion dynamics):
Consider the linear dynamics withφ ≡ 1 in (1), and suppose that
we observed the trajectory of N1 agents. Then, the trajectories
of the unobserved agents can be uniquely determined if and only
if N1 ≥ N − 1.

TABLE II
NOTATION OF VARIABLES IN THE BAYESIAN APPROACH

Proof 1: We only need to considerN1 ≤ N − 1. We can write
the system as

{
xt+1 = αAxt,

zt = Hxt,

where A ∈ RdN × RdN is a constant matrix,

A =





c1Id c2Id · · · c2Id
c2Id c1Id · · · c2Id

...
...

. . .
...

c2Id c2Id · · · c1Id





with c1 = 1− (N−1)
N α and c2 = α

N . By the observability the-
ory [11], the trajectory x1:T can be uniquely determined from
the observations z1:T if and only if rank (W ) = dN , where

W :=
[
Hᵀ | AᵀHᵀ | . . . | (Aᵀ)n−1Hᵀ] .

To compute rank(W ), note that Aᵀ = A and A = QΛQᵀ,
where Λ = diag(1− α)Id(N−1), 1× Id) and Q is a uni-
tary matrix. Recalling that H = [IdN1 | 0× IdN2 ], we have
(Aᵀ)kHᵀ = QΛKQᵀHᵀ for k = 1, . . . , n− 1. Thus,

rank(W ) = rank([Hᵀ | AHᵀ]) = (N1 + 1)× d.

D. Bayesian Estimation of States and Clusters

In a Bayesian approach, we view the states and the invariants
of the clusters as random variables and we aim to represent their
posteriors conditional on the observations.

Recall the state space mdoel in (3). When observation is
noise free, the randomness of the states comes from the initial
distribution µ. Conditional on observations z1:T , we denote by
p(|Ci| | z1:T ), and p(xCi | z1:T ) the posteriors of the size and
center of cluster Ci, and similarly the posterior of the state
variables, as in Table II.

These posteriors of the invariants depend on the initial dis-
tribution as well as the system, and can not be expressed
analytically in general. They depend on the posterior of the
state p(x1:T | z1:T ), particularly p(xT | z1:T ). They are high-
dimensional and non-Gaussian.

We approximate these distributions by Monte-Carlo methods:
we draw a set of weighted samples (with normalized weights),
{x(s)

1:t , w
(s)
t }s∈{1,...,S}, by a sequential Monte Carlo method (to

be introduced in the next section) from the target distribution
p(x1:T | z1:T ), and obtain empirical approximations of these
distributions. For instance, the posterior p(xT | z1:T ) is approx-
imated by

p̂(xT | z1:T ) =
S∑

s=1

w(s)
T δ

x(s)
T
(x).
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By running the original system from each of the samples
{x(s)

T } until the status of clustered, we obtain weighted sam-
ples for the invariance of clusters {x(s)

Ci , w
(s)
T }s∈{1,...,S} and

{|C(s)
i |, w(s)

T }s∈{1,...,S}. With these weighted samples, we have
the empirical posterior to quantify the uncertainty in cluster
prediction:






p̂(xCi | z1:T ) =
∑S

s=1
w(s)

T δ
x(s)
Ci
(xCi),

p̂(|Ci| | z1:T ) =
∑S

s=1
w(s)

T δ|C(s)
i |(|Ci|).

(4)

With the weighted samples, we can efficiently approximate
the statistics by the samples. For example, the expectations of
the size and center of cluster Ci are

E(xCi) ≈ x̂Ci :=
S∑

s=1

x(s)
Ci · w(s)

T ,

E(|Ci|) ≈ |̂Ci| :=
S∑

s=1

|C(s)
i | · w(s)

T . (5)

III. SAMPLING THE POSTERIOR

To initiate the ensemble simulation for prediction, we draw
samples from the conditional distribution of the current state,
p(xT | z1:T ), which is the marginal distribution of the posterior
distribution p(x1:T | z1:T ). This posterior is high-dimensional,
nonlinear and non-Gaussian, therefore it is difficult to sample
directly, even when its analytical form is explicitly available.

We will adopt a Sequential Monte Carlo (SMC) strategy (we
refer to [12] for a review), with a combination of implicit sam-
pling [15] and Auxiliary particle filtering, and some specialized
MCMC-move and information-move.

To avoid degenerate distributions, we introduce artificial
noises to the state-space model (3) from Section II-D

{
xt+1 = g(xt) + εt, x1 ∼ µ(·),

zt = Hxt + ξt.

where εt ∼ N (0,σ2
ε IdN ) and ξt ∼ N (0,σ2

ξIdN1) with σε > 0
and σξ > 0. In particular, we set the variances so that (i) the
artificial noises are relatively small with respect to the signal; (ii)
the important densities (to be introduced below in our sequen-
tial Monte Carlo algorithm) have centers relying on the state
model more than the observations and they have relatively large
variances to explore large ranges. In view of the importance
densities in (11)–(13) and (18)–(20), we will set σξ/σε < 1.
Here we assume the variances to be constants for simplicity, but
they can vary in time to improve the algorithm.

A. Sequential Monte Carlo Sampling

The SMC methods, or particle filters, are a set of sequential
importance sampling algorithms that approximates the high di-
mensional distribution p(x1:t | z1:t) by its empirical distribution

from weighted samples {x(s)
1:t , w

(s)
t }s∈{1,...,S}:

p̂(x1:t | z1:t) :=
1

∑S
s=1 w

(s)
t

S∑

s=1

w(s)
t δ

x(s)
1:t
(x),

where δ is Dirac delta mass. The samples {x(s)
1:t} are drawn

from an importance distribution q(x1:t | z1:t) and the weights
are computed from

w(x1:t | z1:t) =
p(x1:t | z1:t)
q(x1:t | z1:t)

. (6)

The key idea of SMC is to generate the weighted samples
sequentially from a recursive importance density,

q(x1:t | z1:t) = q(x1)
t∏

k=2

q(xk | x1:k−1, z1:k), (7)

which is constructed based on the recursive representation of the
posterior distribution:

p(x1:t | z1:t) = p(x1:t−1 | z1:t−1)
p(xt | xt−1)p(zt | xt)

p(zt | z1:t−1)
, (8)

That is, at time t, conditional on previous samples
{x(s)

1:t−1, w
(s)
t−1}s∈{1,...,S}, one generates weighted samples

{x(s)
t } from importance densities {q(xt | x(s)

1:t−1, z1:t)} and
compute their weights by

w(s)
t = w(s)

t−1 ·
p(zt | x(s)

t ) · p(x(s)
t | x(s)

t−1)

q(x(s)
t | x(s)

1:t−1, z1:t)
. (9)

Clearly, the above weightw(s)
t is proportional to the analytical

weight w(x(s)
1:t | z1:t) since p(x(s)

1:t | z1:t) ∝ p(x(s)
1:t−1 | z1:t−1) ·

p(x(s)
t | x(s)

t−1)p(zt | x
(s)
t ) and q(x(s)

1:t | z1:t−1) = q(x(s)
1:t−1 |

z1:t−1) · q(x(s)
t | x(s)

1:t−1, z1:t).
Due to the recursive computation in (9), all but a few of the

weights will be almost zero as t increases, and this is called sam-
ple degeneracy [12]. As a result, the variance of our estimation
{x(s)

t }may increase exponentially with t (see e.g. [30]). Resam-
pling techniques are widely used to reduce the sample degen-
eracy by replacing low-weighted samples with high-weighted
samples through resampling. A common strategy is to measure
the sample degeneracy by effective sample size (ESS) [31]–[33]
and set a threshold for resampling: if the ESS falls below a thresh-
old (typically S

2 or 2S
3 ), then one resamples. In our study, we

use the ESS defined by ESSt = (
∑S

i=1 w
(i)
t )2/(

∑S
i=1(w

(i)
t )2)

in [32]. We use the resampling algorithm in [34], i.e., sample
u from the uniform distribution U([0, 1

S ]) and define a set of
real number {Uj := u+ j−1

S }j=1,...,S . Then count the number

of the set {Uj |
∑i′−1

i=1 w(i)
t∑s

i=1 w(i)
t

≤ Uj ≤
∑i′

i=1 w(i)
t∑s

i=1 w(i)
t

} as the number of

“children” of sample x(i′).
The essential of SMC methods is the design of importance

densities, so that all samples have (almost) equal weights in
each recursive step while staying on the trajectories with high
likelihood. The algorithm based on a simple choice of q(xt |
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x1:t−1, z1:t) = p(xt | xt−1), often referred as sequential impor-
tance sampling with resampling (SIR), performs poorly (see
section Section IV-C). Inspired by the ideas of implicit sampling
(see Section III-C) and Auxiliary particle filtering, we propose
to construct Gaussian importance densities by a combination
of them (see Section III-C). To rejuvenate the samples, we will
also introduce MCMC-move and information-move algorithms,
which will be discussed in Section III-D and III-E, respectively.

B. Optimal One-Step Importance Sampling

The one-step optimal importance density is

qopt(xt | x1:t−1, z1:t) =
p(zt | xt) · p(xt | xt−1)

p(zt | xt−1)
. (10)

It is optimal because it is exactly the one-step posterior density,
leading to uniform incremental weights in (6).

The density qopt is Gaussian and can be sampled directly,
because the observation model is linear and the noises εt and ξt
in the state-space model (3) are Gaussian. In general nonlinear
non-Gaussian cases, it is difficult to draw samples from qopt

directly, and one may resort to implicit sampling in [15] or [35]
to draw samples in the high probability region.

To sample qopt, we need only its mean and covariance, which
are the maximum a posteriori (MAP) and the Hessian of the
negative logarithm of the posterior, respectively. More specif-
ically, we compute the minimizer and Hessian of the negative
log function of p(zt | x)p(x | xt−1):

F (x) =
(zt −Hx)2

2σ2
ξ

+
(x− g(xt−1))2

2σ2
ε

.

This function is quadratic and its minimizer is

x∗
t = g(xt−1) + λ∗

t

[
IdN1×dN1

0dN2×dN1

]
(zt −Hg(xt−1)) (11)

with λ∗
t =

(σξ/σε)2

(σξ/σε)2 + 1
. The Hessian matrix of F (x) is

Hess(F )i,j =






σ−2
ξ + σ−2

ε , 1 ≤ i = j ≤ N1,
σ−2
ε , N1 < i = j ≤ N,
0, otherwise,

(12)

In short, the Gaussian distribution qopt is

qopt(xt | x1:t−1, z1:t) ∼ N (x∗
t ,Hess(F )−1) (13)

with x∗
t in (11) and Hess(F ) in (12).

In view of feedback control (see e.g., [20], [36]), the mean x∗
t

aims to nudge samples to better positions using the observation
zt. A general nudging term is

xt = g(xt−1) + λtMt(zt −Hg(xt−1)), (14)

where the real number λt represents the strength of nudg-
ing, and the nudging matrix Mt ∈ RdN×dN1 provides the di-
rection. Thus, x∗

t can be viewed as a nudging with matrix:
Mt = [IdN1×dN1 ;0dN2×dN1 ] and λt = λ∗

t , optimal in the sense
of being the maximizer of the one-step posterior.

Though optimal for one-step sampling, the above importance
density comes with drawbacks: the mean of the unobserved vari-
ables, Gx∗

t = Gg(xt−1), is simply a projection of the forward
equation from the previous state, not updated using information
from new observations. Particularly, the next observation zt+1 is
a function of the current unobserved variables Gxt, thus it pro-
vides helpful information that we can use to updateGxt. In view
of feedback control, this leads to a nudging matrix Mt whose
unobserved block containing information from zt+1. This idea
of using future observations has also been explored in auxiliary
particle filter (APF) [23] and lookahead strategies [37]. Inspired
by the APF and the idea of nudging, we propose in the next
section an auxiliary sampling strategy with two observations to
update the unobserved variables.

C. Auxiliary Sampling With Two Observations

The auxiliary particle filter is an SMC algorithm that makes
use of the information from the next observation. To keep the
recursive form as in (8), we need to consider target densities
p(x1:t | z1:t+1) instead of p(x1:t | z1:t), and write it recursively
as

p(x1:t | z1:t+1) ∝ p(x1:t−1 | z1:t)

× p(xt | xt−1)p(zt | xt)p(zt+1 | xt)

p(zt | xt−1)
,

Since the analytical expression of p(zt+1 | xt) is unknown,
we approximate it byp(zt+1 | xt) ≈ p(zt+1 | g(xt)) and obtain:

p̂(x1:t | z1:t+1) ∝ p̂(x1:t−1| z1:t)

× p(xt|xt−1)p(zt|xt)p(zt+1| g(xt))

p(zt| g(xt−1))
. (15)

With an importance density q(xt | xt−1, zt:t+1) depending
on zt+1, the recursively updating weight becomes w(x1:t |
z1:t+1) = w(x1:t−1 | z1:t)α(xt−1:t, zt:t:1), where the associated
incremental weight is given by:

α(xt−1:t, zt:t:1) =
p(xt|xt−1)p(zt|xt)p(zt+1|g(xt))

p(zt | g(xt−1))q(xt | xt−1, zt:t+1)
. (16)

Next, we construct the importance density q(xt | xt−1, zt:t+1)
and draw samples from it. We start from the negative log function
of the posterior distribution p(zt+1 | g(x)p(x | xt−1)p(zt | x):

F̂ (x) =
|zt+1 −Hg(x)|2

2σ2
ξ

+
|x− g(xt−1)|2

2σ2
ε

+
|zt −Hx|2

2σ2
ξ

.

Since the state variable is high-dimensional and its compo-
nents being indistinguishable agents, it is difficult and compu-
tationally costly to find the minimizer of F̃ , who is likely to
have multi-modes. This rules out a direct application of implicit
sampling. However, by a linear approximation of the nonlinear
function g(xt), we can directly construct a Gaussian importance
density q(xt | xt−1, zt:t+1) as the previous section. We linearize
Hg(x) at x∗

t since it is the most likely position before the next
observation:

Hg(x) ≈ Hg(x∗
t) +∇Hg(x∗

t)
ᵀ(x− x∗

t),
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where ∇Hg(x∗
t) ∈ RdN×dN1 is the gradient of Hg. In prac-

tice, when the interaction function φ is piecewise constant, the
approximation of !Hg is computed in follows:

!Hg(x) ≈ RIH(x) + LH(x) ∈ RdN×dN1 , (17)

where the block matrices RIH(·) ∈ RdN×dN1 and LH(·) ∈
RdN1×dN1 are composed by submatrices RII

i,j(·) and LI
i,j(·) ∈

Rd×d, respectively:

RIH
i,j (x) =

1

N
φ(||xi −Hjx||)Id,

LH
i,j(x) =






− 1

N

N∑

k=1

φ(||xk − xi||)Id, if 1 ≤ j = i ≤ N1,

0× Id, otherwise .

Then, F̂ (x) can be approximated by a quadratic function:

F̃ (x) =
|zt+1 −Hg(x∗

t)−∇Hg(x∗
t)

ᵀ(x− x∗
t)|

2

2σ2
ξ

+
|x− g(xt−1)|2

2σ2
ε

+
|zt −Hx|2

2σ2
ξ

=
1

2
yᵀAy − yᵀb+ C

with y=x− x∗
t , C= |zt+1−Hg(x∗

t)|
2

2σ2
ξ

+ |g(xt−1)−x∗
t|

2

2σ2
ε

+|zt−Hx∗
t|

2

2σ2
ξ

,

and





A =
∇Hg(x∗

t)∇Hg(x∗
t)

ᵀ

σ2
ξ

+
IN
σ2
ε

+
HᵀH
σ2
ξ

,

b =
∇Hg(x∗

t)
ᵀ [zt+1 −Hg(x∗

t)]

σ2
ξ

+
g(xt−1)− x∗

t

σ2
ε

+
Hᵀ [zt −Hx∗

t ]

σ2
ξ

.

(18)

Then, F̃ has a minimizer µ(xt−1, zt, zt+1) given by:

µ(xt−1, zt, zt+1) = x∗
t +A−1b (19)

and its Hessian is A. This suggests the following importance
density q(xt | xt−1, zt, zt+1):

q(xt | xt−1, zt, zt+1) ∼ N (µ(xt−1, zt, zt+1), A
−1), (20)

where µ(xt−1, zt, zt+1) is defined by (19) and A = A(xt−1, zt)
is defined by (18).

We summarize the above in the following algorithm:

D. MCMC-Move

To further reduce the inevitable degeneracy of SMC algo-
rithms, we introduce an MCMC-move step [38]. We consider
two types of moves: a directional move aiming for agent-wise
position improvement, and a local trajectory move aiming to
replace a low weight short-trajectory by a higher weighted one

The directional move randomly selects m of the unobserved
agents for each sample, and resample each of them using a

Algorithm 1: Auxiliary Implicit Sampling.
At time t ≤ T − 1, for s = 1, 2, . . ., S, do:
• Evaluate x∗

t = x∗(x(s)
t−1, zt) as in (11), and then

compute A(x(s)
t−1, zt) = A as in (18) and

µ(x(s)
t−1, zt, zt+1) as in (19).

• Draw a sample x(s)
t from a normal distribution with

mean µ(x(s)
t−1, zt, zt+1, ) and covariance A(x(s)

t−1, zt)
−1;

evaluate weights ŵ(s)
t = w(s)

t−1 · α
(s)
t as in (16).

• Resample to obtain equally-weighted samples (if a
criterion is met).

At time t = T , for s = 1, 2, . . ., S, do Implicit sampling:
• Evaluate x∗

t = x∗(x(s)
t−1, zt) as in (11).

• Draw a sample x(s)
t from N (x∗

t ,Hess(F )−1) as in (13);
evaluate weights ŵ(s)

t by (9).

Algorithm 2: Directional Move.
At time t ∈ checking-time ⊂ {1, . . ., T}, for each sample,
do:
• Randomly select m = 10.2N22 of the unobserved

agents.
• Move the selected agents: for k = 1, . . ., N2, if the

agent is among those selected, sample
x̃k
t ∼ N (xk

∗ ,Σ
k
∗ ), where xk

∗ and Σk
∗ are defined in (21);

else, set x̃k
t = xk

t .
• Accept the move and set x′

1:t = [x1:t−1, x̃t] if

u ∼ U[0,1] ≤ min{1, p(zt | x̃t)

p(zt | xt)
}; otherwise, reject the

move and set x′
1:t = x1:t

Metropolis-Hastings step as follows. For each selected agent
k, first draw a sample from N (xk

∗ ,Σ
k
∗ ), where xk

∗ is a minimizer
of the function

g̃ (xk
t |zt+1, x

1:k−1,k+1:N
t ) = ‖zt+1 −Hg(xt)‖2,

and Σk
∗ is the Hessian of the function g̃ at xk

∗ , that is,

xk
∗ = argmin

x∈Rd

g̃(x); Σk
∗ = Hess g̃ (xk

∗ ). (21)

Then, accept the sample if it leads to a higher likelihood for ob-
servation zt. We set the number m to be 1βN22 (with β = 0.2).
In practice, the optimization can be relaxed to a few iterations
of gradient descent search, since the goal of our directional
move is only to improve the position of partial agents. Mul-
tiple Try Metropolis (MTM) methods [27], [28], [39] are good
alternatives, particularly when the gradient is not available for
the optimization.

We summarize the directional move in Algorithm 2.
The local trajectory move randomly selects low-weighted

samples and replaces their local trajectories by those with a
higher probability. More precisely, at a prescribed time, a sample

with index s is selected with probability max{0, 1− w(s)
t
ct

},
where ct is the value of the lowest quartile of the weights
{w(s)

t }Ss=1. Intuitively speaking, all samples with weight higher
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Algorithm 3: Local-Trajectory Move.
At time t ∈ checking-time ⊂ {1, . . ., T}, with samples

{x(s)
1:t , w

(s)
t }Ss=1 and the weights {w(s)

t−T0
}Ss=1, do:

• Select low-weighted samples: for s ∈ {1, . . ., S}, set an

indicator Θ(s)
t = 1 with probability max{0, 1− w(s)

t
ct

},
where ct is the value of the lowest quartile of the
weights {w(s)

t }Ss=1;
• Move the low-weighted samples: for s ∈ {1, . . ., S}, if
Θ(s)

t = 1, replace the local trajectory x(s)
t−T0:t

by as
follows:

– Draw a sample x̃(s)
t−T0

from the samples

{x(s)
t−T0

, w(s)
t−T0

}Ss=1;

– Implement a directional move for x̃(s)
t−T0

as in
Algorithm 2, in which, draw new positions for m of
the unobserved agents from the initial distribution,
instead of drawing samples from N (xk

∗ ,Σ
k
∗ ));

– Draw x̃(s)
t−T0:t

by a one-sample SMC algorithm with
importance density function in (20) from t− T0 to t

with initial value x̃(s)
t−T0

;

– Accept the move and set x(s)
t−T0:t

= x̃(s)
t−T0:t

, w(s)
t = ct

if u ∼ U[0,1] ≤ min{1, p(zt | x̃t)

p(zt | xt)
}; otherwise, reject

the move and keep them as original.

than ct will be kept and a sample with weight less than ct will
be selected randomly, according to a probability that increases
when its weight decreases. Once selected, its local trajectory
x(s)
t−T0:t

is moved to x̃(s)
t−T0:t

as in Algorithm 3.

E. Rejection of Non-Physical Samples

To avoid non-physical samples, we introduce an information
move step, rejecting non-physical samples. We say a sample is
non-physical if it violates the basic properties of the opinion
dynamics. For example, recall the following contraction of
radius property of opinion dynamics [3, Proposition 2.1]: for
any constant c ∈ Rd, we have:

max
i

‖xi
t − c‖ ≤ max

i
‖xi

t′ − c‖, ∀t ≥ t′.

This property requires information of all agents, and it can not
be directly applied to our partial observations. Since the mean
position of all agents does not change in time, we say a sample
at time t is non-physical if

max
i

‖xi
t − xt−t0‖ > max

i
‖xi

t−t0 − xt−t0‖+ α, ∀t ≥ t′.

(22)
where t0 and α > 0 are constants (in practice, t0 = 10 and α =
0.3× supp(φ)), representing the time length we back-track for
checking and the tolerance for extending the maximal distance,
respectively.

We also reject agents that do not interact with any of the
observed agents. Such agents may be connected to the observed
agents through other unobserved agents (recall that xi

t and xj
t

are connected if there exists a path of agents {xik
t }Kk=0 with

Algorithm 4: Information Move.
For t ∈ checking-time ⊂ {1, . . ., T} and for each sample, do:

• For j = 1, . . ., N2, check if xt is non-physical as in (22)
or if it has agents disconnected from the observed
agents. If yes, draw a sample x̃t from the importance
density in (20) and repeat until the sample is physical
and connected with the observed agents.

• If u ∼ U[0,1] ≤ min{1, p(zt | x̃t)

p(zt | xt)
}, set xt = x̃t; else,

repeat from the previous step until accepted.

Algorithm 5: Auxiliary Implicit Sampling with MCMC
Moves (AIS).
At time t = 1, initialization: draw uniform-weighted

samples {x(s)
1 , w(s)

0 } from µ(x1).
For time t ≥ 2, do:

(a) Draw weighted sample {x(s)
1:t , w

(s)
t } by the Auxiliary

implicit Sampling Algorithm 1.
(c) Improve the samples by two MCMC moves: the

Directional Move Alorithm 2 and the Local Trajectory
Move Algorithm 3 when resampling occurs.

(d) Reject non-physical samples by the Information Move
Algorithm 4 when resampling occurs.

i0 = i and iK = j such that φ(‖xik
t − x

ik+1

t ‖) > 0), but their
positions are difficult to estimate from the limited information.
It is of interest to replace them by agents that interact with the
observations: if they evolve to disconnect from the observed
agents, their clustering can not be estimated from the observa-
tions, thus we can view them as “non-physical” (or with little
information); otherwise, they will move toward the center of the
cluster, and the replacement will accelerate their move.

In addition, to avoid over-correction and to maintain computa-
tional efficiency, we apply the rejection-moves at a pre-specified
time steps that performed progressively less frequently as ob-
servation increases.

The information move algorithm is summarized in
Algorithm 4:

F. Summary

We combine all the above sampling techniques into Algorithm
5, which we refer it as auxiliary implicit sampling (AIS).

IV. NUMERICAL EXPERIMENTS

In this section, we predict the clustering of the opinion dynam-
ics using partial observations, following the Bayesian approach
discussed in Section II, using the auxiliary implicit sampling
(AIS) algorithm introduced in Section III. We first describe the
settings of the model and the sampling method in Section IV-A.
Then, we present results on state estimation in Section IV-B.
We report the prediction of clustering in a typical simulation in
Section IV-C and in many simulations in Section IV-D.
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A. Numerical Settings

We consider the opinion dynamics (1) with N = 60 agents,

xi
t+1 − xi

t =
1

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t)∆t

where xi
t ∈ Rd with d = 2 represents the opinion of the agent i

at discrete times indexed by t. This system is an Euler approx-
imation of the corresponding differential equations with time
step size ∆t = 0.05.

Since we are interested in the cases when the system for-
mulates multiple clusters instead of a consensus, we consider a
communication function φ that is piecewise-constant:

φ(r) =






1, r ∈ [0,
√
2/2),

0.1, r ∈ [
√
2/2, 1),

0, r ∈ [1,∞).

This local communication function represents a stronger inter-
action between alike-opinions than different-opinions, and it
is more likely to lead to multiple clusters than heterophilious
interactions [3]. We obtain multiple clusters by selecting the
initial conditions as follows: we randomly draw initial condition
for each agent fromµ ∼ Unif([−4, 4]d), and reject those leading
to consensus. We will call the empirical distribution of these
selected initial conditions as initial distribution of the opinion
dynamics. This initial distribution injects randomness into the
dynamics.

Our goal is to predict the clustering of the system, particularly
the sizes and the locations of the largest clusters, supposing
that we only observe the trajectories of N1 of the N agents
for a relatively short time, far before the clusters are formulated.
In particular, we assume that we observe the system for only
n = 300 time steps, when the observations can not tell if the
clusters have formulated. The clustering usually takes more than
30 time units, or equivalently 600 time steps. (For instance, the
system described by Fig. 5 clustered at about 1500 time steps.)
As discussed in Section II, a Bayesian approach provides a prob-
abilistic framework for state estimation and cluster prediction,
with uncertainties quantified by the posterior. We sample the
posterior by the auxiliary implicit sampling (AIS) algorithm in
Algorithm 5 with ensemble size S = 100. For the sake of the
AIS, we rewrite the system in the form of a state-space model:

{
xt+1 = g(xt) + εt, xi

1 ∼ µ, ∀i,

zt = Hxt + ξt,

where εt ∼ N (0,σ2
ε IdN ) and ξt ∼ N (0,σ2

ξIdN1).
We consider systems with both noiseless and noisy obser-

vations. To avoid degenerate distributions, we set an artificial
noise for the deterministic state model. For the case of noiseless
observations, we set σε = 0.01 and σξ = 0.005, so that the
artificial noise is relatively small with respect to the signal.
For noisy observations with σξ = 0.01 (which represents a
signal-to-noise ratio about 2%), we set σε = 0.05. In both cases,
we have σξ/σε < 1 so that the important densities trust the state

Fig. 2. State estimation (noiseless observations): Estimation of the trajectory
of agents for system without noise, observing N1 = 30 of the N = 60 agents.
(2a) shows the paths of the first coordinate of two unobserved agents for all
the S = 100 samples (blue dots). At each time, the blue curve is the smoothed
empirical marginal posterior density from the samples (Sample density), and the
blue shaded area is the 95% credible interval. For each agent, samples become
concentrated around the truth (the red dash line) as time increases, with the
marginal posterior peaks near the truth. The sample density may have multiple
modes and the true value is in the 95% credible interval for most of the times.
(2b) shows the trajectories of all agents, where the blue and green dots are the
observed and unobserved truth, and the red diamonds are the unobserved agents
in a sample; all with color changing from light to dark as time increases. The
estimated trajectories of unobserved agents by the sample can be far away from
the truth, particularly at the initial time, but the clustering of the sample is close
to the truth.

model more than the observations while keeping relatively large
variances, see (11)–(13) and (18)–(20).

B. State Estimation

As a Bayesian approach, our goal of state estimation is to
represent the posterior of the states, which is approximated by
the empirical measure of the samples in our sequential Monte
Carlo algorithm. We demonstrate the state estimation by the
marginal posteriors of the trajectories of the first coordinate
of two unobserved agents. We also show the trajectories of all
agents, comparing the estimated path of unobserved agents in a
sample with the truth.

a) Noiseless observations: Consider first the case when the
system is deterministic and half of the N = 60 agents are
observed without noise. Fig. 2(a) shows the trajectories of all
the S = 100 samples for the first coordinate of two unobserved
agents, along with the smoothed sample density at each time,
representing the marginal posterior. For each agent, samples
become concentrated around the truth (the red dash line) as time
increases, with the marginal posterior peaks near the truth. Such
a concentration of the sample agrees with the intuition that the
uncertainty in the posterior of the states decreases when more ob-
servations are available, since the system is deterministic and the
randomness comes only from the initial condition. The marginal
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Fig. 3. State estimation (noisy observations): Estimation of the trajectory of
agents when observing N1 = 30 of the N = 60 agents with additive Gaussian
noise. In (3a), the samples (blue dots) of the 1st coordinate become concentrated
around the truth (the red dash line) as time increases, with the multi-mode
sample density (blue line) peaks near the truth. The blue shaded area is the
95% credible interval, covering the true value for most of the times. Due to
the random observation noises, some of the true values fall out of the credible
interval in the right figure. (3b) shows the trajectories of all agents, where the
blue and green dots are the observed and unobserved truth, and the red diamonds
are the unobserved agents estimated by a sample; all with color changing from
light to dark as time increases. The estimated trajectories of unobserved agents
by the sample can be far away from the truth, particularly at the initial time, but
the clustering of the sample is close to the truth.

posterior has multiple modes, reflecting the symmetry between
agents and the non-identifiability of the states as discussed in
Section II-C.

Fig. 2(b) shows the trajectories of all agents, comparing the
estimated paths of unobserved agents estimated by a sample
with the truth. The estimated trajectories by the sample can be
far away from the truth, particularly at the initial time, but the
clustering of the sample is close to the truth.

b) Noisy observations: We also consider the case when half
of the N = 60 agents are observed with additive Gaussian noise
N (0,σ2

ξIdN1). Similarly, Fig. 3 a shows the trajectories of all
the S = 100 samples for the first coordinate of two unobserved
agents, along with the smoothed empirical sample density at
each time, representing the marginal posterior. For each agent,
the sample density is more wide-spread and has more modes
than those in Fig. 2 for the deterministic system, indicating more
uncertainty due to the noises in the system and in the observation.
But all samples become concentrated around the truth eventually
as time increases, with the marginal posterior peaks near the
truth.

Fig. 3(b) shows the trajectories of all agents, comparing the
estimated paths of unobserved agents estimated by a sample with
the truth. Again, the estimated trajectories by the sample can be
far away from the truth, particularly at the initial time, but the
clustering of the sample is close to the truth.

Fig. 4. Effective Sample Sizes (ESS) of AIS in the typical simulations:
noiseless observation (left) and noisy observation (right). The ESS drops down
to the resampling threshold (set to be 67) for only a few times along the trajectory
of 300 time steps, suggesting the high efficiency of the AIS.

In summary, in both noiseless and noisy observations, the
marginal posteriors of the state can be multi-mode, presenting a
large uncertainty; the trajectories of the samples can be far from
the truth, but the clustering pattern of the samples is close to the
truth.

c) Efficiency of the AIS algorithm: We assess the efficiency
of the AIS algorithm by the effective sample sizes and the
frequency of resampling. A high ratio of ESS suggests that the
samples are close to uniformly weighted so that the importance
density is close to the target density. A low frequency of re-
sampling indicates a slow pace of degeneracy in the samples.
Together they indicate the efficiency of the SMC algorithm.

Fig. 4 presents the ESS’s of the above typical simulations with
noiseless and noisy observations. The ESS drops slowly to the
resampling threshold (set to be 67) in both cases. The resampling
occurs only 6 times along the trajectory of 300 time steps in the
case of noiseless observation, and this number drops to 3 in the
case of noisy observation. Thus, the AIS is a highly efficient
SMC algorithm.

Also, the AIS is computationally efficient. Since its impor-
tance densities are derived analytically, the core AIS in Algo-
rithm 1 does not invite any additional computational cost beyond
the necessary forward solutions of the state model to generate
samples. Extra costs occur when we add the MCMC-move and
information-move in Algorithm 2-4. But these costs can be
controlled and we only apply them when resampling occurs.

C. Clustering Prediction: A Typical Simulation

In this and the next section, we consider the prediction of
clusters from partial observations. We exhibit the cluster pre-
diction of a typical simulation in this section, and we report the
performance in many simulations in the next section.

Recall that in a typical clustering prediction, we characterize
the clustering by the posteriors of the sizes and centers of the
clusters, particularly the leading clusters. We compare our AIS
algorithm with two other SMC algorithms: SIR and implicit
sampling (denoted by IS). Since the degeneracy of samples in
SIR is too severe for any meaningful prediction, we reduce the
degeneracy by inflating its weights to keep more samples in
each step. For the prediction of the sizes, we also compare
AIS with the predictions simply based on connected agents
from observation xT only, since in practice one may treat the
observation as a random sample of the population.
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Fig. 5. Clustering prediction (noiseless observations): prediction of centers
and sizes of clusters when observing N1 = 30 of the N = 60 agents for a
short time. AIS algorithm outperforms SIR and IS at presenting concentrating
around the truth posteriors of the centers and sizes for the leading clusters, and
at providing accurate estimation of sizes for all clusters by sample mean.

a) Noiseless observations: Fig. 5(a)–5(b) show the empirical
posteriors of the centers and sizes for the largest cluster and
the second largest cluster (defined in Eq.(4)). Consider first the
centers of the clusters in Fig. 5(a). The true center of the largest
cluster locates at the white bar in the left plot. All samples from
AIS are close to the true center (with a distance less than 0.1,
resulting in a bar overlapping with the white bar of the true
center). IS has about half samples at the true center and the
other half far away from the true center. Nearly all samples of
SIR mispredicted the true center. Similar results can be seen in
the right plot.

Consider next the cluster sizes in Fig. 5(b). The largest cluster
has 27 agents, and the second largest cluster has 18 agents.
The predicted sizes based on the observation xT only (denoted
by “From Obs”) are both 22, not being able to identify the
leading clusters. This suggests that the observation xT itself
is not enough to make an accurate prediction of the clustering.
Among the SMC algorithms, AIS leads to highly concentrated
samples, at the true size for the largest cluster and near the true
size for the second largest cluster. Implicit sampling (IS) leads to
samples scattering around the truth. The samples of SIR scatter
widely, tending to overestimate the size of the largest cluster and
underestimate the size of the second largest cluster.

Since the system is deterministic and the observations are
noiseless, the true posterior of concentrates around the truth.

Fig. 6. Clustering prediction (noisy observations): prediction of centers and
sizes of clusters when observingN1 = 30 of theN = 60 agents for a short time
with additive Gaussian noise. AIS algorithm performs slightly better than IS and
clearly outperforms SIR, at presenting posteriors of the centers and sizes for the
leading clusters, and at providing accurate estimation of sizes for all clusters by
sample mean.

AIS outperforms SIR and IS at representing such concentrated
posterior.

Fig. 5(c) shows the sizes of all the clusters, estimated by
sample mean as in (5). AIS accurately captures the sizes of all
the clusters except the smallest one, which is too small to be
predicted. IS performed relatively well in predicting the largest
cluster, but misses the 2nd largest cluster. SIR identifies the
largest cluster with a relatively large error (5 relative to 27),
but it misses all the other clusters.

Noisy observations. Fig. 6 shows the predictions when the ob-
servations are noisy. Due to the observation noise, the posteriors
of the centers and sizes would present a larger uncertainty than
the case of noiseless observations. Fig. 6(a) shows the posteriors
of centers for the two largest clusters. For the largest cluster, all
three SMC algorithms yield samples scatter close to the true
centers, with samples of AIS and IS concentrating at the true
center more than those of SIR. For the second largest cluster, an
unusual result appears: all the SMC algorithms lead to samples
mostly missing the position of the true center. The reason is that
the second and the third largest clusters have similar sizes (as
shown in Fig. 6c), the sizes are 16 and 13, respectively), causing
difficulty in distinguishing them.

Fig. 6(b) presents posteriors of the sizes for the two largest
clusters. The largest cluster has 26 agents, and the second largest

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 24,2021 at 02:51:38 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND LU: CLUSTER PREDICTION FOR OPINION DYNAMICS FROM PARTIAL OBSERVATIONS 111

cluster has 16 agents. AIS leads to samples concentrating at the
true size for the largest cluster and near the true size for the
second largest cluster. IS leads to samples scattering slightly
wider than AIS, but are still around the truth. The samples of
SIR scatter widely, tending to overestimate the size of the largest
cluster and underestimate the size of the second largest cluster.
The predicted sizes based on the observation xT only (denoted
by “From Obs”) are 28 and 12, slightly overestimating the size
of the largest cluster and underestimating the size of the second
largest cluster.

Fig. 6(c) shows the sizes of all the clusters, estimated by
sample mean as in (5). Only AIS accurately captures the size
of the largest cluster, IS slightly overestimates the size, and SIR
has an estimation that is too large. All three algorithms are able
to lead to similar sizes for the second and the third clusters,
with AIS being the closest to the truth. Note that all the SMC
algorithms predict an untrue fifth cluster, but AIS has the smallest
error.

In summary, for predicting centers and sizes of clusters from
either noiseless or noisy observations, the performance of AIS
algorithm is much better than that of SIR, which is usually
not satisfactory, and is better than that of IS, which is often
reasonably good.

D. Clustering Prediction: Success Rates in Many Simulations

We further investigate the clustering prediction by Auxiliary
Implicit Sampling (AIS) in 100 independent simulations. We
consider three cases: observing 1

2 , 1
3 , and 1

6 of the 60 agents. We
assess the performance by studying the success rate in predicting
the centers for the largest two clusters, and the distribution of
errors in size estimation.

a) Assessment of the prediction performance: Recall that we
estimate the centers and sizes of clusters by their posterior
means. More precisely, the center xCi and size |Ci| of cluster
Ci are estimated by their sample means x̂Ci and |̂Ci| as defined
by (5). We denote by C1 and C2 the largest and the second largest
clusters.

For each simulation, we say the center of the largest cluster
C1 is predicted successfully if there exists an estimated cluster
with a size in [|C1|−K, |C1|+K] and with a center such
that dist(xC1 , x̂Cj ) < L. Here K and L are the levels of error
tolerance. More specifically, we define an indicator function for
a successful prediction of C1 by

Ω1 =






1, if dist
(
xC1 , x̂Cj

)
≤ L for some j such that

|C1|−K < |̂Cj | < |C1|+K;

0, otherwise,
(23)

In following simulations, we pick L = 0.1 (in general L should
depend on the communication function φ, recall that our φ is
supported in [0,1]) and the range of the value K ∈ {0, 1, 2}.
Similarly, we define a successful prediction for the center of the
second largest cluster and its indicator function Ω2.

Fig. 7. Cluster prediction in 100 simulations (noiseless case): observing 1
2 , 1

3 ,
or 1

6 of the N = 60 agents in the system. In (7a)–(7b), the majority simulations
(more than 70%) can predict the cluster sizes reasonably, holding an error within
4, when the observation ratio is ether 1

2 or 1
3 ; but when the observation ratio

is 1
6 , many simulations have large errors. Fig. 7(c)–7(d) show that the centers

of the leading clusters can be located with high probability (85%–95% for the
largest cluster and 75%–85% for the second largest cluster) even only observing
1
6 of all agents. The success rate depends little on the tolerance levelK. In short,
the observation ratio affects the prediction of cluster sizes, but not the cluster
centers.

We access the prediction of the sizes of the largest two clusters
by the distribution of the absolute error:

ei =
∣∣∣|C0

i |− |̂Ci|
∣∣∣ , for i = 1, 2. (24)

The error ei should be close to zero in a successful prediction.
A heavy tail in the distribution of ei would indicate that it is
difficult to predict the cluster size accurately.

b) Noiseless observations: Fig. 7 illustrates the performance
of prediction of the largest two clusters in 100 independent
simulations. We consider three observation ratios: 1

2 , 1
3 , or 1

6 , that
is, observing 30, 20 and 10 of the N = 60 agents in the system.
The distributions of errors in the estimation of cluster sizes are
shown in Fig. 7(a)–7(b), and the success rate in predicting the
centers are shown in Fig. 7(c)–7(d).

The prediction of cluster sizes depends on the observation
ratio. When observing 1

2 or 1
3 of all agents, the majority sim-

ulations (more than 70%) can predict the cluster sizes with
an error within 4. But when the observation ratio is 1

6 , many
simulations have large errors (larger than 4 for more than 50% of
the simulations), suggesting that the observations do not provide
enough information for accurate prediction of the cluster sizes.

The prediction of cluster centers exhibits a high success rate,
regardless of the observation ratio. Fig. 7(c)–7(d) show that
the centers of the leading clusters can be located with high
probability 85%-95% for the largest cluster and 75%-85% for the
second largest cluster, and that the successes rate drops slightly
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Fig. 8. Cluster prediction in 100 simulations (noisy observations), observing
1
2 , 1

3 , or 1
6 of the N = 60 agents in the system with additive Gaussian noise.

Similar to the case of noiseless observations: the prediction for sizes is more
sensitive to observation ratio than the prediction of centers. In (8a)–(8b), the
error for size estimation is relatively large: when the observation ratio is 1

2 or 1
3 ,

about 70% of the simulations hold an error size less than 6; when the observation
ratio is 1

6 , many simulations have large errors. In (8c)–(8d), the centers are be
predicted with a probability (around 85% and 80% for the largest and the second
largest clusters, respectively), regardless of the observation ratio.

when the observation ration decreases from 1
2 to 1

6 . The success
rate depends little on the tolerance level K.

c) Noisy observations: When the trajectories are observed
with additive Gaussian noise, similar to the case of noiseless
observations, the prediction for sizes is more sensitive to obser-
vation ratio than the prediction for centers. Due to the additional
uncertainty from the observation noise, the error for size esti-
mation is larger than the noiseless case. In (8a)–(8b), when the
observation ratio is 1

2 or 1
3 , about 70% of the simulations hold

an error size less than 6; when the observation ratio is 1
6 , about

50% of the simulations have errors larger than 4. In particular,
the size of the second largest cluster is predicted more accurately
than the largest cluster, indicating that the observation noise is
mostly absorbed in the prediction of the leading cluster.

The observation noise also slightly reduces the success rate
in the prediction of cluster centers. In (8c)–(8d), the centers are
predicted with a high probability (around 85% and 80% for the
largest and the second largest clusters, respectively), regardless
of the observation ratio.

In summary, for either noiseless or noisy observations, the
cluster center can be predicted with a high success rate, regard-
less of the observation ratio. The cluster size, on the other hand,
has a larger uncertainty that is sensitive to both the observation
noise and the ratio of observation.

V. CONCLUSION

We presented a Bayesian formulation for clustering prediction
of opinion dynamics from partial observations, characterizing
the prediction by the posterior of the clusters’ sizes and centers.
To overcome the challenge in sampling the high-dimensional

posterior with multiple local maxima, we introduced an auxiliary
implicit sampling (AIS) algorithm using two-step observations,
which is a sequential Monte Carlo (SMC) method that combines
the ideas from auxiliary particle filters [23] and implicit particle
filters [15]. In both cases of noiseless and noisy observations,
the AIS algorithm leads to accurate predictions of the sizes and
centers for the leading clusters.

The uncertainty in the posterior increases when the ratio of the
observed population decreases. Remarkably, the cluster center
can be predicted with a high success rate, regardless of the
observation noise and ratio. This suggests that the centers have
relatively small uncertainty, agreeing with the fact that they are
the average of the agents’ opinions. The cluster size, on the other
hand, has a considerable uncertainty that is sensitive to both the
observation noise and the ratio of observation.

There are three directions for future research. First, improve
the information in observation by a random selection of agents to
observed at each time. The observations in this study are trajec-
tories of a fixed set of agents, which may yield little information
about other clusters when the observations concentrate in one
cluster. Random selection of agents may avoid such an informa-
tion loss by providing an unbiased sampling of all the agents’
opinions. Second, extension to large systems with millions of
agents using mean-field equations. When there are millions of
agents, it becomes computationally prohibitive to simulate the
ODEs, and it is natural to consider the corresponding mean-field
equation for the concentration density of the agents’ opinions
(see e.g., [3], [40], [41]).

Extension of our AIS method is straightforward. The major
issue is the computational cost when solving the mean-field
PDE many times, and one may have to use reduced models
(see e.g., [42], [43]) to achieve efficiency. Third, learn both the
states and the communication function or the network topol-
ogy [44] from partial noisy observations, either for systems with
finite agents or for the mean-field equation. Our AIS algorithm
supplies the SMC part for algorithms that combines SMC with
MCMC, such as the particle Gibbs methods or the nested particle
filters [24]–[26], to jointly estimate the parameters and states.
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