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Abstract

Accurate modeling of important nuclear quantum effects, such as nuclear delocal-

ization, zero-point energy, and tunneling, as well as non-Born-Oppenheimer effects,

requires treatment of both nuclei and electrons quantum mechanically. The nuclear–

electronic orbital (NEO) method provides an elegant framework to treat specified nuclei,

typically protons, on the same level as the electrons. In conventional electronic struc-

ture theory, finding a converged ground state can be a computationally demanding

task; converging NEO wavefunctions, due to their coupled electronic and nuclear na-

ture, is even more demanding. Herein, we present an efficient simultaneous optimization

method that uses the direct inversion in the iterative subspace method to simultane-

ously converge wavefunctions for both the electrons and quantum nuclei. Benchmark

studies show that the simultaneous optimization method can significantly reduce the

computational cost compared to the conventional stepwise method for optimizing NEO

wavefunctions for multicomponent systems.
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1 Introduction

In conventional electronic structure calculations, the Born-Oppenheimer approximation is in-

voked to separate electronic and nuclear degrees of freedom. Often the nuclei are assumed to

move classically on the adiabatic potential energy surface, which can be obtained by solving

the electronic time-independent Schrödinger equation at each nuclear configuration. How-

ever, nuclear quantum effects, as well as non-Born-Oppenheimer effects in some cases, play an

important role in many chemical processes, such as proton-coupled electron transfer, 1–4 pho-

toinduced proton transfer,5–9 hydrogen tunneling,10,11 and hydrogen-bonding interactions.12

Many methods have been developed to account for the nuclear quantum effects within or

beyond the Born-Oppenheimer approximation, such as the Ehrenfest dynamics, 13–16 surface

hopping,17–19 multiconfigurational time-dependent Hartree (MCTDH), 20–23 multiple spawn-

ing,24–27 ring polymer path integral,28,29 and Gaussian wave packet dynamics30,31 methods.

In many cases, however, the computational expense and scaling impose limitations on the

system size, and the more efficient methods are often lacking some of the important nonadi-

abatic or nuclear quantum effects.

The nuclear–electronic orbital (NEO) method32–38 provides a robust and computationally

efficient framework that treats specified nuclei, typically protons, quantum mechanically on

the same level as the electrons. In the NEO approach, both electronic and nuclear molecular

orbitals are expressed as linear combinations of Gaussian-type orbitals, and the energy is

minimized variationally with respect to the mixed nuclear–electronic wavefunction. The main

advantage of the NEO approach is that it intrinsically incorporates nuclear quantum effects

and non-Born-Oppenheimer effects in the electronic–nuclear structure calculation, giving rise

to a computational framework capable of simulating nonadiabatic reaction dynamics. 16,39–41

All NEO calculations start with a procedure to converge the NEO orbitals to a station-

ary wavefunction. However, as the complexity (i.e., the numbers of electrons and quantum

nuclei) of the NEO system increases, efficiently solving for the nuclear-electronic wavefunc-

tion becomes a computationally challenging task. In this work, we introduce a simultaneous
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optimization algorithm to self-consistently solve the NEO-Roothaan-Hall equations. A si-

multaneous direct inversion in the iterative subspace approach is developed to improve the

convergence stability and speed, as supported by benchmark studies.

2 Method

2.1 NEO Hamiltonian and Hartree–Fock Wavefunction

In the NEO framework, specified nuclei, typically protons, are treated quantum mechanically.

The system can be divided into three parts: N e electrons, Np quantum nuclei, and N c

classical nuclei. This leads to the following NEO Hamiltonian, expressed in atomic units:

ĤNEO =−
Ne∑
i
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i +
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Ne∑
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where {i, j, ...}, {I, J, ...}, and {A,B, ...} are indices for electrons, quantum nuclei, and clas-

sical nuclei, respectively. The nuclear masses and charges, respectively, are denoted by M

and Z. R and r are the positions of the classical and quantum particles, respectively. For

the remainder of this paper, the quantum nuclei will be assumed to be protons.

A key objective of the NEO approach is to solve the NEO time-independent Schrödinger

equation for a fixed classical nuclear configuration {RA}:

HNEOΨ(xe,xp; {RA}) = ENEOΨ(xe,xp; {RA}), (2)

where xe and xp are the collective spatial and spin coordinates of the electrons and quantum

protons, respectively. The simplest NEO wavefunction ansatz is the Hartree-Fock wave-

3



function,32 in which the total wavefunction is expressed as a product of the electronic and

protonic Slater determinants:

Ψ(xe,xp) = Φe(xe)Φp(xp). (3)

where Φe and Φp are determinants consisting of electronic and nuclear orbitals, respectively.

In practice, the electronic and nuclear spatial orbitals are expanded in Gaussian-type

basis functions. In the NEO-Hartree-Fock (NEO-HF) approach, the energy is optimized

variationally with the self-consistent-field (SCF) procedure, leading to the following NEO

Hartree-Fock-Roothaan equations:

FeCe = SeCeεe (4)

FpCp = SpCpεp, (5)

where Fe, Se, Ce, and εe are the electronic Fock matrix, overlap matrix, coefficient matrix,

and orbital energies, respectively, and the quantum nuclear matrices are defined analogously.

Equation (4) and Equation (5) are coupled through the Coulombic interaction between

the electrons and quantum nuclei, which can be readily seen from the construction of the

Fock matrix for each subsystem:

Fe(Pe,Pp) = He
core + Jee(Pe) + Kee(Pe) + Jep(Pe,Pp) (6)

Fp(Pp,Pe) = Hp
core + Jpp(Pp) + Kpp(Pp) + Jpe(Pp,Pe). (7)

where Pe and Pp are the electronic and quantum nuclear density matrices, respectively.

H
e(p)
core is the one-body core Hamiltonian matrix for the electrons (quantum nuclei). Jee(pp)

and Kee(pp) are the Coulomb and exchange matrices, respectively, for the electrons (quan-

tum nuclei). Jep and Jpe account for the Coulombic interaction between the electrons and
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quantum nuclei, and their matrix elements can be computed as

Jpeµpνp = −
Ke∑
λeκe

Pe
λeκe(µ

pνp|κeλe) (8)

Jepµeνe = −
Kp∑
λpκp

Pp
λpκp(µeνe|κpλp), (9)

where Ke(p) is the number of basis functions for the electronic (quantum nuclear) subsystem,

and {µe, νe, σe, λe, ...} and {µp, νp, σp, λp, ...} represent the electronic and quantum nuclear

basis functions, respectively.

2.2 Direct Inversion in the Iterative Subspace (DIIS)

Direct Inversion in the Iterative Subspace (DIIS) is a least-squares minimization method

that can accelerate the SCF convergence.42,43 In DIIS, an improved Fock matrix F′ can be

expressed as a linear combination of the previous Fock matrices Fi:

F′ =
n∑
i=1

ciFi,
n∑
i=1

ci = 1, (10)

where n is the iteration number in the SCF procedure.

The DIIS approach seeks to minimize the error associated with the improved Fock matrix,

F′:

e′ =
n∑
i=1

ciei (11)

where ei quantifies the error associated with Fi. Applying the least-squares minimization
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procedure to Eq. (11) gives rise to the following equation represented in matrix form:


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(12)

where Bij = 〈ei|ej〉. Solving Eq. (12) yields a set of coefficients that minimize the error and

can then be used to construct an improved Fock matrix using Eq. (10). The diagonalization

of F′ leads to a new set of orbitals used to construct the density matrix to start the next

iteration.

The effectiveness of DIIS relies on the choice of an error vector that can properly quantify

the error associated with each Fock matrix. At convergence of the SCF procedure, the density

matrix must commute with the Fock matrix. It is therefore possible to define an error vector

at iteration i as42,43

ei = SPiFi − FiPiS, (13)

which is known as the commutator DIIS approach. Other types of error vectors include

conjugate gradient,44 energy,45,46 and quasi-Newton-Raphson step.47 In this work, we will

focus on generalizing Eq. (13) to the NEO framework in the simultaneous optimization

algorithm for both electronic and nuclear orbitals.

2.3 Simultaneous Optimization Algorithm

In the NEO-SCF procedure, two Fock matrices, Fe and Fp, need to be optimized to conver-

gence. The conventional protocol in the literature 38 is the stepwise optimization algorithm,

where either the electronic or quantum nuclear SCF equations are fully converged while
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freezing the density of the other subsystem, proceeding in an alternating fashion until both

equations (Eq. (4) and Eq. (5)) are converged. A schematic of this algorithm is shown in

Fig. 1(A). Within each electronic/protonic SCF, DIIS can be used to accelerate the con-

vergence. Although this protocol can usually arrive at a converged NEO wavefunction,

the number of Fock matrix formations dramatically increases when the system of interest

becomes large, and the computational cost can become very demanding.
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Form 𝐅! from 𝐏! and 𝐏"

Diagonalize 𝐅#! = ∑$%&' c$𝐅$!

Form new 𝐏!

Check if 𝐏! is converged  

Check if total energy is converged

END
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Figure 1. (A) Schematic illustration of the stepwise NEO-SCF algorithm. (B)
Schematic illustration of the simultaneous NEO-SCF algorithm.

Alternatively, all variational parameters in the whole system can be simultaneously op-

timized, as exemplified by the previous success of simultaneous optimization for the elec-

tronic wavefunction and polarizable continuum model, 48 and for the electronic wavefunction

and molecular geometry.49 Herein, we propose a simultaneous optimization scheme to con-

verge NEO wavefunctions, where both electronic and quantum nuclear Roothaan equations

(Eq. (4) and Eq. (5)) are simultaneously solved in each SCF iteration. A schematic of this

algorithm is shown in Fig. 1(B). We apply the DIIS method to accelerate the convergence
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of both the electronic and the protonic wavefunctions by constructing the error vector to be

the sum of the subsystem error vectors:

Bij = 〈eei |eej〉+ 〈epi |e
p
j〉, (14)

where

eei = SePe
iF

e
i − Fe

iP
e
iS

e, epi = SpPp
iF

p
i − Fp

iP
p
iS

p.

By solving Eq. (12), a set of least-squares coefficients can be obtained and used to construct

improved electronic and protonic Fock matrices via extrapolation/interpolation:

F′e =
n∑
i=1

ciF
e
i , F′p =

n∑
i=1

ciF
p
i (15)

In this manner, the coefficients are optimized with respect to both electronic and protonic

degrees of freedom. At each SCF iteration, improved electronic and protonic Fock matrices

are diagonalized to give rise to updated electronic and protonic orbitals, thus achieving the

simultaneous optimization.

3 Results and Discussion

Both the stepwise and the simultaneous optimization algorithms are implemented for the

NEO-HF method in the development version of the Gaussian software. 50 The benchmark

studies presented in this work will include the SCF convergence profiles for both energy and

density using both stepwise and simultaneous optimization methods with various electronic

and protonic basis sets. The NEO wavefunction is considered fully converged when the

root-mean-square electronic/protonic density difference is below 10−8 a.u. and the energy

difference is below 10−10 Hartree between two consecutive steps. In the following benchmark

calculations, up to 10 previous Fock/density matrices are used in the DIIS extrapolation/in-

terpolation. The initial wavefunction guess occupies the tightest protonic basis function for
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each quantum proton and uses this charge distribution to do the Harris guess 51 for the elec-

tronic orbitals. When the system consists of multiple protons, they are placed in a high-spin

protonic configuration.

In Fig. 2, we present the results obtained from NEO-SCF calculations on the cis-Zundel

isomer of the protonated water tetramer. All nine hydrogens in this system are treated quan-

tum mechanically with the PB5d protonic basis set. 52 The cc-pVTZ correlation consistent ba-

sis set53 is used for the electronic subsystem. For this test case, the simultaneous optimization

algorithm shows a much faster convergence, meeting all three convergence thresholds within

174 SCF iterations. In contrast, the conventional stepwise approach requires 90 electronic

and 570 protonic iterations to reach convergence. Figure 2(A) shows that both methods con-

verge the energy monotonically, although the simultaneous approach exhibits a much faster

convergence. Figure 2(B) and Figure 2(C) show the trend for the root-mean-square den-

sity difference (RMS∆) for Pe and Pp, computed as RMS∆P = 1
K

√∑
µν |Pn,µν − Pn−1,µν |2,

where K is the number of basis functions. These figures show that the stepwise algorithm

introduces long segments of ‘waiting time’ when one subsystem is waiting for the other to

fully converge, leading to a slower overall convergence. The big ‘jump’ in the RMS∆P

convergence profile occurs when the subsystem experiences a sudden change in interaction

potential between the two subsystems at the start of a new iteration. This jump is a result of

the decoupled optimization in the stepwise optimization. In contrast, the simultaneous DIIS

algorithm takes into account errors associated with both electronic and protonic wavefunc-

tions, and therefore it is able to find the optimal pathway to converge the coupled subsystems

smoothly toward the minimum. In Fig. 3, we zoom in on the energy and RMS∆P trend for

the simultaneous DIIS optimization algorithm. This figure shows that both the electronic

and protonic densities are converging at the same time. The trend for the two densities ex-

hibits the same behavior, as both subsystems share the same set of coefficients to extrapolate

the next Fock matrix using Eq. (15).
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(A)

(B)

(C)

Figure 2. NEO-HF calculations performed on the cis-Zundel isomer of the pro-
tonated water tetramer using either the stepwise or simultaneous optimization
DIIS algorithm with the cc-pVTZ/PB5d electronic/nuclear basis sets. (A) En-
ergy difference between two consecutive steps. (B) Root-mean-square electronic
density difference between two consecutive steps, RMS∆Pe. (C) Root-mean-
square protonic density difference between two consecutive steps, RMS∆Pp. The
black/red horizontal line represents the energy/density convergence threshold.

Figure 3. NEO-HF calculations performed on the cis-Zundel isomer of the pro-
tonated water tetramer using the simultaneous optimization DIIS algorithm with
the cc-pVTZ/PB5d electronic/protonic basis sets. The energy and the electronic
and protonic RMS∆P decrease together for the simultaneous optimization al-
gorithm with DIIS. The black/red horizontal line represents the energy/density
convergence threshold.
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We then compare the computational costs of both algorithms. The Fock matrix formation

in the NEO-SCF procedure is the most expensive step, as it requires the contraction of 4-

index integrals and formally scales as N4, where N is the number of basis functions. In the

stepwise algorithm, each SCF iteration only includes either the electronic or the protonic

Fock matrix formation, whereas in the simultaneous algorithm, each SCF iteration includes

formation of both the electronic and protonic Fock matrices. Therefore, the computational

cost for a NEO-SCF calculation using the direct algorithm (integrals computed on-the-fly)

based on Eq. (6) and Eq. (7) can be formally calculated as:

f(N e, Np) = ae(N
e)4 + ap(N

p)4 + (ae + ap)(N
e)2(Np)2, (16)

where the prefactors ae and ap are the numbers of electronic and protonic Fock matrix

formations, respectively. The last term in Eq. (16) accounts for the computational cost from

Eq. (8) and Eq. (9). We use Eq. (16) as the unbiased metric to analyze and benchmark the

performance of both algorithms.

To provide a more systematic analysis of the basis set and system size dependence of the

simultaneous DIIS algorithm, we first consider small test systems with one or two quantum

protons using correlation consistent electronic basis sets 53 and various protonic basis sets

developed by Yu et al.52 The results are shown in Fig. 4. The simultaneous DIIS optimization

can dramatically reduce the cost of NEO-SCF calculations, exhibiting an average of ∼60%

savings compared to the traditional stepwise algorithm for the systems shown in Fig. 4.

The excellent performance of the simultaneous optimization method also holds for larger

test cases. In Fig. 5, we performed NEO-SCF calculations on four isomers of the protonated

water tetramer complex, using the def2-TZVP54 electronic basis set and the PB4d52 protonic

basis set. The results consistently show that the simultaneous DIIS algorithm can reduce

the computational cost by an average of 56% compared to the stepwise algorithm.
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Figure 4. Relative computational cost of a NEO-HF calculation for three small
molecules. The x axis describes the basis set used for electrons/quantum protons
in each calculation. The relative cost is evaluated as fsimultaneous

fstepwise
, where the f ’s

are calculated using Eq. (16) for the simultaneous and stepwise DIIS algorithms.

Figure 5. Relative computational cost of a NEO-HF calculation for isomers
of the protonated water tetramers. The relative cost is evaluated as fsimultaneous

fstepwise
,

where the f ’s are calculated using Eq. (16) for the simultaneous and stepwise
algorithms.
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In Fig. 6, we show the relative computational cost of the simultaneous and stepwise

algorithms for optimizing the NEO-HF wavefunctions of a protonated water tetramer using

different basis sets. For a given electronic basis set, as the number of protonic basis functions

increases, the simultaneous optimization algorithm exhibits an overall trend of increased

computational saving compared to the stepwise algorithm. For a fixed protonic basis set,

however, increasing the size of the electronic basis set decreases this computational savings.

This trend is observed because the reduction in the number of nuclear optimization steps

by the simultaneous optimization algorithm is much greater than that for the electronic

optimization step. As the number of nuclear basis functions increases, the computational cost

of the nuclear Fock build becomes more dominant. As a result, the simultaneous optimization

algorithm exhibits better computational performance compared to the stepwise approach.

On the other hand, since the number of electronic SCF iterations is comparable between

the two algorithms, the simultaneous method can only marginally improve the convergence

speed when the electronic Fock build is the dominant computational cost. In other words,

ae is similar for the two algorithms, but ap is smaller for the simultaneous optimization

algorithm. Thus, as the number of electronic basis functions dominates, the two algorithms

approach the same cost, whereas as the number of protonic basis functions dominates, the

simultaneous optimization will have lower cost.
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Figure 6. Relative computational cost of a NEO-HF calculation for isomers of
the protonated water tetramer as a function of basis set size. The relative cost
is evaluated as fsimultaneous

fstepwise
, where the f ’s are calculated using Eq. (16) for the

simultaneous and stepwise algorithms.

4 Conclusions

In this paper, we present an efficient algorithm for NEO-SCF calculations that utilizes DIIS

to simultaneously converge the electronic and protonic orbitals. This simultaneous optimiza-

tion algorithm uses an error vector that takes into account both the electronic and protonic

errors at each step. Benchmark calculations show that the simultaneous optimization can

significantly reduce the computational cost needed to converge the NEO wavefunction, com-

pared to the conventional stepwise method. As the main savings in computational cost arises

from the reduction in the number of nuclear SCF iterations, the simultaneous optimization

algorithm becomes more efficient as the number of nuclear basis functions increases.

Supporting Information

The supporting information includes: molecular structures; comparison of NEO and conven-

tional electronic SCF calculations.
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