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Trion clustering structure and binding energy in two-dimensional semiconductor materials:
Faddeev equations approach

K. Mohseni ,1 M. R. Hadizadeh ,2,3,* T. Frederico ,1 D. R. da Costa ,4 and A. J. Chaves 1

1Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, Brazil
2College of Engineering, Science, Technology and Agriculture, Central State University, Wilberforce, Ohio 45384, USA

3Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
4Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil

(Received 19 December 2022; revised 20 March 2023; accepted 14 April 2023; published 27 April 2023)

In this paper, we develop the basic formalism to study trions in semiconductor layered materials using the
Faddeev equations in momentum space for three different particles lying in two dimensions. We solve the
trion Faddeev coupled integral equations for both short-range one-term separable Yamaguchi potential and
Rytova-Keldysh (RK) interaction applied to the MoS2 layer. We devise two distinct regularization methods
to overcome the challenge posed by the repulsive electron-electron RK potential in the numerical solution of
the Faddeev equations in momentum space. The first method regulates the repulsive interaction in the infrared
region, while the second regulates it in the ultraviolet region. By extrapolating the trion energy to the situation
without screening, the two methods gave consistent results for the MoS2 layer with a trion binding energy of
−49.5(1) meV for the exciton energy of −753.3 meV. We analyzed the trion structure for the RK and Yamaguchi
potentials in detail, showing their overall similarities and the dominant cluster structure, where the strongly
bound exciton is weakly bound to an electron. We found that this property is manifested in the dominance of two
of the Faddeev components over the one where the hole is a spectator of the interacting electron pair.
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I. INTRODUCTION

Few-body problems appear in physics at different scales,
ranging from subatomic to celestial bodies. For semiconduc-
tors, the electron (e) and hole (h) can form bound states due to
the electrostatic attraction. Speculated since the 1930s [1], the
exciton appears in the absorption spectrum of crystals, such as
splitting of the lines in molecular crystals [2] or in band edge
absorption features [3]. Albeit the exciton is weakly bound
due to the intrinsic screening of traditional semiconductors,
the electron-hole interaction is fundamental to the understand-
ing of the optical properties in semiconductors and insulators
[4], as follows from the works of Dresselhaus [5] and Elliott
[6].

More complex few-body systems composed of holes and
electrons were proposed by Lampert in 1958 [7], such as
the trion (eeh or ehh) and the biexciton. However, the weak
binding energy of the trion, which results from the strong
screening of the Coulomb interaction in ordinary materials,
hindered its study until the advent of quantum wells. Although
observed in 1977 in the asymmetric tail of exciton lumines-
cence [8], a trion peak was only observed in 1993 [9] in
quantum wells, effectively a two-dimensional (2D) system,
whose energies were predicted to be an order of magnitude
greater than in the three-dimensional (3D) case [10] due to
the quantum confinement effect.

*Corresponding author: mhadizadeh@centralstate.edu

One interesting aspect of trion physics already noted
by Lampert [7] is the different limits as the hole-mass-to-
electron-mass ratio changes; we can have the analogs of H+

2 ,
H−, and e−e−e+. One should note that trions in semiconduc-
tors differ from traditional three-body systems such as the
triton or the 4He3 atomic trimer, as the constituents of the trion
have two attractive interactions and one repulsive one. We will
explore this distinctive feature in this paper.

As we already mentioned, it was only with the dimension
reduction that trions were first detected by observing the
asymmetric tail of exciton luminescence [8]. Three-particle
bound states also appear in cold-atom physics, where through
trapping, the dimension can be reduced continuously from
3D to 2D [11]. The consequence is the disappearance of the
Efimov effect and, together, the log-periodicity of the wave
function, which turns into a power law [12].

With the synthesis of 2D semiconductors [13], it was found
that excitons can have huge binding energies [14] as also
trions [15], when compared with traditional materials. This
happens due to the reduced screening, as the electric field
lines lie outside the 2D semiconductor [16]. In those systems,
the strength of the interaction can be externally controlled by
suitable dielectric engineering [17]. Charge carriers in tran-
sition metal dichalcogenides (TMDs) interact mainly via the
screened Coulomb interaction that in the classical regime is
given by the Rytova-Keldysh potential, obtained as the solu-
tion of the Poisson equation for an infinitesimal thin dielectric
slab [18].

Exciting prospects appear for few-body systems in novel
2D materials. There is a plethora of different materials that
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host excitons, trions, and biexcitons, such as TMDs, hexagon
boron nitride, and graphene. In addition to that, excitons
and trions can strongly couple with light, forming exciton-
polaritons [19,20] and trion-polaritons [21], respectively. As
the Fermi energy increases, e.g., with electrostatic doping,
there is a transition of the trion to an exciton–Fermi polaron
[22]. The proximity effect [23], which originates from short-
range interactions, can also be used to tune the properties
of excitons and trions through the suitable choice of van der
Waals heterostructures, for example, the valley manipulation
of excitons in TMDs due to the coupling with CrI3 [24], whose
magnetization can be controlled by an external magnetic field,
that breaks the time-reversal symmetry and the valley degen-
eracy.

Several experiments have already probed trions in 2D ma-
terials. Observations of large trion binding energies in MoS2
reported experimental values between 20–43 meV for samples
deposited on SiO2 substrates [15,25–27] and 80 meV on sus-
pended samples [28], while Ref. [29] measured for different
substrates and found an extrapolation curve for the suspended
case of 44 meV. Besides the dependence on the dielectric envi-
ronment [29], the trion binding energy depends on the doping
[15], and also on the temperature [30]. In this paper (Sec. V),
we will discuss the trion in an undoped suspended MoS2 layer
at zero temperature; thus we do not expect an exact agreement
with experimental measurements that are performed in a finite
temperature and with residual doping.

There are already several theoretical calculations on trion
binding energies [31–42]. The authors in Ref. [36] found a
good agreement between the multiband and effective mass
models, thus justifying our choice of using the effective mass
approach in this paper. In Ref. [41], a binding energy for
the trion in MoS2 of 33.6 meV calculated with a varia-
tionally optimized orbital approach (me/m0 = 0.47, mh/m0 =
0.54, and r = 44.68 Å) is reported, in Ref. [33] the value of
33.7 meV was obtained by the stochastic variational method,
and Ref. [42] reported the value of 32.1 meV by using an
imaginary time evolution method for numerically solving the
trion Schrödinger-like Hamiltonian. Based on the ab initio
many-body theory, a converged negatively charged intralayer
trion binding energy of 58 meV was found [37] with an
exciton binding energy of −0.76 eV. The use of Faddeev equa-
tions in configuration space to calculate the charge positive
and negative trion energies in various TMDs was reported in
Refs. [38–40].

Our goal in this paper is to study negatively charged trions
within the Faddeev equations approach in momentum space
and explore both the binding and structural properties of the
trion in a MoS2 layer. Within the adopted method, each Fad-
deev component is computed, which sums up the total wave
function and carries information about each pair that com-
poses the three-body state. The numerical convergence due to
the repulsion between the electrons is a challenge, and to over-
come this, we use two different approaches to regularize the
electron-electron interaction at both long and short distances,
to weaken the repulsion and make the numerical calculations
more accurate; finally, we extrapolate both results to compute
the trion energy accurately. Furthermore, we cross-check the
accuracy of our calculated trion energy by computing the
expectation value of the Hamiltonian with the wave function.

Our work addresses the following main points: (i) We provide
a general discussion of the wave function properties for a 2D
trion obtained within the Faddeev equations approach; (ii)
we provide a theoretical-numerical calculation of the trion
binding energy in freestanding monolayer MoS2 with dif-
ferent regularization schemes, with the accuracy checked by
computing the expectation value of the Hamiltonian; and (iii)
we address the degree of clusterization of the trion weakly
bound state.

The assumed theoretical framework is presented in Sec. II,
where we derive the Faddeev equations in 2D considering
three different particles. In Sec. III, we present results for
the Yamaguchi model, a nonlocal separable and short-range
potential [43,44], considering three attractive interactions and
also for two attractive and one repulsive potential. In Sec. IV,
we illustrate the cluster structure of the Yamaguchi model for
trions. Section V is devoted to presenting the results for the
Rytova-Keldysh potential, where two different regularization
procedures are introduced to compute the trion binding en-
ergy. In Sec. VI, the cluster structure of the trion is illustrated
by showing results for the total wave function and its Faddeev
components, which we compare with the structure of the wave
functions obtained by the two potential models. In Sec. VII,
we summarize the main findings of our study. This work is
accompanied by six Appendixes, where we detail our frame-
work and numerical methods.

II. FADDEEV EQUATIONS FOR THREE-BODY BOUND
STATES IN TWO DIMENSIONS

We consider the effective mass Hamiltonian for three dif-
ferent particles

H =
3∑

i=1

(
k2

i

2mi
+ Vi

)
, (1)

with Vi ≡ Vi(r j − rk ), i #= j #= k, and mi being the mass of
the ith particle. In the case of trions, this corresponds to the
Wannier-Mott model. The Schrödinger equation for the bound
state of three different particles interacting with pairwise in-
teractions Vi ≡ Vjk is given by

! =
3∑

i=1

G0Vi! =
3∑

i=1

ψi, (2)

where ψi = G0Vi! are the Faddeev components and G0 =
(E − H0)−1 is the free propagator with three-body (3B) bind-
ing energy E and free Hamiltonian H0. The three Faddeev
components ψi satisfy the following coupled equations:

ψi = G0 ti (ψ j + ψk ), (3)

where {i, j, k} is a cyclic permutation of {1, 2, 3}. The two-
body (2B) transition operators ti are defined by the Lippmann-
Schwinger equation

ti = Vi + ViG0ti. (4)

To solve the coupled Faddeev equations (3) in momentum
space, we consider the 3B basis states |piqi〉, composed of
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FIG. 1. Jacobi momenta convention used throughout this paper.
{i, j, k} correspond to the indices associated with the three particles,
and pi and qi are their Jacobi momenta given in Eq. (5).

two Jacobi momenta (see Fig. 1), which are defined in terms
of the single particle momenta as

pi = mkk j − mjkk

mj + mk
,

qi = mj + mk

mi + mj + mk

(
ki − mi

mj + mk
(k j + kk )

)
, (5)

where pi is the relative momentum of the pair jk and qi is the
relative momentum of the third particle i with respect to the
pair jk. The completeness relation of 3B basis states in 2D is
defined as

∫
d2 pi

∫
d2qi |piqi〉〈piqi| = 1. (6)

The projection of coupled Faddeev equations (3) on 3B basis
states |piqi〉 leads to three coupled 2D integral equations

ψi(pi, qi,φi ) = 1

E3B − p2
i

2µ jk
− q2

i
2µi, jk

∫ ∞

0
d p′

i p′
i

∫ 2π

0
dφ′

i

× ti(pi, p′
i,φ

′
i ; εi )[ψ j (P ji,Q ji,φ ji )

+ ψk (Pki,Qki,φki )], (7)

where µ jk = mj mk

mj+mk
and µi, jk = mi (mj+mk )

mi+mj+mk
are 2B and 3B re-

duced masses. The shifted momenta and angle quantities Pi j ,
Qi j , and φi j are defined in Eq. (A13). The details of the
derivation are given in Appendix A.

The non-partial-wave 2B t matrices ti(pi, p′
i,φ

′
i ; εi ), with

2B subsystem energies εi = E3B − q2
i

2µi, jk
, can be obtained

from the summation of partial wave (PW) t matrices
tm(pi, p′

i; εi ) as

ti(pi, p′
i,φ

′
i ; εi ) = 1

2π

∞∑

m=0

εm cos(mφ′
i ) tm(pi, p′

i; εi ),

with εm =
{

1 m = 0
2 m #= 0,

(8)

where PW projected 2B t matrices in channel m, i.e.,
tm(pi, p′

i, εi ), can be obtained from the solution of the

inhomogeneous Lippmann-Schwinger integral equation as

tm(pi, p′
i; εi ) = Vm(pi, p′

i ) +
∫ ∞

0
d p′′

i p′′
i Vm(pi, p′′

i )

× 1

εi − p′′2
i

2µ jk

tm(p′′
i , p′

i; εi ), (9)

with PW projected interactions obtained from

Vm(pi, p′
i ) =

∫ 2π

0
dφ′

i V (pi, p′
i,φ

′
i ) cos(mφ′

i ). (10)

In the following sections, we present our numerical results
for the solution of the coupled Faddeev equations (7) for tri-
ons with two different potentials: the short-range Yamaguchi
potential and the long-range Rytova-Keldysh potential. The
numerical solution details are provided in Appendix E.

III. TRIONS: YAMAGUCHI POTENTIAL

To test the formulation of the coupled Faddeev integral
equations (7) and to validate our numerical solution, we first
utilize the one-term separable potential with Yamaguchi-type
form factors [43,44]

V (p, p′) = −λg(p)g(p′), g(p) = 1
(β2 + p2)m

, (11)

where the potential strength λ can be obtained from the pole
property of the 2B t matrix at the 2B binding energy. We
present our numerical results for 3B binding energies and
wave functions using two different interaction combinations:
(i) three attractive Yamaguchi-type potentials and (ii) two
attractive and one repulsive Yamaguchi-type potential, con-
sidering three particles with identical masses.

We use three attractive Yamaguchi interactions to evaluate
our formalism and computer codes for solving the general
form of three coupled Faddeev integral equations in 2D. We
should mention that this case is paradigmatic in cold-atom
physics [45], and it also appears in the formulation of the
three-magnon bound state problem [46]. In our context, these
calculations are valuable as a preparation for the practical
application involving trions.

In order to clarify the assumed notation here, we denote
the 3B binding energy as E3B, being defined as the eigenvalue
of the 3B Hamiltonian in Eq. (1), whereas the trion binding
energy Et is defined as the splitting between the 2B and 3B
binding energies

Et = E3B − E2B. (12)

In Table I, we present 3B binding energies obtained from the
solution of the three coupled Faddeev integral equations (7)
for three identical particles (mass = 1) interacting with three
attractive Yamaguchi interactions. The input 2B t matrices are
obtained from the s-wave interactions. The calculated ratios of
3B and 2B binding energies with different potential strengths
λ and form factor powers m are in excellent agreement with
the corresponding results from Ref. [47].

By solving the coupled Faddeev integral equations and
having 3B binding energy and the Faddeev components, one
can calculate the 3B wave function as a summation of three
Faddeev components. In Appendix B, we show the details of
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TABLE I. 2B and 3B binding energies E2B and E3B calculated
for three attractive Yamaguchi-type potentials with form factor pa-
rameter β = 1 and different powers m. The potential strength λ is
fitted to reproduce the desired 2B binding energy E2B. The ratios
of 3B and 2B binding energies E3B/E2B are compared with corre-
sponding results from Ref. [47]. The calculations are performed with
h̄c = mass = 1.

λ E2B E3B/E2B E3B/E2B [47]

m = 1
0.0602 −0.0019 9.21 9.21
0.0863 −0.0100 6.83 6.83
0.1838 −0.1000 4.58 4.58

m = 2
0.0801 −0.0032 7.30 7.30
0.1400 −0.0211 5.14 5.14

m = 4
0.0481 −0.0001 11.54 11.53
0.0731 −0.0010 7.91 7.91
0.1861 −0.0200 4.55 4.55

m = 10
0.0561 −0.0001 10.05 10.05
0.0923 −0.0010 6.61 6.61
0.1562 −0.0050 4.89 4.99

the derivation of the 3B wave function in momentum space.
To test the accuracy of the 3B wave function in momentum
space, in Table II, we compare the expectation values of the
3B Hamiltonian with the calculated 3B binding energy for the
factor parameters β = m = 1 and the potential strength λ that
reproduces 2B binding energy E2B = −0.1. The separable po-
tential strength is obtained by introducing Eq. (11) into Eq. (9)
and considering that the t matrix has a pole at εi = E2B; then
the potential strength can be obtained by

λ−1 = −2π

∫ ∞

0
d p′′

i p′′
i

|g(p′′)|2

E2B − p′′
i

2

2µ jk

. (13)

TABLE II. Expectation values (EVs) of 3B free Hamiltonian
〈H0〉, pair interactions 〈Vi〉, total 2B interactions 〈V 〉, 3B Hamiltonian
〈H〉, and eigenvalue E3B calculated for Yamaguchi-type potentials
[three attractive interactions (3A) and two attractive plus one re-
pulsive interaction (2A + R)], given in Eq. (11) with form factor
parameters β = m = 1 and the potential strength λ that reproduces
dimer binding energy E2B = −0.1. The relative percentage differ-
ence is Error = |(〈H〉 − E3B)/E3B| × 100%. The calculations are
performed with h̄c = mass = 1.

EV 3A 2A + R

〈H0〉 +0.46887 +0.15756
〈V1〉 −0.30904 +0.03260
〈V2〉 −0.30904 −0.15526
〈V3〉 −0.30904 −0.15523
〈V 〉 −0.92712 −0.27789
〈H〉 −0.45825 −0.12033
E3B −0.45824 −0.12034
Error +0.00218 +0.00831

0 0.5
0

0.5

-4

-3.5

-3

-2.5

FIG. 2. Left: 3D plot of the 3B wave function for three attractive
Yamaguchi-type potentials (3A). Right: relative error. Both plots
are for the angle φ1 = 0. The results are obtained with form factor
parameters β = m = 1 and the potential strength λ that reproduces
2B binding energy E2B = −0.1. The calculations are performed with
h̄c = mass = 1.

The expectation values of the kinetic energy and potential in
the exciton state are, in this case, given by

〈H0〉 = 0.138 407 and 〈V 〉 = −0.238 407. (14)

As we can see in Table II, the 3B binding energy and the
expectation value of the Hamiltonian are in excellent agree-
ment. The details of the calculation of expectation values
of Hamiltonian 〈H〉 from the expectation value of the 3B
free Hamiltonian 〈H0〉 and 2B interactions 〈Vi〉 are given in
Appendix C.

Some interesting qualitative aspects can be seen in Ta-
ble II. When the sign of the potential V1 is changed and
becomes repulsive, the state swells due to the dramatic de-
crease in the splitting of the 2B and 3B energies, namely,
from |E3B − E2B| = 0.3582 to |E3B − E2B| = 0.0203. Conse-
quently, the kinetic energy is also reduced to about one-third
of the value obtained with only attractive potentials. Due to
the repulsion, the wave function is depleted when the relative
distance between particles 2 and 3 lies in the range of the
potential, and the expectation value 〈V1〉 becomes negative and
is reduced to one-tenth of the value obtained in the attractive
case. Furthermore, the expectation values of 〈V2〉 and 〈V3〉 are
also halved, and due to our choice of mesh points, the equality
〈V2〉 = 〈V3〉 is fulfilled to 0.02%, which is reflected in the error
of around 0.008% in the computation of 〈H〉, which is four
times larger than the error in the attractive case.

The cluster structure of the trion is indicated by its kinetic
and potential energies when comparing the results of 〈H0〉,
〈V2〉, and 〈V3〉 from Table II, with the expectation values of the
kinetic and potential energies of the exciton given in Eq. (14).
The screening of the hole that composes the exciton in the
trion [40] weakens the electron-exciton interaction favoring
the formation of the remarkable cluster structure. Note that the
electrons should be in a singlet spin state or an antisymmetric
combination of different valley states.

IV. YAMAGUCHI TRION CLUSTERIZATION

In Figs. 2 and 3, we show the magnitude of the 3B wave
function obtained in two cases with Yamaguchi interactions as
a function of the magnitude of Jacobi momenta p1 and q1 with
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FIG. 3. Left: 3D plot of the 3B wave function for one repulsive
(V1) and two attractive Yamaguchi-type potentials (2A + R). Right:
relative error. Both plots are for the angle φ1 = 0. The results are
obtained with form factor parameters β = m = 1 and the potential
strength λ that reproduces 2B binding energy E2B = −0.1. The cal-
culations are performed with h̄c = mass = 1.

the angle between them being φ1 = 0. The first case, shown in
Fig. 2, is the eigenstate of the 3B system with three attractive
potentials (3A), and the second case, shown in Fig. 3, is the
wave function for the weakly bound state obtained with one
repulsive potential, V1, and two attractive ones (2A + R). We
also show the relative percentage error for the verification of
the Schrödinger equation, defined in Appendix D, with 3B
wave function and binding energy.

The plot of the wave function for the 3A case where p1
and q1 are aligned, presented in the left panel of Fig. 2,
shows that the momentum distribution is somewhat symmetric
due to the identical masses and the bosonic symmetry of the
system. When the repulsive potential V1 is introduced in the
case 2A + R, seen in the left panel of Fig. 3, the wave func-
tion develops a node line and becomes more sharply peaked
around the origin, the latter due to the small binding energy
(see Table II). The numerical accuracy of our calculations is
checked through the ratio |(E! − H!)/(E!)| and presented
in the right panels of Figs. 2 and 3 for the 3A and 2A + R
cases, respectively. As expected, the results for the 3A case
show quite good numerical accuracy, while the 2A + R re-
sults, mainly outside the node, are also accurate. As expected,
the region of the largest errors for the 2A + R case in the right
panel of Fig. 3 follows the node of the 3B wave function. In
Fig. 4, we present the contour plots of the 2A + R model in
the (p1 × q1) plane for φ1 = 0 (left panel) and the (p2 × q2)
plane with φ2 = 0 (right panel). The node line, visible in
the left panel of Fig. 4, similarly to the left panel in Fig. 3,
comes from the cancellation between ψ1 and ψ2 + ψ3 due to
the reversed sign of ψ1 with respect to ψ2 and ψ3 from the
repulsive potential V1; then

ψ1(p1, q1, 0) = −ψ2(p2, q2,φ2) − ψ3(p3, q3,φ3), (15)

where φ2,3 = 0, and these relations implicitly define the node
line, understood by rewriting the momenta labeled by 2 and 3,
according to

p2 = − 1
2 p1 − 3

4 q1, q2 = p1 − 1
2 q1, (16a)

p3 = − 1
2 p1 + 3

4 q1, q3 = −p1 − 1
2 q1. (16b)

FIG. 4. Contour plots of the 3B wave function calculated for
three Yamaguchi-type potentials as a function of the magnitude of
Jacobi momenta. V1 is repulsive, and V2 and V3 are attractive. The
plots are for the angle φ1 = φ2 = 0. The results are obtained with
form factor parameters β = m = 1 and the potential strength λ that
reproduces 2B binding energy E2B = −0.1. The calculations are
performed with h̄c = mass = 1.

The node line is barely seen in the right panel of Fig. 4,
with the momenta expressed in terms of p2 and q2 with
φ2 = 0.

Another property of the wave function is the well-
defined maximum seen in both Figs. 3 and 4, which can be
qualitatively understood by a semiclassical picture and the
prevalence of the cluster structure. This dominant configura-
tion suggests that the electron and hole (denoted as particle
1) are very close and “moving together,” which relates the
momenta p1 and q1 and provides an interpretation of the
pattern of the maximum found in the left panel of Fig. 3
and around the whitish-yellow color of Fig. 4, namely, along
the line p1 ∝ q1 for the 2A + R model. In other words, the
relative velocity between the two electrons is the same as the
one between the far-apart electron and the hole, which forms
the strongly bound exciton, which is very clear in the situ-
ation where φ1 = 0. This also explains the obtained pattern
of the maximum of the wave function, with two branches
observed in the right panel of Fig. 3 in the (p2 × q2) plane,
as we shall discuss in more detail in what follows. We would
like to draw the reader’s attention to the practical signifi-
cance of such plots, which provide insights into the regions
where the wave function is more substantial. This informa-
tion is crucial for distributing mesh points appropriately to
obtain precise solutions to the Faddeev equations. We would
like to emphasize that each Faddeev component of the wave
function in our system carries the asymptotic form of the
total wave function in each pairwise interaction channel [48].
Specifically, in our context, the Faddeev component ψ1 at
asymptotically large distances of the hole to the center of mass
of the electron-electron interacting pair decays exponentially,
indicating that the two electrons are in a continuum state.
Similarly, at asymptotically large distances of the spectator
electron (particle 2) to the center of mass of the electron-hole
system (particles 3 and 1), the Faddeev component ψ2 decays
exponentially, signifying that this pair necessarily forms the
strongly bound exciton state. The same reasoning applies to
ψ3, where the electron-hole pair is formed by particles 1
and 2.

A scheme illustrates the clustering of the wave function:
ψ2 ∼ [3(e)1(h)]–2(e) and ψ3 ∼ [1(h)2(e)]–3(e), which should
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TABLE III. The inner product of the Faddeev components
〈ψi|ψ j〉 and their contribution to the normalization of the 3B wave
function |!〉.

j = 1 j = 2 j = 3

i = 1 0.0560 −0.1047 −0.1047
i = 2 −0.1047 0.4400 0.2413
i = 3 −0.1047 0.2413 0.4403

be the two dominant configurations, with the electrons in the
spin singlet state or an antisymmetric combination of different
valley states. Indeed in Table III, one observes that the Fad-
deev component ψ1 is suppressed with respect to ψ2 and ψ3 by
one order of magnitude considering the inner products. With
that in mind, we should now look to Fig. 4 (right panel) for the
modulus of the total wave function, |!| in the (p2 × q2) plane.
We identify two branches where |!| is larger: one for small
q2 and a diagonal one. The lower branch corresponds to the
contribution of ψ2 for q2 ≈ 0, which is the relative momentum
of the weakly bound spectator particle 2(e) with respect to the
strongly correlated pair of particles 1 and 3. The spread in the
values of p2 is associated with the small size of the strongly
bound exciton in the [3(e)1(h)]–2(e) configuration. The diago-
nal branch, p2 ∝ q2, where the momentum probability density
is enhanced, corresponds to the dominance of ψ3 associated
with the [1(h)2(e)]–3(e) configuration. In this case, electron 2
moves together with hole 1, as the exciton is strongly bound,
and electron 3 is the spectator.

V. TRIONS: RYTOVA-KELDYSH POTENTIAL

Building on our understanding gained from the 2A + R
Yamaguchi potential model in 2D, we now study the trion
binding energy and structure for the MoS2 layer with the
Rytova-Keldysh potential. The Rytova-Keldysh electron-hole
(e-h) [electron-electron (e-e)] interaction in momentum space
is given by [49]

Veh
ee

(q) = ± 1
4π2

(
1

4πε0

2πe2

q(1 + r0q)

)
, (17)

where the momentum transfer is defined by |q| = |p − p′|.
The parameters of the e-e and e-h potentials for the MoS2
layer are given in Table IV. The value of the screening length
r0 is fitted to give an exciton binding energy of −753 meV in
agreement with the value obtained from the measurement of
the exciton position in the absorption spectrum of a suspended
MoS2 layer [50] and the corresponding GW band gap [51].
For our reference, the expectation values of the kinetic and
potential energies in the exciton state are

〈H0〉 = 214.64 meV and 〈V 〉 = −967.96 meV, (18)

which are related to the manifestation of this strongly bound
two-particle system. The example studied in Sec. IV has al-
ready taught us that the accuracy of our numerical solution
of the Faddeev equations decreases in the case of 2A + R
Yamaguchi potential with respect to the 3A attractive case
(cf. Table II). This expected behavior of our numerical solu-
tions is due to the small trion binding energy and the node

TABLE IV. The parameters used in our calculations for the
Rytova-Keldysh electron-hole and electron-electron interactions,
defined in Eq. (17), for monolayer MoS2.

Value

r0 27.05 Å

ε0/e2 1
4πα

· 1
h̄c K−1 Å−1

α 137.035999084

me 0.47 m0 [52]

mh 0.54 m0 [52]

m0 0.510998950 MeV

1 eV 1.160451812 × 104 K

h̄c 1973.269804 eV Å

in the wave function. On top of that, considering that the
Rytova-Keldysh potential has a longer range when contrasted
with the Yamaguchi model, the numerical solution becomes
more challenging due to the competition between attraction
and repulsion with the same strength. To make this issue nu-
merically amenable, the repulsive Rytova-Keldysh potential
between the electrons is screened by two different regulators
[53], namely,

V (q) → (1 − e−l0q)Vee(q) or e−l0 qVee(q), (19)

where, in the first case, the Rytova-Keldysh potential is
damped at small momentum or large distance, while in the
second one it is damped at large momentum or small distance.
Figure 5 illustrates quantitatively both screenings [Eq. (19)]
with l0 = 10 Å. In our actual calculations, the results for the
trion binding energy will be obtained by performing the ex-
trapolation to l0 = 0. Before that, the results of the expectation
values for the Rytova-Keldysh potential screened at low mo-
menta for l0 = 100 Å are depicted in Table V. Due to the
contribution of the spectator electron external to the exci-
ton, the expectation value of the kinetic energy is somewhat

0.0 0.2 0.4 0.6 0.8 1.0

q (Å-1)
0.0

0.2

0.4

0.6

0.8

1.0

V
(q

)/V
ee

(q
)

V(q)=e(-l0q)×Vee(q)

V(q)=(1 - e(-l0q))×Vee(q)

FIG. 5. The screening function V (q)/Vee(q) as a function of
the momentum transfer q for V (q) → e−l0 qVee(q) (blue curve) and
V (q) → (1 − e−l0q )Vee(q) (red curve) with screening parameter l0 =
10 Å.
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TABLE V. Expectation values (EVs) in meV of the 3B free
Hamiltonian 〈H0〉, pair interactions 〈Vi〉, total 2B interactions 〈V 〉,
3B Hamiltonian 〈H〉, and binding energy E3B in meV calculated
for Rytova-Keldysh potentials [two attractive plus one repulsive
interaction (2A + R)] given in Eq. (17) with screening parameter
l0 = 100 Å in the scheme V1(q) → (1 − e−l0q )Vee(q). The relative
percentage difference is Error = |(〈H〉 − E3B)/E3B| × 100%.

EV 2A + R

〈H0〉 + 247.66
〈V1〉 + 443.39
〈V2〉 −825.90
〈V3〉 −825.76
〈V 〉 −1208.27
〈H〉 −960.61
E3B −960.58
Error + 0.00312

larger than the one found for the exciton given in Eq. (17)
with a value of 214.64 meV compared with the trion one of
247.66 meV. The expectation values of the attractive poten-
tials V2 and V3 are somewhat lower in magnitude than the one
for the exciton of −967.96 meV. In the trion the magnitude of
the potential energy of the repulsive potential is about one-half
of the attractive one. This last feature can be understood as the
electrons should be more separated than the relative distance
within the strongly bound electron-hole pair. While the trion
and exciton splitting is 207.29 meV, it shows a weakly bound
trion with respect to the exciton. Table V also indicates the
good accuracy found in our solution by comparing the results
from the expectation value of the Hamiltonian 〈H〉 and the
energy E3B obtained by solving the coupled Faddeev integral
equations, which shows a deviation of only 0.003% between
these two values. In Appendix F, we present a convergence
study of the trion energy, as summarized in Table VIII, which
requires the extrapolation in the number of quadrature points.
It is noteworthy that the results presented in Table V are not
converged in terms of the number of quadrature points but
are good enough to compute the expectation value of the
Hamiltonian, which should be interpreted as a lower bound.
The extrapolated results from Table VIII are collected in
Table VI for the two forms of the screening implemented
for the Rytova-Keldysh electron-electron repulsive potential.
Figure 6 shows this extrapolation as a function of l−1

0 (left
panel) for the short distance screening trion energies of the
repulsive potential and l0 (right panel) for the large distance
screening. As shown in Fig. 6, the results exhibit a perfect
linear behavior which allows an accurate extrapolation to
the trion binding energy. The linear extrapolation on bind-
ing energies obtained from the first screening (left panel)
on the domain [70, 100] Å−1 leads to a trion binding energy
of −49.6 meV, while a linear extrapolation on the second
screening (right panel) on the domain [7, 10] Å leads to a trion
binding energy of −49.4 meV. These results lie in the range
of previous experiments reported in Refs. [28,29]. It is worth
noting that in excitonic physics, the electron-hole interaction
comprises both attractive screened interaction and repulsive
exchange interaction. However, for strongly bound excitons,
the exchange interaction generally has a small contribution,

TABLE VI. Trion ground-state binding energies E3B for different
values of screening parameter l0 obtained from the two screening
schemes shown in Fig. 5 and given in Eq. (19).

V (q) → e−l0 qVee(q) V (q) → (1 − e−l0q )Vee(q)

l0 (Å) E3B (meV) l0 (Å) E3B (meV)

25 −1195.1 1 −1444.8
20 −1150.6 5 −1309.6
17 −1117.3 10 −1212.0
15 −1091.5 15 −1147.7
13 −1062.2 20 −1101.2
11 −1028.9 30 −1037.3
10 −1010.6 50 −965.6
9 −991.0 70 −924.8
8 −970.3 90 −898.2
7 −948.0 100 −888.0

as demonstrated in Ref. [54]. For the trion, apart from the
electron-hole interaction, there is also an exchange term for
the electron-electron interaction. However, considering that
the electron in the trion is weakly bound to the exciton and
associated with small momenta as compared with the recip-
rocal vector, the exchange terms are presumably much less
significant in determining the trion binding energy as com-
pared with the contribution to the exciton energy, which is
already small in this case. Despite this, the Faddeev approach
to solving the Hamiltonian eigenvalue problem in momentum
space is suitable for dealing with nonlocal exchange terms in
a similar way for the exciton Hamiltonian [55], which is left
for a future study.

VI. RYTOVA-KELDYSH TRION CLUSTERIZATION

Trion structure is studied for the screened electron-
electron potential V1(q) → (1 − e−l0q)Vee(q) with l0 = 100 Å.

0 2 4 6 8 10
l0 (Å)
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-100

-80
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-40

e−l0q × Vee

00.0050.010.015
l0
−1 (Å−1)

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

E t (m
eV

)

(1−e−l0q) ×Vee

Et(l0
−1=0)→ −49.6 meV Et(l0=0) → −49.4 meV

FIG. 6. Extraction of trion binding energy Et with a linear ex-
trapolation on energies obtained from two screenings (see Table VI)
at the physical points l−1

0 = 0 Å−1 (left panel) and l0 = 0 Å (right
panel).
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TABLE VII. The inner product of the Faddeev components
〈ψi|ψ j〉 and their contributions in the normalization of the 3B wave
function |!〉 obtained for the screening parameter l0 = 100 Å in the
screening scheme V1(q) → (1 − e−l0q )Vee(q).

j = 1 j = 2 j = 3

i = 1 0.1772 −0.2808 −0.2806
i = 2 −0.2808 0.5197 0.4534
i = 3 −0.2806 0.4534 0.5190

We chose this particular model since the electron potential
is screened at large distances, which acts together with the
natural screening of the exciton interaction with the spectator
electron. In this sense, the two effects act coherently, mak-
ing the trion be overbinding with an energy of −207.3 meV
compared with the extrapolated one of −49.6 meV. We should
keep in mind that features associated with small trion binding
energy, with respect to the exciton, will be further highlighted
towards the converged trion with Rytova-Keldysh potential.
Our analysis is based on the screened electron-electron poten-
tial, which for the moment, is a limitation of our numerical
method applied to the repulsive Rytova-Keldysh potential.
Despite that, we study the structure of the trion within the
screened model to shed light on its structure and compare it
with the 2A + R Yamaguchi model.

We should emphasize that we consider a negatively
charged trion with one hole and two electrons, where the
two electrons will have the same effective mass. In general,
for TMDs, the electrons have the same mass if they belong
to the same band or minimum point. This happens for (1)
intravalley electrons with the same spin or (2) intervalley and
opposite spin electrons; however, they will have the same
mass if we neglect the spin-orbit coupling for the conduc-

tion band, which is the case in this paper. The overlaps
between the Faddeev components of the wave function are
given in Table VII. As expected, the relative normalization
of the component 〈ψ1|ψ1〉, where the hole is the spectator
particle of the interacting electron-electron pair, is almost
three times smaller than 〈ψ2|ψ2〉 = 〈ψ3|ψ3〉. Similarly, we
have also observed it in the 2A + R Yamaguchi model (cf.
Table III), which shows a quite small overlap 〈ψ1|ψ1〉 with
respect to the total normalization of the wave function. The
configuration where the hole is a spectator of the interacting
electron-electron pair is suppressed, favoring the clusteriza-
tion of the wave function where the electron and hole are
close, forming essentially the exciton and a distant spectator
electron. We also observe the opposite sign of 〈ψ1|ψ2,3〉 with
respect to 〈ψ2|ψ3〉, as a manifestation of the repulsive interac-
tion between the electrons. The comparison with the 2A + R
Yamaguchi potentials overlaps from Table III with the Rytova-
Keldysh results in Table VII, showing that the suppression of
ψ1 is much more dramatic for the former model. The reason
for this is twofold: (i) the relatively smaller difference between
the 3B and 2B binding energies from the Yamaguchi model,
namely, (E3B − E2B)/E3B = 0.169 compared with 0.216 from
the Rytova-Keldysh screened model, and (ii) the short-range
Yamaguchi potential, while the Rytova-Keldysh potential has
a long-range tail. However, the Rytova-Keldysh trion has a
considerably smaller 3B binding energy than the resulting
one for the screened Rytova-Keldysh electron-electron po-
tential, namely, (E3B − E2B)/E3B = 0.061 obtained from the
extrapolated value of −802.9 meV in Fig. 6. Therefore we
expect a more evident clusterization of the exciton within
the trion. In Fig. 7, the results for the Faddeev components
ψ1(p1, q1,φ1 = 0) (top panels) and ψ2(p2, q2,φ2 = 0) =
ψ3(p3, q3,φ3 = 0) (bottom panels) are shown, where the mo-
menta are defined in terms of p1 and q1 according to Eq. (16a).
The calculations were performed for l0 = 1, 30, 50, 70, 100 Å

FIG. 7. The evolution of the Faddeev components ψ1(p1, q1, φ1 = 0) (top panels) and ψ2(p1, q1, φ1 = 0) (bottom panels) obtained for the
screening parameter l0 = 1, 30, 50, 70, 100 Å in the screening scheme V1(q) → (1 − e−l0q )Vee(q).
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FIG. 8. The evolution of the total wave function !(p1, q1, φ1 = 0) (top panels) and !(p2, q2, φ2 = 0) (bottom panels) obtained for the
screening parameter l0 = 1, 30, 50, 70, 100 Å in the screening scheme V1(q) → (1 − e−l0q )Vee(q).

(panels from left to right) with the electron-electron screened
potential V1(q) → (1 − e−l0q)Vee(q). As l0 increases, the trion
binding decreases and the electrons are pushed away from
each other. At the same time, one of them has a hole in the
vicinity region of the exciton size as expressed by the domi-
nant configurations, namely, ψ2 ∼ [3(e)1(h)]–2(e) and ψ3 ∼
[1(h)2(e)]–3(e) (the square brackets represent the exciton),
while ψ1(p1, q1, 0) just reflects the short-range repulsion,
spreading q1 and p1 to larger values, as depicted in the top
panels of Fig. 7. For small values of the screening parameter
l0, in which the long-range tail of the repulsive potential is
damped, we observe, analyzing the momentum distribution of
ψ1(p1, q1, 0), larger trion bindings tending to be more sym-
metrical in p1 and q1. As a consequence, it implies a geometric
configuration where the hole is equally separated from the two
electrons, disfavoring the cluster structure against a more sym-
metrical configuration, schematically like e–h–e. The node
appears in ψ1 at larger values of p1 for large l0 values, as the
repulsion is increased, and it is intense at the short range.

In the bottom panels of Fig. 7, the evolution of
ψ2(p2(p1, q1), q2(p1, q1),φ2 = 0) for φ1 = 0 with l0 is
shown in the (p1 × q1) plane. As already observed in the top
panels of Fig. 7 for ψ1, as l0 increases, the configuration mi-
grates from the symmetrical situation, e–h–e, to a cluster one,
[3(e)1(h)]–2(e). The node line becomes evident together with
the cluster structure when the long-range screening is reduced,
and the electron becomes weakly bounded with respect to the
exciton. Higher amplitude values of the wave function are
found for p1 ∝ q1, when the cluster structure dominates, as
already discussed for the 2A + R Yamaguchi 3B model.

The total wave function is presented in Fig. 8 in the (p1 ×
q1) (top panel) and (p2 × q2) (bottom panel) planes for several

values of l0 from 1 to 100 Å with φ1 = φ2 = 0. The reduction
of the screening at large distances makes the pattern similar
to the one observed for ψ2 in the (p1 × q1) plane [cf. bottom
panels in Fig. 7], more evident due to its dominance over ψ1,
reminding us that ψ2 ≡ ψ3 from the symmetric configuration
of the two electrons, which have to be in a singlet spin state
or an antisymmetric combination of different valley states.
In the bottom panels of Fig. 8, results for the total wave
function are presented in the (p2 × q2) plane, where again, the
more symmetric e–h–e configuration dominates at the strong
trion binding and weaker repulsion between the electrons. By
reducing the screening of the repulsive potential, the electron
becomes weakly bound to the exciton, and the system presents
an evident cluster structure with the coherent superposition of
the two configurations [3(e)1(h)]–2(e) and [1(h)2(e)]–3(e). As
a function of p2 and q2, the total wave functions, demonstrated
in the top panels of Fig. 8, exhibit two branches of higher
probability density, namely, for p2 ∝ q2 and for q2 small with
p2 spreading in the region shown in the figure. This behavior
was found in the 2A + R Yamaguchi model and is associ-
ated with the cluster structure, already discussed in detail in
Sec. IV.

In Fig. 9, the angular dependence in φ1 is explored for
l0 = 100 Å. Note that, at φ1 = θ or φ1 = 180◦ − θ , the results
are the same due to the symmetry of the wave function by
exchanging the momentum of the electrons. The configuration
space wave function is symmetrical by the exchange of the
electrons once the antisymmetry is ensured by the spin state.
The slope of the node line is deformed when φ1 changes be-
tween p1 and q1 and becomes more elongated at 90◦. The node
line format is basically kept regardless of the φ1 parameters,
which in turn reflects the situation where the e–h–e system
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FIG. 9. The evolution of the total wave function !(p1, q1, φ1) with respect to the angle φ1 for a fixed screening parameter l0 = 100 Å in
the screening scheme V1(q) → (1 − e−l0q )Vee(q).

has a hole with small momentum with respect to the center of
mass of the electron pair. It can be clearly seen that the zero
of the wave function in the (p1 × q1) plane starts at q1 = 0.

Finally, in Fig. 10, we directly compare the trion wave
functions computed with the Rytova-Keldysh (left panel)
and 2A + R Yamaguchi (right panel) models. For that, we
performed a rescaling of the Yamaguchi separable potential
model to physical units of the exciton and trion. The results for
the exciton and trion were obtained for the Yamaguchi model
in units of h̄ = m = 1. Turning to physical units, we have that

E2B = − h̄2

me
λ2 0.1 and E3B = − h̄2

me
λ2 0.120 34,

and to obtain the dimensional constant λ we use the exciton
binding energy of E2B = −753 meV and m = (me + mh)/2 =
0.505 m0, which gives λ = 0.706 576 Å−1. The trion binding
energy in the 2A + R Yamaguchi model in meV units is
Et = 153.225 meV, comparable to the value of 207.26 meV
from the regulated repulsive Rytova-Keldysh potential with
l0 = 100 Å given in Table V. After the rescaling to physical
units, the comparison shows essentially the same structure
of the trion wave function resulting from calculations with
the Rytova-Keldysh and 2A + R Yamaguchi potentials. Re-
markably, the node line has the same form, and the region
where the wave function attains the highest values is to the
left of the node line with p1 ∝ q1. The node line is shifted
to larger values of p1 for the 2A + R Yamaguchi model with
respect to the Rytova-Keldysh potential, which should reflect

0 0.15 0.3
0

0.15

0.3

-4 -2 0

FIG. 10. Comparison between the trion wave function calculated
with the Rytova-Keldysh potential (left panel) and rescaled Yam-
aguchi potential model (right panel) for φ1 = 0.

the short-range nature of the Yamaguchi potential contrasting
with the Rytova-Keldysh potential.

VII. SUMMARY

Our work can be helpful for theoretical-computational
research on trions and includes the following main as-
pects: (i) We provided a general formulation of the Faddeev
equations to compute the wave function for a 2D trion in
momentum space; (ii) we developed a method for the accu-
rate calculation of the trion binding energy in freestanding
monolayer MoS2 with different regularization schemes for the
repulsive electron-electron Rytova-Keldysh potential, with the
numerical precision checked by computing the expectation
value of the Hamiltonian; and (iii) we analyzed in detail
the degree of clusterization of the weakly bound trion state
through the momentum distributions of the total wave func-
tion and its Faddeev components.

The repulsive electron-electron Rytova-Keldysh potential
posed a numerical challenge in solving the Faddeev equations.
To overcome that, we have devised two different regulariza-
tion functions applied only to the repulsive term, by means
of which the trion becomes weakly bound with respect to
the exciton. The two different choices for the regularization
functions were (i) e−l0q (7 < l0 < 25 Å), which acts in the
high-momentum-transfer region, and (ii) 1 − e−l0q (1 < l0 <
100 Å), which acts in the low-momentum-transfer region. The
results were then extrapolated to l−1

0 → 0 in the former case
and to l0 → 0 in the latter one. The extrapolation results were
good in one part in 104, resulting in a prediction of the trion
energy of −49.3(1) meV for monolayer MoS2. Our result
lies in the range of the experimental results for suspended
samples, 44–80 meV, as reported in Refs. [28,29]. It cannot
be compared with the results where the MoS2 is deposited
on a substrate, where the trion binding energy lies in the
range 20–43 meV [15,25–27], since the interaction becomes
weaker due to screening, affecting both the exciton and trion
complexes. The value of −49.3(1) meV is within the previ-
ous numerical results and particularly close to the converged
negatively charged intralayer trion binding energy computed
within an ab initio many-body theory, which was found to be
58 meV [37] with the exciton binding energy of −0.76 eV.

Furthermore, we have analyzed the structure of the trion
wave function by decomposing it into its Faddeev compo-
nents for both the Rytova-Keldysh and Yamaguchi potentials.
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Despite the fact that the two interactions have different large-
distance tails, we have observed qualitative similarities in
the wave functions. Both trion models showed a remarkable
dominance of the [eh]–e configurations, corresponding to the
Faddeev components of the wave function where the electron
is a spectator. We should observe that the electrons are in a
symmetric configuration by exchanging their spatial coordi-
nates and are considered to be in a spin singlet state or an
antisymmetric combination of different valley states.

We expect that without regulating the repulsive Rytova-
Keldysh potential, the dominance of the strong cluster
structure [eh]–e would be more evident, as the trion will be
even more weakly bound, as indicated by the extrapolated
results. Therefore our study suggests that a realistic Rytova-
Keldysh potential calculation, with the small relative exciton
and trion splitting, can profit from the cluster structure and use
it to build more accurate methods, eventually relying on the
dominant exciton structure together with a simplified poten-
tial that contains the low-energy electron-electron continuum
information.
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APPENDIX A: MOMENTUM SPACE REPRESENTATION
OF FADDEEV EQUATIONS

The Faddeev components, i.e., the projections of the cou-
pled Faddeev equations (3) on the 3B basis states |piqi〉, can
be written as

〈piqi|ψi〉 = G(i, jk)
0 (E , pi, qi )〈piqi|ti[|ψ j〉 + |ψk〉]. (A1)

Inserting the completeness relation of Eq. (6) into Eq. (A1)
leads to

〈piqi|ψi〉 = G(i, jk)
0 (E , pi, qi )

∫
d2 p′

i

∫
d2q′

i

× 〈piqi|ti|p′
iq

′
i〉[〈p′

iq
′
i|ψ j〉 + 〈p′

iq
′
i|ψk〉], (A2)

where

G(i, jk)
0 (E , pi, qi ) = 1

E − p2
i

2µ jk
− q2

i
2µi, jk

(A3)

FIG. 11. The coordinate system for the solution of the coupled
Faddeev integral equations (A9).

and

〈piqi|ti|p′
iq

′
i〉 = δ(qi − q′

i )〈pi|ti|p′
i〉. (A4)

In order to evaluate Eq. (A2), we need to compute 〈p′
iq

′
i|ψ j〉

and 〈p′
iq

′
i|ψk〉, where, by inserting a completeness relation,

one obtains

〈p′
iq

′
i|ψ j〉 =

∫
d2 p′′

j

∫
d2q′′

j 〈p′
iq

′
i|p′′

j q
′′
j 〉〈p′′

j q
′′
j |ψ j〉

= 〈p j (p′
i, q′

i ), q j (p′
i, q′

i )|ψ j〉,

〈p′
iq

′
i|ψk〉 =

∫
d2 p′′

k

∫
d2q′′

k 〈p′
iq

′
i|p′′

k q′′
k 〉〈p′′

k q′′
k |ψk〉

= 〈pk (p′
i, q′

i ), qk (p′
i, q′

i )|ψk〉, (A5)

where the relation between different Jacobi momenta is given
by

pi(p j, q j ) ≡ Pi j (p j, q j ) = αi jp j + βi jq j, (A6)

qi(p j, q j ) ≡ Qi j (p j, q j ) = γi jp j + ηi jq j, (A7)

with

αi j = − mj

mjk
, βi j = Ei j

mk mi jk

mikmjk
,

γi j = −Ei j, ηi j = − mi

mik
,

mi j = mi + mj, mi jk = mi + mj + mk,

Ei j =
{

1 for cyclic permutation
−1 for anticyclic permutation.

(A8)

By using Eqs. (A4) and (A5) we can rewrite Eq. (A2) as

ψi(pi, qi ) = G(i, jk)
0 (E , pi, qi )

∫
d2 p′

i ti(pi, p′
i )

×[ψ j (P ji(p′
i, qi ),Q ji(p′

i, qi ))

+ψk (Pki(p′
i, qi ),Qki(p′

i, qi ))]. (A9)

To solve the coupled 2D Faddeev integral equations, i.e.,
Eq. (A9), as shown in Fig. 11, we choose a coordinate system

165427-11



K. MOHSENI et al. PHYSICAL REVIEW B 107, 165427 (2023)

where pi is parallel to the x axis and p′
i and qi are free in the

2D space. So the angle variables will be

(q̂i, p̂i ) = φi, (A10)

(p̂′
i, p̂i ) = φ′

i, (A11)

(q̂i, p̂′
i ) = φqi,p′

i
= φi − φ′

i . (A12)

The shifted momentum and angle variables are defined as

Pi j ≡ Pi j (p′
j, q j ) = |αi jp′

j + βi jq j | =
√(

PX
i j

)2 +
(
PY

i j

)2
,

Qi j ≡ Qi j (p′
j, q j ) = |γi jp′

j + ηi jq j | =
√(

QX
i j

)2 +
(
QY

i j

)2
,

φi j = (P̂i j, Q̂i j ) = atan2(det, dot), 0 < φi j < 2π ,
(A13)

where

PX
i j = αi j p′

j cos(φ′
j ) + βi jq j cos(φ j ),

PY
i j = αi j p′

j sin(φ′
j ) + βi jq j sin(φ j ),

QX
i j = γi j p′

j cos(φ′
j ) + ηi jq j cos(φ j ),

QY
i j = γi j p′

j sin(φ′
j ) + ηi jq j sin(φ j ) (A14)

and

det = PX
i j · QY

i j − PY
i j · QX

i j

dot = PX
i j · QX

i j + PY
i j · QY

i j . (A15)

APPENDIX B: 3B WAVE FUNCTIONS IN MOMENTUM
SPACE

The 3B wave function is given as

! =
3∑

i=1

ψi, (B1)

where

〈piqi|!〉 = 〈piqi|ψi〉 + 〈piqi|ψ j〉 + 〈piqi|ψk〉. (B2)

Using Eq. (A5) and the coordinate system defined in Fig. 11,
one has that

!(pi, qi,φi ) = ψi(pi, qi,φi ) + ψ j (P ji(pi, qi,φi ),

Q ji(pi, qi,φi ),φ ji(pi, qi,φi ))

+ ψk (Pki(pi, qi,φi ),

Qki(pi, qi,φi ),φki(pi, qi,φi )). (B3)

The 3B wave function is normalized as

〈!|!〉 =
3∑

i=1

〈!|ψi〉

= 2π

∫ ∞

0
d pi pi

∫ ∞

0
dqi qi

∫ 2π

0
dφi !

2(pi, qi,φi )

= 2π

∫ ∞

0
d pi pi

∫ ∞

0
dqi qi

∫ 2π

0
dφi !(pi, qi,φi )

× [ψi(pi, qi,φi ) + ψ j (P ji(pi, qi ),Q ji(pi, qi ),φ ji )

+ ψk (Pki(pi, qi ),Qki(pi, qi ),φki )] = 1. (B4)

APPENDIX C: EXPECTATION VALUE OF THE 3B
HAMILTONIAN

By having the 3B wave function, the expectation value of
3B Hamiltonian 〈H〉 can be obtained as

〈!|H |!〉 = 〈!|H0|!〉 + 〈!|V |!〉, (C1)

where

〈!|H0|!〉 = 2π

∫ ∞

0
d pi pi

∫ ∞

0
dqi qi

(
p2

i

2µ jk
+ q2

i

2µi, jk

)

×
∫ 2π

0
dφi !

2(pi, qi,φi ) (C2)

and

〈!|V |!〉 =
3∑

i=1

〈!|Vi|!〉

= 2π

3∑

i=1

∫ ∞

0
d pi pi

∫ ∞

0
dqiqi

∫ 2π

0
dφi

∫ ∞

0
d p′

i p′
i

×
∫ 2π

0
dφ′

i!(pi, qi,φi )Vi(pi, p′
i,φ

′
i )

× !(p′
i, qi,φi − φ′

i ). (C3)

The matrix elements of non-PW potentials can be obtained
from the summation of PW components as

V (pi, p′
i,φ

′
i ) = 1

2π

∞∑

m=0

εmcos(mφ′
i )Vm(pi, p′

i ). (C4)

APPENDIX D: VERIFICATION OF THE 3B
SCHRÖDINGER EQUATION IN 2D

The Schrödinger equation for the bound state of three par-
ticles is given by

Et|!〉 = H |!〉 = (H0 + Vi + Vj + Vk )|!〉. (D1)

Using the three different sets of Jacobi momenta in momen-
tum space, we obtain

Et!(pi, qi ) =
[

p2
i

2µ jk
+ q2

i

2µi, jk

]
!(pi, qi )

+
∫

d2 p′
i Vi(pi, p′

i ) !(p′
i, qi )

+
∫

d2 p′
j Vj (P ji(pi, qi ), p′

j ) !(p′
j,Q ji(pi, qi ))

+
∫

d2 p′
k Vk (Pki(pi, qi ), p′

k )!(p′
k,Qki(pi, qi )).

(D2)
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TABLE VIII. The convergence of trion ground-state binding energies (in meV) as a function of the number of mesh points for Jacobi
momenta Np = Nq obtained for different values of screening parameter l0 for screening electron-electron interactions V (q) → e−l0 qVee(q)
(upper section of table) and V (q) → (1 − e−l0q )Vee(q) (lower section of table). The last row of each section of the table shows the extrapolation
of trion energy eigenvalues to an infinite number of mesh points.

l0 (Å)

Np = Nq 25 20 17 15 13 11 10 9 8 7

200 −1275.6 −1231.1 −1197.7 −1171.8 −1142.5 −1109.0 −1090.5 −1070.8 −1049.8 −1027.6
250 −1258.7 −1214.2 −1180.8 −1155.0 −1125.6 −1092.2 −1073.7 −1054.1 −1033.0 −1011.5
300 −1248.3 −1203.8 −1170.4 −1144.6 −1115.3 −1081.8 −1063.4 −1043.7 −1022.8 −1000.7
350 −1241.3 −1196.8 −1163.5 −1137.7 −1108.3 −1074.9 −1056.5 −1036.8 −1016.0 −993.7
Np, Nq → ∞ −1195.1 −1150.6 −1117.3 −1091.5 −1062.2 −1028.9 −1010.6 −991.0 −970.3 −948.0

l0 (Å)

Np = Nq 1 5 10 15 20 30 50 70 90 100

200 −1588.7 −1447.8 −1346.2 −1279.4 −1231.0 −1165.0 −1090.8 −1049.3 −1023.3 −1014.8
250 −1558.6 −1418.8 −1318.1 −1251.8 −1203.8 −1138.2 −1064.7 −1023.6 −998.3 −988.8
300 −1540.0 −1400.9 −1300.7 −1234.8 −1187.0 −1121.7 −1048.4 −1007.1 −981.1 −972.3
350 −1527.5 −1388.9 −1289.1 −1223.3 −1175.7 −1110.6 −1037.5 −996.3 −970.0 −960.6
Np, Nq → ∞ −1444.8 −1309.6 −1212.0 −1147.7 −1101.2 −1037.3 −965.6 −924.8 −898.2 −888.0

By using the coordinate system defined in Fig. 11, Eq. (D2) can be written as

Et!(pi, qi,φi ) =
[

p2
i

2µ jk
+ q2

i

2µi, jk

]
!(pi, qi,φi ) +

∫ ∞

0
d p′

i p′
i

∫ 2π

0
dφ′

i Vi(pi, p′
i,φ

′
i ) !(p′

i, qi,φi − φ′
i )

+
∫ ∞

0
d p′

j p′
j

∫ 2π

0
dφ′

j Vj (P ji(pi, qi,φi ), p′
j,φP ji,p′

j
)!(p′

j,Q ji(pi, qi,φi ),φQ ji,p′
j
)

+
∫ ∞

0
d p′

k p′
k

∫ 2π

0
dφ′

k Vk (Pki(pi, qi,φi ), p′
k,φPki,p′

k
)!(p′

k,Qki(pi, qi,φi ),φQki,p′
k
). (D3)

APPENDIX E: NUMERICAL METHODS

The coupled Faddeev integral equations (7) have an eigen-
value equation form of λ ψ = K(E ) · ψ with the eigenvalue
λ = 1 and an eigenvector composed of three Faddeev com-

ponents ψ =
(ψi
ψ j
ψk

)
. We solve the eigenvalue equation with

the Lanczos iterative method, which is successfully imple-
mented in two-, three-, and four-body bound state calculations
[56–62]. Details of the implementation of this Lanczos tech-
nique are discussed in Appendix C2 of Ref. [63].

We start the iteration process with an initial Gaussian
guess for Faddeev components and stop it after 10–15 it-
erations. As the kernel of the eigenvalue equation K(E ) is
energy dependent, the solution of the eigenvalue equation can
be started with an initial guess for the 3B binding energy,
and the search in the binding energy is stopped when |λ −
1| ! 10−6. To discretize the continuous momentum and an-
gle variables, we use the Gauss-Legendre quadratures with
a linear mapping φ = π (1 + x) for angle variables and a
hyperbolic mapping p = 1+x

1−x for the magnitude of Jacobi
momenta.

A typical number of mesh points for angle variables is 60,
and for the magnitude of Jacobi momenta a typical number is
300. The solution of coupled Faddeev integral equations de-
mands a huge number of 3B interpolations on the Faddeev
components ψ j (P ji,Q ji,φ ji ) and ψk (Pki,Qki,φki ) for shifted
momentum and angle variables in each iteration step. We use
the cubic Hermite spline interpolation of Ref. [64] for its high
computational speed and accuracy. To avoid extrapolations
outside the Gauss-Legendre grids, we add an extra point 0 to
all Jacobi momenta grids and two extra points 0 and 2π to all
angle grids.

APPENDIX F: 3B ENERGY EIGENVALUES

In Table VIII, we provide our numerical results for 3B
energy eigenvalues obtained from the solution of the cou-
pled Faddeev integral equations (7), for the Rytova-Keldysh
potential given in Eq. (17), with two screening schemes for
electron-electron interactions shown in Fig. 5 and given in
Eq. (19), for different values of screening parameter l0 as a
function of the number of mesh points for Jacobi momenta
Np = Nq.

[1] J. Frenkel, On the transformation of light into heat in solids. I,
Phys. Rev. 37, 17 (1931).

[2] D. Fox and R. M. Hexter, Crystal shape dependence of exciton
states in molecular crystals, J. Chem. Phys. 41, 1125 (1964).

165427-13

https://doi.org/10.1103/PhysRev.37.17
https://doi.org/10.1063/1.1726016


K. MOHSENI et al. PHYSICAL REVIEW B 107, 165427 (2023)

[3] E. Gross, Optical spectrum of excitons in the crystal lattice,
Nuovo Cimento 3, 672 (1956).

[4] R. Knox, Introduction to exciton physics, in Collective Excita-
tions in Solids (Springer, New York, 1983), pp. 183–245.

[5] G. Dresselhaus, Absorption coefficients for exciton absorption
lines, Phys. Rev. 106, 76 (1957).

[6] R. J. Elliott, Intensity of optical absorption by excitons, Phys.
Rev. 108, 1384 (1957).

[7] M. A. Lampert, Mobile and Immobile Effective-Mass-Particle
Complexes in Nonmetallic Solids, Phys. Rev. Lett. 1, 450
(1958).

[8] G. Thomas and T. Rice, Trions, molecules and excitons above
the Mott density in Ge, Solid State Commun. 23, 359 (1977).

[9] K. Kheng, R. T. Cox, M. Y. d’ Aubigné, F. Bassani, K.
Saminadayar, and S. Tatarenko, Observation of Negatively
Charged Excitons x− in Semiconductor Quantum Wells, Phys.
Rev. Lett. 71, 1752 (1993).

[10] B. Stébé and A. Ainane, Ground state energy and optical ab-
sorption of excitonic trions in two dimensional semiconductors,
Superlattices Microstruct. 5, 545 (1989).

[11] C. J. Pethick and H. Smith, Bose–Einstein Condensation in
Dilute Gases (Cambridge University Press, Cambridge, 2008).

[12] D. S. Rosa, T. Frederico, G. Krein, and M. T. Yamashita, D-
dimensional three-body bound-state problem with zero-range
interactions, Phys. Rev. A 106, 023311 (2022).

[13] X. Song, J. Hu, and H. Zeng, Two-dimensional semiconductors:
recent progress and future perspectives, J. Mater. Chem. C 1,
2952 (2013).

[14] M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y.
Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen,
F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renor-
malization and excitonic effects in a monolayer transition metal
dichalcogenide semiconductor, Nat. Mater. 13, 1091 (2014).

[15] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and
J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater.
12, 207 (2013).

[16] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li,
B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz,
Exciton Binding Energy and Nonhydrogenic Rydberg Series in
Monolayer WS2, Phys. Rev. Lett. 113, 076802 (2014).

[17] A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R.
Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou,
A. Castellanos-Gomez, F. M. Peeters, Z. Liu, C. L. Hinkle,
S.-H. Oh, P. D. Ye, S. J. Koester, Y. H. Lee, P. Avouris, X.
Wang, and T. Low, Bandgap engineering of two-dimensional
semiconductor materials, npj 2D Mater. Appl. 4, 29 (2020).

[18] P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening
in two-dimensional insulators: Implications for excitonic and
impurity states in graphane, Phys. Rev. B 84, 085406 (2011).

[19] X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-c. Lin, Y.-H. Lee, S. Kéna-
Cohen, and V. M. Menon, Strong light–matter coupling in two-
dimensional atomic crystals, Nat. Photonics 9, 30 (2015).

[20] I. Epstein, A. J. Chaves, D. A. Rhodes, B. Frank, K. Watanabe,
T. Taniguchi, H. Giessen, J. C. Hone, N. M. R. Peres,
and F. H. L. Koppens, Highly confined in-plane propagating
exciton-polaritons on monolayer semiconductors, 2D Mater. 7,
035031 (2020).

[21] R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan,
F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy,
M. S. Skolnick, A. I. Tartakovskii, I. A. Shelykh, and

D. N. Krizhanovskii, Highly nonlinear trion-polaritons in a
monolayer semiconductor, Nat. Commun. 11, 3589 (2020).

[22] Y.-C. Chang, S.-Y. Shiau, and M. Combescot, Crossover
from trion-hole complex to exciton-polaron in n-doped two-
dimensional semiconductor quantum wells, Phys. Rev. B 98,
235203 (2018).
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