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The phylogenetic relationships of most Paleozoic tetrapod clades remain poorly resolved,
which is variably attributed to a lack of study, the limitations of inference from phenotypic
data, and constant revision of best practices. While refinement of phylogenetic methods
continues to be important, any phylogenetic analysis is inherently constrained by the
underlying dataset that it analyzes. Therefore, it becomes equally important to assess the
accuracy of these datasets, especially when a select few are repeatedly propagated. While
repeat analyses of these datasets may appear to constitute a working consensus, they are
not in fact independent, and it becomes especially important to evaluate the accuracy of
these datasets in order to assess whether a seeming consensus is robust. Here | address
the phylogeny of the Dissorophidae, a speciose clade of Paleozoic temnospondyls. This
group is an ideal case study among temnospondyls for exploring phylogenetic methods
and datasets because it has been extensively studied (eight phylogenetic studies to date)
but with most (six studies) using a single matrix that has been propagated with very little
modification. In spite of the conserved nature of the matrix, dissorophid studies have
produced anything but a conserved topology. Therefore, | analyzed an independently
designed matrix, which recovered less resolution and some disparate nodes compared to
previous studies. In order to reconcile these differences, | carefully examined previous
matrices and analyses. While some differences are a matter of personal preference (e.g.,
analytical software), others relate to discrepancies with respect to what are currently
considered as best practices. The most concerning discovery was the identification of
pervasive dubious scorings that extend back to the origins of the widely propagated
matrix. These include scores for skeletal features that are entirely unknown in a given
taxon (e.q., postcrania in Cacops woehri) and characters for which there appear to be
unstated working assumptions to scoring that are incompatible with the character
definitions (e.g., scoring of taxa with incomplete skulls for characters based on skull

length). Correction of these scores and other pervasive errors recovered a distinctly less
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resolved topology than previous studies, more in agreement with my own matrix. This
suggests that previous analyses may have been compromised, and that the only real
consensus of dissorophid phylogeny is the lack of one.

Peer] reviewing PDF | (2021:02:58550:3:0:NEW 7 Oct 2021)



PeerJ

Returning to the roots: resolution, reproducibility, and
robusticity in the phylogenetic inference of Dissorophidae
(Amphibia: Temnospondyli)

Bryan M. Gee!

0NN N kW N

'Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA

—
S O

Corresponding author:

Bryan Gee

UW Biology, Box 351800, Seattle, WA, 98195-1800, USA
Email address: bmgee@uw.edu

—_—
W N =

Peer] reviewing PDF | (2021:02:58550:3:0:NEW 7 Oct 2021)



PeerJ

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Abstract

The phylogenetic relationships of most Paleozoic tetrapod clades remain poorly resolved, which
is variably attributed to a lack of study, the limitations of inference from phenotypic data, and
constant revision of best practices. While refinement of phylogenetic methods continues to be
important, any phylogenetic analysis is inherently constrained by the underlying dataset that it
analyzes. Therefore, it becomes equally important to assess the accuracy of these datasets,
especially when a select few are repeatedly propagated. While repeat analyses of these datasets
may appear to constitute a working consensus, they are not in fact independent, and it becomes
especially important to evaluate the accuracy of these datasets in order to assess whether a
seeming consensus is robust. Here I address the phylogeny of the Dissorophidae, a speciose
clade of Paleozoic temnospondyls. This group is an ideal case study among temnospondyls for
exploring phylogenetic methods and datasets because it has been extensively studied (eight
phylogenetic studies to date) but with most (six studies) using a single matrix that has been
propagated with very little modification. In spite of the conserved nature of the matrix,
dissorophid studies have produced anything but a conserved topology. Therefore, I analyzed an
independently designed matrix, which recovered less resolution and some disparate nodes
compared to previous studies. In order to reconcile these differences, I carefully examined
previous matrices and analyses. While some differences are a matter of personal preference (e.g.,
analytical software), others relate to discrepancies with respect to what are currently considered
as best practices. The most concerning discovery was the identification of pervasive dubious
scorings that extend back to the origins of the widely propagated matrix. These include scores for
skeletal features that are entirely unknown in a given taxon (e.g., postcrania in Cacops woehri)
and characters for which there appear to be unstated working assumptions to scoring that are
incompatible with the character definitions (e.g., scoring of taxa with incomplete skulls for
characters based on skull length). Correction of these scores and other pervasive errors recovered
a distinctly less resolved topology than previous studies, more in agreement with my own matrix.
This suggests that previous analyses may have been compromised, and that the only real
consensus of dissorophid phylogeny is the lack of one.

Introduction

Inferring phylogenetic relationships remains one of the most timeless pursuits within
paleontology. The persistence of such studies owes to: (1) the great importance of phylogeny as
the macroevolutionary framework within which all other studies are situated; and (2) the
probable lability of any given topology when it relies entirely on morphological data and the
discretization of continuous traits. While there is broad interest in exploring clade-independent
practices that are applicable to a broad range of studies (e.g., comparison of likelihood and
parsimony methods, approaches to missing data and polymorphisms), it is equally important to
critically examine empirical datasets in order to assess their robusticity and reproducibility and to
seek to improve them whenever possible.

One longstanding practice is the propagation of an existing matrix with modifications, at
minimum by adding taxa of interest, and possibly more substantially by changing scores and
character sampling. In this, there is an implicit goal of developing a semblance of a consensus
matrix that the majority of workers have worked with (not necessarily within the confines of a
single collaboration) and therein agree (or assume) is well-designed to test the relationships of a
given in-group. However, in propagating a matrix, each derivate is inherently a pseudoreplicate
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(non-independent), especially when changes are minimal beyond taxon addition. While
propagation creates consistency between analyses, it also constrains the possible outcomes unless
substantial changes are made. If a consensus emerges from such a matrix, it must be assessed
whether this is a truly defensible consensus. The easiest way to test this is with a novel
(independent) matrix, assuming that the set of characters and their scoring do not substantially
overlap with (converge on) those of previous matrices. Conversely, if no consensus emerges
from repeated propagation of a largely unchanged matrix, this is perhaps even more troubling, as
it indicates that most topologies are labile and thus should not be relied upon heavily for
qualitative discussion or for integration into other studies.

This study focuses on the phylogenetic relationships of Dissorophidae, a clade of
dissorophoid temnospondyls (Fig. 1), as a case study in phylogenetic analyses of temnospondyls.
Temnospondyli, often referred to as ‘amphibians’ (nonamniote tetrapods in a broad historical
sense and as the putative amphibian stem-group in more recent works), is best known for the
clade’s longstanding role in the unresolved debate over lissamphibian origins. This ongoing
debate has drawn extensive attention in recent decades (e.g., Laurin & Reisz, 1997; Anderson,
2001; McGowan, 2002; Ruta, Coates & Quicke, 2003; Vallin & Laurin, 2004; Lee & Anderson,
2006; Carroll, 2007; Ruta & Coates, 2007; Anderson et al., 2008a; Pyron, 2011; Sigurdsen &
Green, 2011; Pardo, Small & Huttenlocker, 2017; Marjanovi¢ & Laurin, 2019; Daza et al., 2020;
Schoch, Werneburg & Voigt, 2020). Workers interested in this topic have largely focused on
Amphibamiformes, another dissorophoid clade, as the likely candidate within Temnospondyli.
However, outside of this context, the phylogeny of most temnospondyl clades has received scant
attention. Nonetheless, the intrarelationships of temnospondyls are of inherent import for this
debate, especially with the recent proposal of a diphyletic origin of Lissamphibia from within
Temnospondyli (Pardo, Small & Huttenlocker, 2017). Furthermore, with the increasing
tractability of so-called “big data” studies with wide taxonomic breadth that are rooted in
phylogenetic backbones, the phylogenetic relationships of these clades have acquired new import
beyond the narrow scope of taxonomic specialists. Temnospondyls are both an excellent case
study and an area in need of redress because they are not regarded as ‘charismatic taxa’ and thus
suffer from a paucity of workers. As a result, certain workers or working groups may
inadvertently exert disproportionate influence on the study of a given clade, which, in
phylogenetics, manifests as one worker’s matrix rapidly becoming the only utilized matrix.

Dissorophids, a clade of dissorophoids only peripherally related to the lissamphibian
origins debate, are an ideal case study within Temnospondyli. Firstly, the clade is very speciose,
with over 20 nominal species. The anatomical foundation is well-established for most of these
taxa, with nearly 20 studies published in the 215 century alone. As a result, there is a more
substantive history of phylogenetic inquiry into dissorophids than for less speciose Paleozoic
clades, such as eryopids or zatracheids. To date, there have been eight studies that addressed the
phylogeny of Dissorophidae (Frobisch & Reisz, 2012; Schoch, 2012; Holmes, Berman &
Anderson, 2013; Maddin et al., 2013; Schoch & Sues, 2013; Liu, 2018; Dilkes, 2020; Gee et al.,
2021). However, nearly all of them derive from the same source matrix (Schoch, 2012; Fig. 2)
and are nearly identical in scoring, taxon sampling, and character sampling. Surprisingly, there is
widespread disparity between their recovered topologies (Figs. 3—4). As remarked upon by
Dilkes (2020:26), “results of recent attempts to unravel the phylogeny of dissorophids, even
though they are using modified and hopefully updated versions of the same matrix, have
consistently shown a lack of agreement on a broader pattern of dissorophid relationships with
poor resolution and low support for most nodes that are present in a strict consensus tree.” The
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situation of dissorophids can be characterized as a largely consistent matrix producing largely
inconsistent results. Finally, the study of dissorophids is relevant for other studies. Dissorophids
are a common outgroup for amphibamiform studies, whether in comparative anatomical
descriptions or in quantitative studies (e.g., Pérez-Ben, Schoch & Béez, 2018; Atkins, Reisz &
Maddin, 2019). Additionally, as ubiquitous components of Early Permian terrestrial ecosystems,
dissorophids (and their sister group, Trematopidae), are frequently sampled in broader studies of
Paleozoic tetrapods at large (e.g., Brocklehurst et al., 2018; Dunne et al., 2018; Pardo et al.,
2019).

I previously addressed the phylogeny of Trematopidae, the sister group to Dissorophidae
(collectively Olsoniformes; Anderson et al., 2008b), which is less studied and for which there
also remains no consensus (Gee, 2020b; Fig. 5). A key aspect of my previous study was
demonstrating how taxon sampling (and more specifically, selective exclusion) can drastically
improve or alter topological resolution. Previous olsoniform studies have either focused on
dissorophids or trematopids — there has never been a matrix that evenly samples these clades as a
collective in-group. The closest approximation is Atkins, Reisz & Maddin (2019), a derivate of
Schoch (2018a) that samples six of the 10 trematopids (deficient in Carboniferous taxa as with
other studies) and 11 dissorophids. Schoch’s (2018a) dissorophoid matrix is in turn derived from
Schoch’s (2012) dissorophid matrix, though with a different taxon sample than that of Atkins,
Reisz & Maddin.

In this study, I expand the taxon and character sampling of my previous trematopid-
centric matrix to encompass dissorophids, thereby forming such a matrix. I opted to use my
matrix as the foundation, rather than the long-propagated dissorophid matrix of Schoch (2012) or
more modified derivates like that of Schoch (2018a). This decision was motivated by a desire to
approach these questions from as independent of a perspective as possible and in light of the
markedly disparate topologies of different derivates of Schoch’s matrix despite the matrix’s
conserved nature. While it broadly samples Olsoniformes, this study is targeted primarily
towards dissorophids simply because I have recently focused on trematopids. There are three
primary objectives: (1) to test whether this independent matrix can produce either better
resolution or stronger nodal support compared to previous studies and in turn to interpret that
resolution; (2) to assess factors that might contribute to potentially spurious resolution in
analyses that recover a high degree of resolution or that confound recovery of resolution in
analyses that recover a low degree of resolution; and (3) to summarize the present state of
Dissorophidae and to identify key areas in need of redress in order to work towards a consensus.

Materials & Methods

Taxon sampling. | sampled the vast majority of olsoniforms, with all ten of the undisputed
trematopid species carried over from my previous analysis (Gee, 2020b). Acheloma dunni is
regarded as a junior synonym of Acheloma cumminsi, and their scores are thus merged here.
Phonerpeton whitei is excluded on the basis of a suspect differentiation from Phonerpeton pricei,
which stems from the absence of detailed description or illustration. I expanded the sample to
include most dissorophids, the recently described olsoniform Palodromeus bairdi (Schoch, Hook
& Henrici, 2020), and the putative ‘basal’ dissorophoid Perryella olsoni (Table 1).

In my previous study, I scored practically every published and figured trematopid
specimen. I opted for a more selective approach in adding dissorophids, and the trematopid
specimen-level OTUs are not carried over. The main reason is that many dissorophid specimens
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consist only of neural spines and osteoderms (e.g., DeMar, 1966b; May et al., 2011; Gee, Bevitt
& Reisz, 2019) and can only be scored for a handful of characters (< 10%). Dissorophid taxa that
are excluded in their entirety are: Aspidosaurus glascocki, “Aspidosaurus™ apicalis,
“Aspidosaurus” crucifer, “Aspidosaurus” peltatus, and Astreptorhachis ohioensis. Very
fragmentary cranial remains or those without sutures were excluded unless they were the
holotype of a valid taxon (e.g., Broiliellus arroyoensis), as similar specimens were frequently
problematic in my trematopid analysis. This exclusion includes the holotypes of “Fayella
chickashaensis” and “Trematopsis seltini,” both too poorly preserved to be scored, and two
junior synonyms of D. multicinctus, “Otocoelus mimeticus” and “Otocoelus testudineus,” both
characterized only by relatively brief and dated descriptions (Cope, 1896a, 1896b). The only
holotype of a junior synonym that is sampled here is “Longiscitula houghae” (= D. multicinctus)
because its cranial sutures are well-described and figured (DeMar, 1966a; Milner, 2003).
Additionally, testing interspecific ontogenetic disparity in dissorophids was not a focus of this
study (addressed in the Discussion), and therein assessing whether the matrix could detect
intraspecific ontogenetic variation as a proof of concept was not as essential. Almost two-thirds
of dissorophids are represented only by the holotype in any event. I did run one analysis to assess
this, and thus Anakamacops petrolicus, Cacops morrisi, Cacops woehri, and Conjunctio
multidens are scored at the specimen level.

Schoch & Milner (2014) listed several taxa as possible early-diverging dissorophoids:
Macrerpeton huxleyi from the Late Carboniferous of Ohio; Parioxys ferricolus and Parioxys
bolli from the Early Permian of Texas; Perryella olsoni from the Early Permian of Oklahoma;
and Stegops newberryi from the Late Carboniferous of Ohio. Parioxys ferricolus and S.
newberryi are in need of redescription. Parioxys bolli (Carroll, 1964b) is included to test the
performance of an exclusively postcranial skeleton (the holotype and only known specimen).
Perryella olsoni is included, but its position should only be interpreted in light of assumed
dissorophoid affinities. Ruta & Bolt (2006) considered it to be a dvinosaur and recovered it as
such in a broad analysis of Paleozoic temnospondyls, while Schoch (2018a) recovered it as the
sister taxon to Dissorophoidea but in a dissorophoid-focused analysis with only one dvinosaur
taxon. Schoch & Milner (2021) recently recovered M. huxleyi as the sister-group of all other
dissorophoids (what they term a “stem dissorophoid”) diverging before P. olsoni, so the former
is not sampled here. ‘Broiliellus hektotopos’ from the Early Permian of Ohio was described as a
dissorophid (Berman & Berman, 1975), but it has never been included in an analysis and is
probably an amphibamiform (May et al., 2011), following Romer’s (1952) initial interpretation
of the holotype as a “branchiosaur.” I included the holotype to test this in a phylogenetic
framework.

The non-olsoniform outgroups were carried over from Gee (2020b): the amphibamiforms
Doleserpeton annectens, Eoscopus lockardi, Pasawioops mayi, and Tersomius texensis, and the
micromelerpetid Micromelerpeton credneri. The same non-dissorophids were included
(Dendrysekos helogenes, Eryops megacephalus) but with Chenoprosopus milleri (Langston,
1953) replacing Chenoprosopus lewisi to better sample palatal characters. I replaced my previous
functional outgroup, the anthracosaur Proterogyrinus scheelei, with the colosteid Greererpeton
burkemorani (Smithson, 1982; Godrey, 1989a, 1989b; Bolt & Lombard, 2001) because the
latter’s preservation allows it to be confidently scored for more characters without relying on
reconstructions (e.g., skull length-based characters), but scores for P. scheelei were still updated.
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Character sampling. The character matrix was derived from that used in my trematopid
analysis (Gee, 2020b), and characters are listed in Appendix 1. Additional characters were added
to differentiate between dissorophids. I removed five characters (Appendix 2) and split one
character (lateral exposure of the palatine; LEP) into two characters. There are a total of 109
characters; multi-state characters that can be hypothesized to be ordered in an evolutionary sense
were ordered here. The decision to order certain characters follows other workers (e.g.,
Marjanovi¢ & Laurin, 2019), including other dissorophid studies (e.g., Dilkes, 2020), and is
motivated by two factors: (1) that leaving characters unordered is neither neutral nor a lack of
assumption, as unordered characters imply that transitions between all states are equally likely
(e.g., Slowinski, 1993; Wiens, 2001); and (2) that various studies have shown that ordering
characters tends to improve the ability to recover genuine clades and to increase topological
resolution (e.g., Frobisch & Schoch, 2009; Grand et al., 2013; Rineau et al., 2015; Simdes et al.,
2017; Rineau, Zaragiieta i Bagils & Laurin, 2018). Of the 18 multistate characters, 15 were
ordered (2, 4, 11, 18, 20, 28, 31, 38, 51, 68, 70, 84, 99, 104, 107); characters 19, 88, and 98 are
left unordered. Characters were equally weighted.

Character scoring. Scores were carried over at the species level from Gee (2020b) unless noted
in Appendix 2. Scoring was based strictly on the literature, and reconstructions were not utilized.
Scoring of species-level operational taxonomic units (OTU) accounted for any polymorphisms
that are not clearly attributable to ontogeny. Anatomical differences correlated with very slight
size differences were treated more skeptically than those correlated with large size gaps in
determining whether to code a condition as polymorphic or only for the inferred ‘adult’
condition. Comments on scoring approaches to specific characters and the treatment of taxa for
which a character can only be scored from an immature specimen are provided in Appendix S2
of Gee (2020a) and in Appendix 3 here. The matrix was compiled in Mesquite version 3.6b917
(Maddison & Maddison, 2020) and is provided as a NEXUS file in Appendix 4.

I want to make particular mention of Kamacops acervalis here because it is difficult to
reconcile its historical scoring with existing descriptions, figures of which are either
reconstructions in palatal and lateral view or close-up illustrations of the occiput and braincase
(Gubin, 1980; Schoch, 1999). The detailed discussion is relegated to Appendix 3, but I
emphasize a few key points here because this taxon in particular (or rather, uncertainty over the
taxon) influenced the design of the analyses that I conducted here.

The only published photograph of any specimen is a snout (Schoch & Milner, 2014:fig.
37E), which does not show any clear sutures. This taxon has also been reconstructed as a
silhouette in dorsal view but without sutures by Schoch (2012:fig. 6), in contrast to most other
dissorophids. Therefore, it is strange that there are cranial characters scored for this taxon (e.g.,
prefrontal-postfrontal suture). Additionally, none of the specimens of Kamacops acervalis is
even half-complete, and without photographs, it is unclear how much skeletal overlap exists
between specimens, therein questioning the fidelity of the reconstructions. This is particularly
important because the reconstruction is the only means of scoring characters involving skull
length, including two of the three characters that differentiate K. acervalis from Cacops. At
present, many of the historic scores cannot be reconciled with the literature. Schoch indicated
that he personally examined material of this taxon, so it is possible that he identified new
features, but the data to support the scoring of many characters are not established in the
literature. Therefore, I constructed two different species-level OTUs for this taxon. The first is
termed the ‘conservative’ OTU and scores only based on the explicit descriptions and specimen
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illustrations (but not reconstructions) of Gubin (1980) and Schoch (1999). The second is termed
the ‘reconstructed’ OTU and augments the previous one with data from reconstructions; this led
to the scoring of an additional 20 characters. In neither OTU are skull roof sutures scored except
in the occipital region, so both OTUs are underscored compared to previous studies.

Phylogenetic analysis. I elected to perform only maximum parsimony analyses of the data
matrix; the topologies recovered by a simple non-clock Bayesian analysis in my previous study
(Gee, 2020b) did not differ substantially from those recovered by the parsimony analyses. Most
discrepancies were related to additional resolution recovered in the Bayesian analysis only on
account of the overestimation of support of posterior probabilities compared to bootstrap value
(e.g., Alfaro, Zoller & Lutzoni, 2003; Cummings et al., 2003; Douady et al., 2003; Erixon et al.,
2003; Simmons, Pickett & Mia, 2004; Zander, 2004).

The analyses were primarily performed in TNT v1.5 (Goloboff & Catalano, 2016). For
analyses with more than 30 taxa, [ used a heuristic search (“traditional search” in TNT) with the
following parameters: 10,000 random addition sequence replicates, holding 10 trees at each step,
and tree-bisection-and-reconnection (TBR). All sets of MPTs were then used as the starting trees
for a second round of branch swapping to obtain the final set of MPTs. For analyses with 30 or
fewer taxa, a branch-and-bound (“implicit enumeration” in TNT) search was used. Default
settings of TNT (e.g., rule 1 for branch collapsing: min. length = 0) were otherwise maintained. |
performed 10,000 bootstrap replicates with a heuristic search to assess absolute nodal support for
all analyses. Given the intensive computation time of branch-and-bound searches, I elected to
use heuristic searches to calculate Bremer decay indices after confirming that a heuristic search
recovered the same set of MPTs as the branch-and-bound search. TNT was selected for its ability
to rapidly process large datasets, which was a concern for analyses with species-level OTUs that
have high proportions of missing data (as with some of the dissorophids here); no search (or
resampling) exceeded nine hours. I used PAUP* 4.0a169 (Swofford, 2021) for several analyses
that mirrored previous analyses conducted in PAUP*. The more taxonomically restricted TNT
analyses can be run within PAUP* (no search exceeded 36 hours), although these analyses were
consistently more costly, and bootstrapping could exceed 48 hours. One noteworthy difference is
that to the best of my knowledge (based on the associated publications and other online
resources), TNT cannot handle partial uncertainty (or at least the syntax used for this in NEXUS
files is incompatible). These scores were thus changed to polymorphisms encompassing the
possible character states in TNT analyses (e.g., a partial uncertainty score of ‘{0 1}’ was scored
as ‘[0 1T in TNT; this is how Mesquite treats partial uncertainty when exporting a NEXUS file
to TNT). These are computationally the same but with an additional step added to the tree for
each polymorphism compared to a partial uncertainty. All analyses were performed on a personal
computer (MacBook Pro, 2015 model, 16 GB of RAM, macOSMojave 10.14.5).

As with my previous study, I performed a large number of analyses (Table 2). Almost all
of the trematopid analyses were determined a priori, but because the focus of this study was
different, most of these analyses were only determined after examining previous results. The first
four analyses broadly sample Olsoniformes and have an eye towards testing topology using
standard historical methods (e.g., sampling all taxa, removal of wildcards), whereas the last five
analyses relate more to assessing possible sources of disparity between previous studies.

1. Analysis 1A (all olsoniforms): all presently valid species that I scored are sampled
here at the species level. Taxa: 47.
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2. Analysis 1B (wildcard removal): an Adams consensus was used to identify wildcard

taxa in the previous analysis (method for identifying wildcards is listed in the
Results). The analysis was subsequently rerun without these wildcards. Taxa: 30 /33
(number differs due to different wildcard identification).

. Analysis 2 (best representatives): this analysis follows historic approaches by

excluding poorly known taxa, which are arbitrarily defined as having either an overall
low percentage of scoreable features or a low percentage specifically for cranial
characters. The sampling thus omits any taxon for which cranial sutures are unknown:
Aspidosaurus chiton, Broiliellus arroyoensis, Iratusaurus vorax, Parioxys bolli, and
Zygosaurus lucius. Cranial material of Aspidosaurus novomexicanus, Brevidorsum
profundum, Diploseira angusta, Kamacops acervalis, and Nooxobeia gracilis is
relatively fragmentary, and these taxa are also excluded. Of the exclusions, B.
profundum, K. acervalis, and Z. lucius were usually sampled in previous studies. All
non-dissorophids are sufficiently characterized to be retained. Taxa: 37.

. Analysis 3 (dissorophid-focused): this analysis samples almost every nominal

dissorophid but with a trimmed subset of trematopids, as would commonly be done
for dissorophid-focused analyses (e.g., Schoch, 2012, and derivates thereof). I
excluded Actiobates peabodyi, Mordex calliprepes, and Rotaryus gothae as taxa
probably represented only by markedly immature specimens (these are the smallest
trematopids). ‘Broiliellus’ hektotopos and Parioxys bolli were excluded since they
were recovered well outside Dissorophidae in previous analyses. Taxa: 42.

311 Iran one analysis with specimen-level dissorophid OTUs to assess whether the matrix can
312 resolve intraspecific ontogeny in dissorophids.
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5. Analysis 4 (cacopine specimen-level OTU): this analysis focuses on Anakamacops

petrolicus, the three species of Cacops, and Conjunctio multidens, for which at least
two specimens can be scored. Based on my trematopid analyses, poorly preserved or
highly fragmentary specimens were clear confounds. Therefore, I omitted highly
fragmentary referred material (like the two partial snouts referred to Ca. woehri by
Gee, Bevitt & Reisz, 2019; ROMVP 80800, ROMVP 80801) and material without
sutures (like the holotype and paratype of Ca. aspidephorus; FMNH UC 647, FMNH
UC 649). Iratusaurus vorax and Zygosaurus lucius are entirely excluded on the same
grounds. Species-level dissorophid OTUs are restricted to Broiliellus brevis,
Dissorophus multicinctus and Kamacops acervalis. Non-olsoniforms include
Chenoprosopus milleri, Dendrysekos helogenes, Doleserpeton annectens, Eoscopus
lockardi, and Eryops megacephalus, and the outgroup, Greererpeton burkemorani.
OTUs: 32.

328 The third set of analyses relate to taxon sampling. As with my previous study, I ran so-called
329  “mirror analyses” in which I took the taxon sample of a previous study and the character sample
330 and scoring of my own study.

331
332
333
334

6. Analysis 5 (taxon mirror of Dilkes, 2020): this analysis mirrored the taxon sample

of Dilkes (2020). Because not all equivalent taxa are found in my matrix, I replaced
Sclerocephalus haeuseri with Eryops megacephalus and Platyrhinops lyelli with
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Eoscopus lockardi. Dendrysekos helogenes was utilized as the outgroup. I used the
‘reconstructed’ OTU of Kamacops acervalis to approximate the historic scoring of
this taxon. Although I intended to mirror all of Dilkes’ parameters in PAUP*, a
preliminary run with a branch-and-bound search produced no progress after 24 hours.
This is not surprising as 29 taxa are already above the typical threshold for running
this search. Therefore, I ran a heuristic search with 10,000 random addition sequence
replicates, holding 10 trees per step; all other settings, including the bootstrapping,
were mirrored where possible. I then removed the four wildcard taxa that Dilkes
identified and reran the analysis; this trimmed sample was recognized to be tractable
with a branch-and-bound search. Taxa: 29 (25 without wildcards).

. Analysis 6 (taxon mirror of Gee, 2020b): this analysis mirrored the taxon sample of

Gee (2020b). Acheloma and Phonerpeton are treated as discussed above. I used
Proterogyrinus scheelei as the outgroup (as with the original study) and excluded
Greererpeton burkemorani. In order to account for the adjusted scoring of 4.
cumminsi and the exclusion of Ph. whitei, | reanalyzed my original matrix with the
revised treatments of these taxa but with the original scoring otherwise intact. Since
only one OTU was changed, the revised string for Acheloma cumminsi (inclusive of
data from Acheloma dunni) is provided in Appendix 2 rather than in a separate
NEXUS file. Taxa: 23.

355 The next analysis resulted from a close examination of previous scores of the Schoch (2012)
356 matrix and its derivates in which I identified a large number of cells that either were scored for
357 features that are definitively unknown (e.g., postcrania of Cacops woehri) or that were unscored
358 but that are definitely known (e.g., palatal features of Fedexia striegeli). Most of the cells that
359 were spuriously scored are scored identically to other members of a presumed close relative by
360 Schoch (e.g., questionable scores of Cacops aspidephorus were scored identical to those of

361 Cacops morrisi), although some were introduced by Holmes, Berman & Anderson (2013; e.g.,
362 all questionable scores of C. woehri were scored identical to at least one other species of

363 Cacops). This observation suggests that some scores have been “assumed,” but not actually

364 observed, based on inferred relatedness, a troubling prospect.

365
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8. Analysis 7 (updated version of Dilkes, 2020): this analysis is a direct reanalysis of

Dilkes’ matrix with updated scores that focused on cells where the scoring or lack
thereof seems unequivocally erroneous. The primary objective therein is to strictly
examine the influence of dubious scorings on the matrix. I did not adjust scores
unless there was strong evidence against the current score, so subjective decisions
(e.g., is an atlas-axis sufficient postcranial representation to determine the absence of
osteoderms in Fedexia striegeli) were not changed. I only rescored cells for
polymorphisms when this condition was not clearly linked to size variation and was
unequivocally non-taphonomic. One note is that the Acheloma of this matrix is
specifically “Acheloma dunni’’; 1 only updated scores based on material referred to
this junior synonym (Maddin, Reisz & Anderson, 2010; Polley & Reisz, 2011). This
differs from my own matrix in which Acheloma cumminsi is scored from both
originally referred material and that of “A4. dunni,” a junior synonym (Gee, 2020b).
Changes were not made to taxon sampling, character sampling, or character
construction (including ordering), even though certain characters of Dilkes’ matrix
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(e.g., palpebral ossifications) are intentionally excluded in my own matrix. These
approaches minimize personal scoring philosophy and should provide an acceptable
derivate of this matrix should other workers continue to use it. Any restored scores
will have to be justified with appropriate data. All scoring changes are listed and
justified in Appendix 5, and the revised matrix is provided as Appendix 6. The
analysis was rerun in PAUP* following Dilkes’ parameters. Note that I first analyzed
Dilkes’ original matrix in PAUP* as well to ensure that my program settings
recovered the same results.

Finally, when considering explanations for disparity in the degree of resolution and the
placement of wildcard taxa, I observed that different programs have been used to examine the
Schoch (2012) matrix and its derivates. Schoch (2012), Holmes, Berman & Anderson (2013),
Maddin et al., (2013), and Dilkes (2020) used PAUP*, whereas Schoch & Sues (2013) and Liu
(2018) used TNT. The analyses using TNT have recovered more resolution in the strict
consensus and without any wildcards. It is known that these programs’ algorithms and default
settings differ, but studies rarely compare the results obtained by analyzing the same matrix.
Therefore, I performed two analyses that analyze the same matrix with each program; I term
these “parallel analyses.” These analyses are not intended to test whether one program’s settings
and results can be reproduced in the other but rather to test whether default parameters and
algorithmic differences (usually default settings are employed by other workers) produce
different results.

9. Analysis 8 (parallel of trematopid mirror): this analysis parallels Analysis 6
(trematopid-focused sample, analyzed using TNT) in PAUP#*; this analysis was
chosen because it achieved a measurable degree of resolution in TNT and has a low
taxon sample that would make it tractable for a branch-and-bound search in PAUP*.

10. Analysis 9 (parallel of Dilkes, 2020): this analysis parallels the original results of
Dilkes (2020) and the updated version of that matrix that I analyzed in Analysis 7,
both using TNT (Dilkes ran his analysis in PAUP*). Dilkes ran three analyses with a
branch-and-bound search: a full taxon sample, a full taxon sample with osteoderm
characters removed, and a reduced taxon sample without wildcards but with the full
character sample. I paralleled the two with the full character sample. The iterations
comparing different programs’ analysis of Dilkes’ original matrix are termed
Analysis 9A, and the iterations comparing the TNT analysis of the original and
updated versions of Dilkes’ matrix are termed Analysis 9B.

Two nomenclatural notes. The dissorophid subfamily defined by all taxa more closely related
to Cacops aspidephorus than to Dissorophus multicinctus has a complex history. Cacops was
historically referred to Aspidosaurinae (e.g., Williston, 1914; DeMar, 1966b; Milner, 2003;
Witzmann & Soler-Gijon, 2010). However, Daly (1994) considered the poorly known
Aspidosaurus to be a dissorophine, making Aspidosaurinae a junior synonym of Dissorophinae
and necessitating a new name for historical aspidosaurines that could not be placed in
Dissorophinae (like Cacops); to this end, she coined the name ‘Cacopinae.” However, Daly did
not substantiate her classification, so Cacopinae was unused until the study of Schoch & Rubidge
(2005), who used it as a terminal OTU (of Cacops aspidephorus + Kamacops acervalis); note
that this study did not include Aspidosaurus. The use of Cacopinae was then followed by nearly
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all subsequent workers (except Witzmann & Soler-Gijon, 2010) but with the original source only
noted by Berman et al. (2010). The name was then changed to Eucacopinae by Schoch & Sues
(2013), who noted that Cacopinae, the proper derivation from Cacops, was preoccupied for a
group of microhylid frogs named for “Cacopus” (=Uperodon) per Noble (1931); Cacopinae
sensu Noble became a junior synonym of Microhylinae. The erection of Eucacopinae was
considered to be the appropriate solution by Schoch and Sues. However, as has been brought to
my attention by David Marjanovi¢, there are two fundamental flaws with this nomenclatural act.
The first is that per Article 11.7.1.1 of the International Code of Zoological Nomenclature
(ICZN, 1999), family names ‘must be [...] formed from the stem of an available generic name,’
but there is no genus bearing the name ‘Eucacops’ or something similar. Furthermore, Noble’s
(1931) derivation of ‘Cacopinae’ from ‘Cacopus’ only includes part of the stem (which is
‘Cacopod,’ not ‘Cacop’), and, per the same article, is unavailable. Therefore, Cacopinae Daly,
1994, is both the valid derivation from Cacops and not preoccupied, so it need not be replaced.
Schoch (2018a), Atkins, Reisz & Maddin (2019), Anderson, Scott & Reisz (2020), and Schoch
& Milner (2021) recently employed Cacopinae, without comment, which I follow here.
Cacopinae may yet prove to be a junior synonym of Aspidosaurinae, but this is not supported by
the following results of this study.

Also as pointed out to me by David Marjanovié, Platyhystrix is feminine (following the
gender of ‘hystrix’), and therefore, when Ctenosaurus rugosus Case, 1910, was transferred to
Platyhystrix Williston, 1911, nomenclatural standards dictated that it be changed to Platyhystrix
rugosa (per Article 34.2 of the ICZN), even though this was not actually put into practice until
this study, over a century later. This change is implemented throughout this manuscript.

Institutional abbreviations. AMNH FARB, American Museum of Natural History, Fossil
Amphibians, Reptiles, and Birds, New York, NY; BMRP, Burpee Museum of Natural History,
Rockford, IL; CM, Carnegie Museum, Pittsburgh, PA; FMNH, Field Museum of Natural
History, Chicago, IL; ICGAS, Institute of Geology, Chinese Academy of Geological Sciences,
Beijing, China; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese
Academy of Sciences, Beijing, China; MCZ, Museum of Comparative Zoology, Cambridge,
MA; OMNH, Sam Noble Oklahoma Museum of Natural History, Norman, OK; ROMVP, Royal
Ontario Museum, Vertebrate Paleontology, Toronto, Canada; UCMP, University of California
Museum of Paleontology, Berkeley, CA; UMMP, University of Michigan Museum of
Paleontology, Ann Arbor, MI.

Results
My reporting practices are outlined here to reduce redundancy. Figured topologies are either
strict consensus trees or Adams consensus trees (only Analysis 1A). The associated MPTs of
each analysis are included as .tre files in Appendix 7. All bootstrap values are reported, so any
node without a listed bootstrap value was not recovered in more than 1% of the bootstrap
replicates (for TNT analyses) or more than 5% of the replicates (for PAUP*). Note that bootstrap
frequencies reported for TNT analyses are absolute frequencies, not frequency differences (GC),
which are the program’s default. Because bootstrap support below 50% and Bremer support
below 3 is not considered strong, any values below these thresholds are colored in grey, whereas
any values at or above these thresholds are colored in black.

The node-based definition of Dissorophoidea (the least inclusive grouping with
Dissorophus multicinctus and Micromelerpeton credneri) and the stem-based definitions for
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Trematopidae (most inclusive clade containing Acheloma cumminsi but not D. multicinctus),
Dissorophidae (specifiers of Trematopidae inverted), Cacopinae (most inclusive clade containing
Cacops aspidephorus but not D. multicinctus), and Dissorophinae (specifiers of Cacopinae
inverted) are used here following Schoch & Milner (2014). Therefore, all of these clades are
“recovered” in any analysis in which the specifiers are sampled, but they may include only that
specifier (e.g., only A. cumminsi for Trematopidae). Some specifiers for the node-based
definitions of Xerodromes, Amphibamiformes, and Olsoniformes are not sampled in this
analysis (Amphibamus grandiceps and Apateon pedestris), but these names are used in the same
sense as other workers (the sister group of Micromelerpetidae, the clade of all small-bodied
xerodromes, and the sister group of Amphibamiformes, respectively). The looser definitions of
these clades in this context means that they are not always recovered and must include at least
two taxa that form a clade. Nominal placement of taxa, specifically for dissorophids, is also from
Schoch & Milner (2014). These definitions are color-coded in the figures to visually facilitate the
comparison of topologies and placement of taxa.

Analysis 1A (all olsoniforms). The iteration with the ‘conservative’ OTU of Kamacops
acervalis recovered 93,116 MPTs with a length of 401 steps (CI =0.314; RI =0.592). The strict
consensus is predictably unresolved beyond a node for Temnospondyli and the default node
excluding the operational outgroup (Greererpeton burkemorani). The iteration with the
‘reconstructed’ OTU of K. acervalis recovered 21,646 MPTs with the same length of 401 steps
and an identical strict consensus topology. Because of the total lack of resolution, these
topologies are not presented here.

Adams consensus trees were computed for both iterations in order to identify wildcard
taxa (Fig. 6). The topologies are largely consistent with the main differences lying in the
composition of Cacopinae. All nominal trematopids form a clade, but all nominal dissorophids
do not. Parioxys bolli is recovered entirely outside of Dissorophoidea in a polytomy at the base
of Temnospondyli; Iratusaurus vorax and Reiszerpeton renascentis are recovered in a polytomy
outside of Olsoniformes with Palodromeus bairdi; and Platyhystrix rugosa is recovered in a
polytomy with Trematopidae and Dissorophidae (as defined above). “Broiliellus” hektotopos is
recovered in a polytomy with individual branches for all four amphibamiforms and a branch for
all nominal dissorophids other than Par. bolli at the base of Xerodromes.

Wildcard identification was restricted to nominal olsoniforms. The highly incomplete
Parioxys bolli was removed because it falls well outside of Olsoniformes in the Adams
consensus. Palodromeus bairdi was also removed given its position outside of Olsoniformes.
Iratusaurus vorax, Platyhystrix rugosa, and Reiszerpeton renascentis were removed given their
position outside of Dissorophidae. Within Dissorophidae, I removed any nominal dissorophid
that was part of a polytomy at the base of the clade; this led to the removal of Aspidosaurus
chiton, Aspidosaurus novomexicanus, Brevidorsum profundum, and Nooxobeia gracilis, all of
which are poorly known taxa. In the iteration with the ‘conservative’ OTU of Kamacops
acervalis, this taxon was also recovered in this basal polytomy and was removed. Similar to
Dilkes (2020), I then removed any taxon recovered in a polytomy with Cacopinae and
Dissorophinae, leading to the removal of Aspidosaurus binasser and Scapanops neglectus in
both iterations, as well as Anakamacops petrolicus and Zygosaurus lucius in the iteration with
the ‘conservative’ OTU of K. acervalis. One notable retention in both iterations is Conjunctio
multidens, a wildcard as identified by Dilkes (2020). The two iterations differ in dissorophid
composition by three taxa. For Trematopidae, I removed any taxon that was part of a basal
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polytomy; the pair of Actiobates peabodyi + Mattauschia laticeps and Mordex calliprepes met
this criterion in both iterations. These are the more fragmentary trematopids and have rarely been
sampled in previous analyses.

Following the wildcard identifications, taxa were then removed from the original sets of
MPTs, and the strict consensus was recalculated. When newly identical MPTs were subsequently
removed, there was a substantial reduction in the number of unique MPTs. There are 122
remaining MPTs for the iteration with the ‘conservative’ OTU of Kamacops acervalis and 346
remaining MPTs for the iteration with the ‘reconstructed’ OTU. The strict consensus of the
retained taxa of both iterations (Fig. 7) largely follows that observed in the Adams consensus
(Fig. 6), though with a loss of resolution in Trematopidae and Dissorophinae. Micromelerpeton
credneri and Perryella olsoni now form a polytomy with amphibamiforms and “Broiliellus”
hektotopos instead of forming an earlier diverging branch (i.e. Xerodromes is not recovered). In
the iteration with the ‘reconstructed’ OTU, Anakamacops petrolicus, K. acervalis, and
Zygosaurus lucius form branches of a cacopine polytomy with Cacops.

Analysis 1B (wildcard removal). The iteration derived from the previous analysis with the
‘conservative’ OTU of Kamacops acervalis (which excluded this OTU) recovered 64 MPTs with
a length of 329 steps (CI = 0.380; RI = 0.610; Fig. 8A). The omission of wildcards produced a
weakly resolved topology that recovered all nominal dissorophids and all nominal trematopids in
their respective clades but not Olsoniformes. Trematopidae is largely unresolved, with Acheloma
cumminsi + Phonerpeton pricei as the only recovered relationship. Conjunctio multidens and all
three species of Cacops are recovered as cacopines, with Cacops aspidephorus and Cacops
morrisi as sister taxa, Cacops woehri as the sister taxon to this pair, and Co. multidens as the
sister taxon to Cacops. All four species of Broiliellus, Diploseira angusta, and Dissorophus
multicinctus are recovered as dissorophines in an unresolved polytomy. All amphibamiforms
(including “Broiliellus™ hektotopos) are single branches in a polytomy with Dissorophidae and
Trematopidae. Bremer support is usually below 3, and bootstrapping was usually below or just
slightly above 50%.

The iteration derived from the analysis with the ‘reconstructed’ OTU of Kamacops
acervalis (which included this OTU) recovered 72 MPTs with a length of 338 steps (CI = 0.370;
RI=0.617; Fig. 8B). The strict consensus topology is nearly identical to that of the previous
iteration with respect to mutually overlapping taxa. Anakamacops petrolicus, Kamacops
acervalis, and Zygosaurus lucius do not form a clade (as they did in Liu, 2018) but instead form
single branches of a polytomy with the clade of Cacops. Conjunctio multidens is still recovered
as the earliest-diverging cacopine. Bremer and bootstrap support are consistently low. One node
dropped below the threshold of strong support for Bremer decay index (Ca. aspidephorus + Ca.
morrisi), and three nodes dropped below the threshold for bootstrapping (the two nodes of
Cacops and Dissorophidae).

Analysis 2 (Best representatives). The analysis recovered 785 MPTs with a length of 382 steps
(CI=0.327; RI =0.582; Fig. 9). The strict consensus is largely unresolved. Dissorophoidea is
recovered (inclusive of Perryella olsoni), but the only in-group clades are a clade of the three
species of Cacops + Anakamacops petrolicus (Cacopinae) and the pairing of Acheloma cumminsi
+ Phonerpeton pricei (Trematopidae). Both Dissorophidae and Dissorophinae therefore include
only Dissorophus multicinctus. Bremer and bootstrap support are low except for Trematopidae.
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Analysis 3. The iteration with the ‘conservative’ OTU of Kamacops acervalis recovered 420
MPTs with a length of 375 steps (CI = 0.333; RI = 0.589; Fig. 10). The strict consensus is largely
unresolved and does not recover Amphibamiformes or Olsoniformes. Perryella olsoni is the
sister taxon to Xerodromes. All nominal trematopids form a clade. Dissorophidae and
Dissorophinae include only Dissorophus multicinctus, and Cacopinae includes only Cacops
aspidephorus. All other dissorophids, amphibamiforms, and Palodromeus bairdi are single
branches of a xerodrome polytomy with one branch for Trematopidae. Within Trematopidae,
Mattauschia laticeps diverges at the base, followed by successively diverging branches of: (1)
Anconastes vesperus + Tambachia trogallas; (2) Ecolsonia cutlerensis; and (3) Fedexia striegeli,
the last of which is the sister taxon to Acheloma cumminsi + Phonerpeton pricei. Both Bremer
and bootstrap support are universally low.

The iteration with the ‘reconstructed” OTU of Kamacops acervalis recovered 23 MPTs
with the same length of 375 steps. The strict consensus topology is more resolved with respect to
nominal dissorophids, with all taxa except Reiszerpeton renascentis recovered as a clade.
Platyhystrix rugosa is recovered as the earliest diverging dissorophid. All species of Broiliellus
and Diploseira angusta are now recovered as dissorophines; Cacopinae remains restricted to
Cacops aspidephorus. Bremer support did not change from the previous iteration, and bootstrap
support changed only by 1-2% for nodes shared between iterations. Support for newly recovered
nodes is extremely low, and most were not even recovered in the bootstrap tree (< 1%
occurrence).

Analysis 4. The iteration with the ‘conservative’ OTU of Kamacops acervalis recovered 220
MPTs with a length of 280 steps (CI = 0.436; RI = 0.649; Fig. 11). The strict consensus is poorly
resolved. A noteworthy result is the recovery of the holotype of Conjunctio multidens (FMNH
UC 673) at the base of Dissorophidae, whereas the two referred specimens (CM 91215, UCMP
40103) are recovered as sister taxa at the base of Cacopinae. The separation of the holotype from
UCMP 40103 (historically the “Rio Arriba Taxon™) is the same as that of Schoch (2012). All
other cacopines form a single polytomy with the exception of the pair of two specimens of
Cacops woehri, the holotype (OMNH 73216) and a larger referred specimen (BMRP 2007.3.5).
Bremer and bootstrap support are low for dissorophid nodes.

The iteration with the ‘reconstructed” OTU of Kamacops acervalis recovered 40 MPTs
with a length of 281 steps (CI = 0.434; RI = 0.647). The strict consensus remains unchanged and
is thus not depicted separately here. Bremer and bootstrap support are essentially unchanged.

Analysis 5 (taxon mirror of Dilkes, 2020). This analysis recovered 750 MPTs with a length of
348 steps (CI1 =0.494; RI = 0.579; Fig. 12A). The strict consensus topology is discordant with
that of Dilkes. Amphibamiformes and Olsoniformes are not recovered, and Dissorophidae and
Dissorophinae only include Dissorophus multicinctus. Most nominal dissorophids are single
branches in a polytomy with non-dissorophids. Cacopinae includes the three species of Cacops,
Anakamacops petrolicus, Kamacops acervalis, and Zygosaurus lucius; within this, Cacops is
monophyletic, and the other three taxa are single branches of a polytomy. All nominal
trematopids form a clade, with one resolved in-group: Fedexia striegeli as the sister taxon to
Acheloma cumminsi + Phonerpeton pricei. The other three taxa form a polytomy at the base.
Bootstrap and Bremer support were usually below meaningful thresholds except for
Trematopidae. The Adams consensus (not presented here) identifies Aspidosaurus binasser,
Platyhystrix rugosa, Reiszerpeton renascentis, and Scapanops neglectus as wildcards following
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the same approach as in Analysis 1, but does not identify Brevidorsum profundum or Conjunctio
multidens as wildcards (both were wildcards in Dilkes’ analysis).

Recently, Silva & Wilkinson (2021) proposed a method of representing consensus
topologies when there are multiple islands recovered by a heuristic search by computing a
consensus topology for each island. This can be useful when the strict consensus of all MPTs is
relatively unresolved, although it relies on the analytical program not only identifying the
number of islands but also the constituent MPTs. To the best of my knowledge, TNT does not do
s0; Silva & Wilkinson used PAUP*, as in this analysis. The above analysis recovered three
distinct islands, with 564 MPTs, 108 MPTs, and 78 MPTs (Fig. 13). When the strict consensus
of each island is computed, the resolution is improved from the total consensus. The largest
island (Fig. 13A) newly recovers Olsoniformes, a more inclusive Dissorophidae of all nominal
taxa except Reiszerpeton renascentis, and a more inclusive Dissorophinae (Broiliellus,
Diploseira angusta, Dissorophus multicinctus). Reiszerpeton renascentis is instead recovered as
the sister taxon to Olsoniformes. For this island, only Brevidorsum profundum and Platyhystrix
rugosa are identified as wildcards among Dissorophidae. The second largest island (Fig. 13B)
newly recovers Trematopidae inclusive of R. renascentis and a relatively inclusive
Dissorophidae (to the exclusion of R. renascentis, B. profundum, and Platyhystrix rugosa).
Cacopinae now includes Conjunctio multidens, which is recovered at the base of the clade.
Broiliellus brevis and Broiliellus texensis are recovered as sister taxa within Dissorophinae. For
this island, no dissorophids (or olsoniforms) would be identified as wildcards. The smallest
island (Fig. 13C) differs more starkly from the other two islands’ consensus topologies.
Reiszerpeton renascentis forms a polytomy with Dissorophidae and Trematopidae, and C.
multidens and P. rugosa are recovered as sister taxa within Dissorophinae. Trematopidae is fully
resolved here, with Anconastes vesperus + Tambachia trogallas as the sister group to Ecolsonia
cutlerensis. For this island, Aspidosaurus binasser, R. renascentis, and Scapanops neglectus
would be identified as wildcards.

The iteration with Dilkes’ wildcards removed recovered 296 MPTs with a length of 318
steps (CI = 0.522; RI = 0.597; Fig. 12B). All MPTs belong to the same island. The strict
consensus topology is more congruent with that of Dilkes, although still with less resolution.
Xerodromes, Olsoniformes, Trematopidae, and Dissorophidae are all recovered. The
composition of Cacopinae and Dissorophinae is the same as that of Dilkes’ analysis. Platyhystrix
rugosa and Aspidosaurus binasser are recovered as the earliest diverging dissorophids.
Polytomies are found at the base of Trematopidae and Cacopinae, and Dissorophinae is a single
polytomy. Nodal support remained low.

Analysis 6. The rerun of my original trematopid matrix with the newly combined Acheloma
cumminsi OTU and the exclusion of Phonerpeton whitei recovered 27 MPTs with a length of
209 steps (CI = 0.445; RI =0.615; Fig. 14A). For comparison, the original analysis recovered
105 MPTs with a length of 210 steps (CI = 0.443, RI = 0.640). The strict consensus topology is
nearly unchanged; Olsoniformes and Amphibamiformes are recovered, but Xerodromes is not.
Dissorophidae and Trematopidae include all of their respective nominal taxa. Within
Trematopidae, the only resolved relationships are the pairing of A. cumminsi + P. pricei and
Rotaryus gothae as the sister group to this pair. The newfound resolution of R. gothae from the
previously large polytomy is an intuitive result given the taxon sample modifications that were
made to long-snouted taxa. Nodal support is weak except for some non-trematopid nodes.
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The mirror analysis with the same taxon treatment and the revised matrix’s character
sampling recovered 19 MPTs with a length of 282 steps (CI = 0.429; RI = 0.567; Fig. 14B). The
strict consensus is slightly more resolved, but with the major caveat that Trematopidae only
includes Acheloma cumminsi and Phonerpeton pricei. Anconastes vesperus + Tambachia
trogallas is also recovered and forms one branch of a polytomy with the relatively exclusive
Trematopidae, all other nominal trematopids, and Dissorophidae. Examination of the MPTs
reveals that all nominal trematopids form a clade in all but one MPT in which Dissorophidae
nests within Trematopidae as the sister group to Ecolsonia cutlerensis to form a late-diverging
clade. Nodal support has improved, including a change in Bremer support for Olsoniformes and
Trematopidae (from 2 to 3) that reaches the threshold for meaningful support.

Analysis 7. Analysis of the updated Dilkes’ matrix recovered substantially more MPTs than the
original analysis. With all 29 taxa, the analysis recovered 3,408 MPTs with a length of 169 steps
(CI=0.527; RI =0.733; Fig. 15B), compared to 513 MPTs with a length of 163 steps (CI =
0.5460; RI = 0.7574; Fig. 15A). Recovering Dilkes’ original topology requires an additional 34
steps in the revised version of the matrix. All MPTs belong to the same island (both in Dilkes’
original analysis and in the new one). Resolution is relatively low, although not too dissimilar
from Dilkes’ topology in this regard. Dissorophinae is restricted to Dissorophus multicinctus,
and Cacopinae is restricted to the three species of Cacops. Cacops aspidephorus and Cacops
morrisi are sister taxa to the exclusion of Cacops woehri, in contrast to the historic polytomy of
these taxa, which form the entirety of Cacopinae here. All other dissorophids with the exception
of Platyhystrix rugosa (the earliest diverging dissorophid) form a single polytomy. Bremer and
bootstrap support have generally slightly declined for nodes shared between the original and the
reanalysis, and Bremer support is below the threshold of meaningful support for almost all
nodes. The resultant Adams consensus would identify a slightly different set of wildcards
(Aspidosaurus binasser and Diploseira angusta and not Scapanops neglectus) than in Dilkes’
analysis, but I reran the search after removing the same four taxa that he identified as wildcards
(Brevidorsum profundum, Conjunctio multidens, Reiszerpeton renascentis, Scapanops
neglectus).

With removal of Dilkes’ wildcards, the analysis recovered 20 MPTs with a length of 151
steps (CI = 0.556; RI = 0.750; Fig. 15D), in contrast to the original 27 MPTs with a length of 143
steps (CI = 0.5874; RI = 0.7839; Fig. 15C). Dilkes’ original topology requires an additional 6
steps in the revised version of the matrix. The MPTs are evenly divided between two islands, but
the strict consensus topologies of each are nearly identical, differing only in the relationships of
dissorophines (Fig. 16). The strict consensus is more resolved than the previous iteration but less
resolved than Dilkes’ topology. The relationships of Cacops are as with the previous iteration,
but Anakamacops petrolicus, Kamacops acervalis, and Zygosaurus lucius are also recovered as
cacopines. A more inclusive Dissorophinae is also recovered, with Broiliellus olsoni recovered
as the earliest diverging taxon, followed by B. reiszi and then a polytomy of all other nominal
dissorophines, which differs from the original analysis (Fig. 15C). This polytomy is the only
source of differences between islands; in one, Dissorophus multicinctus and Diploseira angusta
are sister taxa, and Broiliellus brevis and Broiliellus texensis are sister taxa (Fig. 16A). In the
other island, Dis. multicinctus and B. texensis are sister taxa, and Dip. angusta and B. brevis are
sister taxa (Fig. 16B). None of these configurations of Dissorophinae have been previously
recovered. Acheloma cumminsi and Phonerpeton pricei are recovered in a polytomy with
Anconastes vesperus + Tambachia trogallas. Fedexia striegeli and Ecolsonia cutlerensis are
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successive branches at the base of Trematopidae. Bremer and bootstrap support have again
declined slightly for nodes shared with Dilkes’ analysis.

Analysis 8. The parallel analysis of the trematopid-focused sample in PAUP* recovered 23
MPTs with a length of 326 steps (CI = 0.506; RI = 0.567; Fig. 17A), compared to the 19 MPTs
with a length of 282 steps (CI = 0.429; RI = 0.564; Fig. 17B) that I recovered in Analysis 6
(reproduced from Fig. 14B). The strict consensus topology is identical, but it is notable that there
are three islands (of sizes 14, 8, and 1 MPTs), which differ in the relationships of olsoniforms
(Fig. 18). As with the TNT results in Analysis 6, only one MPT does not recover all nominal
trematopids within a clade, and that MPT instead recovers the nominal trematopids as a grade
from Eoscopus lockardi to the nominal dissorophids (Fig. 18C). Based on the definition of
Dissorophidae utilized here, several nominal trematopids are technically dissorophids
(Actiobates peabodyi, Anconastes vesperus, Ecolsonia cutlerensis, Mordex calliprepes, Rotaryus
gothae, and Tambachia trogallas). Similarly, the definition of Olsoniformes utilized here would
result in a recovery of Mattauschia laticeps outside of Olsoniformes. The observation of multiple
islands in the PAUP* analysis suggests that the MPTs of the TNT analysis might also be
distributed across multiple islands. Nodal support is the same with respect to Bremer decay
indices but is consistently higher in the PAUP* analysis, with differences ranging from 7%
(Cacops morrisi + Cacops woehri) to 27% (Olsoniformes). Two nodes would be considered
well-supported by bootstrap values in the PAUP* analysis but not in the TNT analysis:
Dissorophoidea and Olsoniformes. I note that the PAUP* branch-and-bound search took a
particularly long time (33.5 hours) despite the eventual low number of MPTs and indicates the
upper threshold of reasonable computation time for this matrix (23 taxa, 109 characters). Over
half of the search process occurred after all MPTs had been recovered. A heuristic search with
10,000 random addition sequence replicates, holding 10 trees per step, recovered the same set of
MPTs in just over a minute.

Analysis 9. The parallel analysis of Dilkes’ (2020) original matrix with all 29 taxa and in TNT
recovered 23 MPTs with a length of 157 steps (CI = 0.529; RI =0.757; Fig. 19B), in contrast to
the original study using PAUP* (513 MPTs of length 163 steps; CI = 0.5460; RI = 0.7574; Fig.
19A). The strict consensus is identical to that of Dilkes’, as is the Bremer support, but bootstrap
support is distinctly lower for all nodes, similar to the previous analysis. Here, the differences
between the two analyses range from 3% (Anconastes vesperus + Tambachia trogallas) to 34%
(Kamacops acervalis + Zygosaurus lucius). Five nodes dropped below the 50% threshold in the
TNT analysis. The Adams consensus (not depicted) would identify the same four wildcard taxa
as Dilkes’ original analysis (Brevidorsum profundum, Conjunctio multidens, Reiszerpeton
renascentis, Scapanops neglectus).

The TNT analysis of the matrix without Dilkes’ wildcards recovered a single MPT with a
length of 142 steps (CI = 0.585; RI = 0.780; Fig. 19D), in contrast to Dilkes’ analysis in PAUP*
(27 MPTs with a length of 143 steps; CI = 0.5874; RI = 0.7838; Fig. 19C). The differences relate
only to resolution of polytomies recovered by Dilkes; there are no shifts in the general position
of taxa. The same pattern of Bremer and bootstrap support was identified, with the latter ranging
between 4% (Anconastes vesperus + Tambachia trogallas) and 20% (all three species of Cacops;
Dissorophinae; Cacopinae + Dissorophinae). However, zero nodes dropped below the 50%
threshold in the TNT analysis.
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The TNT analysis of my updated version of Dilkes’” matrix with all taxa sampled
recovered 284 MPTs with a length of 161 steps (CI = 0.509; RI = 0.734; Fig. 20A). Resolution
has decreased across the tree with a large basal polytomy in Dissorophidae. Cacopinae consists
only of the three species of Cacops. Platyhystrix rugosa is still recovered as the earliest-
diverging dissorophid. Trematopidae has also lost resolution; only Anconastes vesperus +
Tambachia trogallas is recovered. Bremer and bootstrap values tend to be lower for overlapping
nodes. The Adams consensus (not depicted) does not identify the same four wildcards as Dilkes
(2020). Of those four, only Reiszerpeton renascentis is still recovered in a wildcard position, in
addition to 4Aspidosaurus binasser and Diploseira angusta, which were not wildcards in Dilkes’
original analysis.

The TNT analysis of the same matrix without Dilkes’ wildcards recovered 12 MPTs with
a length of 148 steps (CI = 0.554; RI =0.778; Fig. 20C). The tree is more resolved than in the
previous iteration, with two cacopine clades: (1) all three species of Cacops; and (2)
Anakamacops petrolicus + Kamacops acervalis + Zygosaurus lucius. This is the only analysis to
recover all three taxa within Kamacopini (the clade defined as all taxa closer to K. acervalis than
to Cacops aspidephorus; Liu, 2018). The arrangement of Dissorophinae, with Broiliellus olsoni
as the earliest diverging taxon, followed by Broiliellus reiszi, differs from both the previous
iteration with all taxa sampled and from previous studies. Within Trematopidae, Fedexia
striegeli and Ecolsonia cutlerensis are now recovered as successively diverging taxa at the base
of the clade rather than as exclusive sister taxa. Acheloma cumminsi and Phonerpeton pricei are
also not recovered as exclusive sister taxa and instead form a polytomy with the pair of
Anconastes vesperus + Tambachia trogallas. Bremer and bootstrap values are again lower
compared to the original matrix analyzed in TNT.

Discussion

The original goal of this study was to expand my previous trematopid matrix to encompass
dissorophids as a means of independently testing the relationships of dissorophids and
olsoniforms more broadly. This study “accomplished” that goal, but as may be apparent from a
first-hand examination of the results and as I hope to make a case for, the results of both this
study and those of previous studies should be treated cautiously. This discussion is therefore
divided into three main sections: (1) a brief discussion of the first-hand results of the analyses
performed here; (2) a broader discussion of topological disparity, identifiable sources of this
disparity, and a critical examination of previous methodologies; and (3) a summary of the state
of affairs in dissorophoid phylogenetics and taxonomy with some highlighted areas for future
study.

Tallying topologies. This section summarizes the key findings from the various analyses that
were performed in this study as they relate to the recovered topologies. It comes as little surprise
that across my nine analyses, there is little consensus; indeed, some analyses recover little
resolution at all. Larger taxon samples produced less resolution and rarely recovered all nominal
dissorophids or all nominal trematopids in a clade (e.g., Analyses 1A, 2; Figs. 6, 9). Parioxys
bolli is unsurprisingly not recovered as a dissorophid, let alone as a dissorophoid (Fig. 6). The
skew towards cranial characters in this matrix, a characteristic of other matrices as well, reflects
the precedent of using cranial remains to differentiate taxa. Even with the expanded postcranial
character sampling of this study’s matrix, most characters cannot be scored for this taxon.
“Broiliellus” hektotopos is also not recovered as an olsoniform, let alone as a dissorophid (Figs.
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6-9). Amphibamiformes is never recovered when this taxon is sampled, and it always forms a
polytomy with other amphibamiforms. The lack of a monophyletic Amphibamiformes in most
analyses likely reflects the character sampling being derived from olsoniform matrices and thus
undersampling characters that capture amphibamiform synapomorphies.

A more surprising result is the position of Reiszerpeton renascentis as an unplaced
olsoniform or outside of a clade of all other dissorophids in some analyses (Analyses 3, 5; Figs.
6, 10B, 13), as it was always recovered as a dissorophid in previous studies (Figs. 3—4). One
possibility is that this small specimen was very immature and therefore shares certain qualitative
features with amphibamiforms; its original identification as a specimen of Tersomius texensis
speaks to this (Maddin et al., 2013). With that said, it never clusters with amphibamiforms. There
may be enough features shared with most/all dissorophids or olsoniforms (e.g., a septomaxilla at
the mid-length of the naris; postorbital lacking a markedly offset posterior terminus) to maintain
its olsoniform affinities. The apparent absence of a ventral process of the prefrontal (Maddin et
al., 2013:454) may also contribute to its stemward slippage; this process (the VPP) is found in all
other dissorophoids sampled here.

A different hypothesis is that full sampling of trematopids, including the rarely sampled
Carboniferous taxa like Mordex calliprepes, draws the taxon down. Many of these Carboniferous
taxa have a relatively higher number of plesiomorphies than the more commonly sampled taxa.
This hypothesis is supported by some MPTs of Analysis 5 in which Reiszerpeton renascentis is
recovered as an early diverging trematopid (Fig. 13B). However, it never clusters with
trematopids in analyses of the original or revised matrix of Dilkes (2020), which use the same
taxon sample (Analyses 7, 9; Figs. 15-16, 19-20). These discrepancies indicate that character
sampling and construction are more likely an explanator since scoring approaches between my
matrix and my revised version of Dilkes’ were the same (e.g., the taxon cannot be scored for
characters invoking skull length). The most likely scenario in my opinion is that the missing data
for R. renascentis are responsible for its peculiar position. The holotype is only a partial skull,
incomplete posteriorly, and definitively lacks apomorphic ornamentation found in cacopines and
dissorophines. Therefore, its combination of known scores may approximate the “ancestral”
olsoniform condition, even though there is no evidence of either trematopid apomorphies or
conditions contrary to the diagnosis of Dissorophidae.

This conjecture could also apply to Brevidorsum profundum and Platyhystrix rugosa.
Brevidorsum profundum is represented only by a fragmentary partial skull (without apomorphic
ornamentation) and a few postcranial fragments (without osteoderms). Hook (1989) even
suggested that it might be a small trematopid related to what was eventually placed in
Phonerpeton. However, B. profundum is either recovered with other dissorophids to the
exclusion of Reiszerpeton renascentis (e.g., Analysis 3; Fig. 10B) or in a polytomy of all
dissorophids including R. renascentis and perhaps other taxa (e.g., Fig. 10A). A few features in
which B. profundum is similar to most other olsoniforms and differs from R. renascentis (e.g.,
tabular-squamosal contact; semilunar curvature) are evidently sufficient to avoid the same degree
of stemward slippage.

Platyhystrix rugosa is represented only by a badly crushed skull and isolated postcrania
(Berman, Reisz & Eberth, 1981). It was identified as a wildcard taxon in Analysis 1A (Fig. 6)
and was not always recovered as a dissorophid (e.g., Analyses 3, 7, 9, some MPTs of Analysis 5;
Fig. 13B), like Brevidorsum profundum. It too never exhibits the same slippage as Reiszerpeton
renascentis and is often recovered as the earliest-diverging dissorophid (e.g., Analysis 5; Figs.
10B, 12B, 13B, 15, 19-20). One consideration worth future consideration is whether this
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position is still artificial, even if its position within Dissorophidae is secure. The only semi-
complete skull of P. rugosa is badly crushed. While mostly complete longitudinally, the naris is
not sufficiently preserved to be certain of its shape or the relationship of the elements that
normally frame it (e.g., lacrimal; Berman, Reisz & Fracasso, 1981). Additionally, P. rugosa has
historically been scored as lacking osteoderms, contrary to all other nominal dissorophids; the
condition of its spines is therefore regarded as ornamentation of the spines, rather than a separate
dermal ossification. Notably, however, Witzmann & Soler-Gijon (2010), the only published
histological study of these spines, termed them as osteoderms. Dilkes’ (2020) analysis of his
matrix with and without osteoderm characters did result in a slight change in topology, so the
identity of the spinal ornamentation has clear phylogenetic implications as well. Without these
characters, P. rugosa formed a polytomy with Aspidosaurus binasser and a branch for all other
dissorophids, rather than diverging before 4. binasser (Dilkes, 2020). It is possible that the
combination of absent osteoderms and missing data may produce an artificially early-diverging
position, as the taxon is difficult to differentiate from trematopids in scoring (e.g., the nares
cannot be characterized) and it lacks certain dissorophid apomorphies (e.g., osteoderms). The
Early Permian age of the material from which most scores are derived is incongruent with its
present early-diverging position.

There is usually poor resolution within Trematopidae except in analyses with restricted
taxon samples (Fig. 5). In this study, nominal trematopids are recovered as a clade in most
analyses except Analyses 1A and 2, which recovered almost no resolution anywhere (Fig. 9). A
restricted subset of seven trematopids in Analysis 3 did form a clade in spite of relatively little
resolution elsewhere (Fig. 10). The more interesting result is that a trematopid-focused sample
did not recover all nominal trematopids in a clade (Analyses 6 and 8; Figs. 14, 17). This pattern
persisted even when examining individual tree islands of Analysis 8 (Fig. 18), although as noted
in the Results, 18 of the 19 MPTs of Analysis 6 did recover all nominal trematopids in a clade.
One explanation may be that two characters were removed to avoid redundancy / parsimony-
uninformative characters (narial elongation, lacrimal-naris; Appendix 2). Trematopids were all
scored the same for both characters, and this redundancy may have overweighted certain
apomorphies (the lacrimal always enters an elongate naris in this clade). Another is that the net
addition of characters (+24 compared to Gee, 2020b), many of which are postcranial characters
for which most olsoniforms cannot be scored, creates sufficient uncertainty to preclude recovery
of all nominal taxa in a clade. The commonly recovered in-group nodes are Acheloma cumminsi
+ Phonerpeton pricei, a longstanding relationship between two Permian taxa from Texas (Figs.
7-12, 14, 17, 19), and Anconastes vesperus + Tambachia trogallas, a more perplexing
relationship (Late Carboniferous of New Mexico and Early Permian of Germany; Figs. 10, 12B,
14B, 15, 17, 19-20) but one that has been recovered in most previous studies (Fig. 2).

The resolution of Dissorophidae is quite variable, especially with respect to historical
wildcard taxa or historically unsampled taxa. All nominal dissorophids form a clade only in
restricted taxon samples that omit wildcards like Reiszerpeton renascentis (e.g., Analyses 1B, 2,
5; Figs. 7-8, 12B) or that have a more limited outgroup sample (e.g., Analyses 7, 9; Figs. 15, 19—
20). Where resolution is appreciable, Platyhystrix rugosa and Aspidosaurus binasser usually
form successively diverging branches at the base as they do in practically all other dissorophid
analyses (Figs. 3—4; see Figures 12B, 15D, 19B, 19D, 20C, for topologies of this study).

Dissorophinae is an “all or nothing” of sorts; either it is restricted to Dissorophus
multicinctus (Figs. 9, 10A, 12A, 15B, 19B, 20A) or it includes this taxon, all valid species of
Broiliellus, and Diploseira angusta (Figs. 7, 8, 10B, 12B, 15D, 19D, 20B). The more inclusive
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composition follows the historical characterization of Dissorophinae. This includes B.
arroyoensis, which has never been previously sampled because the cranial sutures are entirely
unknown. It is united with other nominal dissorophines here by its apomorphic ornamentation
and demonstrates that taxa without sutures or with a high proportion of missing data are not
assured to be wildcards (e.g., Kearney, 2002; Kearney & Clark, 2003; Wiens, 2003a, 2003b,
2005, 2006; Wilkinson, 2003; Prevosti & Chemisquy, 2010; Wiens & Morrill, 2011; Guillerme
& Cooper, 2016). Taxon removal exerts the strongest apparent influence on Dissorophinae;
analyses with progressive taxon removal often produced a more inclusive clade (e.g., Analyses 5,
7; Fig. 12, 15). The interrelationships of dissorophines remain poorly resolved however.

Cacopinae is similar to Dissorophinae in either being monotaxic (Cacops aspidephorus)
or in comprising a consistent, more exclusive clade. The more exclusive version of Cacopinae
almost always includes all three species of Cacops (Figs. 15B, 20A); only in Analysis 3 is
Cacops aspidephorus recovered as the sole cacopine (Fig. 10). Some analyses also recovered
Anakamacops petrolicus, Kamacops acervalis, and Zygosaurus lucius as cacopines (Figs. 7B,
8B, 12, 15D, 19D, 20C). Conjunctio multidens was also sometimes recovered as a cacopine
(Figs. 7, 8, 13B), a result sometimes previously found (Figs. 3—4). Cacops was usually
monophyletic (but see Analyses 1A and 2; Figs. 7B, 9), with C. aspidephorus and Cacops
morrisi as sister taxa and Cacops woehri as the sister taxon to this pair.

Liu (2018) recovered the Middle Permian dissorophids Anakamacops petrolicus,
Kamacops acervalis, and Zygosaurus lucius as a clade, which he termed Kamacopini and which
was defined as the most inclusive clade that includes K. acervalis but not Cacops woehri.
Subsequent studies have either recovered Kamacopini to the exclusion of A. petrolicus (Dilkes,
2020) or as a monotaxic clade with the nominal taxa as part of a larger polytomy (Gee et al.,
2021; Figs. 7-8, 10, 12, 15). Analysis 9A, with Dilkes’ wildcards excluded, is the only one to
recover the same Kamacopini as Liu (Fig. 19). This likely results from the very poor
characterization of Z. lucius, which does not differ from K. acervalis in scoring except for the
distribution of missing data. Anakamacops petrolicus conversely differs from Z. lucius for one
character and from K. acervalis by two or three depending on which OTU of the K. acervalis is
used. Iratusaurus vorax and Nooxobeia gracilis, the other Middle Permian dissorophids, are too
fragmentary and lacking in apomorphies to assess whether they are kamacopins (Gubin, 1980;
Gee, Scott & Reisz, 2018; Fig. 6).

Collectively, the results reflect a few influential factors. The first is taxon sampling; it is
not surprising that including many poorly known taxa (Analyses 1A, 2, 3) led to very poor
resolution (Figs. 6, 9-10). This pattern was also apparent in my trematopid study in which
restricting the taxon sample to mirror that of previous studies led to the recovery of substantially
more resolution than when all taxa were sampled (Gee, 2020b). Nonetheless, taxa like Broiliellus
arroyoensis demonstrate that taxon sampling criteria must be nuanced and not rely on blanket
characterizations such as “no cranial sutures known,” as a handful of qualitative features may
still be highly informative. However, the presence of tubercular ornamentation in Ilratusaurus
vorax and Nooxobeia gracilis, a cacopine apomorphy, was insufficient to draw them into
Cacopinae in any analysis. The absence of this ornamentation in Cacops woehri, which still
clusters with the other species of Cacops, could be a confound. However, I. vorax and N. gracilis
are also some of the most fragmentary taxa (scored for <20% of characters; Table 1). The status
of osteoderms also predictably exerts influence (as shown also by Dilkes, 2020); as discussed
above, nominal dissorophids that are sometimes recovered outside of Dissorophidae or at the
base are often those for which the postcranial skeleton is not sufficient to score the
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presence/absence (e.g., Reiszerpeton renascentis) or where osteoderms are scored as being
absent (e.g., Platyhystrix rugosa).

To summate, in spite of a few broadly conserved aspects (e.g., composition of
Dissorophinae), there remain many outstanding questions and uncertainties, even if the
discussion is restricted to relatively resolved, restricted-taxon-sample analyses (Figs. 12-20).
Therefore, there is very little consensus in dissorophid intrarelationships, and as Dilkes (2020)
remarked, it is not merely surprising but rather concerning that there is so much disparity
between previous studies that used a nearly identical character matrix. This questions whether
any study, including this one, has produced a reasonably robust topology that is acceptable for
use in other studies or for qualitative discussion of olsoniform evolution. The following sections
present a more detailed discussion of my findings regarding potential methodological
explanators for the persistent disparity, some of which are rather concerning and some of which
may invalidate previous analyses.

The search for a consensus. Almost every living worker who has specialized in terrestrial
dissorophoids in the last four decades (J. Anderson; D. Berman; D. Dilkes; N. Frobisch; B. Gee;
R. Holmes; A. Huttenlocker; H. Maddin; A.R. Milner; J. Pardo; R. Reisz; R. Schoch) has
participated in dissorophid phylogenetic analysis, with only two (Frobisch, Schoch) involved in
more than one analysis. However, almost every previous matrix other than the modified one used
in this study is a direct derivate from Schoch (2012), and almost every one of these derivates is
over 95% similar in character sampling, taxon sampling, and scoring to the original (Figs. 3—4).
Two of the three first-order derivates only added or subtracted taxa (Maddin et al., 2013; Schoch
& Sues, 2013). The majority of cumulative changes present up through the derivate by Dilkes is
the result of Dilkes adding seven new characters (cumulative changes summarized in Appendix
8). Gee et al.’s (2021) matrix is the most recent derivate to be published, although it is not a
direct derivate, as it combined Holmes, Berman & Anderson’s (2013) derivate with the
amphibamiform-focused matrix of Maddin et al. (2013); accounting for elimination of
redundancies, only 33 characters are carried over from the former. Frobisch & Reisz (2012) used
a slightly modified version of Polley & Reisz’s (2011) trematopid matrix, although it only
sampled five dissorophids. However, because all 53 characters of Polley & Reisz were
incorporated into Schoch (2012), Frobisch & Reisz’s matrix is in fact very similar in character
sampling, even if it is not derived from Schoch’s. Schoch did not expressly state whether he
rescored characters but the absence of any polymorphisms in his matrix in comparison to nine in
Polley & Reisz’s matrix suggests as much. The Gee (2020b) trematopid matrix and the derivate
used here are also in part derived from Polley & Reisz, so the general character sampling thus
converges on the sampling of Schoch (2012). However, character construction differs for many
(Appendix 1), and scoring was expressly novel for all characters. There are also notable
departures from the sampling of previous analyses to avoid redundant or dependent characters
(Appendices 1-2).

In detailing this history, I want to emphasize that I am not advocating against the standard
practice of propagating an existing matrix; there are many advantages to doing so. However,
implicit in the propagation of a consensus matrix is the assumption that the underlying
framework is largely sound. While there may be minor differences in scoring philosophy, such as
whether reconstructions can be used, the matrix should obviously be as error-free as possible
while maximizing the available data. If it is not, then widespread adoption of this matrix will
result in widespread propagation of errors. There are therefore also inherent disadvantages to
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propagating matrices when their quality is suspect. This underscores the emphasis on quality of
the matrix, rather than quantity of characters, duration or frequency of usage, or other
quantitative metrics, that have been raised by numerous recent studies (e.g., Brazeau, 2011;
Simdes et al., 2017; Laurin & Pifieiro, 2018). However, wide discrepancies in practice clearly
persist within the field. As reflected in Analysis 7 (Fig. 15, Appendices 5-6), I have concerns
about the accuracy of the widely propagated Schoch matrix. These findings therefore cast doubt
on previous studies that used this matrix, which I outline in greater detail below.

Scoring issues. Examination of previous matrices for possible explanators of topological
disparity led me to conduct a thorough survey of Dilkes’ version of the Schoch (2012) matrix (as
the most recent direct derivate). I identified a large number of scores for features that are simply
unknown in the given taxon (73 in total; Appendix 5). I also identified a smaller number of
unscored cells that can definitively be scored from the literature (35 total) and scores that were
scored for the wrong character state (35 total). I want to emphasize that the changes that I made
are corrections to unequivocal errors in the sense that standard practices do not permit scoring of
features that are unknown. I also accounted for the datedness of some literature with respect to
previously unscored cells that were newly scored. While some typographical errors are to be
expected in any matrix, the number of changed scores (143) and the pattern of these scores either
suggest an intentionally non-standard coding philosophy that permits scoring of unknown
features or an unusually large number of typographical errors. Most of these errors stem from
either the original matrix or the first direct derivative (Holmes, Berman & Anderson, 2013), so
they have been propagated through several analyses. Below I outline a few examples in detail.

Cacops provides the clearest example. For Cacops woehri, 1 identified 14 errors; in a
matrix of 70—77 characters, this is a substantial amount (note that the particular scores of this
taxon that have been propagated were introduced by Holmes, Berman & Anderson, 2013). Ten
of these relate to features that are simply not preserved (exoccipital, stapes, quadrate, postcrania).
Having worked extensively on Richards Spur, from which C. woehri is known, I am not aware of
any unpublished material of C. woehri that can reconcile these errors (but see Gee, Bevitt &
Reisz, 2019:fig. 9.7-9.14 for an isolated jaw articulation that was assigned to Dissorophidae cf.
C. woehri). At least the postcranial scores could not have been taken from the original scoring by
Frobisch & Reisz (2012) because that matrix has zero postcranial characters. One of the 14 errors
is a score for the wrong state (tubercular ornamentation present); C. woehri lacks the tubercular
ornamentation found in other species of Cacops (Frobisch & Reisz, 2012; Frobisch, Brar &
Reisz, 2015; Gee, Bevitt & Reisz, 2019). Notably, of the 14 erroneous scores, 13 were scored
identically to both of the other species of Cacops; the last score was only the same as Cacops
morrisi (Cacops aspidephorus was unscored). In fact, there were no characters for which the
three species differed other than in the distribution of missing data. This false homogeneity
certainly accounts for the unresolved relationships of the three species in all previous analyses
(Figs. 3—4), despite the many features that separate them taxonomically (Frobisch & Reisz, 2012;
Gee & Reisz, 2018a) and the recent questioning of whether C. woehri is even properly placed in
the genus (Anderson, Scott & Reisz, 2020). The most reasonable conclusion is that scores for C.
woehri were “assumed” on the basis of the phenetic placement of the taxon within Cacops. This
approach is problematic since a phylogenetic analysis should inform taxonomy, rather than vice
versa. The notable cranial differences of C. woehri from the other two species suggest that it may
have also differed in other skeletal attributes that are not presently known for it.
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Cacops aspidephorus also corroborates the hypothesis that scores have been “assumed.”
The taxon is famously known for the total absence of any knowledge of the cranial sutures
(inclusive of the palate and braincase) due to poor preservation. Only in the past year has this gap
been addressed (Anderson, Scott & Reisz, 2020). However, in Schoch’s (2012) original matrix,
there were no fewer than 15 scores for which the sutures would have to be known in order to
score the taxon. These scores were then propagated without modification by all derivates.
Schoch did not personally examine the material of this taxon (as indicated in his table 1), and it
is telling that while he reconstructed the cranial anatomy of almost every dissorophid with their
respective known sutures, that of C. aspidephorus is only a silhouette (see figures 6 and 7
therein). While Anderson, Scott & Reisz’s (2020) description corroborated many of these
scorings, at least five original scores were shown to be errors (e.g., parasphenoid dentition,
exoccipital-postparietal contact). One originally unscored character (postorbital-supratemporal)
should have been scoreable if other cranial suture characters could have been scored. These
erroneous scores are identical to those of C. morrisi and would have to have been “assumed”
from this taxon (Cacops woehri was not sampled in the original matrix). This is further
corroborated by the observation that Cacops morrisi does not show a pattern of erroneous scores,
probably because it was the exemplar from which scores for the two other species were
“assumed”; only one score is clearly erroneous: the iliac blade. No pelvis is known for the taxon,
but this could have been “assumed” either based on the fact that this feature is an olsoniform
apomorphy or based on Williston’s description of C. aspidephorus.

As discussed in the Methods and Appendix 3, the previous scoring for Kamacops
acervalis cannot be fully corroborated by the literature. This taxon’s cranial sutures have never
been described or figured, but it is scored for many characters that require these sutures to be
known and is specifically scored almost identically to the three species of Cacops. The only
reconstruction of the skull roof of K. acervalis in dorsal view (Schoch, 2012:fig. 6) lacks sutures,
like Cacops aspidephorus. 1f sutural characters could be scored for these taxa, it is unclear why
they were not reconstructed with them. The scoring of my matrix is based on my assumption that
the sutures are not actually known since data to support their characterization have never been
published. Broiliellus, with four commonly sampled species, does not clearly show evidence of
widespread “assumed” scores. Broiliellus arroyoensis, for which sutures are also unknown, has
never been previously sampled or reconstructed, and it is almost never discussed in the literature.
Broiliellus olsoni does have a few erroneous scores for elements that are not preserved, but no
pattern is apparent for other species. Broiliellus brevis and Broiliellus texensis are difficult to
assess from the literature given its datedness (Williston, 1914; Carroll, 1964a; DeMar, 1966b).
These descriptions are not well-suited for scoring due to their brevity and limited figures. Schoch
indicated that he personally examined material of both taxa, and therefore, it is possible that he
was able to score features from personal examination that are not mentioned in the literature,
contrary to C. aspidephorus.

Some of the errors that I identified are related to how characters are defined, something
that Dilkes (2020:20-22) discussed at length. For example, the position of the jaw articulation is
referenced by the position relative to the exoccipital facets. However, the character has been
scored for taxa in which the jaw articulation or the exoccipitals are unknown (e.g., Cacops
woehri, Scapanops neglectus, Tambachia trogallas). It was probably assumed that the occiput
was vertical (like in most temnospondyls), from which it can be assumed that the occipital
margin of the postparietals is an acceptable proxy for the exoccipitals’ posterior extent. If this
series of working assumption was indeed used, the character should have been redefined (as I did
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here; Appendix 1). Otherwise, it could lead to inconsistent scoring where one worker operates
with this unstated assumption and thus scores the character, but another worker operates strictly
based on the character as defined and thus leaves it unscored. The other set of characters for
which this applies are those related to the relative length or height of different regions of the
skull (e.g., suborbital bar height, distance between the squamosal embayment and orbit). These
are all defined by relation to the midline skull length, yet a number of taxa whose skulls are
incomplete posteriorly were scored for these characters (e.g., Broiliellus olsoni, Reiszerpeton
renascentis). These characters could be redefined based on a proxy to facilitate scoring of
incomplete specimens (something that Liu, 2018, attempted, but that Dilkes, 2020, reversed). As
defined, these characters cannot be scored from such specimens.

Certain characters also seem more susceptible to either “assumed” scoring, or in some
instances, a peculiar lack of scoring. The best example of the latter is how exoccipital-tabular
contact (only found in Sclerocephalus in the matrix) is often scored, but exoccipital-postparietal
contact is not. This is in spite of frequent explicit description and figuring of the exoccipital-
postparietal contact and the lack of an exoccipital-tabular contact. Some scores here also appear
to have been “assumed” based on a taxon’s broader affinity (e.g., to Dissorophidae). For
example, a prefrontal-postfrontal contact is not found in any dissorophid and only in the earliest-
appearing trematopids (not sampled in Schoch’s matrix or any derivate). Anconastes vesperus is
scored as lacking this contact, yet no specimen preserves the medial margins of the orbit
(Berman, Reisz & Eberth, 1987). The dorsal quadrate process (a xerodrome feature as scored) is
another example; several taxa without complete (or any) quadrates are scored as having this
feature (e.g., Cacops woehri).

It is worth pointing out that many of the original erroneous scores, whether a typographic
error, an assumption, or an inference, were not necessarily inaccurate. It is reasonable to predict,
for example, that Cacops morrisi would have an expanded iliac blade, an olsoniform
synapomorphy that is positively identified in Cacops aspidephorus (Williston, 1910). However,
this feature has yet to be positively identified in Cacops morrisi and should not be scored as
such. It is simply unknown. The correction of five previously inferred scores of C. aspidephorus
following the study of Anderson, Scott & Reisz (2020) underscores the point that even scores
that are inferred through close phenetic relatedness may prove to be wrong when data are
produced to assess them. A phylogenetic analysis is a test of hypotheses that goes beyond the
historical phenetic frameworks that were not only subject to, but predicated on, each worker’s
personal conceptions of relatedness. While a phylogenetic analysis may be a test of inferences, it
is not a test that can be based on inferences — it is a test only properly based on strict
observations (i.e. data). I am under no illusions that phylogenetic analyses are unbiased or
completely objective — taxon sampling and character construction are just two ways in which
workers’ biases can be imposed upon the analysis. But there is an implicit aim for minimizing
biases when conducting these analyses, and scores that are simply inferred based on phenetic
taxonomic placement or previous phylogenetic placement are the opposite.

Correcting for these inferences or assumptions, as I have done, has predictably reduced
resolution and nodal support (Figs. 15, 20). While loss of resolution and nodal support is an
unfavorable outcome, an analysis based only on what is properly observable is the only truly
defensible topology. Relationships recovered from inferred “observations” are spurious. A lack
of resolution does not necessarily indicate that the matrix is compromised or poorly constructed,
and workers should not tinker with the matrix in a way that produces resolution at the cost of
data integrity. The ultimate goal is to recover correct clades while avoiding incorrect ones
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(Rineau, Zaragiieta i Bagils & Laurin, 2018), not to maximize resolution at the expense of
accuracy. The sampled characters could capture all of the historical characters that were
incorporated into phenetic taxonomy yet be insufficient to recover statistical support for
relationships. Such a possibility is inherently tied to the data available for each taxon and thereby
to the incomplete fossil record.

Slippery slope. The concerns I outlined in the matrix of Schoch (2012) and its derivates are not
exclusive to this “family” of matrices. The 70 characters from Schoch’s (2012) matrix were
carried over to Schoch’s (2018a) matrix, which broadly samples dissorophoids (Fig. 2).
Presumably, the scores for the 10 taxa that are sampled in both matrices were also propagated;
this appears to be the case based on a random assessment of cells that I corrected (i.e. the same
erroneous scores are found in both matrices). The taxon sample of Schoch’s (2018a) matrix was
skewed towards amphibamiforms (only eight olsoniforms are sampled), but this matrix has been
expanded in four studies (Atkins, Reisz & Maddin, 2019; Gee & Reisz, 2019; Schoch, Henrici &
Hook, 2020; Schoch & Milner, 2021), three of which added olsoniforms. The same matrix with a
different taxon sample was also used by Schoch & Witzmann (2018) in their study of the
micromelerpetid Limnogyrinus; this study preceded the online publication of Schoch (2018a) by
a few weeks.

The densest taxon sampling of any previous study with respect to olsoniforms is that of
Atkins, Reisz & Maddin (17 OTUs), but as far as I can discern, the scores for the first 70
characters for almost all newly added olsoniforms (Anconastes, Aspidosaurus, Brevidorsum,
Kamacops, Platyhystrix, and the “Rio Arriba” and “Admiral” taxa) are taken directly from
Schoch (2012). This would explain why the referred specimen of Conjunctio multidens is still
treated as the “Rio Arriba Taxon,” separate from the holotype, and why Scapanops neglectus is
still termed the “Admiral Taxon”; both terms went into disuse following Schoch & Sues (2013).
Therefore, the same erroneous scores present in Schoch (2012) would also be present in Atkins,
Reisz & Maddin’s matrix, which I cursorily confirmed based on a random examination of
equivalent cells that I had corrected in Dilkes’ (2020) matrix. Workers seeking to expand any
version of Schoch’s (2018a) matrix should carefully examine the matrix to assess the fidelity of
scores in order to avoid the same issue of propagation of dubious scores. I want to emphasize
that my discussion of previous matrices’ scores is not meant as overt criticism of other workers
for the sake of being critical (it was not even part of my original study design), nor is it under
any assumption that I or any other worker produce entirely infallible work. It is instead meant to
highlight that historic practices have produced a topology that is not reproducible under best
practices (e.g., scoring only based on observed features), with the topology resulting from
correction of errors being noticeably different (Figs. 15, 20).

The treatment of polymorphisms. The treatment of polymorphisms has been a contentious topic
in phylogenetics for some time (e.g., Wiens, 1999; Watanabe, 2015). Polymorphisms are
generally rare in temnospondyl matrices. It was not until Liu (2018) that polymorphisms were
introduced into a dissorophid matrix, and it was only for Conjunctio multidens. Dilkes (2020)
subsequently introduced one polymorphic scoring for Dissorophus multicinctus. While some of
this owes to the singleton representation of many taxa, there are also examples of
incontrovertible biological variation within a single individual (e.g., postorbital-supratemporal
contact in Phonerpeton pricei; Dilkes, 1990) that were not scored. This specific example is odd
because Schoch (2012) explicitly called out this polymorphism (p. 128 therein) yet did not score
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it as such. A second example is his mention of the polymorphic state of the intertemporal in
Sclerocephalus, another sampled taxon for which this polymorphism is unscored (p. 128 as
well). In contrast to this propagated matrix, polymorphisms are widespread in my matrix; at the
species level, there are 48 polymorphisms. Such disparity is not related to my increased sampling
of postcranial characters; only two polymorphisms are for such characters.

It has historically been assumed that polymorphic characters are less reliable for
inference (e.g., Wiens, 1995). Indeed, comparisons of matrices with polymorphisms with the
same matrices without polymorphisms recover distinctly different topologies (e.g., Trinajstic &
Dennis-Bryan, 2009; Watanabe, 2015; Garbin, Ascarrunz & Joyce, 2018). Nonetheless, not
representing intraspecific variation in some form is an oversimplification of the data, and proper
representation is essential, even if it comes at the expense of topological resolution. Furthermore,
analysis of both simulated and empirical datasets has demonstrated that failing to score
polymorphisms may in fact decrease accuracy (e.g., Wiens & Servedio, 1997, 1998; Wiens,
1998; Trinajstic & Dennis-Bryan, 2009). Therefore, there is no strong a priori standing for
intentionally omitting polymorphisms. Numerous strategies for approaching polymorphisms
have been discussed (e.g., Kornet & Turner, 1999; Wiens, 1999), but many are not well-suited
for paleontological datasets. For example, scoring based on the frequency with which a certain
state appears will require an appreciable sample size that is rarely met for extinct tetrapods. I
believe that no olsoniform is known from such a sample size. The use of an alternative character
state for polymorphisms (e.g., ‘scaled,” ‘unscaled,” and ‘unordered’ scoring; Campbell & Frost,
1993; Mabee & Humphries, 1993; Wiens, 1995, 1999) is one option that does not rely on a large
sample. However, no previous olsoniform study has utilized this approach (the use of ‘a’ for
polymorphisms by Polley & Reisz, 2011, seems to be only for visual alignment of the typeset
matrix’s columns). This approach has also drawn criticism (e.g., see discussion by Kornet &
Turner, 1999) because this polymorphic character state is not mutually exclusive with other
states, as is the convention for character construction (e.g., Sereno, 2007). There is no consensus
among any subset of workers as to the treatment of polymorphisms, but it should be emphasized
that whatever approach is being employed should be explicitly stated, and ignoring
polymorphisms, as seems evident from many previous studies, should be discouraged.

Conjunctio multidens merits discussion because it is scored for the most polymorphisms
in derivates of the Schoch (2012) matrix. The holotype and the referred specimen long referred
to as the Rio Arriba Taxon (UCMP 40103) were historically separate OTUs. They are
superficially somewhat different (e.g., Schoch & Sues, 2013:fig. 2), which may reflect that the
holotype is nearly twice as large. Schoch & Sues (2013) did not report their new composite OTU
of these two specimens, so the composite OTU currently in use is that of Liu (2018). There are
five polymorphisms for C. multidens: interorbital width (23); tabular process (46); preorbital-
postorbital ratio (52); tabular horn (64); and pointed snout (67). Two of these characters (23, 52)
are related to skull proportions, which conceivably could be ontogeny-related. Another two (46,
64) relate to the same part of the tabular, and the first of these has been explicitly stated to be
ontogeny-related in some dissorophids like Cacops (e.g., Reisz, Anderson & Schoch, 2009). Any
workers continuing to use this matrix should consider rescoring these with an eye towards
ontogeny, as I did here, since polymorphisms are not scored for taxa represented by a much
narrower size range of specimens that capture anatomical variation (e.g., the tabular horn of
Cacops morrisi).

The last character (pointed snout) appears to be a typographic error introduced by
Holmes, Berman & Anderson (2013). Per Schoch (2012), a pointed (not parabolic or square-
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shaped) snout is only found in Broiliellus, Dissorophus, and Scapanops (‘“‘Admiral Taxon™); he
scored it as absent in the holotype and the referred specimen of Conjunctio multidens. However,
it is scored as present in the holotype of C. multidens by Holmes, Berman & Anderson (2013).
This was only identified by examining their matrix; they did not list it in the text despite listing
other scoring changes, further evidence that it is a typographic error. The final line of evidence is
that the “Admiral Taxon” was scored as lacking a pointed snout in this derivate, contrary to
Schoch. The holotypes of C. multidens and Scapanops neglectus were scored as successive lines
and could have been misread (Schoch’s matrix was available only as scoring strings in a typeset
figure). I hypothesized that this error could account for the shift of C. multidens from the base of
Cacopinae in Schoch & Sues (2013), who presumably scored the composite as lacking this
feature (as in Schoch, 2018a), to the base of Dissorophinae in Liu (2018), who scored C.
multidens as polymorphic. Since this was a simple test, I corrected the scoring of C. multidens
from ‘0&1° to ‘0’ and that of Scapanops neglectus from ‘0’ to ‘1’ and reanalyzed Liu’s matrix.
The MPT length increased by one step, but the same number of MPTs were recovered (six), and
the strict consensus topology remained unchanged, indicating that this one propagated error is
not the sole explanator of Liu’s topology.

Software selection. One of the relatively understudied factors that may produce conflicting
topologies between studies is the choice of software. While it is well-known that different
programs often produce different topologies, the actual differences are rarely examined. As noted
in the Methods, comparisons of previous studies suggest that the choice of PAUP* versus TNT is
exerting a meaningful influence on dissorophid topology. Analysis 8 (trematopid-focused; Fig.
17) did not recover any differences in the strict consensus. Conversely, Analysis 9A (original
matrix of Dilkes, 2020; Fig. 19) identified a few topological differences between strict consensus
trees of the restricted taxon sample. TNT recovered more resolution in the parallel of Dilkes’
(2020) original matrix, but all newly recovered nodes are compatible with the equivalent
polytomies of the original study (e.g., the resolution of the trichotomy of Broiliellus brevis,
Broiliellus olsoni, and Broiliellus texensis; Fig. 19D).

Because some of the inherent differences between programs (e.g., default branch
collapsing rule, rounding rule for nodal frequency) do not correlate with biological principles
that would clearly support using one parameter over another (compared to a parameter like
character ordering), the topology of one program is not more “biologically accurate or an
“overestimate.” These specific programs have purportedly recovered different topologies for the
same matrix in other studies (e.g., Schoch, 2013, claimed to have recovered less resolution using
TNT), but Marjanovi¢ & Laurin (2019:4) have addressed many of these findings and note that
they were in fact the result of errors or a non-equivalent search between programs. At least some
of these likely relate to poorly documented nuances of various programs (e.g., the need to run a
second round of TBR branch-swapping from a stored set of MPTs in TNT in order to obtain all
MPTs) or to different heuristic algorithms for relatively large datasets (e.g., the New Technology
Search in TNT and the parsimony ratchet [PAUPRat] that is used in tandem with PAUP*). For
example, neglecting to run a second round of branch-swapping in TNT could produce more
resolution if the first set of MPTs (suboptimal) was only a small subset of the total MPTs. Less-
than-best practices, such as running a heuristic search with a relatively low number of replicates
(either to identify MPTs or for bootstrapping), could also explain the recovery of an incomplete
set of MPTs or suboptimal trees.
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Other studies not addressed by Marjanovi¢ & Laurin (2019) have reported different
topologies recovered by heuristic TNT and PAUP* (e.g., Kurochkin et al., 2009; Han et al.,
2016; Audo, Barriel & Charbonnier, 2021), but assessing whether these too might have failed to
obtain all MPTs is beyond the scope of this study. A recent comparison of performance of
different parsimony programs on phylogenomic data by Goloboff, Catalano & Torres (2021)
noted that PAUP* recovered optimal trees in all datasets but one compared to TNT. Other
paleontological studies have recovered the same number and length of MPTs between programs,
both with large numbers of MPTs (e.g., Spaulding, O’Leary & Gatesy, 2009; Ford & Benson,
2020) and with small numbers of MPTs (e.g., Davesne et al., 2016; Villalobos-Segura,
Underwood & Ward, 2021). Most studies do not report the majority of employed parameters, so
while it can be reasonably assumed that most studies use the default settings (with various
differences between TNT and PAUP*, e.g., branch-collapsing rule, TBR reconnection limit), this
is not actually known. These factors also should not result in different results for exact searches,
regardless of whether they in fact influence heuristic ones, but many analyses also have taxon
samples that exceed the typical computational threshold for exact searches. In this case, it may
be that the algorithms for such searches are not in fact the same (‘branch-and-bound’ in PAUP*
versus ‘implicit enumeration’ in TNT). Broadly speaking, implicit enumeration is usually
considered to be a specific form of a branch-and-bound algorithm for programming problems
with variables of a “0-1” nature (e.g., Balas, 1965; Geoffrion, 1969; Davis, Kendrick &
Weitzman, 1971; Breu & Burdet, 1974). Further exploration of possible differences between
exact search algorithms in these programs is beyond the scope of this study but should be a focus
of future studies.

Given that the explanators for differences between programs are not fully documented, it
would be preferable if workers would use the same program as the previous iteration of the same
foundational matrix to be properly comparative or to restrict any comparisons made with
analyses that used a different program. It would also be beneficial if workers would provide the
complete set of MPTs in supporting information (as I do here) rather than merely depictions of
different consensus trees. This would have the advantage of allowing workers to compute
additional consensus topologies not presented in the paper and is a key step towards
reproducibility.

Support metrics. In theory, support metrics could be one means of comparing disparate
topologies of the same matrix that were recovered from different programs. In Analysis 9 (Fig.
19D), all of the nodes that were recovered in TNT but not in PAUP* had Bremer support of 1
and bootstrap support below 10%. Unfortunately, reporting of support metrics for dissorophid
studies is rather uneven (Table 3), which prevents a full comparison of previous studies. Holmes,
Berman & Anderson (2013) and Schoch & Sues (2013) did not report any support metric.
Maddin et al. (2013) reported bootstrap values, whereas Liu (2018) reported Bremer values.
Schoch (2012) and Dilkes (2020) reported both metrics. There are thus two issues: (1) it is not
possible to directly compare a node’s Bremer support in one study to the equivalent node’s
bootstrap support in another study; and (2) even if the same metric is reported, if the analyses
were conducted in different programs, the nodes are not necessarily properly equivalent (e.g.,
they may not contain the same subset of taxa). This holds especially true for heuristic searches,
which may not recover all (or any) MPTs. Therefore, the only proper comparison is between
Dilkes’ PAUP* analysis and Schoch’s PAUP* analysis (Table 3), which shows that both Bremer
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and bootstrap support has declined for dissorophid nodes, sometimes substantially so (e.g.,
Kamacops + Zygosaurus).

Reporting of at least one support metric is standard practice in contemporary
phylogenetics, so in my opinion, studies without any support metrics should be regarded
skeptically (Holmes, Berman & Anderson, 2013, and Schoch & Sues, 2013, in this context). As
aptly put by Sanderson (1995:299), “without some assessment of reliability, a phylogeny has
limited value. It may still function as an efficient summary of available information on character-
state distributions among taxa [...] but it is effectively mute on the evolutionary history of those
taxa". Although expressed more in the context of standard parsimony bootstrapping, this stance
is also valid for Bayesian analyses; not reporting posterior probabilities is concerning, especially
because posteriors tend to overestimate support (Alfaro, Zoller & Lutzoni, 2003; Cummings et
al., 2003; Douady et al., 2003; Erixon et al., 2003; Simmons, Pickett & Mia, 2004; Zander, 2004)
and especially with all-clades compatible trees, which force full resolution. This is a shortcoming
of the study by Atkins, Reisz, & Maddin (2019), which was the previous densest sampling of
olsoniforms but which presents only the all-clades compatible tree without posterior probabilities
(figures 2 and 3 therein).

Aiming to achieve resolution regardless of support, or interpreting topologies without
consideration of support, is problematic because it encourages tinkering with the matrix to
produce either some semblance of resolution where none previously existed or to produce a
topology consistent with previous analyses or with the authors’ preconceived notions. The same
is true of dismissing studies that recover poor resolution or that only emphasize well-supported
nodes. It is always better to conservatively derive conclusions from only well-supported nodes
rather than basing them on poorly supported, possibly spurious relationships. Indeed, methods to
penalize spurious relationships (e.g., Rineau, Zaragiieta i Bagils & Laurin, 2018) should be better
utilized. A polytomy may be unsatisfactory and is unlikely to depict the actual evolutionary
history of a clade, but it is more likely to be correct insofar as it encompasses a genuine clade.
This point is salient here because nodes of the in-groups of this study’s analyses tended to be
poorly supported except in relatively restricted analyses. Some of this is clearly associated with
the sampling of poorly known taxa, reflected in the weakly resolved strict consensus topologies
(e.g., Figs. 6, 9-10). However, it bears noting that in previous studies of both dissorophids and
trematopids, most dissorophid nodes fail to meet the threshold for meaningful support for at least
one metric (Tables 3—4). My identification of widespread “assumed” scores also questions the
robusticity of previously recovered nodes (like the falsely homogenous Cacops).

One other point to emphasize is that bootstrap support in any TNT analysis is surprisingly
low — often below 50% — even for many nodes that have strong Bremer support, which is hardly
unique to this study (see Schoch, 2013, and other studies cited below). Many of these nodes are
for major clades, like Dissorophidae (Figs. 8B, 10B, 12, 15B, 15D), and some nodes are not even
recovered in the bootstrap tree (< 1% of bootstrap replicates; Figs. 10, 19D). I have personally
never run a PAUP* analysis in which a node recovered in the strict consensus was not recovered
in the bootstrap tree, but this occurred in some analyses of the much larger dataset of Marjanovic¢
& Laurin (2019:figs. 10, 11, 14, 18, 19) and presumably could occur in other studies that recover
poorly resolved strict consensus trees.

Conversely, some nodes that were not recovered in the strict consensus topologies of this
study were recovered in a small (< 20%) of bootstrap replicates; these tended to be historical
relationships (e.g., Acheloma cumminsi + Phonerpeton pricei). This may relate to limitations of
TNT, which does not allow the user to define additional parameters of the heuristic search when
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bootstrapping (presumably TNT uses its default heuristic search parameters: 10 replicates,
holding 10 trees per replication, and with TBR), in contrast to PAUP*. The weak support of
these nodes underscores the essentiality of reporting support metrics alongside the topology. A
cursory survey of recent temnospondyl studies that used TNT reveals three main clusters: (1)
studies that do not report any support metrics (e.g., Liu, 2016; Schoch, 2018b, 2019; Schoch &
Voigt, 2019; Schoch, Henrici & Hook, 2020; Schoch, Werneburg & Voigt, 2020; Schoch &
Milner, 2021); (2) studies that only report Bremer support (e.g., Marsicano et al., 2017; Schoch,
2018a); and (3) studies that report the same pattern of weak bootstrap support within the in-
group, even for nodes with very strong Bremer support (e.g., Eltink et al., 2016, 2017; Marzola
et al., 2017; Pacheco et al., 2017; Chakravorti & Sengupta, 2018; Eltink, Schoch & Langer,
2019).

One source of comparatively low(er) bootstrap values could be a default setting in TNT.
Bootstrapping in TNT displays frequency differences (Group present/Contradicted [GC]) by
default, not absolute frequencies, following Goloboff et al.’s (2003) preference for using GC
frequencies to assess support. Because TNT is only available as command-line for Mac users,
that this is the default may not be readily apparent. However, informal comparisons of a few of
my analyses did not recover GC frequencies that were substantially lower (> 10%) than the
absolute frequencies. One example comparison is provided in Table 5 for Analysis 9A (TNT
analysis of Dilkes’ original matrix, without wildcards); the greatest difference between
frequencies is 4%, although two nodes dropped below the 50% cutoff for meaningful support.
The same pattern of generally minimal difference is noted in other paleontological studies that
report both absolute and GC frequencies (e.g., Ezcurra, Scheyer & Butler, 2014; Nesbitt &
Ezcurra, 2015; Schultz, Langer & Montefeltro, 2016; Marsh et al., 2019; Agnolin et al., 2020;
Scheyer et al., 2020). The temnospondyl studies noted above only reported one type of bootstrap
frequency and did not specify which one it was.

Phylogenetic relationships of olsoniforms.

A defensible consensus. The above discussion has cast substantial doubts on essentially all facets
of olsoniform phylogenetics, ranging from topological differences between studies to substantial
errors introduced in the character matrices to disparity between programs and in reporting of
support metrics. Clearly there are many more unknowns than resolved quandaries that will
require significant work to address. Given this, what can be confidently concluded regarding the
phylogenetic relationships of Olsoniformes?

The monophyly of Olsoniformes, Trematopidae, and Dissorophidae is universally
recovered and well-supported. The only previous study with appreciable olsoniform sampling
that did not recover Olsoniformes was Frobisch & Reisz (2012); the dissorophid sample (five
species) is instead more closely related to the terrestrial amphibamiforms (historical
‘amphibamids’). Limited sampling may also explain why Olsoniformes was not recovered in
Marjanovi¢ & Laurin’s (2019) analysis of early tetrapods, which only sampled five taxa
(Acheloma cumminsi, Broiliellus brevis, Ecolsonia cutlerensis, Phonerpeton pricei, and a
composite of Mattauschia laticeps and Mordex calliprepes as “Mordex laticeps™). A lack of
monophyly was consistent throughout analyses of the original matrix of Ruta & Coates (2007) to
the unaltered reanalysis of this matrix to various other derivates with constraints, updated scores,
and the addition of “M. laticeps” (not in the original matrix).

The relationships of trematopids remain poorly resolved regardless of the improved
resolution in the new analyses (Figs. 14, 17-18). The only node that is almost always recovered
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and with good Bremer and bootstrap support is Acheloma + Phonerpeton (usually A. cumminsi
and P. pricei). The pairing of Anconastes vesperus and Tambachia trogallas is also recovered in
most studies, both trematopid-focused (Figs. 5, 14, 17) and non-trematopid-focused (Figs. 10,
12B, 15, 19-20), but it generally has low Bremer and bootstrap support (Table 4). Relationships
of other taxa seem to be highly susceptible to sampling of other trematopids, as I previously
noted (Gee, 2020b) and as seen in comparing different islands recovered in Analysis 8 (Fig. 18).
In analyses that recovered appreciable resolution, Ecolsonia cutlerensis remains a trematopid
regardless of whether the sampling focuses on dissorophids, on trematopids, or on olsoniforms in
general (Figs. 10, 12—16, 19-20). The main exception is Analysis 8 (Fig. 17), in which one MPT
recovered the nominal trematopids as a grade (Fig. 18C).

The classic concept of dissorophid relationships is a base of Platyhystrix rugosa and
Aspidosaurus binasser and two higher nested subfamilies, Cacopinae and Dissorophinae. This is
recovered in most analyses of Dilkes’ (2020) matrix or the revised version (Analyses 7, 9; Figs.
15, 19-20) here, as well as in the mirrored analysis with his taxon sample and my matrix
(Analysis 5; Fig. 12B). However, both the post-Platyhystrix and the post-Aspidosaurus nodes are
weakly supported (Bremer decay index never higher than 2; bootstrap frequency never higher
than 56%). As mentioned above, although P. rugosa is usually recovered as diverging first, the
weak nodal support for all post-Platyhystrix dissorophids may be linked to the interpretation of
osteoderms (or lack thereof) in P. rugosa (see also Dilkes, 2020:fig. 12B). Cacopinae consists of
at least Cacops and usually the three sampled middle Permian dissorophids (4Anakamacops,
Kamacops, Zygosaurus). However, the intrarelationships remain poorly resolved (e.g., Liu,
2018; Dilkes, 2020; Figs. 4, 15, 19-20), and the erroneous scorings found in other matrices are
not the only confounding factor; the extremely fragmentary nature of Zygosaurus (historically
scored the same as Kamacops for all overlapping characters) and the loss of its holotype are
probably the more pressing matter. The closer relationship of Cacops morrisi to Cacops
aspidephorus than to Cacops woehri that I recovered for the first time is in agreement with
qualitative comparisons and diagnoses of these species. The composition of Kamacopini remains
unresolved (Figs. 4, 15, 19-20). Dissorophinae typically includes at least Broiliellus, Diploseira,
and Dissorophus (Figs. 3—4, 7-8, 10B, 12B, 15D, 19D, 20C). However, the intrarelationships of
these taxa remain poorly resolved; there are either large polytomies or very poorly supported
resolution. The placement of Brevidorsum profundum, Conjunctio multidens, Scapanops
neglectus, and Reiszerpeton renascentis is hardly resolved, and they should only be considered
as unplaced dissorophids (contra Schoch & Milner, 2014, who consider all four as cacopines).

A review of the taxonomic composition of Dissorophidae. This section discusses the state of
affairs with an eye towards future work. Having previously discussed the state and prospects of
trematopid research (Gee, 2020b; see also, Milner, 2018) I now focus on dissorophids,
summarizing the present state of knowledge for the four subfamilies (Aspidosaurinae,
Cacopinae, Dissorophinae, and Platyhystricinae) and highlighting future areas in need of redress
that will hopefully help to refine phylogenetic analyses.

The status of Cacops. Currently, there is a consensus that there are three nominal species of
Cacops: C. aspidephorus (type species), C. morrisi, and C. woehri (Fig. 21). For over a century,
the cranial morphology of C. aspidephorus was largely unknown, in stark contrast to the recently
discovered material of C. morrisi and C. woehri from Richards Spur (Reisz, Schoch & Anderson,
2009; Frobisch & Reisz, 2012; Frobisch, Brar & Reisz, 2015; Gee & Reisz, 2018a; Gee, Bevitt
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& Reisz, 2019). Some previous analyses have surprisingly failed to recover a monophyletic
Cacops, and all others could not resolve the interrelationships of the three species (Fig. 21). In
fact, Dilkes (2020) is the only study to recover a monophyletic Cacops when all three species
were sampled (Fig. 21J); while bootstrap support was strong (> 70%), Bremer support was not
(D).

The historic results are surprising given the stark dissimilarity of Cacops woehri to the
other two species. Anderson, Scott & Reisz (2020) questioned whether C. woehri is properly
placed in the genus, a suspicion that I agree with. My matrix is the first to resolve the
interrelationships of the three species, with C. woehri as the sister taxon to the pair of Cacops
aspidephorus and Cacops morrisi (Figs. 7-11), although this relationship is also recovered with
the updated version of Dilkes’ matrix (Fig. 14), which substantially alters scores of this genus in
particular. This topology (nor any broadly speaking) cannot differentiate between competing
concepts of the genus that seek to ensure monophyly, one in which C. woehri is placed in
Cacops and one in which it is placed in a different genus that is closely related to Cacops. The
lack of postcrania hinders this discussion but also places an emphasis on the revision of Parioxys
ferricolus, which Schoch & Milner (2014) note is similar to Cacops. The few photographs and
early descriptions of P. ferricolus (Moustafa, 1955a, 1955b) do not indicate the presence of the
tubercular ornamentation found in other cacopines, which could indicate that C. woehri is either
closely related to, or synonymous with, P. ferricolus. The latter has long been marginalized in
the literature, so it has not usually been compared to dissorophids, including by Frobisch & Reisz
(2012) in naming C. woehri.

The status of Broiliellus. Broiliellus is the most speciose dissorophid genus, with five valid
species: B. arroyoensis, B. brevis, B. olsoni, B. reiszi, and B. texensis (Williston, 1914; Carroll,
1964a; DeMar, 1967; Holmes, Berman & Anderson, 2013). However, even with the exclusion of
“Broiliellus” hektotopos, the concept of Broiliellus remains convoluted (Fig. 22). In all previous
analyses but one, the sampled species of Broiliellus do not form a clade. The one analysis that
does recover a clade only sampled two species and three dissorophines in total (Schoch & Sues,
2013; Fig. 22B).

Perhaps the most outstanding issue is that most species of Broiliellus have also not been
(re)described in decades. The type species, B. texensis, has never been revised since Williston’s
(1914) original description (but see DeMar, 1966b:fig. 4). Material of Broiliellus olsoni is neither
substantial nor well-preserved, and that of Broiliellus arroyoensis has no identifiable cranial
sutures (DeMar, 1967). As I previously noted, the descriptions of Broiliellus brevis and
Broiliellus texensis are dated, short, and with limited figures (Williston, 1914; Carroll, 1964a).
Isolated parts of the anatomy (e.g., LEP) are occasionally revised in comparative discussions
(e.g., Bolt, 1974b; Dilkes, 2020), but at least the type species would benefit from a thorough
redescription with contemporary photography. There are no modern photographs of any of these
species other than a cropped palatal view of B. brevis (Witzmann & Werneburg, 2017:fig. 13B),
and as a result, some data exist only as scores in matrices. These are probably based on personal
observations that cannot be substantiated or reproduced from the literature alone.

A detailed revision of the entire genus might recover a monophyletic Broiliellus, but this
possibility seems unlikely at present. One possibility is that these taxa appear morphologically
disparate in part because they are differently sized (i.e. this may be partially confounded by
ontogenetic disparity). However, it seems more likely that some of the species warrant placement
in novel genera if the goal is to ensure monophyly of Broiliellus, perhaps all of them other than
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the type species. The present topological instability and lack of resolution does not allow for a
confident determination of which taxa warrant reassignment or whether any subset of Broiliellus
might form its own clade. Therefore, I refrain from erecting novel genera for the non-type
species and recommend the use of quotation marks for these species.

The status of Aspidosaurus. This taxon has a convoluted history and likely represents a
wastebasket taxon encompassing a semi-conserved osteoderm morphotype (Schoch & Milner,
2014). Most of the species are represented only by fragmentary isolated postcranial material and
cannot even be determined to be valid without a good understanding of axial variation (if such
variation exists). With the loss of all material of the type species, Aspidosaurus chiton, the
functional representative is Aspidosaurus binasser, which preserves substantial axial variation, at
least as interpreted. This discussion addresses this taxon and its peculiar mosaicism as part of this
broader discussion of the state of affairs within Dissorophidae.

Aspidosaurus binasser is known only from the holotype, which consists of a partial skull
(in several pieces) and numerous osteoderms and vertebral fragments (Berman & Lucas, 2003).
Among the postcranial material are three types of osteoderms; the type 2 of Berman & Lucas is
the stereotypical Aspidosaurus morphotype, while types 1 and 3 are hyperelongate, ornamented
spines similar to those of Platyhystrix rugosa. The material that I show in Figure 23, collected in
the late 19" century from Wichita County, TX, consists of similar spines that lack the tubercles
and the curvature of the spine (at least where preserved) that diagnose Platyhystrix. The style of
ornamentation and the transverse compression of the spines are thus very similar to the type 1
and type 3 osteoderms in A. binasser. Notably, if previous workers’ conjecture on the Wichita
County sites is correct (see Romer, 1928:80; Romer 1935:1617; Milner & Schoch, 2013:116),
the Wichita County localities are in the lower-middle part of the Wichita Group (Nocona-
Petrolia Formations), much lower in section than the type locality of 4. binasser (Arroyo
Formation at the base of the Clear Fork Group). While stratigraphic occurrence is not diagnostic
in a taxonomic sense, it is highly informative for dissorophid taxonomy. Despite a continuous
record of the clade throughout the Early Permian of Texas, no species is known to extend beyond
one formation-level unit.

At the time of the description of Aspidosaurus binasser, the type 1 and type 3 osteoderm
morphotypes had never been reported from another locality, let alone from another formation.
This implicitly strengthened the cranial-postcranial association because it suggested that these
types were not like the stereotypical Aspidosaurus morphotype or like Platyhystrix — almost
always fragmentary, isolated postcrania with a relatively wide stratigraphic range. Material of
these taxa is often found at the same sites as cranial material of other dissorophids or
temnospondyls, but there is usually not an assumption that the postcrania pertain to an isolated
skull just because there are no duplicated skeletal regions. The new observation that the type 1
and type 3 morphotypes appear much lower in section suggests that these purportedly diagnostic
morphotypes might in fact belong to a taxon (or taxa) that has a similarly skewed fossil record.

If there was direct articulation between the cranial and postcranial remains attributed to
the holotype of Aspidosaurus binasser, the question could be settled quickly. However, there is
no direct articulation between the preserved occiput and any of the postcrania. Berman & Lucas
(2003) gave no indication as to the nature of the locality, such as the distribution or association
of remains. Their mention of indeterminate synapsid material implies that no other distinct
dissorophid was identified. Secondly, despite the preservation of the occiput and enough
presacral vertebrae to estimate at least 20 positions, neither the atlas nor axis were identified.
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Thirdly, there is no direct articulation between any two of the three osteoderm morphotypes; they
are either isolated fragments or short blocks with only one type. The same applies to the newly
reported material. Lastly, no other dissorophid preserves the same stark variation along the axial
column purported for Aspidosaurus binasser (Berman & Lucas, 2003, argued for some variation
in Aspidosaurus chiton based on Broili, 1904), but numerous taxa preserve essentially no
variation in either osteoderms or vertebrae throughout the presacral column (e.g., Broiliellus,
Cacops, Dissorophus). The most substantial variation is either in the curvature of different
positions in Platyhystrix rugosa to form the sail (e.g., Lewis & Vaughn, 1965) or the transition
from a double to a single series in Diploseira angusta (Dilkes, 2020). The former is not apparent
in A. binasser, and the latter is characterized mostly by a change in the number of series and the
ventral flanges, not regional hyperelongation as in A. binasser. Therefore, the cranial-postcranial
association essentially hinges on the assumption that there is likely only one dissorophid at any
given site.

Berman & Lucas (2003:244) indeed argued that “there is no reason to suspect more than
one individual is represented.” Prior to 2003, there were almost no localities with more than one
named dissorophid (e.g., Coffee Creek / Romer’s locality 34), which supported the assumption
that dissorophid-bearing localities preserve only one dissorophid taxon (like the Cacops Bone
Bed; Williston, 1910; or the Parioxys bone bed of Moustafa, 1952). Since then, however, the
presence of multiple dissorophids at a single locality has been documented, and their skeletal
representation can be highly uneven. Richards Spur is an excellent case study; Cacops morrisi is
known from abundant cranial and postcranial material, and Cacops woehri is only known from
semi-abundant cranial material. In contrast, an indeterminate dissorophine is represented only by
a headless skeleton and isolated forelimb material, which I left unnamed and not associated with
another taxon represented only by cranial material (C. woehri in this case; Gee & Reisz, 2018b;
Gee, Bevitt & Reisz, 2019), and Aspidosaurus is represented by a single pair of articulated
osteoderms (Gee, Bevitt & Reisz, 2019). Corn Hill in Archer County, TX; the type locality of
Brevidorsum profundum and Reiszerpeton renascentis in Archer County; and the Archer City
Bonebed are all additional examples of multi-dissorophid sites. Most dissorophid-bearing sites
with only one documented dissorophid are type localities that have not produced much, if any,
other tetrapod material. Collectively, these observations further the possibility that the holotype
of Aspidosaurus binasser could really be a chimera of two taxa, one represented largely or
exclusively by cranial fragments and one represented only by fragmentary postcrania.

I have not been able to examine the holotype of Aspidosaurus binasser myself given the
present circumstances, but I doubt that I would be able to identify new evidence either
definitively proving (e.g., cranial-postcranial articulation) or definitively disproving the
association (e.g., identification of duplicated elements). Therefore, I doubt that a redescription is
warranted, which is why I raised these points here. Nonetheless, I believe that there is good
reason to suspect that not all of the elements attributed to the holotype of 4. binasser belong to
either a single individual or to the same taxon. The purportedly diagnostic type 1 and type 3
osteoderms are probably more like the stereotypical Aspidosaurus morphotype: one that persists
for long time intervals and which does not constitute a true clade, let alone one species, across its
range. I do not rule out that some species could have been more stratigraphically extensive than
others, but the appreciable fossil record of dissorophids indicates that morphospecies were short-
lived. The scoring of 4. binasser is not greatly influenced by the cranial-postcranial association
in either my matrix or that of other workers, but it would be preferable to restrict the
characterization in the future if characters related to spine hyperelongation or axial variation are
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introduced. Chimerism of 4. binasser would affect the validity of both A. chiton and A. binasser
since the latter’s diagnosis is based only on the combination of osteoderm types. I make no
nomenclatural acts without having examined the type of 4. binasser but highlight these issues
since the interpretation has not been previously questioned.

The status of Platyhystrix. There has only ever been one species of Platyhystrix, so it may be
surprising to see this taxon discussed. Here I focus on the status of the holotype. AMNH FARB
4785 is a multi-taxic batch of material that was first designated as the holotype of “Aspidosaurus
apicalis” (Cope, 1881). That taxon is of dubious validity, but the holotype of Platyhystrix
rugosa, extracted from this batch by Case in 1910 (as “Ctenosaurus rugosus”), has retained the
same number in the literature despite that number representing two taxa. Apparently, the
Platyhystrix component was given a subletter designation (4785a) to differentiate them, per a
collections tag with “Ctenosaurus rugosus” written on it, but this differentiated number never
appeared in the original description or the subsequent literature. Since at least DeMar
(1966b:76), the portion considered to be the holotype of “A. apicalis” (AMNH FARB 4785
proper) was considered lost (e.g., Bolt, 1974a; Berman & Lucas, 2003; Schoch & Milner, 2014).

During a collection visit in October 2017, I came across a specimen labeled as AMNH
FARB 4785, without subletter designation (Fig. 24), and it matches the description of the
holotype of “Aspidosaurus apicalis” instead of that for the holotype of Platyhystrix rugosa. The
material assigned to P. rugosa is stated to be several neural spines, while that assigned to “A.
apicalis” is specifically the apices (“summits”) of the neural spines (Cope, 1881; Schoch &
Milner, 2014), which we would now recognize as osteoderms associated with the spine. As far as
I am aware, AMNH FARB 4785a has never been figured, probably because more complete
specimens were figured and subsequently utilized as “proxy holotypes” for P. rugosa (Williston,
1911; Langston, 1953; Carroll, 1964a; Lewis & Vaughn, 1965). Williston described a spine that
he compared favorably to Case’s holotype, and his figure (pl. 26.1 therein) is of the stereotypical
Platyhystrix morphology. This confirms that Case’s (1911:fig. 15) illustrations of AMNH FARB
4785 represent the part that is properly “A. apicalis,” the same subset that [ examined. These are
distinctly only osteoderms (and one intercentrum of questionable association), not neural spines,
and they are much smaller than 11 cm in length (the listed size of one spine per Case). They are,
however, in line with the size range given by Cope (less than 4 cm long and 3.5 cm wide).
Therefore, as I mentioned previously (Gee, 2018), the holotype of “A. apicalis” (AMNH FARB
4785) is not lost. Instead, that specimen has been repeatedly mistaken for the holotype of P.
rugosa (AMNH FARB 4785a), which is missing. There is no record of AMNH FARB 4785a in
the museum database, nor was the specimen identified in the most recent inventory (C. Mehling,
pers. comm., 2020). No personally examined specimen in the AMNH collection that was
assigned to Platyhystrix, Aspidosaurus, or Zatrachys (these being frequently conflated in the
early 20™ century) matches the description of the holotype of P. rugosa save for one.

AMNH FARB 11544 is a collection of postcrania with a large number of neural spines
(Fig. 25), first described, though mostly unfigured, by Berman, Reisz & Fracasso (1981). These
purportedly belong to the same individual as AMNH FARB 11545, the only skull of
Platyhystrix. The number of spines designated as the holotype of Platyhystrix rugosa was never
specified, but it is inferred that “several” is more than two, and the size of some spines of AMNH
FARB 11544 is consistent with the measurements given by Case (1910). Some would certainly
have been sufficient for proper comparison by Williston (1911). The collections tag indicates
that AMNH FARB 4785(a) was collected by David Baldwin in 1881 from the Cutler Formation
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of Rio Arriba County, NM, the same formation, collector, and collection date as AMNH FARB
11544. Furthermore, Case (1910) mentioned “fragments of scapulae and limb bones associated
with the holotype of P. rugosa are typically pelycosaurian in form,” with the association deriving
from his interpretation of the spines of “Crtenosaurus” rugosus as those of a pelycosaur. AMNH
FARB 11544 includes three large fragments, one of which is a partial glenoid (Fig. 25D), and
one of which is a limb end. These were not described by Berman, Reisz & Fracasso (1981),
which implies that they also did not believe these fragments belonged to P. rugosa.

In my opinion, it seems quite likely that AMNH FARB 4785a was renumbered as
AMNH FARB 11544, but that records of this were either not made or were subsequently lost. If
the value of AMNH FARB 11545 as the only skull of Platyhystrix rugosa was not recognized for
decades after its collection, that would explain why these two specimens were not described for a
century. The postcranial material would have drawn little attention until it was determined that it
articulated with the cranial material. However, there are no collection records indicating the
transfer of the holotype of P. rugosa to a new number (C. Mehling, pers. comm., 2020). Without
a record, their equivalency cannot be confirmed, as it remains possible that AMNH FARB 4785a
was simply lost. Therefore, the type status designation remains with AMNH FARB 4785a, and |
present the conundrum here in the hopes that perhaps other workers may be able to contribute
new information to help resolve this matter.

Other dissorophids. Relevant points of the remaining taxa are collated here. Dissorophus
multicinctus, while known from an extensive amount of material, would benefit from a
systematic redescription. The osteoderms and vertebrae were described by Dilkes (2009) but
were otherwise neglected since DeMar (1968). Similarly, the skull has not been redescribed
since DeMar, who figured only one complete skull (MCZ 2122-1). While some studies cite
Schoch (2012) for the cranial osteology, Schoch only presented a reconstruction, some of which
Dilkes (2020) explicitly disagreed with (e.g., position of the jaw articulation). In addition to
numerous specimens that were mentioned but not illustrated by DeMar, a number of specimens
have been subsequently mentioned or photographed at a low resolution in a single profile.
However, these brief documentations are insufficient for a full characterization of the anatomy
(e.g., MCZ 1468; Schoch & Milner, 2014:fig. 37C; MCZ 4170, MCZ 4186, and MCZ 4188,
Dilkes, 2020:22).

Most of the wildcard taxa (or taxa not previously sampled) have poor prospects for
resolving their relationships without new material (e.g., Aspidosaurus novomexicanus,
Brevidorsum profundum, “Broiliellus” arroyoensis). Two very fragmentary taxa can only be
inferred to be dissorophids if it is assumed that they are dissorophoids (i.e. if these taxa belong to
Dissorophoidea, apomorphies of which they generally lack, they most likely belong to
Dissorophidae): Iratusaurus vorax and Nooxobeia gracilis. Neither preserves dissorophid
synapomorphies (sensu Schoch & Milner, 2014), although the single series of median
osteoderms in N. gracilis is suggestive of dissorophid affinities as Olson (1972) proposed. It
seems doubtful that N. gracilis would represent a chroniosuchian, another tetrapod clade with
median osteoderms, as Permian representatives of this group are mostly known from Russia and
China (e.g., Golubev, 1998a, 1998b, 1999; Jiang, Ji & Mo, 2017; Liu & Abdala, 2017; Liu,
2020). However, chroniosuchian material is rare and fragmentary, and most records come from
the Middle and Late Permian, intervals from which there is little to no record of terrestrial
tetrapods in North America (e.g., Lucas, 2001, 2002, 2005, 2013; Reisz & Laurin, 2001, 2002;
Lozovsky, 2005; Benton, 2012, 2013; Olroyd & Sidor, 2017; Brocklehurst, 2020). Recent studies
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have expanded their range, including to the Upper Permian of Germany (Witzmann et al., 2019),
where a single osteoderm-bearing vertebra ascribed to an indeterminate dissorophid was reported
from slightly older deposits (Witzmann, 2005). [ratusaurus vorax does not appear like any other
temnospondyl with a closed otic notch (e.g., capitosaurs), but its description by Gubin (1980)
was extremely cursory, and the material is extremely fragmentary.

Finally, Parioxys bolli may not belong to Parioxys, regardless of the relationship of
Parioxys ferricolus to Cacops. The ilium of P. bolli indicates olsoniform affinities, but the
remainder of the known skeleton is uninformative; the two sacral ribs that Carroll (1964b)
emphasized are not a dissorophid or an olsoniform synapomorphy. The limbs are relatively long,
more like those of dissorophids, but ring-like intercentra are a feature found only in Ecolsonia
cutlerensis and nearly so in Acheloma cumminsi (Olson, 1941; Berman, Reisz & Eberth, 1985;
Dilkes & Reisz, 1987). Of note are lateral projections from each side of the base of the neural
arch; these are otherwise found only in E. cutlerensis and in the type 1 vertebrae attributed to
Aspidosaurus binasser (Berman, Reisz & Eberth, 1985; Berman & Lucas, 2003). This taxon may
well prove to be a trematopid.

Ontogenetic disparity. Although I did not exhaustively test whether ontogenetic disparity might
confound or bias the phylogenetic inference of dissorophids, this remains an open question in
light of the size disparity across the clade. Within Dissorophidae, this disparity is essentially an
order of magnitude, greater than that observed for trematopids (Fig. 26). The temporal
distribution of sizes is also non-random, as it was for trematopids. With the latter group, the
earliest appearing taxon, Mattauschia laticeps, reached a skull length comparable to that of the
much later appearing Ecolsonia cutlerensis (Milner, 2018), but there are other taxa between or
concurrent with these occurrences that are represented by smaller individuals. In dissorophids, all
of the Middle Permian taxa had skulls with a length of at least 18 cm (there are not even any
individual specimens of an inferred smaller size), whereas most Early Permian taxa did not
exceed 12—13 cm. Only two, Aspidosaurus binasser and Platyhystrix rugosa, exceed this
(Cacops aspidephorus may be a third depending on whether the reidentification of “Trematopsis
seltini” to the species level by Milner, 1985, can be substantiated). Therefore, it is possible that
dissorophids did increase in size in the late stages of their evolution, perhaps correlated with the
extirpation of trematopids and other large-bodied temnospondyls thought to be capable of
terrestrial locomotion like edopoids and eryopoids (note that the degree of terrestriality remains
contentious for many clades; e.g., Pawley & Warren, 2006; Sanchez et al., 2010; Fortuny et al.,
2011; Quemeneur et al., 2013; Carter et al., 2021). Whether increased dissorophid size would be
a driver or a product of other clades’ extinction is unclear.

While Aspidosaurus binasser and Platyhystrix rugosa are traditionally recovered as the
earliest diverging dissorophids (suggesting that large size could characterize most taxa, but that
the majority are represented only by juveniles; Gee, 2020a), it is important to note the extremely
poor Carboniferous record of dissorophids. Quite possibly, the true earliest diverging
dissorophids remain to be discovered. A third hypothesis is that only certain clades of
dissorophids achieved large sizes. It is conspicuous that no dissorophine, including the well-
sampled Dissorophus multicinctus, exceeded a skull length of 13 cm, while the other three
subfamilies did. Size disparity among dissorophids could also relate to ecological differences
from trematopids. In contrast to trematopids, for which there are only two localities in Europe
(Nytany, Bromacker) where multiple taxa co-occur, there are many localities where several
dissorophids co-occur. Along with anatomical differences such as tooth count, skull proportions,
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and osteoderm morphology, size differences could also be predicted as an aspect of niche
partitioning.

The one analysis that I ran to assess whether ontogenetic disparity might confound
dissorophid phylogeny (Analysis 4; Fig. 11) did not recover any clear signals of directional bias.
No taxon sampled at the specimen level is recovered as a clade, but most specimens are simply
single branches in a cacopine polytomy. Conjunctio multidens is the only taxon in which OTUs
are recovered in different positions, and in this case, the large holotype diverges first. On one
hand, this taxon’s OTUs contradict one prediction of ontogenetic disparity (stemward slippage of
smaller, more immature specimens due to a higher number of what present as “retained”
plesiomorphies). Conversely, in the context of olsoniforms, the early diverging position of the
largest specimen may still indicate support for an influence of ontogenetic disparity, as the
smallest specimens cluster away from the large trematopids. A lack of skeletal overlap seems to
produce the pattern of Cacops woehri, in which the holotype (partial skull) and one referred
specimen (BMRP 2007.3.5, partial posterior skull) cluster even though they belonged to
disparately sized individuals. Specimens of Anakamacops petrolicus have essentially no skeletal
overlap, and an ontogenetic range was not sampled for Cacops aspidephorus.

In short, there remain many unknowns and confounding factors that limit the study of
size patterns in dissorophids. In an unpublished chapter of my dissertation (Gee, 2020a:388—
394), I suggested that niche partitioning between life stages of a given taxon could result in a
skewed sample that biases interpretations of “adult” size. For example, numerous skulls of
Cacops between 10 and 12 cm in length are known and have thus been dubbed “adults” under a
presumption of relative maturity (e.g., Reisz, Schoch & Anderson, 2009; Gee & Reisz, 2018a).
In fact, this size range does not come close to approximating the maximum size of Cacops,
which could have been nearly double that size based on the single specimen of “Trematopsis
seltini,” estimated to 22 cm (= Cacops cf. C. aspidephorus; Milner, 1985). Isolated postcranial
remains from Richards Spur suggest that at least one of Cacops morrisi and Cacops woehri also
reached a larger size than is reflected by the cranial remains (Sullivan, Reisz & May, 2000; Gee,
Bevitt & Reisz, 2019; Gee, 2020a). Intraspecific niche partitioning has not been previously
suggested in olsoniforms, but it offers one explanation for the skewed record of even well-
sampled taxa like Cacops and for the size disparity between dissorophids if this partitioning
extended to physical habitat occupancy. As with trematopids, size evolution in dissorophids
remains a quandary that can likely only be resolved with additional collection, although a survey
of existing collections might identify outlier datapoints (probably isolated postcrania or
fragmentary cranial remains) that document larger body size than traditional proxies (e.g.,
complete skulls).

Considerations in backbone selection. With increasing computational abilities, paleontologists
can sample broad taxonomic swaths while maintaining appreciable in-group sampling of any
given clade. Technological advances have also expanded the range of analyses that can be
conducted, leading to a proliferation of “big data” studies addressing macroevolutionary
questions on scales that were previously infeasible. Most of these studies are phylogenetically
informed by an underlying backbone, the selection and design of which is obviously of great
import but which is not always rationalized or explained in detail. This final section provides
some preliminary comments on temnospondyl backbones in light of this study’s findings.

The most widely utilized topology of Temnospondyli is the computer-assisted supertree
of Ruta et al. (2007), which has been incorporated into numerous studies, usually in concert with
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other tetrapod (super)trees to form a larger informal supertree (e.g., Fortuny et al., 2011; Soul &
Friedman, 2016; Dunne et al., 2018; Carter et al., 2021; Dickinson et al., 2021). It is noteworthy
that this particular topology remains popular among non-taxonomic specialists, whereas
temnospondyl workers tend to opt for a variety of alternative backbones. For example,
Angielczyk & Ruta (2012) manually modified the topology of Ruta et al. (2007); Witzmann
(2013) and Witzmann & Werneburg (2017) used the topology of Schoch’s (2013) non-supertree
analysis; Tarailo (2018) used Schoch (2013) as the large-scale backbone, with additions from
Ruta et al. (2007) and Marsicano et al. (2017) for small-scale resolution; Witzmann & Ruta
(2018) and Pérez-Ben, Baez & Schoch (2019) manually modified the topology of Schoch (2013);
and Pardo et al. (2019) and Ruta et al. (2019) used the topology of Pardo, Small & Huttenlocker
(2017).

Ruta et al.’s supertree may remain appealing in spite of its datedness because it is fully
resolved and includes numerous wildcard taxa that are rarely sampled in other studies and that
are highly unstable when they are sampled (e.g., Bashkirosaurus, Capetus, Collidosuchus,
Kashmirosaurus, Lapillopsis, Lysipterygium, Palatinerpeton, Parioxys, Peltobatrachus,
Sassenisaurus, Stegops). Of course, the fact that these taxa are excluded from analyses reflects
the continued uncertainty over their placement, even in a phenetic framework, but this may only
be well-known among taxonomic specialists. Some of these taxa are recovered in the proper
clade in Ruta et al.’s supertree, but with uncertain relationships to other in-group taxa (e.g.,
Collidosuchus), while others remain of uncertain placement in general (e.g., Lapillopsis). The
latter are of greater concern because there is a higher likelihood that their positions in the Ruta et
al. topology are spurious.

In general, this topology, while consistent in broad strokes with more recent non-
supertree analyses (e.g., Schoch, 2013; Pardo, Small & Huttenlocker, 2017; Eltink, Schoch &
Langer, 2019), differs markedly in some areas. Specifically for dissorophoids, branchiosaurids
are accepted as nesting within the historical ‘Amphibamidae’ rather than as its sister group (e.g.,
Schoch & Milner, 2008; Frobisch & Schoch, 2009); micromelerpetids are a clade at the base of
Dissorophoidea rather than a grade of early-diverging branchiosaurids (e.g., Schoch, 2018a);
trematopids and dissorophids are sister taxa, not successively diverging branches within
Dissorophoidea (e.g., Anderson et al., 2008b); Ecolsonia is a trematopid, not a dissorophid
(Polley & Reisz, 2011; Schoch, 2018a; Gee, 2020b; this study); and Parioxys is probably a
dissorophid, not an eryopoid (Schoch & Milner, 2014). The taxon sample is naturally outdated as
well, but this manifests as what appears to be uneven sampling based on the present body of
recognized taxa. Olsoniforms are among the undersampled clades, with only six nominal
trematopids and five nominal dissorophids.

These points are not meant as a criticism of the original Ruta et al. study but rather
evidence the predictable datedness after nearly two decades of anatomical and phylogenetic
work. Nonetheless, it is clear that Ruta et al.’s supertree is no longer an accurate reflection of the
consensus of temnospondyl relationships and should not be employed as such. Pardo et al.
(2019) commented on potential issues of supertree construction and pseudoreplication, especially
in light of newer non-supertree analyses performed by taxonomic specialists that challenge
historical paradigms and that frequently contradict widely used, but more dated, supertrees. |
endorse these authors’ approach to informal supertree construction (p. 11 of their supplemental
file) in which they collate non-supertree topologies recovered by studies whose primary aim was
to assess the phylogenetic relationships of a clade and in which they allow taxa with unresolved
relationships (or that have never been included in an analysis) to be placed in a polytomy. Such
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an approach is preferable to enforcing resolution of dubious nature simply in order to achieve
full resolution. I encourage non-specialists to consult with relevant phylogenetic / systematic
experts with respect to the construction or selection of a backbone. Temnospondyli, like most
other speciose clades, continues to be recovered with major areas of instability or weak support.
This instability underscores the continued import not only of phylogenetic method refinement
and analysis but also of the primary data collection (e.g., fieldwork, descriptive anatomy) that
underpins the analysis.

Conclusions

Originally, I had intended to focus this study on expanding my character and taxon sample to
broadly represent dissorophids, which I hoped would improve the resolution for trematopids as
well. In the process of assessing explanators for topological differences, some of them
substantial and often related more to differing degrees of resolution than to drastically different
positions of taxa, this study shifted towards a focus on reproducibility and robusticity of previous
topologies. This endeavor admittedly became much more exhaustive (and exhausting) than even
I had anticipated, and like my trematopid analysis (Gee, 2020b), seems to have identified far
more issues than it has resolved. In the end, this study has demonstrated that the phylogeny of
Dissorophidae is not resolved, reproducible, or robust. Other key conclusions are outlined below:

1. The widely propagated matrix of Schoch (2012) contains substantial scoring errors that
appear to represent “assumed” scores; these scores are for characters where the entire
feature is not even preserved, let alone sufficient to be assessed (e.g., postcrania of
Cacops woehri). These are unequivocally unfounded and should be regarded as erroneous
unless future studies prove otherwise. Almost all of these originated early in the
propagation of this matrix and have thus been carried forward into essentially every
dissorophid analysis. It is possible that either new material or simply better
documentation of existing material might validate these assumptions, but at present, they
have no reproducible basis. There are also numerous scores for taxa where a complete
element is required to score a character, but none is available for a given taxon (e.g.,
characters related to skull length for “Broiliellus” olsoni). Given the extensive number of
unequivocal errors, missing scores, and unfounded scores (Appendix 5), previous
topologies should be treated skeptically, especially with respect to weakly supported
nodes, as the corrected matrix recovers an overall less resolved topology.

2. The use of different programs and variable reporting of support metrics confounds proper
comparisons between studies, but these are not the only factors that result in drastically
different topologies from studies that are using largely identical character matrices.
Persistent wildcards, character construction, and character scoring clearly exert strong
influences as well, and a few changes to the matrix can result in drastic changes to the
resultant topology. Workers should test for the effects of these phenomena (e.g., analyses
with and without wildcard taxa and consensus trees with and without wildcard taxa) and
clearly state and justify their preferred approaches.

3. The intrarelationships of both Dissorophidae and Trematopidae can be resolved through
selective taxon sampling, but most in-group nodes fail to meet the thresholds to be
considered as “well-supported” for at least one metric: Bremer decay index (> 2) or
bootstrapping (> 50%). Support metrics are one means of comparing topologies produced
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by different studies, and topologies that are reported without support metrics or with
weak support should be treated skeptically.

4. The only “consensus” relationships within Dissorophidae are the early-diverging position
of Aspidosaurus binasser and Platyhystrix rugosa; a Cacopinae that includes Cacops and
probably Anakamacops, Kamacops, and Zygosaurus; and a Dissorophinae that includes
Broiliellus, Diploseira, and Dissorophus. While the interrelationships of cacopines can be
further resolved with some confidence, those of dissorophines cannot at present. Any
worker seeking a topology for a backbone in a quantitative analysis should place all other
taxa in a polytomy either above or with 4s. binasser, rather than selecting one of the
many different resolved topologies that lack strong support for most nodes.
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Figure 1

Cranial reconstructions of select representatives of Olsoniformes.

(A) the cacopine dissorophid Cacops morrisi (after Reisz, Schoch & Anderson, 2009); (B) the dissorophine
dissorophid Dissorophus multicinctus (after Schoch, 2012); (C) the long-snouted trematopid Acheloma
cumminsi (after Dilkes & Reisz, 1987; Polley & Reisz, 2011); (D) the short-snouted trematopid Ecolsonia
cutlerensis (after Berman, Reisz & Eberth, 1985). Cool colors represent skull roof elements; warm colors
represent palatal elements. Not to scale.
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Figure 2

Genealogy of olsoniform-focused phylogenetic matrices.

Note that sources only reflect major contributions to character sampling. Number of
characters is listed on the left, and number of all sampled taxa is listed on the right. ‘Focal
clade’ refers to the most exclusive clade to which at least half of the sampled taxa belong.
‘Amphibamidae’ here refers to the historical concept of what is now Amphibamiformes (in
part). Abbreviations: ARM, Atkins, Reisz & Maddin (2019); BHBK, Berman et al. (2010);
BHMSA, Berman et al. (2011); D, Dilkes (2020); FR, Frobisch & Reisz (2008, 2012); FS,
Frobisch & Schoch (2009); G, Gee (2020b); G* (2021), this study; GBHPH, Gee et al. (2021);
GR, Gee & Reisz (2019); HBA, Holmes, Berman & Anderson (2013); L, Liu (2018); MFEM,
Maddin et al. (2013); PR, Polley & Reisz (2011); RB, Ruta & Bolt (2006); S, Schoch (2012,
2018a); SHH, Schoch, Henrici & Hook (2020); SM, Schoch & Milner (2008, 2021); SR, Schoch
& Rubidge (2005); SS, Schoch & Sues (2013); SW, Schoch & Witzmann (2018).
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Figure 3

Manuscript to be reviewed

Comparison of tree topologies from early phylogenetic analyses of Dissorophidae.

All topologies represent strict consensus trees except for Schoch (2012) and are visually

truncated to depict only dissorophids. Cacopinae and Dissorophinae are not annotated for

Frobisch & Reisz's topology because the taxonomic specifiers (Cacops aspidephorus and

Dissorophus multicinctus) were not sampled. Conjunctio multidens represents a composite

OTU unless otherwise indicated by the differentiation of the holotype from the specimen

historically referred to as the Rio Arriba Taxon (RAT; UCMP 40103).
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Figure 4

Comparison of reported tree topologies from recent phylogenetic analyses of
Dissorophidae.

All topologies represent strict consensus trees and are visually truncated to depict only
dissorophids. Colors and symbols as with Figure 3. Conjunctio multidens represents a
composite OTU unless otherwise indicated; Gee et al. (2021) recovered all three specimens
as a clade, so they are collapsed to a single visual OTU here. For Holmes, Berman &
Anderson (2013), the tree on the left represents the result of their analysis with scoring
changes to the first referred specimen of C. multidens (UCMP 40103 [RAT]); the tree on the
right represents the result with the original scorings from Schoch (2012). For Dilkes (2020),
the tree on the left represents the result of his analysis with the full character and taxon

sample; the tree on the right represents the result following the removal of wildcard taxa.
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Figure 5

Comparison of tree topologies from previous phylogenetic analyses of Trematopidae.

All topologies represent strict consensus trees and are visually truncated to depict only

xerodromes. Nominal placement and nodal definitions from Schoch & Milner (2014).
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Figure 6

Adams consensus trees for Analysis 1A (all scored olsoniforms).

(A) tree resulting from the iteration using the ‘conservative’ OTU of Kamacops acervalis; (B)
tree resulting from the iteration using the ‘reconstructed’ OTU of K. acervalis. Only

Dissorophidae is depicted in part B because the remainder of the consensus tree was

unchanged from part A.
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Figure 7

Strict consensus trees for Analysis 1A (all scored olsoniforms) following removal of
wildcard taxa from MPTs.

(A) resultant tree from the iteration using the ‘conservative’ OTU of Kamacops acervalis; (B)
resultant tree from the iteration using the ‘reconstructed’ OTU of K. acervalis. Only
Dissorophidae is depicted in part B because the remainder of the consensus tree was

unchanged from part A. Colors and symbols as with Figure 6.
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Figure 8

Strict consensus trees for Analysis 1B (all scored olsoniforms) following removal of
wildcard taxa from the matrix.

(A) resultant tree from the iteration using the ‘conservative’ OTU of Kamacops acervalis; (B)
resultant tree from the iteration using the ‘reconstructed’ OTU of K. acervalis. Only
Dissorophidae is depicted in part B because the remainder of the consensus tree was

unchanged from part A. Colors and symbols as with Figure 6.
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Figure 9

Strict consensus tree for Analysis 2 (best representatives) from the iteration using the
‘conservative’ OTU of Kamacops acervalis.

The iteration with the ‘reconstructed’ OTU recovered the same topology with only minor

deviations in bootstrap support and is not figured here. Colors and symbols as with Figure 6.
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Figure 10

Strict consensus trees for Analysis 3 (dissorophid-focused).

(A) resultant tree from the iteration using the ‘conservative’ OTU of Kamacops acervalis; (B)
resultant tree from the iteration using the ‘reconstructed’ OTU of K. acervalis. Colors and

symbols as with Figure 6.
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Figure 11

Strict consensus tree for Analysis 4 (specimen-level OTUs).

Node labels, colors, and symbols as with Figures 6-7.
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Figure 12

Strict consensus trees for Analysis 5 (taxon mirror of Dilkes, 2020).

(A) tree resulting from the analysis of this study’s matrix with the same taxon sample as
Dilkes (2020); (B) tree resulting from the analysis of the same matrix without the four
wildcard taxa identified by Dilkes (Brevidorsum, Conjunctio, Reiszerpeton, Scapanops). Colors

and symbols as with Figure 6.
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Figure 13

Strict consensus trees of individual islands recovered in Analysis 5.

(A) Island 1, consisting of 564 MPTs (trees 79-642); (B) Island 2, consisting of 108 MPTs
(trees 643-750); (C) Island 3, consisting of 78 MPTs (trees 1-78). Colors and symbols as with
Figure 6.
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Figure 14

Comparison of strict consensus topologies for Analysis 6 (taxon mirror of Gee, 2020b).

(A) tree resulting from the analysis of Gee’s (2020b) trematopid-focused matrix with a
combined OTU of the previous scorings of Acheloma cumminsi and Acheloma dunni and with
the exclusion of Phonerpeton whitei; (B) tree resulting from the same taxon sampling and the

updated matrix of this study. Colors and symbols as with Figure 6.
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Figure 15

Comparison of strict consensus topologies for Analysis 7 (updated matrix from Dilkes,
2020).

(A) tree resulting from Dilkes’ (2020) original analysis with the full taxon sample; (B) tree
resulting from the analysis of the updated matrix with the full taxon sample; (C) tree
resulting from Dilkes’ original analysis without the four wildcard taxa that he identified
(Brevidorsum, Conjunctio, Reiszerpeton, Scapanops); (D) tree resulting from the reanalysis of

the updated matrix without his wildcard taxa. Colors and symbols as with Figure 6.
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Figure 16
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Strict consensus trees of individual islands recovered in Analysis 7.

(A) Island 1, consisting of 10 MPTs (trees 11-20); (B) Island 2, consisting of 10 MPTs (trees

1-10). Colors and symbols as with Figure 6.
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Figure 17

Comparison of strict consensus topologies for Analysis 8 (comparison of TNT and PAUP*
on a trematopid-focused sample using this study’s revised matrix from Gee, 2020b).

(A) tree resulting from the analysis using TNT (repeated from Fig. 14B); (B) tree resulting

from the analysis with PAUP*. Colors and symbols as with Figure 6.
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Figure 18

Strict consensus trees of individual islands recovered in Analysis 8.

(A) Island 1, consisting of 14 MPTs (trees 1-14); (B) Island 2, consisting of 8 MPTs (trees
15-22); (C) Island 3, consisting of 1 MPT (tree 23). Colors and symbols as with Figure 6.
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Figure 19

Comparison of strict consensus topologies for Analysis 9A (comparison of TNT and
PAUP* with the original matrix of Dilkes, 2020).

(A) tree resulting from Dilkes’ (2020) original analysis in PAUP* with the full taxon sample;
(B) tree resulting from the same matrix analyzed with TNT; (C) tree resulting from Dilkes’
original analysis without the four wildcard taxa that he identified (Brevidorsum, Conjunctio,
Reiszerpeton, Scapanops); (D) tree resulting from the same matrix analyzed with TNT. Colors

and symbols as with Figure 6.
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Figure 20

Comparison of strict consensus topologies for Analysis 9B (comparison of the original
and updated versions of the matrix of Dilkes, 2020, using TNT).

(A) tree resulting from the reanalysis of the updated version of Dilkes’ (2020) matrix with the
full taxon sample; (B) tree resulting from the analysis of the original version of Dilkes” matrix
(repeated from Fig. 19B); (C) tree resulting from the reanalysis of the updated version of
Dilkes’ (2020) matrix without the four wildcard taxa that were identified by Dilkes
(Brevidorsum, Conjunctio, Reiszerpeton, Scapanops); (D) tree resulting from the analysis of
the original version of Dilkes’ matrix (repeated from Fig. 19D). Colors and symbols as with

Figure 6.
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Figure 21

Morphological and phylogenetic concepts of Cacops.

(A-C) reconstruction of the skulls of the three species of Cacops; (D-K) pruned topologies
from previous studies with the most exclusive clade that includes all sampled species of
Cacops (shaded in green). (A) Cacops aspidephorus (from Anderson, Scott & Reisz, 2020);
(B) Cacops morrisi (modified from Reisz, Schoch & Anderson, 2009); (C) Cacops woehri
(new); (D) strict consensus of Frobisch & Reisz (2012); (E) 50%-majority-rule consensus of
Schoch (2012); (F) strict consensus of Schoch & Sues (2013); (G) strict consensus (left) and
50% majority-rule consensus (right) of Maddin et al. (2013); (H) strict consensus (left) and
50% majority-rule consensus (right) of Holmes, Berman & Anderson (2013); (l) strict
consensus of Liu (2018); (J) strict consensus with wildcard dissorophids included (left) and
excluded (right) of Dilkes (2020); (K) strict consensus of Gee et al. (2021). The two identical
topologies figured for Holmes, Berman & Anderson represent their two analyses (with and
without scoring changes for the “Rio Arriba Taxon”). The topology of Cacopinae is unchanged
in their 50%-majority rule consensus trees. Cool colors represent skull roof elements; warm

colors represent palatal elements. Scale bars equal to 1 cm for parts A-C.
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Figure 22

Morphological and phylogenetic concepts of Broiliellus and Dissorophus.

(A-H) pruned topologies from previous studies with the most exclusive clade that includes all
sampled species of Broiliellus and Dissorophus; (1-M) reconstruction of the skulls of Broiliellus
and Dissorophus with known sutures. (A) 50% majority-rule consensus tree of Schoch (2012);
(B) strict consensus tree of Schoch & Sues (2013); (C) strict consensus (left) and 50%
majority-rule consensus (right) of Maddin et al. (2013); (D) strict consensus (left) and 50%
majority-rule consensus (right) of Holmes, Berman & Anderson (2013) with modified scorings
for the “Rio Arriba Taxon” from Schoch (2012); (E) the same, but without modified scorings;
(F) strict consensus of Liu (2018); (G) strict consensus with wildcard dissorophids included
(left) and excluded (right) of Dilkes (2020); (H) strict consensus of Gee et al. (2021); (I)
Dissorophus multicinctus (from Schoch, 2012); (J) Broiliellus texensis (from Schoch, 2012);
(K) B. brevis (from Schoch, 2012); (L) B. olsoni (from Schoch, 2012); (M) B. reiszi (from
Holmes, Berman & Anderson, 2013). Cool colors represent skull roof elements; warm colors

represent palatal elements. Scale bars equal to 1 cm for parts I-M.
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Figure 23

Photographs of neural spines in the collections of the American Museum of Natural
History resembling those attributed to Aspidosaurus binasser.

(A) AMNH FARB 23406 (identified as ?Aspidosaurus, collected from the north fork of the Little
Wichita River, TX in 1880); (B) AMNH FARB 23407 (identified as ?Aspidosaurus, collected
from unknown locality in the Wichita Basin of TX in 1878); (C) AMNH FARB 23408 in part
(identified as Aspidosaurus, collected from unknown locality in the Wichita Basin of TX in
1878; only the piece clearly representing an ornamented spine is shown); (D) AMNH FARB
23409 (identified as Aspidosaurus sp., collected from unknown locality in the Wichita Basin of
TXin 1878); (E) AMNH FARB 23410 (identified as Aspidosaurus, collected from Shell Point,
Archer Co., TX; Nocona Formation in 1878); (F) AMNH FARB 23411 (not identified, collected
from Wichita Co., TX in 1878); (G) AMNH FARB 23412 (identified as Aspidosaurus sp.,
collected from unknown locality in the Wichita Basin of TX). Identifications are based on
associated collections cards; the person(s) who identified them or the date of identification is

not indicated for any specimen. Scale bars equal to 1 cm.
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Figure 24

Photographs of the holotype of “Aspidosaurus apicalis” (AMNH FARB 4785).

(A) presumed osteoderm in dorsal and ventral views; (B) the same in lateral view and in
either anterior or posterior view (siding is indeterminate); (C) presumed osteoderm in dorsal
and ventral profiles; (D) the same in either anterior or posterior view; (E) osteoderm fused to
the tip of the neural spine in anterior and posterior views (siding is indeterminate); (F) the

same in dorsal view. Scale bars equal to 1 cm.
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Figure 25

Photographs of postcranial material of Platyhystrix rugosus (AMNH FARB 11544),

(A) isolated neural spines associated with this individual of P. rugosus; (B) neural arches
found in association with the other material figured here; (C) sacral ribs associated with this
individual (see Berman, Reisz & Fracasso, 1981); (D) material catalogued under the same
number but questionably associated with this taxon; the large fragment on the right may
represent a synapsid scapula. Berman, Reisz & Fracasso (1981) conjectured that these
postcrania of P. rugosus belonged to the skull that is catalogued as AMNH FARB 11545; the
skull was not available at the time of my visit to assess the purported fit between one neural

spine and a fragment on AMNH FARB 11545. Scale bars equal to 1 cm.
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Figure 26

Comparative plot of known skull lengths and size ranges of olsoniforms.

Refer to Appendix 9 and Supplemental Table 3 for dataset and methods used to collect

measurement data.
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Table 1(on next page)

Summary of newly added olsoniform taxa.

Completeness refers to percent of characters that could be scored; note that this includes

cells scored as inapplicable (-), even though most programs treat these as missing data (?).
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Table 1. Summary of newly added olsoniform taxa. Completeness refers to percent of

1

2 characters that could be scored; note that this includes cells scored as inapplicable (-), even
3 though most programs and algorithms treat these as missing data (?).
4

Taxon Time Location References Completeness
Anakamacops petrolicus Middle Permian China (Gansu)  Li & Cheng (1999); Liu (2018) 68 (62.3%)
Aspidosaurus binasser Early Permian USA (TX) Berman & Lucas (2003) 55 (50.4%)
Aspidosaurus chiton Early Permian USA (TX) Broili (1904) 22 (20.1%)
Aspidosaurus novomexicanus ~ Late Carboniferous ~ USA (NM) Williston (1911); Carroll (1964a) 23 (21.1%)
Brevidorsum profundum Early Permian USA (TX) Carroll (1964a) 30 (27.5%)
Broiliellus arroyoensis Early Permian USA (TX) DeMar (1967) 25 (22.9%)
Broiliellus brevis Early Permian USA (TX) Carroll (1964a) 79 (72.4%)
‘Broiliellus’ hektotopos Early Permian USA (OH) Berman & Berman (1975) 40 (36.6%)
Broiliellus olsoni Early Permian USA (TX) DeMar (1967); Bolt (1974b) 37 (33.9%)
Broiliellus reiszi Early Permian USA (NM) Holmes, Berman & Anderson (2013) 88 (80.7%)
Broiliellus texensis Early Permian USA (TX) DeMar (1966); Bolt (1974b) 61 (55.9%)
Cacops aspidephorus Early Permian USA (TX) Williston (1910); Anderson (2005); 103 (94.5%)
Dilkes & Brown (2007); Dilkes
(2009); Anderson, Scott & Reisz
(2020)
Cacops morrisi Early Permian USA (OK) Reisz, Anderson & Schoch (2009); 98 (89.9%)
Gee & Reisz (2018a); Gee, Bevitt &
Reisz (2019)
Cacops woehri Early Permian USA (OK) Frobisch & Reisz (2012); Frobisch, 72 (66.0%)
Brar & Reisz (2015); ; Gee, Bevitt &
Reisz (2019)
Conjunctio multidens Early Permian USA (CO, Case & Williston (1913); Carroll 59 (54.1%)
NM) (1964a); Schoch & Sues (2013); Gee
et al. (2021)
Diploseira angusta Early Permian USA (TX) Dilkes (2020) 50 (45.8%)
Dissorophus multicinctus Early Permian USA (TX) DeMar (1968); Milner (2003); Dilkes 101 (92.6%)
(2020)
Iratusaurus vorax Middle Permian Russia Gubin (1980) 12 (11.0%)
(Bashkortostan)
Kamacops acervalis Middle Permian Russia (Perm Gubin (1980); Schoch (1999) 31 (28.4%);
Krai) 51 (46.7%)
Nooxobeia gracilis Middle Permian USA (OK) Gee, Scott & Reisz (2018) 19 (17.4%)
Palodromeus bairdi Late Carboniferous ~ USA (OH) Schoch, Henrici & Hook (2020) 70 (62.5%)
Parioxys bolli Early Permian USA (TX) Carroll (1964b) 11 (10.0%)
Platyhystrix rugosa Early Permian USA (CO, Berman, Reisz & Fracasso (1981) 67 (61.4%)
NM)
Reiszerpton renascentis Early Permian USA (TX) Maddin et al. (2013) 56 (51.3%)
Scapanops neglectus Early Permian USA (TX) Carroll (1964a); Schoch & Sues 57 (52.2%)
(2013)
Zygosaurus lucius Early Permian Russia Eichwald (1848); Efremov (1937) 19 (17.4%)
(Bashkortostan)
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Table 2(on next page)

Summary of the permutations performed in this study, indicating software, search type,

and general characterization of the analysis with respect to taxon and character
sampling.

Note that the heuristic search in TNT is termed ‘traditional search,’ and the branch-and-

bound search is termed ‘implicit enumeration.’
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Table 2. Summary of the analyses performed in this study, indicating software, search type,
and general characterization of the analysis with respect to taxon and character sampling.
Note that the heuristic search in TNT is termed ‘traditional search,” and the branch-and-bound
search is termed ‘implicit enumeration.’

Analysis Software Search Taxon sample  Character matrix
1A TNT Heuristic This study This study
1B TNT Heuristic This study This study
2 TNT Heuristic This study This study
3 TNT Heuristic This study This study
4 TNT Heuristic This study This study
5 PAUP* Both Dilkes (2020) This study
6 TNT Branch-and-  Gee (2020b) This study
bound
7 PAUP* Branch-and-  Dilkes (2020) Dilkes (2020), with scoring changes
bound
8 PAUP*  Branch-and-  Gee (2020b) This study
bound
9A TNT Branch-and-  Dilkes (2020) Dilkes (2020), original scores
bound
9B TNT Branch-and-  Dilkes (2020) Dilkes (2020), with scoring changes
bound
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Table 3(on next page)

Comparison of reported support metrics for focal nodes from dissorophid-focused
analyses.

All nodes are from strict consensus trees except for Schoch (2012). Abbreviations refer to
publications: S12, Schoch (2012); MFEM13, Maddin et al. (2013); L18, Liu (2018); D20, Dilkes
(2020). ‘A" and ‘W’ refer to the taxon samples employed by Dilkes: all taxa (A) and without
wildcards (W). The same sublettering is used for this study (Analysis 7). An en-dash indicates
that a node was not recovered, and ‘NR’ means that the value was not reported. Because the
composition of Cacopinae and Dissorophinae sometimes includes certain wildcard taxa (e.q.,
Conjunctio multidens) or do not include longstanding nominal members, these nodes are
restricted in this specific comparison to the same stable constituent taxa in this table.
Cacopinae is comprised of Cacops + Anakamacops + Kamacops + Zygosaurus; and
Dissorophinae is comprised of Broiliellus + Diploseira + Dissorophus. Bremer decay indices

are listed before the forward slash, and bootstrap values are listed before the forward slash.
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Table 3. Comparison of reported support metrics for focal nodes from dissorophid-focused
analyses.

All nodes are from strict consensus trees except for Schoch (2012). Abbreviations refer to
publications: S12, Schoch (2012); MFEM13, Maddin et al. (2013); L18, Liu (2018); D20, Dilkes
(2020). ‘A’ and ‘W’ refer to the taxon samples employed by Dilkes: all taxa (A) and without
wildcards (W). The same sublettering is used for this study (Analysis 7). An en-dash indicates
that a node was not recovered, and ‘NR’ means that the value was not reported. Because the
composition of Cacopinae and Dissorophinae sometimes includes certain wildcard taxa (e.g.,
Conjunctio multidens) or do not include longstanding nominal members, these nodes are
restricted in this specific comparison to the same stable constituent taxa in this table. Cacopinae
is comprised of Cacops + Anakamacops + Kamacops + Zygosaurus; and Dissorophinae is
comprised of Broiliellus + Diploseira + Dissorophus. Bremer decay indices are listed before the
forward slash, and bootstrap values are listed before the forward slash.

Clade S12 MFEM13 L18 D20 (A) this study (A) D20 (W) this study (W)
Olsoniformes 3/100 NR/91 NR >3 /90 >3 /75 4/94 4/177
Trematopidae 2/77 NR / 84 NR >3 /98 2/61 4/95 3/63
Dissorophidae 3/93 NR/82 3/NR 3/86 2/53 3/90 3/58
Cacopinae 3/98 - 3/NR 1/54 — 2/70 1/39
Cacops - - 1/NR 1/71 1/41 1/73 2/46
Dissorophinae 1/76 NR/72 3/NR - - 1/71 1/50
Post-Platyhystrix 1/60 NR/69 1/NR 1/51 1/32 1/71 2/53
Post-Aspidosaurus 1 /<50 NR — 1/45 — 2/72 1/52
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Table 4(on next page)

Comparison of reported support metrics for focal nodes from trematopid-focused
analyses.

All nodes are from strict consensus trees. Abbreviations refer to publications: B10, Berman et
al. (2010); B11, Berman et al. (2011); PR11, Polley & Reisz (2011); G20, Gee (2020b). Nodal
support of Gee (2020b) refers to the analysis of that study that sampled all twelve
trematopids at the species-level (figure 6 therein). This study’s nodal support is derived from
Analyses 6 and 8 (Figs. 14B, 17). An en-dash indicates that a node was not recovered, and
‘NR" means that the value was not reported. Note that Trematopidae in Analyses 6 and 8 of
this study only includes Acheloma cumminsi (the specifier for the clade) and Phonerpeton
pricei. Bremer decay indices are listed before the forward slash, and bootstrap values are

listed before the forward slash.
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Table 4. Comparison of reported support metrics for focal nodes from trematopid-focused
analyses.

All nodes are from strict consensus trees. Abbreviations refer to publications: B10, Berman et al.
(2010); B11, Berman et al. (2011); PR11, Polley & Reisz (2011); G20, Gee (2020b). Nodal
support of Gee (2020b) refers to the analysis of that study that sampled all twelve trematopids at
the species-level (figure 6 therein). This study’s nodal support is derived from Analyses 6 and 8
(Figs. 14B, 17). An en-dash indicates that a node was not recovered, and ‘NR’ means that the
value was not reported. Note that Trematopidae in Analyses 6 and 8 of this study only includes
Acheloma cumminsi (the specifier for the clade) and Phonerpeton pricei. Bremer decay indices
are listed before the forward slash, and bootstrap values are listed before the forward slash.

Clade B10 B11 PRI1 G20 ?T“;I;t)“dy :g‘::ﬁ‘,‘fj‘y
Olsoniformes 2 /NR 2 /NR 2/66 NR /55 3/32 3/58
Dissorophidae 2 /NR 1/NR NR NR /97 >5/81 >5/93
Trematopidae 3/NR 5/NR 5/82 NR 3/57 3/78
Acheloma + Phonerpeton 4 /NR 7 /NR - NR /92 3/57 3/78
Anconastes + Tambachia 1/NR 1/NR 6/71 — 1/21 1/42
Ecolsonia as trematopid? No No Yes Yes No No
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Table 5(on next page)

Comparison of absolute and GC frequencies for nodes recovered in Analysis 9A (taxon
sample without wildcards; Fig. 19D).
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1  Table 5. Comparison of absolute and GC frequencies for nodes recovered in Analysis 9A (taxon
2 sample without wildcards; Fig. 19D).

Node Absolute  GC Change
Olsoniformes 88 87 -1%
Trematopidae 84 84 —
Acheloma + Phonerpeton 75 71 -4%
Anconastes + Tambachia 82 81 -1%
Acheloma + Phonerpeton + o
Anconastes + Tambachia 62 60 2%
Ecolsonia + Fedexia 51 48 -3%
Dissorophidae 77 77 -
Post-Platyhystrix dissorophids 52 51 -1%
Post-Aspidosaurus dissorophids 52 51 -1%
Cacopinae 57 54 -3%
Cacops 53 53 —
Dissorophinae 51 47 -4%
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