

Important declarations

Please remove this info from manuscript text if it is also present there.

Associated Data

Data supplied by the author:

The phylogenetic matrices are provided as NEXUS files, and the recovered sets of MPTs are provided as .tre files (in a single zipped file).

Required Statements

Competing Interest statement:

The author declares that they have no competing interests.

Funding statement:

My current postdoctoral fellowship, under which I conducted this study, is supported by NSF ANT-1947094 (to Chris Sidor).

Returning to the roots: resolution, reproducibility, and robusticity in the phylogenetic inference of Dissorophidae (Amphibia: Temnospondyli)

Bryan M Gee ^{Corresp. 1}

¹ Burke Museum and Department of Biology, University of Washington, Seattle, WA, United States

Corresponding Author: Bryan M Gee
Email address: bmgee@uw.edu

The phylogenetic relationships of most Paleozoic tetrapod clades remain poorly resolved, which is variably attributed to a lack of study, the limitations of inference from phenotypic data, and constant revision of best practices. While refinement of phylogenetic methods continues to be important, any phylogenetic analysis is inherently constrained by the underlying dataset that it analyzes. Therefore, it becomes equally important to assess the accuracy of these datasets, especially when a select few are repeatedly propagated. While repeat analyses of these datasets may appear to constitute a working consensus, they are not in fact independent, and it becomes especially important to evaluate the accuracy of these datasets in order to assess whether a seeming consensus is robust. Here I address the phylogeny of the Dissorophidae, a speciose clade of Paleozoic temnospondyls. This group is an ideal case study among temnospondyls for exploring phylogenetic methods and datasets because it has been extensively studied (eight phylogenetic studies to date) but with most (six studies) using a single matrix that has been propagated with very little modification. In spite of the conserved nature of the matrix, dissorophid studies have produced anything but a conserved topology. Therefore, I analyzed an independently designed matrix, which recovered less resolution and some disparate nodes compared to previous studies. In order to reconcile these differences, I carefully examined previous matrices and analyses. While some differences are a matter of personal preference (e.g., analytical software), others relate to discrepancies with respect to what are currently considered as best practices. The most concerning discovery was the identification of pervasive dubious scorings that extend back to the origins of the widely propagated matrix. These include scores for skeletal features that are entirely unknown in a given taxon (e.g., postcrania in *Cacops woehri*) and characters for which there appear to be unstated working assumptions to scoring that are incompatible with the character definitions (e.g., scoring of taxa with incomplete skulls for characters based on skull length). Correction of these scores and other pervasive errors recovered a distinctly less

resolved topology than previous studies, more in agreement with my own matrix. This suggests that previous analyses may have been compromised, and that the only real consensus of dissorophid phylogeny is the lack of one.

1 **Returning to the roots: resolution, reproducibility, and**
2 **robusticity in the phylogenetic inference of Dissorophidae**
3 **(Amphibia: Temnospondyli)**

4

5

6 Bryan M. Gee¹

7

8 ¹Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA

9

10 Corresponding author:

11 Bryan Gee

12 UW Biology, Box 351800, Seattle, WA, 98195-1800, USA

13 Email address: bmgee@uw.edu

14 Abstract

15
16 The phylogenetic relationships of most Paleozoic tetrapod clades remain poorly resolved, which
17 is variably attributed to a lack of study, the limitations of inference from phenotypic data, and
18 constant revision of best practices. While refinement of phylogenetic methods continues to be
19 important, any phylogenetic analysis is inherently constrained by the underlying dataset that it
20 analyzes. Therefore, it becomes equally important to assess the accuracy of these datasets,
21 especially when a select few are repeatedly propagated. While repeat analyses of these datasets
22 may appear to constitute a working consensus, they are not in fact independent, and it becomes
23 especially important to evaluate the accuracy of these datasets in order to assess whether a
24 seeming consensus is robust. Here I address the phylogeny of the Dissorophidae, a speciose
25 clade of Paleozoic temnospondyls. This group is an ideal case study among temnospondyls for
26 exploring phylogenetic methods and datasets because it has been extensively studied (eight
27 phylogenetic studies to date) but with most (six studies) using a single matrix that has been
28 propagated with very little modification. In spite of the conserved nature of the matrix,
29 dissorophid studies have produced anything but a conserved topology. Therefore, I analyzed an
30 independently designed matrix, which recovered less resolution and some disparate nodes
31 compared to previous studies. In order to reconcile these differences, I carefully examined
32 previous matrices and analyses. While some differences are a matter of personal preference (e.g.,
33 analytical software), others relate to discrepancies with respect to what are currently considered
34 as best practices. The most concerning discovery was the identification of pervasive dubious
35 scorings that extend back to the origins of the widely propagated matrix. These include scores for
36 skeletal features that are entirely unknown in a given taxon (e.g., postcrania in *Cacops woehri*)
37 and characters for which there appear to be unstated working assumptions to scoring that are
38 incompatible with the character definitions (e.g., scoring of taxa with incomplete skulls for
39 characters based on skull length). Correction of these scores and other pervasive errors recovered
40 a distinctly less resolved topology than previous studies, more in agreement with my own matrix.
41 This suggests that previous analyses may have been compromised, and that the only real
42 consensus of dissorophid phylogeny is the lack of one.
43

44 Introduction

45 Inferring phylogenetic relationships remains one of the most timeless pursuits within
46 paleontology. The persistence of such studies owes to: (1) the great importance of phylogeny as
47 the macroevolutionary framework within which all other studies are situated; and (2) the
48 probable lability of any given topology when it relies entirely on morphological data and the
49 discretization of continuous traits. While there is broad interest in exploring clade-independent
50 practices that are applicable to a broad range of studies (e.g., comparison of likelihood and
51 parsimony methods, approaches to missing data and polymorphisms), it is equally important to
52 critically examine empirical datasets in order to assess their robusticity and reproducibility and to
53 seek to improve them whenever possible.

54 One longstanding practice is the propagation of an existing matrix with modifications, at
55 minimum by adding taxa of interest, and possibly more substantially by changing scores and
56 character sampling. In this, there is an implicit goal of developing a semblance of a consensus
57 matrix that the majority of workers have worked with (not necessarily within the confines of a
58 single collaboration) and therein agree (or assume) is well-designed to test the relationships of a
59 given in-group. However, in propagating a matrix, each derivate is inherently a pseudoreplicate

60 (non-independent), especially when changes are minimal beyond taxon addition. While
61 propagation creates consistency between analyses, it also constrains the possible outcomes unless
62 substantial changes are made. If a consensus emerges from such a matrix, it must be assessed
63 whether this is a truly defensible consensus. The easiest way to test this is with a novel
64 (independent) matrix, assuming that the set of characters and their scoring do not substantially
65 overlap with (converge on) those of previous matrices. Conversely, if no consensus emerges
66 from repeated propagation of a largely unchanged matrix, this is perhaps even more troubling, as
67 it indicates that most topologies are labile and thus should not be relied upon heavily for
68 qualitative discussion or for integration into other studies.

69 This study focuses on the phylogenetic relationships of Dissorophidae, a clade of
70 dissorophoid temnospondyls (Fig. 1), as a case study in phylogenetic analyses of temnospondyls.
71 Temnospondyli, often referred to as ‘amphibians’ (nonamniote tetrapods in a broad historical
72 sense and as the putative amphibian stem-group in more recent works), is best known for the
73 clade’s longstanding role in the unresolved debate over lissamphibian origins. This ongoing
74 debate has drawn extensive attention in recent decades (e.g., Laurin & Reisz, 1997; Anderson,
75 2001; McGowan, 2002; Ruta, Coates & Quicke, 2003; Vallin & Laurin, 2004; Lee & Anderson,
76 2006; Carroll, 2007; Ruta & Coates, 2007; Anderson et al., 2008a; Pyron, 2011; Sigurdsen &
77 Green, 2011; Pardo, Small & Huttenlocker, 2017; Marjanović & Laurin, 2019; Daza et al., 2020;
78 Schoch, Werneburg & Voigt, 2020). Workers interested in this topic have largely focused on
79 Amphibamiformes, another dissorophoid clade, as the likely candidate within Temnospondyli.
80 However, outside of this context, the phylogeny of most temnospondyl clades has received scant
81 attention. Nonetheless, the intrarelationships of temnospondyls are of inherent import for this
82 debate, especially with the recent proposal of a diphyletic origin of Lissamphibia from within
83 Temnospondyli (Pardo, Small & Huttenlocker, 2017). Furthermore, with the increasing
84 tractability of so-called “big data” studies with wide taxonomic breadth that are rooted in
85 phylogenetic backbones, the phylogenetic relationships of these clades have acquired new import
86 beyond the narrow scope of taxonomic specialists. Temnospondyls are both an excellent case
87 study and an area in need of redress because they are not regarded as ‘charismatic taxa’ and thus
88 suffer from a paucity of workers. As a result, certain workers or working groups may
89 inadvertently exert disproportionate influence on the study of a given clade, which, in
90 phylogenetics, manifests as one worker’s matrix rapidly becoming the only utilized matrix.

91 Dissorophids, a clade of dissorophoids only peripherally related to the lissamphibian
92 origins debate, are an ideal case study within Temnospondyli. Firstly, the clade is very speciose,
93 with over 20 nominal species. The anatomical foundation is well-established for most of these
94 taxa, with nearly 20 studies published in the 21st century alone. As a result, there is a more
95 substantive history of phylogenetic inquiry into dissorophids than for less speciose Paleozoic
96 clades, such as eryopids or zatracheids. To date, there have been eight studies that addressed the
97 phylogeny of Dissorophidae (Fröbisch & Reisz, 2012; Schoch, 2012; Holmes, Berman &
98 Anderson, 2013; Maddin et al., 2013; Schoch & Sues, 2013; Liu, 2018; Dilkes, 2020; Gee et al.,
99 2021). However, nearly all of them derive from the same source matrix (Schoch, 2012; Fig. 2)
100 and are nearly identical in scoring, taxon sampling, and character sampling. Surprisingly, there is
101 widespread disparity between their recovered topologies (Figs. 3–4). As remarked upon by
102 Dilkes (2020:26), “results of recent attempts to unravel the phylogeny of dissorophids, even
103 though they are using modified and hopefully updated versions of the same matrix, have
104 consistently shown a lack of agreement on a broader pattern of dissorophid relationships with
105 poor resolution and low support for most nodes that are present in a strict consensus tree.” The

106 situation of dissorophids can be characterized as a largely consistent matrix producing largely
107 inconsistent results. Finally, the study of dissorophids is relevant for other studies. Dissorophids
108 are a common outgroup for amphibamiform studies, whether in comparative anatomical
109 descriptions or in quantitative studies (e.g., Pérez-Ben, Schoch & Báez, 2018; Atkins, Reisz &
110 Maddin, 2019). Additionally, as ubiquitous components of Early Permian terrestrial ecosystems,
111 dissorophids (and their sister group, Trematopidae), are frequently sampled in broader studies of
112 Paleozoic tetrapods at large (e.g., Brocklehurst et al., 2018; Dunne et al., 2018; Pardo et al.,
113 2019).

114 I previously addressed the phylogeny of Trematopidae, the sister group to Dissorophidae
115 (collectively Olsoniformes; Anderson et al., 2008b), which is less studied and for which there
116 also remains no consensus (Gee, 2020b; Fig. 5). A key aspect of my previous study was
117 demonstrating how taxon sampling (and more specifically, selective exclusion) can drastically
118 improve or alter topological resolution. Previous olsoniform studies have either focused on
119 dissorophids or trematopids – there has never been a matrix that evenly samples these clades as a
120 collective in-group. The closest approximation is Atkins, Reisz & Maddin (2019), a derivate of
121 Schoch (2018a) that samples six of the 10 trematopids (deficient in Carboniferous taxa as with
122 other studies) and 11 dissorophids. Schoch's (2018a) dissorophid matrix is in turn derived from
123 Schoch's (2012) dissorophid matrix, though with a different taxon sample than that of Atkins,
124 Reisz & Maddin.

125 In this study, I expand the taxon and character sampling of my previous trematopid-
126 centric matrix to encompass dissorophids, thereby forming such a matrix. I opted to use my
127 matrix as the foundation, rather than the long-propagated dissorophid matrix of Schoch (2012) or
128 more modified derivate like that of Schoch (2018a). This decision was motivated by a desire to
129 approach these questions from as independent of a perspective as possible and in light of the
130 markedly disparate topologies of different derivate of Schoch's matrix despite the matrix's
131 conserved nature. While it broadly samples Olsoniformes, this study is targeted primarily
132 towards dissorophids simply because I have recently focused on trematopids. There are three
133 primary objectives: (1) to test whether this independent matrix can produce either better
134 resolution or stronger nodal support compared to previous studies and in turn to interpret that
135 resolution; (2) to assess factors that might contribute to potentially spurious resolution in
136 analyses that recover a high degree of resolution or that confound recovery of resolution in
137 analyses that recover a low degree of resolution; and (3) to summarize the present state of
138 Dissorophidae and to identify key areas in need of redress in order to work towards a consensus.
139

140 Materials & Methods

141

142 **Taxon sampling.** I sampled the vast majority of olsoniforms, with all ten of the undisputed
143 trematopid species carried over from my previous analysis (Gee, 2020b). *Acheloma dunni* is
144 regarded as a junior synonym of *Acheloma cumminsi*, and their scores are thus merged here.
145 *Phonerpeton whitei* is excluded on the basis of a suspect differentiation from *Phonerpeton pricei*,
146 which stems from the absence of detailed description or illustration. I expanded the sample to
147 include most dissorophids, the recently described olsoniform *Palodromeus bairdi* (Schoch, Hook
148 & Henrici, 2020), and the putative 'basal' dissorophoid *Perryella olsoni* (Table 1).

149 In my previous study, I scored practically every published and figured trematopid
150 specimen. I opted for a more selective approach in adding dissorophids, and the trematopid
151 specimen-level OTUs are not carried over. The main reason is that many dissorophid specimens

152 consist only of neural spines and osteoderms (e.g., DeMar, 1966b; May et al., 2011; Gee, Bevitt
153 & Reisz, 2019) and can only be scored for a handful of characters (< 10%). Dissorophid taxa that
154 are excluded in their entirety are: *Aspidosaurus glascocki*, “*Aspidosaurus*” *apicalis*,
155 “*Aspidosaurus*” *crucifer*, “*Aspidosaurus*” *peltatus*, and *Astreptorhachis ohioensis*. Very
156 fragmentary cranial remains or those without sutures were excluded unless they were the
157 holotype of a valid taxon (e.g., *Broiliellus arroyoensis*), as similar specimens were frequently
158 problematic in my trematopid analysis. This exclusion includes the holotypes of “*Fayella*
159 *chickashaensis*” and “*Trematopsis seltini*,” both too poorly preserved to be scored, and two
160 junior synonyms of *D. multicinctus*, “*Otocoelus mimeticus*” and “*Otocoelus testudineus*,” both
161 characterized only by relatively brief and dated descriptions (Cope, 1896a, 1896b). The only
162 holotype of a junior synonym that is sampled here is “*Longiscitula houghae*” (= *D. multicinctus*)
163 because its cranial sutures are well-described and figured (DeMar, 1966a; Milner, 2003).
164 Additionally, testing interspecific ontogenetic disparity in dissorophids was not a focus of this
165 study (addressed in the Discussion), and therein assessing whether the matrix could detect
166 intraspecific ontogenetic variation as a proof of concept was not as essential. Almost two-thirds
167 of dissorophids are represented only by the holotype in any event. I did run one analysis to assess
168 this, and thus *Anakamacops petrolicus*, *Cacops morrisi*, *Cacops woehri*, and *Conjunctio*
169 *multidens* are scored at the specimen level.

170 Schoch & Milner (2014) listed several taxa as possible early-diverging dissorophoids:
171 *Macrerpeton huxleyi* from the Late Carboniferous of Ohio; *Parioxys ferricolus* and *Parioxys*
172 *bolli* from the Early Permian of Texas; *Perryella olsoni* from the Early Permian of Oklahoma;
173 and *Stegops newberryi* from the Late Carboniferous of Ohio. *Parioxys ferricolus* and *S.*
174 *newberryi* are in need of redescription. *Parioxys bolli* (Carroll, 1964b) is included to test the
175 performance of an exclusively postcranial skeleton (the holotype and only known specimen).
176 *Perryella olsoni* is included, but its position should only be interpreted in light of assumed
177 dissorophoid affinities. Ruta & Bolt (2006) considered it to be a dvinosaur and recovered it as
178 such in a broad analysis of Paleozoic temnospondyls, while Schoch (2018a) recovered it as the
179 sister taxon to Dissorophoidea but in a dissorophoid-focused analysis with only one dvinosaur
180 taxon. Schoch & Milner (2021) recently recovered *M. huxleyi* as the sister-group of all other
181 dissorophoids (what they term a “stem dissorophoid”) diverging before *P. olsoni*, so the former
182 is not sampled here. ‘*Broiliellus hektotopos*’ from the Early Permian of Ohio was described as a
183 dissorophid (Berman & Berman, 1975), but it has never been included in an analysis and is
184 probably an amphibamiform (May et al., 2011), following Romer’s (1952) initial interpretation
185 of the holotype as a “branchiosaur.” I included the holotype to test this in a phylogenetic
186 framework.

187 The non-olsoniform outgroups were carried over from Gee (2020b): the amphibamiforms
188 *Doleserpeton annectens*, *Eoscopus lockardi*, *Pasawiooops mayi*, and *Tersomius texensis*, and the
189 micromelerpetid *Micromelerpeton credneri*. The same non-dissorophids were included
190 (*Dendrysekos helogenes*, *Eryops megacephalus*) but with *Chenoprosopus milleri* (Langston,
191 1953) replacing *Chenoprosopus lewisi* to better sample palatal characters. I replaced my previous
192 functional outgroup, the anthracosaur *Proterogyrinus scheelei*, with the colosteid *Greererpeton*
193 *burkemorani* (Smithson, 1982; Godfrey, 1989a, 1989b; Bolt & Lombard, 2001) because the
194 latter’s preservation allows it to be confidently scored for more characters without relying on
195 reconstructions (e.g., skull length-based characters), but scores for *P. scheelei* were still updated.
196

197 **Character sampling.** The character matrix was derived from that used in my trematopid
198 analysis (Gee, 2020b), and characters are listed in Appendix 1. Additional characters were added
199 to differentiate between dissorophids. I removed five characters (Appendix 2) and split one
200 character (lateral exposure of the palatine; LEP) into two characters. There are a total of 109
201 characters; multi-state characters that can be hypothesized to be ordered in an evolutionary sense
202 were ordered here. The decision to order certain characters follows other workers (e.g.,
203 Marjanović & Laurin, 2019), including other dissorophid studies (e.g., Dilkes, 2020), and is
204 motivated by two factors: (1) that leaving characters unordered is neither neutral nor a lack of
205 assumption, as unordered characters imply that transitions between all states are equally likely
206 (e.g., Slowinski, 1993; Wiens, 2001); and (2) that various studies have shown that ordering
207 characters tends to improve the ability to recover genuine clades and to increase topological
208 resolution (e.g., Fröbisch & Schoch, 2009; Grand et al., 2013; Rineau et al., 2015; Simões et al.,
209 2017; Rineau, Zaragueta i Bagils & Laurin, 2018). Of the 18 multistate characters, 15 were
210 ordered (2, 4, 11, 18, 20, 28, 31, 38, 51, 68, 70, 84, 99, 104, 107); characters 19, 88, and 98 are
211 left unordered. Characters were equally weighted.

212

213 **Character scoring.** Scores were carried over at the species level from Gee (2020b) unless noted
214 in Appendix 2. Scoring was based strictly on the literature, and reconstructions were not utilized.
215 Scoring of species-level operational taxonomic units (OTU) accounted for any polymorphisms
216 that are not clearly attributable to ontogeny. Anatomical differences correlated with very slight
217 size differences were treated more skeptically than those correlated with large size gaps in
218 determining whether to code a condition as polymorphic or only for the inferred ‘adult’
219 condition. Comments on scoring approaches to specific characters and the treatment of taxa for
220 which a character can only be scored from an immature specimen are provided in Appendix S2
221 of Gee (2020a) and in Appendix 3 here. The matrix was compiled in Mesquite version 3.6b917
222 (Maddison & Maddison, 2020) and is provided as a NEXUS file in Appendix 4.

223 I want to make particular mention of *Kamacops acervalis* here because it is difficult to
224 reconcile its historical scoring with existing descriptions, figures of which are either
225 reconstructions in palatal and lateral view or close-up illustrations of the occiput and braincase
226 (Gubin, 1980; Schoch, 1999). The detailed discussion is relegated to Appendix 3, but I
227 emphasize a few key points here because this taxon in particular (or rather, uncertainty over the
228 taxon) influenced the design of the analyses that I conducted here.

229 The only published photograph of any specimen is a snout (Schoch & Milner, 2014:fig.
230 37E), which does not show any clear sutures. This taxon has also been reconstructed as a
231 silhouette in dorsal view but without sutures by Schoch (2012:fig. 6), in contrast to most other
232 dissorophids. Therefore, it is strange that there are cranial characters scored for this taxon (e.g.,
233 prefrontal-postfrontal suture). Additionally, none of the specimens of *Kamacops acervalis* is
234 even half-complete, and without photographs, it is unclear how much skeletal overlap exists
235 between specimens, therein questioning the fidelity of the reconstructions. This is particularly
236 important because the reconstruction is the only means of scoring characters involving skull
237 length, including two of the three characters that differentiate *K. acervalis* from *Cacops*. At
238 present, many of the historic scores cannot be reconciled with the literature. Schoch indicated
239 that he personally examined material of this taxon, so it is possible that he identified new
240 features, but the data to support the scoring of many characters are not established in the
241 literature. Therefore, I constructed two different species-level OTUs for this taxon. The first is
242 termed the ‘conservative’ OTU and scores only based on the explicit descriptions and specimen

243 illustrations (but not reconstructions) of Gubin (1980) and Schoch (1999). The second is termed
244 the ‘reconstructed’ OTU and augments the previous one with data from reconstructions; this led
245 to the scoring of an additional 20 characters. In neither OTU are skull roof sutures scored except
246 in the occipital region, so both OTUs are underscored compared to previous studies.

247

248 **Phylogenetic analysis.** I elected to perform only maximum parsimony analyses of the data
249 matrix; the topologies recovered by a simple non-clock Bayesian analysis in my previous study
250 (Gee, 2020b) did not differ substantially from those recovered by the parsimony analyses. Most
251 discrepancies were related to additional resolution recovered in the Bayesian analysis only on
252 account of the overestimation of support of posterior probabilities compared to bootstrap value
253 (e.g., Alfaro, Zoller & Lutzoni, 2003; Cummings et al., 2003; Douady et al., 2003; Erixon et al.,
254 2003; Simmons, Pickett & Mia, 2004; Zander, 2004).

255 The analyses were primarily performed in TNT v1.5 (Goloboff & Catalano, 2016). For
256 analyses with more than 30 taxa, I used a heuristic search (“traditional search” in TNT) with the
257 following parameters: 10,000 random addition sequence replicates, holding 10 trees at each step,
258 and tree-bisection-and-reconnection (TBR). All sets of MPTs were then used as the starting trees
259 for a second round of branch swapping to obtain the final set of MPTs. For analyses with 30 or
260 fewer taxa, a branch-and-bound (“implicit enumeration” in TNT) search was used. Default
261 settings of TNT (e.g., rule 1 for branch collapsing: min. length = 0) were otherwise maintained. I
262 performed 10,000 bootstrap replicates with a heuristic search to assess absolute nodal support for
263 all analyses. Given the intensive computation time of branch-and-bound searches, I elected to
264 use heuristic searches to calculate Bremer decay indices after confirming that a heuristic search
265 recovered the same set of MPTs as the branch-and-bound search. TNT was selected for its ability
266 to rapidly process large datasets, which was a concern for analyses with species-level OTUs that
267 have high proportions of missing data (as with some of the dissorophids here); no search (or
268 resampling) exceeded nine hours. I used PAUP* 4.0a169 (Swofford, 2021) for several analyses
269 that mirrored previous analyses conducted in PAUP*. The more taxonomically restricted TNT
270 analyses can be run within PAUP* (no search exceeded 36 hours), although these analyses were
271 consistently more costly, and bootstrapping could exceed 48 hours. One noteworthy difference is
272 that to the best of my knowledge (based on the associated publications and other online
273 resources), TNT cannot handle partial uncertainty (or at least the syntax used for this in NEXUS
274 files is incompatible). These scores were thus changed to polymorphisms encompassing the
275 possible character states in TNT analyses (e.g., a partial uncertainty score of ‘{0 1}’ was scored
276 as ‘[0 1]’ in TNT; this is how Mesquite treats partial uncertainty when exporting a NEXUS file
277 to TNT). These are computationally the same but with an additional step added to the tree for
278 each polymorphism compared to a partial uncertainty. All analyses were performed on a personal
279 computer (MacBook Pro, 2015 model, 16 GB of RAM, macOS Mojave 10.14.5).

280 As with my previous study, I performed a large number of analyses (Table 2). Almost all
281 of the trematopid analyses were determined *a priori*, but because the focus of this study was
282 different, most of these analyses were only determined after examining previous results. The first
283 four analyses broadly sample Olsoniformes and have an eye towards testing topology using
284 standard historical methods (e.g., sampling all taxa, removal of wildcards), whereas the last five
285 analyses relate more to assessing possible sources of disparity between previous studies.

286

287 1. **Analysis 1A (all olsoniforms):** all presently valid species that I scored are sampled
288 here at the species level. Taxa: 47.

289 2. **Analysis 1B (wildcard removal):** an Adams consensus was used to identify wildcard
290 taxa in the previous analysis (method for identifying wildcards is listed in the
291 Results). The analysis was subsequently rerun without these wildcards. Taxa: 30 / 33
292 (number differs due to different wildcard identification).

293 3. **Analysis 2 (best representatives):** this analysis follows historic approaches by
294 excluding poorly known taxa, which are arbitrarily defined as having either an overall
295 low percentage of scoreable features or a low percentage specifically for cranial
296 characters. The sampling thus omits any taxon for which cranial sutures are unknown:
297 *Aspidosaurus chiton*, *Broiliellus arroyoensis*, *Iratusaurus vorax*, *Parioxys bolli*, and
298 *Zygosaurus lucius*. Cranial material of *Aspidosaurus novomexicanus*, *Brevidorsum*
299 *profundum*, *Diploseira angusta*, *Kamacops acervalis*, and *Noxobeia gracilis* is
300 relatively fragmentary, and these taxa are also excluded. Of the exclusions, *B.*
301 *profundum*, *K. acervalis*, and *Z. lucius* were usually sampled in previous studies. All
302 non-dissorophids are sufficiently characterized to be retained. Taxa: 37.

303 4. **Analysis 3 (dissorophid-focused):** this analysis samples almost every nominal
304 dissorophid but with a trimmed subset of trematopids, as would commonly be done
305 for dissorophid-focused analyses (e.g., Schoch, 2012, and derivates thereof). I
306 excluded *Actiobates peabodyi*, *Mordex calliprepes*, and *Rotaryus gothae* as taxa
307 probably represented only by markedly immature specimens (these are the smallest
308 trematopids). ‘*Broiliellus*’ *hektotopos* and *Parioxys bolli* were excluded since they
309 were recovered well outside Dissorophidae in previous analyses. Taxa: 42.

310 I ran one analysis with specimen-level dissorophid OTUs to assess whether the matrix can
311 resolve intraspecific ontogeny in dissorophids.

312 3. **Analysis 4 (cacopine specimen-level OTU):** this analysis focuses on *Anakamacops*
313 *petrolicus*, the three species of *Cacops*, and *Conjunctio multidens*, for which at least
314 two specimens can be scored. Based on my trematopid analyses, poorly preserved or
315 highly fragmentary specimens were clear confounds. Therefore, I omitted highly
316 fragmentary referred material (like the two partial snouts referred to *Ca. woehri* by
317 Gee, Bevitt & Reisz, 2019; ROMVP 80800, ROMVP 80801) and material without
318 sutures (like the holotype and paratype of *Ca. aspidephorus*; FMNH UC 647, FMNH
319 UC 649). *Iratusaurus vorax* and *Zygosaurus lucius* are entirely excluded on the same
320 grounds. Species-level dissorophid OTUs are restricted to *Broiliellus brevis*,
321 *Dissorophus multicinctus* and *Kamacops acervalis*. Non-olsoniforms include
322 *Chenoprosopus milleri*, *Dendrysekos helogenes*, *Doleserpeton annectens*, *Eoscopus*
323 *lockardi*, and *Eryops megacephalus*, and the outgroup, *Greererpeton burkemorani*.
324 OTUs: 32.

325 The third set of analyses relate to taxon sampling. As with my previous study, I ran so-called
326 “mirror analyses” in which I took the taxon sample of a previous study and the character sample
327 and scoring of my own study.

328 4. **Analysis 5 (taxon mirror of Dilkes, 2020):** this analysis mirrored the taxon sample
329 of Dilkes (2020). Because not all equivalent taxa are found in my matrix, I replaced
330 *Sclerocephalus haeuseri* with *Eryops megacephalus* and *Platyrhinops lyelli* with

335 *Eoscopus lockardi*. *Dendrysekos helogenes* was utilized as the outgroup. I used the
336 ‘reconstructed’ OTU of *Kamacops acervalis* to approximate the historic scoring of
337 this taxon. Although I intended to mirror all of Dilkes’ parameters in PAUP*, a
338 preliminary run with a branch-and-bound search produced no progress after 24 hours.
339 This is not surprising as 29 taxa are already above the typical threshold for running
340 this search. Therefore, I ran a heuristic search with 10,000 random addition sequence
341 replicates, holding 10 trees per step; all other settings, including the bootstrapping,
342 were mirrored where possible. I then removed the four wildcard taxa that Dilkes
343 identified and reran the analysis; this trimmed sample was recognized to be tractable
344 with a branch-and-bound search. Taxa: 29 (25 without wildcards).

345 7. **Analysis 6 (taxon mirror of Gee, 2020b):** this analysis mirrored the taxon sample of
346 Gee (2020b). *Acheloma* and *Phonerpeton* are treated as discussed above. I used
347 *Proterogyrinus scheelei* as the outgroup (as with the original study) and excluded
348 *Greererpeton burkemorani*. In order to account for the adjusted scoring of *A.*
349 *cumminsi* and the exclusion of *Ph. whitei*, I reanalyzed my original matrix with the
350 revised treatments of these taxa but with the original scoring otherwise intact. Since
351 only one OTU was changed, the revised string for *Acheloma cumminsi* (inclusive of
352 data from *Acheloma dunni*) is provided in Appendix 2 rather than in a separate
353 NEXUS file. Taxa: 23.

354
355 The next analysis resulted from a close examination of previous scores of the Schoch (2012)
356 matrix and its derivates in which I identified a large number of cells that either were scored for
357 features that are definitively unknown (e.g., postcrania of *Cacops woehri*) or that were unscored
358 but that are definitely known (e.g., palatal features of *Fedexia striegeli*). Most of the cells that
359 were spuriously scored are scored identically to other members of a presumed close relative by
360 Schoch (e.g., questionable scores of *Cacops aspidephorus* were scored identical to those of
361 *Cacops morrisi*), although some were introduced by Holmes, Berman & Anderson (2013; e.g.,
362 all questionable scores of *C. woehri* were scored identical to at least one other species of
363 *Cacops*). This observation suggests that some scores have been “assumed,” but not actually
364 observed, based on inferred relatedness, a troubling prospect.

365
366 8. **Analysis 7 (updated version of Dilkes, 2020):** this analysis is a direct reanalysis of
367 Dilkes’ matrix with updated scores that focused on cells where the scoring or lack
368 thereof seems unequivocally erroneous. The primary objective therein is to strictly
369 examine the influence of dubious scorings on the matrix. I did not adjust scores
370 unless there was strong evidence against the current score, so subjective decisions
371 (e.g., is an atlas-axis sufficient postcranial representation to determine the absence of
372 osteoderms in *Fedexia striegeli*) were not changed. I only rescored cells for
373 polymorphisms when this condition was not clearly linked to size variation and was
374 unequivocally non-taphonomic. One note is that the *Acheloma* of this matrix is
375 specifically “*Acheloma dunni*”; I only updated scores based on material referred to
376 this junior synonym (Maddin, Reisz & Anderson, 2010; Polley & Reisz, 2011). This
377 differs from my own matrix in which *Acheloma cumminsi* is scored from both
378 originally referred material and that of “*A. dunni*,” a junior synonym (Gee, 2020b).
379 Changes were not made to taxon sampling, character sampling, or character
380 construction (including ordering), even though certain characters of Dilkes’ matrix

381 (e.g., palpebral ossifications) are intentionally excluded in my own matrix. These
382 approaches minimize personal scoring philosophy and should provide an acceptable
383 derivate of this matrix should other workers continue to use it. Any restored scores
384 will have to be justified with appropriate data. All scoring changes are listed and
385 justified in Appendix 5, and the revised matrix is provided as Appendix 6. The
386 analysis was rerun in PAUP* following Dilkes' parameters. Note that I first analyzed
387 Dilkes' original matrix in PAUP* as well to ensure that my program settings
388 recovered the same results.
389

390 Finally, when considering explanations for disparity in the degree of resolution and the
391 placement of wildcard taxa, I observed that different programs have been used to examine the
392 Schoch (2012) matrix and its derivates. Schoch (2012), Holmes, Berman & Anderson (2013),
393 Maddin et al., (2013), and Dilkes (2020) used PAUP*, whereas Schoch & Sues (2013) and Liu
394 (2018) used TNT. The analyses using TNT have recovered more resolution in the strict
395 consensus and without any wildcards. It is known that these programs' algorithms and default
396 settings differ, but studies rarely compare the results obtained by analyzing the same matrix.
397 Therefore, I performed two analyses that analyze the same matrix with each program; I term
398 these "parallel analyses." These analyses are not intended to test whether one program's settings
399 and results can be reproduced in the other but rather to test whether default parameters and
400 algorithmic differences (usually default settings are employed by other workers) produce
401 different results.
402

- 403 9. **Analysis 8 (parallel of trematopid mirror):** this analysis parallels Analysis 6
404 (trematopid-focused sample, analyzed using TNT) in PAUP*; this analysis was
405 chosen because it achieved a measurable degree of resolution in TNT and has a low
406 taxon sample that would make it tractable for a branch-and-bound search in PAUP*.
- 407 10. **Analysis 9 (parallel of Dilkes, 2020):** this analysis parallels the original results of
408 Dilkes (2020) and the updated version of that matrix that I analyzed in Analysis 7,
409 both using TNT (Dilkes ran his analysis in PAUP*). Dilkes ran three analyses with a
410 branch-and-bound search: a full taxon sample, a full taxon sample with osteoderm
411 characters removed, and a reduced taxon sample without wildcards but with the full
412 character sample. I paralleled the two with the full character sample. The iterations
413 comparing different programs' analysis of Dilkes' original matrix are termed
414 Analysis 9A, and the iterations comparing the TNT analysis of the original and
415 updated versions of Dilkes' matrix are termed Analysis 9B.
416

417 **Two nomenclatural notes.** The dissorophid subfamily defined by all taxa more closely related
418 to *Cacops aspidephorus* than to *Dissorophus multicinctus* has a complex history. *Cacops* was
419 historically referred to Aspidosaurinae (e.g., Williston, 1914; DeMar, 1966b; Milner, 2003;
420 Witzmann & Soler-Gijón, 2010). However, Daly (1994) considered the poorly known
421 *Aspidosaurus* to be a dissorophine, making Aspidosaurinae a junior synonym of Dissorophinae
422 and necessitating a new name for historical aspidosaurines that could not be placed in
423 Dissorophinae (like *Cacops*); to this end, she coined the name 'Cacopinae.' However, Daly did
424 not substantiate her classification, so Cacopinae was unused until the study of Schoch & Rubidge
425 (2005), who used it as a terminal OTU (of *Cacops aspidephorus* + *Kamacops acervalis*); note
426 that this study did not include *Aspidosaurus*. The use of Cacopinae was then followed by nearly

427 all subsequent workers (except Witzmann & Soler-Gijón, 2010) but with the original source only
428 noted by Berman et al. (2010). The name was then changed to Eucacopinae by Schoch & Sues
429 (2013), who noted that Cacopinae, the proper derivation from *Cacops*, was preoccupied for a
430 group of microhylid frogs named for “*Cacopus*” (=*Uperodon*) per Noble (1931); Cacopinae
431 sensu Noble became a junior synonym of Microhylinae. The erection of Eucacopinae was
432 considered to be the appropriate solution by Schoch and Sues. However, as has been brought to
433 my attention by David Marjanović, there are two fundamental flaws with this nomenclatural act.
434 The first is that per Article 11.7.1.1 of the International Code of Zoological Nomenclature
435 (ICZN, 1999), family names ‘must be [...] formed from the stem of an available generic name,’
436 but there is no genus bearing the name ‘Eucacops’ or something similar. Furthermore, Noble’s
437 (1931) derivation of ‘Cacopinae’ from ‘*Cacopus*’ only includes part of the stem (which is
438 ‘Cacopod,’ not ‘Cacop’), and, per the same article, is unavailable. Therefore, Cacopinae Daly,
439 1994, is both the valid derivation from *Cacops* and not preoccupied, so it need not be replaced.
440 Schoch (2018a), Atkins, Reisz & Maddin (2019), Anderson, Scott & Reisz (2020), and Schoch
441 & Milner (2021) recently employed Cacopinae, without comment, which I follow here.
442 Cacopinae may yet prove to be a junior synonym of Aspidosaurinae, but this is not supported by
443 the following results of this study.

444 Also as pointed out to me by David Marjanović, *Platyhystrix* is feminine (following the
445 gender of ‘hystrix’), and therefore, when *Ctenosaurus rugosus* Case, 1910, was transferred to
446 *Platyhystrix* Williston, 1911, nomenclatural standards dictated that it be changed to *Platyhystrix*
447 *rugosa* (per Article 34.2 of the ICZN), even though this was not actually put into practice until
448 this study, over a century later. This change is implemented throughout this manuscript.
449

450 **Institutional abbreviations.** **AMNH FARB**, American Museum of Natural History, Fossil
451 Amphibians, Reptiles, and Birds, New York, NY; **BMRP**, Burpee Museum of Natural History,
452 Rockford, IL; **CM**, Carnegie Museum, Pittsburgh, PA; **FMNH**, Field Museum of Natural
453 History, Chicago, IL; **ICGAS**, Institute of Geology, Chinese Academy of Geological Sciences,
454 Beijing, China; **IVPP**, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese
455 Academy of Sciences, Beijing, China; **MCZ**, Museum of Comparative Zoology, Cambridge,
456 MA; **OMNH**, Sam Noble Oklahoma Museum of Natural History, Norman, OK; **ROMVP**, Royal
457 Ontario Museum, Vertebrate Paleontology, Toronto, Canada; **UCMP**, University of California
458 Museum of Paleontology, Berkeley, CA; **UMMP**, University of Michigan Museum of
459 Paleontology, Ann Arbor, MI.
460

461 **Results**

462 My reporting practices are outlined here to reduce redundancy. Figured topologies are either
463 strict consensus trees or Adams consensus trees (only Analysis 1A). The associated MPTs of
464 each analysis are included as .tre files in Appendix 7. All bootstrap values are reported, so any
465 node without a listed bootstrap value was not recovered in more than 1% of the bootstrap
466 replicates (for TNT analyses) or more than 5% of the replicates (for PAUP*). Note that bootstrap
467 frequencies reported for TNT analyses are absolute frequencies, not frequency differences (GC),
468 which are the program’s default. Because bootstrap support below 50% and Bremer support
469 below 3 is not considered strong, any values below these thresholds are colored in grey, whereas
470 any values at or above these thresholds are colored in black.

471 The node-based definition of Dissorophoidea (the least inclusive grouping with
472 *Dissorophus multicinctus* and *Micromelerpeton credneri*) and the stem-based definitions for

473 Trematopidae (most inclusive clade containing *Acheloma cuminsi* but not *D. multicinctus*),
474 Dissorophidae (specifiers of Trematopidae inverted), Cacopinae (most inclusive clade containing
475 *Cacops aspidephorus* but not *D. multicinctus*), and Dissorophinae (specifiers of Cacopinae
476 inverted) are used here following Schoch & Milner (2014). Therefore, all of these clades are
477 “recovered” in any analysis in which the specifiers are sampled, but they may include only that
478 specifier (e.g., only *A. cuminsi* for Trematopidae). Some specifiers for the node-based
479 definitions of Xerodromes, Amphibamiformes, and Olsoniformes are not sampled in this
480 analysis (*Amphibamus grandiceps* and *Apateon pedestris*), but these names are used in the same
481 sense as other workers (the sister group of Micromelerpetidae, the clade of all small-bodied
482 xerodromes, and the sister group of Amphibamiformes, respectively). The looser definitions of
483 these clades in this context means that they are not always recovered and must include at least
484 two taxa that form a clade. Nominal placement of taxa, specifically for dissorophids, is also from
485 Schoch & Milner (2014). These definitions are color-coded in the figures to visually facilitate the
486 comparison of topologies and placement of taxa.

487

488 **Analysis 1A (all olsoniforms).** The iteration with the ‘conservative’ OTU of *Kamacops*
489 *acervalis* recovered 93,116 MPTs with a length of 401 steps (CI = 0.314; RI = 0.592). The strict
490 consensus is predictably unresolved beyond a node for Temnospondyli and the default node
491 excluding the operational outgroup (*Greererpeton burkemorani*). The iteration with the
492 ‘reconstructed’ OTU of *K. acervalis* recovered 21,646 MPTs with the same length of 401 steps
493 and an identical strict consensus topology. Because of the total lack of resolution, these
494 topologies are not presented here.

495 Adams consensus trees were computed for both iterations in order to identify wildcard
496 taxa (Fig. 6). The topologies are largely consistent with the main differences lying in the
497 composition of Cacopinae. All nominal trematopids form a clade, but all nominal dissorophids
498 do not. *Parioxys bolli* is recovered entirely outside of Dissorophoidea in a polytomy at the base
499 of Temnospondyli; *Iratusaurus vorax* and *Reiszerpeton renascentis* are recovered in a polytomy
500 outside of Olsoniformes with *Palodromeus bairdi*; and *Platyhystrix rugosa* is recovered in a
501 polytomy with Trematopidae and Dissorophidae (as defined above). “*Broiliellus*” *hektotopos* is
502 recovered in a polytomy with individual branches for all four amphibamiforms and a branch for
503 all nominal dissorophids other than *Par. bolli* at the base of Xerodromes.

504 Wildcard identification was restricted to nominal olsoniforms. The highly incomplete
505 *Parioxys bolli* was removed because it falls well outside of Olsoniformes in the Adams
506 consensus. *Palodromeus bairdi* was also removed given its position outside of Olsoniformes.
507 *Iratusaurus vorax*, *Platyhystrix rugosa*, and *Reiszerpeton renascentis* were removed given their
508 position outside of Dissorophidae. Within Dissorophidae, I removed any nominal dissorophid
509 that was part of a polytomy at the base of the clade; this led to the removal of *Aspidosaurus*
510 *chiton*, *Aspidosaurus novomexicanus*, *Brevidorsum profundum*, and *Nooxobeia gracilis*, all of
511 which are poorly known taxa. In the iteration with the ‘conservative’ OTU of *Kamacops*
512 *acervalis*, this taxon was also recovered in this basal polytomy and was removed. Similar to
513 Dilkes (2020), I then removed any taxon recovered in a polytomy with Cacopinae and
514 Dissorophinae, leading to the removal of *Aspidosaurus binasser* and *Scapanops neglectus* in
515 both iterations, as well as *Anakamacops petrolicus* and *Zygosaurus lucius* in the iteration with
516 the ‘conservative’ OTU of *K. acervalis*. One notable retention in both iterations is *Conjunctio*
517 *multidens*, a wildcard as identified by Dilkes (2020). The two iterations differ in dissorophid
518 composition by three taxa. For Trematopidae, I removed any taxon that was part of a basal

519 polytomy; the pair of *Actiobates peabodyi* + *Mattauschia laticeps* and *Mordex calliprepes* met
520 this criterion in both iterations. These are the more fragmentary trematopids and have rarely been
521 sampled in previous analyses.

522 Following the wildcard identifications, taxa were then removed from the original sets of
523 MPTs, and the strict consensus was recalculated. When newly identical MPTs were subsequently
524 removed, there was a substantial reduction in the number of unique MPTs. There are 122
525 remaining MPTs for the iteration with the ‘conservative’ OTU of *Kamacops acervalis* and 346
526 remaining MPTs for the iteration with the ‘reconstructed’ OTU. The strict consensus of the
527 retained taxa of both iterations (Fig. 7) largely follows that observed in the Adams consensus
528 (Fig. 6), though with a loss of resolution in Trematopidae and Dissorophinae. *Micromelerpeton*
529 *credneri* and *Perryella olsoni* now form a polytomy with amphibamiforms and “*Broiliellus*”
530 *hektotopos* instead of forming an earlier diverging branch (i.e. Xerodromes is not recovered). In
531 the iteration with the ‘reconstructed’ OTU, *Anakamacops petrolicus*, *K. acervalis*, and
532 *Zygosaurus lucius* form branches of a cacopine polytomy with *Cacops*.
533

534 **Analysis 1B (wildcard removal).** The iteration derived from the previous analysis with the
535 ‘conservative’ OTU of *Kamacops acervalis* (which excluded this OTU) recovered 64 MPTs with a
536 length of 329 steps (CI = 0.380; RI = 0.610; Fig. 8A). The omission of wildcards produced a
537 weakly resolved topology that recovered all nominal dissorophids and all nominal trematopids in
538 their respective clades but not Olsoniformes. Trematopidae is largely unresolved, with *Acheloma*
539 *cumminsi* + *Phonerpeton pricei* as the only recovered relationship. *Conjunctio multidens* and all
540 three species of *Cacops* are recovered as cacopines, with *Cacops aspidephorus* and *Cacops*
541 *morrissi* as sister taxa, *Cacops woehti* as the sister taxon to this pair, and *Co. multidens* as the
542 sister taxon to *Cacops*. All four species of *Broiliellus*, *Diploseira angusta*, and *Dissorophus*
543 *multicinctus* are recovered as dissorophines in an unresolved polytomy. All amphibamiforms
544 (including “*Broiliellus*” *hektotopos*) are single branches in a polytomy with Dissorophidae and
545 Trematopidae. Bremer support is usually below 3, and bootstrapping was usually below or just
546 slightly above 50%.

547 The iteration derived from the analysis with the ‘reconstructed’ OTU of *Kamacops*
548 *acervalis* (which included this OTU) recovered 72 MPTs with a length of 338 steps (CI = 0.370;
549 RI = 0.617; Fig. 8B). The strict consensus topology is nearly identical to that of the previous
550 iteration with respect to mutually overlapping taxa. *Anakamacops petrolicus*, *Kamacops*
551 *acervalis*, and *Zygosaurus lucius* do not form a clade (as they did in Liu, 2018) but instead form
552 single branches of a polytomy with the clade of *Cacops*. *Conjunctio multidens* is still recovered
553 as the earliest-diverging cacopine. Bremer and bootstrap support are consistently low. One node
554 dropped below the threshold of strong support for Bremer decay index (*Ca. aspidephorus* + *Ca.*
555 *morrissi*), and three nodes dropped below the threshold for bootstrapping (the two nodes of
556 *Cacops* and Dissorophidae).
557

558 **Analysis 2 (Best representatives).** The analysis recovered 785 MPTs with a length of 382 steps
559 (CI = 0.327; RI = 0.582; Fig. 9). The strict consensus is largely unresolved. Dissorophoidea is
560 recovered (inclusive of *Perryella olsoni*), but the only in-group clades are a clade of the three
561 species of *Cacops* + *Anakamacops petrolicus* (Cacopinae) and the pairing of *Acheloma cumminsi*
562 + *Phonerpeton pricei* (Trematopidae). Both Dissorophidae and Dissorophinae therefore include
563 only *Dissorophus multicinctus*. Bremer and bootstrap support are low except for Trematopidae.
564

565 **Analysis 3.** The iteration with the ‘conservative’ OTU of *Kamacops acervalis* recovered 420
566 MPTs with a length of 375 steps (CI = 0.333; RI = 0.589; Fig. 10). The strict consensus is largely
567 unresolved and does not recover Amphibamiformes or Olsoniformes. *Perryella olsoni* is the
568 sister taxon to Xerodromes. All nominal trematopids form a clade. Dissorophidae and
569 Dissorophinae include only *Dissorophus multicinctus*, and Cacopinae includes only *Cacops*
570 *aspidephorus*. All other dissorophids, amphibamiforms, and *Palodromeus bairdi* are single
571 branches of a xerodrome polytomy with one branch for Trematopidae. Within Trematopidae,
572 *Mattauschia laticeps* diverges at the base, followed by successively diverging branches of: (1)
573 *Anconastes vesperus* + *Tambachia trogallas*; (2) *Ecolsonia cutlerensis*; and (3) *Fedexia striegeli*,
574 the last of which is the sister taxon to *Acheloma cumminsi* + *Phonerpeton pricei*. Both Bremer
575 and bootstrap support are universally low.

576 The iteration with the ‘reconstructed’ OTU of *Kamacops acervalis* recovered 23 MPTs
577 with the same length of 375 steps. The strict consensus topology is more resolved with respect to
578 nominal dissorophids, with all taxa except *Reiszerpeton renascentis* recovered as a clade.
579 *Platyhystrix rugosa* is recovered as the earliest diverging dissorophid. All species of *Broiliellus*
580 and *Diploseira angusta* are now recovered as dissorophines; Cacopinae remains restricted to
581 *Cacops aspidephorus*. Bremer support did not change from the previous iteration, and bootstrap
582 support changed only by 1–2% for nodes shared between iterations. Support for newly recovered
583 nodes is extremely low, and most were not even recovered in the bootstrap tree (< 1%
584 occurrence).

585
586 **Analysis 4.** The iteration with the ‘conservative’ OTU of *Kamacops acervalis* recovered 220
587 MPTs with a length of 280 steps (CI = 0.436; RI = 0.649; Fig. 11). The strict consensus is poorly
588 resolved. A noteworthy result is the recovery of the holotype of *Conjunctio multidens* (FMNH
589 UC 673) at the base of Dissorophidae, whereas the two referred specimens (CM 91215, UCMP
590 40103) are recovered as sister taxa at the base of Cacopinae. The separation of the holotype from
591 UCMP 40103 (historically the “Rio Arriba Taxon”) is the same as that of Schoch (2012). All
592 other cacopines form a single polytomy with the exception of the pair of two specimens of
593 *Cacops woeMRI*, the holotype (OMNH 73216) and a larger referred specimen (BMRP 2007.3.5).
594 Bremer and bootstrap support are low for dissorophid nodes.

595 The iteration with the ‘reconstructed’ OTU of *Kamacops acervalis* recovered 40 MPTs
596 with a length of 281 steps (CI = 0.434; RI = 0.647). The strict consensus remains unchanged and
597 is thus not depicted separately here. Bremer and bootstrap support are essentially unchanged.
598

599 **Analysis 5 (taxon mirror of Dilkes, 2020).** This analysis recovered 750 MPTs with a length of
600 348 steps (CI = 0.494; RI = 0.579; Fig. 12A). The strict consensus topology is discordant with
601 that of Dilkes. Amphibamiformes and Olsoniformes are not recovered, and Dissorophidae and
602 Dissorophinae only include *Dissorophus multicinctus*. Most nominal dissorophids are single
603 branches in a polytomy with non-dissorophids. Cacopinae includes the three species of *Cacops*,
604 *Anakamacops petrolicus*, *Kamacops acervalis*, and *Zygosaurus lucius*; within this, *Cacops* is
605 monophyletic, and the other three taxa are single branches of a polytomy. All nominal
606 trematopids form a clade, with one resolved in-group: *Fedexia striegeli* as the sister taxon to
607 *Acheloma cumminsi* + *Phonerpeton pricei*. The other three taxa form a polytomy at the base.
608 Bootstrap and Bremer support were usually below meaningful thresholds except for
609 Trematopidae. The Adams consensus (not presented here) identifies *Aspidosaurus binasser*,
610 *Platyhystrix rugosa*, *Reiszerpeton renascentis*, and *Scapanops neglectus* as wildcards following

611 the same approach as in Analysis 1, but does not identify *Brevidorsum profundum* or *Conjunctio*
612 *multidens* as wildcards (both were wildcards in Dilkes' analysis).

613 Recently, Silva & Wilkinson (2021) proposed a method of representing consensus
614 topologies when there are multiple islands recovered by a heuristic search by computing a
615 consensus topology for each island. This can be useful when the strict consensus of all MPTs is
616 relatively unresolved, although it relies on the analytical program not only identifying the
617 number of islands but also the constituent MPTs. To the best of my knowledge, TNT does not do
618 so; Silva & Wilkinson used PAUP*, as in this analysis. The above analysis recovered three
619 distinct islands, with 564 MPTs, 108 MPTs, and 78 MPTs (Fig. 13). When the strict consensus
620 of each island is computed, the resolution is improved from the total consensus. The largest
621 island (Fig. 13A) newly recovers Olsoniformes, a more inclusive Dissorophidae of all nominal
622 taxa except *Reiszerpeton renascentis*, and a more inclusive Dissorophinae (*Broiliellus*,
623 *Diploseira angusta*, *Dissorophus multicinctus*). *Reiszerpeton renascentis* is instead recovered as
624 the sister taxon to Olsoniformes. For this island, only *Brevidorsum profundum* and *Platyhystrix*
625 *rugosa* are identified as wildcards among Dissorophidae. The second largest island (Fig. 13B)
626 newly recovers Trematopidae inclusive of *R. renascentis* and a relatively inclusive
627 Dissorophidae (to the exclusion of *R. renascentis*, *B. profundum*, and *Platyhystrix rugosa*).
628 Cacopinae now includes *Conjunctio multidens*, which is recovered at the base of the clade.
629 *Broiliellus brevis* and *Broiliellus texensis* are recovered as sister taxa within Dissorophinae. For
630 this island, no dissorophids (or olsoniforms) would be identified as wildcards. The smallest
631 island (Fig. 13C) differs more starkly from the other two islands' consensus topologies.
632 *Reiszerpeton renascentis* forms a polytomy with Dissorophidae and Trematopidae, and *C.*
633 *multidens* and *P. rugosa* are recovered as sister taxa within Dissorophinae. Trematopidae is fully
634 resolved here, with *Anconastes vesperus* + *Tambachia trogallas* as the sister group to *Ecolsonia*
635 *cutlerensis*. For this island, *Aspidosaurus binasser*, *R. renascentis*, and *Scapanops neglectus*
636 would be identified as wildcards.

637 The iteration with Dilkes' wildcards removed recovered 296 MPTs with a length of 318
638 steps (CI = 0.522; RI = 0.597; Fig. 12B). All MPTs belong to the same island. The strict
639 consensus topology is more congruent with that of Dilkes, although still with less resolution.
640 Xerodromes, Olsoniformes, Trematopidae, and Dissorophidae are all recovered. The
641 composition of Cacopinae and Dissorophinae is the same as that of Dilkes' analysis. *Platyhystrix*
642 *rugosa* and *Aspidosaurus binasser* are recovered as the earliest diverging dissorophids.
643 Polytomies are found at the base of Trematopidae and Cacopinae, and Dissorophinae is a single
644 polytomy. Nodal support remained low.
645

646 **Analysis 6.** The rerun of my original trematopid matrix with the newly combined *Acheloma*
647 *cumminsi* OTU and the exclusion of *Phonerpeton whitei* recovered 27 MPTs with a length of
648 209 steps (CI = 0.445; RI = 0.615; Fig. 14A). For comparison, the original analysis recovered
649 105 MPTs with a length of 210 steps (CI = 0.443, RI = 0.640). The strict consensus topology is
650 nearly unchanged; Olsoniformes and Amphibamiformes are recovered, but Xerodromes is not.
651 Dissorophidae and Trematopidae include all of their respective nominal taxa. Within
652 Trematopidae, the only resolved relationships are the pairing of *A. cumminsi* + *P. pricei* and
653 *Rotaryus gothae* as the sister group to this pair. The newfound resolution of *R. gothae* from the
654 previously large polytomy is an intuitive result given the taxon sample modifications that were
655 made to long-snouted taxa. Nodal support is weak except for some non-trematopid nodes.

656 The mirror analysis with the same taxon treatment and the revised matrix's character
657 sampling recovered 19 MPTs with a length of 282 steps (CI = 0.429; RI = 0.567; Fig. 14B). The
658 strict consensus is slightly more resolved, but with the major caveat that Trematopidae only
659 includes *Acheloma cumminsi* and *Phonerpeton pricei*. *Anconastes vesperus* + *Tambachia*
660 *trogallas* is also recovered and forms one branch of a polytomy with the relatively exclusive
661 Trematopidae, all other nominal trematopids, and Dissorophidae. Examination of the MPTs
662 reveals that all nominal trematopids form a clade in all but one MPT in which Dissorophidae
663 nests within Trematopidae as the sister group to *Ecolsonia cutlerensis* to form a late-diverging
664 clade. Nodal support has improved, including a change in Bremer support for Olsoniformes and
665 Trematopidae (from 2 to 3) that reaches the threshold for meaningful support.
666

667 **Analysis 7.** Analysis of the updated Dilkes' matrix recovered substantially more MPTs than the
668 original analysis. With all 29 taxa, the analysis recovered 3,408 MPTs with a length of 169 steps
669 (CI = 0.527; RI = 0.733; Fig. 15B), compared to 513 MPTs with a length of 163 steps (CI =
670 0.5460; RI = 0.7574; Fig. 15A). Recovering Dilkes' original topology requires an additional 34
671 steps in the revised version of the matrix. All MPTs belong to the same island (both in Dilkes'
672 original analysis and in the new one). Resolution is relatively low, although not too dissimilar
673 from Dilkes' topology in this regard. Dissorophinae is restricted to *Dissorophus multicinctus*,
674 and Cacopinae is restricted to the three species of *Cacops*. *Cacops aspidephorus* and *Cacops*
675 *morrissi* are sister taxa to the exclusion of *Cacops woehri*, in contrast to the historic polytomy of
676 these taxa, which form the entirety of Cacopinae here. All other dissorophids with the exception
677 of *Platyhystrix rugosa* (the earliest diverging dissorophid) form a single polytomy. Bremer and
678 bootstrap support have generally slightly declined for nodes shared between the original and the
679 reanalysis, and Bremer support is below the threshold of meaningful support for almost all
680 nodes. The resultant Adams consensus would identify a slightly different set of wildcards
681 (*Aspidosaurus binasser* and *Diploseira angusta* and not *Scapanops neglectus*) than in Dilkes'
682 analysis, but I reran the search after removing the same four taxa that he identified as wildcards
683 (*Brevidorsum profundum*, *Conjunctio multidens*, *Reiszerpeton renascentis*, *Scapanops*
684 *neglectus*).

685 With removal of Dilkes' wildcards, the analysis recovered 20 MPTs with a length of 151
686 steps (CI = 0.556; RI = 0.750; Fig. 15D), in contrast to the original 27 MPTs with a length of 143
687 steps (CI = 0.5874; RI = 0.7839; Fig. 15C). Dilkes' original topology requires an additional 6
688 steps in the revised version of the matrix. The MPTs are evenly divided between two islands, but
689 the strict consensus topologies of each are nearly identical, differing only in the relationships of
690 dissorophines (Fig. 16). The strict consensus is more resolved than the previous iteration but less
691 resolved than Dilkes' topology. The relationships of *Cacops* are as with the previous iteration,
692 but *Anakamacops petrolicus*, *Kamacops acervalis*, and *Zygosaurus lucius* are also recovered as
693 cacopines. A more inclusive Dissorophinae is also recovered, with *Broiliellus olsoni* recovered
694 as the earliest diverging taxon, followed by *B. reiszi* and then a polytomy of all other nominal
695 dissorophines, which differs from the original analysis (Fig. 15C). This polytomy is the only
696 source of differences between islands; in one, *Dissorophus multicinctus* and *Diploseira angusta*
697 are sister taxa, and *Broiliellus brevis* and *Broiliellus texensis* are sister taxa (Fig. 16A). In the
698 other island, *Dis. multicinctus* and *B. texensis* are sister taxa, and *Dip. angusta* and *B. brevis* are
699 sister taxa (Fig. 16B). None of these configurations of Dissorophinae have been previously
700 recovered. *Acheloma cumminsi* and *Phonerpeton pricei* are recovered in a polytomy with
701 *Anconastes vesperus* + *Tambachia trogallas*. *Fedexia striegeli* and *Ecolsonia cutlerensis* are

702 successive branches at the base of Trematopidae. Bremer and bootstrap support have again
703 declined slightly for nodes shared with Dilkes' analysis.

704

705 **Analysis 8.** The parallel analysis of the trematopid-focused sample in PAUP* recovered 23
706 MPTs with a length of 326 steps (CI = 0.506; RI = 0.567; Fig. 17A), compared to the 19 MPTs
707 with a length of 282 steps (CI = 0.429; RI = 0.564; Fig. 17B) that I recovered in Analysis 6
708 (reproduced from Fig. 14B). The strict consensus topology is identical, but it is notable that there
709 are three islands (of sizes 14, 8, and 1 MPTs), which differ in the relationships of olsoniforms
710 (Fig. 18). As with the TNT results in Analysis 6, only one MPT does not recover all nominal
711 trematopids within a clade, and that MPT instead recovers the nominal trematopids as a grade
712 from *Eoscopus lockardi* to the nominal dissorophids (Fig. 18C). Based on the definition of
713 Dissorophidae utilized here, several nominal trematopids are technically dissorophids
714 (*Actiobates peabodyi*, *Anconastes vesperus*, *Ecolsonia cutlerensis*, *Mordex calliprepes*, *Rotaryus*
715 *gothae*, and *Tambachia trogallas*). Similarly, the definition of Olsoniformes utilized here would
716 result in a recovery of *Mattauschia laticeps* outside of Olsoniformes. The observation of multiple
717 islands in the PAUP* analysis suggests that the MPTs of the TNT analysis might also be
718 distributed across multiple islands. Nodal support is the same with respect to Bremer decay
719 indices but is consistently higher in the PAUP* analysis, with differences ranging from 7%
720 (*Cacops morrissi* + *Cacops woehri*) to 27% (Olsoniformes). Two nodes would be considered
721 well-supported by bootstrap values in the PAUP* analysis but not in the TNT analysis:
722 Dissorophoidea and Olsoniformes. I note that the PAUP* branch-and-bound search took a
723 particularly long time (33.5 hours) despite the eventual low number of MPTs and indicates the
724 upper threshold of reasonable computation time for this matrix (23 taxa, 109 characters). Over
725 half of the search process occurred after all MPTs had been recovered. A heuristic search with
726 10,000 random addition sequence replicates, holding 10 trees per step, recovered the same set of
727 MPTs in just over a minute.

728

729 **Analysis 9.** The parallel analysis of Dilkes' (2020) original matrix with all 29 taxa and in TNT
730 recovered 23 MPTs with a length of 157 steps (CI = 0.529; RI = 0.757; Fig. 19B), in contrast to
731 the original study using PAUP* (513 MPTs of length 163 steps; CI = 0.5460; RI = 0.7574; Fig.
732 19A). The strict consensus is identical to that of Dilkes', as is the Bremer support, but bootstrap
733 support is distinctly lower for all nodes, similar to the previous analysis. Here, the differences
734 between the two analyses range from 3% (*Anconastes vesperus* + *Tambachia trogallas*) to 34%
735 (*Kamacops acervalis* + *Zygosaurus lucius*). Five nodes dropped below the 50% threshold in the
736 TNT analysis. The Adams consensus (not depicted) would identify the same four wildcard taxa
737 as Dilkes' original analysis (*Brevidorsum profundum*, *Conjunctio multidens*, *Reiszerpeton*
738 *renascentis*, *Scapanops neglectus*).

739 The TNT analysis of the matrix without Dilkes' wildcards recovered a single MPT with a
740 length of 142 steps (CI = 0.585; RI = 0.780; Fig. 19D), in contrast to Dilkes' analysis in PAUP*
741 (27 MPTs with a length of 143 steps; CI = 0.5874; RI = 0.7838; Fig. 19C). The differences relate
742 only to resolution of polytomies recovered by Dilkes; there are no shifts in the general position
743 of taxa. The same pattern of Bremer and bootstrap support was identified, with the latter ranging
744 between 4% (*Anconastes vesperus* + *Tambachia trogallas*) and 20% (all three species of *Cacops*;
745 Dissorophinae; Cacopinae + Dissorophinae). However, zero nodes dropped below the 50%
746 threshold in the TNT analysis.

747 The TNT analysis of my updated version of Dilkes' matrix with all taxa sampled
748 recovered 284 MPTs with a length of 161 steps (CI = 0.509; RI = 0.734; Fig. 20A). Resolution
749 has decreased across the tree with a large basal polytomy in Dissorophidae. Cacopinae consists
750 only of the three species of *Cacops*. *Platyhystrix rugosa* is still recovered as the earliest-
751 diverging dissorophid. Trematopidae has also lost resolution; only *Anconastes vesperus* +
752 *Tambachia trogallas* is recovered. Bremer and bootstrap values tend to be lower for overlapping
753 nodes. The Adams consensus (not depicted) does not identify the same four wildcards as Dilkes
754 (2020). Of those four, only *Reiszerpeton renascentis* is still recovered in a wildcard position, in
755 addition to *Aspidosaurus binasser* and *Diploseira angusta*, which were not wildcards in Dilkes'
756 original analysis.

757 The TNT analysis of the same matrix without Dilkes' wildcards recovered 12 MPTs with
758 a length of 148 steps (CI = 0.554; RI = 0.778; Fig. 20C). The tree is more resolved than in the
759 previous iteration, with two cacopine clades: (1) all three species of *Cacops*; and (2)
760 *Anakamacops petrolicus* + *Kamacops acervalis* + *Zygosaurus lucius*. This is the only analysis to
761 recover all three taxa within Kamacopini (the clade defined as all taxa closer to *K. acervalis* than
762 to *Cacops aspidephorus*; Liu, 2018). The arrangement of Dissorophinae, with *Broiliellus olsoni*
763 as the earliest diverging taxon, followed by *Broiliellus reiszi*, differs from both the previous
764 iteration with all taxa sampled and from previous studies. Within Trematopidae, *Fedexia*
765 *striegeli* and *Ecolsonia cutlerensis* are now recovered as successively diverging taxa at the base
766 of the clade rather than as exclusive sister taxa. *Acheloma cumminsi* and *Phonerpeton pricei* are
767 also not recovered as exclusive sister taxa and instead form a polytomy with the pair of
768 *Anconastes vesperus* + *Tambachia trogallas*. Bremer and bootstrap values are again lower
769 compared to the original matrix analyzed in TNT.
770

771 Discussion

772 The original goal of this study was to expand my previous trematopid matrix to encompass
773 dissorophids as a means of independently testing the relationships of dissorophids and
774 olsoniforms more broadly. This study "accomplished" that goal, but as may be apparent from a
775 first-hand examination of the results and as I hope to make a case for, the results of both this
776 study and those of previous studies should be treated cautiously. This discussion is therefore
777 divided into three main sections: (1) a brief discussion of the first-hand results of the analyses
778 performed here; (2) a broader discussion of topological disparity, identifiable sources of this
779 disparity, and a critical examination of previous methodologies; and (3) a summary of the state
780 of affairs in dissorophoid phylogenetics and taxonomy with some highlighted areas for future
781 study.
782

783 **Tallying topologies.** This section summarizes the key findings from the various analyses that
784 were performed in this study as they relate to the recovered topologies. It comes as little surprise
785 that across my nine analyses, there is little consensus; indeed, some analyses recover little
786 resolution at all. Larger taxon samples produced less resolution and rarely recovered all nominal
787 dissorophids or all nominal trematopids in a clade (e.g., Analyses 1A, 2; Figs. 6, 9). *Parioxys*
788 *bolli* is unsurprisingly not recovered as a dissorophid, let alone as a dissorophoid (Fig. 6). The
789 skew towards cranial characters in this matrix, a characteristic of other matrices as well, reflects
790 the precedent of using cranial remains to differentiate taxa. Even with the expanded postcranial
791 character sampling of this study's matrix, most characters cannot be scored for this taxon.
792 "*Broiliellus*" *hektotopos* is also not recovered as an olsoniform, let alone as a dissorophid (Figs.

6–9). *Amphibamiformes* is never recovered when this taxon is sampled, and it always forms a polytomy with other amphibamiforms. The lack of a monophyletic *Amphibamiformes* in most analyses likely reflects the character sampling being derived from olsoniform matrices and thus undersampling characters that capture amphibamiform synapomorphies.

A more surprising result is the position of *Reiszerpeton renascentis* as an unplaced olsoniform or outside of a clade of all other dissorophids in some analyses (Analyses 3, 5; Figs. 6, 10B, 13), as it was always recovered as a dissorophid in previous studies (Figs. 3–4). One possibility is that this small specimen was very immature and therefore shares certain qualitative features with amphibamiforms; its original identification as a specimen of *Tersomius texensis* speaks to this (Maddin et al., 2013). With that said, it never clusters with amphibamiforms. There may be enough features shared with most/all dissorophids or olsoniforms (e.g., a septomaxilla at the mid-length of the naris; postorbital lacking a markedly offset posterior terminus) to maintain its olsoniform affinities. The apparent absence of a ventral process of the prefrontal (Maddin et al., 2013:454) may also contribute to its stemward slippage; this process (the VPP) is found in all other dissorophoids sampled here.

A different hypothesis is that full sampling of trematopids, including the rarely sampled Carboniferous taxa like *Mordex calliprepes*, draws the taxon down. Many of these Carboniferous taxa have a relatively higher number of plesiomorphies than the more commonly sampled taxa. This hypothesis is supported by some MPTs of Analysis 5 in which *Reiszerpeton renascentis* is recovered as an early diverging trematopid (Fig. 13B). However, it never clusters with trematopids in analyses of the original or revised matrix of Dilkes (2020), which use the same taxon sample (Analyses 7, 9; Figs. 15–16, 19–20). These discrepancies indicate that character sampling and construction are more likely an explanator since scoring approaches between my matrix and my revised version of Dilkes' were the same (e.g., the taxon cannot be scored for characters invoking skull length). The most likely scenario in my opinion is that the missing data for *R. renascentis* are responsible for its peculiar position. The holotype is only a partial skull, incomplete posteriorly, and definitively lacks apomorphic ornamentation found in cacopines and dissorophines. Therefore, its combination of known scores may approximate the “ancestral” olsoniform condition, even though there is no evidence of either trematopid apomorphies or conditions contrary to the diagnosis of Dissorophidae.

This conjecture could also apply to *Brevidorsum profundum* and *Platyhystrix rugosa*. *Brevidorsum profundum* is represented only by a fragmentary partial skull (without apomorphic ornamentation) and a few postcranial fragments (without osteoderms). Hook (1989) even suggested that it might be a small trematopid related to what was eventually placed in *Phonerpeton*. However, *B. profundum* is either recovered with other dissorophids to the exclusion of *Reiszerpeton renascentis* (e.g., Analysis 3; Fig. 10B) or in a polytomy of all dissorophids including *R. renascentis* and perhaps other taxa (e.g., Fig. 10A). A few features in which *B. profundum* is similar to most other olsoniforms and differs from *R. renascentis* (e.g., tabular-squamosal contact; semilunar curvature) are evidently sufficient to avoid the same degree of stemward slippage.

Platyhystrix rugosa is represented only by a badly crushed skull and isolated postcrania (Berman, Reisz & Eberth, 1981). It was identified as a wildcard taxon in Analysis 1A (Fig. 6) and was not always recovered as a dissorophid (e.g., Analyses 3, 7, 9, some MPTs of Analysis 5; Fig. 13B), like *Brevidorsum profundum*. It too never exhibits the same slippage as *Reiszerpeton renascentis* and is often recovered as the earliest-diverging dissorophid (e.g., Analysis 5; Figs. 10B, 12B, 13B, 15, 19–20). One consideration worth future consideration is whether this

839 position is still artificial, even if its position within Dissorophidae is secure. The only semi-
840 complete skull of *P. rugosa* is badly crushed. While mostly complete longitudinally, the naris is
841 not sufficiently preserved to be certain of its shape or the relationship of the elements that
842 normally frame it (e.g., lacrimal; Berman, Reisz & Fracasso, 1981). Additionally, *P. rugosa* has
843 historically been scored as lacking osteoderms, contrary to all other nominal dissorophids; the
844 condition of its spines is therefore regarded as ornamentation of the spines, rather than a separate
845 dermal ossification. Notably, however, Witzmann & Soler-Gijón (2010), the only published
846 histological study of these spines, termed them as osteoderms. Dilkes' (2020) analysis of his
847 matrix with and without osteoderm characters did result in a slight change in topology, so the
848 identity of the spinal ornamentation has clear phylogenetic implications as well. Without these
849 characters, *P. rugosa* formed a polytomy with *Aspidosaurus binasser* and a branch for all other
850 dissorophids, rather than diverging before *A. binasser* (Dilkes, 2020). It is possible that the
851 combination of absent osteoderms and missing data may produce an artificially early-diverging
852 position, as the taxon is difficult to differentiate from trematopids in scoring (e.g., the nares
853 cannot be characterized) and it lacks certain dissorophid apomorphies (e.g., osteoderms). The
854 Early Permian age of the material from which most scores are derived is incongruent with its
855 present early-diverging position.

856 There is usually poor resolution within Trematopidae except in analyses with restricted
857 taxon samples (Fig. 5). In this study, nominal trematopids are recovered as a clade in most
858 analyses except Analyses 1A and 2, which recovered almost no resolution anywhere (Fig. 9). A
859 restricted subset of seven trematopids in Analysis 3 did form a clade in spite of relatively little
860 resolution elsewhere (Fig. 10). The more interesting result is that a trematopid-focused sample
861 did not recover all nominal trematopids in a clade (Analyses 6 and 8; Figs. 14, 17). This pattern
862 persisted even when examining individual tree islands of Analysis 8 (Fig. 18), although as noted
863 in the Results, 18 of the 19 MPTs of Analysis 6 did recover all nominal trematopids in a clade.
864 One explanation may be that two characters were removed to avoid redundancy / parsimony-
865 uninformative characters (narial elongation, lacrimal-naris; Appendix 2). Trematopids were all
866 scored the same for both characters, and this redundancy may have overweighted certain
867 apomorphies (the lacrimal always enters an elongate naris in this clade). Another is that the net
868 addition of characters (+24 compared to Gee, 2020b), many of which are postcranial characters
869 for which most olsoniforms cannot be scored, creates sufficient uncertainty to preclude recovery
870 of all nominal taxa in a clade. The commonly recovered in-group nodes are *Acheloma cumminsi*
871 + *Phonerpeton pricei*, a longstanding relationship between two Permian taxa from Texas (Figs.
872 7–12, 14, 17, 19), and *Anconastes vesperus* + *Tambachia trogallas*, a more perplexing
873 relationship (Late Carboniferous of New Mexico and Early Permian of Germany; Figs. 10, 12B,
874 14B, 15, 17, 19–20) but one that has been recovered in most previous studies (Fig. 2).

875 The resolution of Dissorophidae is quite variable, especially with respect to historical
876 wildcard taxa or historically unsampled taxa. All nominal dissorophids form a clade only in
877 restricted taxon samples that omit wildcards like *Reiszerpeton renascentis* (e.g., Analyses 1B, 2,
878 5; Figs. 7–8, 12B) or that have a more limited outgroup sample (e.g., Analyses 7, 9; Figs. 15, 19–
879 20). Where resolution is appreciable, *Platyhystrix rugosa* and *Aspidosaurus binasser* usually
880 form successively diverging branches at the base as they do in practically all other dissorophid
881 analyses (Figs. 3–4; see Figures 12B, 15D, 19B, 19D, 20C, for topologies of this study).

882 Dissorophinae is an “all or nothing” of sorts; either it is restricted to *Dissorophus*
883 *multicinctus* (Figs. 9, 10A, 12A, 15B, 19B, 20A) or it includes this taxon, all valid species of
884 *Broiliellus*, and *Diploseira angusta* (Figs. 7, 8, 10B, 12B, 15D, 19D, 20B). The more inclusive

885 composition follows the historical characterization of Dissorophinae. This includes *B.*
886 *arroyoensis*, which has never been previously sampled because the cranial sutures are entirely
887 unknown. It is united with other nominal dissorophines here by its apomorphic ornamentation
888 and demonstrates that taxa without sutures or with a high proportion of missing data are not
889 assured to be wildcards (e.g., Kearney, 2002; Kearney & Clark, 2003; Wiens, 2003a, 2003b,
890 2005, 2006; Wilkinson, 2003; Prevosti & Chemisquy, 2010; Wiens & Morrill, 2011; Guillerme
891 & Cooper, 2016). Taxon removal exerts the strongest apparent influence on Dissorophinae;
892 analyses with progressive taxon removal often produced a more inclusive clade (e.g., Analyses 5,
893 7; Fig. 12, 15). The interrelationships of dissorophines remain poorly resolved however.

894 Cacopinae is similar to Dissorophinae in either being monotaxic (*Cacops aspidephorus*)
895 or in comprising a consistent, more exclusive clade. The more exclusive version of Cacopinae
896 almost always includes all three species of *Cacops* (Figs. 15B, 20A); only in Analysis 3 is
897 *Cacops aspidephorus* recovered as the sole cacopine (Fig. 10). Some analyses also recovered
898 *Anakamacops petrolicus*, *Kamacops acervalis*, and *Zygosaurus lucius* as cacopines (Figs. 7B,
899 8B, 12, 15D, 19D, 20C). *Conjunctio multidens* was also sometimes recovered as a cacopine
900 (Figs. 7, 8, 13B), a result sometimes previously found (Figs. 3–4). *Cacops* was usually
901 monophyletic (but see Analyses 1A and 2; Figs. 7B, 9), with *C. aspidephorus* and *Cacops*
902 *morrisi* as sister taxa and *Cacops woeberi* as the sister taxon to this pair.

903 Liu (2018) recovered the Middle Permian dissorophids *Anakamacops petrolicus*,
904 *Kamacops acervalis*, and *Zygosaurus lucius* as a clade, which he termed Kamacopini and which
905 was defined as the most inclusive clade that includes *K. acervalis* but not *Cacops woeberi*.
906 Subsequent studies have either recovered Kamacopini to the exclusion of *A. petrolicus* (Dilkes,
907 2020) or as a monotaxic clade with the nominal taxa as part of a larger polytomy (Gee et al.,
908 2021; Figs. 7–8, 10, 12, 15). Analysis 9A, with Dilkes' wildcards excluded, is the only one to
909 recover the same Kamacopini as Liu (Fig. 19). This likely results from the very poor
910 characterization of *Z. lucius*, which does not differ from *K. acervalis* in scoring except for the
911 distribution of missing data. *Anakamacops petrolicus* conversely differs from *Z. lucius* for one
912 character and from *K. acervalis* by two or three depending on which OTU of the *K. acervalis* is
913 used. *Iratusaurus vorax* and *Nooxobeia gracilis*, the other Middle Permian dissorophids, are too
914 fragmentary and lacking in apomorphies to assess whether they are kamacopins (Gubin, 1980;
915 Gee, Scott & Reisz, 2018; Fig. 6).

916 Collectively, the results reflect a few influential factors. The first is taxon sampling; it is
917 not surprising that including many poorly known taxa (Analyses 1A, 2, 3) led to very poor
918 resolution (Figs. 6, 9–10). This pattern was also apparent in my trematopid study in which
919 restricting the taxon sample to mirror that of previous studies led to the recovery of substantially
920 more resolution than when all taxa were sampled (Gee, 2020b). Nonetheless, taxa like *Broiliellus*
921 *arroyoensis* demonstrate that taxon sampling criteria must be nuanced and not rely on blanket
922 characterizations such as “no cranial sutures known,” as a handful of qualitative features may
923 still be highly informative. However, the presence of tubercular ornamentation in *Iratusaurus*
924 *vorax* and *Nooxobeia gracilis*, a cacopine apomorphy, was insufficient to draw them into
925 Cacopinae in any analysis. The absence of this ornamentation in *Cacops woeberi*, which still
926 clusters with the other species of *Cacops*, could be a confound. However, *I. vorax* and *N. gracilis*
927 are also some of the most fragmentary taxa (scored for <20% of characters; Table 1). The status
928 of osteoderms also predictably exerts influence (as shown also by Dilkes, 2020); as discussed
929 above, nominal dissorophids that are sometimes recovered outside of Dissorophidae or at the
930 base are often those for which the postcranial skeleton is not sufficient to score the

931 presence/absence (e.g., *Reiszerpeton renascentis*) or where osteoderms are scored as being
932 absent (e.g., *Platyhystrix rugosa*).

933 To summate, in spite of a few broadly conserved aspects (e.g., composition of
934 Dissorophinae), there remain many outstanding questions and uncertainties, even if the
935 discussion is restricted to relatively resolved, restricted-taxon-sample analyses (Figs. 12–20).
936 Therefore, there is very little consensus in dissorophid intrarelationships, and as Dilkes (2020)
937 remarked, it is not merely surprising but rather concerning that there is so much disparity
938 between previous studies that used a nearly identical character matrix. This questions whether
939 any study, including this one, has produced a reasonably robust topology that is acceptable for
940 use in other studies or for qualitative discussion of olsoniform evolution. The following sections
941 present a more detailed discussion of my findings regarding potential methodological
942 explanators for the persistent disparity, some of which are rather concerning and some of which
943 may invalidate previous analyses.

944

945 **The search for a consensus.** Almost every living worker who has specialized in terrestrial
946 dissorophoids in the last four decades (J. Anderson; D. Berman; D. Dilkes; N. Fröbisch; B. Gee;
947 R. Holmes; A. Huttenlocker; H. Maddin; A.R. Milner; J. Pardo; R. Reisz; R. Schoch) has
948 participated in dissorophid phylogenetic analysis, with only two (Fröbisch, Schoch) involved in
949 more than one analysis. However, almost every previous matrix other than the modified one used
950 in this study is a direct derivate from Schoch (2012), and almost every one of these derivates is
951 over 95% similar in character sampling, taxon sampling, and scoring to the original (Figs. 3–4).
952 Two of the three first-order derivates only added or subtracted taxa (Maddin et al., 2013; Schoch
953 & Sues, 2013). The majority of cumulative changes present up through the derivate by Dilkes is
954 the result of Dilkes adding seven new characters (cumulative changes summarized in Appendix
955 8). Gee et al.’s (2021) matrix is the most recent derivate to be published, although it is not a
956 direct derivate, as it combined Holmes, Berman & Anderson’s (2013) derivate with the
957 amphibamiform-focused matrix of Maddin et al. (2013); accounting for elimination of
958 redundancies, only 33 characters are carried over from the former. Fröbisch & Reisz (2012) used
959 a slightly modified version of Polley & Reisz’s (2011) trematopid matrix, although it only
960 sampled five dissorophids. However, because all 53 characters of Polley & Reisz were
961 incorporated into Schoch (2012), Fröbisch & Reisz’s matrix is in fact very similar in character
962 sampling, even if it is not derived from Schoch’s. Schoch did not expressly state whether he
963 rescored characters but the absence of any polymorphisms in his matrix in comparison to nine in
964 Polley & Reisz’s matrix suggests as much. The Gee (2020b) trematopid matrix and the derivate
965 used here are also in part derived from Polley & Reisz, so the general character sampling thus
966 converges on the sampling of Schoch (2012). However, character construction differs for many
967 (Appendix 1), and scoring was expressly novel for all characters. There are also notable
968 departures from the sampling of previous analyses to avoid redundant or dependent characters
969 (Appendices 1–2).

970 In detailing this history, I want to emphasize that I am not advocating against the standard
971 practice of propagating an existing matrix; there are many advantages to doing so. However,
972 implicit in the propagation of a consensus matrix is the assumption that the underlying
973 framework is largely sound. While there may be minor differences in scoring philosophy, such as
974 whether reconstructions can be used, the matrix should obviously be as error-free as possible
975 while maximizing the available data. If it is not, then widespread adoption of this matrix will
976 result in widespread propagation of errors. There are therefore also inherent disadvantages to

977 propagating matrices when their quality is suspect. This underscores the emphasis on quality of
978 the matrix, rather than quantity of characters, duration or frequency of usage, or other
979 quantitative metrics, that have been raised by numerous recent studies (e.g., Brazeau, 2011;
980 Simões et al., 2017; Laurin & Piñeiro, 2018). However, wide discrepancies in practice clearly
981 persist within the field. As reflected in Analysis 7 (Fig. 15, Appendices 5–6), I have concerns
982 about the accuracy of the widely propagated Schoch matrix. These findings therefore cast doubt
983 on previous studies that used this matrix, which I outline in greater detail below.
984

985 *Scoring issues.* Examination of previous matrices for possible explanators of topological
986 disparity led me to conduct a thorough survey of Dilkes' version of the Schoch (2012) matrix (as
987 the most recent direct derivate). I identified a large number of scores for features that are simply
988 unknown in the given taxon (73 in total; Appendix 5). I also identified a smaller number of
989 unscored cells that can definitively be scored from the literature (35 total) and scores that were
990 scored for the wrong character state (35 total). I want to emphasize that the changes that I made
991 are corrections to unequivocal errors in the sense that standard practices do not permit scoring of
992 features that are unknown. I also accounted for the datedness of some literature with respect to
993 previously unscored cells that were newly scored. While some typographical errors are to be
994 expected in any matrix, the number of changed scores (143) and the pattern of these scores either
995 suggest an intentionally non-standard coding philosophy that permits scoring of unknown
996 features or an unusually large number of typographical errors. Most of these errors stem from
997 either the original matrix or the first direct derivative (Holmes, Berman & Anderson, 2013), so
998 they have been propagated through several analyses. Below I outline a few examples in detail.
999

1000 *Cacops* provides the clearest example. For *Cacops woehri*, I identified 14 errors; in a
1001 matrix of 70–77 characters, this is a substantial amount (note that the particular scores of this
1002 taxon that have been propagated were introduced by Holmes, Berman & Anderson, 2013). Ten
1003 of these relate to features that are simply not preserved (exoccipital, stapes, quadrate, postcrania).
1004 Having worked extensively on Richards Spur, from which *C. woehri* is known, I am not aware of
1005 any unpublished material of *C. woehri* that can reconcile these errors (but see Gee, Bevitt &
1006 Reisz, 2019:fig. 9.7-9.14 for an isolated jaw articulation that was assigned to Dissorophidae cf.
1007 *C. woehri*). At least the postcranial scores could not have been taken from the original scoring by
1008 Fröbisch & Reisz (2012) because that matrix has zero postcranial characters. One of the 14 errors
1009 is a score for the wrong state (tubercular ornamentation present); *C. woehri* lacks the tubercular
1010 ornamentation found in other species of *Cacops* (Fröbisch & Reisz, 2012; Fröbisch, Brar &
1011 Reisz, 2015; Gee, Bevitt & Reisz, 2019). Notably, of the 14 erroneous scores, 13 were scored
1012 identically to both of the other species of *Cacops*; the last score was only the same as *Cacops*
1013 *morrisi* (*Cacops aspidephorus* was unscored). In fact, there were no characters for which the
1014 three species differed other than in the distribution of missing data. This false homogeneity
1015 certainly accounts for the unresolved relationships of the three species in all previous analyses
1016 (Figs. 3–4), despite the many features that separate them taxonomically (Fröbisch & Reisz, 2012;
1017 Gee & Reisz, 2018a) and the recent questioning of whether *C. woehri* is even properly placed in
1018 the genus (Anderson, Scott & Reisz, 2020). The most reasonable conclusion is that scores for *C.*
1019 *woehri* were “assumed” on the basis of the phenetic placement of the taxon within *Cacops*. This
1020 approach is problematic since a phylogenetic analysis should inform taxonomy, rather than vice
1021 versa. The notable cranial differences of *C. woehri* from the other two species suggest that it may
have also differed in other skeletal attributes that are not presently known for it.

1022 *Cacops aspidephorus* also corroborates the hypothesis that scores have been “assumed.”
1023 The taxon is famously known for the total absence of any knowledge of the cranial sutures
1024 (inclusive of the palate and braincase) due to poor preservation. Only in the past year has this gap
1025 been addressed (Anderson, Scott & Reisz, 2020). However, in Schoch’s (2012) original matrix,
1026 there were no fewer than 15 scores for which the sutures would have to be known in order to
1027 score the taxon. These scores were then propagated without modification by all derivates.
1028 Schoch did not personally examine the material of this taxon (as indicated in his table 1), and it
1029 is telling that while he reconstructed the cranial anatomy of almost every dissorophid with their
1030 respective known sutures, that of *C. aspidephorus* is only a silhouette (see figures 6 and 7
1031 therein). While Anderson, Scott & Reisz’s (2020) description corroborated many of these
1032 scorings, at least five original scores were shown to be errors (e.g., parasphenoid dentition,
1033 exoccipital-postparietal contact). One originally unscored character (postorbital-supratemporal)
1034 should have been scoreable if other cranial suture characters could have been scored. These
1035 erroneous scores are identical to those of *C. morrissi* and would have to have been “assumed”
1036 from this taxon (*Cacops woehri* was not sampled in the original matrix). This is further
1037 corroborated by the observation that *Cacops morrissi* does not show a pattern of erroneous scores,
1038 probably because it was the exemplar from which scores for the two other species were
1039 “assumed”; only one score is clearly erroneous: the iliac blade. No pelvis is known for the taxon,
1040 but this could have been “assumed” either based on the fact that this feature is an olsoniform
1041 apomorphy or based on Williston’s description of *C. aspidephorus*.

1042 As discussed in the Methods and Appendix 3, the previous scoring for *Kamacops*
1043 *acervalis* cannot be fully corroborated by the literature. This taxon’s cranial sutures have never
1044 been described or figured, but it is scored for many characters that require these sutures to be
1045 known and is specifically scored almost identically to the three species of *Cacops*. The only
1046 reconstruction of the skull roof of *K. acervalis* in dorsal view (Schoch, 2012:fig. 6) lacks sutures,
1047 like *Cacops aspidephorus*. If sutural characters could be scored for these taxa, it is unclear why
1048 they were not reconstructed with them. The scoring of my matrix is based on my assumption that
1049 the sutures are not actually known since data to support their characterization have never been
1050 published. *Broiliellus*, with four commonly sampled species, does not clearly show evidence of
1051 widespread “assumed” scores. *Broiliellus arroyoensis*, for which sutures are also unknown, has
1052 never been previously sampled or reconstructed, and it is almost never discussed in the literature.
1053 *Broiliellus olsoni* does have a few erroneous scores for elements that are not preserved, but no
1054 pattern is apparent for other species. *Broiliellus brevis* and *Broiliellus texensis* are difficult to
1055 assess from the literature given its datedness (Williston, 1914; Carroll, 1964a; DeMar, 1966b).
1056 These descriptions are not well-suited for scoring due to their brevity and limited figures. Schoch
1057 indicated that he personally examined material of both taxa, and therefore, it is possible that he
1058 was able to score features from personal examination that are not mentioned in the literature,
1059 contrary to *C. aspidephorus*.

1060 Some of the errors that I identified are related to how characters are defined, something
1061 that Dilkes (2020:20–22) discussed at length. For example, the position of the jaw articulation is
1062 referenced by the position relative to the exoccipital facets. However, the character has been
1063 scored for taxa in which the jaw articulation or the exoccipitals are unknown (e.g., *Cacops*
1064 *woehri*, *Scapanops neglectus*, *Tambachia trogallas*). It was probably assumed that the occiput
1065 was vertical (like in most temnospondyls), from which it can be assumed that the occipital
1066 margin of the postparietals is an acceptable proxy for the exoccipitals’ posterior extent. If this
1067 series of working assumption was indeed used, the character should have been redefined (as I did

1068 here; Appendix 1). Otherwise, it could lead to inconsistent scoring where one worker operates
1069 with this unstated assumption and thus scores the character, but another worker operates strictly
1070 based on the character as defined and thus leaves it unscored. The other set of characters for
1071 which this applies are those related to the relative length or height of different regions of the
1072 skull (e.g., suborbital bar height, distance between the squamosal embayment and orbit). These
1073 are all defined by relation to the midline skull length, yet a number of taxa whose skulls are
1074 incomplete posteriorly were scored for these characters (e.g., *Broiliellus olsoni*, *Reiszterpeton*
1075 *renascentis*). These characters could be redefined based on a proxy to facilitate scoring of
1076 incomplete specimens (something that Liu, 2018, attempted, but that Dilkes, 2020, reversed). As
1077 defined, these characters cannot be scored from such specimens.

1078 Certain characters also seem more susceptible to either “assumed” scoring, or in some
1079 instances, a peculiar lack of scoring. The best example of the latter is how exoccipital-tabular
1080 contact (only found in *Sclerocephalus* in the matrix) is often scored, but exoccipital-postparietal
1081 contact is not. This is in spite of frequent explicit description and figuring of the exoccipital-
1082 postparietal contact and the lack of an exoccipital-tabular contact. Some scores here also appear
1083 to have been “assumed” based on a taxon’s broader affinity (e.g., to Dissorophidae). For
1084 example, a prefrontal-postfrontal contact is not found in any dissorophid and only in the earliest-
1085 appearing trematopids (not sampled in Schoch’s matrix or any derivate). *Anconastes vesperus* is
1086 scored as lacking this contact, yet no specimen preserves the medial margins of the orbit
1087 (Berman, Reisz & Eberth, 1987). The dorsal quadrate process (a xerodrome feature as scored) is
1088 another example; several taxa without complete (or any) quadrates are scored as having this
1089 feature (e.g., *Cacops woehri*).

1090 It is worth pointing out that many of the original erroneous scores, whether a typographic
1091 error, an assumption, or an inference, were not necessarily inaccurate. It is reasonable to predict,
1092 for example, that *Cacops morrisi* would have an expanded iliac blade, an olsoniform
1093 synapomorphy that is positively identified in *Cacops aspidephorus* (Williston, 1910). However,
1094 this feature has yet to be positively identified in *Cacops morrisi* and should not be scored as
1095 such. It is simply unknown. The correction of five previously inferred scores of *C. aspidephorus*
1096 following the study of Anderson, Scott & Reisz (2020) underscores the point that even scores
1097 that are inferred through close phenetic relatedness may prove to be wrong when data are
1098 produced to assess them. A phylogenetic analysis is a test of hypotheses that goes beyond the
1099 historical phenetic frameworks that were not only subject to, but predicated on, each worker’s
1100 personal conceptions of relatedness. While a phylogenetic analysis may be a test of inferences, it
1101 is not a test that can be based on inferences – it is a test only properly based on strict
1102 observations (i.e. data). I am under no illusions that phylogenetic analyses are unbiased or
1103 completely objective – taxon sampling and character construction are just two ways in which
1104 workers’ biases can be imposed upon the analysis. But there is an implicit aim for minimizing
1105 biases when conducting these analyses, and scores that are simply inferred based on phenetic
1106 taxonomic placement or previous phylogenetic placement are the opposite.

1107 Correcting for these inferences or assumptions, as I have done, has predictably reduced
1108 resolution and nodal support (Figs. 15, 20). While loss of resolution and nodal support is an
1109 unfavorable outcome, an analysis based only on what is properly observable is the only truly
1110 defensible topology. Relationships recovered from inferred “observations” are spurious. A lack
1111 of resolution does not necessarily indicate that the matrix is compromised or poorly constructed,
1112 and workers should not tinker with the matrix in a way that produces resolution at the cost of
1113 data integrity. The ultimate goal is to recover correct clades while avoiding incorrect ones

1114 (Rineau, Zaragüeta i Bagils & Laurin, 2018), not to maximize resolution at the expense of
1115 accuracy. The sampled characters could capture all of the historical characters that were
1116 incorporated into phenetic taxonomy yet be insufficient to recover statistical support for
1117 relationships. Such a possibility is inherently tied to the data available for each taxon and thereby
1118 to the incomplete fossil record.

1119
1120 *Slippery slope.* The concerns I outlined in the matrix of Schoch (2012) and its derivates are not
1121 exclusive to this “family” of matrices. The 70 characters from Schoch’s (2012) matrix were
1122 carried over to Schoch’s (2018a) matrix, which broadly samples dissorophoids (Fig. 2).
1123 Presumably, the scores for the 10 taxa that are sampled in both matrices were also propagated;
1124 this appears to be the case based on a random assessment of cells that I corrected (i.e. the same
1125 erroneous scores are found in both matrices). The taxon sample of Schoch’s (2018a) matrix was
1126 skewed towards amphibamiforms (only eight olsoniforms are sampled), but this matrix has been
1127 expanded in four studies (Atkins, Reisz & Maddin, 2019; Gee & Reisz, 2019; Schoch, Henrici &
1128 Hook, 2020; Schoch & Milner, 2021), three of which added olsoniforms. The same matrix with a
1129 different taxon sample was also used by Schoch & Witzmann (2018) in their study of the
1130 micromelerpetid *Limnogyrinus*; this study preceded the online publication of Schoch (2018a) by
1131 a few weeks.

1132 The densest taxon sampling of any previous study with respect to olsoniforms is that of
1133 Atkins, Reisz & Maddin (17 OTUs), but as far as I can discern, the scores for the first 70
1134 characters for almost all newly added olsoniforms (*Anconastes*, *Aspidosaurus*, *Brevidorsum*,
1135 *Kamacops*, *Platyhystrix*, and the “Rio Arriba” and “Admiral” taxa) are taken directly from
1136 Schoch (2012). This would explain why the referred specimen of *Conjunctio multidens* is still
1137 treated as the “Rio Arriba Taxon,” separate from the holotype, and why *Scapanops neglectus* is
1138 still termed the “Admiral Taxon”; both terms went into disuse following Schoch & Sues (2013).
1139 Therefore, the same erroneous scores present in Schoch (2012) would also be present in Atkins,
1140 Reisz & Maddin’s matrix, which I cursorily confirmed based on a random examination of
1141 equivalent cells that I had corrected in Dilkes’ (2020) matrix. Workers seeking to expand any
1142 version of Schoch’s (2018a) matrix should carefully examine the matrix to assess the fidelity of
1143 scores in order to avoid the same issue of propagation of dubious scores. I want to emphasize
1144 that my discussion of previous matrices’ scores is not meant as overt criticism of other workers
1145 for the sake of being critical (it was not even part of my original study design), nor is it under
1146 any assumption that I or any other worker produce entirely infallible work. It is instead meant to
1147 highlight that historic practices have produced a topology that is not reproducible under best
1148 practices (e.g., scoring only based on observed features), with the topology resulting from
1149 correction of errors being noticeably different (Figs. 15, 20).

1150
1151 *The treatment of polymorphisms.* The treatment of polymorphisms has been a contentious topic
1152 in phylogenetics for some time (e.g., Wiens, 1999; Watanabe, 2015). Polymorphisms are
1153 generally rare in temnospondyl matrices. It was not until Liu (2018) that polymorphisms were
1154 introduced into a dissorophid matrix, and it was only for *Conjunctio multidens*. Dilkes (2020)
1155 subsequently introduced one polymorphic scoring for *Dissorophus multicinctus*. While some of
1156 this owes to the singleton representation of many taxa, there are also examples of
1157 incontrovertible biological variation within a single individual (e.g., postorbital-supratemporal
1158 contact in *Phonerpeton pricei*; Dilkes, 1990) that were not scored. This specific example is odd
1159 because Schoch (2012) explicitly called out this polymorphism (p. 128 therein) yet did not score

1160 it as such. A second example is his mention of the polymorphic state of the intertemporal in
1161 *Sclerocephalus*, another sampled taxon for which this polymorphism is unscored (p. 128 as
1162 well). In contrast to this propagated matrix, polymorphisms are widespread in my matrix; at the
1163 species level, there are 48 polymorphisms. Such disparity is not related to my increased sampling
1164 of postcranial characters; only two polymorphisms are for such characters.

1165 It has historically been assumed that polymorphic characters are less reliable for
1166 inference (e.g., Wiens, 1995). Indeed, comparisons of matrices with polymorphisms with the
1167 same matrices without polymorphisms recover distinctly different topologies (e.g., Trinajstic &
1168 Dennis-Bryan, 2009; Watanabe, 2015; Garbin, Ascarrunz & Joyce, 2018). Nonetheless, not
1169 representing intraspecific variation in some form is an oversimplification of the data, and proper
1170 representation is essential, even if it comes at the expense of topological resolution. Furthermore,
1171 analysis of both simulated and empirical datasets has demonstrated that failing to score
1172 polymorphisms may in fact decrease accuracy (e.g., Wiens & Servedio, 1997, 1998; Wiens,
1173 1998; Trinajstic & Dennis-Bryan, 2009). Therefore, there is no strong *a priori* standing for
1174 intentionally omitting polymorphisms. Numerous strategies for approaching polymorphisms
1175 have been discussed (e.g., Kornet & Turner, 1999; Wiens, 1999), but many are not well-suited
1176 for paleontological datasets. For example, scoring based on the frequency with which a certain
1177 state appears will require an appreciable sample size that is rarely met for extinct tetrapods. I
1178 believe that no olsoniform is known from such a sample size. The use of an alternative character
1179 state for polymorphisms (e.g., ‘scaled,’ ‘unscaled,’ and ‘unordered’ scoring; Campbell & Frost,
1180 1993; Mabee & Humphries, 1993; Wiens, 1995, 1999) is one option that does not rely on a large
1181 sample. However, no previous olsoniform study has utilized this approach (the use of ‘a’ for
1182 polymorphisms by Polley & Reisz, 2011, seems to be only for visual alignment of the typeset
1183 matrix’s columns). This approach has also drawn criticism (e.g., see discussion by Kornet &
1184 Turner, 1999) because this polymorphic character state is not mutually exclusive with other
1185 states, as is the convention for character construction (e.g., Sereno, 2007). There is no consensus
1186 among any subset of workers as to the treatment of polymorphisms, but it should be emphasized
1187 that whatever approach is being employed should be explicitly stated, and ignoring
1188 polymorphisms, as seems evident from many previous studies, should be discouraged.

1189 *Conjunctio multidens* merits discussion because it is scored for the most polymorphisms
1190 in derivates of the Schoch (2012) matrix. The holotype and the referred specimen long referred
1191 to as the Rio Arriba Taxon (UCMP 40103) were historically separate OTUs. They are
1192 superficially somewhat different (e.g., Schoch & Sues, 2013:fig. 2), which may reflect that the
1193 holotype is nearly twice as large. Schoch & Sues (2013) did not report their new composite OTU
1194 of these two specimens, so the composite OTU currently in use is that of Liu (2018). There are
1195 five polymorphisms for *C. multidens*: interorbital width (23); tabular process (46); preorbital-
1196 postorbital ratio (52); tabular horn (64); and pointed snout (67). Two of these characters (23, 52)
1197 are related to skull proportions, which conceivably could be ontogeny-related. Another two (46,
1198 64) relate to the same part of the tabular, and the first of these has been explicitly stated to be
1199 ontogeny-related in some dissorophids like *Cacops* (e.g., Reisz, Anderson & Schoch, 2009). Any
1200 workers continuing to use this matrix should consider rescore these with an eye towards
1201 ontogeny, as I did here, since polymorphisms are not scored for taxa represented by a much
1202 narrower size range of specimens that capture anatomical variation (e.g., the tabular horn of
1203 *Cacops morrisi*).

1204 The last character (pointed snout) appears to be a typographic error introduced by
1205 Holmes, Berman & Anderson (2013). Per Schoch (2012), a pointed (not parabolic or square-

1206 shaped) snout is only found in *Broiliellus*, *Dissorophus*, and *Scapanops* (“Admiral Taxon”); he
1207 scored it as absent in the holotype and the referred specimen of *Conjunctio multidens*. However,
1208 it is scored as present in the holotype of *C. multidens* by Holmes, Berman & Anderson (2013).
1209 This was only identified by examining their matrix; they did not list it in the text despite listing
1210 other scoring changes, further evidence that it is a typographic error. The final line of evidence is
1211 that the “Admiral Taxon” was scored as lacking a pointed snout in this derivate, contrary to
1212 Schoch. The holotypes of *C. multidens* and *Scapanops neglectus* were scored as successive lines
1213 and could have been misread (Schoch’s matrix was available only as scoring strings in a typeset
1214 figure). I hypothesized that this error could account for the shift of *C. multidens* from the base of
1215 Cacopinae in Schoch & Sues (2013), who presumably scored the composite as lacking this
1216 feature (as in Schoch, 2018a), to the base of Dissorophinae in Liu (2018), who scored *C.*
1217 *multidens* as polymorphic. Since this was a simple test, I corrected the scoring of *C. multidens*
1218 from ‘0&1’ to ‘0’ and that of *Scapanops neglectus* from ‘0’ to ‘1’ and reanalyzed Liu’s matrix.
1219 The MPT length increased by one step, but the same number of MPTs were recovered (six), and
1220 the strict consensus topology remained unchanged, indicating that this one propagated error is
1221 not the sole explanator of Liu’s topology.
1222

1223 *Software selection.* One of the relatively understudied factors that may produce conflicting
1224 topologies between studies is the choice of software. While it is well-known that different
1225 programs often produce different topologies, the actual differences are rarely examined. As noted
1226 in the Methods, comparisons of previous studies suggest that the choice of PAUP* versus TNT is
1227 exerting a meaningful influence on dissorophid topology. Analysis 8 (trematopid-focused; Fig.
1228 17) did not recover any differences in the strict consensus. Conversely, Analysis 9A (original
1229 matrix of Dilkes, 2020; Fig. 19) identified a few topological differences between strict consensus
1230 trees of the restricted taxon sample. TNT recovered more resolution in the parallel of Dilkes’
1231 (2020) original matrix, but all newly recovered nodes are compatible with the equivalent
1232 polytomies of the original study (e.g., the resolution of the trichotomy of *Broiliellus brevis*,
1233 *Broiliellus olsoni*, and *Broiliellus texensis*; Fig. 19D).

1234 Because some of the inherent differences between programs (e.g., default branch
1235 collapsing rule, rounding rule for nodal frequency) do not correlate with biological principles
1236 that would clearly support using one parameter over another (compared to a parameter like
1237 character ordering), the topology of one program is not more “biologically accurate” or an
1238 “overestimate.” These specific programs have purportedly recovered different topologies for the
1239 same matrix in other studies (e.g., Schoch, 2013, claimed to have recovered less resolution using
1240 TNT), but Marjanović & Laurin (2019:4) have addressed many of these findings and note that
1241 they were in fact the result of errors or a non-equivalent search between programs. At least some
1242 of these likely relate to poorly documented nuances of various programs (e.g., the need to run a
1243 second round of TBR branch-swapping from a stored set of MPTs in TNT in order to obtain all
1244 MPTs) or to different heuristic algorithms for relatively large datasets (e.g., the New Technology
1245 Search in TNT and the parsimony ratchet [PAUPRat] that is used in tandem with PAUP*). For
1246 example, neglecting to run a second round of branch-swapping in TNT could produce more
1247 resolution if the first set of MPTs (suboptimal) was only a small subset of the total MPTs. Less-
1248 than-best practices, such as running a heuristic search with a relatively low number of replicates
1249 (either to identify MPTs or for bootstrapping), could also explain the recovery of an incomplete
1250 set of MPTs or suboptimal trees.

1251 Other studies not addressed by Marjanović & Laurin (2019) have reported different
1252 topologies recovered by heuristic TNT and PAUP* (e.g., Kurochkin et al., 2009; Han et al.,
1253 2016; Audo, Barriel & Charbonnier, 2021), but assessing whether these too might have failed to
1254 obtain all MPTs is beyond the scope of this study. A recent comparison of performance of
1255 different parsimony programs on phylogenomic data by Goloboff, Catalano & Torres (2021)
1256 noted that PAUP* recovered optimal trees in all datasets but one compared to TNT. Other
1257 paleontological studies have recovered the same number and length of MPTs between programs,
1258 both with large numbers of MPTs (e.g., Spaulding, O'Leary & Gatesy, 2009; Ford & Benson,
1259 2020) and with small numbers of MPTs (e.g., Davesne et al., 2016; Villalobos-Segura,
1260 Underwood & Ward, 2021). Most studies do not report the majority of employed parameters, so
1261 while it can be reasonably assumed that most studies use the default settings (with various
1262 differences between TNT and PAUP*, e.g., branch-collapsing rule, TBR reconnection limit), this
1263 is not actually known. These factors also should not result in different results for exact searches,
1264 regardless of whether they in fact influence heuristic ones, but many analyses also have taxon
1265 samples that exceed the typical computational threshold for exact searches. In this case, it may
1266 be that the algorithms for such searches are not in fact the same ('branch-and-bound' in PAUP*
1267 versus 'implicit enumeration' in TNT). Broadly speaking, implicit enumeration is usually
1268 considered to be a specific form of a branch-and-bound algorithm for programming problems
1269 with variables of a "0-1" nature (e.g., Balas, 1965; Geoffrion, 1969; Davis, Kendrick &
1270 Weitzman, 1971; Breu & Burdet, 1974). Further exploration of possible differences between
1271 exact search algorithms in these programs is beyond the scope of this study but should be a focus
1272 of future studies.

1273 Given that the explanators for differences between programs are not fully documented, it
1274 would be preferable if workers would use the same program as the previous iteration of the same
1275 foundational matrix to be properly comparative or to restrict any comparisons made with
1276 analyses that used a different program. It would also be beneficial if workers would provide the
1277 complete set of MPTs in supporting information (as I do here) rather than merely depictions of
1278 different consensus trees. This would have the advantage of allowing workers to compute
1279 additional consensus topologies not presented in the paper and is a key step towards
1280 reproducibility.

1281
1282 *Support metrics.* In theory, support metrics could be one means of comparing disparate
1283 topologies of the same matrix that were recovered from different programs. In Analysis 9 (Fig.
1284 19D), all of the nodes that were recovered in TNT but not in PAUP* had Bremer support of 1
1285 and bootstrap support below 10%. Unfortunately, reporting of support metrics for dissorophid
1286 studies is rather uneven (Table 3), which prevents a full comparison of previous studies. Holmes,
1287 Berman & Anderson (2013) and Schoch & Sues (2013) did not report any support metric.
1288 Maddin et al. (2013) reported bootstrap values, whereas Liu (2018) reported Bremer values.
1289 Schoch (2012) and Dilkes (2020) reported both metrics. There are thus two issues: (1) it is not
1290 possible to directly compare a node's Bremer support in one study to the equivalent node's
1291 bootstrap support in another study; and (2) even if the same metric is reported, if the analyses
1292 were conducted in different programs, the nodes are not necessarily properly equivalent (e.g.,
1293 they may not contain the same subset of taxa). This holds especially true for heuristic searches,
1294 which may not recover all (or any) MPTs. Therefore, the only proper comparison is between
1295 Dilkes' PAUP* analysis and Schoch's PAUP* analysis (Table 3), which shows that both Bremer

1296 and bootstrap support has declined for dissorophid nodes, sometimes substantially so (e.g.,
1297 *Kamacops* + *Zygosaurus*).

1298 Reporting of at least one support metric is standard practice in contemporary
1299 phylogenetics, so in my opinion, studies without any support metrics should be regarded
1300 skeptically (Holmes, Berman & Anderson, 2013, and Schoch & Sues, 2013, in this context). As
1301 aptly put by Sanderson (1995:299), “without some assessment of reliability, a phylogeny has
1302 limited value. It may still function as an efficient summary of available information on character-
1303 state distributions among taxa [...] but it is effectively mute on the evolutionary history of those
1304 taxa”. Although expressed more in the context of standard parsimony bootstrapping, this stance
1305 is also valid for Bayesian analyses; not reporting posterior probabilities is concerning, especially
1306 because posteriors tend to overestimate support (Alfaro, Zoller & Lutzoni, 2003; Cummings et
1307 al., 2003; Douady et al., 2003; Erixon et al., 2003; Simmons, Pickett & Mia, 2004; Zander, 2004)
1308 and especially with all-clades compatible trees, which force full resolution. This is a shortcoming
1309 of the study by Atkins, Reisz, & Maddin (2019), which was the previous densest sampling of
1310 olsoniforms but which presents only the all-clades compatible tree without posterior probabilities
1311 (figures 2 and 3 therein).

1312 Aiming to achieve resolution regardless of support, or interpreting topologies without
1313 consideration of support, is problematic because it encourages tinkering with the matrix to
1314 produce either some semblance of resolution where none previously existed or to produce a
1315 topology consistent with previous analyses or with the authors’ preconceived notions. The same
1316 is true of dismissing studies that recover poor resolution or that only emphasize well-supported
1317 nodes. It is always better to conservatively derive conclusions from only well-supported nodes
1318 rather than basing them on poorly supported, possibly spurious relationships. Indeed, methods to
1319 penalize spurious relationships (e.g., Rineau, Zaragüeta i Bagils & Laurin, 2018) should be better
1320 utilized. A polytomy may be unsatisfactory and is unlikely to depict the actual evolutionary
1321 history of a clade, but it is more likely to be correct insofar as it encompasses a genuine clade.
1322 This point is salient here because nodes of the in-groups of this study’s analyses tended to be
1323 poorly supported except in relatively restricted analyses. Some of this is clearly associated with
1324 the sampling of poorly known taxa, reflected in the weakly resolved strict consensus topologies
1325 (e.g., Figs. 6, 9–10). However, it bears noting that in previous studies of both dissorophids and
1326 trematopids, most dissorophid nodes fail to meet the threshold for meaningful support for at least
1327 one metric (Tables 3–4). My identification of widespread “assumed” scores also questions the
1328 robusticity of previously recovered nodes (like the falsely homogenous *Cacops*).

1329 One other point to emphasize is that bootstrap support in any TNT analysis is surprisingly
1330 low – often below 50% – even for many nodes that have strong Bremer support, which is hardly
1331 unique to this study (see Schoch, 2013, and other studies cited below). Many of these nodes are
1332 for major clades, like Dissorophidae (Figs. 8B, 10B, 12, 15B, 15D), and some nodes are not even
1333 recovered in the bootstrap tree (< 1% of bootstrap replicates; Figs. 10, 19D). I have personally
1334 never run a PAUP* analysis in which a node recovered in the strict consensus was not recovered
1335 in the bootstrap tree, but this occurred in some analyses of the much larger dataset of Marjanović
1336 & Laurin (2019:figs. 10, 11, 14, 18, 19) and presumably could occur in other studies that recover
1337 poorly resolved strict consensus trees.

1338 Conversely, some nodes that were not recovered in the strict consensus topologies of this
1339 study were recovered in a small (< 20%) of bootstrap replicates; these tended to be historical
1340 relationships (e.g., *Acheloma cumminsi* + *Phonerpeton pricei*). This may relate to limitations of
1341 TNT, which does not allow the user to define additional parameters of the heuristic search when

1342 bootstrapping (presumably TNT uses its default heuristic search parameters: 10 replicates,
1343 holding 10 trees per replication, and with TBR), in contrast to PAUP*. The weak support of
1344 these nodes underscores the essentiality of reporting support metrics alongside the topology. A
1345 cursory survey of recent temnospondyl studies that used TNT reveals three main clusters: (1)
1346 studies that do not report any support metrics (e.g., Liu, 2016; Schoch, 2018b, 2019; Schoch &
1347 Voigt, 2019; Schoch, Henrici & Hook, 2020; Schoch, Werneburg & Voigt, 2020; Schoch &
1348 Milner, 2021); (2) studies that only report Bremer support (e.g., Marsicano et al., 2017; Schoch,
1349 2018a); and (3) studies that report the same pattern of weak bootstrap support within the in-
1350 group, even for nodes with very strong Bremer support (e.g., Eltink et al., 2016, 2017; Marzola
1351 et al., 2017; Pacheco et al., 2017; Chakravorti & Sengupta, 2018; Eltink, Schoch & Langer,
1352 2019).

1353 One source of comparatively low(er) bootstrap values could be a default setting in TNT.
1354 Bootstrapping in TNT displays frequency differences (Group present/Contradicted [GC]) by
1355 default, not absolute frequencies, following Goloboff et al.'s (2003) preference for using GC
1356 frequencies to assess support. Because TNT is only available as command-line for Mac users,
1357 that this is the default may not be readily apparent. However, informal comparisons of a few of
1358 my analyses did not recover GC frequencies that were substantially lower (> 10%) than the
1359 absolute frequencies. One example comparison is provided in Table 5 for Analysis 9A (TNT
1360 analysis of Dilkes' original matrix, without wildcards); the greatest difference between
1361 frequencies is 4%, although two nodes dropped below the 50% cutoff for meaningful support.
1362 The same pattern of generally minimal difference is noted in other paleontological studies that
1363 report both absolute and GC frequencies (e.g., Ezcurra, Scheyer & Butler, 2014; Nesbitt &
1364 Ezcurra, 2015; Schultz, Langer & Montefeltro, 2016; Marsh et al., 2019; Agnolin et al., 2020;
1365 Scheyer et al., 2020). The temnospondyl studies noted above only reported one type of bootstrap
1366 frequency and did not specify which one it was.

1367 **Phylogenetic relationships of olsoniforms.**

1368 *A defensible consensus.* The above discussion has cast substantial doubts on essentially all facets
1369 of olsoniform phylogenetics, ranging from topological differences between studies to substantial
1370 errors introduced in the character matrices to disparity between programs and in reporting of
1371 support metrics. Clearly there are many more unknowns than resolved quandaries that will
1372 require significant work to address. Given this, what can be confidently concluded regarding the
1373 phylogenetic relationships of Olsoniformes?

1374 The monophyly of Olsoniformes, Trematopidae, and Dissorophidae is universally
1375 recovered and well-supported. The only previous study with appreciable olsoniform sampling
1376 that did not recover Olsoniformes was Fröbisch & Reisz (2012); the dissorophid sample (five
1377 species) is instead more closely related to the terrestrial amphibamiforms (historical
1378 'amphibamids'). Limited sampling may also explain why Olsoniformes was not recovered in
1379 Marjanović & Laurin's (2019) analysis of early tetrapods, which only sampled five taxa
1380 (*Acheloma cumminsi*, *Broiliellus brevis*, *Ecolsonia cutlerensis*, *Phonerpeton pricei*, and a
1381 composite of *Mattauschia laticeps* and *Mordex calliprepes* as "Mordex laticeps"). A lack of
1382 monophyly was consistent throughout analyses of the original matrix of Ruta & Coates (2007) to
1383 the unaltered reanalysis of this matrix to various other derivates with constraints, updated scores,
1384 and the addition of "M. laticeps" (not in the original matrix).

1385 The relationships of trematopids remain poorly resolved regardless of the improved
1386 resolution in the new analyses (Figs. 14, 17–18). The only node that is almost always recovered

1388 and with good Bremer and bootstrap support is *Acheloma* + *Phonerpeton* (usually *A. cumminsii*
1389 and *P. pricei*). The pairing of *Anconastes vesperus* and *Tambachia trogallas* is also recovered in
1390 most studies, both trematopid-focused (Figs. 5, 14, 17) and non-trematopid-focused (Figs. 10,
1391 12B, 15, 19–20), but it generally has low Bremer and bootstrap support (Table 4). Relationships
1392 of other taxa seem to be highly susceptible to sampling of other trematopids, as I previously
1393 noted (Gee, 2020b) and as seen in comparing different islands recovered in Analysis 8 (Fig. 18).
1394 In analyses that recovered appreciable resolution, *Ecolsonia cutlerensis* remains a trematopid
1395 regardless of whether the sampling focuses on dissorophids, on trematopids, or on olsoniforms in
1396 general (Figs. 10, 12–16, 19–20). The main exception is Analysis 8 (Fig. 17), in which one MPT
1397 recovered the nominal trematopids as a grade (Fig. 18C).

1398 The classic concept of dissorophid relationships is a base of *Platyhystrix rugosa* and
1399 *Aspidosaurus binasser* and two higher nested subfamilies, Cacopinae and Dissorophinae. This is
1400 recovered in most analyses of Dilkes' (2020) matrix or the revised version (Analyses 7, 9; Figs.
1401 15, 19–20) here, as well as in the mirrored analysis with his taxon sample and my matrix
1402 (Analysis 5; Fig. 12B). However, both the post-*Platyhystrix* and the post-*Aspidosaurus* nodes are
1403 weakly supported (Bremer decay index never higher than 2; bootstrap frequency never higher
1404 than 56%). As mentioned above, although *P. rugosa* is usually recovered as diverging first, the
1405 weak nodal support for all post-*Platyhystrix* dissorophids may be linked to the interpretation of
1406 osteoderms (or lack thereof) in *P. rugosa* (see also Dilkes, 2020:fig. 12B). Cacopinae consists of
1407 at least *Cacops* and usually the three sampled middle Permian dissorophids (*Anakamacops*,
1408 *Kamacops*, *Zygosaurus*). However, the intrarelationships remain poorly resolved (e.g., Liu,
1409 2018; Dilkes, 2020; Figs. 4, 15, 19–20), and the erroneous scorings found in other matrices are
1410 not the only confounding factor; the extremely fragmentary nature of *Zygosaurus* (historically
1411 scored the same as *Kamacops* for all overlapping characters) and the loss of its holotype are
1412 probably the more pressing matter. The closer relationship of *Cacops morrisi* to *Cacops*
1413 *aspidephorus* than to *Cacops woehri* that I recovered for the first time is in agreement with
1414 qualitative comparisons and diagnoses of these species. The composition of Kamacopini remains
1415 unresolved (Figs. 4, 15, 19–20). Dissorophinae typically includes at least *Broiliellus*, *Diploseira*,
1416 and *Dissorophus* (Figs. 3–4, 7–8, 10B, 12B, 15D, 19D, 20C). However, the intrarelationships of
1417 these taxa remain poorly resolved; there are either large polytomies or very poorly supported
1418 resolution. The placement of *Brevidorsum profundum*, *Conjunctio multidens*, *Scapanops*
1419 *neglectus*, and *Reiszterpeton renascens* is hardly resolved, and they should only be considered
1420 as unplaced dissorophids (contra Schoch & Milner, 2014, who consider all four as cacopines).
1421

1422 **A review of the taxonomic composition of Dissorophidae.** This section discusses the state of
1423 affairs with an eye towards future work. Having previously discussed the state and prospects of
1424 trematopid research (Gee, 2020b; see also, Milner, 2018) I now focus on dissorophids,
1425 summarizing the present state of knowledge for the four subfamilies (Aspidosaurinae,
1426 Cacopinae, Dissorophinae, and Platyhystricinae) and highlighting future areas in need of redress
1427 that will hopefully help to refine phylogenetic analyses.
1428

1429 *The status of Cacops.* Currently, there is a consensus that there are three nominal species of
1430 *Cacops*: *C. aspidephorus* (type species), *C. morrisi*, and *C. woehri* (Fig. 21). For over a century,
1431 the cranial morphology of *C. aspidephorus* was largely unknown, in stark contrast to the recently
1432 discovered material of *C. morrisi* and *C. woehri* from Richards Spur (Reisz, Schoch & Anderson,
1433 2009; Fröbisch & Reisz, 2012; Fröbisch, Brar & Reisz, 2015; Gee & Reisz, 2018a; Gee, Bevitt

1434 & Reisz, 2019). Some previous analyses have surprisingly failed to recover a monophyletic
1435 *Cacops*, and all others could not resolve the interrelationships of the three species (Fig. 21). In
1436 fact, Dilkes (2020) is the only study to recover a monophyletic *Cacops* when all three species
1437 were sampled (Fig. 21J); while bootstrap support was strong (> 70%), Bremer support was not
1438 (1).

1439 The historic results are surprising given the stark dissimilarity of *Cacops woehri* to the
1440 other two species. Anderson, Scott & Reisz (2020) questioned whether *C. woehri* is properly
1441 placed in the genus, a suspicion that I agree with. My matrix is the first to resolve the
1442 interrelationships of the three species, with *C. woehri* as the sister taxon to the pair of *Cacops*
1443 *aspidephorus* and *Cacops morrissi* (Figs. 7–11), although this relationship is also recovered with
1444 the updated version of Dilkes' matrix (Fig. 14), which substantially alters scores of this genus in
1445 particular. This topology (nor any broadly speaking) cannot differentiate between competing
1446 concepts of the genus that seek to ensure monophyly, one in which *C. woehri* is placed in
1447 *Cacops* and one in which it is placed in a different genus that is closely related to *Cacops*. The
1448 lack of postcrania hinders this discussion but also places an emphasis on the revision of *Parioxys*
1449 *ferricolus*, which Schoch & Milner (2014) note is similar to *Cacops*. The few photographs and
1450 early descriptions of *P. ferricolus* (Moustafa, 1955a, 1955b) do not indicate the presence of the
1451 tubercular ornamentation found in other cacopines, which could indicate that *C. woehri* is either
1452 closely related to, or synonymous with, *P. ferricolus*. The latter has long been marginalized in
1453 the literature, so it has not usually been compared to dissorophids, including by Fröbisch & Reisz
1454 (2012) in naming *C. woehri*.

1455
1456 *The status of Broiliellus.* *Broiliellus* is the most speciose dissorophid genus, with five valid
1457 species: *B. arroyoensis*, *B. brevis*, *B. olsoni*, *B. reiszi*, and *B. texensis* (Williston, 1914; Carroll,
1458 1964a; DeMar, 1967; Holmes, Berman & Anderson, 2013). However, even with the exclusion of
1459 “*Broiliellus*” *hektotopos*, the concept of *Broiliellus* remains convoluted (Fig. 22). In all previous
1460 analyses but one, the sampled species of *Broiliellus* do not form a clade. The one analysis that
1461 does recover a clade only sampled two species and three dissorophines in total (Schoch & Sues,
1462 2013; Fig. 22B).

1463 Perhaps the most outstanding issue is that most species of *Broiliellus* have also not been
1464 (re)described in decades. The type species, *B. texensis*, has never been revised since Williston's
1465 (1914) original description (but see DeMar, 1966b:fig. 4). Material of *Broiliellus olsoni* is neither
1466 substantial nor well-preserved, and that of *Broiliellus arroyoensis* has no identifiable cranial
1467 sutures (DeMar, 1967). As I previously noted, the descriptions of *Broiliellus brevis* and
1468 *Broiliellus texensis* are dated, short, and with limited figures (Williston, 1914; Carroll, 1964a).
1469 Isolated parts of the anatomy (e.g., LEP) are occasionally revised in comparative discussions
1470 (e.g., Bolt, 1974b; Dilkes, 2020), but at least the type species would benefit from a thorough
1471 redescription with contemporary photography. There are no modern photographs of any of these
1472 species other than a cropped palatal view of *B. brevis* (Witzmann & Werneburg, 2017:fig. 13B),
1473 and as a result, some data exist only as scores in matrices. These are probably based on personal
1474 observations that cannot be substantiated or reproduced from the literature alone.

1475 A detailed revision of the entire genus might recover a monophyletic *Broiliellus*, but this
1476 possibility seems unlikely at present. One possibility is that these taxa appear morphologically
1477 disparate in part because they are differently sized (i.e. this may be partially confounded by
1478 ontogenetic disparity). However, it seems more likely that some of the species warrant placement
1479 in novel genera if the goal is to ensure monophyly of *Broiliellus*, perhaps all of them other than

1480 the type species. The present topological instability and lack of resolution does not allow for a
1481 confident determination of which taxa warrant reassignment or whether any subset of *Broiliellus*
1482 might form its own clade. Therefore, I refrain from erecting novel genera for the non-type
1483 species and recommend the use of quotation marks for these species.

1484

1485 *The status of Aspidosaurus*. This taxon has a convoluted history and likely represents a
1486 wastebasket taxon encompassing a semi-conserved osteoderm morphotype (Schoch & Milner,
1487 2014). Most of the species are represented only by fragmentary isolated postcranial material and
1488 cannot even be determined to be valid without a good understanding of axial variation (if such
1489 variation exists). With the loss of all material of the type species, *Aspidosaurus chiton*, the
1490 functional representative is *Aspidosaurus binasser*, which preserves substantial axial variation, at
1491 least as interpreted. This discussion addresses this taxon and its peculiar mosaicism as part of this
1492 broader discussion of the state of affairs within Dissorophidae.

1493 *Aspidosaurus binasser* is known only from the holotype, which consists of a partial skull
1494 (in several pieces) and numerous osteoderms and vertebral fragments (Berman & Lucas, 2003).
1495 Among the postcranial material are three types of osteoderms; the type 2 of Berman & Lucas is
1496 the stereotypical *Aspidosaurus* morphotype, while types 1 and 3 are hyperelongate, ornamented
1497 spines similar to those of *Platyhystrix rugosa*. The material that I show in Figure 23, collected in
1498 the late 19th century from Wichita County, TX, consists of similar spines that lack the tubercles
1499 and the curvature of the spine (at least where preserved) that diagnose *Platyhystrix*. The style of
1500 ornamentation and the transverse compression of the spines are thus very similar to the type 1
1501 and type 3 osteoderms in *A. binasser*. Notably, if previous workers' conjecture on the Wichita
1502 County sites is correct (see Romer, 1928:80; Romer 1935:1617; Milner & Schoch, 2013:116),
1503 the Wichita County localities are in the lower-middle part of the Wichita Group (Nocona-
1504 Petrolia Formations), much lower in section than the type locality of *A. binasser* (Arroyo
1505 Formation at the base of the Clear Fork Group). While stratigraphic occurrence is not diagnostic
1506 in a taxonomic sense, it is highly informative for dissorophid taxonomy. Despite a continuous
1507 record of the clade throughout the Early Permian of Texas, no species is known to extend beyond
1508 one formation-level unit.

1509 At the time of the description of *Aspidosaurus binasser*, the type 1 and type 3 osteoderm
1510 morphotypes had never been reported from another locality, let alone from another formation.
1511 This implicitly strengthened the cranial-postcranial association because it suggested that these
1512 types were not like the stereotypical *Aspidosaurus* morphotype or like *Platyhystrix* – almost
1513 always fragmentary, isolated postcrania with a relatively wide stratigraphic range. Material of
1514 these taxa is often found at the same sites as cranial material of other dissorophids or
1515 temnospondyls, but there is usually not an assumption that the postcrania pertain to an isolated
1516 skull just because there are no duplicated skeletal regions. The new observation that the type 1
1517 and type 3 morphotypes appear much lower in section suggests that these purportedly diagnostic
1518 morphotypes might in fact belong to a taxon (or taxa) that has a similarly skewed fossil record.

1519 If there was direct articulation between the cranial and postcranial remains attributed to
1520 the holotype of *Aspidosaurus binasser*, the question could be settled quickly. However, there is
1521 no direct articulation between the preserved occiput and any of the postcrania. Berman & Lucas
1522 (2003) gave no indication as to the nature of the locality, such as the distribution or association
1523 of remains. Their mention of indeterminate synapsid material implies that no other distinct
1524 dissorophid was identified. Secondly, despite the preservation of the occiput and enough
1525 presacral vertebrae to estimate at least 20 positions, neither the atlas nor axis were identified.

1526 Thirdly, there is no direct articulation between any two of the three osteoderm morphotypes; they
1527 are either isolated fragments or short blocks with only one type. The same applies to the newly
1528 reported material. Lastly, no other dissorophid preserves the same stark variation along the axial
1529 column purported for *Aspidosaurus binasser* (Berman & Lucas, 2003, argued for some variation
1530 in *Aspidosaurus chiton* based on Broili, 1904), but numerous taxa preserve essentially no
1531 variation in either osteoderms or vertebrae throughout the presacral column (e.g., *Broiliellus*,
1532 *Cacops*, *Dissorophus*). The most substantial variation is either in the curvature of different
1533 positions in *Platyhystrix rugosa* to form the sail (e.g., Lewis & Vaughn, 1965) or the transition
1534 from a double to a single series in *Diploseira angusta* (Dilkes, 2020). The former is not apparent
1535 in *A. binasser*, and the latter is characterized mostly by a change in the number of series and the
1536 ventral flanges, not regional hyperelongation as in *A. binasser*. Therefore, the cranial-postcranial
1537 association essentially hinges on the assumption that there is likely only one dissorophid at any
1538 given site.

1539 Berman & Lucas (2003:244) indeed argued that “there is no reason to suspect more than
1540 one individual is represented.” Prior to 2003, there were almost no localities with more than one
1541 named dissorophid (e.g., Coffee Creek / Romer’s locality 34), which supported the assumption
1542 that dissorophid-bearing localities preserve only one dissorophid taxon (like the Cacops Bone
1543 Bed; Williston, 1910; or the Parioxys bone bed of Moustafa, 1952). Since then, however, the
1544 presence of multiple dissorophids at a single locality has been documented, and their skeletal
1545 representation can be highly uneven. Richards Spur is an excellent case study; *Cacops morrissi* is
1546 known from abundant cranial and postcranial material, and *Cacops woehri* is only known from
1547 semi-abundant cranial material. In contrast, an indeterminate dissorophine is represented only by
1548 a headless skeleton and isolated forelimb material, which I left unnamed and not associated with
1549 another taxon represented only by cranial material (*C. woehri* in this case; Gee & Reisz, 2018b;
1550 Gee, Bevitt & Reisz, 2019), and *Aspidosaurus* is represented by a single pair of articulated
1551 osteoderms (Gee, Bevitt & Reisz, 2019). Corn Hill in Archer County, TX; the type locality of
1552 *Brevidorsum profundum* and *Reiszerpeton renascentis* in Archer County; and the Archer City
1553 Bonebed are all additional examples of multi-dissorophid sites. Most dissorophid-bearing sites
1554 with only one documented dissorophid are type localities that have not produced much, if any,
1555 other tetrapod material. Collectively, these observations further the possibility that the holotype
1556 of *Aspidosaurus binasser* could really be a chimera of two taxa, one represented largely or
1557 exclusively by cranial fragments and one represented only by fragmentary postcrania.

1558 I have not been able to examine the holotype of *Aspidosaurus binasser* myself given the
1559 present circumstances, but I doubt that I would be able to identify new evidence either
1560 definitively proving (e.g., cranial-postcranial articulation) or definitively disproving the
1561 association (e.g., identification of duplicated elements). Therefore, I doubt that a redescription is
1562 warranted, which is why I raised these points here. Nonetheless, I believe that there is good
1563 reason to suspect that not all of the elements attributed to the holotype of *A. binasser* belong to
1564 either a single individual or to the same taxon. The purportedly diagnostic type 1 and type 3
1565 osteoderms are probably more like the stereotypical *Aspidosaurus* morphotype: one that persists
1566 for long time intervals and which does not constitute a true clade, let alone one species, across its
1567 range. I do not rule out that some species could have been more stratigraphically extensive than
1568 others, but the appreciable fossil record of dissorophids indicates that morphospecies were short-
1569 lived. The scoring of *A. binasser* is not greatly influenced by the cranial-postcranial association
1570 in either my matrix or that of other workers, but it would be preferable to restrict the
1571 characterization in the future if characters related to spine hyperelongation or axial variation are

1572 introduced. Chimerism of *A. binasser* would affect the validity of both *A. chiton* and *A. binasser*
1573 since the latter's diagnosis is based only on the combination of osteoderm types. I make no
1574 nomenclatural acts without having examined the type of *A. binasser* but highlight these issues
1575 since the interpretation has not been previously questioned.

1576

1577 *The status of Platyhystrix*. There has only ever been one species of *Platyhystrix*, so it may be
1578 surprising to see this taxon discussed. Here I focus on the status of the holotype. AMNH FARB
1579 4785 is a multi-taxic batch of material that was first designated as the holotype of "*Aspidosaurus*
1580 *apicalis*" (Cope, 1881). That taxon is of dubious validity, but the holotype of *Platyhystrix*
1581 *rugosa*, extracted from this batch by Case in 1910 (as "*Ctenosaurus rugosus*"), has retained the
1582 same number in the literature despite that number representing two taxa. Apparently, the
1583 *Platyhystrix* component was given a subletter designation (4785a) to differentiate them, per a
1584 collections tag with "*Ctenosaurus rugosus*" written on it, but this differentiated number never
1585 appeared in the original description or the subsequent literature. Since at least DeMar
1586 (1966b:76), the portion considered to be the holotype of "*A. apicalis*" (AMNH FARB 4785
1587 proper) was considered lost (e.g., Bolt, 1974a; Berman & Lucas, 2003; Schoch & Milner, 2014).

1588 During a collection visit in October 2017, I came across a specimen labeled as AMNH
1589 FARB 4785, without subletter designation (Fig. 24), and it matches the description of the
1590 holotype of "*Aspidosaurus apicalis*" instead of that for the holotype of *Platyhystrix rugosa*. The
1591 material assigned to *P. rugosa* is stated to be several neural spines, while that assigned to "*A.*
1592 *apicalis*" is specifically the apices ("summits") of the neural spines (Cope, 1881; Schoch &
1593 Milner, 2014), which we would now recognize as osteoderms associated with the spine. As far as
1594 I am aware, AMNH FARB 4785a has never been figured, probably because more complete
1595 specimens were figured and subsequently utilized as "proxy holotypes" for *P. rugosa* (Williston,
1596 1911; Langston, 1953; Carroll, 1964a; Lewis & Vaughn, 1965). Williston described a spine that
1597 he compared favorably to Case's holotype, and his figure (pl. 26.1 therein) is of the stereotypical
1598 *Platyhystrix* morphology. This confirms that Case's (1911:fig. 15) illustrations of AMNH FARB
1599 4785 represent the part that is properly "*A. apicalis*," the same subset that I examined. These are
1600 distinctly only osteoderms (and one intercentrum of questionable association), not neural spines,
1601 and they are much smaller than 11 cm in length (the listed size of one spine per Case). They are,
1602 however, in line with the size range given by Cope (less than 4 cm long and 3.5 cm wide).
1603 Therefore, as I mentioned previously (Gee, 2018), the holotype of "*A. apicalis*" (AMNH FARB
1604 4785) is not lost. Instead, that specimen has been repeatedly mistaken for the holotype of *P.*
1605 *rugosa* (AMNH FARB 4785a), which is missing. There is no record of AMNH FARB 4785a in
1606 the museum database, nor was the specimen identified in the most recent inventory (C. Mehling,
1607 pers. comm., 2020). No personally examined specimen in the AMNH collection that was
1608 assigned to *Platyhystrix*, *Aspidosaurus*, or *Zatrachys* (these being frequently conflated in the
1609 early 20th century) matches the description of the holotype of *P. rugosa* save for one.

1610 AMNH FARB 11544 is a collection of postcrania with a large number of neural spines
1611 (Fig. 25), first described, though mostly unfigured, by Berman, Reisz & Fracasso (1981). These
1612 purportedly belong to the same individual as AMNH FARB 11545, the only skull of
1613 *Platyhystrix*. The number of spines designated as the holotype of *Platyhystrix rugosa* was never
1614 specified, but it is inferred that "several" is more than two, and the size of some spines of AMNH
1615 FARB 11544 is consistent with the measurements given by Case (1910). Some would certainly
1616 have been sufficient for proper comparison by Williston (1911). The collections tag indicates
1617 that AMNH FARB 4785(a) was collected by David Baldwin in 1881 from the Cutler Formation

1618 of Rio Arriba County, NM, the same formation, collector, and collection date as AMNH FARB
1619 11544. Furthermore, Case (1910) mentioned “fragments of scapulae and limb bones associated
1620 with the holotype of *P. rugosa* are typically pelycosaurian in form,” with the association deriving
1621 from his interpretation of the spines of “*Ctenosaurus*” *rugosus* as those of a pelycosaur. AMNH
1622 FARB 11544 includes three large fragments, one of which is a partial glenoid (Fig. 25D), and
1623 one of which is a limb end. These were not described by Berman, Reisz & Fracasso (1981),
1624 which implies that they also did not believe these fragments belonged to *P. rugosa*.

1625 In my opinion, it seems quite likely that AMNH FARB 4785a was renumbered as
1626 AMNH FARB 11544, but that records of this were either not made or were subsequently lost. If
1627 the value of AMNH FARB 11545 as the only skull of *Platyhystrix rugosa* was not recognized for
1628 decades after its collection, that would explain why these two specimens were not described for a
1629 century. The postcranial material would have drawn little attention until it was determined that it
1630 articulated with the cranial material. However, there are no collection records indicating the
1631 transfer of the holotype of *P. rugosa* to a new number (C. Mehling, pers. comm., 2020). Without
1632 a record, their equivalency cannot be confirmed, as it remains possible that AMNH FARB 4785a
1633 was simply lost. Therefore, the type status designation remains with AMNH FARB 4785a, and I
1634 present the conundrum here in the hopes that perhaps other workers may be able to contribute
1635 new information to help resolve this matter.

1636
1637 *Other dissorophids.* Relevant points of the remaining taxa are collated here. *Dissorophus*
1638 *multicinctus*, while known from an extensive amount of material, would benefit from a
1639 systematic redescription. The osteoderms and vertebrae were described by Dilkes (2009) but
1640 were otherwise neglected since DeMar (1968). Similarly, the skull has not been redescribed
1641 since DeMar, who figured only one complete skull (MCZ 2122-1). While some studies cite
1642 Schoch (2012) for the cranial osteology, Schoch only presented a reconstruction, some of which
1643 Dilkes (2020) explicitly disagreed with (e.g., position of the jaw articulation). In addition to
1644 numerous specimens that were mentioned but not illustrated by DeMar, a number of specimens
1645 have been subsequently mentioned or photographed at a low resolution in a single profile.
1646 However, these brief documentations are insufficient for a full characterization of the anatomy
1647 (e.g., MCZ 1468; Schoch & Milner, 2014:fig. 37C; MCZ 4170, MCZ 4186, and MCZ 4188;
1648 Dilkes, 2020:22).

1649 Most of the wildcard taxa (or taxa not previously sampled) have poor prospects for
1650 resolving their relationships without new material (e.g., *Aspidosaurus novomexicanus*,
1651 *Brevidorsum profundum*, “*Broiliellus*” *arroyoensis*). Two very fragmentary taxa can only be
1652 inferred to be dissorophids if it is assumed that they are dissorophoids (i.e. if these taxa belong to
1653 Dissorophoidea, apomorphies of which they generally lack, they most likely belong to
1654 Dissorophidae): *Iratusaurus vorax* and *Nooxobeia gracilis*. Neither preserves dissorophid
1655 synapomorphies (sensu Schoch & Milner, 2014), although the single series of median
1656 osteoderms in *N. gracilis* is suggestive of dissorophid affinities as Olson (1972) proposed. It
1657 seems doubtful that *N. gracilis* would represent a chroniosuchian, another tetrapod clade with
1658 median osteoderms, as Permian representatives of this group are mostly known from Russia and
1659 China (e.g., Golubev, 1998a, 1998b, 1999; Jiang, Ji & Mo, 2017; Liu & Abdala, 2017; Liu,
1660 2020). However, chroniosuchian material is rare and fragmentary, and most records come from
1661 the Middle and Late Permian, intervals from which there is little to no record of terrestrial
1662 tetrapods in North America (e.g., Lucas, 2001, 2002, 2005, 2013; Reisz & Laurin, 2001, 2002;
1663 Lozovsky, 2005; Benton, 2012, 2013; Olroyd & Sidor, 2017; Brocklehurst, 2020). Recent studies

1664 have expanded their range, including to the Upper Permian of Germany (Witzmann et al., 2019),
1665 where a single osteoderm-bearing vertebra ascribed to an indeterminate dissorophid was reported
1666 from slightly older deposits (Witzmann, 2005). *Iratusaurus vorax* does not appear like any other
1667 temnospondyl with a closed otic notch (e.g., capitosaurs), but its description by Gubin (1980)
1668 was extremely cursory, and the material is extremely fragmentary.

1669 Finally, *Parioxys bolli* may not belong to *Parioxys*, regardless of the relationship of
1670 *Parioxys ferricolus* to *Cacops*. The ilium of *P. bolli* indicates olsoniform affinities, but the
1671 remainder of the known skeleton is uninformative; the two sacral ribs that Carroll (1964b)
1672 emphasized are not a dissorophid or an olsoniform synapomorphy. The limbs are relatively long,
1673 more like those of dissorophids, but ring-like intercentra are a feature found only in *Ecolsonia*
1674 *cutlerensis* and nearly so in *Acheloma cumminsi* (Olson, 1941; Berman, Reisz & Eberth, 1985;
1675 Dilkes & Reisz, 1987). Of note are lateral projections from each side of the base of the neural
1676 arch; these are otherwise found only in *E. cutlerensis* and in the type 1 vertebrae attributed to
1677 *Aspidosaurus binasser* (Berman, Reisz & Eberth, 1985; Berman & Lucas, 2003). This taxon may
1678 well prove to be a trematopid.

1679

1680 **Ontogenetic disparity.** Although I did not exhaustively test whether ontogenetic disparity might
1681 confound or bias the phylogenetic inference of dissorophids, this remains an open question in
1682 light of the size disparity across the clade. Within Dissorophidae, this disparity is essentially an
1683 order of magnitude, greater than that observed for trematopids (Fig. 26). The temporal
1684 distribution of sizes is also non-random, as it was for trematopids. With the latter group, the
1685 earliest appearing taxon, *Mattauschia laticeps*, reached a skull length comparable to that of the
1686 much later appearing *Ecolsonia cutlerensis* (Milner, 2018), but there are other taxa between or
1687 concurrent with these occurrences that are represented by smaller individuals. In dissorophids, all
1688 of the Middle Permian taxa had skulls with a length of at least 18 cm (there are not even any
1689 individual specimens of an inferred smaller size), whereas most Early Permian taxa did not
1690 exceed 12–13 cm. Only two, *Aspidosaurus binasser* and *Platyhystrix rugosa*, exceed this
1691 (*Cacops aspidephorus* may be a third depending on whether the reidentification of “*Trematopsis*
1692 *seltini*” to the species level by Milner, 1985, can be substantiated). Therefore, it is possible that
1693 dissorophids did increase in size in the late stages of their evolution, perhaps correlated with the
1694 extirpation of trematopids and other large-bodied temnospondyls thought to be capable of
1695 terrestrial locomotion like edopoids and eryopoids (note that the degree of terrestriality remains
1696 contentious for many clades; e.g., Pawley & Warren, 2006; Sanchez et al., 2010; Fortuny et al.,
1697 2011; Quemeneur et al., 2013; Carter et al., 2021). Whether increased dissorophid size would be
1698 a driver or a product of other clades’ extinction is unclear.

1699 While *Aspidosaurus binasser* and *Platyhystrix rugosa* are traditionally recovered as the
1700 earliest diverging dissorophids (suggesting that large size could characterize most taxa, but that
1701 the majority are represented only by juveniles; Gee, 2020a), it is important to note the extremely
1702 poor Carboniferous record of dissorophids. Quite possibly, the true earliest diverging
1703 dissorophids remain to be discovered. A third hypothesis is that only certain clades of
1704 dissorophids achieved large sizes. It is conspicuous that no dissorophine, including the well-
1705 sampled *Dissorophus multicinctus*, exceeded a skull length of 13 cm, while the other three
1706 subfamilies did. Size disparity among dissorophids could also relate to ecological differences
1707 from trematopids. In contrast to trematopids, for which there are only two localities in Europe
1708 (Nýřany, Bromacker) where multiple taxa co-occur, there are many localities where several
1709 dissorophids co-occur. Along with anatomical differences such as tooth count, skull proportions,

1710 and osteoderm morphology, size differences could also be predicted as an aspect of niche
1711 partitioning.

1712 The one analysis that I ran to assess whether ontogenetic disparity might confound
1713 dissorophid phylogeny (Analysis 4; Fig. 11) did not recover any clear signals of directional bias.
1714 No taxon sampled at the specimen level is recovered as a clade, but most specimens are simply
1715 single branches in a cacopine polytomy. *Conjunctio multidens* is the only taxon in which OTUs
1716 are recovered in different positions, and in this case, the large holotype diverges first. On one
1717 hand, this taxon's OTUs contradict one prediction of ontogenetic disparity (stemward slippage of
1718 smaller, more immature specimens due to a higher number of what present as "retained"
1719 plesiomorphies). Conversely, in the context of olsoniforms, the early diverging position of the
1720 largest specimen may still indicate support for an influence of ontogenetic disparity, as the
1721 smallest specimens cluster away from the large trematopids. A lack of skeletal overlap seems to
1722 produce the pattern of *Cacops woehri*, in which the holotype (partial skull) and one referred
1723 specimen (BMRP 2007.3.5, partial posterior skull) cluster even though they belonged to
1724 disparately sized individuals. Specimens of *Anakamacops petrolicus* have essentially no skeletal
1725 overlap, and an ontogenetic range was not sampled for *Cacops aspidephorus*.

1726 In short, there remain many unknowns and confounding factors that limit the study of
1727 size patterns in dissorophids. In an unpublished chapter of my dissertation (Gee, 2020a:388–
1728 394), I suggested that niche partitioning between life stages of a given taxon could result in a
1729 skewed sample that biases interpretations of "adult" size. For example, numerous skulls of
1730 *Cacops* between 10 and 12 cm in length are known and have thus been dubbed "adults" under a
1731 presumption of relative maturity (e.g., Reisz, Schoch & Anderson, 2009; Gee & Reisz, 2018a).
1732 In fact, this size range does not come close to approximating the maximum size of *Cacops*,
1733 which could have been nearly double that size based on the single specimen of "*Trematopsis*
1734 *seltini*," estimated to 22 cm (= *Cacops* cf. *C. aspidephorus*; Milner, 1985). Isolated postcranial
1735 remains from Richards Spur suggest that at least one of *Cacops morrisi* and *Cacops woehri* also
1736 reached a larger size than is reflected by the cranial remains (Sullivan, Reisz & May, 2000; Gee,
1737 Bevitt & Reisz, 2019; Gee, 2020a). Intraspecific niche partitioning has not been previously
1738 suggested in olsoniforms, but it offers one explanation for the skewed record of even well-
1739 sampled taxa like *Cacops* and for the size disparity between dissorophids if this partitioning
1740 extended to physical habitat occupancy. As with trematopids, size evolution in dissorophids
1741 remains a quandary that can likely only be resolved with additional collection, although a survey
1742 of existing collections might identify outlier datapoints (probably isolated postcrania or
1743 fragmentary cranial remains) that document larger body size than traditional proxies (e.g.,
1744 complete skulls).

1745
1746 **Considerations in backbone selection.** With increasing computational abilities, paleontologists
1747 can sample broad taxonomic swaths while maintaining appreciable in-group sampling of any
1748 given clade. Technological advances have also expanded the range of analyses that can be
1749 conducted, leading to a proliferation of "big data" studies addressing macroevolutionary
1750 questions on scales that were previously infeasible. Most of these studies are phylogenetically
1751 informed by an underlying backbone, the selection and design of which is obviously of great
1752 import but which is not always rationalized or explained in detail. This final section provides
1753 some preliminary comments on temnospondyl backbones in light of this study's findings.

1754 The most widely utilized topology of Temnospondyli is the computer-assisted supertree
1755 of Ruta et al. (2007), which has been incorporated into numerous studies, usually in concert with

1756 other tetrapod (super)trees to form a larger informal supertree (e.g., Fortuny et al., 2011; Soul &
1757 Friedman, 2016; Dunne et al., 2018; Carter et al., 2021; Dickinson et al., 2021). It is noteworthy
1758 that this particular topology remains popular among non-taxonomic specialists, whereas
1759 temnospondyl workers tend to opt for a variety of alternative backbones. For example,
1760 Angielczyk & Ruta (2012) manually modified the topology of Ruta et al. (2007); Witzmann
1761 (2013) and Witzmann & Werneburg (2017) used the topology of Schoch's (2013) non-supertree
1762 analysis; Tarailo (2018) used Schoch (2013) as the large-scale backbone, with additions from
1763 Ruta et al. (2007) and Marsicano et al. (2017) for small-scale resolution; Witzmann & Ruta
1764 (2018) and Pérez-Ben, Báez & Schoch (2019) manually modified the topology of Schoch (2013);
1765 and Pardo et al. (2019) and Ruta et al. (2019) used the topology of Pardo, Small & Huttenlocker
1766 (2017).

1767 Ruta et al.'s supertree may remain appealing in spite of its datedness because it is fully
1768 resolved and includes numerous wildcard taxa that are rarely sampled in other studies and that
1769 are highly unstable when they are sampled (e.g., *Bashkirosaurus*, *Capetus*, *Collidosuchus*,
1770 *Kashmirosaurus*, *Lapillopsis*, *Lysipterygium*, *Palatinerpeton*, *Parioxys*, *Peltobatrachus*,
1771 *Sassenisaurus*, *Stegops*). Of course, the fact that these taxa are excluded from analyses reflects
1772 the continued uncertainty over their placement, even in a phenetic framework, but this may only
1773 be well-known among taxonomic specialists. Some of these taxa are recovered in the proper
1774 clade in Ruta et al.'s supertree, but with uncertain relationships to other in-group taxa (e.g.,
1775 *Collidosuchus*), while others remain of uncertain placement in general (e.g., *Lapillopsis*). The
1776 latter are of greater concern because there is a higher likelihood that their positions in the Ruta et
1777 al. topology are spurious.

1778 In general, this topology, while consistent in broad strokes with more recent non-
1779 supertree analyses (e.g., Schoch, 2013; Pardo, Small & Huttenlocker, 2017; Eltink, Schoch &
1780 Langer, 2019), differs markedly in some areas. Specifically for dissorophoids, branchiosaurids
1781 are accepted as nesting within the historical 'Amphibamidae' rather than as its sister group (e.g.,
1782 Schoch & Milner, 2008; Fröbisch & Schoch, 2009); micromelerpetids are a clade at the base of
1783 Dissorophoidea rather than a grade of early-diverging branchiosaurids (e.g., Schoch, 2018a);
1784 trematopids and dissorophids are sister taxa, not successively diverging branches within
1785 Dissorophoidea (e.g., Anderson et al., 2008b); *Ecolsonia* is a trematopid, not a dissorophid
1786 (Polley & Reisz, 2011; Schoch, 2018a; Gee, 2020b; this study); and *Parioxys* is probably a
1787 dissorophid, not an eryopoid (Schoch & Milner, 2014). The taxon sample is naturally outdated as
1788 well, but this manifests as what appears to be uneven sampling based on the present body of
1789 recognized taxa. Olsoniforms are among the undersampled clades, with only six nominal
1790 trematopids and five nominal dissorophids.

1791 These points are not meant as a criticism of the original Ruta et al. study but rather
1792 evidence the predictable datedness after nearly two decades of anatomical and phylogenetic
1793 work. Nonetheless, it is clear that Ruta et al.'s supertree is no longer an accurate reflection of the
1794 consensus of temnospondyl relationships and should not be employed as such. Pardo et al.
1795 (2019) commented on potential issues of supertree construction and pseudoreplication, especially
1796 in light of newer non-supertree analyses performed by taxonomic specialists that challenge
1797 historical paradigms and that frequently contradict widely used, but more dated, supertrees. I
1798 endorse these authors' approach to informal supertree construction (p. 11 of their supplemental
1799 file) in which they collate non-supertree topologies recovered by studies whose primary aim was
1800 to assess the phylogenetic relationships of a clade and in which they allow taxa with unresolved
1801 relationships (or that have never been included in an analysis) to be placed in a polytomy. Such

1802 an approach is preferable to enforcing resolution of dubious nature simply in order to achieve
1803 full resolution. I encourage non-specialists to consult with relevant phylogenetic / systematic
1804 experts with respect to the construction or selection of a backbone. Temnospondyli, like most
1805 other speciose clades, continues to be recovered with major areas of instability or weak support.
1806 This instability underscores the continued import not only of phylogenetic method refinement
1807 and analysis but also of the primary data collection (e.g., fieldwork, descriptive anatomy) that
1808 underpins the analysis.

1809

1810 **Conclusions**

1811 Originally, I had intended to focus this study on expanding my character and taxon sample to
1812 broadly represent dissorophids, which I hoped would improve the resolution for trematopids as
1813 well. In the process of assessing explanators for topological differences, some of them
1814 substantial and often related more to differing degrees of resolution than to drastically different
1815 positions of taxa, this study shifted towards a focus on reproducibility and robusticity of previous
1816 topologies. This endeavor admittedly became much more exhaustive (and exhausting) than even
1817 I had anticipated, and like my trematopid analysis (Gee, 2020b), seems to have identified far
1818 more issues than it has resolved. In the end, this study has demonstrated that the phylogeny of
1819 Dissorophidae is not resolved, reproducible, or robust. Other key conclusions are outlined below:

1820

- 1821 1. The widely propagated matrix of Schoch (2012) contains substantial scoring errors that
1822 appear to represent “assumed” scores; these scores are for characters where the entire
1823 feature is not even preserved, let alone sufficient to be assessed (e.g., postcrania of
1824 *Cacops woehri*). These are unequivocally unfounded and should be regarded as erroneous
1825 unless future studies prove otherwise. Almost all of these originated early in the
1826 propagation of this matrix and have thus been carried forward into essentially every
1827 dissorophid analysis. It is possible that either new material or simply better
1828 documentation of existing material might validate these assumptions, but at present, they
1829 have no reproducible basis. There are also numerous scores for taxa where a complete
1830 element is required to score a character, but none is available for a given taxon (e.g.,
1831 characters related to skull length for “*Broiliellus*” *olsoni*). Given the extensive number of
1832 unequivocal errors, missing scores, and unfounded scores (Appendix 5), previous
1833 topologies should be treated skeptically, especially with respect to weakly supported
1834 nodes, as the corrected matrix recovers an overall less resolved topology.
- 1835 2. The use of different programs and variable reporting of support metrics confounds proper
1836 comparisons between studies, but these are not the only factors that result in drastically
1837 different topologies from studies that are using largely identical character matrices.
1838 Persistent wildcards, character construction, and character scoring clearly exert strong
1839 influences as well, and a few changes to the matrix can result in drastic changes to the
1840 resultant topology. Workers should test for the effects of these phenomena (e.g., analyses
1841 with and without wildcard taxa and consensus trees with and without wildcard taxa) and
1842 clearly state and justify their preferred approaches.
- 1843 3. The intrarelationships of both Dissorophidae and Trematopidae can be resolved through
1844 selective taxon sampling, but most in-group nodes fail to meet the thresholds to be
1845 considered as “well-supported” for at least one metric: Bremer decay index (> 2) or
1846 bootstrapping ($> 50\%$). Support metrics are one means of comparing topologies produced

1847 by different studies, and topologies that are reported without support metrics or with
1848 weak support should be treated skeptically.
1849 4. The only “consensus” relationships within Dissorophidae are the early-diverging position
1850 of *Aspidosaurus binasser* and *Platyhystrix rugosa*; a Cacopinae that includes *Cacops* and
1851 probably *Anakamacops*, *Kamacops*, and *Zygosaurus*; and a Dissorophinae that includes
1852 *Broiliellus*, *Diploseira*, and *Dissorophus*. While the interrelationships of cacopines can be
1853 further resolved with some confidence, those of dissorophines cannot at present. Any
1854 worker seeking a topology for a backbone in a quantitative analysis should place all other
1855 taxa in a polytomy either above or with *As. binasser*, rather than selecting one of the
1856 many different resolved topologies that lack strong support for most nodes.
1857

1858 Acknowledgements

1859 I thank the many collections managers and curators who granted me access to their dissorophoid
1860 specimens, either first-hand or through loans to my doctoral advisor, Robert Reisz: Mark Norell
1861 and Carl Mehling (American Museum); Dave Berman and Amy Henrici (Carnegie Museum);
1862 Ken Angielczyk, Bill Simpson, and Adrienne Stroupe (Field Museum); Chris Beard and Dave
1863 Burnham (Kansas University Museum of Natural History); Rich Cifelli and Jennifer Larsen
1864 (Sam Noble Museum); and Pat Holroyd (University of California Museum of Paleontology).
1865 Thanks to Carl Mehling for assistance in trying to elucidate the history of the holotype of
1866 *Platyhystrix rugosa*. Jason Anderson (University of Calgary) also kindly allowed me to examine
1867 the material of *Cacops aspidephorus* on loan to him and transferred the loan of the material of
1868 “*Fayella chickashaensis*” and what is now *Nooxobeia gracilis* (and took me out to lunch) when I
1869 visited his lab in the fall of 2017. Thanks to Jason Anderson, Dave Berman, Adam Huttenlocker,
1870 Hillary Maddin, Arjan Mann, David Marjanović, and Jason Pardo for discussions. Thanks to
1871 Michel Laurin, David Marjanović, two anonymous reviewers, and the editor, John Hutchinson,
1872 for constructive feedback that greatly improved this manuscript. TNT is graciously provided
1873 freely by the Willi Hennig Society. My current postdoctoral fellowship, under which I conducted
1874 this study, is supported by NSF ANT-1947094 (to Chris Sidor).
1875

1876 References

1877 [ICZN] International Commission on Zoological Nomenclature. 1999. *International Code of
1878 Zoological Nomenclature*. Fourth Edition. London: International Trust for Zoological
1879 Nomenclature. Openly accessible at: [https://www.iczn.org/the-code/the-international-
1881 code-of-zoological-nomenclature/the-code-online/](https://www.iczn.org/the-code/the-international-
1880 code-of-zoological-nomenclature/the-code-online/).
1882 Agnolin F, de Souza Carvalho I, Rolando AMA, Novas FE, Xavier-Neto J, Andrade JA FG,
1883 Freitas FI. 2020. Early Cretaceous neobatrachian frog (Anura) from Brazil sheds light on
1884 the origin of modern anurans. *Journal of South American Earth Sciences* 101:102633.
1885 DOI: 10.1016/j.jsames.2020.102633
1886 Alfaro ME, Zoller S, Lutzoni F. 2003. Bayes or bootstrap? A simulation study comparing the
1887 performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in
1888 assessing phylogenetic confidence. *Molecular Biology and Evolution* 20:255–266. DOI:
1889 10.1093/molbev/msg028
1890 Anderson JS, Henrici AC, Sumida SS, Martens T, Berman DS. 2008b. *Georgenthalia
1891 clavinascica*, a new genus and species of dissorophoid temnospondyl from the Early
1892 Permian of Germany, and the relationships of the family Amphibamidae. *Journal of*

1893 *Vertebrate Paleontology* 28:61–75. DOI: 10.1671/0272-
1894 4634(2008)28[61:GCANGA]2.0.CO;2

1895 Anderson JS, Reisz RR, Scott D, Fröbisch NB, Sumida SS. 2008a. A stem batrachian from the
1896 Early Permian of Texas and the origin of frogs and salamanders. *Nature* 453:515–518.
1897 DOI: 10.1038/nature06865

1898 Anderson JS, Scott D, Reisz RR. 2020. The anatomy of the dermatocranum and mandible of
1899 *Cacops aspidephorus* Williston, 1910 (Temnospondyli: Dissorophidae), from the Lower
1900 Permian of Texas. *Journal of Vertebrate Paleontology* 40:e1776720. DOI:
1901 10.1080/02724634.2020.1776720

1902 Anderson JS. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an
1903 analysis of the Lepospondyli (Vertebrata, Tetrapoda). *Systematic Biology* 50:170–193.
1904 DOI: 10.1080/10635150119889

1905 Anderson JS. 2005. On the skull of *Cacops aspidephorus* Williston (Tetrapoda; Temnospondyli;
1906 Dissorophidae) from the Lower Permian of Texas. Part 1: lower jaw anatomy. *New
1907 Mexico Museum of Natural History & Science Bulletin* 30:15.

1908 Angielczyk KD, Ruta M. 2012. The roots of amphibian morphospace: a geometric morphometric
1909 analysis of Paleozoic temnospondyls. *Fieldiana Life and Earth Sciences* 2012:40–59.
1910 DOI: 10.3158/2158-5520-5.1.40

1911 Atkins JB, Reisz RR, Maddin HC. 2019. Braincase simplification and the origin of
1912 lissamphibians. *PLOS ONE* 14:e0213694. DOI: 10.1371/journal.pone.0213694

1913 Audo D, Barriel V, Charbonnier S. 2021. Phylogeny and evolutionary history of polychelidan
1914 lobsters. *Journal of Systematic Palaeontology* 19:417–439. DOI:
1915 10.1080/14772019.2021.1918773

1916 Balas E. 1965. An additive algorithm for solving linear programs with zero-one variables.
1917 *Operations Research* 13:517–546. DOI: 10.1287/opre.13.4.517

1918 Benton MJ. 2012. No gap in the Middle Permian record of terrestrial vertebrates. *Geology*
1919 40:339–342. DOI: 10.1130/G32669.1

1920 Berman DS, Berman SL. 1975. *Broiliellus hektotopos* sp. nov. (Temnospondyli: Amphibia),
1921 Washington Formation, Dunkard Group. In: Barlow JA, Burkhammer S, eds.
1922 *Proceedings of the First IC White Memorial Symposium, the Age of the Dunkard*.
1923 Morgantown: West Virginia Geological and Economic Survey, 69–78.

1924 Berman DS, Henrici AC, Brezinski DK, Kollar AD. 2010. A new trematopid amphibian
1925 (Temnospondyli: Dissorophoidea) from the Upper Pennsylvanian of western
1926 Pennsylvania: earliest record of terrestrial vertebrates responding to a warmer, drier
1927 climate. *Annals of Carnegie Museum* 78:289–319. DOI: 10.2992/007.078.0401

1928 Berman DS, Henrici AC, Martens T, Sumida SS, Anderson JS. 2011. *Rotaryus gothae*, a new
1929 trematopid (Temnospondyli: Dissorophoidea) from the Lower Permian of Central
1930 Germany. *Annals of Carnegie Museum* 80:49–66. DOI: 10.2992/007.080.0106

1931 Berman DS, Lucas SG. 2003. *Aspidosaurus binasser* (Amphibia, Temnospondyli), a new species
1932 of Dissorophidae from the Lower Permian of Texas. *Annals of Carnegie Museum*
1933 72:241–262.

1934 Berman DS, Reisz R, Eberth DA. 1985. *Ecolsonia cutlerensis*, an Early Permian dissorophid
1935 amphibian from the Cutler Formation of north-central New Mexico. *New Mexico Bureau
1936 of Mines and Minerals Research Circular* 191:1–31.

1937 Berman DS, Reisz RR, Eberth DA. 1987. A new genus and species of trematopid amphibian
1938 from the Late Pennsylvanian of north-central New Mexico. *Journal of Vertebrate*
1939 *Paleontology* 7:252–269. DOI: 10.1080/02724634.1987.10011659

1940 Berman DS, Reisz RR, Fracasso, MA. 1981. Skull of the Lower Permian dissorophid amphibian
1941 *Platyhystrix rugosus*. *Annals of Carnegie Museum* 50:391–416.

1942 Bolt JR, Lombard RE. 2001. The mandible of the primitive tetrapod *Greererpeton*, and the early
1943 evolution of the tetrapod lower jaw. *Journal of Paleontology* 75:1016–1042. DOI:
1944 10.1666/0022-3360(2001)075<1016:TMOTPT>2.0.CO;2

1945 Bolt JR. 1974a. Armor of dissorophids (Amphibia: Labyrinthodontia): an examination of its
1946 taxonomic use and report of a new occurrence. *Journal of Paleontology*, 48:135–142.
1947 DOI:

1948 Bolt JR. 1974b. Evolution and functional interpretation of some suture patterns in Paleozoic
1949 labyrinthodont amphibians and other lower tetrapods. *Journal of Paleontology* 48:434–
1950 458.

1951 Brazeau MD. 2011. Problematic character coding methods in morphology and their effects.
1952 *Biological Journal of the Linnean Society* 104:489–498. DOI: 10.1111/j.1095-
1953 8312.2011.01755.x

1954 Breu R, Burdet CA. 1974. Branch and bound experiments in zero-one programming. In
1955 *Approaches to integer programming* (pp. 1-50). Springer, Berlin, Heidelberg. DOI:
1956 10.1007/BFb0120687

1957 Brocklehurst N, Dunne EM, Cashmore DD, Fröbisch J. 2018. Physical and environmental
1958 drivers of Paleozoic tetrapod dispersal across Pangaea. *Nature Communications* 9:1-12.

1959 Brocklehurst N. 2020. Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to
1960 resolving stratigraphic uncertainty. *Proceedings of the Royal Society B* 287:20200154.
1961 DOI: 10.1098/rspb.2020.0154

1962 Broili F. 1904. Permische Stegocephalen und Reptilien aus Texas. *Palaeontographica* 46:61–84.

1963 Campbell JA, Frost DR. 1993. Anguid lizards of the genus *Abronia*: revisionary notes,
1964 descriptions of four new species, a phylogenetic analysis, and key. *Bulletin of the*
1965 *American Museum of Natural History* 216:1–121.

1966 Carroll RL. 1964a. Early evolution of the dissorophid amphibians. *Bulletin of the Museum of*
1967 *Comparative Zoology* 131:161–250.

1968 Carroll RL. 1964b. The relationships of the rhachitomous amphibian *Parioxys*. *American*
1969 *Museum Novitates* 2167:1–11.

1970 Carroll RL. 2007. The Palaeozoic ancestry of salamanders, frogs and caecilians. *Zoological*
1971 *Journal of the Linnean Society* 150:1–140. DOI: 10.1111/j.1096-3642.2007.00246.x

1972 Carter AM, Hsieh ST, Dodson P, Sallan L. 2021. Early amphibians evolved distinct vertebrae for
1973 habitat invasions. *PLOS ONE* 16:e0251983. DOI: 10.1371/journal.pone.0251983

1974 Case EC, Williston SW. 1913. A description of *Aspidosaurus novomexicanus*. *Publications of*
1975 *the Carnegie Institution of Washington* 181:7–9.

1976 Case EC. 1910. New or little known reptiles and amphibians from the Permian (?) of Texas.
1977 *Bulletin of the American Museum of Natural History* 28:17.

1978 Chakravorti S, Sengupta DP. 2018 (for 2019). Taxonomy, morphometry and morphospace of
1979 cranial bones of *Panthasaurus* gen. nov. *maleriensis* from the Late Triassic of
1980 India. *Journal of Iberian Geology* 45:317-340. DOI: 10.1007/s41513-018-0083-1

1981 Cope ED. 1881. The Permian formation of New Mexico. *American Naturalist* 12:327–328.

1982 Cope ED. 1896a. The ancestry of the Testudinata. *American Naturalist* 30:398–400.

1983 Cope ED. 1896b. Second contribution to the history of the Cotylosauria. *Proceedings of the
1984 American Philosophical Society* 35:122–139.

1985 Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K. 2003. Comparing
1986 bootstrap and posterior probability values in the four-taxon case. *Systematic Biology*
1987 52:477–487. DOI: 10.1080/10635150390218213

1988 Daly E. 1994. The Amphibamidae (Amphibia: Temnospondyli), with a description of a new
1989 genus from the Upper Pennsylvanian of Kansas, *Miscellaneous Publication of the
1990 University of Kansas Museum of Natural History* 85:1–59.

1991 Davesne D, Gallut C, Barriel V, Janvier P, Lecointre G, Otero O. 2016. The phylogenetic
1992 intrarelationships of spiny-rayed fishes (Acanthomorpha, Teleostei, Actinopterygii):
1993 fossil taxa increase the congruence of morphology with molecular data. *Frontiers in
1994 Ecology and Evolution* 4:129. DOI: 10.3389/fevo.2016.00129

1995 Davis RE, Kendrick DA, Weitzman M. 1971. A branch-and-bound algorithm for zero-one mixed
1996 integer programming problems. *Operations Research* 19:1036–1044. DOI:
1997 10.1287/opre.19.4.1036

1998 Daza JD, Stanley EL, Bolet A, Bauer AM, Arias JS, Čerňanský A, Bevitt JJ, Wagner P, Evans
1999 SE. 2020. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic
2000 feeders. *Science* 370:687–691. DOI: 10.1126/science.abb6005

2001 DeMar R. 1968. The Permian labyrinthodont amphibian *Dissorophus multicinctus*, and
2002 adaptations and phylogeny of the family Dissorophidae. *Journal of Paleontology*
2003 42:1210–1242.

2004 DeMar RE. 1966a. *Longiscitula houghae*, a new genus of dissorophid amphibian from the
2005 Permian of Texas. *Fieldiana: Geology* 16:45–53.

2006 DeMar RE. 1966b. The functional and phylogenetic significance of the armor of dissorophid
2007 amphibians. *Fieldiana: Geology* 16:55–88.

2008 DeMar RE. 1967. Two new species of *Broiliellus* (Amphibians) from the Permian of Texas.
2009 *Fieldiana: Geology* 16:117–129.

2010 Dickson BV, Clack JA, Smithson TR, Pierce SE. 2021. Functional adaptive landscapes predict
2011 terrestrial capacity at the origin of limbs. *Nature* 589:242–245. DOI: 10.1038/s41586-
2012 020-2974-5

2013 Dilkes DW, Reisz R. 1987. *Trematops milleri* Williston, 1909, identified as a junior synonym of
2014 *Acheloma cumminsii* Cope, 1882: with a revision of the genus. *American Museum
2015 Novitates* 2902:1–12.

2016 Dilkes DW. 2009. Comparison and biomechanical interpretations of the vertebrae and
2017 osteoderms of *Cacops aspidephorus* and *Dissorophus multicinctus* (Temnospondyli,
2018 Dissorophidae). *Journal of Vertebrate Paleontology* 29:1013–1021. DOI:
2019 10.1671/039.029.0410

2020 Dilkes DW. 2020. Revision of the Early Permian dissorophid ‘*Dissorophus*’ *angustus*
2021 (Temnospondyli: Dissorophoidea). *Journal of Vertebrate Paleontology* 40:e1801704.
2022 DOI: 10.1080/02724634.2020.1801704

2023 Dilkes, D, Brown LE. 2007. Biomechanics of the vertebrae and associated osteoderms of the
2024 Early Permian amphibian *Cacops aspidephorus*. *Journal of Zoology* 271:396–407. DOI:
2025 10.1111/j.1469-7998.2006.00221.x

2026 Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJ. 2003. Comparison of Bayesian and
2027 maximum likelihood bootstrap measures of phylogenetic reliability. *Molecular Biology
2028 and Evolution* 20:248–254. DOI: 10.1093/molbev/msg042

2029 Dunne EM, Close RA, Button DJ, Brocklehurst N, Cashmore DD, Lloyd GT, Butler RJ. 2018.
2030 Diversity change during the rise of tetrapods and the impact of the 'Carboniferous
2031 rainforest collapse'. *Proceedings of the Royal Society B: Biological Sciences*
2032 285:20172730. DOI: 10.1098/rspb.2017.2730

2033 Efremov IA. 1937. On the Permo-Triassic labyrinthodonts from USSR. IV. A note on the lost
2034 forms *Zygosaurus* Eichwald and *Chalcosaurus* von Meyer. *Trudy Paleontologicheskogo
2035 Instituta Akademii Nauk SSSR* 8:17–27. [in Russian]

2036 Eichwald ED. 1848. Über die Saurier des kupferführenden Zechsteins Russlands. *Bulletin de la
2037 Société Impériale des naturalistes de Moscou* 21:136–204. [in German]

2038 Eltink E, Da-Rosa ÁAS, Dias-da-Silva S. 2017. A capitosauroid from the Lower Triassic of
2039 South America (Sanga do Cabral Supersequence: Paraná Basin), its phylogenetic
2040 relationships and biostratigraphic implications. *Historical Biology* 29:863–874. DOI:
2041 10.1080/08912963.2016.1255736

2042 Eltink E, Dias EV, Dias-da-Silva S, Schultz CL, Langer MC. 2016. The cranial morphology of
2043 the temnospondyl *Australerpeton cosgriffi* (Tetrapoda: Stereospondyli) from the Middle-
2044 Late Permian of Paraná Basin and the phylogenetic relationships of
2045 Rhinesuchidae. *Zoological Journal of the Linnean Society* 176:835–860. DOI:
2046 10.1111/zoj.12339

2047 Eltink E, Schoch RR, Langer MC. 2019. Interrelationships, palaeobiogeography and early
2048 evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). *Journal of Iberian
2049 Geology* 45:251–267. DOI: 10.1007/s41513-019-00105-z

2050 Erixon P, Svensenblad B, Britton T, Oxelman B. 2003. Reliability of Bayesian posterior
2051 probabilities and bootstrap frequencies in phylogenetics. *Systematic Biology* 52:665–673.
2052 DOI: 10.1080/10635150390235485

2053 Ezcurra MD, Scheyer TM, Butler RJ. 2014. The origin and early evolution of Sauria: reassessing
2054 the Permian saurian fossil record and the timing of the crocodile-lizard divergence. *PLOS
2055 ONE* 9:e89165. DOI: 10.1371/journal.pone.0089165

2056 Ford DP, Benson RB. 2020. The phylogeny of early amniotes and the affinities of Parareptilia
2057 and Varanopidae. *Nature Ecology & Evolution* 4:57–65. DOI: 10.1038/s41559-019-
2058 1047-3

2059 Fortuny J, Marcé-Nogué J, de Esteban-Trivigno S, Gil L, Galobart À. 2011. Temnospondyli bite
2060 club: ecomorphological patterns of the most diverse group of early tetrapods. *Journal of
2061 Evolutionary Biology* 24:2040–2054. DOI: 10.1111/j.1420-9101.2011.02338.x

2062 Fröbisch NB, Brar A, Reisz RR. 2015. New specimen of *Cacops woeperi* indicates differences in
2063 the ontogenetic trajectories among cacopine dissorophids. *Fossil Record* 18:73–80. DOI:
2064 10.5194/fr-18-73-2015

2065 Fröbisch NB, Reisz RR. 2008. A new Lower Permian amphibamid (Dissorophoidea,
2066 Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma. *Journal of
2067 Vertebrate Paleontology* 28:1015–1030. DOI: 10.1671/0272-4634-28.4.1015

2068 Fröbisch NB, Reisz RR. 2012. A new species of dissorophid (*Cacops woeperi*) from the Lower
2069 Permian Dolese quarry, near Richards Spur, Oklahoma. *Journal of Vertebrate
2070 Paleontology* 32:35–44. DOI: 10.1080/02724634.2012.633586

2071 Fröbisch NB, Schoch RR. 2009. Testing the impact of miniaturization on phylogeny: Paleozoic
2072 dissorophoid amphibians. *Systematic Biology* 58:312–327. DOI: 10.1093/sysbio/syp029

2073 Garbin RC, Ascarrunz E, Joyce WG. 2018. Polymorphic characters in the reconstruction of the
2074 phylogeny of geoemydid turtles. *Zoological Journal of the Linnean Society* 184:896–918.
2075 DOI: 10.1093/zoolinnean/zlx106

2076 Gee BM, Berman DS, Henrici AC, Pardo JD, Huttenlocker AK. 2021. New information on the
2077 dissorophid *Conjunctio* (Temnospondyli) based on a specimen from the Cutler Formation
2078 of Colorado, U.S.A. *Journal of Vertebrate Paleontology* 40:e1877152. DOI:
2079 10.1080/02724634.2020.1877152

2080 Gee BM, Bevitt JJ, Reisz RR. 2019. Dissorophid diversity at the early Permian cave system near
2081 Richards Spur, Oklahoma. *Palaeontologica Electronica* 22.2.46A:1–32. DOI:
2082 10.26879/976

2083 Gee BM, Reisz RR. 2018a. Cranial and postcranial anatomy of *Cacops morrisi*, a eucacopine
2084 dissorophid from the early Permian of Oklahoma. *Journal of Vertebrate
2085 Paleontology* 38:e1433186. DOI: 10.1080/02724634.2018.1433186

2086 Gee BM, Reisz RR. 2018b. Postcrania of large dissorophid temnospondyls from Richards Spur,
2087 Oklahoma. *Fossil Record* 21:79–91. DOI: 10.5194/fr-21-79-2018

2088 Gee BM, Reisz RR. 2019 (for 2020). The amphibamiform *Nanobamus macrorhinus* from the
2089 early Permian of Texas. *Journal of Paleontology* 94:366–377. DOI: 10.1017/jpa.2019.72

2090 Gee BM, Scott D, Reisz RR. 2018. Reappraisal of the Permian dissorophid *Fayella
2091 chickashaensis*. *Canadian Journal of Earth Sciences* 55:1103–1114. DOI: 10.1139/cjes-
2092 2018-0053

2093 Gee BM. 2018. Reappraisal of the early Permian dissorophid *Alegeinosaurus* from Texas,
2094 USA. *Paläontologische Zeitschrift* 92:661–669. DOI: 10.1007/s12542-018-0421-9

2095 Gee BM. 2020a. Ecology, ontogeny, and taxonomy of the diverse early Permian dissorophoid
2096 assemblage from Richards Spur, Oklahoma. D. Phil. Thesis, University of Toronto.
2097 Available at: [https://search.proquest.com/dissertations-theses/ecology-ontogeny-
2098 taxonomy-diverse-early-permian/docview/2467471016/se-2?accountid=14784](https://search.proquest.com/dissertations-theses/ecology-ontogeny-taxonomy-diverse-early-permian/docview/2467471016/se-2?accountid=14784)

2099 Gee BM. 2020b. Size matters: the effects of ontogenetic disparity on the phylogeny of
2100 Trematopidae (Amphibia: Temnospondyli). *Zoological Journal of the Linnean
2101 Society*, 190:79–113. DOI: 10.1093/zoolinnean/zlz170

2102 Geoffrion AM. 1969. An improved implicit enumeration approach for integer programming.
2103 *Operations Research* 17:437–454. DOI: 10.1287/opre.17.3.437

2104 Godfrey SJ. 1989a. Ontogenetic changes in the skull of the Carboniferous tetrapod *Greererpeton
2105 burkemorani* Romer, 1969. *Philosophical Transactions of the Royal Society of London.
2106 B, Biological Sciences* 323:135–153. DOI: 10.1098/rstb.1989.0003

2107 Godfrey SJ. 1989b. The postcranial skeletal anatomy of the Carboniferous tetrapod *Greererpeton
2108 burkemorani* Romer, 1969. *Philosophical Transactions of the Royal Society of London.
2109 B, Biological Sciences* 323:75–133. DOI: 10.1098/rstb.1989.0002

2110 Goloboff PA, Farris JS, Källersjö M, Oxelman B, Ramírez MJ, Szumik CA. 2003. Improvements
2111 to resampling measures of group support. *Cladistics* 19:324–332. DOI: 10.1111/j.1096-
2112 0031.2003.tb00376.x

2113 Goloboff PA, Catalano SA. 2016. TNT version 1.5, including a full implementation of
2114 phylogenetic morphometrics. *Cladistics* 32:221–238. DOI: 10.1111/cla.12160

2115 Goloboff PA, Catalano SA, Torres A. 2021. Parsimony analysis of phylogenomic datasets (II):
2116 evaluation of PAUP*, MEGA and MPBoot. *Cladistics*. DOI: 10.1111/cla.12476

2117 Golubev VK. 1998a. Narrow-armored chroniosuchians (Amphibia, Anthracosauromorpha) from
2118 the late Permian of Eastern Europe. *Paleontologicheskii Zhurnal* 32:278–287.

2119 Golubev VK. 1998b. Revision of the Late Permian chroniosuchians (Amphibia,
2120 Anthracosauromorpha) from Eastern Europe. *Paleontologicheskii Zhurnal* 32:390–401.
2121 Golubev VK. 1999. A new narrow-armored chroniosuchian (Amphibia, Anthracosauromorpha)
2122 from the Upper Permian of Eastern Europe. *Paleontologicheskii Zhurnal* 33:166–173.
2123 Grand A, Corvez A, Duque Velez LM, Laurin M. 2013. Phylogenetic inference using discrete
2124 characters: performance of ordered and unordered parsimony and of three-item
2125 statements. *Biological Journal of the Linnean Society* 100:914–930. DOI:
2126 10.1111/bij.12159
2127 Gubin YM. 1980. [New Permian dissorophids of the Ural forelands]. *Paleontologicheskii
2128 Zhurnal* 1980:82–90. [in Russian]
2129 Gubin YM. 1987. [On the systematic position and age of some labyrinthodonts from the Upper
2130 Permian deposits of the region west of the Urals]. *Paleontologicheskii Zhurnal* 1987:94–
2131 99. [in Russian]
2132 Guillerme T, Cooper N. 2016. Effects of missing data on topological inference using a total
2133 evidence approach. *Molecular Phylogenetics and Evolution* 94:146–158. DOI:
2134 10.1016/j.ympev.2015.08.023
2135 Han J, Hu S, Cartwright P, Zhao F, Ou Q, Kubota S, Wang X, Yang X. 2016. The earliest
2136 pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte. *Palaeogeography,
2137 Palaeoclimatology, Palaeoecology* 449:166–173. DOI: 10.1016/j.palaeo.2016.02.025
2138 Holmes R, Berman DS, Anderson JS, 2013. A new dissorophid (Temnospondyli,
2139 Dissorophoidea) from the Early Permian of New Mexico (United States). *Comptes
2140 Rendus Palevol* 12:419–435. DOI: 10.1016/j.crpv.2013.07.002
2141 Hook RW. 1989. Stratigraphic distribution of tetrapods in the Bowie and Wichita Groups,
2142 Permo-Carboniferous of north-central Texas. In: Hook RW, ed. *Permo-Carboniferous
2143 vertebrate paleontology, lithostratigraphy and depositional environments of north-
2144 central Texas*. Austin: Society of Vertebrate Paleontology, 47–53.
2145 Jiang, S., JI, S.A. and Mo, J., 2017. First record of bystrowianid chroniosuchians (Amphibia:
2146 Anthracosauromorpha) from the Middle Permian of China. *Acta Geologica
2147 Sinica-English Edition*, 91(5), pp.1523–1529. DOI: 10.1111/1755-6724.13397
2148 Kearney M, Clark, JM. 2003. Problems due to missing data in phylogenetic analyses including
2149 fossils: a critical review. *Journal of Vertebrate Paleontology* 23:263–274. DOI:
2150 10.1671/0272-4634(2003)023[0263:PDTMDI]2.0.CO;2
2151 Kornet DJ, Turner H. 1999. Coding polymorphism for phylogeny reconstruction. *Systematic
2152 Biology* 48:365–379. DOI: 10.1080/106351599260346
2153 Kurochkin EN, Zelenkov NV, Averianov AO, Leshchinskiy SV. 2011. A new taxon of birds
2154 (Aves) from the Early Cretaceous of Western Siberia, Russia. *Journal of Systematic
2155 Palaeontology* 9:109–117. DOI: 10.1080/14772019.2010.522202
2156 Langston W. 1953. Permian amphibians from New Mexico. *University of California
2157 Publications in Geological Sciences* 29:349–416.
2158 Laurin M, Reisz RR. 1997. A new perspective on tetrapod phylogeny. In: Sumida S, Martin K,
2159 eds. *Amniote origins - completing the transition to land*. London: Academic Press, 9–59.
2160 Laurin M, Piñeiro G. 2018. Response: commentary: a reassessment of the taxonomic position of
2161 mesosaurs, and a surprising phylogeny of early amniotes. *Frontiers in Earth Science*
2162 6:220. DOI: 10.3389/feart.2018.00220

2163 Lee MS, Anderson JS. 2006. Molecular clocks and the origin (s) of modern
2164 amphibians. *Molecular Phylogenetics and Evolution* 40:635–639. DOI:
2165 10.1016/j.ympev.2006.03.013

2166 Lewis GE, Vaughn PP. 1965. Early Permian vertebrates from the Cutler Formation of the
2167 Placerville area, Colorado, with a section on footprints from the Cutler Formation. *U.S.
2168 Geological Survey Professional Paper* 503:1–50.

2169 Li J-L, Cheng Z-W. 1999. New anthracosaur and temnospondyl amphibians from Gansu, China
2170 – the fifth report on Late Permian Dashankou lower tetrapod fauna. *Vertebrata
2171 PalAsiatica* 37:234–247.

2172 Liu J, Abdala F. 2017. Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from
2173 the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar,
2174 Xinjiang, China. *Vertebrata PalAsiatica* 55:24–40.

2175 Liu J. 2016. *Yuanansuchus maopingchangensis* sp. nov., the second capitosauroid temnospondyl
2176 from the Middle Triassic Badong Formation of Yuanan, Hubei, China. *PeerJ* 4:e1903.
2177 DOI: 10.7717/peerj.1903

2178 Liu J. 2018. Osteology of the large dissorophid temnospondyl *Anakamacops petrolicus* from the
2179 Guadalupian Dashankou Fauna of China. *Journal of Vertebrate Paleontology*:
2180 38:e1513407. DOI: 10.1080/02724634.2018.1513407

2181 Liu J. 2020. New chroniosuchian materials from Xinjiang, China. *Vertebrata PalAsiatica*
2182 58:283–292.

2183 Lozovsky VR. 2005. Olson's gap or Olson's bridge, that is the question. *New Mexico Museum of
2184 Natural History and Science Bulletin* 30:179–184.

2185 Lucas SG. 2001. A global hiatus in the Middle Permian tetrapod fossil record. *Permophiles*
2186 38:24–27.

2187 Lucas SG. 2002. Discussion and reply: The reptile *Macroleter*: First vertebrate evidence for
2188 correlation of Upper Permian continental strata of North America and Russia Discussion.
2189 *Geological Society of America Bulletin* 114:1174–1175. DOI: 10.1130/0016-
2190 7606(2002)114<1174:DARTRM>2.0.CO;2

2191 Lucas SG. 2005. Olson's gap or Olson's bridge: an answer. *New Mexico Museum of Natural
2192 History and Science Bulletin*, 30:185–186.

2193 Lucas SG. 2013. No gap in the Middle Permian record of terrestrial vertebrates: Comment.
2194 *Geology* 41:e293. DOI: 10.1130/G33734C.1

2195 Mabee PM, Humphries J. 1993. Coding polymorphic data: Examples from allozymes and
2196 ontogeny. *Systematic Biology* 42:166–181. DOI: 10.1093/sysbio/42.2.166

2197 Maddin HC, Fröbisch NB, Evans DC, Milner AR. 2013. Reappraisal of the Early Permian
2198 amphibamid *Tersomius texensis* and some referred material. *Comptes Rendus
2199 Palevol* 12:447–461. DOI: 10.1016/j.crpv.2013.06.007

2200 Maddison WP, Maddison DR. 2020. *Mesquite: a modular system for evolutionary analysis
2201 version 3.69*. Available at: <http://www.mesquiteproject.org>

2202 Marjanović D, Laurin M. 2019. Phylogeny of Paleozoic limbed vertebrates reassessed through
2203 revision and expansion of the largest published relevant data matrix. *PeerJ* 6:e5565. DOI:
2204 10.7717/peerj.5565

2205 Marsh AD, Parker WG, Langer MC, Nesbitt SJ. 2019. Redescription of the holotype specimen of
2206 *Chindesaurus bryansmalli* Long and Murry, 1995 (Dinosauria, Theropoda), from
2207 Petrified Forest National Park, Arizona. *Journal of Vertebrate Paleontology*
2208 39:e1645682. DOI: 10.1080/02724634.2019.1645682

2209 Marsicano CA, Latimer E, Rubidge B, Smith RM. 2017. The Rhinesuchidae and early history of
2210 the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic. *Zoological
2211 Journal of the Linnean Society* 181:357–384. DOI: 10.1093/zoolinnean/zlw032

2212 Marzola M, Mateus O, Shubin NH, Clemmensen LB. 2017. *Cyclotosaurus naraserluki*, sp. nov.,
2213 a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord
2214 Formation of the Jameson Land Basin (East Greenland). *Journal of Vertebrate
2215 Paleontology* 37:e1303501. DOI: 10.1080/02724634.2017.1303501

2216 May W, Huttenlocker AK, Pardo JD, Benca J, Small BJ. 2011. New Upper Pennsylvanian
2217 armored dissorophid records (Temnospondyli, Dissorophoidea) from the US
2218 midcontinent and the stratigraphic distributions of dissorophids. *Journal of Vertebrate
2219 Paleontology* 31:907–912. DOI: 10.1080/02724634.2011.582532

2220 McGowan GJ. 2002. Albanerpetontid amphibians from the Lower Cretaceous of Spain and Italy:
2221 a description and reconsideration of their systematics. *Zoological Journal of the Linnean
2222 Society* 135:1–32. DOI: 10.1046/j.1096-3642.2002.00013.x

2223 Milner AR, Schoch RR. 2013. *Trimerorhachis* (Amphibia: Temnospondyli) from the Lower
2224 Permian of Texas and New Mexico: cranial osteology, taxonomy and
2225 biostratigraphy. *Neues Jahrbuch für Geologie und Paläontologie –
2226 Abhandlungen* 270:91–128. DOI: 10.1127/0077-7749/2013/0360

2227 Milner AR. 1985. On the identity of *Trematopsis seltini* (Amphibia: Temnospondyli) from the
2228 Lower Permian of Texas. *Neues Jahrbuch für Geologie und Paläontologie – Monatshefte
2229* 1985:357–367. DOI: 10.1127/njgpm/1985/1985/357

2230 Milner AR. 2003. *Longiscitula houghae* DeMar, 1966 (Amphibia: Temnospondyli), a junior
2231 synonym of *Dissorophus multicinctus* Cope, 1895. *Journal of Vertebrate
2232 Paleontology* 23:941–944. DOI: 10.1671/18

2233 Milner AR. 2018 (for 2019). Two primitive trematopid amphibians (Temnospondyli,
2234 Dissorophoidea) from the Upper Carboniferous of the Czech Republic. *Earth and
2235 Environmental Science Transactions of the Royal Society of Edinburgh* 109:201–223.
2236 DOI: 10.1017/S1755691018000725

2237 Moustafa YS. 1952. Amphibian mass death in the Permian. *Institute d’Egypt Bulletin* 33:301–
2238 304.

2239 Moustafa YS. 1955a. The affinities of *Parioxys ferricolus* and the phylogeny of the
2240 ‘eryopsoid’amphibians. *Bulletin de l’Institut d’Egypte* 36:77–104.

2241 Moustafa YS. 1955b. The skeletal structure of *Parioxys ferricolus*, Cope. *Bulletin de l’Institut
2242 d’Egypte* 36:41–76.

2243 Nesbitt SJ, Ezcurra MD. 2015. The early fossil record of dinosaurs in North America: a new
2244 neotheropod from the base of the Upper Triassic Dockum Group of Texas. *Acta
2245 Palaeontologica Polonica* 60:513–526. DOI: 10.4202/app.00143.2014

2246 Noble GK. 1931. *The biology of the Amphibia*. New York: McGraw-Hill Book Company.

2247 Olroyd SL, Sidor CA. 2017. A review of the Guadalupian (middle Permian) global tetrapod
2248 fossil record. *Earth-Science Reviews* 171:583–597. DOI: 10.1016/j.earscirev.2017.07.001

2249 Olson EC. 1941. The family Trematopsidae. *The Journal of Geology* 49:149–176. DOI:
2250 10.1086/624952

2251 Olson EC. 1972. *Fayella chickashaensis*, the Dissorophoidea and the Permian terrestrial
2252 radiations. *Journal of Paleontology* 46:104–114.

2253 Pacheco CP, Eltink E, Müller RT, Dias-da-Silva S. 2017. A new Permian temnospondyl with
2254 Russian affinities from South America, the new family Konzhukoviidae, and the

2255 phylogenetic status of Archegosauroidea. *Journal of Systematic Palaeontology* 15:241–
2256 256. DOI: 10.1080/14772019.2016.1164763

2257 Pardo JD, Small BJ, Huttenlocker AK. 2017. Stem caecilian from the Triassic of Colorado sheds
2258 light on the origins of Lissamphibia. *Proceedings of the National Academy of Sciences of
2259 the United States of America* 114:E5389–E5395. DOI: 10.1073/pnas.1706752114

2260 Pardo JD, Small BJ, Milner AR, Huttenlocker AK. 2019. Carboniferous–Permian climate change
2261 constrained early land vertebrate radiations. *Nature Ecology & Evolution* 3:200–206.
2262 DOI: 10.1038/s41559-018-0776-z

2263 Pawley K, Warren A. 2006. The appendicular skeleton of *Eryops megacephalus*
2264 (Temnospondyli: Eryopoidea) from the lower Permian of North America. *Journal of
2265 Paleontology* 80:561–580. DOI: 10.1666/0022-3360(2006)80[561:TASOEM]2.0.CO;2

2266 Pérez-Ben CM, Báez AM, Schoch RR. 2019 (for 2020). Morphological evolution of the skull
2267 roof in temnospondyl amphibians mirrors conservative ontogenetic patterns. *Zoological
2268 Journal of the Linnean Society* 188:163–179. DOI: 10.1093/zoolinnean/zlz068

2269 Pérez-Ben CM, Schoch RR, Báez AM. 2018. Miniaturization and morphological evolution in
2270 Paleozoic relatives of living amphibians: a quantitative approach. *Paleobiology* 44:58–
2271 75. DOI: 10.1017/pab.2017.22

2272 Polley BP, Reisz RR. 2011. A new Lower Permian trematopid (Temnospondyli: Dissorophoidea)
2273 from Richards Spur, Oklahoma. *Zoological Journal of the Linnean Society* 16:789–815.
2274 DOI: 10.1111/j.1096-3642.2010.00668.x

2275 Prevosti FJ, Chemisquy MA. 2010. The impact of missing data on real morphological
2276 phylogenies: influence of the number and distribution of missing entries. *Cladistics*
2277 26:326–339. DOI: 10.1111/j.1096-0031.2009.00289.x

2278 Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of
2279 Lissamphibia. *Systematic Biology* 60:466–481. DOI: 10.1093/sysbio/syr047

2280 Quemeneur S, de Buffrenil V, Laurin M. 2013. Microanatomy of the amniote femur and
2281 inference of lifestyle in limbed vertebrates. *Biological Journal of the Linnean Society*
2282 109:644–655. DOI: 10.1111/bij.12066

2283 Reisz RR, Laurin M. 2001. The reptile *Macroletter*: First vertebrate evidence for correlation of
2284 Upper Permian continental strata of North America and Russia. *Geological Society of
2285 America Bulletin* 113:1229–1233. DOI: 10.1130/0016-
2286 7606(2001)113<1229:TRMFVE>2.0.CO;2

2287 Reisz RR, Laurin M. 2002. Reply. *Geological Society of America Bulletin* 114:1176–1177. DOI:
2288 10.1130/0016-7606(2002)114<1176:R>2.0.CO;2

2289 Reisz RR, Schoch RR, Anderson JS. 2009. The armoured dissorophid *Cacops* from the Early
2290 Permian of Oklahoma and the exploitation of the terrestrial realm by
2291 amphibians. *Naturwissenschaften* 96:789. DOI: 10.1007/s00114-009-0533-x

2292 Rineau V, Grand A, Zaragüeta R, Laurin M. 2015. Experimental systematics: sensitivity of
2293 cladistic methods to polarization and character ordering schemes. *Contributions to
2294 Zoology* 8:129–148. DOI: 10.1163/18759866-08402003

2295 Rineau V, Zaragüeta i Bagils RZ, Laurin M. 2018. Impact of errors on cladistic inference:
2296 simulation-based comparison between parsimony and three-taxon analysis. *Contributions
2297 to Zoology* 87:25–40. DOI: 10.1163/18759866-08701003

2298 Romer AS. 1928. Vertebrate faunal horizons in the Texas Permo–Carboniferous red beds. *The
2299 University of Texas Bulletin* 2801:67–108.

2300 Romer AS. 1935. Early history of Texas redbeds vertebrates. *Bulletin of the Geological Society*
2301 *of America* 46:1597–1657. DOI: 10.1130/GSAB-46-1597

2302 Romer AS. 1952. Fossil vertebrates of the Tri-State area. 2. Late Pennsylvanian and early
2303 Permian vertebrates of the Pittsburgh-West Virginia region. *Annals of Carnegie Museum*
2304 33:47–112.

2305 Ruta M, Bolt JR. 2006. A reassessment of the temnospondyl amphibian *Perryella olsoni* from
2306 the Lower Permian of Oklahoma. *Earth and Environmental Science Transactions of The*
2307 *Royal Society of Edinburgh* 97:113–165. DOI: 10.1017/S0263593300001437

2308 Ruta M, Coates MI, Quicke DL. 2003. Early tetrapod relationships revisited. *Biological*
2309 *Reviews* 78:251–345. DOI: 10.1017/S1464793102006103

2310 Ruta M, Coates MI. 2007. Dates, nodes and character conflict: addressing the lissamphibian
2311 origin problem. *Journal of Systematic Palaeontology* 5:69–122. DOI:
2312 10.1017/S1477201906002008

2313 Ruta M, Krieger J, Angielczyk KD, Wiils MA. 2019. The evolution of the tetrapod humerus:
2314 Morphometrics, disparity, and evolutionary rates. *Earth and Environmental Science*
2315 *Transactions of the Royal Society of Edinburgh* 109:351–369. DOI:
2316 10.1017/S1755691018000749

2317 Ruta M, Pisani D, Lloyd GT, Benton MJ. 2007. A supertree of Temnospondyli: cladogenetic
2318 patterns in the most species-rich group of early tetrapods. *Proceedings of the Royal*
2319 *Society B: Biological Sciences* 274:3087–3095. DOI: 10.1098/rspb.2007.1250

2320 Sanchez S, Germain D, de Ricqlès AD, Abourachid A, Goussard F, Tafforeau P. 2010.
2321 Limb-bone histology of temnospondyls: implications for understanding the
2322 diversification of palaeoecologies and patterns of locomotion of Permo-Triassic
2323 tetrapods. *Journal of Evolutionary Biology* 23:2076–2090. DOI: 10.1111/j.1420-
2324 9101.2010.02081.x

2325 Sanderson MJ. 1995. Objections to bootstrapping phylogenies: a critique. *Systematic*
2326 *Biology* 44:299–320. DOI: 10.1093/sysbio/44.3.299

2327 Scheyer TM, Spiekman SN, Sues H-D, Ezcurra MD, Butler RJ, Jones ME. 2020. *Colobops*: a
2328 juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive
2329 archosauromorph with an unusually strong bite. *Royal Society Open Science* 7:192179.
2330 DOI: 10.1098/rsos.192179

2331 Schoch RR, Henrici AC, Hook RW. 2020. A new dissorophoid temnospondyl from the
2332 Allegheny Group (late Carboniferous) of Five Points, Mahoning County, Ohio
2333 (USA). *Journal of Paleontology* 1–14 (FirstView). DOI: 10.1017/jpa.2020.101

2334 Schoch RR, Milner AR. 2008. The intrarelationships and evolutionary history of the
2335 temnospondyl family Branchiosauridae. *Journal of Systematic Palaeontology* 6:409–431.
2336 DOI: 10.1017/S1477201908002460

2337 Schoch RR, Milner AR. 2014. Handbook of Paleoherpetology Part 3A2. Temnospondyli I.
2338 München: Verlag Dr. Friedrich Pfeil.

2339 Schoch RR, Milner AR. 2021. Morphology and relationships of the temnospondyl *Macrerpeton*
2340 *huxleyi* from the Pennsylvanian of Linton, Ohio (USA). *Neues Jahrbuch für Geologie*
2341 *und Paläontologie – Abhandlungen* 299:77–98. DOI: 10.1127/njgpa/2021/0956

2342 Schoch RR, Rubidge BS. 2005. The amphibamid *Micropholis* from the Lystrosaurus assemblage
2343 zone of South Africa. *Journal of Vertebrate Paleontology* 25:502–522. DOI:
2344 10.1671/0272-4634(2005)025[0502:TAMFTL]2.0.CO;2

2345 Schoch RR, Sues H-D. 2013. A new dissorophid temnospondyl from the Lower Permian of
2346 north-central Texas. *Comptes Rendus Palevol* 12:437–445. DOI:
2347 10.1016/j.crpv.2013.04.002

2348 Schoch RR, Voigt S. 2019. A dvinosaurian temnospondyl from the Carboniferous-Permian
2349 boundary of Germany sheds light on dvinosaurian phylogeny and distribution. *Journal of*
2350 *Vertebrate Paleontology* 39:e1577874. DOI: 10.1080/02724634.2019.1577874

2351 Schoch RR, Werneburg R, Voigt S. 2020. A Triassic stem-salamander from Kyrgyzstan and the
2352 origin of salamanders. *Proceedings of the National Academy of Sciences of the United*
2353 *States of America* 117:11584–11588. DOI: 10.1073/pnas.2001424117

2354 Schoch RR, Witzmann F, 2018. Morphology of the Late Carboniferous temnospondyl
2355 *Limnogyrinus elegans*, and the evolutionary history of the Micromelerpetidae. *Neues*
2356 *Jahrbuch für Geologie und Paläontologie – Abhandlungen* 289:293–310. DOI:
2357 10.1127/njgpa/2018/0762

2358 Schoch RR. 1999. Studies on braincases of early tetrapods: structure, morphological diversity,
2359 and phylogeny – 2. Dissorophoids, eryopids, and stereospondyls. *Neues Jahrbuch für*
2360 *Geologie und Paläontologie – Abhandlungen* 213:289–312. DOI:
2361 10.1127/njgpa/213/1999/289

2362 Schoch RR. 2012. Character distribution and phylogeny of the dissorophid
2363 temnospondyls. *Fossil Record* 15:121–137. DOI: 10.1002/mmng.201200010

2364 Schoch RR. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic
2365 analysis. *Journal of Systematic Palaeontology* 11:73–705. DOI:
2366 10.1080/14772019.2012.699006

2367 Schoch RR. 2018a (for 2019). The putative lissamphibian stem-group: phylogeny and evolution
2368 of the dissorophoid temnospondyls. *Journal of Paleontology* 93:137–156. DOI:
2369 10.1017/jpa.2018.67

2370 Schoch RR. 2018b. The temnospondyl *Parotosuchus nasutus* (v. Meyer, 1858) from the Early
2371 Triassic Middle Buntsandstein of Germany. *Palaeodiversity* 11:107–126. DOI:
2372 10.18476/pale.11.a6

2373 Schoch RR. 2019. Osteology of the temnospondyl *Trematosaurus brauni* Burmeister, 1849 from
2374 the Middle Buntsandstein of Bernburg, Germany. *Palaeodiversity* 12:41–63. DOI:
2375 10.18476/pale.v12.a4

2376 Schultz CL, Langer MC, Montefeltro FC. 2016. A new rhynchosaur from south Brazil (Santa
2377 Maria Formation) and rhynchosaur diversity patterns across the Middle-Late Triassic
2378 boundary. *PalZ* 90:593–609. DOI: 10.1007/s12542-016-0307-7

2379 Sereno PC. 2007. Logical basis for morphological characters in phylogenetics. *Cladistics*
2380 23:565–587. DOI: 10.1111/j.1096-0031.2007.00161.x

2381 Sigurdsen T, Green DM. 2011. The origin of modern amphibians: a re-evaluation. *Zoological*
2382 *Journal of the Linnean Society* 162:457–469. DOI: 10.1111/j.1096-3642.2010.00683.x

2383 Simmons MP, Pickett KM, Miya M. 2004. How meaningful are Bayesian support values?.
2384 *Molecular Biology and Evolution* 21:188–199. DOI: 10.1093/molbev/msh014

2385 Simões TR, Caldwell MW, Palci A, Nydam RL. 2017. Giant taxon-character matrices: quality of
2386 character constructions remains critical regardless of size. *Cladistics* 33:198–219. DOI:
2387 10.1111/cla.12163

2388 Slowinski JB. 1993. “Unordered” versus “ordered” characters. *Systematic Biology* 42:155–165.
2389 DOI: 10.1093/sysbio/42.2.155.

2390 Smithson TR. 1982. The cranial morphology of *Greererpeton burkemorani* Romer (Amphibia:
2391 Temnospondyli). *Zoological Journal of the Linnean Society* 76:29–90. DOI:
2392 10.1111/j.1096-3642.1982.tb01955.x

2393 Spaulding M, O'Leary MA, Gatesy J. 2009. Relationships of Cetacea (Artiodactyla) among
2394 mammals: increased taxon sampling alters interpretations of key fossils and character
2395 evolution. *PLOS ONE* 4:e7062. DOI: 10.1371/journal.pone.0007062

2396 Soul LC, Friedman M. 2017. Bias in phylogenetic measurements of extinction and a case study
2397 of end-Permian tetrapods. *Palaeontology* 60:169–185. DOI: 10.1111/pala.12274

2398 Sullivan C, Reisz RR, May WJ. 2000. Large dissorophoid skeletal elements from the Lower
2399 Permian Richards Spur fissures, Oklahoma, and their paleoecological
2400 implications. *Journal of Vertebrate Paleontology* 20:456–461. DOI: 10.1671/0272-
2401 4634(2000)020[0456:LDSEFT]2.0.CO;2

2402 Swofford DL. 2021. *PAUP*. Phylogenetic analysis using parsimony** 4.0a 169. Available at:
2403 <http://phylosolutionscom/paup-test/>

2404 Tarailo DA. 2018. Taxonomic and ecomorphological diversity of temnospondyl amphibians
2405 across the Permian–Triassic boundary in the Karoo Basin (South Africa). *Journal of
2406 Morphology* 279:1840–1848. DOI: 10.1002/jmor.20906

2407 Trinajstic K, Dennis-Bryan K. 2009. Phenotypic plasticity, polymorphism and phylogeny within
2408 placoderms. *Acta Zoologica* 90:83–102. DOI: 10.1111/j.1463-6395.2008.00363.x

2409 Vallin G, Laurin M. 2004. Cranial morphology and affinities of *Microbrachis*, and a reappraisal
2410 of the phylogeny and lifestyle of the first amphibians. *Journal of Vertebrate
2411 Paleontology* 24:56–72. DOI: 10.1671/5.1

2412 Vaughn PP. 1969. Further evidence of close relationship of the trematopsid and dissorophid
2413 labyrinthodont amphibians with a description of a new genus and new species. *Bulletin of
2414 the Southern California Academy of Sciences* 68:121–130.

2415 Villalobos-Segura E, Underwood CJ, Ward DJ. 2021. The first skeletal record of the enigmatic
2416 Cretaceous sawfish genus *Ptychotrygon* (Chondrichthyes, Batoidea) from the Turonian of
2417 Morocco. *Papers in Palaeontology* 7:353–376. DOI: 10.1002/spp2.1287

2418 Watanabe A. 2015 (for 2016). The impact of poor sampling of polymorphism on cladistic
2419 analysis. *Cladistics* 32:317–334. DOI: 10.1111/cla.12130

2420 Wiens JJ, Servedio MR. 1997. Accuracy of phylogenetic analysis including and excluding
2421 polymorphic characters. *Systematic Biology* 46:332–345. DOI: 10.1093/sysbio/46.2.332

2422 Wiens JJ, Servedio MR. 1998. Phylogenetic analysis and intraspecific variation: performance of
2423 parsimony, likelihood, and distance methods. *Systematic Biology* 47:228–253. DOI:
2424 10.1080/106351598260897

2425 Wiens JJ. 1995. Polymorphic characters in phylogenetic systematics. *Systematic
2426 Biology* 44:482–500. DOI: 10.1093/sysbio/44.4.482

2427 Wiens JJ. 1998. Testing phylogenetic methods with tree congruence: phylogenetic analysis of
2428 polymorphic morphological characters in phrynosomatid lizards. *Systematic
2429 Biology* 47:427–444. DOI: 10.1080/106351598260806

2430 Wiens JJ. 1999. Polymorphism in systematics and comparative biology. *Annual Review of
2431 Ecology and Systematics* 30:327–362. DOI: 10.1146/annurev.ecolsys.30.1.327

2432 Wiens JJ. 2001. Character analysis in morphological phylogenetics: problems and solutions.
2433 *Systematic Biology* 50(5):689–699. DOI: 10.1080/106351501753328811.

2434 Wiens JJ. 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a
2435 missing data problem?. *Journal of Vertebrate Paleontology* 23:297–310. DOI:
2436 10.1671/0272-4634(2003)023[0297:ITICAP]2.0.CO;2

2437 Wiens JJ. 2003b. Missing data, incomplete taxa, and phylogenetic accuracy. *Systematic Biology*
2438 52:528–538. DOI: 10.1080/10635150390218330

2439 Wiens JJ. 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction?.
2440 *Systematic Biology* 54:731–742. DOI: 10.1080/10635150500234583

2441 Wiens JJ. 2006. Missing data and the design of phylogenetic analyses. *Journal of Biomedical*
2442 *Informatics* 39:34–42. DOI: 10.1016/j.jbi.2005.04.001

2443 Wiens JJ, Morrill MC. 2011. Missing data in phylogenetic analysis: reconciling results from
2444 simulations and empirical data. *Systematic Biology* 60:719–731. DOI:
2445 10.1093/sysbio/syr025

2446 Wilkinson, M., 2003. Missing entries and multiple trees: instability, relationships, and support in
2447 parsimony analysis. *Journal of Vertebrate Paleontology* 23:311–323. DOI:
2448 10.1671/0272-4634(2003)023[0311:MEAMTI]2.0.CO;2

2449 Williston SW. 1910. Cacops, Desmospondylus; new genera of Permian vertebrates. *Bulletin of*
2450 *the Geological Society of America* 21:249–284. DOI: 10.1130/GSAB-21-249

2451 Williston SW. 1911. American Permian vertebrates. University of Chicago Press, Chicago, 130
2452 pp.

2453 Williston SW. 1914. *Broiliellus*, a new genus of amphibians from the Permian of Texas. *The*
2454 *Journal of Geology* 22:49–56.

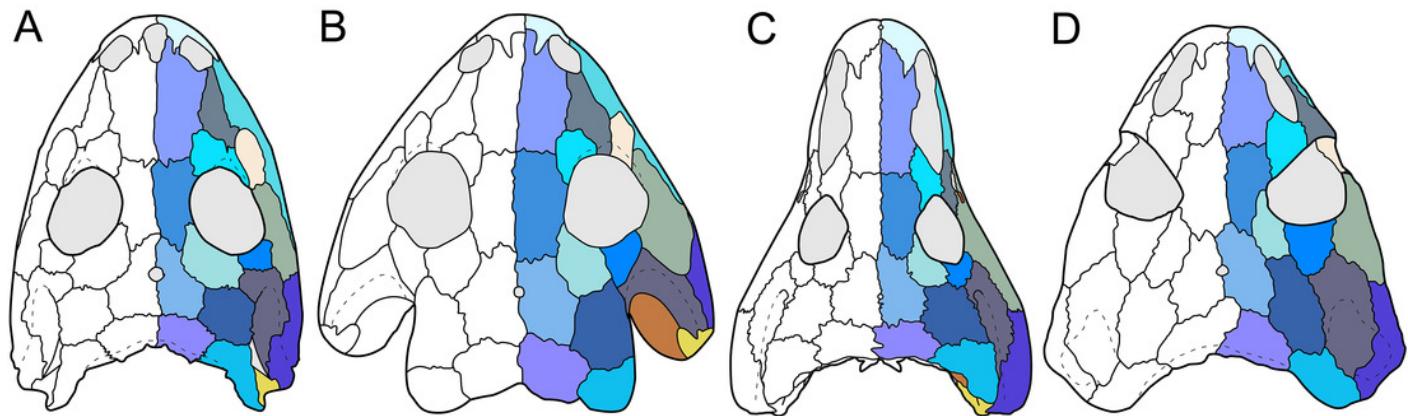
2455 Witzmann F, Ruta M. 2018. Evolutionary changes in the orbits and palatal openings of early
2456 tetrapods, with emphasis on temnospondyls. *Earth and Environmental Science*
2457 *Transactions of the Royal Society of Edinburgh* 109:333–350. DOI:
2458 10.1017/S1755691018000919

2459 Witzmann F, Soler-Gijón R. 2010. The bone histology of osteoderms in temnospondyl
2460 amphibians and in the chroniosuchian *Bystrowiella*. *Acta Zoologica* 91:96–114. DOI:
2461 10.1111/j.1463-6395.2008.00385.x

2462 Witzmann F, Sues H-D, Kammerer CF, Fröbisch J. 2019. A new bystrowianid from the upper
2463 Permian of Germany: first record of a Permian chroniosuchian (Tetrapoda) outside
2464 Russia and China. *Journal of Vertebrate Paleontology* 39:e1667366. DOI:
2465 10.1080/02724634.2019.1667366

2466 Witzmann F, Werneburg I. 2017. The palatal interpterygoid vacuities of temnospondyls and the
2467 implications for the associated eye- and jaw musculature. *The Anatomical*
2468 *Record* 300:1240–1269. DOI: 10.1002/ar.23582

2469 Witzmann F. 2005. A dissorophid temnospondyl in the Upper Permian Kupferschiefer of
2470 Germany. *Neues Jahrbuch für Geologie und Paläontologie – Monatshefte* 2005:289–300.
2471 DOI: 10.1127/njgpm/2005/2005/289


2472 Witzmann F. 2013. Phylogenetic patterns of character evolution in the hyobranchial apparatus of
2473 early tetrapods. *Earth and Environmental Science Transactions of the Royal Society of*
2474 *Edinburgh* 104:145–167. DOI: 10.1017/S1755691013000480

2475 Zander RH. 2004. Minimal values for reliability of bootstrap and jackknife proportions, decay
2476 index, and Bayesian posterior probability. *Phyloinformatics* 2:1–13.

Figure 1

Cranial reconstructions of select representatives of Olsoniformes.

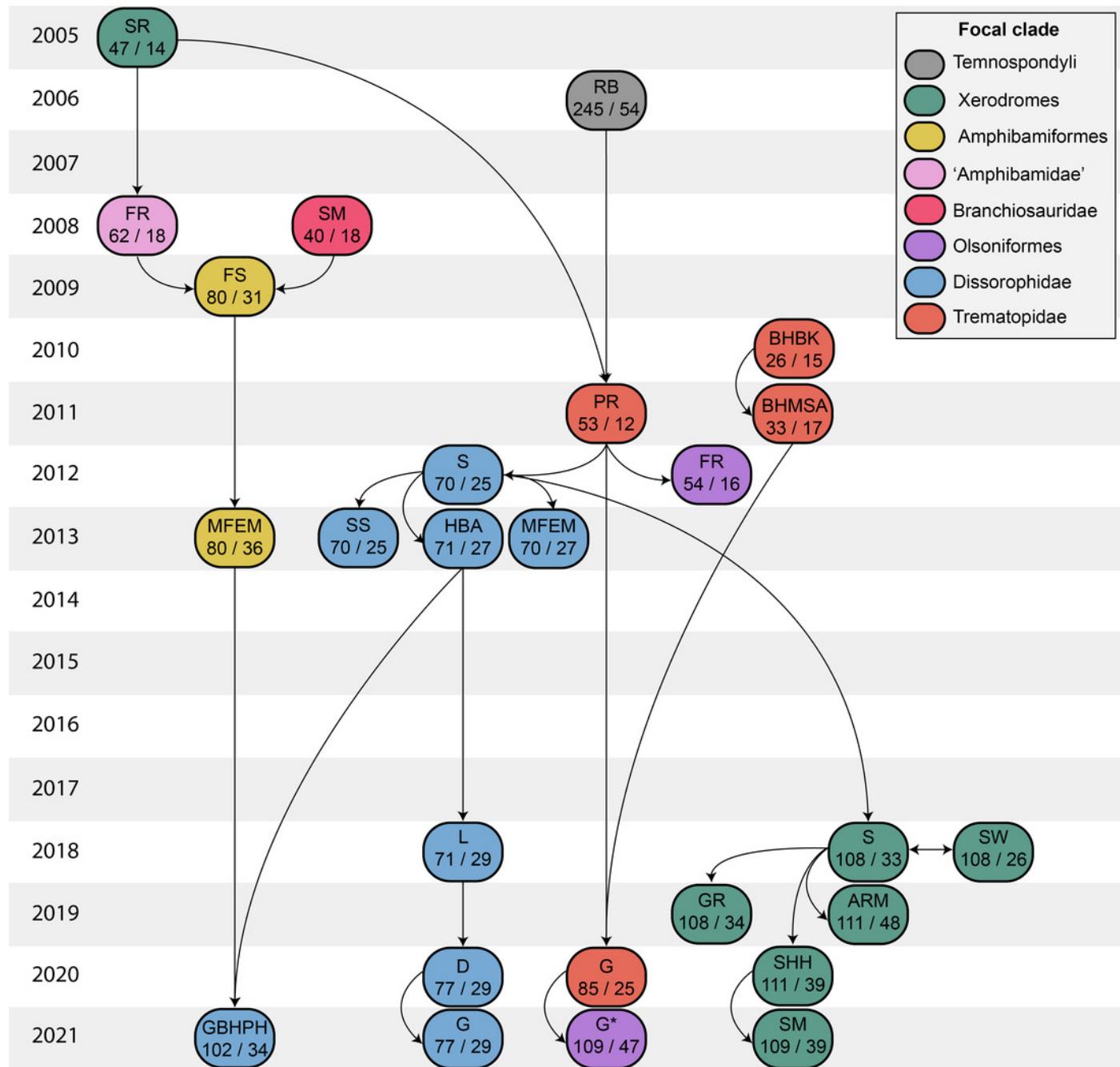

(A) the cacopine dissorophid *Cacops morrisi* (after Reisz, Schoch & Anderson, 2009); **(B)** the dissorophine dissorophid *Dissorophus multicinctus* (after Schoch, 2012); **(C)** the long-snouted trematopid *Acheloma cumminsii* (after Dilkes & Reisz, 1987; Polley & Reisz, 2011); **(D)** the short-snouted trematopid *Ecolsonia cutlerensis* (after Berman, Reisz & Eberth, 1985). Cool colors represent skull roof elements; warm colors represent palatal elements. Not to scale.

Figure 2

Genealogy of olsoniform-focused phylogenetic matrices.

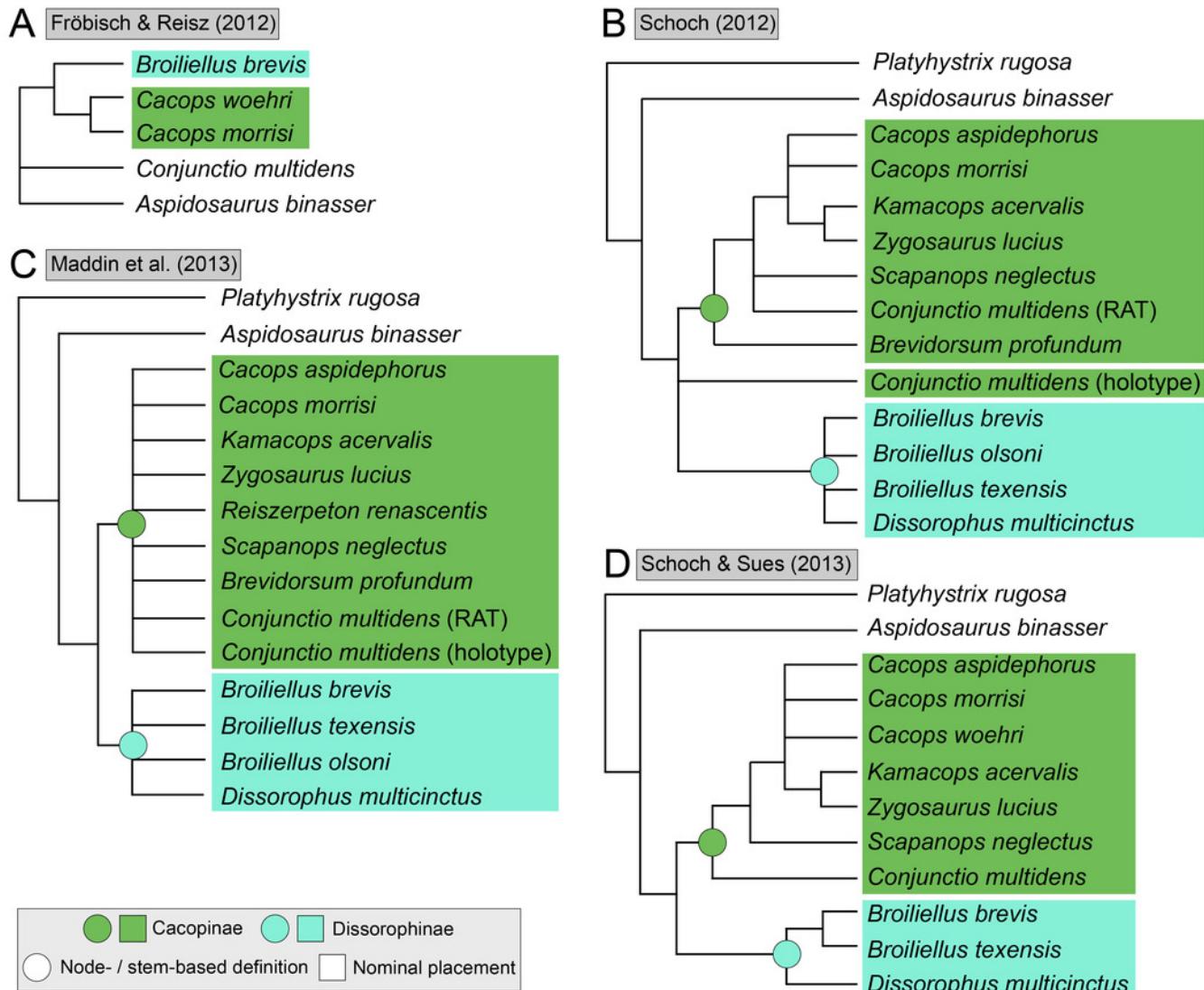

Note that sources only reflect major contributions to character sampling. Number of characters is listed on the left, and number of all sampled taxa is listed on the right. 'Focal clade' refers to the most exclusive clade to which at least half of the sampled taxa belong. 'Amphibamidae' here refers to the historical concept of what is now Amphibamiformes (in part). Abbreviations: ARM, Atkins, Reisz & Maddin (2019); BHBK, Berman et al. (2010); BHMSA, Berman et al. (2011); D, Dilkes (2020); FR, Fröbisch & Reisz (2008, 2012); FS, Fröbisch & Schoch (2009); G, Gee (2020b); G* (2021), this study; GBPH, Gee et al. (2021); GR, Gee & Reisz (2019); HBA, Holmes, Berman & Anderson (2013); L, Liu (2018); MFEM, Maddin et al. (2013); PR, Polley & Reisz (2011); RB, Ruta & Bolt (2006); S, Schoch (2012, 2018a); SHH, Schoch, Henrici & Hook (2020); SM, Schoch & Milner (2008, 2021); SR, Schoch & Rubidge (2005); SS, Schoch & Sues (2013); SW, Schoch & Witzmann (2018).

Figure 3

Comparison of tree topologies from early phylogenetic analyses of Dissorophidae.

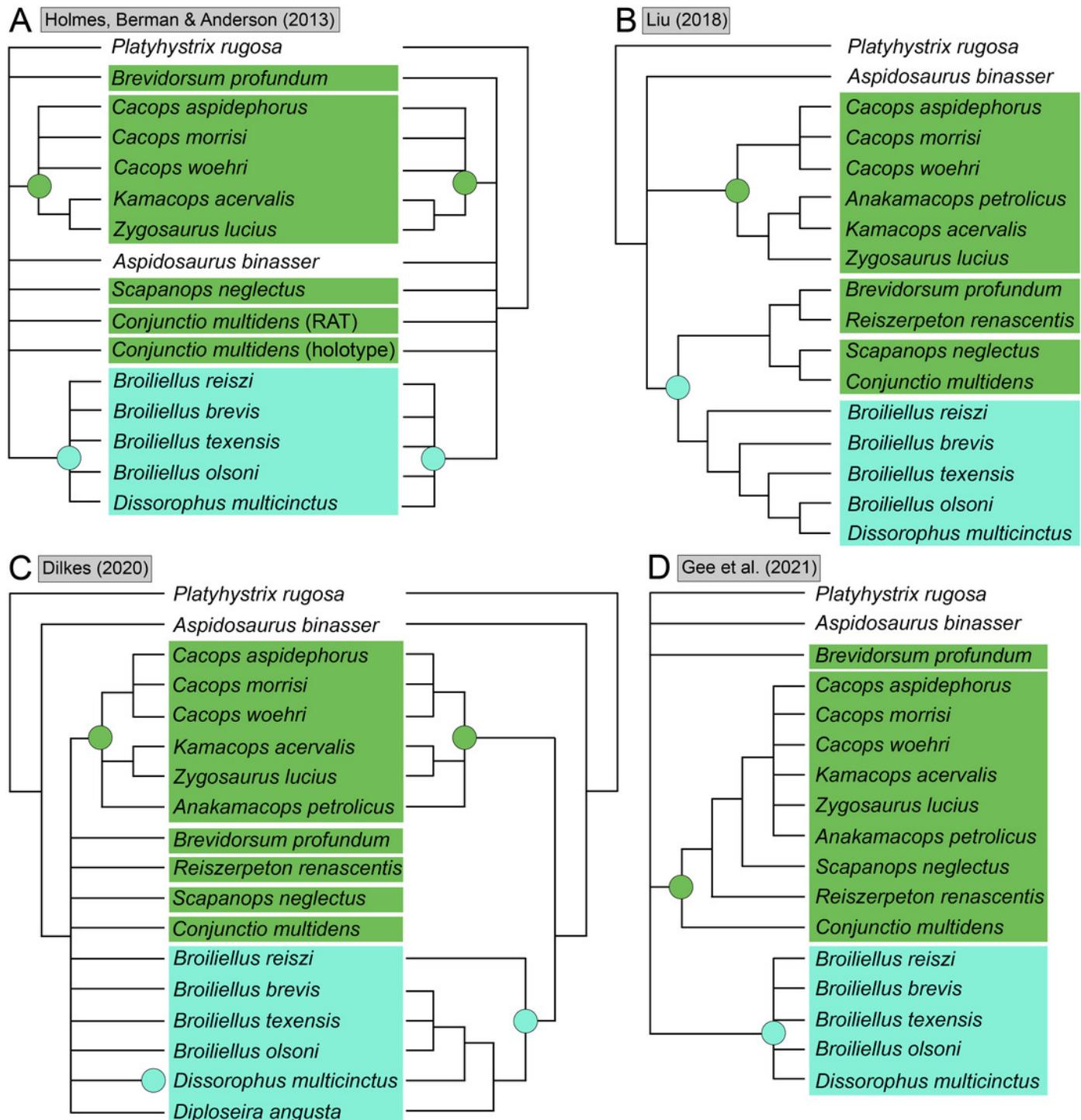

All topologies represent strict consensus trees except for Schoch (2012) and are visually truncated to depict only dissorophids. Cacopinae and Dissorophinae are not annotated for Fröbisch & Reisz's topology because the taxonomic specifiers (*Cacops aspidephorus* and *Dissorophus multicinctus*) were not sampled. *Conjunctio multidens* represents a composite OTU unless otherwise indicated by the differentiation of the holotype from the specimen historically referred to as the Rio Arriba Taxon (RAT; UCMP 40103).

Figure 4

Comparison of reported tree topologies from recent phylogenetic analyses of Dissorophidae.

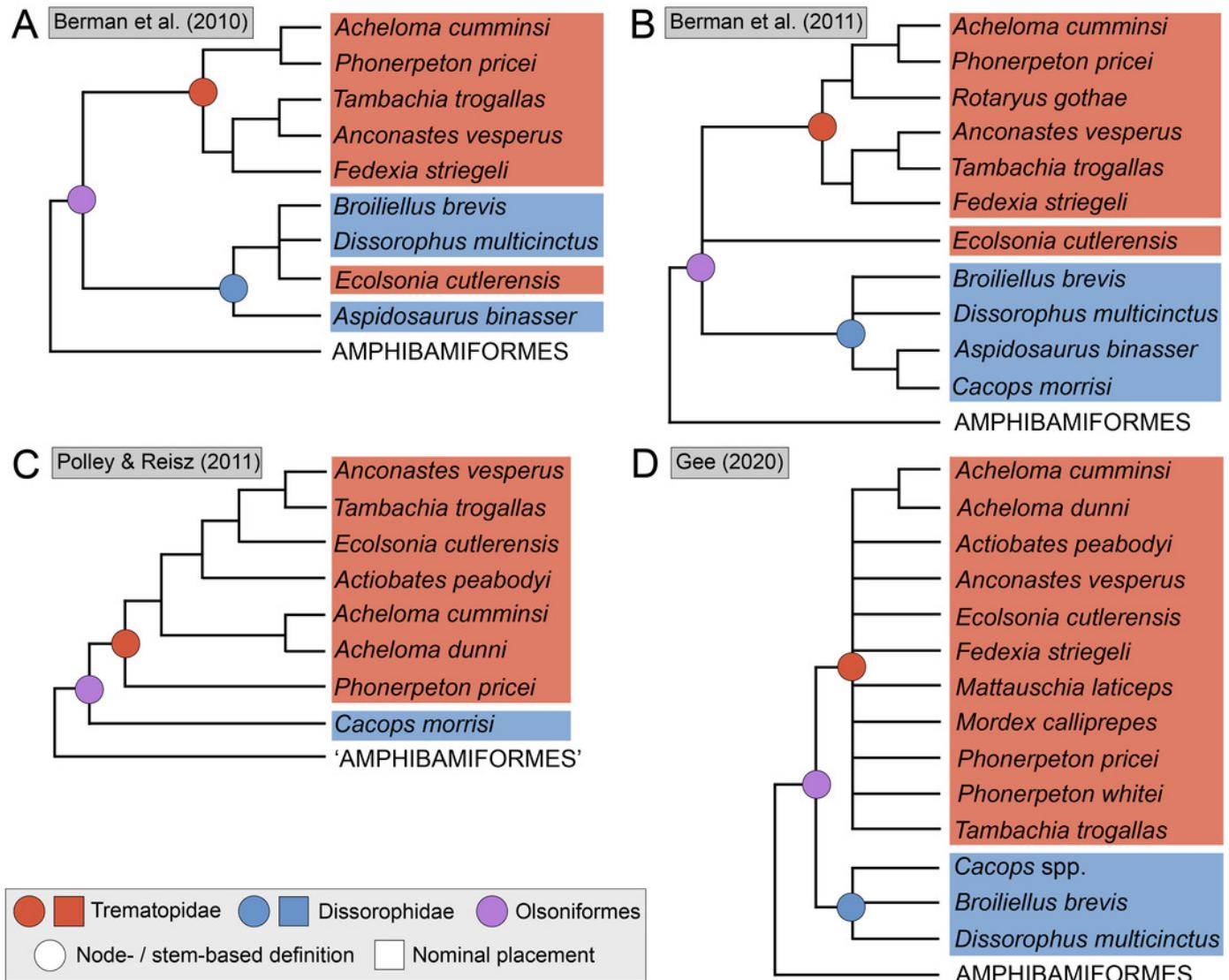

All topologies represent strict consensus trees and are visually truncated to depict only dissorophids. Colors and symbols as with Figure 3. *Conjunctio multidens* represents a composite OTU unless otherwise indicated; Gee et al. (2021) recovered all three specimens as a clade, so they are collapsed to a single visual OTU here. For Holmes, Berman & Anderson (2013), the tree on the left represents the result of their analysis with scoring changes to the first referred specimen of *C. multidens* (UCMP 40103 [RAT]); the tree on the right represents the result with the original scorings from Schoch (2012). For Dilkes (2020), the tree on the left represents the result of his analysis with the full character and taxon sample; the tree on the right represents the result following the removal of wildcard taxa.

Figure 5

Comparison of tree topologies from previous phylogenetic analyses of Trematopidae.

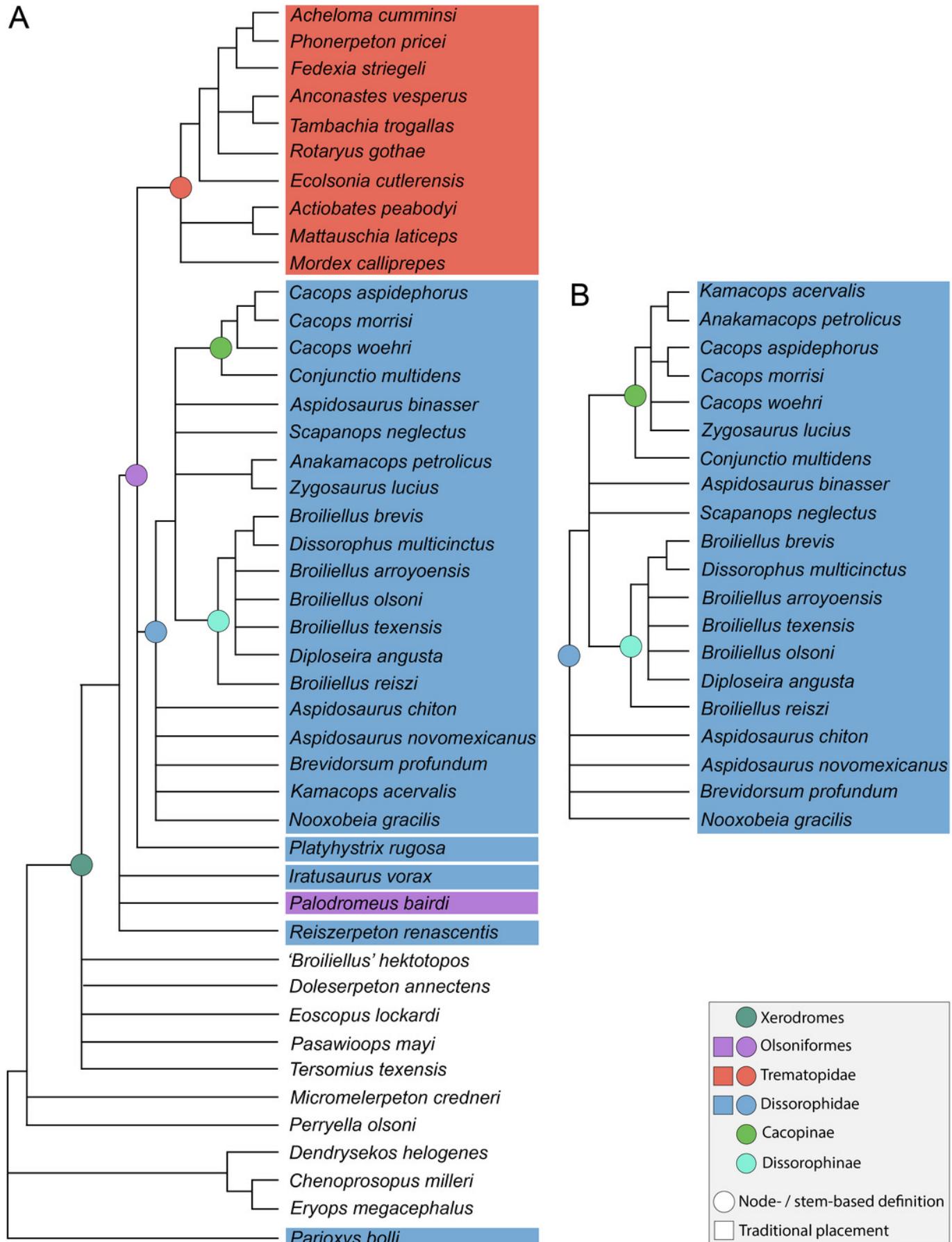

All topologies represent strict consensus trees and are visually truncated to depict only xerodromes. Nominal placement and nodal definitions from Schoch & Milner (2014).

Figure 6

Adams consensus trees for Analysis 1A (all scored olsoniforms).

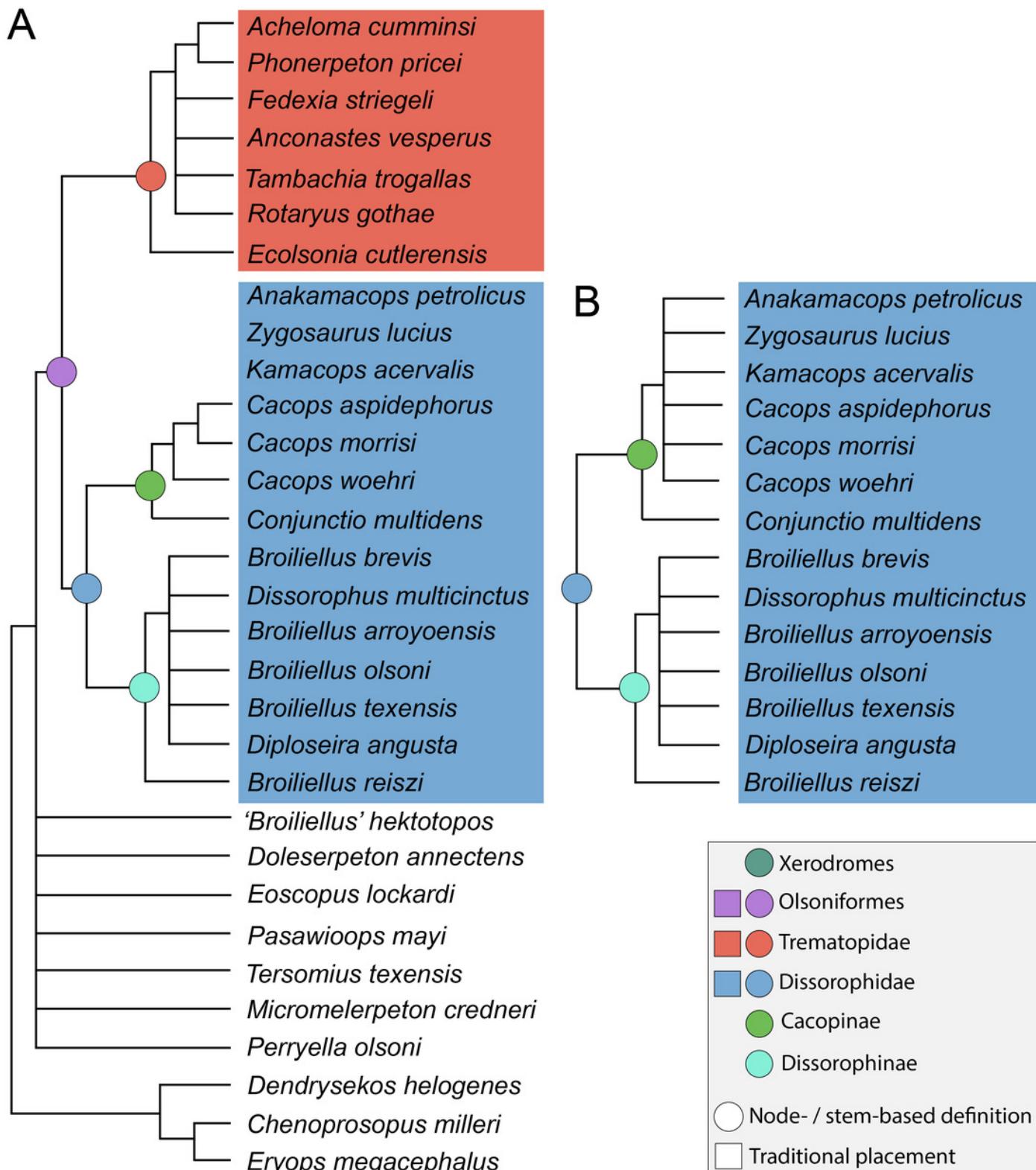

(A) tree resulting from the iteration using the 'conservative' OTU of *Kamacops acervalis*; (B) tree resulting from the iteration using the 'reconstructed' OTU of *K. acervalis*. Only Dissorophidae is depicted in part B because the remainder of the consensus tree was unchanged from part A.

Figure 7

Strict consensus trees for Analysis 1A (all scored olsoniforms) following removal of wildcard taxa from MPTs.

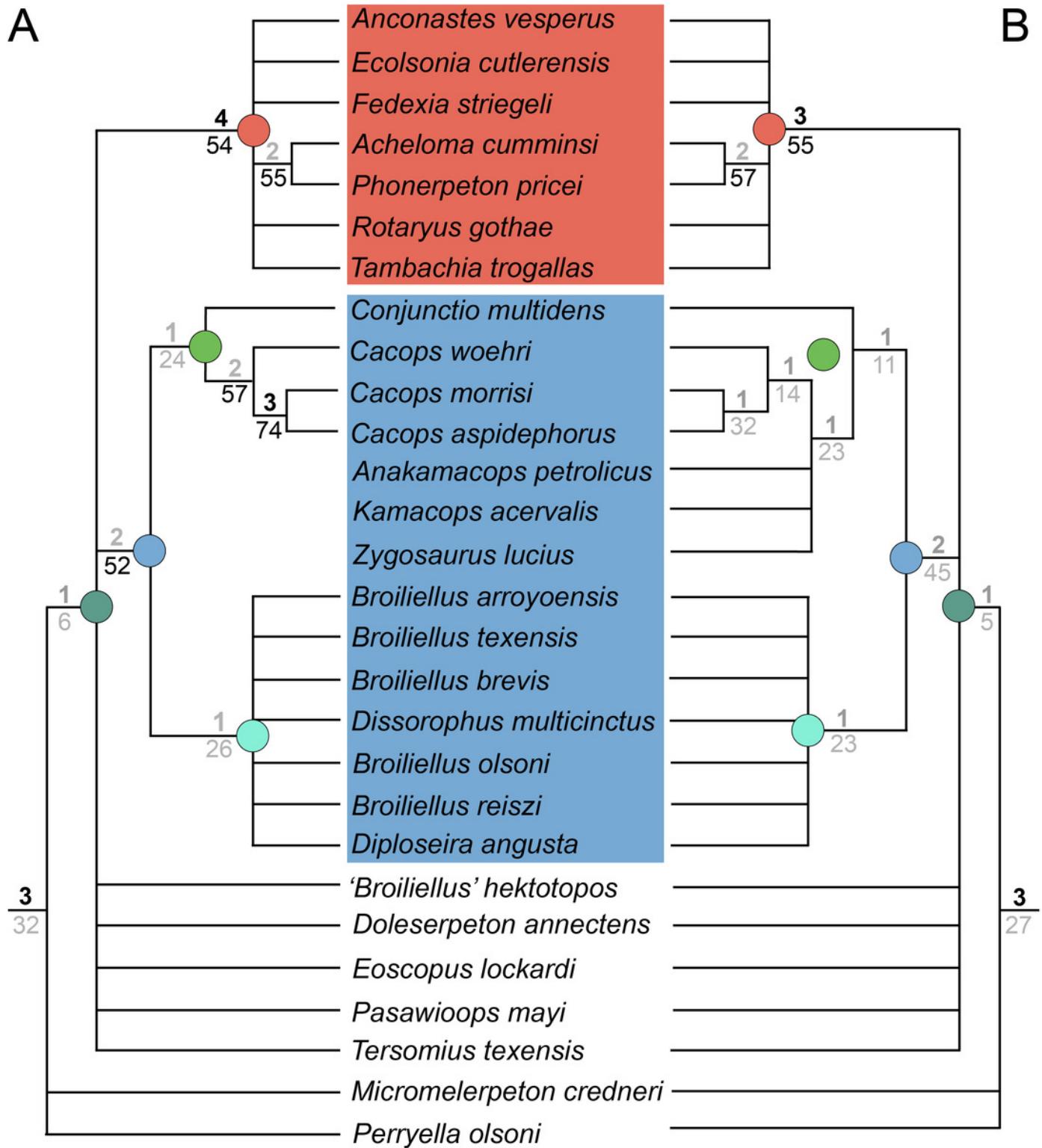

(A) resultant tree from the iteration using the 'conservative' OTU of *Kamacops acervalis*; (B) resultant tree from the iteration using the 'reconstructed' OTU of *K. acervalis*. Only Dissorophidae is depicted in part B because the remainder of the consensus tree was unchanged from part A. Colors and symbols as with Figure 6.

Figure 8

Strict consensus trees for Analysis 1B (all scored olsoniforms) following removal of wildcard taxa from the matrix.

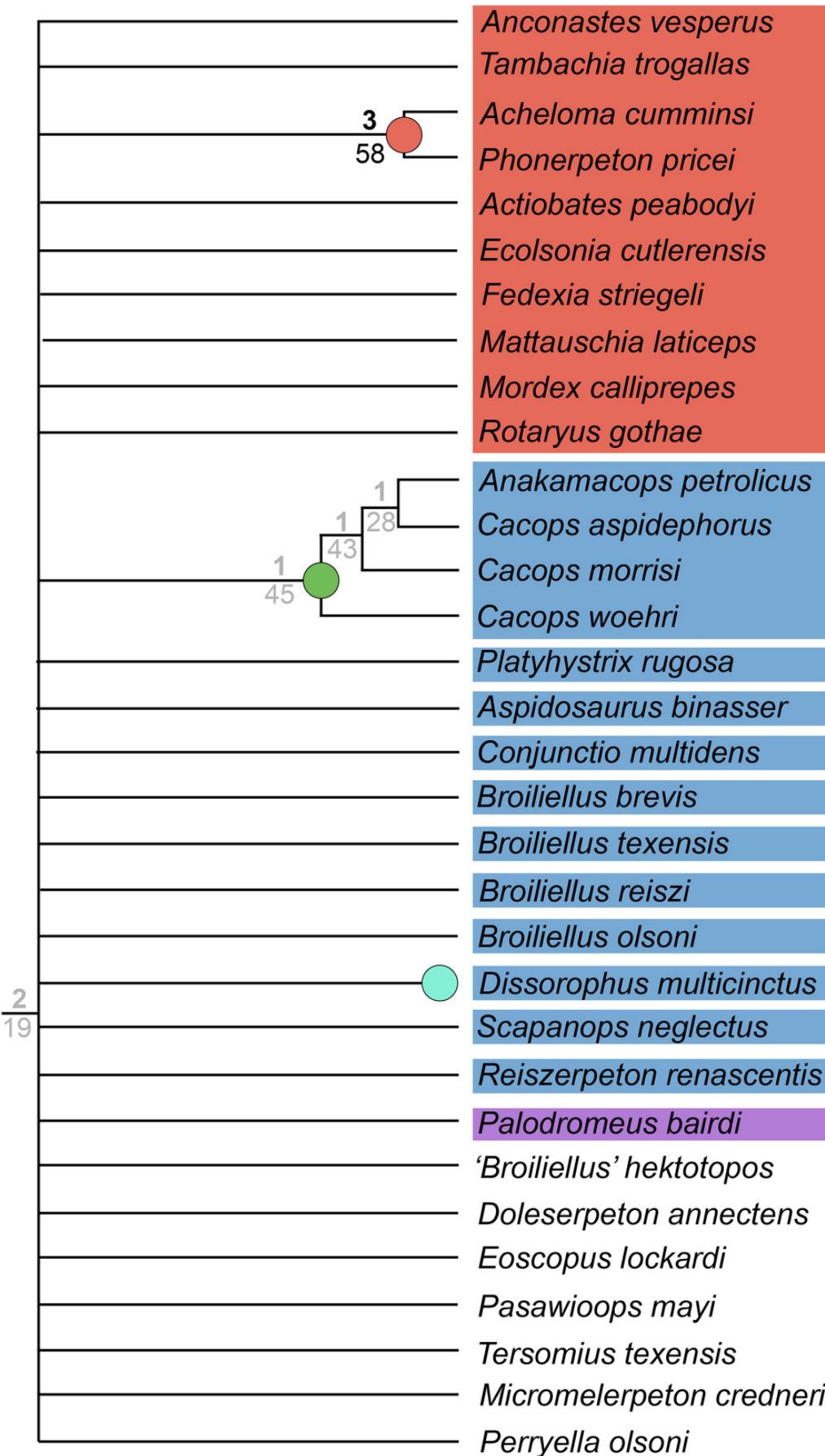

(A) resultant tree from the iteration using the 'conservative' OTU of *Kamacops acervalis*; (B) resultant tree from the iteration using the 'reconstructed' OTU of *K. acervalis*. Only Dissorophidae is depicted in part B because the remainder of the consensus tree was unchanged from part A. Colors and symbols as with Figure 6.

Figure 9

Strict consensus tree for Analysis 2 (best representatives) from the iteration using the 'conservative' OTU of *Kamacops acervalis*.

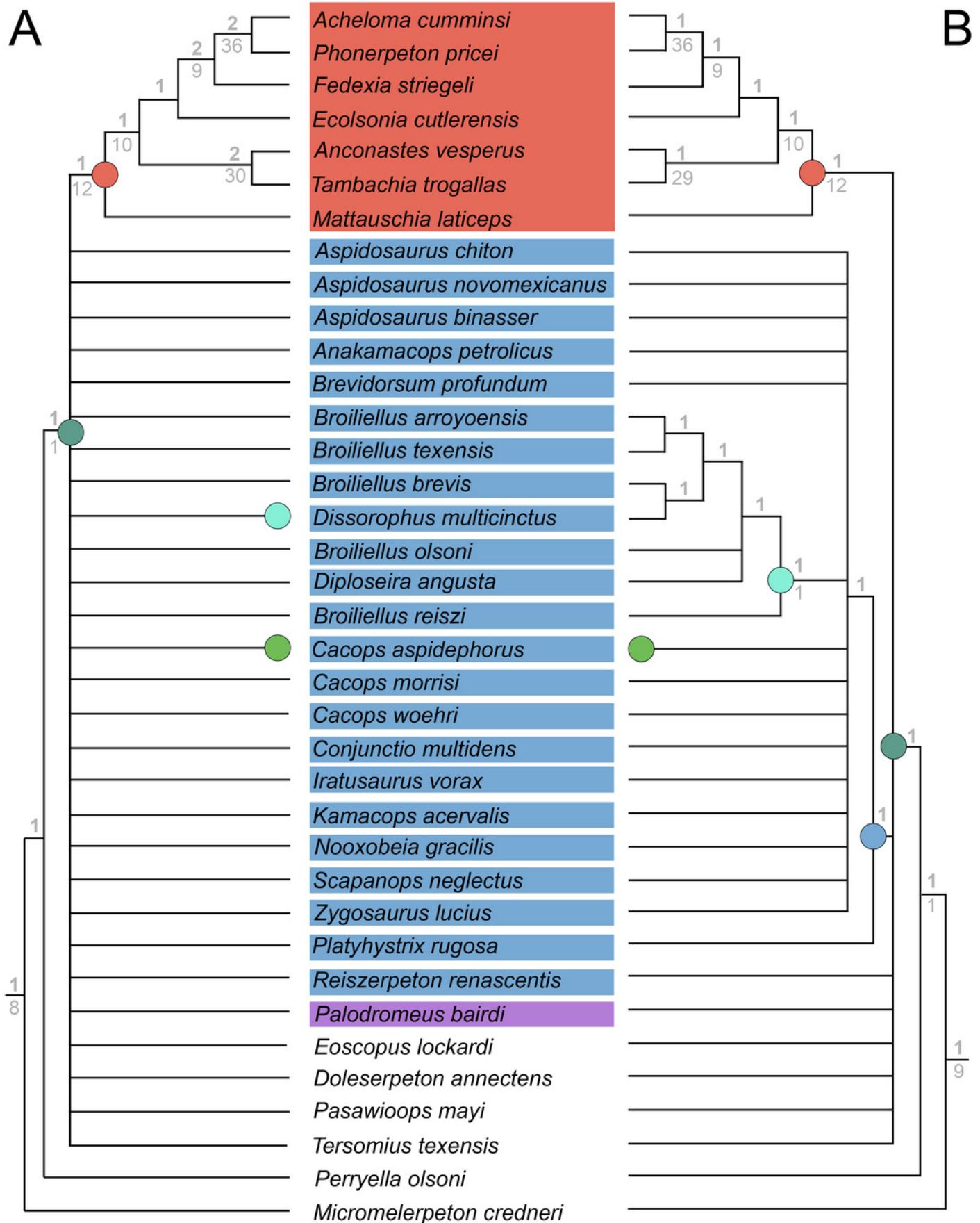

The iteration with the 'reconstructed' OTU recovered the same topology with only minor deviations in bootstrap support and is not figured here. Colors and symbols as with Figure 6.

Figure 10

Strict consensus trees for Analysis 3 (dissorophid-focused).

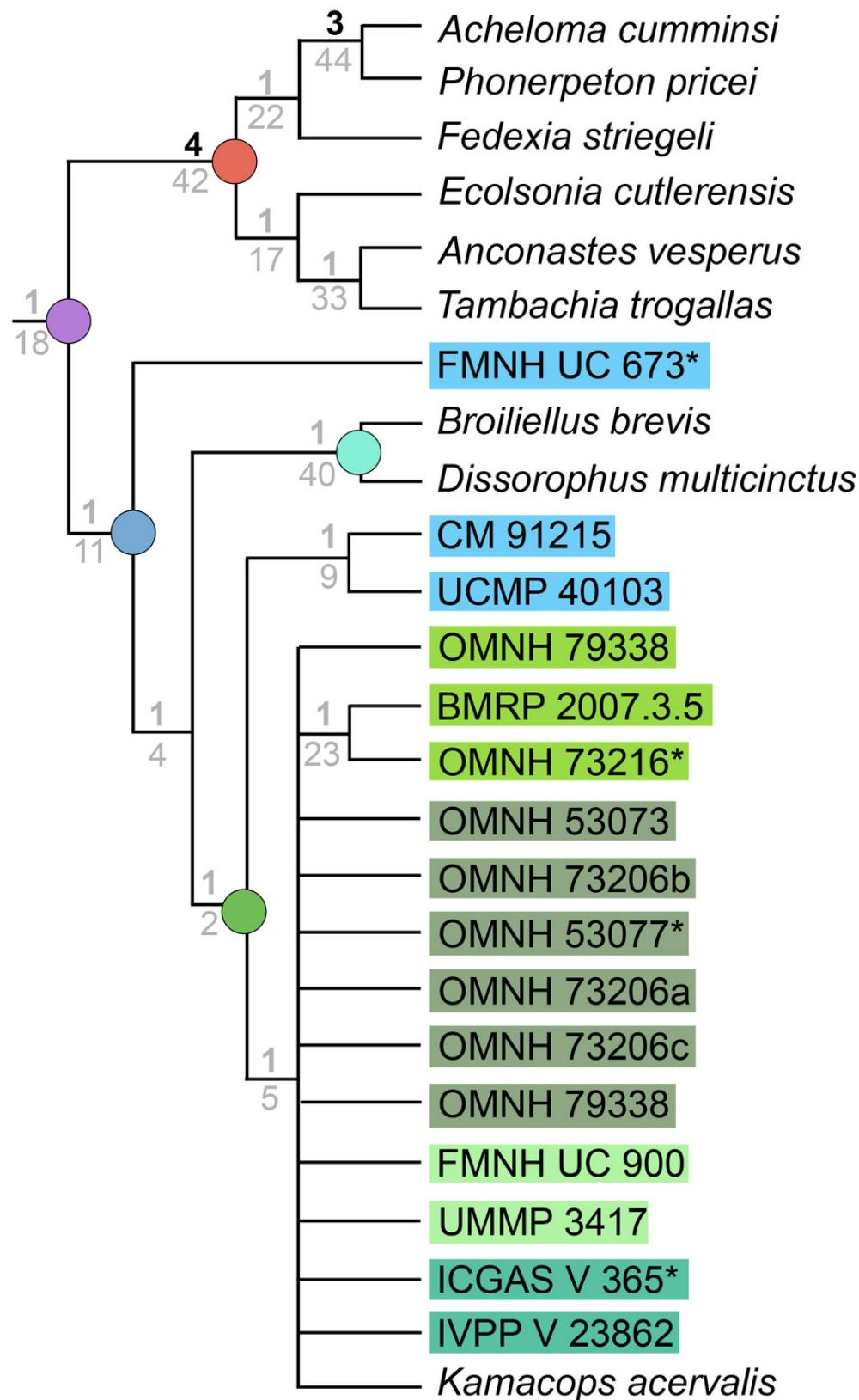
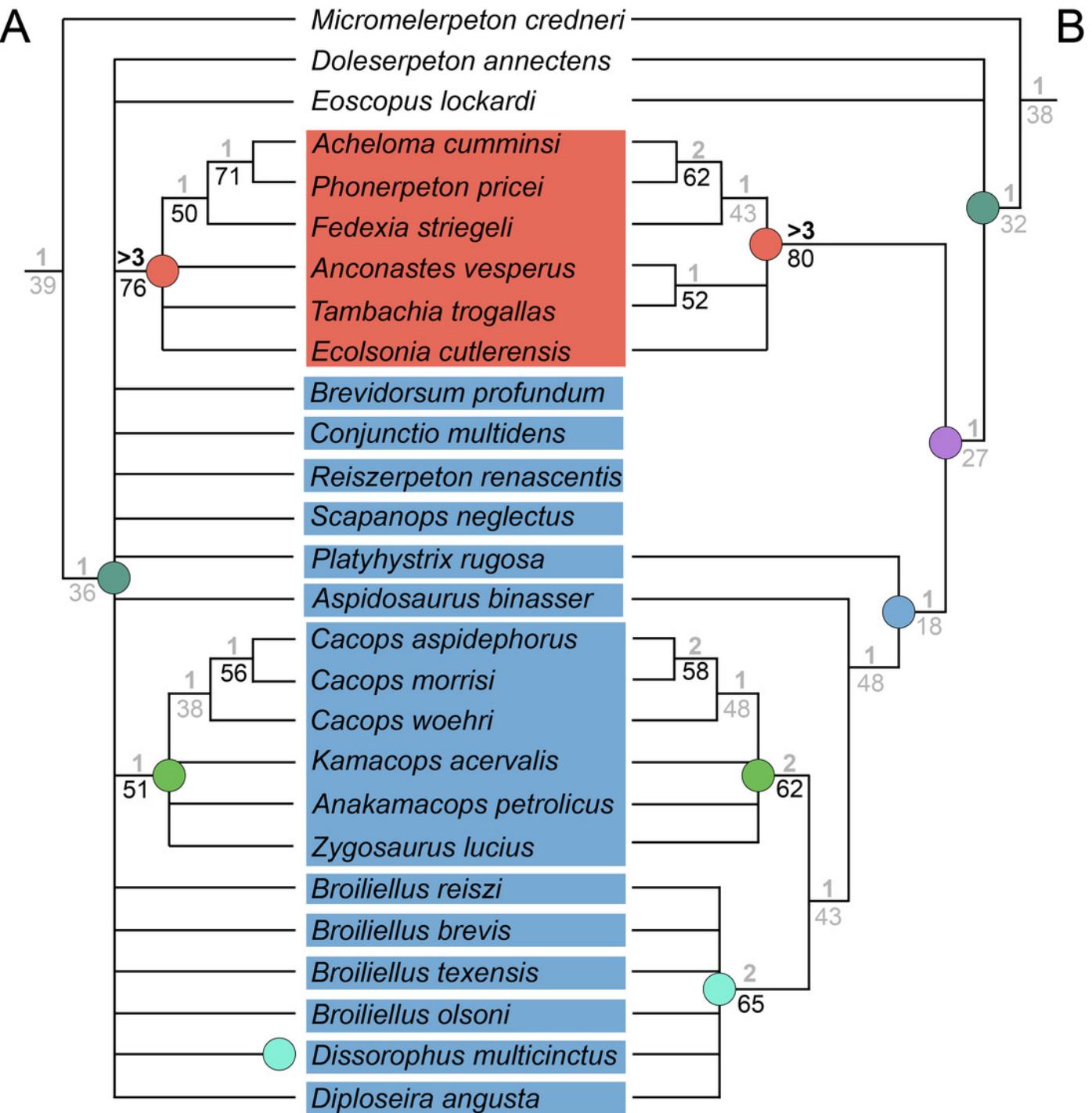

(A) resultant tree from the iteration using the 'conservative' OTU of *Kamacops acervalis*; **(B)** resultant tree from the iteration using the 'reconstructed' OTU of *K. acervalis*. Colors and symbols as with Figure 6.

Figure 11

Strict consensus tree for Analysis 4 (specimen-level OTUs).

Node labels, colors, and symbols as with Figures 6-7.


Anakamacops petrolicus *Cacops aspidephorus*

Cacops morrisi *Cacops woehri* *Conjunctio multidens*

Figure 12

Strict consensus trees for Analysis 5 (taxon mirror of Dilkes, 2020).

(**A**) tree resulting from the analysis of this study's matrix with the same taxon sample as Dilkes (2020); (**B**) tree resulting from the analysis of the same matrix without the four wildcard taxa identified by Dilkes (*Brevidorsum*, *Conjunctio*, *Reiszerpeton*, *Scapanops*). Colors and symbols as with Figure 6.

Figure 13

Strict consensus trees of individual islands recovered in Analysis 5.

(A) Island 1, consisting of 564 MPTs (trees 79–642); **(B)** Island 2, consisting of 108 MPTs (trees 643–750); **(C)** Island 3, consisting of 78 MPTs (trees 1–78). Colors and symbols as with Figure 6.

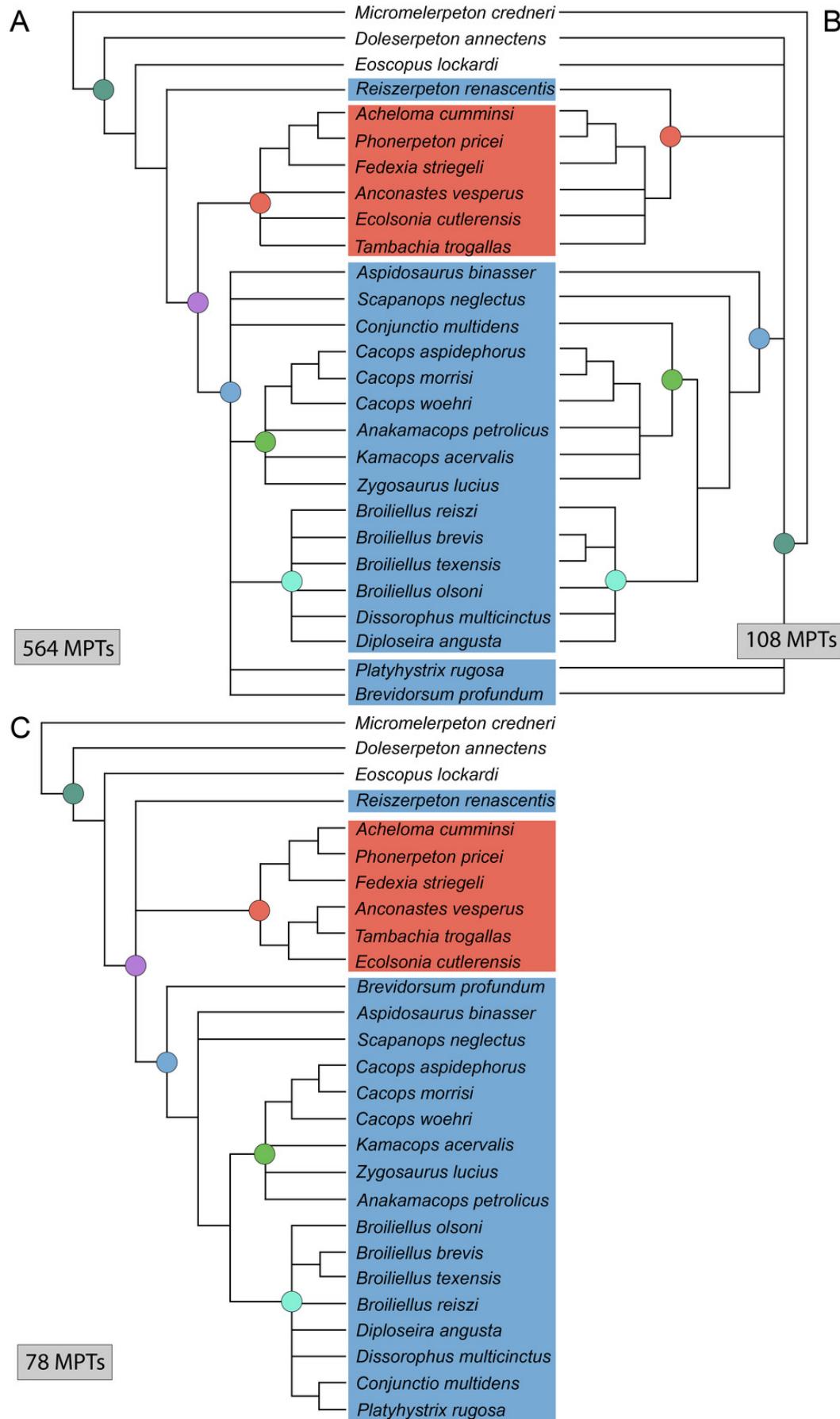
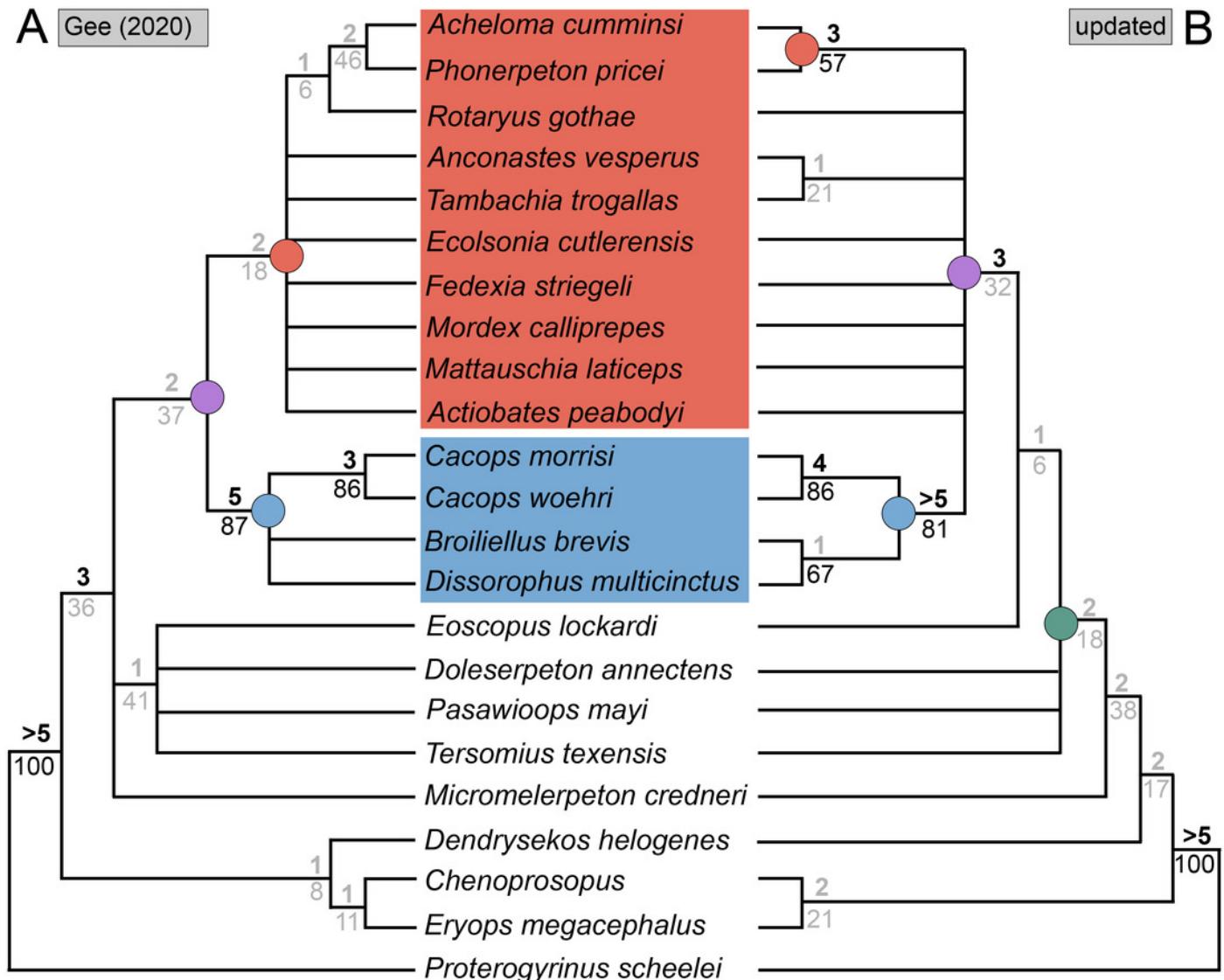



Figure 14

Comparison of strict consensus topologies for Analysis 6 (taxon mirror of Gee, 2020b).

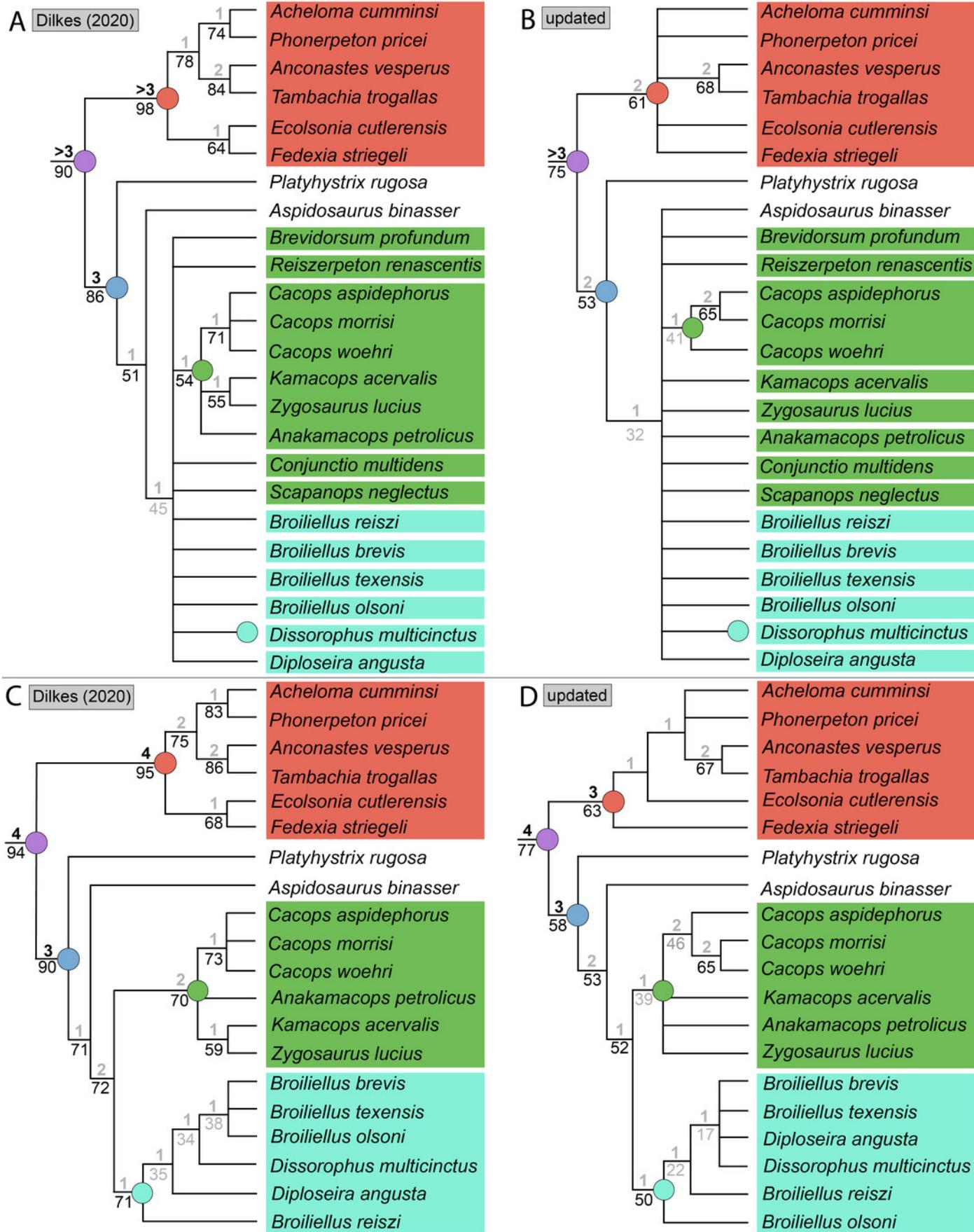

(A) tree resulting from the analysis of Gee's (2020b) trematopid-focused matrix with a combined OTU of the previous scorings of *Acheloma cumminsii* and *Acheloma dunni* and with the exclusion of *Phonerpeton whitei*; **(B)** tree resulting from the same taxon sampling and the updated matrix of this study. Colors and symbols as with Figure 6.

Figure 15

Comparison of strict consensus topologies for Analysis 7 (updated matrix from Dilkes, 2020).

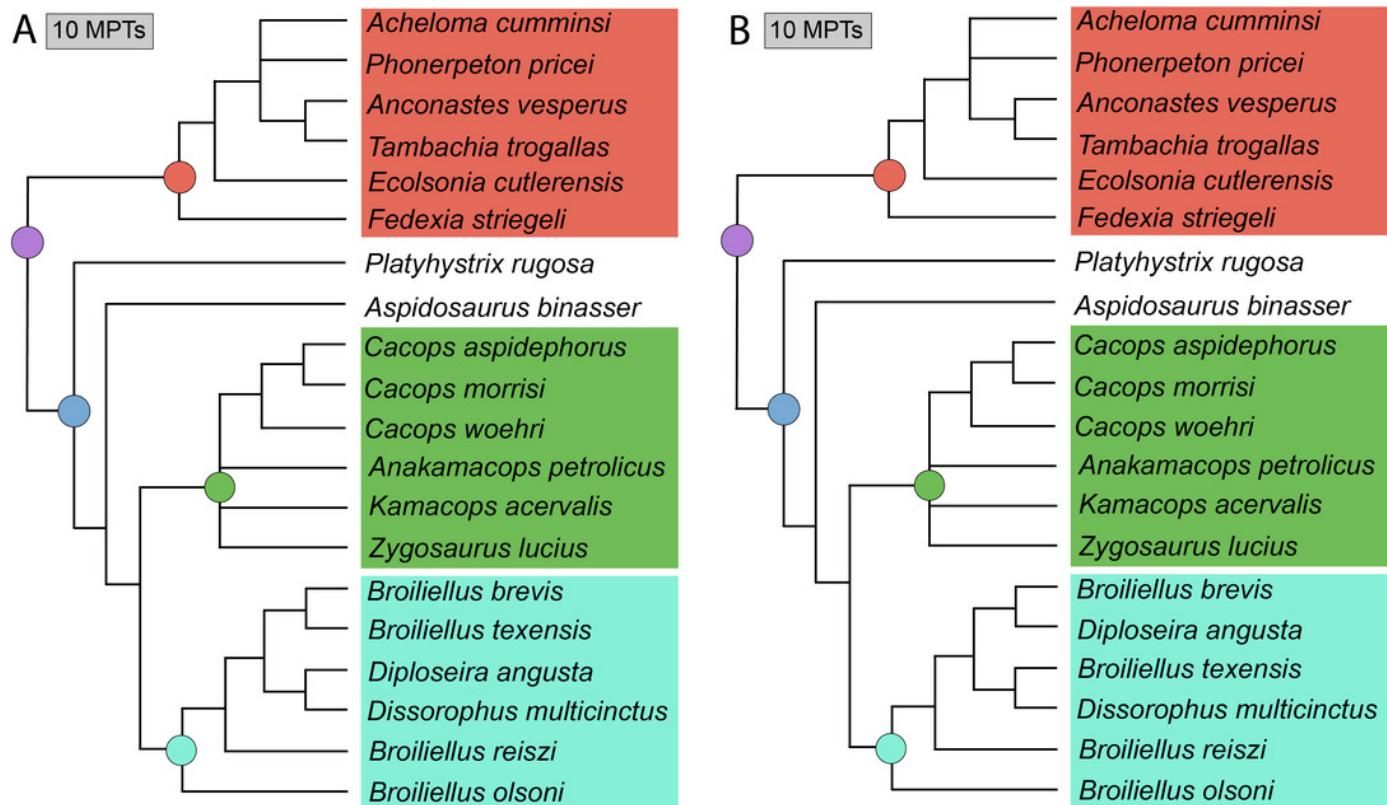

(A) tree resulting from Dilkes' (2020) original analysis with the full taxon sample; (B) tree resulting from the analysis of the updated matrix with the full taxon sample; (C) tree resulting from Dilkes' original analysis without the four wildcard taxa that he identified (*Brevidorsum*, *Conjunctio*, *Reiszerpeton*, *Scapanops*); (D) tree resulting from the reanalysis of the updated matrix without his wildcard taxa. Colors and symbols as with Figure 6.

Figure 16

Strict consensus trees of individual islands recovered in Analysis 7.

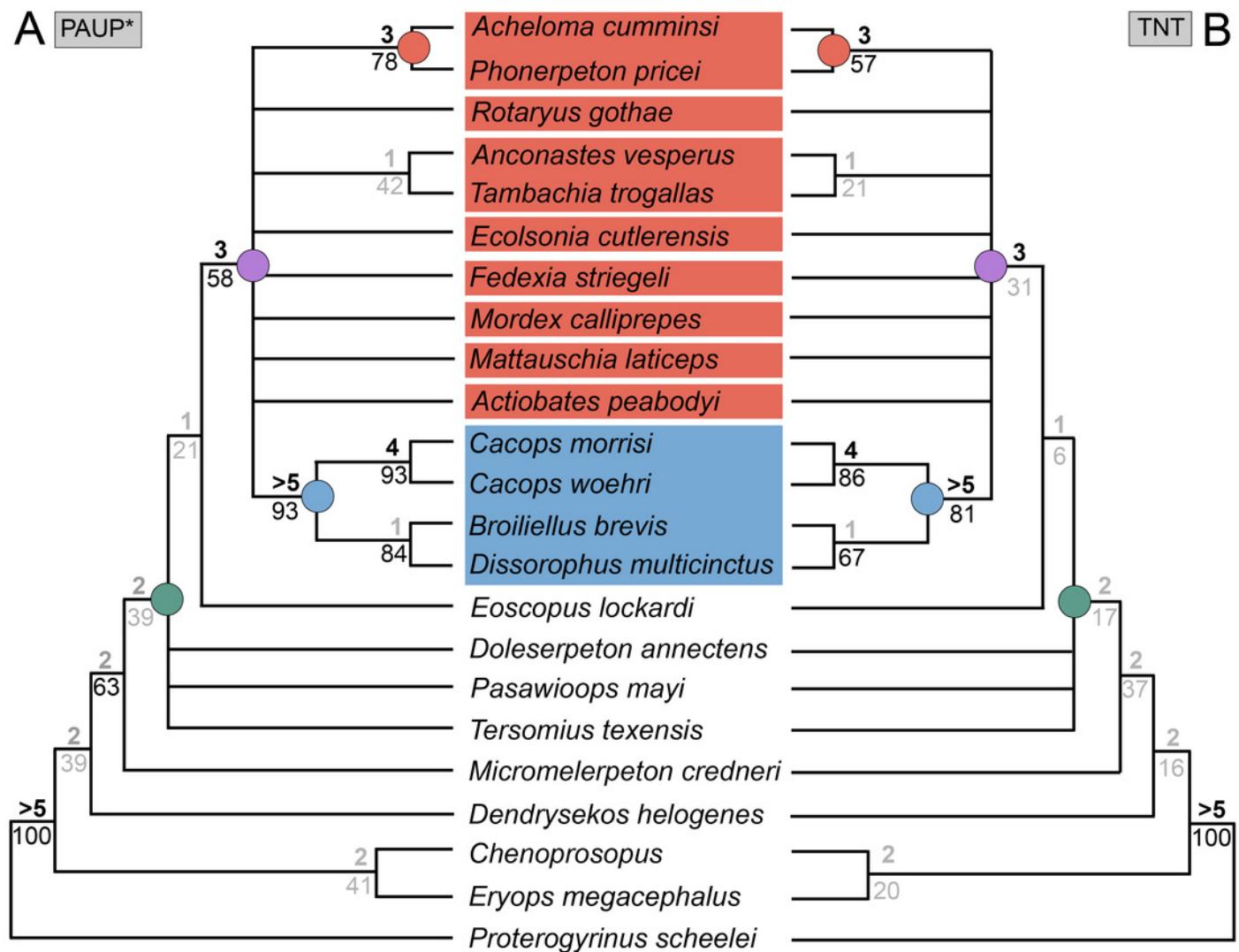

(A) Island 1, consisting of 10 MPTs (trees 11–20); (B) Island 2, consisting of 10 MPTs (trees 1–10). Colors and symbols as with Figure 6.

Figure 17

Comparison of strict consensus topologies for Analysis 8 (comparison of TNT and PAUP* on a trematopid-focused sample using this study's revised matrix from Gee, 2020b).

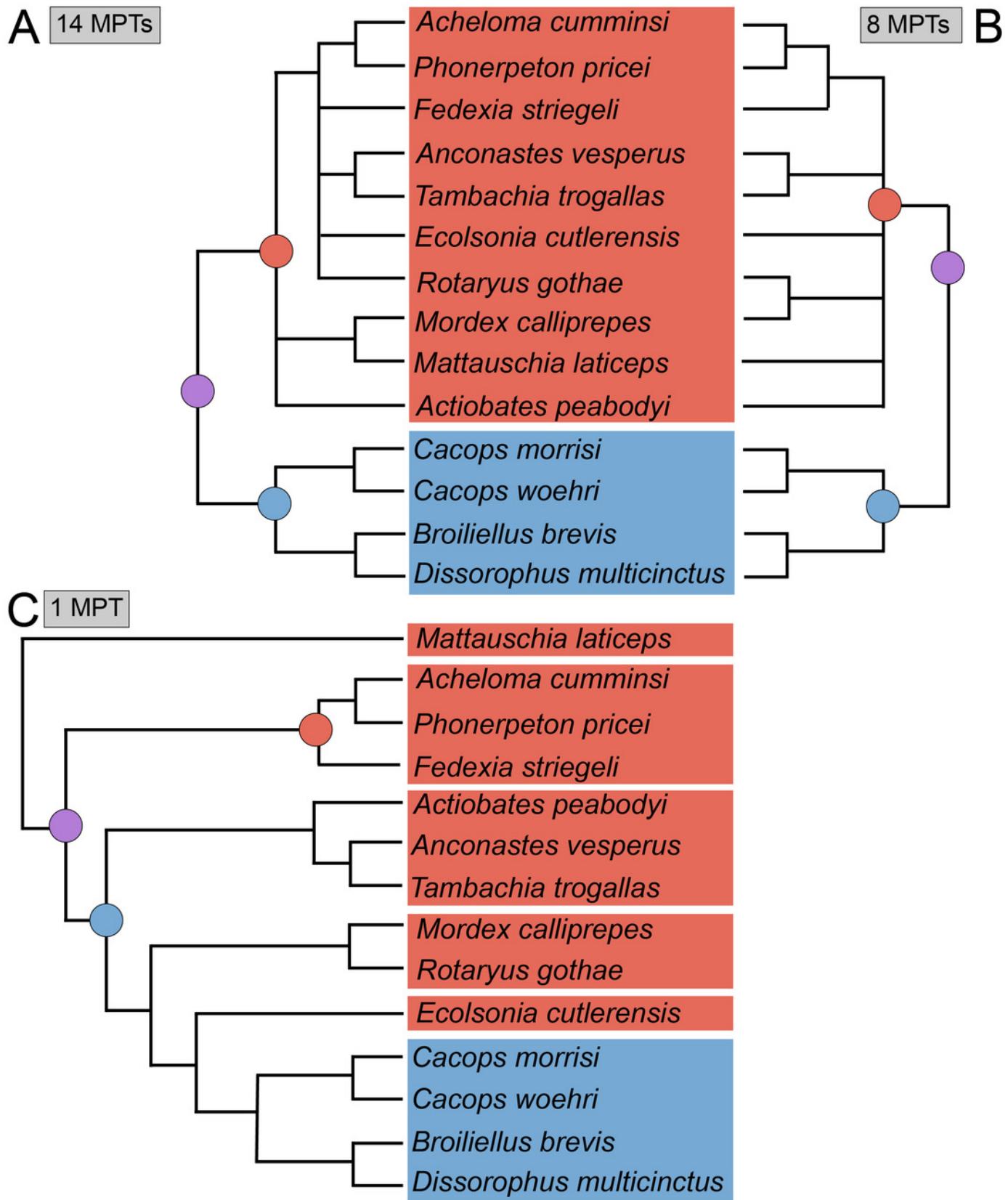

(A) tree resulting from the analysis using TNT (repeated from Fig. 14B); (B) tree resulting from the analysis with PAUP*. Colors and symbols as with Figure 6.

Figure 18

Strict consensus trees of individual islands recovered in Analysis 8.

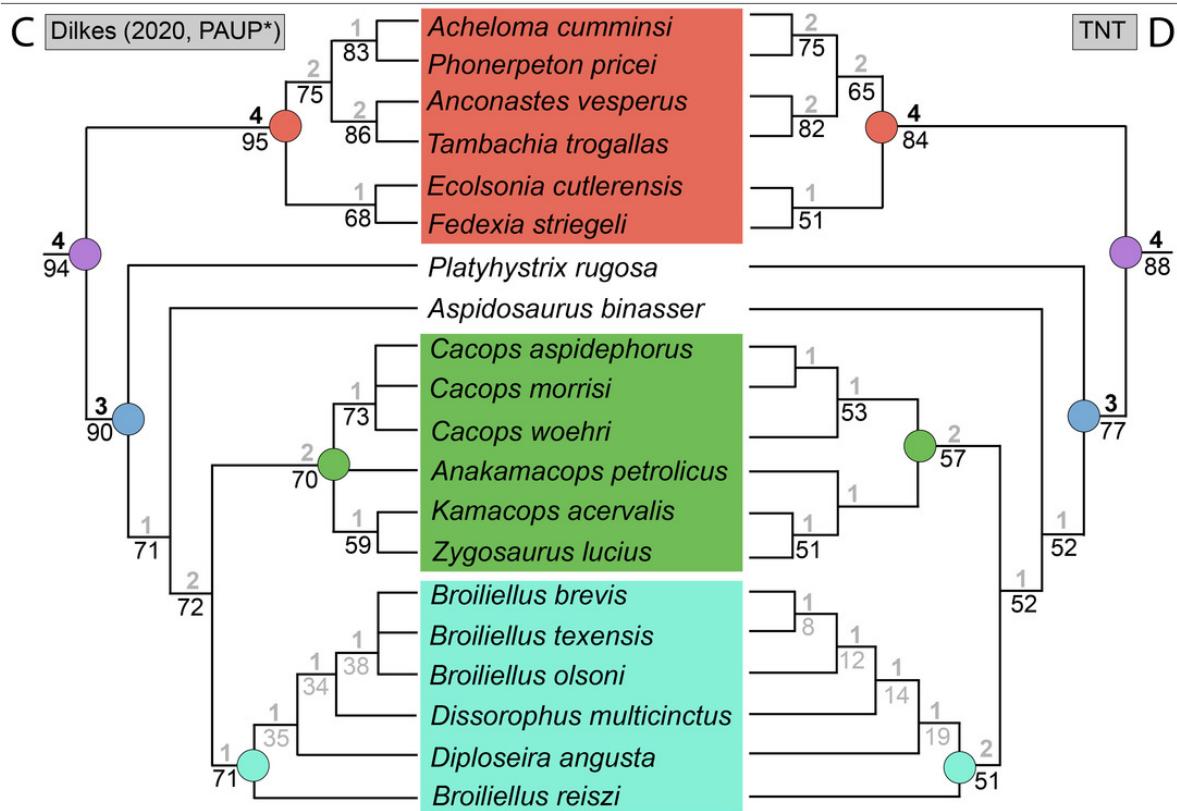
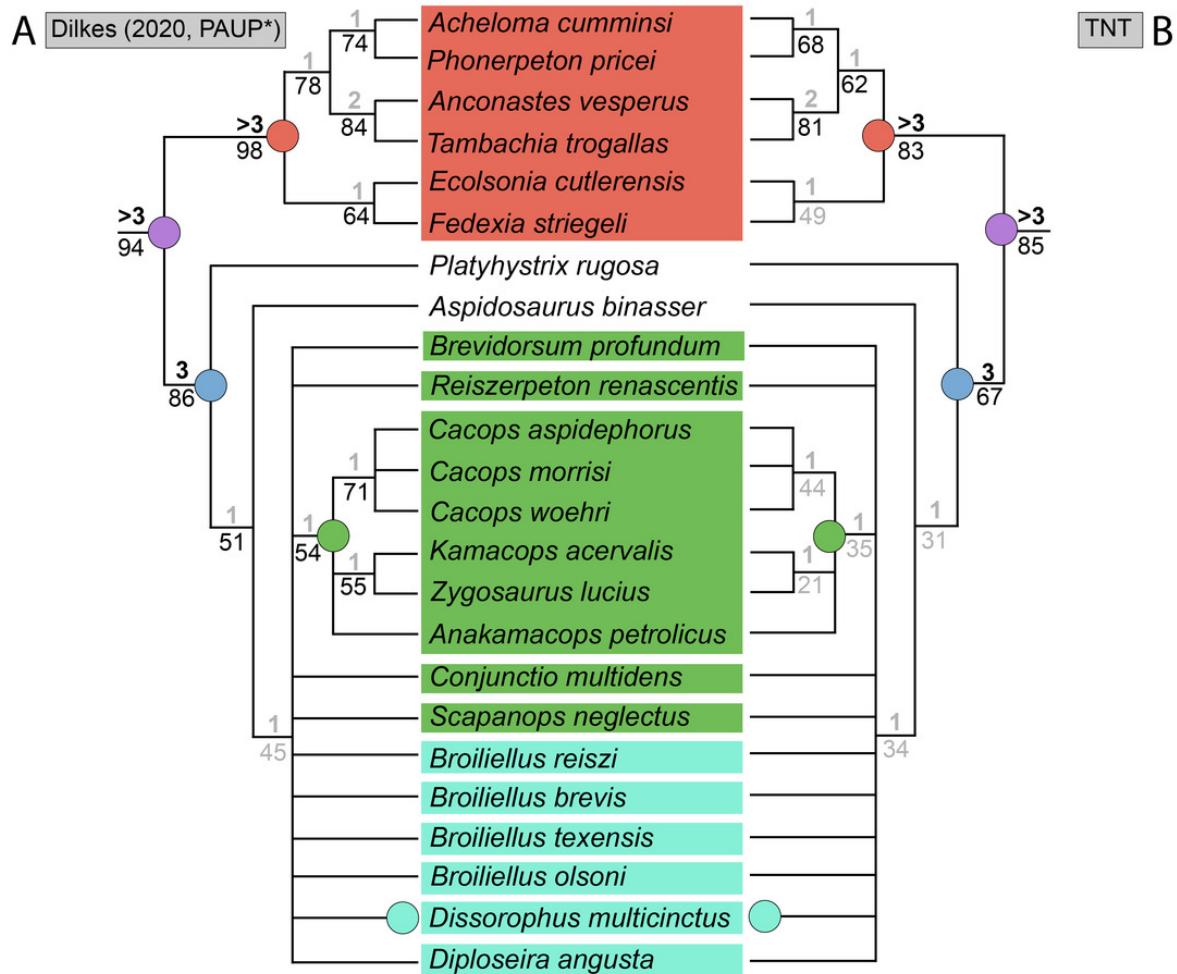


(A) Island 1, consisting of 14 MPTs (trees 1-14); **(B)** Island 2, consisting of 8 MPTs (trees 15-22); **(C)** Island 3, consisting of 1 MPT (tree 23). Colors and symbols as with Figure 6.

Figure 19

Comparison of strict consensus topologies for Analysis 9A (comparison of TNT and PAUP* with the original matrix of Dilkes, 2020).

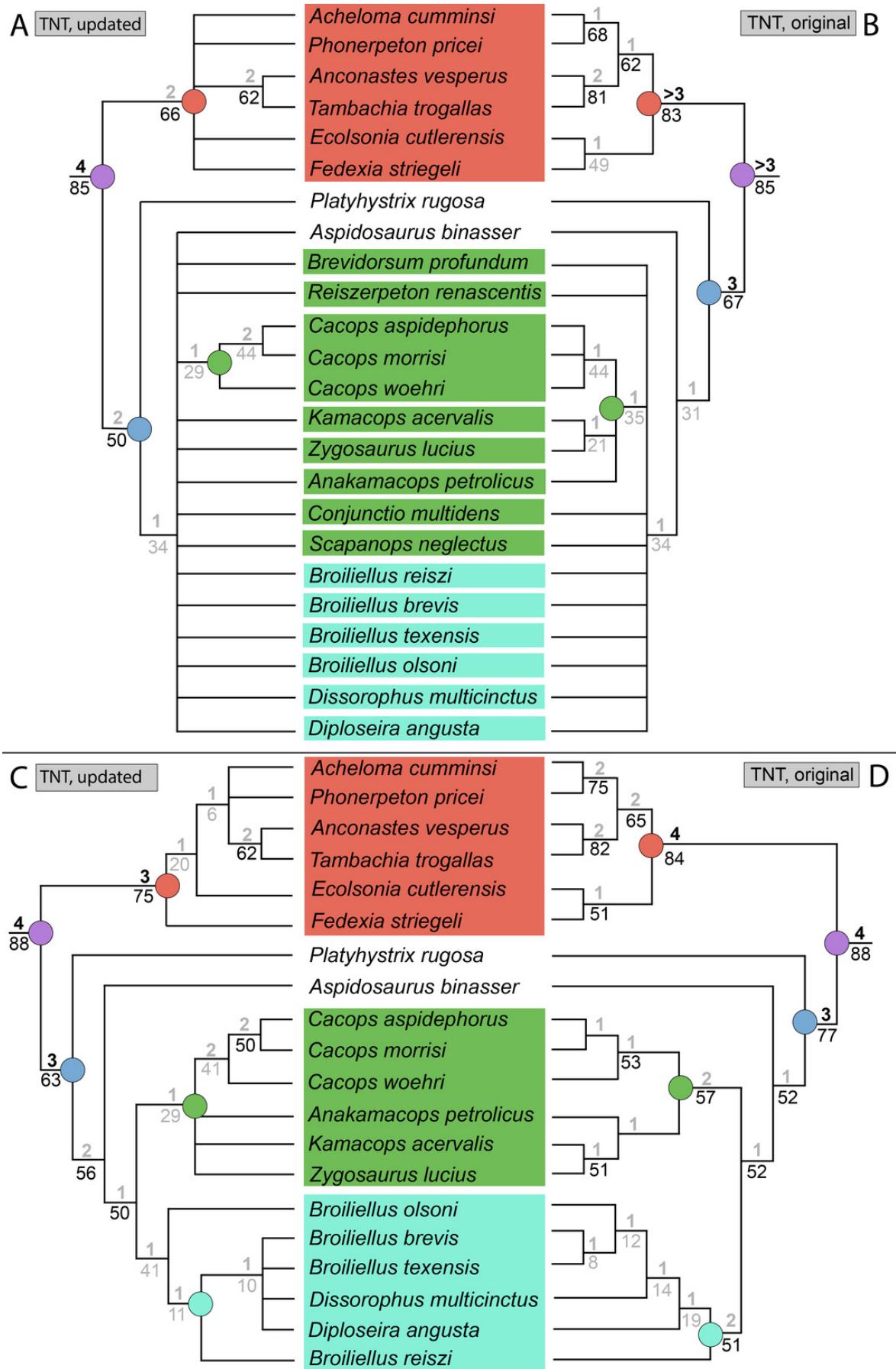

(A) tree resulting from Dilkes' (2020) original analysis in PAUP* with the full taxon sample; (B) tree resulting from the same matrix analyzed with TNT; (C) tree resulting from Dilkes' original analysis without the four wildcard taxa that he identified (*Brevidorsum*, *Conjunctio*, *Reiszterpeton*, *Scapanops*); (D) tree resulting from the same matrix analyzed with TNT. Colors and symbols as with Figure 6.

Figure 20

Comparison of strict consensus topologies for Analysis 9B (comparison of the original and updated versions of the matrix of Dilkes, 2020, using TNT).

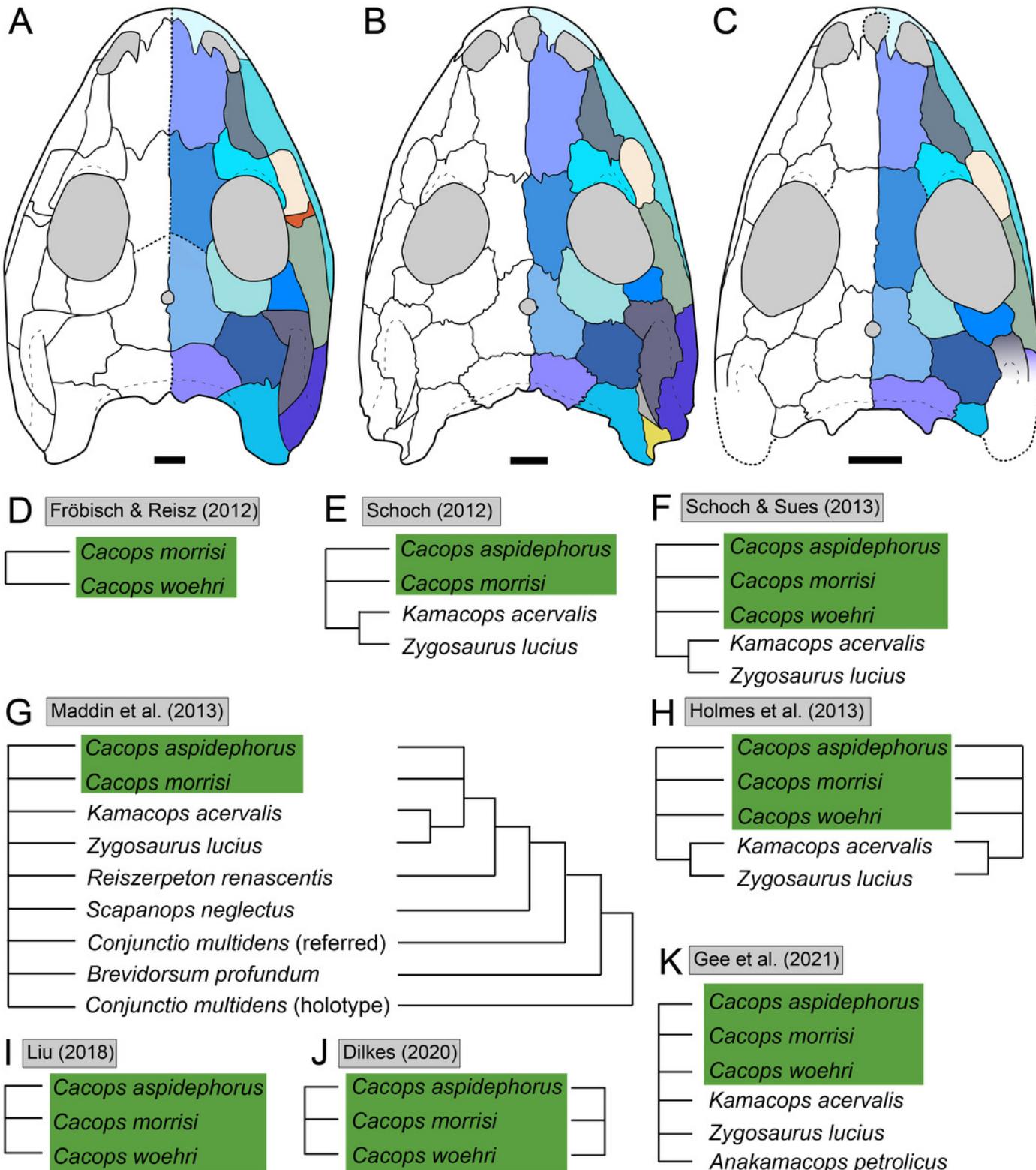

(A) tree resulting from the reanalysis of the updated version of Dilkes' (2020) matrix with the full taxon sample; **(B)** tree resulting from the analysis of the original version of Dilkes' matrix (repeated from Fig. 19B); **(C)** tree resulting from the reanalysis of the updated version of Dilkes' (2020) matrix without the four wildcard taxa that were identified by Dilkes (*Brevidorsum*, *Conjunctio*, *Reiszerpeton*, *Scapanops*); **(D)** tree resulting from the analysis of the original version of Dilkes' matrix (repeated from Fig. 19D). Colors and symbols as with Figure 6.

Figure 21

Morphological and phylogenetic concepts of *Cacops*.

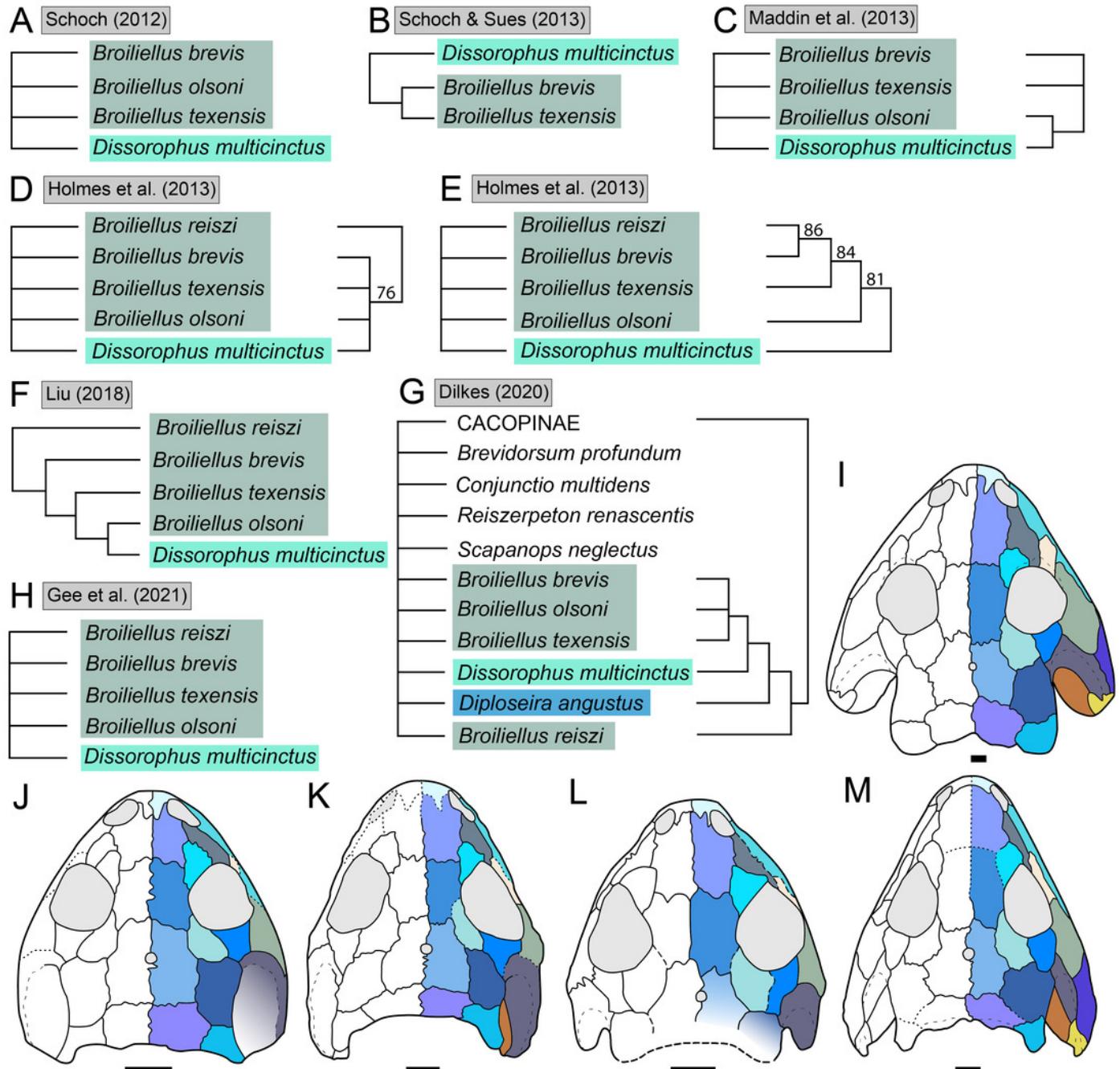

(**A-C**) reconstruction of the skulls of the three species of *Cacops*; (**D-K**) pruned topologies from previous studies with the most exclusive clade that includes all sampled species of *Cacops* (shaded in green). (**A**) *Cacops aspidephorus* (from Anderson, Scott & Reisz, 2020); (**B**) *Cacops morrissi* (modified from Reisz, Schoch & Anderson, 2009); (**C**) *Cacops woehri* (new); (**D**) strict consensus of Fröbisch & Reisz (2012); (**E**) 50%-majority-rule consensus of Schoch (2012); (**F**) strict consensus of Schoch & Sues (2013); (**G**) strict consensus (left) and 50% majority-rule consensus (right) of Maddin et al. (2013); (**H**) strict consensus (left) and 50% majority-rule consensus (right) of Holmes, Berman & Anderson (2013); (**I**) strict consensus of Liu (2018); (**J**) strict consensus with wildcard dissorophids included (left) and excluded (right) of Dilkes (2020); (**K**) strict consensus of Gee et al. (2021). The two identical topologies figured for Holmes, Berman & Anderson represent their two analyses (with and without scoring changes for the “Rio Arriba Taxon”). The topology of Cacopinae is unchanged in their 50%-majority rule consensus trees. Cool colors represent skull roof elements; warm colors represent palatal elements. Scale bars equal to 1 cm for parts A-C.

Figure 22

Morphological and phylogenetic concepts of *Broiliellus* and *Dissorophus*.

(A-H) pruned topologies from previous studies with the most exclusive clade that includes all sampled species of *Broiliellus* and *Dissorophus*; **(I-M)** reconstruction of the skulls of *Broiliellus* and *Dissorophus* with known sutures. **(A)** 50% majority-rule consensus tree of Schoch (2012); **(B)** strict consensus tree of Schoch & Sues (2013); **(C)** strict consensus (left) and 50% majority-rule consensus (right) of Maddin et al. (2013); **(D)** strict consensus (left) and 50% majority-rule consensus (right) of Holmes, Berman & Anderson (2013) with modified scorings for the “Rio Arriba Taxon” from Schoch (2012); **(E)** the same, but without modified scorings; **(F)** strict consensus of Liu (2018); **(G)** strict consensus with wildcard dissorophids included (left) and excluded (right) of Dilkes (2020); **(H)** strict consensus of Gee et al. (2021); **(I)** *Dissorophus multicinctus* (from Schoch, 2012); **(J)** *Broiliellus texensis* (from Schoch, 2012); **(K)** *B. brevis* (from Schoch, 2012); **(L)** *B. olsoni* (from Schoch, 2012); **(M)** *B. reiszi* (from Holmes, Berman & Anderson, 2013). Cool colors represent skull roof elements; warm colors represent palatal elements. Scale bars equal to 1 cm for parts I-M.

Figure 23

Photographs of neural spines in the collections of the American Museum of Natural History resembling those attributed to *Aspidosaurus binasser*.

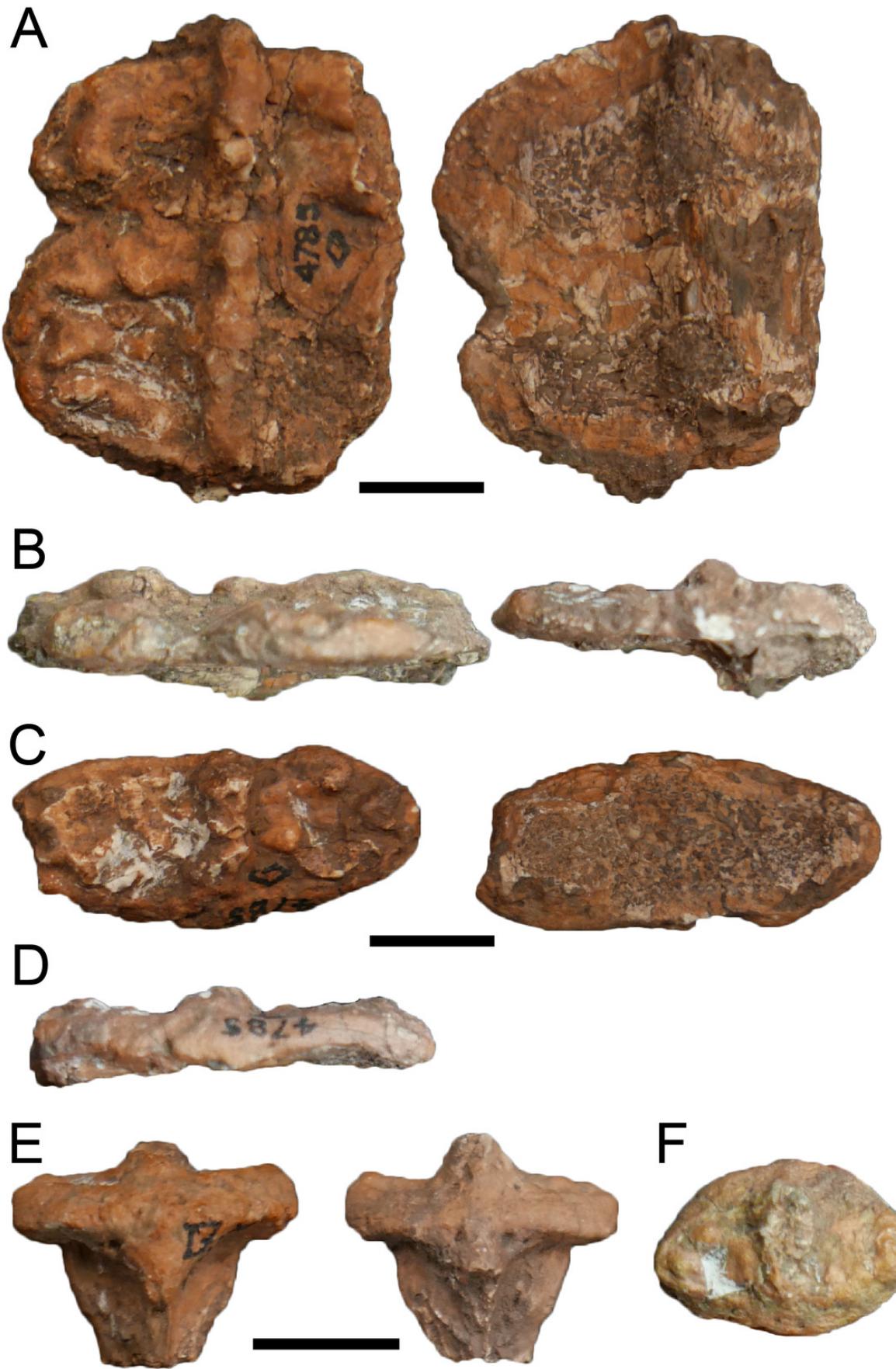

(A) AMNH FARB 23406 (identified as *?Aspidosaurus*, collected from the north fork of the Little Wichita River, TX in 1880); (B) AMNH FARB 23407 (identified as *?Aspidosaurus*, collected from unknown locality in the Wichita Basin of TX in 1878); (C) AMNH FARB 23408 in part (identified as *Aspidosaurus*, collected from unknown locality in the Wichita Basin of TX in 1878; only the piece clearly representing an ornamented spine is shown); (D) AMNH FARB 23409 (identified as *Aspidosaurus* sp., collected from unknown locality in the Wichita Basin of TX in 1878); (E) AMNH FARB 23410 (identified as *Aspidosaurus*, collected from Shell Point, Archer Co., TX; Nocona Formation in 1878); (F) AMNH FARB 23411 (not identified, collected from Wichita Co., TX in 1878); (G) AMNH FARB 23412 (identified as *Aspidosaurus* sp., collected from unknown locality in the Wichita Basin of TX). Identifications are based on associated collections cards; the person(s) who identified them or the date of identification is not indicated for any specimen. Scale bars equal to 1 cm.

Figure 24

Photographs of the holotype of "*Aspidosaurus apicalis*" (AMNH FARB 4785).

(A) presumed osteoderm in dorsal and ventral views; (B) the same in lateral view and in either anterior or posterior view (siding is indeterminate); (C) presumed osteoderm in dorsal and ventral profiles; (D) the same in either anterior or posterior view; (E) osteoderm fused to the tip of the neural spine in anterior and posterior views (siding is indeterminate); (F) the same in dorsal view. Scale bars equal to 1 cm.

Figure 25

Photographs of postcranial material of *Platyhystrix rugosus* (AMNH FARB 11544).

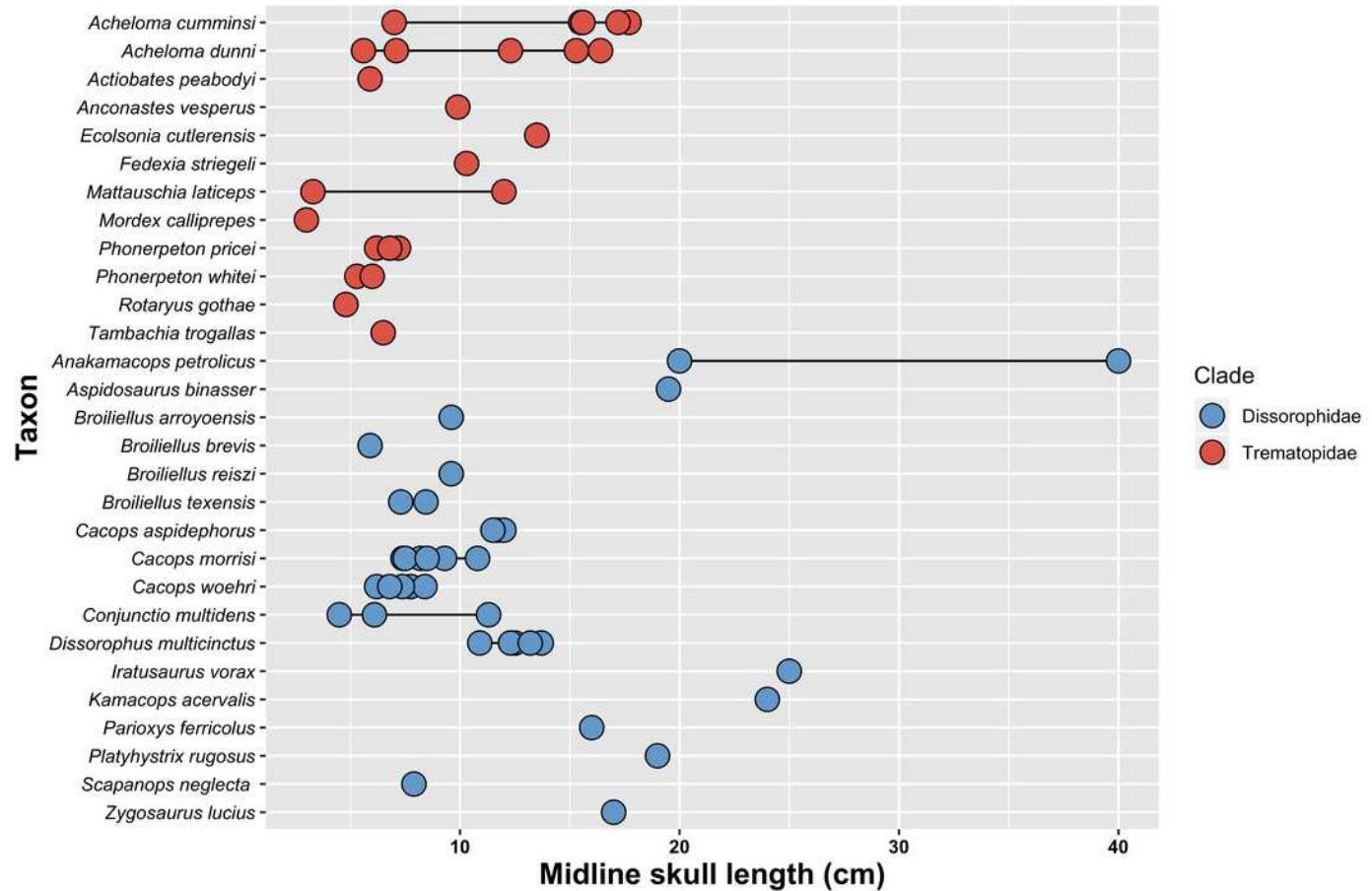

(**A**) isolated neural spines associated with this individual of *P. rugosus*; (**B**) neural arches found in association with the other material figured here; (**C**) sacral ribs associated with this individual (see Berman, Reisz & Fracasso, 1981); (**D**) material catalogued under the same number but questionably associated with this taxon; the large fragment on the right may represent a synapsid scapula. Berman, Reisz & Fracasso (1981) conjectured that these postcrania of *P. rugosus* belonged to the skull that is catalogued as AMNH FARB 11545; the skull was not available at the time of my visit to assess the purported fit between one neural spine and a fragment on AMNH FARB 11545. Scale bars equal to 1 cm.

Figure 26

Comparative plot of known skull lengths and size ranges of olsoniforms.

Refer to Appendix 9 and Supplemental Table 3 for dataset and methods used to collect measurement data.

Table 1(on next page)

Summary of newly added olsoniform taxa.

Completeness refers to percent of characters that could be scored; note that this includes cells scored as inapplicable (-), even though most programs treat these as missing data (?).

1 **Table 1. Summary of newly added olsoniform taxa.** Completeness refers to percent of
 2 characters that could be scored; note that this includes cells scored as inapplicable (-), even
 3 though most programs and algorithms treat these as missing data (?).

4

Taxon	Time	Location	References	Completeness
<i>Anakamacops petrolicus</i>	Middle Permian	China (Gansu)	Li & Cheng (1999); Liu (2018)	68 (62.3%)
<i>Aspidosaurus binasser</i>	Early Permian	USA (TX)	Berman & Lucas (2003)	55 (50.4%)
<i>Aspidosaurus chiton</i>	Early Permian	USA (TX)	Broili (1904)	22 (20.1%)
<i>Aspidosaurus novomexicanus</i>	Late Carboniferous	USA (NM)	Williston (1911); Carroll (1964a)	23 (21.1%)
<i>Brevidorsum profundum</i>	Early Permian	USA (TX)	Carroll (1964a)	30 (27.5%)
<i>Broiliellus arroyoensis</i>	Early Permian	USA (TX)	DeMar (1967)	25 (22.9%)
<i>Broiliellus brevis</i>	Early Permian	USA (TX)	Carroll (1964a)	79 (72.4%)
<i>'Broiliellus' hektotopos</i>	Early Permian	USA (OH)	Berman & Berman (1975)	40 (36.6%)
<i>Broiliellus olsoni</i>	Early Permian	USA (TX)	DeMar (1967); Bolt (1974b)	37 (33.9%)
<i>Broiliellus reiszi</i>	Early Permian	USA (NM)	Holmes, Berman & Anderson (2013)	88 (80.7%)
<i>Broiliellus texensis</i>	Early Permian	USA (TX)	DeMar (1966); Bolt (1974b)	61 (55.9%)
<i>Cacops aspidephorus</i>	Early Permian	USA (TX)	Williston (1910); Anderson (2005); Dilkes & Brown (2007); Dilkes (2009); Anderson, Scott & Reisz (2020)	103 (94.5%)
<i>Cacops morrisi</i>	Early Permian	USA (OK)	Reisz, Anderson & Schoch (2009); Gee & Reisz (2018a); Gee, Bevitt & Reisz (2019)	98 (89.9%)
<i>Cacops woehri</i>	Early Permian	USA (OK)	Fröbisch & Reisz (2012); Fröbisch, Brar & Reisz (2015); Gee, Bevitt & Reisz (2019)	72 (66.0%)
<i>Conjunctio multidens</i>	Early Permian	USA (CO, NM)	Case & Williston (1913); Carroll (1964a); Schoch & Sues (2013); Gee et al. (2021)	59 (54.1%)
<i>Diploseira angusta</i>	Early Permian	USA (TX)	Dilkes (2020)	50 (45.8%)
<i>Dissorophus multicinctus</i>	Early Permian	USA (TX)	DeMar (1968); Milner (2003); Dilkes (2020)	101 (92.6%)
<i>Iratusaurus vorax</i>	Middle Permian	Russia (Bashkortostan)	Gubin (1980)	12 (11.0%)
<i>Kamacops acervalis</i>	Middle Permian	Russia (Perm Krai)	Gubin (1980); Schoch (1999)	31 (28.4%); 51 (46.7%)
<i>Nooxobeia gracilis</i>	Middle Permian	USA (OK)	Gee, Scott & Reisz (2018)	19 (17.4%)
<i>Palodromeus bairdi</i>	Late Carboniferous	USA (OH)	Schoch, Henrici & Hook (2020)	70 (62.5%)
<i>Parioxys bolli</i>	Early Permian	USA (TX)	Carroll (1964b)	11 (10.0%)
<i>Platyhystrix rugosa</i>	Early Permian	USA (CO, NM)	Berman, Reisz & Fracasso (1981)	67 (61.4%)
<i>Reiszerpton renascentis</i>	Early Permian	USA (TX)	Maddin et al. (2013)	56 (51.3%)
<i>Scapanops neglectus</i>	Early Permian	USA (TX)	Carroll (1964a); Schoch & Sues (2013)	57 (52.2%)
<i>Zygosaurus lucius</i>	Early Permian	Russia (Bashkortostan)	Eichwald (1848); Efremov (1937)	19 (17.4%)

5

Table 2(on next page)

Summary of the permutations performed in this study, indicating software, search type, and general characterization of the analysis with respect to taxon and character sampling.

Note that the heuristic search in TNT is termed 'traditional search,' and the branch-and-bound search is termed 'implicit enumeration.'

1 **Table 2. Summary of the analyses performed in this study, indicating software, search type,**
2 **and general characterization of the analysis with respect to taxon and character sampling.**

3 Note that the heuristic search in TNT is termed ‘traditional search,’ and the branch-and-bound
4 search is termed ‘implicit enumeration.’

5

Analysis	Software	Search	Taxon sample	Character matrix
1A	TNT	Heuristic	This study	This study
1B	TNT	Heuristic	This study	This study
2	TNT	Heuristic	This study	This study
3	TNT	Heuristic	This study	This study
4	TNT	Heuristic	This study	This study
5	PAUP*	Both	Dilkes (2020)	This study
6	TNT	Branch-and-bound	Gee (2020b)	This study
7	PAUP*	Branch-and-bound	Dilkes (2020)	Dilkes (2020), with scoring changes
8	PAUP*	Branch-and-bound	Gee (2020b)	This study
9A	TNT	Branch-and-bound	Dilkes (2020)	Dilkes (2020), original scores
9B	TNT	Branch-and-bound	Dilkes (2020)	Dilkes (2020), with scoring changes

6

Table 3(on next page)

Comparison of reported support metrics for focal nodes from dissorophid-focused analyses.

All nodes are from strict consensus trees except for Schoch (2012). Abbreviations refer to publications: S12, Schoch (2012); MFEM13, Maddin et al. (2013); L18, Liu (2018); D20, Dilkes (2020). 'A' and 'W' refer to the taxon samples employed by Dilkes: all taxa (A) and without wildcards (W). The same sublettering is used for this study (Analysis 7). An en-dash indicates that a node was not recovered, and 'NR' means that the value was not reported. Because the composition of Cacopinae and Dissorophinae sometimes includes certain wildcard taxa (e.g., *Conjunctio multidens*) or do not include longstanding nominal members, these nodes are restricted in this specific comparison to the same stable constituent taxa in this table.

Cacopinae is comprised of *Cacops* + *Anakamacops* + *Kamacops* + *Zygosaurus*; and Dissorophinae is comprised of *Broiliellus* + *Diploseira* + *Dissorophus*. Bremer decay indices are listed before the forward slash, and bootstrap values are listed before the forward slash.

1 **Table 3. Comparison of reported support metrics for focal nodes from dissorophid-focused**
2 **analyses.**

3 All nodes are from strict consensus trees except for Schoch (2012). Abbreviations refer to
4 publications: S12, Schoch (2012); MFEM13, Maddin et al. (2013); L18, Liu (2018); D20, Dilkes
5 (2020). ‘A’ and ‘W’ refer to the taxon samples employed by Dilkes: all taxa (A) and without
6 wildcards (W). The same sublettering is used for this study (Analysis 7). An en-dash indicates
7 that a node was not recovered, and ‘NR’ means that the value was not reported. Because the
8 composition of Cacopinae and Dissorophinae sometimes includes certain wildcard taxa (e.g.,
9 *Conjunctio multidens*) or do not include longstanding nominal members, these nodes are
10 restricted in this specific comparison to the same stable constituent taxa in this table. Cacopinae
11 is comprised of *Cacops* + *Anakamacops* + *Kamacops* + *Zygosaurus*; and Dissorophinae is
12 comprised of *Broiliellus* + *Diploseira* + *Dissorophus*. Bremer decay indices are listed before the
13 forward slash, and bootstrap values are listed before the forward slash.

Clade	S12	MFEM13	L18	D20 (A)	this study (A)	D20 (W)	this study (W)
Olsoniformes	3 / 100	NR / 91	NR	>3 / 90	>3 / 75	4 / 94	4 / 77
Trematopidae	2 / 77	NR / 84	NR	>3 / 98	2 / 61	4 / 95	3 / 63
Dissorophidae	3 / 93	NR / 82	3 / NR	3 / 86	2 / 53	3 / 90	3 / 58
Cacopinae	3 / 98	–	3 / NR	1 / 54	–	2 / 70	1 / 39
<i>Cacops</i>	–	–	1 / NR	1 / 71	1 / 41	1 / 73	2 / 46
Dissorophinae	1 / 76	NR / 72	3 / NR	–	–	1 / 71	1 / 50
Post- <i>Platyhystrix</i>	1 / 60	NR / 69	1 / NR	1 / 51	1 / 32	1 / 71	2 / 53
Post- <i>Aspidosaurus</i>	1 / <50	NR	–	1 / 45	–	2 / 72	1 / 52

Table 4(on next page)

Comparison of reported support metrics for focal nodes from trematopid-focused analyses.

All nodes are from strict consensus trees. Abbreviations refer to publications: B10, Berman et al. (2010); B11, Berman et al. (2011); PR11, Polley & Reisz (2011); G20, Gee (2020b). Nodal support of Gee (2020b) refers to the analysis of that study that sampled all twelve trematopids at the species-level (figure 6 therein). This study's nodal support is derived from Analyses 6 and 8 (Figs. 14B, 17). An en-dash indicates that a node was not recovered, and 'NR' means that the value was not reported. Note that Trematopidae in Analyses 6 and 8 of this study only includes *Acheloma cumminsi* (the specifier for the clade) and *Phonerpeton pricei*. Bremer decay indices are listed before the forward slash, and bootstrap values are listed before the forward slash.

1 **Table 4. Comparison of reported support metrics for focal nodes from trematopid-focused
2 analyses.**

3 All nodes are from strict consensus trees. Abbreviations refer to publications: B10, Berman et al.
4 (2010); B11, Berman et al. (2011); PR11, Polley & Reisz (2011); G20, Gee (2020b). Nodal
5 support of Gee (2020b) refers to the analysis of that study that sampled all twelve trematopids at
6 the species-level (figure 6 therein). This study's nodal support is derived from Analyses 6 and 8
7 (Figs. 14B, 17). An en-dash indicates that a node was not recovered, and 'NR' means that the
8 value was not reported. Note that Trematopidae in Analyses 6 and 8 of this study only includes
9 *Acheloma cumminsi* (the specifier for the clade) and *Phonerpeton pricei*. Bremer decay indices
10 are listed before the forward slash, and bootstrap values are listed before the forward slash.

Clade	B10	B11	PR11	G20	this study (TNT)	this study (PAUP*)
Olsoniformes	2 / NR	2 / NR	2 / 66	NR / 55	3 / 32	3 / 58
Dissorophidae	2 / NR	1 / NR	NR	NR / 97	>5 / 81	>5 / 93
Trematopidae	3 / NR	5 / NR	5 / 82	NR	3 / 57	3 / 78
<i>Acheloma</i> + <i>Phonerpeton</i>	4 / NR	7 / NR	—	NR / 92	3 / 57	3 / 78
<i>Anconastes</i> + <i>Tambachia</i>	1 / NR	1 / NR	6 / 77	—	1 / 21	1 / 42
<i>Ecolsonia</i> as trematopid?	No	No	Yes	Yes	No	No

11

Table 5(on next page)

Comparison of absolute and GC frequencies for nodes recovered in Analysis 9A (taxon sample without wildcards; Fig. 19D).

1 **Table 5. Comparison of absolute and GC frequencies for nodes recovered in Analysis 9A (taxon**
2 **sample without wildcards; Fig. 19D).**

Node	Absolute	GC	Change
Olsoniformes	88	87	-1%
Trematopidae	84	84	—
<i>Acheloma</i> + <i>Phonerpeton</i>	75	71	-4%
<i>Anconastes</i> + <i>Tambachia</i>	82	81	-1%
<i>Acheloma</i> + <i>Phonerpeton</i> +	62	60	-2%
<i>Anconastes</i> + <i>Tambachia</i>			
<i>Ecolsonia</i> + <i>Fedexia</i>	51	48	-3%
Dissorophidae	77	77	—
Post- <i>Platyhystrix</i> dissorophids	52	51	-1%
Post- <i>Aspidosaurus</i> dissorophids	52	51	-1%
Cacopinae	57	54	-3%
<i>Cacops</i>	53	53	—
Dissorophinae	51	47	-4%

3