

## Important declarations

Please remove this info from manuscript text if it is also present there.

### Associated Data

---

#### **Data supplied by the author:**

The phylogenetic matrix is attached as a NEXUS file with the sets of trees recovered by parsimony analyses are available as NEXUS files in the Supplemental Files (Appendix 5).

### Required Statements

---

#### **Competing Interest statement:**

The authors declare that they have no competing interests.

#### **Funding statement:**

BMG was supported by graduate student funding from the University of Toronto and by NSF ANT-1947094 (to Christian Sidor). AMK was supported by a Geological Society of America Graduate Student Research Grant (12497-19).

# Revision of the Late Triassic metoposaurid “*Metoposaurus*” *bakeri* (Amphibia: Temnospondyli) from Texas, USA and a phylogenetic analysis of the Metoposauridae

Bryan M Gee<sup>Corresp., 1, 2</sup>, Aaron Kufner<sup>3</sup>

<sup>1</sup> Burke Museum and Department of Biology, University of Washington, Seattle, Washington, United States

<sup>2</sup> Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada

<sup>3</sup> Department of Geoscience, University of Wisconsin, Madison, Wisconsin, United States

Corresponding Author: Bryan M Gee

Email address: bmgee@uw.edu

Metoposaurids are a clade of large-bodied temnospondyls commonly found in non-marine Late Triassic deposits across northern Pangea. Three taxa are known from North America: *Anaschisma browni*, *Apachesaurus gregorii*, and “*Metoposaurus*” *bakeri*. While the osteology of most metoposaurids has been recently revised, that of a few taxa, including “*Metoposaurus*” *bakeri* remains poorly characterized. This taxon was formally described in 1931 as “*Buettneria bakeri*,” and its taxonomy has remained in flux ever since then. “*Metoposaurus*” *bakeri* is the earliest appearing metoposaurid in North America (Carnian of Texas), and *Metoposaurus* has frequently been utilized as an index taxon of the Otischalkian estimated holochron (‘land vertebrate faunachron’) and for biostratigraphic correlations with other geographic regions. The taxonomy of this species is therefore relevant for both taxonomic experts and biostratigraphers. Here we redescribe all material from the type locality of “*M.*” *bakeri*, the Elkins Place bone bed, and perform a phylogenetic analysis using a revised matrix assembled from several previous studies. Anatomical comparisons and phylogenetic analyses do not support placement in either *Metoposaurus*, a taxon otherwise only found in Europe, or *Anaschisma*, the only other large-bodied taxon from North America. Therefore, we erect a new genus, *Buettnererpeton* gen. nov., to accommodate this species. *Metoposaurus* is consequently absent from North America, and this genus cannot be used in global biostratigraphy. Phylogenetic analyses provide evidence that the phylogeny of the Metoposauridae remains extremely labile, with drastic differences in topological resolution and structure being linked to just a handful of characters and scores. Metoposaurids’ morphological conservatism and the increased recognition of intraspecific variation thus continue to be major confounds to elucidating the evolutionary history of this clade.

1 **Revision of the Late Triassic metoposaurid “*Metoposaurus*” *bakeri***  
2 **(Amphibia: Temnospondyli) from Texas, USA and a phylogenetic**  
3 **analysis of the Metoposauridae**

4 Bryan M. Gee<sup>1,2</sup>; Aaron Kufner<sup>3</sup>

5

6 <sup>1</sup>Department of Biology and Burke Museum, University of Washington, Seattle, WA, USA  
7 98105

8 <sup>2</sup>Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada  
9 M5S 3B2

10 <sup>3</sup>Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA 53706

11

12 Corresponding author: Bryan M. Gee

13

14 Email address: [bmgee@uw.edu](mailto:bmgee@uw.edu)

## 15 Abstract

16 Metoposaurids are a clade of large-bodied temnospondyls commonly found in non-marine Late  
17 Triassic deposits across northern Pangea. Three taxa are known from North America:  
18 *Anaschisma browni*, *Apachesaurus gregorii*, and “*Metoposaurus*” *bakeri*. While the osteology of  
19 most metoposaurids has been recently revised, that of a few taxa, including “*Metoposaurus*”  
20 *bakeri* remains poorly characterized. This taxon was formally described in 1931 as “*Buettneria*  
21 *bakeri*,” and its taxonomy has remained in flux ever since then. “*Metoposaurus*” *bakeri* is the  
22 earliest appearing metoposaurid in North America (Carnian of Texas), and *Metoposaurus* has  
23 frequently been utilized as an index taxon of the Otischalkian estimated holochron (‘land  
24 vertebrate faunachron’) and for biostratigraphic correlations with other geographic regions. The  
25 taxonomy of this species is therefore relevant for both taxonomic experts and biostratigraphers.  
26 Here we redescribe all material from the type locality of “*M.*” *bakeri*, the Elkins Place bone bed,  
27 and perform a phylogenetic analysis using a revised matrix assembled from several previous  
28 studies. Anatomical comparisons and phylogenetic analyses do not support placement in either  
29 *Metoposaurus*, a taxon otherwise only found in Europe, or *Anaschisma*, the only other large-  
30 bodied taxon from North America. Therefore, we erect a new genus, *Buettnererpeton* gen. nov.,  
31 to accommodate this species. *Metoposaurus* is consequently absent from North America, and this  
32 genus cannot be used in global biostratigraphy. Phylogenetic analyses provide evidence that the  
33 phylogeny of the Metoposauridae remains extremely labile, with drastic differences in  
34 topological resolution and structure being linked to just a handful of characters and scores.  
35 Metoposaurids’ morphological conservatism and the increased recognition of intraspecific  
36 variation thus continue to be major confounds to elucidating the evolutionary history of this  
37 clade.

## 38 Introduction

39 Metoposaurids are a clade of large-bodied temnospondyls that are common constituents of non-  
40 marine Late Triassic deposits in North America, western and central Europe, northern Africa,  
41 Madagascar, and India (Colbert & Imbrie, 1956; Hunt, 1993; Sulej, 2002). Within North  
42 America, metoposaurids are found across the continental United States but are best represented  
43 from the Carnian- and Norian-aged formations of the southwestern United States (Long &  
44 Murry, 1995). Over a dozen taxa have been named from North America, but only three are  
45 presently valid: *Anaschisma browni* Branson, 1905, *Apachesaurus gregorii* Hunt, 1993, and  
46 “*Metoposaurus*” *bakeri* Case, 1931. “*Metoposaurus*” *bakeri* was described from the Late  
47 Triassic Dockum Group exposures in Scurry County, TX by Case (1931) as the third species of  
48 “*Buettneria*” Case, 1922 (= *Anaschisma* Branson, 1905; Gee, Parker & Marsh, 2019) on the basis  
49 of three medium-sized skulls (Fig. 1). The osteology of “*M.*” *bakeri* was subsequently expanded  
50 through substantial amounts of new material from the type locality, the Elkins Place bone bed  
51 (Case, 1932; alternatively termed the ‘Elkins bone bed’). Baird & Olsen (1983) later reported the  
52 presence of “*M.*” *bakeri* from the Wolfville Formation of Nova Scotia based on the natural mold  
53 of a small, complete skull; this is the only published occurrence of “*M.*” *bakeri* outside of central  
54 Texas. Additional indeterminate metoposaurid material is also known from Nova Scotia (Sues &  
55 Olsen, 2015). Houle & Mueller (2004), Martz (2008), and Mueller et al. (2016) reported  
56 substantially larger specimens from the Boren Quarry in Garza County, TX (Fig. 1); two of these  
57 are conference abstracts, and the third is a publicly available, unpublished doctoral dissertation.

58 Reexamination of historic metoposaurid specimens by numerous workers in the 21<sup>st</sup>  
59 century has produced a marked improvement in our understanding of the Metoposauridae, one of

60 the last-surviving and most morphologically conserved temnospondyl clades. Within North  
61 America, the osteology and taxonomy of both *Anaschisma browni* (Lucas et al., 2016; Gee,  
62 Parker & Marsh, 2019; Kufner & Gee, 2021) and *Apachesaurus gregorii* (Spielmann & Lucas,  
63 2012; Gee & Parker, 2018; Rinehart & Lucas, 2018) have been updated in recent years. A  
64 complementary suite of work on non-North American metoposaurids includes: (1) revision of the  
65 first described metoposaurid, *Metoposaurus diagnosticus* (von Meyer, 1842) Lydekker, 1890  
66 (Sulej, 2002); (2) description of a new taxon from Poland, *Metoposaurus krasiejowensis* Sulej,  
67 2002 (Milner & Schoch, 2004; Sulej, 2007); (3) description of a new taxon from Portugal,  
68 *Metoposaurus algarvensis* Brusatte et al., 2015; (4) revision of the Indian taxon, *Koskinonodon*  
69 *maleriensis*, also variably placed in different genera but most recently renamed as *Panthasaurus*  
70 *maleriensis* Chakravorti & Sengupta, 2018; (5) reevaluation of the Malagasy taxon  
71 “*Metoposaurus*” *hoffmani* Dutuit, 1978 (Fortuny et al., 2019); and (6) revision of the poorly  
72 known Moroccan taxon “*Metoposaurus*” *azerouali* Dutuit, 1976, long considered to be a *nomen*  
73 *dubium* but recently renamed as *Arganasaurus azerouali* Buffa, Jalil & Steyer, 2019. As a result,  
74 nearly all the presently recognized metoposaurid taxa have been recently revised through  
75 detailed study that facilitates thorough examination of their comparative morphology and  
76 phylogenetic relationships.

77 The three taxa that have not been recently re-studied beyond systematic reviews (Colbert  
78 & Imbrie, 1956; Hunt, 1993; Schoch & Milner, 2000) are *Arganasaurus lyazidi* (Dutuit, 1976)  
79 Hunt, 1993 and *Dutuitosaurus ouazzoui* (Dutuit, 1976) Hunt, 1993 from Morocco and  
80 “*Metoposaurus*” *bakeri*. *Arganasaurus lyazidi* and *D. ouazzoui* were detailed in Dutuit’s (1976)  
81 monographic work, and their taxonomic validity and status are considered stable. These taxa  
82 have also been reexamined first-hand by other workers as part of other studies (e.g., Khaldoune  
83 et al., 2016; Chakravorti & Sengupta, 2018; Buffa et al., 2019) such that explicit comparisons of  
84 anatomy and phylogenetic scorings are available. By comparison, Case’s (1931, 1932)  
85 descriptions and photographs of “*M.*” *bakeri* from the Dockum Group of Texas are detailed but  
86 also more dated and are understandably limited in relevant comparative information. Over the  
87 subsequent 90 years, substantial amounts of new metoposaurid material have been recovered that  
88 have greatly altered the framework of metoposaurid paleobiology and phylogenetics.

89 The taxonomy of “*Metoposaurus*” *bakeri* has shifted considerably since Case named the  
90 species (Fig. 2). “*Buettneria*” was synonymized with *Eupelor* Cope, 1868 by Colbert & Imbrie  
91 (1956) and then with *Metoposaurus* Lydekker, 1890 by Chowdhury (1965); restored to  
92 *Buettneria* by Hunt (1993); replaced by *Koskinonodon* Branson & Mehl, 1929 by Mueller (2007)  
93 due to nomenclatural preoccupation of *Buettneria*; and most recently synonymized with  
94 *Anaschisma* Branson, 1905 by Gee, Parker & Marsh (2019). “*Metoposaurus*” *bakeri* was  
95 synonymized with “*Buettneria perfecta*” (=*An. browni*) under *Eupelor fraasi jonesi* Case, 1920  
96 by Colbert & Imbrie (1956), who separated the North American taxa into subspecies delineated  
97 by geographic occurrence, largely along present-day state boundaries; *E. f. jonesi* was restricted  
98 to the Dockum Group. The species-level synonymy of these two taxa was maintained by  
99 Chowdhury (1965), who placed all metoposaurids within *Metoposaurus* while preserving  
100 Colbert & Imbrie’s framework of subspecies. Hunt’s (1993) review of the Metoposauridae  
101 abandoned subspecies and removed “*M.*” *bakeri* to *Metoposaurus*, which only included “*M.*”  
102 *bakeri* and the European *M. diagnosticus* based on the shared exclusion of the lacrimal from the  
103 orbit. Sulej (2002) returned “*M.*” *bakeri* to “*Buettneria*” after identifying a lacrimal entering the  
104 orbit in *M. diagnosticus* but maintained “*B. bakeri*” as distinct from “*Buettneria perfecta*.” As  
105 this contact was subsequently found in two other European species, *M. krasiejowensis* and *M.*

106 *algarvensis*, a lacrimal-orbit contact is considered diagnostic of *Metoposaurus* sensu Brusatte et  
107 al. (2015). This taxonomy has been adopted by practically every worker (but see Lucas,  
108 Spielmann & Hunt, 2007), and this feature is shared with *Anaschisma* ("*Buettneria*"), which  
109 would exclude "*M.*" *bakeri* from both genera based on their present diagnoses.

110 As a result, of the constant flux of metoposaurid anatomy and systematics  
111 "*Metoposaurus*" *bakeri* has been referred to in nearly every possible taxonomic combination in  
112 the past two decades alone (Fig. 2), such as *Metoposaurus bakeri* (e.g., Hunt, 1993; Long &  
113 Murry, 1995; Sengupta, 2002; Witzmann & Gassner, 2008; Parker & Martz, 2010; McHugh,  
114 2012; Spielmann & Lucas, 2012; Sues & Olsen, 2015; Lucas, 2021), "*Metoposaurus*" *bakeri*  
115 (e.g., Gee & Parker, 2018), "*Buettneria*" *bakeri* (e.g., Sulej, 2002, 2007; Lucas et al., 2016), or  
116 *Koskinonodon bakeri* (e.g., Brusatte et al., 2015; Chakravorti & Sengupta, 2018; Buffa, Jalil &  
117 Steyer, 2019; Fortuny et al., 2019). Phylogenetic inference has not resolved this matter, as three  
118 independent, computationally-derived analyses (Chakravorti & Sengupta, 2018; Buffa, Jalil &  
119 Steyer, 2019; Gee, Parker & Marsh, 2019) have recovered drastically different degrees of  
120 resolution and topology (Fig. 3). "*Metoposaurus*" *bakeri* is also of interest beyond the confines  
121 of metoposaurid taxonomy because it was long considered to be an index taxon for the  
122 Otischalkian LVF (land vertebrate faunachron) and to be useful for correlation with European  
123 *Metoposaurus*-bearing deposits (e.g., Lucas & Hunt, 1993; Lucas, 1998, 2021). However, the  
124 shifting taxonomy of both this taxon and of *Metoposaurus* has led to the abandonment of its  
125 usage in this biostratigraphic context by virtually all workers other than Lucas (e.g., Langer,  
126 2005; Kammerer, Nesbitt & Shubin, 2011; Martz & Parker, 2017). This study thus has two  
127 objectives: (1) to provide a detailed, updated osteology of Case's original material for use in  
128 comparative anatomical descriptions and phylogenetic analyses; and (2) to resolve the taxonomic  
129 status of this species, thereby clarifying its informativeness for biostratigraphy or lack thereof.

## 130 Materials & Methods

131 *Examined specimens*.—A full list of the specimens of this taxon that we personally examined at  
132 the University of Michigan Museum of Paleontology (UMMP) is included in Table 1. Other  
133 referred specimens from the type locality that we did not personally examine include MCZ 1054,  
134 a complete skull that was exchanged as part of a loan (originally UMMP 13821 per Case, 1932)  
135 and MCZ 1056, a mandible (formerly UMMP 13946) that is listed as also having been  
136 exchanged on a collections card at the UMMP but not by Case. MCZ 1054 was most recently  
137 figured (photographs) by Schoch & Milner (2000:pl. 8A-B).

138 A few specimens have been reported from other localities that we did not examine (Fig.  
139 1). YPM VPPU 021742 is a natural mold of a small specimen from Nova Scotia, the only record  
140 of a metoposaurid from Canada and of the taxon outside of Texas (Gregory, 1980; Baird &  
141 Olsen, 1983; Hopson, 1984; Baird, 1986). Figures of the specimen, especially a recent  
142 photograph by Sues & Olsen (2015) that is reproduced here alongside an interpretive drawing  
143 (Fig. 4), confirm the historic referral based on a lacrimal excluded from the orbit. It is not  
144 described in detail due to both lack of personal observation and the nature of the specimen (two-  
145 dimensional mold), but it is further contextualized with other material of this taxon in the  
146 discussion. Martz (2008) reported two specimens (TTU P-11046, TTU P-10530) from the Boren  
147 Quarry (MOTT VPL 3869), Garza Co., TX in his doctoral dissertation. These specimens were  
148 first noted in a conference abstract by Houle & Mueller (2004), who suggested that it might be a  
149 new subspecies of "*Buettneria bakeri*." This is the same locality and material referenced in a  
150 later conference abstract (Mueller et al., 2016). We agree with the referral of these specimens to

151 “*Metoposaurus*” *bakeri* based on Martz’s figures, although these specimens have yet to be  
152 published.

153 Lastly, Chakravorti & Sengupta (2018) listed a never-before-reported specimen of this  
154 taxon in the Natural History Museum London (AB8948), but it was not described and was  
155 figured at an insufficient size to assess its anatomy. S. Chakravorti graciously sent BMG a  
156 higher-resolution photograph, which permitted us to identify it as a cast of a published skull of a  
157 small-bodied specimen (TMM 31099-12B) from Quarry 2 near Otis Chalk, Howard County, TX  
158 (Sawin, 1945). Our association was made on the basis of the cast’s relatively small size and a  
159 distinctive pattern of fractures on the dorsal surface. TMM 31099-12B was listed by Sawin as a  
160 specimen of “*Buettneria bakeri*?,” which likely accounts for the identification of the cast, but  
161 Sawin did not provide any figures or details other than to say that it was comparable to “*B.*  
162 *bakeri*” in form and size. TMM 31099-12B was then mentioned as a “juvenile metoposaur” by  
163 Davidow-Henry (1987) and was most recently figured by Hunt (1993) as a referred specimen of  
164 “*Buettneria perfecta*” (=*Anaschisma browni*). Although Hunt’s figure is also too small to allow  
165 us to assess the anatomy, we consider Hunt’s taxonomic referral, based on his personal  
166 examination and its recency, to be the most reliable interpretation here, and AB8948 is not  
167 regarded as a specimen of “*Metoposaurus*” *bakeri*. This clarification underscores the need to  
168 exercise caution with identifications listed on collections cards and labels, especially for taxa  
169 with frequent shifts in taxonomy such as metoposaurids.

170  
171 *Locality & horizon*.—All material re-described here, which represents the only detailed  
172 published occurrence of the taxon in Texas, comes from the Elkins Place bonebed in Scurry  
173 County Texas (Fig. 1). Per Long & Murry (1995:14), the site was discovered by A.N.  
174 Huddleston on the P.L. Fuller Ranch approximately 37 km north of the town of Snyder in Scurry  
175 County (23 miles per Case, 1932). This locality has typically been situated within the Camp  
176 Springs Conglomerate at the base of the Dockum Group just above the TR-3 unconformity.  
177 There has been great historical debate over the rank of this unit (e.g., Lehman, 1994); it has been  
178 variably termed the Camp Springs Member (e.g., Lucas & Anderson, 1993, 1994; Ray et al.,  
179 2016; Datta, Kumar & Ray, 2019), the Camp Springs Formation (e.g., Stocker, 2012; Heckert et  
180 al., 2013; Sues, Fitch & Whatley, 2020), the Camp Springs Conglomerate (e.g., Martz et al.,  
181 2012; Martz & Parker, 2017), and the pre-Tecovas Horizon (in part; e.g., Long & Murry, 1995).  
182 We refer to it as the Camp Springs Conglomerate here. This unit, regardless of its geologic rank,  
183 is less controversially accepted to be equivalent to the lowest portion (Tecolotito Member) of the  
184 Santa Rosa Formation elsewhere in Texas (e.g., Martz & Parker, 2017).

185 The lithology of the site has been described in detail by Case (1932) and is only briefly  
186 repeated here. All bones occurred in the lowest part of a half-meter thick coarse gray sandstone  
187 with no clear association beyond one jaw with a skull. Examples of the matrix can be seen in the  
188 palate of several of the complete skulls or within the braincase in partial specimens. Some  
189 elements were clustered, such as a number of skulls, but no association of cranial and postcranial  
190 elements was reported. The only remains of other taxa from the locality are fragmentary and  
191 isolated material (e.g., phytosaur teeth, coprolites) from a higher stratigraphic horizon in a clay  
192 conglomerate that is of a poorer quality of preservation. The monotaxicity of the metoposaurid-  
193 bearing horizon is therefore more similar to Lamy, NM (*Anaschisma browni*) and the type  
194 locality of *Dutuitosaurus ouazzoui* in Morocco (Dutuit, 1976; Lucas et al., 2010) than to the  
195 mixed-taxa assemblages at Krasiejów and Rotten Hill (Sulej, 2007; Lucas et al., 2016). The  
196 general state of disarticulation mirrors that observed for most other metoposaurid accumulations

197 (e.g., Sulej, 2007; Lucas et al., 2010, 2016). Lehman & Chatterjee (2005) interpreted the deposit  
198 as the infilling of an abandoned stream channel that probably held ephemeral bodies of water.  
199 Similar concentrations of small-bodied metoposaurids in abandoned channel fills also occur in  
200 the Chinle Formation of Arizona (Loughney, Fastovsky & Parker, 2011).

201  
202 *Photography*.—Specimens were photographed at the University of Michigan, Museum of  
203 Paleontology in Ann Arbor, Michigan, U.S.A. using a Nikon D3500 DSLR camera with an 18–  
204 55 mm and a 70–100 mm lens. All specimens were photographed in standard anatomical  
205 profiles, but some specimens, especially the large pectoral elements, are embedded in plaster  
206 from at least one side (usually the unornamented surfaces) and could not be photographed in  
207 certain profiles. Other specimens were originally stabilized using Japanese rice paper and are  
208 uninformative on one side. Figures were prepared using Adobe Photoshop and Illustrator.  
209

210 *Phylogenetic analysis*.—Our character matrix was derived from previous matrices (Buffa, Jalil &  
211 Steyer, 2019; Chakravorti & Sengupta, 2018; Gee, Parker & Marsh, 2019). We began with the  
212 matrix of Buffa, Jalil & Steyer (2019) because this matrix utilizes traditional discrete characters  
213 (rather than Chakravorti & Sengupta [2018], many of which are discrete binning of continuous  
214 data) and because this matrix produced good resolution in the original study compared to that of  
215 Gee, Parker & Marsh (2019), which also used discrete characters. Since one of us (BMG)  
216 authored the latter matrix, this provided a good opportunity to compare character sampling and  
217 scoring approaches to work towards an improved phylogenetic consensus for the clade. We then  
218 added additional characters utilized by one of the other two studies and removed several that  
219 were primarily used to differentiate the specific outgroups utilized by Buffa, Jalil & Steyer  
220 relative to metoposaurids. This produced a total of 112 characters; the character list of this study  
221 is listed in Appendix 1, and the associated NEXUS file is appended as Appendix 2. The matrix  
222 was compiled using Mesquite version 3.6 (build 197) (Maddison & Maddison, 2018).

223 For outgroups, we sampled the stereospondylomorph *Sclerocephalus haeuseri* Goldfuss,  
224 1847 (the operational outgroup), the Middle Triassic metoposauroid *Callistomordax kugleri*  
225 Schoch, 2008 (the only unequivocal non-metoposaurid metoposauroid), the Early Triassic  
226 trematosauroid *Lyrocephaliscus euri* (Wiman, 1914) Kuhn, 1961; the Middle Triassic  
227 trematosauroid *Trematolestes hagdorni* Schoch, 2006; the Early Triassic lydekkerinid  
228 *Lydekkerina huxleyi* (Lydekker, 1889) Broom, 1915; the late Permian rhinesuchid *Rhineceps*  
229 *nyasaensis* (Haughton, 1927) Watson, 1962 (from the original sampling of Buffa, Jalil & Steyer);  
230 two brachyopoids, the late Permian or Early Triassic *Bothriceps australis* Huxley, 1859, and the  
231 Late Triassic *Compsocerops cosgriffi* Sengupta, 1995; and four capitosaurs, the Late Triassic  
232 *Cyclotosaurus intermedius* Sulej & Majer, 2005, the Middle Triassic *Eocyclotosaurus*  
233 *appetolatus* Rinehart, Lucas & Schoch, 2015, the Middle Triassic *Quasicyclotosaurus campi*  
234 Schoch, 2000, and the Middle Triassic *Mastodonsaurus giganteus* Jaeger, 1828.

235 We also retained the Late Triassic *Almasaurus habbazi* Dutuit, 1976, from the analysis of  
236 Buffa, Jalil & Steyer, 2019, but it should be noted that the position of this small-bodied taxon is  
237 strongly influenced by the interpretation and inclusion of two other small-bodied Late Triassic  
238 taxa: *Rileymillerus cosgriffi* Bolt & Chatterjee, 2000, and *Chinlestegophis jenkinsi* Pardo, Small  
239 & Huttenlocker, 2017. These three taxa are contemporaneous with metoposaurids, and *A.*  
240 *habbazi* and *R. cosgriffi* were sometimes thought to be closely related to each other and to  
241 metoposaurids (e.g., Schoch, 2008; McHugh, 2012, but see original interpretations by Bolt &  
242 Chatterjee, 2000) but have been more recently recovered as being closely related to brachyopoids

243 (Pardo, Small & Huttenlocker, 2017). Gee, Makovicky & Sidor (2021), an expansion of Pardo,  
244 Small & Huttenlocker, with the addition of *A. habbazi* (among other small-bodied  
245 stereospondyls), recovered *A. habbazi* as a trematosaur but *R. cosgriffi* and *C. jenkinsi* as the  
246 sister taxa of brachyopoids. The latter two were also sampled here.

247 We manually rescored all previously utilized characters based on a combination of  
248 personal observation (of North American metoposaurids) and the literature (Table 2). Characters  
249 were ordered when it could be reasonably inferred that character transformations occurred along  
250 a morphocline; an example is the progression of the lacrimal from being excluded from the orbit  
251 (8-0) to narrowly contacting the orbit (8-1) to broadly contacting the orbit (8-2). We elected to  
252 order such characters because leaving all multistate characters unordered is not a neutral stance  
253 like equal weighting. Instead, doing so presents an alternative hypothesis for the evolution of  
254 these characters in which transformations between all states are equally likely (e.g., Slowinski,  
255 1993; Wiens, 2001). Previous studies have demonstrated that ordering these types of characters  
256 improves both resolution and accuracy (e.g., Fröbisch & Schoch, 2009; Grand et al., 2013;  
257 Rineau et al., 2015; Rineau, Zaragueta i Bagils & Laurin, 2018). Characters were left equally  
258 weighted.

259 Parsimony analysis was performed in PAUP\* 4.0a169 for MacIntosh (Swofford, 2002)  
260 using a heuristic search with 10,000 random addition sequence replicates, holding 10 trees per  
261 step, tree-bisection-and-connection (TBR), and with *Sclerocephalus haeuseri* as the operational  
262 outgroup. PAUP\* was set to differentiate polymorphisms and partial uncertainty. We tested the  
263 matrix with select multistate characters ordered and with all multistate characters unordered. All  
264 other parameters were left as the program defaults (e.g., gap states treated as missing data in  
265 PAUP\*). Bremer decay index was calculated by progressively searching for trees of one step  
266 longer and comparing the strict consensus topologies. Bootstrapping was performed with  
267 100,000 fast stepwise addition replicates.

268 The Bayesian analysis was performed in MrBayes 3.6.2 (Huelsenbeck & Ronquist, 2001;  
269 Ronquist & Huelsenbeck, 2003) with a gamma distribution of rates allowed to vary over  
270 5,000,000 iterations in four simultaneous runs with the first 20% of trees discarded as burn-in.  
271 The average standard deviation of split frequencies (ASDSF) between runs was evaluated every  
272 5,000 iterations; convergence was considered to have been achieved when the ASDSF stably  
273 dropped below 0.01.

274 We also sought to investigate possible explanations for the stark differences between  
275 topologies recovered by previous studies. Therefore, in addition to our own analysis, we also  
276 reassessed the original matrix of Buffa, Jalil & Steyer (2019) and identified a number of scores  
277 that should be changed or corrected (Appendix 3). We then reanalyzed this matrix (NEXUS file  
278 appended as Appendix 4), as well as the original matrix with certain characters ordered  
279 (Appendix 3); the original analysis left all characters as unordered, in contrast to our approach  
280 with our own matrix. We also assessed both Bremer decay indices and bootstrap support; only  
281 the former was done originally. This part of our study is not meant as a targeted criticism of that  
282 particular matrix but rather is intended to address the discrepancies between topologies of that  
283 study and that employed by the first author of this study (Gee, Parker & Marsh, 2019) as the two  
284 previous studies that used discrete characters. The same parameters were followed as listed by  
285 Buffa, Jalil & Steyer (e.g., simple heuristic search in PAUP\* with TBR [reconnection limit=8]  
286 and equal weighting of characters); any unlisted parameters (e.g., polymorphisms treated as  
287 ‘unknown’) utilized defaults of the program. Bootstrapping was done with 10,000 replicates and

288 a simple heuristic search. All MPTs from parsimony analyses are included in the supplemental  
289 information as Appendix 5.

290

291 *Institutional abbreviations.*—**MCZ**, Museum of Comparative Zoology, Harvard University,  
292 Cambridge, MA; **MOTT**, Museum of Texas Tech Locality; **TMM**, Texas Memorial Museum,  
293 Austin, TX; **TTU-P**, Texas Tech University, Lubbock, TX; **UMMP (=UMMNH)**, University of  
294 Michigan Museum of Paleontology, Ann Arbor, MH; **YPM VPPU**, Yale Peabody Museum,  
295 Ithaca, NY.

296

297 *Nomenclatural acts.*—The electronic version of this article in Portable Document Format (PDF)  
298 will represent a published work according to the International Commission on Zoological  
299 Nomenclature (ICZN), and hence the new names contained in the electronic version are  
300 effectively published under that Code from the electronic edition alone. This published work and  
301 the nomenclatural acts it contains have been registered in ZooBank, the online registration  
302 system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the  
303 associated information viewed through any standard web browser by appending the LSID to the  
304 prefix <http://zoobank.org/>. The LSID for this publication is:  
305 urn:lsid:zoobank.org:pub:32E58BF1-B343-4657-91E8-F324D76A7B41. The online version of  
306 this work is archived and available from the following digital repositories: PeerJ, PubMed  
307 Central SCIE and CLOCKSS.

308

## 309 Systematic Paleontology & Description.

310

311 TEMNOSPONDYLI von Zittel, 1887–1890 sensu Schoch, 2013

312

STEREOSPONDYLI von Zittel, 1887–1890 sensu Yates & Warren, 2000

313

TREMATOSAUROIDEA Säve-Söderbergh, 1935 sensu Schoch, 2013

314

METOPOSAURIDAE Watson, 1919 sensu Buffa, Jalil & Steyer, 2019

315 *Buettnererpeton* gen. nov.

316

317 Diagnosis.—as for the species.

318

319 Etymology.—The original name given by Case (1922), *Buettneria*, honored William H.  
320 Buettner, a preparator who worked extensively with Case at the UMMP for 40 years. A brief  
321 obituary of Mr. Buettner can be found in a publicly accessible University of Michigan report  
322 published the year following his death (University of Michigan, 1957). This name remained in  
323 usage until 2007, when Mueller (2007) noted that this genus name was already preoccupied by  
324 an extant African bush cricket. The type species of *Buettneria*, *B. perfecta*, was then placed  
325 within *Koskinonodon*, a genus erected by Branson & Mehl (1929), and was most recently placed  
326 within *Anaschisma* Branson, 1905 by Gee et al. (2019). The new proposed genus name for the  
327 former *Buettneria bakeri* is *Buettnererpeton*, an available derivation from Mr. Buettner’s name  
328 that preserves Case’s original honoring of his colleague and that is combined with the Greek  
329 suffix ‘-herpeton,’ a commonly used nomenclatural term for extinct ‘reptiles’ and ‘amphibians.’

330

331 *Buettnererpeton bakeri* comb. nov.

332

333 *Buettneria bakeri* Case, 1931

334 *Buettneria bakeri* Romer, 1947  
335 *Eupelor fraasi jonesi* (in part) Colbert & Imbrie, 1956  
336 *Metoposaurus fraasi jonesi* (in part) Chowdhury, 1965  
337 *Metoposaurus bakeri* Hunt, 1993  
338 *Metoposaurus bakeri* Schoch & Milner, 2000  
339 *Buettneria bakeri* Sulej, 2002  
340 *Koskinonodon bakeri* Brusatte et al., 2015  
341  
342 *Holotype*.—UMMP 13055, complete skull  
343  
344 *Referred specimens*.—See Table 1 and the Materials & Methods section for complete listing.  
345  
346 *Diagnosis*.—The species is diagnosed by the following differential diagnosis. Differentiated from  
347 *Anaschisma browni*, *Arganasaurus azerouali*, the three species of *Metoposaurus* (*M.*  
348 *algarvensis*, *M. diagnosticus*, *M. krasiejowensis*), and *Panthasaurus maleriensis* by the exclusion  
349 of the lacrimal from the orbital margin. Further differentiated from *An. browni* by: (1) less  
350 developed alary process of the premaxilla (suture with the nasal is more shallowly inclined); (2)  
351 anterior margin of orbits posterior to anterior margin of interpterygoid vacuities; (3) splenial not  
352 contacting the symphyseal surface; (4) presence of sensory groove along posterior region of  
353 clavicle. Further differentiated from *P. maleriensis* by: (1) short lacrimal, resulting in maxilla-  
354 prefrontal contact; (2) jugal terminating at or just anterior to the anterior margin of the orbits  
355 (rather than well anterior to this level). Differentiated from *Arganasaurus* (*A. azerouali*, *A.*  
356 *lyazidi*) by: (1) proportionately short lacrimal; (2) squamosal more pentagonal than triangular in  
357 dorsal view. Further differentiated from *Ar. lyazidi* by lacrimal excluded from naris and from *Ar.*  
358 *azerouali* by: (1) maxilla excluded from orbital margin; (2) lacrimal excluded from orbital  
359 margin; (3) presence of elongate grooves in growth zones on skull roof. Differentiated from  
360 *Dutuitosaurus ouazzoui* by: (1) maxilla excluded from orbital margin; (2) intercentra not  
361 elongate. Differentiated from *Apachesaurus gregorii* by: (1) relatively long lacrimal; (2)  
362 proportionately deep otic notch framed by a prominent tabular horn.

### 363 **Description.**

364 The following description is divided by skeletal region. The cranial description follows the  
365 structure of Sulej (2007) in which elements are described individually in a more or less  
366 anteroposterior order. Each element's description is further subdivided into two sections: (1) the  
367 description of the element in the holotype; and (2) the description of the element based on other  
368 specimens. The second section includes comparisons among specimens to capture intraspecific  
369 variation. A comparative table of cranial measurements is provided in Table 3 and a composite  
370 cranial reconstruction is provided in Figure 5. Comparisons with the original interpretations of  
371 Case (1931, 1932) are noted where appropriate, and it should be noted that there are some slight  
372 discrepancies between the illustrated anatomy of those two studies.

### 373 **Cranial material.**

374  
375  
376 *Overview of cranial material*.—The holotype (UMMP 13055) is a complete skull with minimal  
377 taphonomic distortion (Figs. 6–8). A number of areas have been infilled with plaster to  
378 reconstruct and to stabilize the original fossil material. This is most prominent on the right side

379 of the skull where nearly the entire lateral margin has been reconstructed (Figs. 6–7). Both of the  
380 temporal regions are damaged posteriorly (squamosal, quadratojugal) and were not  
381 reconstructed. Many of the sutures have slightly separated and been infilled with matrix such that  
382 their demarcations are accentuated. The orbit is a large oval that is positioned fully posterior to  
383 the anterior margin of the interpterygoid vacuity in palatal view (Fig. 7), contrary to *Anaschisma*  
384 *browni* (e.g., Lucas et al., 2016; Gee, Parker & Marsh, 2019; Kufner & Gee, 2021). The naris is  
385 slightly smaller and generally circular, although the perfectly circular reconstruction of the right  
386 naris is probably more cosmetic than it is accurate.

387 UMMP 13820 is a complete skull figured in dorsal, palatal, and occipital views (Figs. 9–  
388 11). The roofing sutures are extremely well-defined, providing a better guide to the full cranial  
389 osteology than the holotype, due to many sutures having been infilled by sediments, although  
390 they have not separated to the degree observed in the holotype (Figs. 9A–9B).

391 UMMP 13822 is a half skull split nearly perfectly down the midline, with the left side  
392 preserved (Figs. 12–15). Like in the holotype, the orbits are entirely exposed through the  
393 interpterygoid vacuity and are set posterior to the anterior margin of the vacuity (Figs. 13A–  
394 13B).

395 UMMP 13823 is a complete skull, but the dorsal surface has been fully embedded in  
396 plaster, probably as a stabilizer given the prominent fracturing on the exposed surfaces, and it  
397 was never previously figured or described in this profile (Fig. 16).

398 UMMP 13956 is another occiput, preserved as far anteriorly as the anterior margin of the  
399 squamosal and with two additional fragments of the skull roof of an uncertain position (Fig. 17).  
400 As a nomenclatural note, the physical specimen bears the number '13596,' which is what this  
401 specimen was published as by Case (1932), but the specimen card bears the number '13956.'  
402 The first number is not registered in the UMMP database as belonging to any specimen, so the  
403 official catalogue number is considered to be UMMP 13956 (A. Rountrey, pers. comm.). It is  
404 slightly more laterally extensive than UMMP 14154, at least the portion that is exposed dorsally.  
405 The dorsal surface has mostly been left unprepared such that sutures are not well-defined,  
406 although the same ornamentation found in the postorbital skull of other specimens is discernible  
407 (Fig. 17A). The conglomeratic matrix is also present within the internal spaces of the skull such  
408 that when viewed anteriorly, the broken exposure confers no additional information. The two  
409 fragments of the skull roof do not fit with the larger block, but both show a mixture of circular  
410 pits and more elongate grooves. Assuming that there was some rationale for associating them  
411 with the larger cranial block, they would most likely be part of the postorbital or the postfrontal.  
412

413 UMMP 14098 is a series of fragments from the posterior right side of the skull, without  
414 major articulated palatal or occipital elements and with the underside of the roofing elements  
415 mostly covered by matrix (Figs. 18–20). The largest fragment is a block of the posterior skull  
416 roof, with some of the matrix still present on the underside in addition to a dislodged stapes  
(Figs. 18A–18B).

417 UMMP 14154 is a partial occiput, including the posteromedial cranial and palatal  
418 elements (Figs. 21–23). The right side of the skull roof has been ventrally shifted such that the  
419 right median roofing elements lie about a centimeter below the complementary elements of the  
420 left side (Fig. 23). A second fragment of this specimen, embedded in plaster dorsally and without  
421 ventral expression of sutures, probably includes parts of the postorbital and the postfrontal as  
422 well; this fragment is not shown in dorsal view (Figs. 21A–21B) because it could only be  
423 securely rearticulated with the other fragment for photography in ventral view (Figs. 22A–22B).

424 This was evidently an intentional break, as Case (1931:190) indicated that parts of the roof had  
425 been removed to expose the braincase, and the plaster was thus likely used to hold it together.

426 UMMP 14262 was reported as the “anterior half of a skull” (Case, 1932:6), but the  
427 specimen was never figured, and Case made only one note regarding its morphology – that there  
428 was a small median gap between the rows of transvomerine teeth (p. 21 therein). All that remains  
429 of the specimen is an unidentifiable fragment embedded in matrix and a few loose fragments  
430 (Fig. 24). No vomer (or teeth) is apparent, and the largest fragment arguably cannot even be  
431 proven to belong to a temnospondyl. Collections records give no indication of either an exchange  
432 or a loan involving this specimen. There is a specimen in collections, one number higher  
433 (UMMP 14263), that is represented by the anterior half of the skull, but the specimen is listed as  
434 being from “Sweetly Cruize,” which Lucas et al. (2016) considered the same as the Rotten Hill  
435 locality near Amarillo, TX, that preserves abundant remains of *Anaschisma browni*. The  
436 preservation and lithology of UMMP 14263 is consistent with specimens from Rotten Hill and  
437 distinct from the sandy conglomerate at the Elkins Place bone bed. UMMP 14263 also does not  
438 expose the transvomerine teeth. This conundrum is therefore unlikely to be a typographic error.  
439 A catalogue of UMMP fossils that was published by Case (1947) does not list UMMP 14262, but  
440 this is an incomplete list based on what we observed. Other specimens that were almost certainly  
441 known at the time of the 1932 publication given their catalogue numbers were also not listed in  
442 the 1947 publication (e.g., intercentra; many isolated skull bones). Long & Murry’s (1995)  
443 appendix of specimens also does not mention UMMP 14262 (for any tetrapod). It should be  
444 assumed that this specimen has been lost or transferred without apparent record.

445 Finally, there are more than three dozen cranial specimens consisting of largely isolated  
446 and fragmentary cranial, palatal, and occipital elements. Their numbering is not repeated in this  
447 overview (refer to Table 1), but they are specifically called out in the following description. Most  
448 of these specimens actually comprise multiple elements from multiple individuals, with many  
449 seemingly grouped by which side of the skull they come from (e.g., UMMP 13811 constitutes  
450 four right nasals).

451  
452 *Lateral line grooves*.—The lateral line canals are well defined in the holotype (Fig. 6). The  
453 supraorbital canal originates on the premaxilla, medial to the naris and continues posteriorly,  
454 curving around the naris. It presumably crosses onto the maxilla and definitively onto the  
455 lacrimal before turning back medially onto the prefrontal and the postfrontal, where it terminates.  
456 The infraorbital canal is not well-defined anteriorly but is definitively present in the inferred area  
457 of the maxilla at the level of the posterior narial margin. It curves medially to closely approach  
458 the supraorbital canal on the lacrimal, and then exhibits a marked kink (Z-shaped flexure) where  
459 it turns back onto the maxilla and then extends longitudinally down the jugal, where it very  
460 nearly contacts the postorbital canal. It is unclear whether the canals contacted along their full  
461 length because the relevant region is reconstructed on both sides, but there is a short extent on  
462 the left side where they run adjacent to each other. The preserved portion of the postorbital canal  
463 is an obliquely oriented line extending from the jugal, across the postorbital, and terminating on  
464 the supratemporal. From the point where it parallels the infraorbital canal, there is another  
465 groove extending posteriorly onto the quadratojugal that curves slightly medially at the end to  
466 extend to the edge of the preserved skull; it is possible that the terminus was either within the  
467 squamosal or over the squamosal-quadratojugal suture.

468 The full course of the lateral line canals is also identified in UMMP 13820 (Fig. 9). There  
469 are no major deviations from the holotype barring the left side of UMMP 13820 in which a

470 groove appears to join the infraorbital and supraorbital canals posterior to the naris. However,  
471 this feature is not found on the right side, which lacks the slight damage found on the left side, so  
472 it may be an artifact. Minor deviations in this specimen include the clear termination of the  
473 postorbital canal on the squamosal (restricted to the quadratojugal in the incompletely preserved  
474 region of the holotype) and the more 'U-shaped' contour of the postorbital canal along the jugal  
475 and the postorbital (versus what appears to be a more 'V-shaped' contour, incompletely  
476 preserved in the holotype). Because the left lacrimal of this specimen is particularly narrow  
477 compared to other specimens, the infraorbital canal does not pass onto the lacrimal on this side,  
478 but it does pass onto the right lacrimal, which is much wider (Fig. 9). UMMP 13822 shares the  
479 separation of the infraorbital and supraorbital canals posterior to the naris (Fig. 12), as with the  
480 holotype and in contrast to UMMP 13820, further suggesting that the morphology on the left side  
481 of UMMP 13820 might be an artifact. UMMP 13822 then shares the more 'U-shaped'  
482 postorbital canal and the termination of the postorbital canal on the squamosal with UMMP  
483 13820 in contrast to the holotype. The more incomplete UMMP 13956 and UMMP 14154  
484 preserve only short portions of canals that contribute no new information (Figs. 17, 21). No  
485 additional information is available from the limited portions of canals that are preserved on  
486 isolated cranial elements.

487

488 *Ornamentation*.—The ornamentation on the skull is similar to that of other metoposaurids,  
489 consisting mostly of circular pitting (Fig. 6). Pitting is more circular to subcircular in the snout  
490 region, between the orbits, and posterior to the pineal foramen on the median elements. Much  
491 smaller, shallower pitting is found along the anterior margin of the premaxilla, which is  
492 otherwise relatively unornamented. Elongate, radiating grooves that represent zones of more  
493 intensive growth are most prominent on the posterior region of the frontal, the pre-pineal region  
494 of the parietal, and the squamosal but also occur on most of the postorbital elements at the  
495 juncture between the postorbital, the supratemporal, and the squamosal and along the  
496 posterolateral margin of the skull on the jugal. The lateral exposure of the maxilla is mostly  
497 unornamented but is marked by faint striations.

498 Ornamentation of the referred specimens, whether as partial and complete skulls or as  
499 isolated elements, is identical to that of the holotype (Figs. 9, 12, 17, 21). Among the former, the  
500 ornamentation is best preserved in UMMP 13820 in which the entire roof is complete and  
501 exposed.

502

503 *Premaxilla*.—The premaxilla is a short element framing the external naris anteriorly that is  
504 rectangular in dorsal view (Fig. 6). The suture with the nasal is not clearly defined in the  
505 holotype, but Case's (1931, 1932) original interpretation along a transverse crack (not depicted  
506 here) is not unreasonable. Based on the original interpretation, an alary process in the form of a  
507 distinct posterolateral triangular process would be absent, but the true condition is best left as  
508 unknown given the specimen's condition. Eight complete teeth are preserved on the partial left  
509 premaxilla but are still largely embedded in matrix; these are slender, conical, and non-recurved.  
510 The palatal surface of the premaxilla is otherwise obscured or reconstructed in the holotype, and  
511 the posterior suture with the vomer was not identified (Fig. 7). Assuming consistent size and  
512 spacing of teeth, the total marginal tooth count is estimated to a range of 110 to 120, although  
513 because the premaxilla-maxilla suture is not preserved on either side, the number of positions per  
514 element is unknown. This is comparable to *Metoposaurus krasiejowensis*, for which Sulej (2007)  
515 estimated 18–20 premaxillary and 83–107 maxillary positions (101–127 total positions).

516 UMMP 13820 preserves more dorsally complete premaxillae (Fig. 9). They are similar in  
517 proportions to the holotype but also preserve the premaxilla-nasal suture, revealing a weakly  
518 developed alary process in which the sutural contact is angled posterolaterally rather than  
519 straight transversely. However, it is not as developed as in some other metoposaurids like in  
520 *Anaschisma browni* (e.g., Lucas et al., 2016), and there is no strongly developed process in  
521 which a posteriorly directed triangular process is completely offset from the naris. The palatal  
522 surface is obscured by matrix, and a tooth count is not possible (Fig. 10). The only data regarding  
523 the palatal exposure comes from UMMP 13823 in which it is fully exposed ventrally. In this  
524 specimen, the premaxilla shares a transversely oriented suture with the vomer (Figs. 16A, 16C).  
525 There is a shallow median fossa (the fossa subrostralis media of Sulej, 2007, and the anterior  
526 palatal fossa of other workers; e.g., Yates & Warren, 2000) between paired perforations (the  
527 anterior palatal vacuities / fenestrae). The palatal fenestrae are slightly larger than the  
528 circumference of one palatal fang and are more or less round when accounting for slight  
529 distortion and do not penetrate through to the skull roof as in some capitosaurs (e.g., Schoch,  
530 1999; Rinehart et al., 2015). The fossa bears only a faint rugose texture compared to other palatal  
531 surfaces. The suture between the premaxilla and the maxilla is only tentatively identified on each  
532 side (Figs. 16A, 16C), but there appear to have been 18 tooth positions on the premaxilla, within  
533 the range for *Metoposaurus krasiejowensis* (Sulej, 2007); Case (1932) positioned the suture more  
534 anteriorly than we have here. No teeth are preserved, but the tooth sockets show that the  
535 dentition was slightly compressed with the long axis oriented perpendicular to the lateral margin  
536 of the skull and that tooth size decreased only very slightly and gradually towards the posterior  
537 end of the tooth row. The premaxilla is unknown from the remaining partial to complete skulls  
538 and from the suite of isolated elements.  
539

540 *Septomaxilla*.—In UMMP 13820 (Fig. 9), it appears that there may be a very thin, plate-like  
541 ossification lying on top of the true floor of the left naris, which would be the predicted position  
542 of an intranarial septomaxilla, whose occurrence and morphology in metoposaurids remain  
543 controversial and very poorly documented (e.g., Chowdhury, 1965; Chakravorti & Sengupta,  
544 2018; Buffa, Jalil & Steyer, 2019). On the right side, a similar thin plate-like element is  
545 suspended in matrix near the middle of the external naris (Fig. 9). If it is not a separate  
546 ossification, it would then represent postmortem damage. Positive identification awaits better  
547 documentation in other taxa.  
548

549 *Maxilla*.—The maxilla is a long, slender element that bears the majority of the marginal dentition  
550 in the holotype (Fig. 6). Its dorsal exposure is relatively slender except for a slight medial  
551 expansion towards the nasal posterior to the naris, typically separating the lacrimal from the  
552 naris. This region is not preserved on either side in the holotype, but a maxilla-nasal contact to  
553 exclude the lacrimal from the naris was inferred by Case (1931, 1932). The lateral exposure of  
554 the maxilla is dorsoventrally short, underlying the jugal for most of its length and tapering in  
555 height posteriorly. On the palatal surface, the maxilla is restricted to the tooth-bearing surface  
556 except at the mid-length of the choana, where the maxilla expands medially between the pairs of  
557 ‘fangs’ on the vomer and the palatine to contribute to the lateral margin of the opening (Fig. 7).  
558 The degree of contribution is not fully resolved in this specimen, but it was at most relatively  
559 minor based on the anterior extent of the palatine along the lateral edge of the choana. If it is  
560 assumed that all of the exposed tooth sockets pertain to the maxilla (a reasonable inference based

561 on the premaxilla-maxilla suture position in UMMP 13823), there were at least 85 maxillary  
562 positions, within the range of 83 to 107 for *Metoposaurus krasiejowensis* (Sulej, 2007)

563 As with the premaxillae, the maxillae of UMMP 13820 are only completely exposed  
564 dorsally (Fig. 9). This specimen confirms the separation of the lacrimal from the naris that was  
565 inferred for the holotype – this separation is very wide on each side. The maxilla definitively  
566 contacts the prefrontal as well. Only a short portion of the palatal exposure is preserved, with the  
567 same tooth socket morphology as the holotype (Fig. 10). The maxilla of UMMP 13822 is also  
568 only exposed dorsally (Figs. 12–13). Deviating from UMMP 13820, the maxilla does not contact  
569 the prefrontal, although it still has a broad contact with the nasal to separate the lacrimal from the  
570 naris. Finally, the maxilla in UMMP 13823 confers the most information regarding the palatal  
571 exposure of this element (Figs. 16A, 16C). Based on the admittedly distorted left choana, the  
572 maxilla contributes to about a third of the lateral choanal margin, thereby forming broad contacts  
573 with the palatine and the vomer. The suture with the premaxilla can only be inferred. There are at  
574 least 104 tooth positions on the left side of UMMP 13823, with two gaps that are too large to  
575 reasonably estimate. There are around 120 positions on the right side of the skull, on which the  
576 dentition is slightly better preserved. As seen on the left side, the posterior terminus of the  
577 maxilla is posterior to both the posterior terminus of the ectopterygoid and the level of the  
578 anterior margin of the subtemporal fenestra. The tooth row extends to the end of the maxilla.  
579 Isolated maxillae (UMMP 13803) do not confer additional information due to their  
580 incompleteness (Figs. 25C–25E).

581

582 *Nasal*.—The nasal is a polygonal element that frames the naris posteriorly in the holotype; its  
583 precise shape is not discernible in this specimen (Fig. 6). It presumably met the premaxilla  
584 anteriorly and definitively contacts the prefrontal laterally and the frontal posteriorly in the  
585 holotype. There is no preserved contact with the lacrimal, but the nasal and the lacrimal contact  
586 in the vast majority of metoposaurid specimens across taxa (but see an individual of  
587 *Metoposaurus krasiejowensis*; Sulej, 2007:fig. 13). Contrary to Case's illustrations (1931:fig. 1;  
588 1932:fig. 2), the posterior narial margin, often formed by the nasal, is not complete, with a small  
589 region of plaster where he illustrated the nasal-lacrimal contact. Its morphology is therefore only  
590 confidently discernible from the referred specimens.

591 UMMP 13820 preserves complete nasals (Fig. 9). The lateral margin forms a 'step' in  
592 which the suture with the prefrontal is angled anterolaterally and then turns into a longitudinal  
593 orientation along the contact with the maxilla. This produces a polygonal shape. The nasal  
594 contributes to most of the posterior narial margin as well as about half of the medial narial  
595 margin. In UMMP 13822 (Fig. 12), the inflection point of the 'step' bulges more laterally than in  
596 UMMP 13820, which produces the nasal-lacrimal contact in the former. UMMP 13809  
597 represents three isolated left nasals (Fig. 26A), and UMMP 13811 represents four isolated right  
598 nasals (Fig. 26B). Most are slightly damaged at the margins but preserve the same polygonal  
599 morphology with the stepped lateral margin. There is practically no size difference among them,  
600 even though no distinct pairs belonging to one individual can be identified.

601

602 *Prefrontal*.—The prefrontal, as mostly preserved, has a sub-triangular profile in the holotype as  
603 in other metoposaurids and contributes to the anterior and medial orbital margins (Fig. 6). There  
604 is a large patch of plaster anterior to the prefrontal that precludes the confident identification of  
605 its anteriormost contacts (some combination of the lacrimal, the maxilla, and the nasal), but the  
606 anteriorly tapering morphology, with a defined terminus, suggests that the prefrontal is complete,

607 as with Case's (1932) interpretation. It contacts the lacrimal laterally, the nasal medially, and the  
608 jugal posterolaterally. It extends to about the mid-length of the orbit to meet the postfrontal.

609 The shape of the prefrontal is more rectangular to pentagonal with a blunted anterior  
610 terminus in the referred specimens. In UMMP 13820, the anterior margin is essentially squared-  
611 off where it contacts the nasal and the maxilla (Fig. 9). The lateral margin is markedly different  
612 on each side on account of the variable lacrimal widths in this specimen. The prefrontal also  
613 extends slightly farther down the lateral margin of the orbit but has a more restricted contribution  
614 to the medial margin when compared to the holotype. In UMMP 13822, the anterior terminus of  
615 the prefrontal is wide but slightly rounded where it contacts the lacrimal and the nasal (Fig. 12).  
616 Its relative contributions to the orbital margins are more like those in the holotype. UMMP  
617 13802 represents two isolated left prefrontals (Fig. 25A), and UMMP 13805 represents an  
618 isolated right prefrontal (Fig. 25B). All three share a morphology most like that of UMMP 13822  
619 with a wide and gently rounded anterior terminus, but it is difficult to be certain that there has  
620 not been some minor damage along the margins. In UMMP 13805 and one of the prefrontals of  
621 UMMP 13802, the posteromedial margin is probably incomplete by comparison with those in  
622 articulated specimens. The isolated elements clearly show the ventral surface of this element,  
623 which is largely smooth except for one or two shallow pits anterolateral to the orbit.  
624

625 *Lacrimal*.—The lacrimal is a slender element of the preorbital region (Fig. 6). In the holotype, it  
626 contacts the maxilla laterally, the jugal posteriorly, and the prefrontal medially. It tapers  
627 posteriorly, penetrating slightly into the jugal, contrary to the squared-off terminus illustrated by  
628 Case (1931, 1932). It is widely excluded from the orbit by the prefrontal and the jugal, a feature  
629 separating it from both *Anaschisma* and *Metoposaurus* (*sensu* Kufner & Gee, 2021, and Brusatte  
630 et al., 2015, respectively). Case (1931, 1932) interpreted the left lacrimal as being entirely  
631 complete and widely excluded from the naris, but there is no clear demarcation of the anterior  
632 suture(s) due to plaster reconstruction in this area. The lacrimal is typically shorter in the North  
633 American taxa, however, so it is possible that the element is complete and simply without a  
634 defined anterior suture.

635 This inference of the relative length of the lacrimal is validated by UMMP 13820 and  
636 UMMP 13822 (Figs. 9, 12), in which it is widely separated from the naris by a gap subequal in  
637 length to the total length of the lacrimal. Both specimens also corroborate the interpretation of  
638 the holotype as having a lacrimal widely separated from the orbit. The lacrimal varies mainly in  
639 its relative width; the left lacrimal of UMMP 13820 is unusually narrow for a metoposaurid (Fig.  
640 9). The right lacrimal of this specimen is more similar to the holotype and to that of UMMP  
641 13822. The unique lacrimal-nasal suture in UMMP 13822 is related to a lateral projection of the  
642 nasal rather than to some morphological deviation of the lacrimal.  
643

644 *Frontal*.—The frontal is a triangular element forming most of the interorbital region in the  
645 holotype (Fig. 6). It sutures to the prefrontal and the postfrontal laterally, to the nasal anteriorly,  
646 and to the parietal posteriorly, although the posterior contact is not well-defined in the holotype.  
647 The element is broadest anteriorly and then tapers prominently to meet the parietal, although this  
648 contact is not preserved except for a minute portion on the right half of the skull (Fig. 6B). The  
649 frontal's width in the post-orbital region is less than half that of its width in the pre-orbital  
650 region.

651 There is typically minor intraspecific variation in the exact shape of the frontal in  
652 metoposaurids (e.g., Sulej, 2007; Lucas et al., 2016), and this is also observed in the material

653 described here. All specimens share a generally triangular profile with the broadest end  
654 anteriorly and the narrowest end posteriorly, but the angle of the anterior suture and the  
655 longitudinal position of the greatest width vary slightly. In UMMP 13820 and UMMP 13822, the  
656 frontal is widest at the prefrontal-postfrontal suture, whereas it is widest anterior to this suture in  
657 the holotype (Figs. 9, 12). As seen in UMMP 13820, the orientation of the suture with the nasal  
658 ranges from nearly transverse to clearly set at an angle anteromedially. The holotype has an  
659 angled suture, whereas that of UMMP 13822 appears to have been transversely oriented.  
660 Similarly, the posterior terminus may either be squared-off, as on the right side of UMMP 13820,  
661 or it may form a short triangular process wedging into the parietal, as on the left side of this  
662 specimen and in UMMP 13822. This variation may also be observed in UMMP 13814,  
663 representing three isolated right frontals (Fig. 26C), and in UMMP 13815, representing two  
664 isolated left frontals (Fig. 26D). These elements differ by about 10–15% in length between the  
665 largest and smallest. The ventral surface of the frontals is mostly smooth, but along the midline  
666 in the posterior half, there is a low longitudinal ridge (the orbitotemporal crest of Sulej, 2007),  
667 which would extend onto the parietals.  
668

669 *Postfrontal*.—The postfrontal is a rectangular element extending from the medial orbital margin,  
670 where it meets the prefrontal, to meet the parietal posteromedially, the supratemporal posteriorly,  
671 and the postorbital laterally in the holotype (Fig. 6). The contribution of the postfrontal to the  
672 medial margin of the orbit is relatively large (> 50% of the margin). Neither the posterior contact  
673 with the supratemporal nor that with the parietal is well-preserved, but long contacts occur in all  
674 metosaurids, and there is no reason to presume otherwise here.

675 The overall profile of the postfrontal is consistent across all specimens, with the referred  
676 specimens preserving the long contacts posteriorly with the supratemporal and the parietal that  
677 were not fully resolved in the holotype. Variation is primarily related to the anterior extent along  
678 the medial orbital margin. In UMMP 13820, the left postfrontal has a particularly far-reaching  
679 anterior terminus that results in the element forming about 80% of the medial orbital margin; the  
680 contribution is slightly less on the right side of this specimen (Fig. 9). The contribution is  
681 comparatively smaller in UMMP 13822 (Fig. 12), more in line with the holotype. UMMP 13808  
682 represents an isolated left postfrontal (Fig. 27G), and UMMP 13966 represents an isolated right  
683 postfrontal (Fig. 27J). UMMP 13970 represents an isolated, articulated set of the left postorbital  
684 and the left postfrontal (Fig. 27I); it is only exposed ventrally due to an adhesive sheet used to  
685 hold the constituent fragments together that is adhered to the dorsal surface. As preserved, all  
686 three had a similar contribution to the orbital margin as the holotype and UMMP 13822. The  
687 ventral surface is entirely smooth.  
688

689 *Postorbital*.—The postorbital is a sub-rectangular element extending from the posterior orbital  
690 margin, where it contacts the jugal laterally and the postfrontal medially, to meet the squamosal  
691 and the supratemporal posteriorly in the holotype (Fig. 6). It tapers posteriorly to a point,  
692 partially dividing the supratemporal from the squamosal.

693 The morphology of this element is very consistent across all specimens. The only  
694 variation is in the contact with the squamosal, which may be straight as in the holotype and  
695 UMMP 13822 or more medially convex, as in UMMP 13820 (Figs. 9, 12). The overall profile of  
696 the postorbitals in UMMP 13820 is still nearly identical. UMMP 13807 represents a partial  
697 isolated right postorbital (Fig. 27H). The ventral surface is entirely smooth.  
698

699 *Supratemporal*.—The supratemporal is a pentagonal element that contacts the postfrontal and the  
700 postorbital anteriorly, the squamosal laterally, the tabular and the postparietal posteriorly, and the  
701 parietal medially in the holotype (Fig. 6). It has an anterior process wedging between the  
702 postfrontal and the postorbital and a squared-off posterior terminus. In the holotype, the sutural  
703 relationships are not fully preserved on either side in isolation but can be fully characterized  
704 when taken together.

705 The morphology of this element is very consistent across all specimens. The only notable  
706 difference is in the proportions; UMMP 13822, which is the smallest of the partial to complete  
707 skulls, has a shorter supratemporal than UMMP 13820, which is the largest of the partial to  
708 complete skulls (Figs. 9, 12). A correlated difference may be the degree to which the anterior  
709 terminus is pointed and how sharply it tapers. The posteriorly complete supratemporal of UMMP  
710 14154 does not contribute additional information. UMMP 13793 represents four isolated  
711 supratemporals (Fig. 27K). The supratemporal can typically be sided based on the partial to  
712 complete skulls, in which the anterior process is always offset slightly more medially than  
713 laterally, but three of the isolated supratemporals are incomplete anteriorly, and the fourth shows  
714 no clear asymmetry. A second means of siding is by the postorbital canal, which is closer to the  
715 lateral margin in partial to complete skulls. On this basis, all four are left supratemporals. The  
716 ventral surface is entirely smooth.

717  
718 *Parietal*.—The parietal is a sub-rectangular element that contacts the frontal anteriorly, the  
719 postfrontal anterolaterally, the supratemporal laterally, and the postparietal posteriorly in the  
720 holotype (Fig. 6). The parietals are relatively narrow throughout, although the anterior margins  
721 are poorly defined on both sides in the holotype, so it is unclear how constricted the anteriormost  
722 region was. The preserved sutures with the supratemporal are variable, the left one being straight  
723 and the right one being angled. The circular pineal foramen is situated in the posterior fifth of the  
724 parietals.

725 UMMP 13820 preserves more defined parietals that clearly illustrate the anterior tapering  
726 of the parietals (more pronounced on the left side) and the intraspecific variation in the anterior  
727 suture with the frontal (interdigitated on the left side, straight transverse on the right side; Fig. 9).  
728 Both lateral margins are straight in this specimen. As with the holotype, the pineal foramen is  
729 situated far posterior within the parietals. The left parietal of UMMP 13822 is probably nearly  
730 complete, broken along the midline contact given the partial definition of the pineal foramen  
731 (Fig. 12). If complete, the overall element was slightly proportionately wider than in the holotype  
732 and UMMP 13820; as with the supratemporal, this may be associated with very minor changes in  
733 the precise proportions of the elements throughout ontogeny. Also exposed ventrally is the  
734 orbitotemporal crest, which flares laterally around the foramen from the midline. The position of  
735 the pineal foramen is, however, the same as the other two specimens. Portions of the parietal are  
736 preserved in the partial skulls UMMP 13956, UMMP 14098, and UMMP 14154, but they  
737 contribute no additional or conflicting data regarding the overall proportions or sutures. UMMP  
738 13812 represents three isolated right parietals (Fig. 26E), UMMP 13813 represents two isolated  
739 left parietals (Fig. 26F), and UMMP 13826 represents an isolated right parietal (Fig. 26G). All of  
740 the elements merely confirm the degree of intraspecific variation in the anterior terminus and the  
741 contour of the suture with the postorbital where the parietal tapers in width. One of the parietals  
742 assigned to UMMP 13812 has a slanted lateral suture with the supratemporal, whereas the others  
743 are straight (Fig. 26E). The pineal foramen is consistent in being in the posterior fifth of the  
744 parietals. UMMP 13826 is particularly noteworthy because it is twice as large as the other

745 parietals despite being incomplete (Fig 26G). This is the only evidence from the aggregated  
746 cranial remains for the presence of much larger individuals than those represented by partial to  
747 complete skulls. All isolated parietals are smooth ventrally and show the divergence of the  
748 orbitotemporal crest from the midline to contour around the pineal foramen laterally. The crest  
749 terminates at or just posterior to the level of the posterior margin of the foramen.  
750

751 *Jugal*.—The jugal is an elongate element extending along much of the lateral margin of the skull  
752 dorsomedial to the maxilla and lateral to the squamosal and the postorbital; in the holotype, it is  
753 only preserved on the left side (Fig. 6). Here, it terminates at the level of the anterior orbital  
754 margin where it meets the lacrimal. The jugal also has a small triangular exposure (the ‘insula  
755 jugalis’) on the palate posterior to the termination of the palatal tooth row of the ectopterygoid  
756 (Fig. 7). It therefore separates the ectopterygoid from the subtemporal fenestra. It borders the  
757 pterygoid laterally but does not contribute to the palatine ramus.

758 The jugal is otherwise known from UMMP 13820, UMMP 13822, and UMMP 13823  
759 (Figs. 9, 12–13, 16A, 16C). The dorsal exposure, known from UMMP 13820 and UMMP 13822  
760 (Figs. 9, 12), is essentially identical to that of the holotype. There is minor variation in the  
761 anterior contact with the lacrimal on account of the more pronounced variation in lacrimal shape  
762 (especially in UMMP 13822). In both specimens, the jugal extends just anterior to the level of  
763 the anterior orbital margin; the right jugal of UMMP 13820 is slightly more anteriorly extensive  
764 than the left jugal (Fig. 9). The ventral exposure is known from UMMP 13822 and UMMP  
765 13823 (Figs. 13, 16A, 16C). It is incompletely defined in both and contributes no new or  
766 conflicting data relative to the holotype.  
767

768 *Quadratojugal*.—The quadratojugal is poorly preserved in the holotype on both sides (Figs. 6–8).  
769 In dorsal view, it is a rectangular element sutured to the jugal anteriorly (poorly defined) and to  
770 the squamosal laterally (Fig. 6).

771 More information is available from UMMP 13820 and UMMP 13822. In these  
772 specimens, the dorsal sutures are entirely defined (Figs. 9, 12), capturing the undulating nature of  
773 the lateral suture with the supratemporal and the tapering anterior contact with the jugal. In  
774 ventral view, also seen in UMMP 13823 (Figs. 10, 13, 16A, 16C), the quadratojugal’s  
775 posterolateral suture with the quadrate is well-defined. In lateral and occipital view, the  
776 quadratojugal’s curvature is most apparent, forming a gentle dorsally convex surface (Figs. 8, 11,  
777 14–16). In occipital view, the suture with the squamosal extends down the occiput to meet the  
778 large paraquadrate foramen, which forms an elongate oval slit (Figs. 11, 14, 16D). Variation in  
779 the precise contours of the foramen is undoubtedly due largely to taphonomic distortion. The  
780 quadratojugal itself frames the lateral half of the foramen and excludes the quadrate from this  
781 opening. No accessory paraquadrate foramina like those identified in *Metoposaurus*  
782 *krasiejowensis* were identified here, but it should be emphasized that only a very thin lamina  
783 separates the main paraquadrate foramen from the accessory foramen in that taxon (e.g., Sulej,  
784 2007:fig. 1D), and it is not found in all specimens of *M. krasiejowensis* (Sulej, 2007:41). Given  
785 that the Elkins Place bone bed material was prepared more than 90 years ago, there is good  
786 reason to suspect that the dividing lamina could have been misidentified as a loose bone chip and  
787 been prepared away, or that it was never preserved to begin with, if it was present at all. Largely  
788 isolated quadratojugals are known from UMMP 13806 (two isolated right elements; Fig. 28H),  
789 UMMP 13818 (three isolated right elements; Fig. 28I), UMMP 13969 (two isolated left  
790 elements; Fig. 28G), and UMMP 14098, in which it is articulated with the palatal fragment and

791 separate from the main fragment consisting of the skull roof and occiput (Fig. 20). The isolated  
792 quadratojugals are variably complete but are consistent in preserving the smoothly rounded  
793 lateral margin of the paraquadrate foramen, with no indication of an accessory paraquadrate  
794 foramen. In these specimens, the lateral margin of the paraquadrate foramen is smooth and  
795 continuous and of a consistent curvature between specimens, supporting the attribution of  
796 variation in more complete specimens to taphonomy. Several also preserve the ventral portion of  
797 the quadratojugal that sutures with the quadrate. This articulation is borne by a distinct facet,  
798 wider than long, that is covered in unfinished bone (e.g., UMMP 13804; Fig. 28J).

799

800 *Squamosal*.—The squamosal is a large pentagonal element that contributes to the posterior skull  
801 margin and to the otic notch, neither of which is complete on either side of the holotype (Fig. 6).  
802 It tapers anteriorly where it meets the postorbital and the jugal and is broadest posteriorly where  
803 it meets the quadratojugal laterally and the tabular medially. The occipital portion is very poorly  
804 defined in this specimen.

805 As with the quadratojugal, more information on the dorsal and occipital exposures of the  
806 squamosal is available from UMMP 13820 and UMMP 13822 (Figs. 9, 11–12, 14). The element  
807 is nearly completely defined in UMMP 13820 and entirely so on the left side of UMMP 13822.  
808 They confirm the general pentagonal shape, although there is some variation with respect to the  
809 lateral margin that may be ontogenetic in nature. In UMMP 13820, the largest of the partial to  
810 complete skulls, the lateral suture with the quadratojugal is undulating but overall oriented  
811 longitudinally. The suture then turns anteromedially just posterior to the contact with the jugal,  
812 resulting in a semi-distinct kink in the suture and giving an overall pentagonal shape. This is  
813 particularly pronounced on the left side but less so on the right. The incompletely known  
814 squamosals of the holotype appear to share this general profile. In UMMP 13822, the lateral  
815 suture is far less undulating and forms a more continuous curve with no kink (also observed in  
816 UMMP 13956, which is also on the lower end of the known size range; Fig. 17). The curvature  
817 still produces more a pentagonal shape than the sub-triangular shape seen in *Arganasaurus*  
818 *lyazidi*. Our hypothesis of a possible ontogenetic influence is somewhat supported by  
819 examination of UMMP 13816 (three isolated left squamosals; Fig. 27A), UMMP 13817 (two  
820 isolated right squamosals; Fig. 27B), UMMP 13829 (one isolated right squamosal; Fig. 27C),  
821 UMMP 13830 (one isolated left squamosal; Fig. 27D), UMMP 13968 (one isolated left  
822 squamosal; Fig. 27E), and UMMP 14099 (disarticulated squamosal associated with occipital  
823 fragments; Fig. 27F). The largest specimens (UMMP 13829, UMMP 13830) have clearly  
824 undulating margins. This is then variable in medium-sized specimens (UMMP 13816, UMMP  
825 13868, UMMP 14099), and the smallest specimens (UMMP 13817) have continuously curved  
826 margins. The isolated squamosals also reveal the presence of an underplating flange on the  
827 posterolateral corner. This would underlie the quadratojugal and might explain why the latter is  
828 frequently detached from the skull roof, presenting either as an isolated element (Figs. 28G–28I)  
829 or as the only element absent from the posterior skull roof in a partial or complete specimen  
830 (UMMP 13956, UMMP 14098; Figs. 17–18, 20). The squamosal also forms most of the otic  
831 notch, and the various referred specimens confirm the presence of a relatively deep, circular  
832 notch. The ventral surface of the squamosal is nearly smooth, but there is a developed transverse  
833 ridge at the posterior margin just anterior to the otic notch; this was termed the base of the lamina  
834 descendens by Sulej (2007). Finally, the squamosal forms the medial half of the paraquadrate  
835 foramen on the occiput; this is best preserved in UMMP 13820 and UMMP 13822 (Figs. 11, 14).  
836 The descending lamina lies mostly dorsal and slightly anterior to the ascending lamina of the

837 pterygoid (best seen in UMMP 13820), but due to compression and damage to the thin dorsal  
838 margin of the latter, this contact is not well-defined in an undistorted state in any one specimen.  
839

840 *Tabular*.—The tabular is a square element at the posterior margin of the skull but is not well-  
841 preserved in the holotype (Fig. 6). It sutures to the squamosal laterally, to the supratemporal  
842 anteriorly, and to the postparietal medially. A tabular horn is not preserved in the holotype, but  
843 there are distinctly broken surfaces where the horn would have been, and a deep otic notch is  
844 well-defined on the left side. That it has an occipital exposure is clear, but the suture with the  
845 postparietal medially is unclear (Fig. 8). Ventrally it sutures with the exoccipital. In this  
846 specimen, the oval posttemporal foramen is apparently entirely framed by the postparietal and  
847 the tabular, with no exoccipital contribution, but the sutural contacts are not entirely clear (Fig.  
848 8).

849 More information on the tabular is gleaned from the referred specimens. Complete  
850 tabulars are preserved in UMMP 13820, UMMP 13822, UMMP 14098, and UMMP 14154  
851 (Figs. 9, 12, 18, 21). Those of UMMP 13823 and UMMP 13956 have damage to the tabular horn  
852 distally. There is some variation in the proportions of the main body of the tabular; in UMMP  
853 13820 (Fig. 9), it is at best equant or perhaps slightly longer than it is wide, whereas in UMMP  
854 13822 and UMMP 14154 (Figs. 12, 21), it is distinctly wider than long. This probably correlates  
855 with the slight proportional differences observed in other postorbital elements, and by correlation  
856 with the relative sizes of these specimens, may be an ontogenetic difference. The tabular horn is  
857 also slightly longer in the relatively large UMMP 13820, but the orientation and lack of  
858 curvature are consistent throughout. The suture with the postparietal is slightly better defined in  
859 UMMP 13820 and UMMP 14154 than the holotype, but the ventral extent along the occiput is  
860 unclear (although a straight suture is found in other metoposaurids and could be reasonably  
861 inferred). Under this assumption, the posttemporal foramen is then framed by the tabular, the  
862 postparietal, and the exoccipital (the last of which has no apparent contribution in the holotype)  
863 in UMMP 13820, UMMP 13822, and UMMP 14154 (Figs. 11, 14, 20). The shape and  
864 orientation of the longitudinal axis of the foramen is somewhat variable between specimens, but  
865 this is likely attributable to taphonomic distortion. In addition to a pair of isolated left tabulars  
866 (UMMP 13798; Fig. 28B), UMMP 13800 represents an articulated tabular-postparietal isolate  
867 from the right side (Fig. 28D), UMMP 13967 represents a disarticulated but associated tabular-  
868 postparietal isolate from the left side (Fig. 28F), and UMMP 13799 represents a tentatively  
869 identified, disarticulated, but associated tabular-postparietal isolate from the left side (Fig. 28C).  
870 Most of the tabulars are too incomplete to confidently determine their proportions, and the  
871 tabular horn is incomplete or lost in all the isolated specimens. UMMP 13800 is the only one that  
872 can reasonably be inferred to have a complete base, which is equant. These tabulars also provide  
873 data on the ventral surface, which fully exposes the parotic process that descends ventrally to  
874 form the posttemporal foramen with the postparietal. In UMMP 13800 (the most complete; Fig.  
875 28D), this opening is almost entirely framed by the preserved portions, with only the  
876 exoccipital's contribution missing. As can be seen in several specimens, from the base of the  
877 process extend two thin crests. The posterolaterally extending external tabular crest (sensu Sulej,  
878 2007) extends beneath the tabular horn to buttress it; this is also visible in the occipital view of  
879 well-preserved specimens like UMMP 13820 (Fig. 11). The internal tabular crest (sensu Sulej,  
880 2007) extends anteriorly towards the sutural junction between the tabular, the squamosal, and the  
881 supratemporal.  
882

883 *Postparietal*.—The postparietal is a rectangular element, longer than wide on at least the right  
884 side of the holotype, at the posterior margin of the skull (Fig. 6). It sutures to the parietal  
885 anteriorly, to the supratemporal anterolaterally, and to the tabular laterally. The occipital surface  
886 is smooth and presumably represents a combination of the tabular and the postparietal, but the  
887 suture cannot be traced for most of the presumed ventral extent, and therefore the relative  
888 contributions to the posttemporal foramen are unclear (Fig. 8). Typically, the postparietal's  
889 contribution is formed by the supraoccipital process (sensu Sulej, 2007). Towards the midline on  
890 the occipital surface, there is a distinct pit or depression that causes the ornamented roofing  
891 portion of the postparietal to protrude over the occipital portion. This is most apparent on the  
892 right side of the holotype and is accentuated by a slight posterior bulging of the roofing portion  
893 along the midline (Fig. 6).

894 The postparietal of the referred specimens has a similar shape to the holotype, and  
895 UMMP 13820 and UMMP 14154 further confirm the rectangular proportions (Figs. 9, 21). The  
896 lateral and medial sutures are straight in most specimens, but that of UMMP 13822 has a step  
897 anteriorly to produce a discontinuous margin with the supratemporal and thus a slightly wider  
898 postparietal (Fig. 12); this might correlate with the observations made for other postorbital  
899 elements' relative proportions in this specimen. Also noteworthy is that most of the partial to  
900 complete crania lack the posterior bulging of the roofing portion along the midline at the margin  
901 of the skull; other than the holotype, this is only apparent in UMMP 13820 and UMMP 14098  
902 (Figs. 9, 18A). In addition to the aforementioned tabular-postparietal isolates (UMMP 13697,  
903 UMMP 13799, UMMP 13800), there are an articulated pair of postparietals (UMMP 13797; Fig.  
904 28A) and a pair of isolated postparietals that are tentatively attributed to the right side (UMMP  
905 13801; Fig. 28E). Both of the latter specimens appear more or less complete and thus confirm the  
906 long rectangular profile. UMMP 13797 also appears to have the posterior bulge of the roofing  
907 portion. Ventrally, the postparietal is smooth except for the supraoccipital process, which forms a  
908 ventrally descending column that frames the posttemporal foramen along the medial side (Figs.  
909 11, 14, 23). In the isolated postparietals, the process is insufficient to determine the overall shape  
910 of the foramen. In all specimens described here, the descending column has a circular or oval  
911 cross-section profile rather than the teardrop shape described in small- and medium-sized  
912 individuals of *Metaposaurus krasiejowensis* (Sulej, 2007).

913  
914 *Parasphenoid*.—The parasphenoid is a large element formed by a pentagonal basal plate and a  
915 flat, anteriorly directed cultriform process in the holotype (Fig. 7). It sutures laterally to the  
916 pterygoid, posteriorly to the exoccipitals, and anteriorly to the vomers, although all of these  
917 sutures are incompletely defined in the holotype. The basal plate merges with the cultriform  
918 process anteriorly, has straight lateral sutures with the pterygoids, and then narrows posteriorly  
919 between the exoccipitals. Whether the exoccipitals meet or are separated by the basal plate is  
920 unclear in the holotype. There is faint ornamentation on the basal plate consisting of shallowly  
921 developed ridges, but the center of the plate has been damaged. There is no indication that the  
922 ornamentation extended onto the cultriform process. Two shallowly developed fossae,  
923 presumably for muscle attachments, are present on the posterior half, being framed anteriorly by  
924 a short but distinct ridge (the 'muscular crest' of Sulej, 2007, or the 'crista muscularis' of various  
925 other workers; e.g., Schoch, 1999; Buffa, Jalil, & Steyer, 2019). The cultriform process is flat  
926 throughout and of a nearly consistent width throughout. It narrows only slightly along its mid-  
927 length at around the level of the orbits before widening again slightly in the anterior half. A  
928 shorter anterior extension separates the vomers for most of their length, although the extent is

929 unclear in the holotype. In metoposaurids, the parasphenoid's ventral exposure terminates in a  
930 fossa (the fodina intervomeralis), which may be represented by a crushed region just posterior to  
931 the transvomerine teeth of the vomer. This anterior extension is noticeably angled (in palatal  
932 view) such that it is increasingly elevated above the plane of the vomers (depressed when viewed  
933 ventrally) along their contact.

934 A few additional details can be gleaned from UMMP 13820, UMMP 13822, UMMP  
935 13823, and UMMP 14154. These mostly confirm inferences based on the holotype, such as that  
936 the exoccipitals are divided by the parasphenoid (UMMP 13822; Fig. 13); the anteriormost  
937 extent of the parasphenoid lies well anterior to the interpterygoid vacuities, thereby prominently  
938 dividing the vomers for most of their length (UMMP 13820, UMMP 13823; Figs. 10, 16); the  
939 longitudinal orientation of the parasphenoid-pterygoid suture (UMMP 13820, UMMP 13823;  
940 Figs. 10, 16); and narrowing at the mid-length of the cultriform process (UMMP 13820 and  
941 UMMP 13823; Figs. 10, 16). It is difficult to determine any variability in the ornamentation of  
942 the basal plate because it is variably damaged (either fractured or weathered) in the holotype,  
943 UMMP 13823, UMMP 13956, and UMMP 14154, but there is at least no evidence that some  
944 specimens legitimately lacked such ornamentation. In UMMP 13820 and UMMP 13823, there  
945 are very faint striations oriented longitudinally along the cultriform process for most of its length  
946 (Figs. 10, 16); as these are not bounded by ridges, grooves, pits, or other features of  
947 ornamentation found on the basal plate, we do not consider this to be an extension of the  
948 ornamentation proper. The same feature appears in a small fragment associated with UMMP  
949 14098 that we tentatively identify as part of the parasphenoid (Figs. 19C–19D); a foramen on the  
950 unornamented side of this fragment may be the internal carotid artery foramen. The dorsal  
951 surface of the parasphenoid is otherwise only visible in the partial parasphenoid associated with  
952 the palatal fragments of UMMP 14098 (Fig. 19A); based on the preserved region, only the  
953 lateralmost extent of the basal plate is preserved. There is a socket-like fossa located  
954 ventromedial to the pterygoid depression that opens anteromedially; this is the facet for the  
955 epipterygoid. While the parasphenoid-pterygoid suture relative to the fossa is not clear, a  
956 laterally facing foramen posterior to this fossa and just anterior to the pterygoid-exoccipital  
957 suture likely represents the foramen for the internal carotid artery, which is always enclosed  
958 within the parasphenoid. The artery is mostly covered by a transverse parapterygoid crest. The  
959 partial basal plates of UMMP 13956 and UMMP 14098 (separate from the above fragment of  
960 this specimen) confer no additional details.

961  
962 *Pterygoid*.—The pterygoid is a complex element with two discrete processes, the palatine and  
963 quadrate rami, in the holotype (Fig. 7). The element is sutured to the basal plate of the  
964 parasphenoid medially with a prominent interdigitating suture. This contact is anteroposteriorly  
965 long, and there is no discrete basipterygoid process, as with most stereospondyls. In contrast to  
966 many other stereospondyls, however, the metoposaurid parasphenoid-pterygoid suture is  
967 distinctly shorter than the length of the basal plate of the parasphenoid, being truncated  
968 posteriorly by the exoccipital extending to contact the pterygoid. From the basicranial suture, the  
969 palatine ramus extends anterolaterally to meet the jugal and the ectopterygoid, and the quadrate  
970 ramus extends posterolaterally to meet the quadrate. Both jointly frame the sub-triangular  
971 subtemporal fenestra, which is widest posteriorly between the rami. The palatine ramus is mostly  
972 flat but thickens along its medial edge where it frames the interpterygoid vacuity. Along the  
973 lateral edge, it expands slightly to form a posterolaterally convex transverse flange. The edge of  
974 this flange curves ventrally. There is faint ridging on the right palatine ramus that is oriented

975 parallel to its long axis. The quadrate ramus is unornamented and without developed features. It  
976 is also flat and slightly narrower than the palatine ramus when compared at the base or in their  
977 greatest widths. It sheaths the medial surface of the quadrate. The pterygoid also has an  
978 ascending lamina that extends along most of the dorsal surface of the quadrate ramus; this is  
979 visible in occipital view, although it is fractured and broken on both sides. The oblique crest that  
980 projects posteriorly from this lamina is broken off dorsally. Ventral to the oblique crest and at  
981 about the same height as the dorsal margin of the occipital condyle is a deep, posterolaterally  
982 facing depression termed the ‘pterygoid depression’ by Sulej (2007).

983 The referred specimens contribute little additional data regarding the ventral exposure of  
984 the pterygoid. UMMP 13822 and UMMP 13823 preserve the most developed transverse flanges  
985 with the posteroventrolaterally descending edge (Figs. 13, 16). UMMP 13822 preserves the most  
986 distinctive ornamentation, but all specimens with a sufficiently complete palatine ramus preserve  
987 at least some ridging. UMMP 13820, UMMP 13822, and UMMP 14154 have the most complete  
988 and undistorted pterygoids in occipital view (Figs. 11, 14, 23). These specimens all preserve a  
989 more complete ascending lamina with a distinct oblique crest that is roughened along its dorsal  
990 margin. These specimens also show the dorsal contact of the ascending lamina with the  
991 squamosal such that there is no palatoquadrate fissure, as well as the broad contact laterally with  
992 the pterygoid. The pterygoid-squamosal suture is often difficult to discern, whether due to  
993 fracturing, incomplete preparation, or a tight contact. This contact is largely obscured in occipital  
994 view by the oblique crest. Features of the dorsal surface of the pterygoid are best identified from  
995 the partial palate of UMMP 14098 (Fig. 19A), from the isolated associated pterygoid of UMMP  
996 14099 (Fig. 29E), from an isolated pair of partial pterygoids (UMMP 12969; Fig. 30G), and from  
997 a series of isolated partial right pterygoids (UMMP 13771, UMMP 13794, UMMP 13795,  
998 UMMP 13796; Fig. 29A–29D). A large conical recess facing anteromedially along the  
999 parapophenoid-pterygoid suture is for articulation with the epipterygoid (Figs. 19A, 29), which  
1000 remains distinct except in very large (presumably mature) specimens (Sulej, 2007). The cross  
1001 section of the ascending lamina is elongate and teardrop-shaped, being wider laterally and  
1002 narrowing towards the parapophenoid. A dorsoventrally short and mediolaterally narrow ridge  
1003 extends posteriorly along the short posteromedial process of the pterygoid that abuts the  
1004 exoccipital; the ridge then continues onto the exoccipital (Figs. 19A; 30F–J). In UMMP 14098, a  
1005 large foramen is present near the distal end of the quadrate ramus on the posterior surface and  
1006 ventrolateral to the oblique crest that was not exposed in other specimens (Fig. 20E).

1007 *Vomer*.—The vomer is a large, subtriangular element that forms most of the palate in the snout  
1008 region in the holotype (Fig. 7). In this specimen, it is incomplete anteriorly and laterally on both  
1009 sides, and the posterior process that extends along the cultriform process, partially excluding the  
1010 latter from the anteromedial margin of the interpterygoid vacuities, is only fully defined on the  
1011 ventral left side. The vomer is largely excluded from the anterior margin of the interpterygoid  
1012 vacuity by a medial process of the palatine. It has a broad contribution to the medial margin of  
1013 the choana; its extent anterior to the opening and its relationship to the maxilla are uncertain. Its  
1014 relation to the anterior palatal fenestra is also unclear in this specimen. The vomer has two  
1015 sockets for ‘fangs’ anterior to the choana. A single row of small parachoanal teeth curves along  
1016 the medial margin of the choana toward the palatine. The parachoanal row is mostly continuous,  
1017 but there are gaps medial and posterior to the ‘fangs’ that separates it from the transvomerine  
1018 row. Although tooth sockets can be vaguely identified, the preservation is not sufficient to count  
1019 the parachoanal positions. The transverse transvomerine row of teeth that extends between the  
1020

1021 pairs of vomerine fangs just anterior to the fodina intervomeralis is not complete on either side,  
1022 but there is room for at least nine positions on the row on the left vomer.

1023 Only UMMP 13820 and UMMP 13823 contribute additional data on the vomer (Figs. 10,  
1024 16). UMMP 13820 is preserved similarly to the holotype, with the lateral margins being  
1025 unknown, but it does preserve the anterior contact with the premaxillae, demonstrating that the  
1026 vomers contribute to framing the anterior palatal fenestrae (Fig. 10). There is room for at least  
1027 five positions in the transvomerine row on each side; there is a wide gap along the midline that  
1028 lacks teeth or evidence of sockets. In UMMP 13823, the sutures of the vomer are essentially  
1029 fully defined (Fig. 16). The vomer can be seen to have a broad contribution to the anterior  
1030 margin of the choana, where it shares a long contact with the maxilla. Minor asymmetry in the  
1031 posterior extent of the posterior processes is observed. The right parachoanal row, which can be  
1032 clearly seen to extend onto the palatine in this specimen, preserves room for at least 25 tooth  
1033 positions, including two adjacent to the vomerine fangs; teeth in this position are not found in  
1034 other specimens or on the left side of this specimen. There are five to six positions on each side  
1035 of the transvomerine row, with a gap around the midline; this gap is narrower than in UMMP  
1036 13820.

1037

1038 *Palatine*.—The palatine is a ‘Y-shaped’ element that is broadest anteriorly, where it forms much  
1039 of the anterior margin of the interpterygoid vacuity and the posterior and lateral margins of the  
1040 choana in the holotype (Fig. 7). Along the anterolateral margin is a pair of sockets for two  
1041 ‘fangs.’ A broken fang is found in the more posterior socket. The posterior suture with the  
1042 ectopterygoid is not fully resolved because there are several transverse breaks that occur in this  
1043 general region and that could plausibly have occurred along the suture. Case (1931) figured the  
1044 suture at about the level of the mid-length of the orbit, which does correspond to an existing  
1045 crack. This agrees with the position of the suture in other metoposaurids (e.g., Sulej, 2007; Lucas  
1046 et al., 2016), and if it is assumed that this is the correct interpretation (Fig. 7), then there are  
1047 around 14 tooth positions (posterior to the fang sockets) on the palatine. The posterior margin of  
1048 the choana is damaged in the holotype, but a slight elevation in this region suggests that the  
1049 parachoanal tooth row that begins on the vomer also extends onto the palatine.

1050 UMMP 13823 is the only referred specimen with an equally complete palatine (Fig. 16).  
1051 The sutures are fully resolved in this specimen and interestingly show a palatine-ectopterygoid  
1052 suture that is not continuously transverse but instead stepped, with a posteromedial process  
1053 extending along the anteromedial edge of the ectopterygoid; this feature is common in  
1054 lydekkerinids (e.g., Hewison, 1996, 2007; Shishkin et al., 1996). The longitudinal position of the  
1055 suture is essentially in the same position as the holotype (the mid-length of the orbit). This  
1056 specimen also confirms the continuation of the parachoanal tooth row onto the palatine. The  
1057 right palatine preserves 12 tooth positions posterior to the fang pair, similar to the estimated 14  
1058 positions in the holotype. The palatine is barely preserved in UMMP 13820 and UMMP 13822  
1059 and confers no additional data in those specimens.

1060

1061 *Ectopterygoid*.—The ectopterygoid is a narrow rectangular element that carries much of the  
1062 palatal tooth row and that frames the interpterygoid vacuity laterally in the holotype (Fig. 7). It is  
1063 longer than the palatine and of a similar width throughout. It ends in a tapering terminus that  
1064 partially divides the palatal exposures of the maxilla and the jugal. The pterygoid-ectopterygoid  
1065 suture is not fully resolved, but as preserved, the ectopterygoid does not contribute to the palatine  
1066 ramus and has a broad contribution to the interpterygoid vacuity. Following the above

1067 assumption regarding the palatine-ectopterygoid suture in the holotype, there would be  
1068 approximately 40 tooth positions on the ectopterygoid. There are no ectopterygoid ‘fangs,’  
1069 although dentition is not preserved in the anteriormost region of the ectopterygoid in this  
1070 specimen.

1071 As with the palatine, only the ectopterygoid of UMMP 13823 contributes substantial data  
1072 (Fig. 16) – those of UMMP 13820 and UMMP 13822 are barely preserved. UMMP 13823  
1073 substantiates the observations made in the holotype and corroborates the inferences of an  
1074 ectopterygoid that contributes to the interpterygoid vacuity margin but not to the palatine ramus.  
1075 There are at least 38 tooth positions on the ectopterygoid, similar to the estimated 40 positions in  
1076 the holotype, and the absence of ectopterygoid ‘fangs’ is verified. Small foramina on the lingual  
1077 side of the teeth are noted on the ectopterygoid.

1078

1079 *Quadrato.*—The quadrate is a robust element that is incompletely ossified in the holotype (Figs.  
1080 7–8). It is framed laterally by a ventral process of the quadratojugal that forms a cup-like socket.  
1081 Medially it is sheathed by the quadrate ramus of the pterygoid. The descending lamina of the  
1082 squamosal typically frames the quadrate from above, but this is not well-preserved on either side,  
1083 although it can be concluded that the quadrate did not contribute to the paraquadrate foramen. In  
1084 ventral view, the quadrate is triangular, expanding medially. The ventral surface is mostly  
1085 covered in unfinished bone and is very slightly convex along the sagittal axis. The posterior  
1086 (occipital) surface of the quadrates is damaged in this specimen, but it is posteriorly convex and  
1087 largely unfinished ventrally and then forms an anterodorsally directed sheet of bone towards the  
1088 squamosal and other roofing elements. Whether a suprattrochlear tubercle (the ‘hyoid tubercle’ in  
1089 many early diverging stereospondyls) was present is not discernible given the damage, but this  
1090 appears to become more distinctive in specimens of *Metoposaurus krasiejowensis* that are both  
1091 larger than those described here and relatively large within the known sample (Sulej, 2007:fig.  
1092 16) and may be a late-stage ontogenetic feature.

1093 The quadrate of UMMP 13820 is mostly obscured ventrally (Fig. 10), but its occipital  
1094 profile is similar to that of the holotype in being posteriorly convex and covered by unfinished  
1095 bone (Fig. 11). No suprattrochlear tubercle is apparent. The lateral suture with the quadratojugal  
1096 and the medial suture with the pterygoid are mostly resolved in this view, but the suture with the  
1097 squamosal is not. UMMP 13822 has a well-preserved and ventrally exposed quadrate that shows  
1098 the proportions, sutures, and textured unfinished surface (Fig. 13). The sutures on the occipital  
1099 surface are most apparent from this specimen (Fig. 14) and do not conflict with those of other  
1100 specimens. No suprattrochlear tubercle is apparent. The quadrates of UMMP 13823 are slightly  
1101 damaged, and the occipital exposure is not well-differentiated with respect to sutures, but the left  
1102 quadrate does preserve what appears to be a suprattrochlear tubercle just lateral to the contact  
1103 with the quadrate ramus (Fig. 16). This is not the largest specimen described here, but it is on the  
1104 higher end of the documented size range of partial to complete skulls. The quadrate of the  
1105 articulated palatal fragments associated with UMMP 14098 can be viewed in all profiles (Figs.  
1106 19A–19B, 20E–20F), but the ventral and occipital surfaces are in agreement with other  
1107 specimens, and the lateral and medial surfaces are largely obscured by the quadratojugal and the  
1108 pterygoid, respectively. The dorsal and anterior surface are largely smooth and without notable  
1109 features like foramina or ornamentation.

1110

1111 *Epipterygoid.*—An epipterygoid is not clearly identified in the holotype. There is a structure  
1112 recessed within the posterior skull (visible posterolaterally, not shown here), ventral to the

1113 tabular and dorsal to the medial origin of the quadrate ramus of the pterygoid that is in the  
1114 correct position to be a slightly dislodged epipterygoid. However, diagnostic features of an  
1115 epipterygoid are not identified.

1116 An epipterygoid is exposed in UMMP 13822, which can be viewed medially due to the  
1117 incompleteness of the specimen (Fig. 15B). It sits below the supratemporal and above the base of  
1118 the palatine ramus of the pterygoid. It has been dislodged on account of the compression of the  
1119 skull such that the dorsal process projects nearly horizontally and medially, and the base is  
1120 therefore largely obscured. The epipterygoid is more clearly exposed in UMMP 14154, also on  
1121 account of the incompleteness of the specimen, as both of them are preserved and in articulation  
1122 (Fig. 21). They comprise a transversely broad base that tapers into a blade-like dorsal stem.  
1123 Based on the left side of the specimen, it does not appear that the epipterygoid contacted the  
1124 skull roof. The most information on the epipterygoid comes from UMMP 13787, an isolated  
1125 element (Fig. 29F). Based on this specimen, the epipterygoid is rather simple, being flat and with  
1126 only two regions, a fan-shaped expanded base and a narrow dorsal stem. One side of the base is  
1127 thicker than the other, producing two roughened surfaces that face ventrally; these do not form  
1128 distinct facets per se but do not form a continuous surface. The only other notable feature is a  
1129 foramen that pierces the center of the base.

1130

1131 *Stapes*.—The dorsal stem of the right stapes is visible in the right otic region of the holotype  
1132 when viewed posteriorly (Fig. 8). It is long and slender, with an oval cross-section, but it has  
1133 been dislodged to project posteriorly and is not exposed proximally. No other elements of the  
1134 otic capsule were identified.

1135 Articulated stapedes are also found in UMMP 13820 (on both sides; Fig. 11), UMMP  
1136 13823 (on the right side; Fig. 16), UMMP 14098 (on the right side; Figs. 18B, 20A), and UMMP  
1137 14154 (both sides; Fig. 23). Those of UMMP 13820 and UMMP 13823 are only exposed distally  
1138 and confer no additional information. The footplate can be observed in UMMP 14098 and  
1139 UMMP 14154 on account of the incompleteness of these specimens. In UMMP 14098, the stapes  
1140 has been dislodged against the skull roof but is otherwise in the approximate natural position.  
1141 The morphology of the stapes comprises an expanded base without any apparent stapedial  
1142 foramen that tapers into a dorsal stem that has a narrow oval cross-sectional profile. There is no  
1143 groove on the posterior surface of the dorsal stem, but the surface is shallowly troughed in this  
1144 region. In UMMP 14154, the left stapes is articulated and fully exposed and, the posterior  
1145 surface of the stem bears a distinct longitudinal groove that deepens proximally and medially.  
1146 The stapes is also known from two isolated stapedes (UMMP 13777; Fig. 31). Neither is  
1147 complete, but they permit characterization of the proximal portion in all views. The partially  
1148 divided base is evident and marked by two disparately sized roughened articular facets. Some  
1149 workers (e.g., Sulej, 2007) consider only the larger of the facets (the dorsal one) to be the  
1150 footplate. This process is not as developed in UMMP 13777 as in *Metoposaurus krasiejowensis*,  
1151 in which it is substantially larger than the other process and prominently projects outward. The  
1152 posterior groove that is prominent in UMMP 14154 is barely developed here. As with the  
1153 holotype, no other elements of the otic capsule were identified in articulation or in isolation.  
1154

1155 *Exoccipital*.—The exoccipital is a stout element with two processes, a posteriorly directed one to  
1156 form the occipital condyle and an anterodorsally directed one to frame the foramen magnum in  
1157 the holotype (Figs. 7–8). Ventrally, the exoccipital fuses to the parasphenoid and probably to  
1158 the pterygoid, but the latter is not defined in the holotype (Fig. 7). Whether the exoccipitals met

1159 medially or were separated by the basal plate of the parasphenoid is also uncertain. In occipital  
1160 view, the exoccipital forms a dorsally ascending column that abuts the postparietal and the  
1161 tabular (Fig. 8). The left side is badly distorted, but the right side appears to show that the  
1162 exoccipital does not contribute to the posttemporal foramen. The foramen magnum is distorted  
1163 but was originally subdivided by a medially projecting lamellose process at the mid-height; this  
1164 process is more complete on the right side. The posteriorly convex occipital condyle is circular in  
1165 posterior profile and with an unfinished bone surface. The columnar occipital pillars of the  
1166 exoccipitals are angled posteroventrally such that they have a noticeable exposure in dorsal view,  
1167 but the posttemporal foramina and the foramen magnum are not exposed. Weathering has  
1168 obscured any smaller nerve foramina that are typically present.

1169 The exoccipitals are preserved in articulation in UMMP 13820, UMMP 13822, UMMP  
1170 13823, UMMP 13956, and UMMP 14154 (Figs. 10–11, 13–14, 16–17, 22–23). Most of these  
1171 preserve a clear suture with the pterygoid in ventral view. UMMP 13822 appears to show a  
1172 separation of the exoccipitals medially by the parasphenoid (Fig. 13). Some distortion has  
1173 occurred in the occipital region of all of these specimens such that the foramen magnum is not  
1174 symmetrical and is poorly defined in some cases. The least distorted foramen magnum is  
1175 preserved in UMMP 13956 in which it appears that the dorsal portion was at least wider, and  
1176 perhaps larger in total surface area, than the ventral portion (Fig. 17C). Compression in UMMP  
1177 13822 and UMMP 13823 also appears to have pushed the exoccipitals more posterior such that  
1178 their dorsal exposure is greater than in the other specimens (Figs. 12, 16). The overall  
1179 morphology of the element is the same as in the holotype, but UMMP 13022 and UMMP 14154  
1180 differ in that they show a clear contribution of the exoccipital to the margin of the posttemporal  
1181 foramen (Figs. 14, 23). Two sets of isolated exoccipitals are present, UMMP 12969 (in part; Fig.  
1182 30A–E) and UMMP 13819 (Fig. 32). Similar to the partial to complete skulls (Figs. 8, 11, 14,  
1183 16–17, 23), the profile of the occipital condyle is slightly variable, ranging from a more oblate  
1184 shape to a more circular shape (Figs. 30A–30E, 32). The partial or isolated elements contribute  
1185 the most data regarding the passage of nerves and/or blood vasculature. In UMMP 13820, a  
1186 foramen is visible on the ventral surface of the right exoccipital (Fig. 10), which may represent  
1187 one exit for the hypoglossal nerve (XII). A foramen in the same position was only identified in  
1188 UMMP 14154 (on both sides; Fig. 22) but may be absent in other specimens due to fracturing in  
1189 this region. Nerve foramina that may represent other exits for this nerve are also commonly  
1190 found on the lateral and medial surface of the base of the ascending column of the exoccipital  
1191 (UMMP 12969, UMMP 13819, UMMP 13956, UMMP 14098, UMMP 14154; Figs. 19A, 20B–  
1192 20D, 21, 30D–30E, 32D–32E). The foramen that is consistently found on the lateral surface of  
1193 the base can be seen to continue through to a medial exit (e.g., UMMP 14098; Figs. 20B–20C).  
1194 In UMMP 14098, in addition to the foramina on the medial and lateral surface of the base, there  
1195 are two other foramina on the medial surface (Fig. 20C). A small one is positioned posterior to  
1196 the nerve foramen, and a larger one is positioned anterior to the nerve foramen; these could well  
1197 represent additional exits for the nerve but could alternately be for vasculature. Two pierce the  
1198 base of the column, the larger of the two being more laterally positioned and directed  
1199 posteroventrally. The third is oriented anteroposteriorly and enters the condyle at the center of its  
1200 cross-section. Some other specimens have additional foramina ventral to this position (e.g.,  
1201 UMMP 13819; Fig. 32E), whereas others exhibit no foramina despite being well-preserved (e.g.,  
1202 UMMP 12969; Fig. 30E). Finally, foramina are also consistently identified on the anterior face  
1203 of the occipital pillar at its base, which can be seen in dorsal view when the pillar is damaged  
1204 (e.g., UMMP 14098; Fig. 20D). This foramen apparently connects with any foramina on the

1205 lateral surface below the one at the base of the pillar, as well as with any foramen that has shifted  
1206 to be positioned along the ventral surface and with a longitudinal canal that extends as far  
1207 anteriorly as the element is preserved.

1208 We consider it highly likely that at least one foramen within the exoccipital is for  
1209 hypoglossal nerve (XII) based on other temnospondyls (e.g., Säve-Söderbergh, 1936; Sawin,  
1210 1941, 1945; Wilson, 1941; Romer & Witter, 1942; Shishkin & Sulej, 2009; Maddin, Reisz &  
1211 Anderson, 2010; Witzmann et al., 2012), but the maximum number of exits and whether this  
1212 might be variable is unclear. Case (1932:fig. 12) depicted the course of two canals, but this was  
1213 based on an exoccipital of *Anaschisma browni* from Rotten Hill whose taphonomic damage  
1214 exposes the entire course of the canals. Whether both canals identified by Case (1932) are for the  
1215 hypoglossal nerve is unclear, especially if they are fully separated as Case argued. Sulej (2007)  
1216 suggested that both columns might be for veins in *Metoposaurus krasiejowensis*. At least one  
1217 could alternatively be for the vagus nerve (X; Dutuit, 1976), and there is always the possibility  
1218 that multiple nerves and/or blood vessels (e.g., the jugular vein) passed through a single foramen  
1219 (e.g., Case, 1931). Resolving the neurology further requires tomographic analysis to clearly map  
1220 the canals in 3D and to ascertain their connectivity (e.g., Arbez, Dahoumane & Steyer, 2017;  
1221 Gee, 2020a).

1222

1223 *Other neurocranial ossifications.*—Additional ossifications of the braincase, like the  
1224 sphenethmoid, were not apparent in any of the specimens, as with most other metoposaurids. If  
1225 the sphenethmoid ossified in this taxon, it likely would only have done so at a much larger size  
1226 based on *Anaschisma browni* (Wilson, 1941) and *Dutuitosaurus ouazzoui* (Dutuit, 1976). There  
1227 is also no evidence for an ossified basioccipital or an ossified synotic tectum (the ‘supraoccipital’  
1228 in crown amniotes); the absence of the latter results in the keyhole-shaped foramen magnum.  
1229

1229

1230 *Palatal plates.*—A notable feature in UMMP 13823 is the presence of more than 50 small plates  
1231 in the anterior right interpterygoid vacuity (Fig. 16A–16B). Case (1932) identified these as  
1232 scleral ossicles, a reasonable conclusion since they occur near the orbit, but there is a distinct  
1233 variability in size and shape of these plates (Fig. 16B). This variability is not often found in  
1234 scleral ossicles, but it is found in palatal plates that would have filled the interpterygoid vacuities  
1235 (as documented in metoposaurids by Sulej, 2007, and as summarized in temnospondyls by Gee,  
1236 Hidy & Reisz, 2017). Given the count of the plates (which is also quite high for the scleral  
1237 ossicles of a single eye), it might be predicted that these plates occurred throughout the vacuity  
1238 but were accidentally removed during preparation in this specimen. The same might be true in  
1239 other specimens, but alternatively, the relatively coarse sediment suggests sufficient energetics to  
1240 dislodge loose elements prior to preservation (as with the scleral ossicles). No true scleral  
1241 ossicles were identified by us.  
1242

1242

1243 **Mandibular material.** There are eight hemimandibles only one of which was associated with a  
1244 skull (UMMP 13823), in addition to MCZ 1054, a specimen that was exchanged in the 1930s  
1245 and that we did not personally examine. Case (1932) also listed a complete hemimandible  
1246 (UMMP 13946) that we could not physically locate. Examination of collections records revealed  
1247 that this specimen was exchanged with the Museum of Comparative Zoology (MCZ) in May  
1248 1932 and now bears the number MCZ 1056; likely, it was part of the same exchange as UMMP  
1249 13821 (=MCZ 1054) and was unnoted in Case’s publication. The description follows the general

1250 structure of the cranial description with the caveat that there is no lower jaw associated with the  
1251 holotype, so all specimens are described in a single section per element.

1252 The hemimandible is typical for metoposaurids, which otherwise exhibit very little  
1253 variation in morphology and dentition (Brusatte et al., 2015). Complete hemimandibles are  
1254 represented by UMMP 13823, UMMP 13944, and UMMP 13947 (Figs. 33–35). Case (1932:figs.  
1255 21–22) figured UMMP 13823 as his representative of the lower jaw, likely because it is the only  
1256 hemimandible associated with a skull, but the specimen currently has a large patch of plaster  
1257 adhered to the labial side of the tooth row. This was not figured by Case, who did figure the  
1258 labial surface, so the plaster was likely added later to stabilize the specimen. The lingual surface  
1259 is also heavily fractured and the Meckelian foramen is not so perfectly oblate, two features that  
1260 were not figured by Case. There is plaster infilling on the lingual surface near the symphysis,  
1261 possibly interrupting the adsymphyseal tooth row. The fractures seem to be taphonomic rather  
1262 than recent, so Case's original figures should be regarded more as reconstructions than as  
1263 specimen illustrations. The remaining five hemimandibles are incomplete (Fig. 36)

1264 The overall morphology of the hemimandible of *Buettnererpeton bakeri* aligns with the  
1265 conserved morphology among other metoposaurids. It has a slight curvature along the  
1266 longitudinal axis that becomes more pronounced towards the symphysis, which curves slightly  
1267 upward as it turns medially (Figs. 33A–33D, 35A–35D, 36A, 36F–36G). The symphyseal region  
1268 curves slightly upward as well such that the symphyseal surface faces dorsomedially. The  
1269 hemimandible increase in height posteriorly to the termination of the tooth row, where the dorsal  
1270 margin of the labial wall of the adductor chamber forms a low, dorsally convex coronoid process  
1271 (Figs. 33E–33H, 34F–34I, 35E–35H). The labial wall is thus higher than the lingual wall (Figs.  
1272 33G–33H, 34H–34I). The glenoid is an obliquely angled facet, more transverse than  
1273 longitudinal; it is framed anterolingually by the hamate process of the prearticular and by the  
1274 postglenoid ridge posteriorly. The postglenoid area (PGA) forms a short boss with a squared-off  
1275 posterior end (Figs. 33–35). Ornamentation is primarily found along the ventral margin and on  
1276 the posterolabial surface (primarily the angular). Circular pitting radiates outward into grooves  
1277 dorsally from the ventral margin. A prominent oral canal is also found on the labial surface,  
1278 extending anteriorly from the PGA for much of the length (Figs. 33E–33F, 34F–34G, 35E–35F).  
1279 It joins with a short mandibular canal on the labial surface of the postglenoid region. A shorter  
1280 and disconnected articular canal is found on the labial surface just below the postglenoid ridge  
1281 and dorsal to the oral canal.

1282 *Dentary*.—The dentary is the only tooth-bearing element in the metoposaurid mandible (Figs.  
1283 33–35). It has a long and tall labial and ventral exposure, which is ornamented towards the  
1284 ventral margin of the hemimandible, and a shorter lingual exposure. It overlies the splenial, the  
1285 postsplenial, and the angular on the labial surface and the splenial and all three coronoids on the  
1286 lingual surface. Like the upper dentition, the mandibular teeth are conical, non-pedicellate, and  
1287 monocuspid. Faint external striations marking the plicidentine can sometimes be noted. All teeth  
1288 are borne by the dentary. There are 36 partial teeth preserved with room for at least an additional  
1289 22 teeth in UMMP 13944 (Fig. 33); this is more positions (58) than was suggested by Case based  
1290 on the hemimandible associated with UMMP 13823 (45 positions; Fig. 34). One symphyseal  
1291 'fang' is partially preserved with a large socket for a second 'fang' in UMMP 13944 (Fig. 33). In  
1292 this specimen, the 'fangs' intercede into the marginal tooth row such that there are two positions  
1293 at the end of the symphysis and the rest of the tooth row on the other side of the 'fangs' (Figs.  
1294 26A–26B). At least eight adsymphyseal tooth positions are identified on the lingual surface of

1296 the symphysis. This tooth row is somewhat variable; UMMP 13823 has 10 positions in the  
1297 adsymphyseal row, whereas UMMP 13944 and UMMP 13947 may have as few as eight. One  
1298 other source of variation in the dentition is in the number of marginal teeth anterior to the  
1299 symphyseal ‘fangs’; there may be room for three positions in UMMP 13944 compared to two  
1300 positions in UMMP 13823. Features suggested by Case to be diagnostic of this species among  
1301 metoposaurids, like the presence of an adsymphyseal row, are no longer diagnostic (Konietzko-  
1302 Meier & Wawro, 2007).

1303

1304 *Coronoid series*.—There are three coronoids, as with almost all temnospondyls, although this is  
1305 only discernible when all of the data are taken together because complete sutures between all  
1306 three are not preserved in any single specimen (Figs. 33G–33H, 34H–34I, 35G–35H). Case  
1307 (1932) only identified two (with his ‘coronoid I’ encompassing the middle and the posterior  
1308 coronoids), but his identification is refuted by the defined suture between the middle and the  
1309 posterior coronoids in UMMP 13823 (Figs. 34H–34I). No teeth are present on any of the  
1310 coronoids in any specimen, as with all other metoposaurids.

1311 *Splenial*.—The splenial is a short element at the front of the hemimandible with a narrow labial  
1312 exposure and a broader lingual exposure, ventral to the dentary and anterior to the postsplenial  
1313 (Figs. 33–35). The splenial does not contribute to the symphysis (Figs. 33C–33D, 35C–35D), a  
1314 feature shared only with *Arganasaurus azerouali* and *Dutuitosaurus ouazzoui* (Buffa, Jalil &  
1315 Steyer, 2019).

1316

1317 *Postsplenial*.—The postsplenial is a more elongate element with a similarly narrow labial  
1318 exposure and a broader lingual exposure (Figs. 33–35). It underlies the coronoids and appears to  
1319 have contacted all three, although only the middle coronoid shares a substantial contact. The  
1320 postsplenial contributes to the anterior margin of the Meckelian foramen (sometimes the  
1321 Meckelian window), an elongate oval that tapers anteriorly to a rounded tip; it appears  
1322 undistorted in UMMP 13944 (Figs. 33G–33H) but is slightly distorted in the other specimens  
1323 (Figs. 34H–34I, 35G–35H). Anteriorly within the postsplenial are two small foramina, not fully  
1324 prepared out, the more anterior of these is usually termed the anterior Meckelian foramen.

1325

1326 *Prearticular*.—The prearticular is a long element that is only exposed lingually (Figs. 33G–33H,  
1327 34H–34I, 35G–35H). It forms the posterior margin of the Meckelian foramen, ventral to the  
1328 posterior coronoid and dorsal to the angular. It also forms most of the lingual wall of the  
1329 adductor chamber, including the prominent dorsally projecting hamate process, as well as the  
1330 lingual edge of the glenoid. Posteriorly, it frames the chorda tympanic foramen, which is  
1331 frequently distorted in these specimens and in metoposaurid hemimandibles in general.

1332

1333 *Angular*.—The angular is a long element with a broad labial and ventral exposure (Figs. 33–35).  
1334 Labially, it sutures to the surangular posterodorsally, to the dentary anterodorsally, and to the  
1335 postsplenial anteriorly. It bears most of the ornamentation on the labial surface but only a small  
1336 portion of the oral canal (Figs. 33E–33F, 34F–34G, 35E–35F). On the lingual surface, it forms  
1337 the posteroventral margin of the Meckelian foramen, suturing to the postsplenial anteriorly and  
1338 to the prearticular dorsally (Figs. 33G–33H, 34H–34I, 35G–35H).

1339

1340 *Surangular*.—The surangular has a broad triangular labial exposure, forming most of the labial  
1341 wall of the adductor chamber and extending to the posterior end of the hemimandible (Figs.

1342 33E–33F, 34F–34G, 35E–35F). It wedges anteriorly between the dentary and the angular and  
1343 expands in height posteriorly to form the labial surface of the PGA.

1344

#### 1345 **Postcranial material.**

1346 *Axial material.* The vertebral column is represented by one atlas (UMMP 13792, Fig. 37)  
1347 isolated intercentra (UMMP 12945, UMMP 118525, UMMP 118526, UMMP 118527, Figs. 38–  
1348 43), neural arches (UMMP 13870; UMMP 14205, Figs. 44A–44C), and haemal arches (UMMP  
1349 13779, Figs. 44D–44E). Case (1932:27) described 45 intercentra as having been scattered within  
1350 the bonebed, but he did not indicate any specimen number(s) and photographed an apparently  
1351 random set of only nine (in presumed anterior view). During our visit, we identified 41  
1352 intercentra (in addition to one complete atlas, two isolated pairs of neural arches, and one pair of  
1353 isolated chevrons) in a single drawer, divided between four boxes. One box with 13 intercentra  
1354 was catalogued as UMMP 12945 and is associated with the Elkins bone bed (Figs. 38, 40–43).  
1355 The other three boxes (with five, six, and seventeen intercentra) contained intercentra of the  
1356 same size and preservation as UMMP 12945 but had no specimen numbers or collections  
1357 information at the time of our examination. However, we were able to tentatively identify  
1358 intercentra in the uncatalogued boxes among those figured by Case (1932:pl. IV, fig. 3),  
1359 confirming that they are from the locality. The discrepancy between the 41 intercentra that we  
1360 examined and Case's purported 45 might lie in the four non-intercentra vertebral specimens  
1361 noted above. There is no apparent organization among the four boxes (e.g., by inferred region of  
1362 the axial column or by inferred association to a single individual). For example, UMMP 12945  
1363 includes at least one postcervical intercentrum, , three presacral intercentra, two perisacral  
1364 intercentra, and four postsacral intercentra. Specimen numbers have thus been assigned for the  
1365 three boxes that previously lacked any (UMMP 118525, UMMP 118526, and UMMP 118527;  
1366 Figs. 38–43), rather than assigning all of the material to UMMP 12945.

1367 The atlas is complete and relatively undistorted (Fig. 37). The posterior surface of the  
1368 intercentrum is a single face, indented dorsally for the notochordal canal. The anterior face is  
1369 divided into the two facets for the occipital condyles, which meet medially. There are no  
1370 diapophyses on the co-ossified neural arch or parapophyses on the lateral surface of the  
1371 intercentrum. The ventral surface is smooth except at the anterior midline below the union of the  
1372 two facets. The co-ossified neural arch has a short neural spine that projects posterodorsally at a  
1373 steep angle. Vertical ridges along the anterior face of the spine are barely developed.

1374 One intercentrum is tentatively identified as an axis intercentrum (Fig. 38A). In anterior  
1375 view, this intercentrum is more dorsoventrally short than the others giving it a more  
1376 quadrangular appearance. It bears a broad parapophysis on the lateral surface that is confluent  
1377 with both the anterior and the posterior faces. The body of the intercentrum is opisthocoelous  
1378 with a strongly convex anterior condyle and a concave posterior cotyle. A notochordal pit is  
1379 present on the dorsal aspect of both the anterior and the posterior face.

1380 Given the lack of articulated axial columns of North American metoposaurids, the  
1381 following identifications are based on those of Dutuit (1976) and Sulej (2007) and should be  
1382 viewed as tentative assignments to general axial regions (Figs. 38–42). Nearly all of the  
1383 intercentra form dorsally-closed discs as is typical for metoposaurids with one exception  
1384 described below. Six intercentra could not be confidently assigned to an axial position due to  
1385 poor preservation of the parapophyses, arguably the most definitive feature for determining the  
1386 position in presacral intercentra (Fig. 43).

1387        The postcervical and anterior dorsal intercentra were identified based on the broad,  
1388        unfinished parapophyses on the posterior aspect of the lateral surface (Fig. 38). Postcervical  
1389        intercentra differ from anterior dorsal intercentra in the angle of the parapophysis with the former  
1390        being more vertical, however, gradational changes between intercentrum types can make  
1391        assignment to a given region problematic. As noted previously, one postcervical intercentrum is  
1392        included in UMMP 12945 (Fig. 38B), three are included in UMMP 118525 (Figs. 38A, 38C,  
1393        38F), one in UMMP 118526 (Figs. 3838E), and one in UMMP 118527 (Figs. 38D38). Five  
1394        anterior dorsal intercentra are included in UMMP 118525 (Figs. 39A–39E). The postcervical and  
1395        anterior dorsal intercentra all have a sometimes-faint indentation on the dorsal aspect of the  
1396        anterior and posterior face for the notochord. There are only three mid-dorsal intercentra  
1397        identified based on a single, short parapophysis, with one included in UMMP 118525 (Figs. 39F,  
1398        39H) and another in UMMP 118526 (Fig. 39G). A notochordal pit is also present on the anterior  
1399        and posterior face of the mid-dorsal intercentra.

1400        Presacral (Fig. 40) and perisacral (Fig. 41) intercentra are by far the most common  
1401        vertebral elements recovered from the Elkins bone bed making up about one third of the  
1402        recovered intercentra. The presacral intercentra can be identified by the presence of an anterior  
1403        parapophysis and rounded posterior parapophysis (Fig. 40) as opposed to the more pointed  
1404        posterior parapophysis of perisacral (Fig. 41) and anterior caudal intercentra (Figs. 42A–42D).  
1405        Three presacral intercentra are included in UMMP 12945 (Figs. 40A, 40C, 40E), two are  
1406        included in UMMP 118527 (Figs. 40B, 40D), and three are included in UMMP 118525 (Figs.  
1407        40F–40H). The perisacral intercentra are identified by a broad anterior parapophysis and a broad,  
1408        pointed posterior parapophysis (Fig. 41). The unfinished surfaces of the anterior and the  
1409        posterior parapophyses of the perisacral intercentra contact one another. Two perisacral  
1410        intercentra are included in UMMP 12945 (Figs. 41A, 41C), two are included in UMMP 118526  
1411        (Figs. 41B, 41D), and one is included in UMMP 118525 (Fig. 41E).

1412        Anterior caudal (“postsacral”) intercentra lacking co-ossified haemal arches are also  
1413        present and primarily identified by the broad, pointed and ventrally placed posterior  
1414        parapophyses (Figs. 42A–42D). The anterior caudal intercentra can also be tentatively identified  
1415        by a slightly more dorsoventrally oblong shape in anterior view. Two anterior caudal intercentra  
1416        are confidently identified in UMMP 12945 (Figs. 42A–42B), one is tentatively identified in  
1417        UMMP 12945 (Fig. 42D), and one is tentatively identified in UMMP 118525 (Fig. 42C). Among  
1418        these intercentra the indentation on the anterior and posterior faces for the notochord is variably  
1419        present with no clear pattern in size or axial position.

1420        One caudal intercentrum of UMMP 118527 (Fig. 42E) was previously identified as such  
1421        by Case (1932:pl. IV, fig. 3) with broken haemapophyses co-ossified on the ventral surface. The  
1422        intercentrum is wedge-shaped in lateral view and dorsally open unlike all of the other intercentra  
1423        present. This is the only putative caudal intercentrum from the Elkins bone bed. Two small,  
1424        probable pre- to “postsacral” intercentra of UMMP 12945 (Fig. 42F) and UMMP 118527  
1425        (Fig. 42G) are difficult to assign to an axial region due to poorly defined parapophyses. These  
1426        two intercentra are noteworthy in being anteroposteriorly shorter than their transverse width like  
1427        most large metoposaurid intercentra (with the exception of *Dutuitosaurus*) and unlike the  
1428        elongate intercentra of the small-bodied *Apachesaurus*.

1429        UMMP 14205 is identified as a mid-dorsal to anterior caudal (“postsacral”) neural arch  
1430        (Fig. 44A) based on the size and position of the prezygapophyses in comparison with examples  
1431        of *Metoposaurus krasiejowensis* described by Sulej (2007:figs. 32, 37). The spine is short and  
1432        unossified dorsally where the two halves meet. The prezygapophyses are short and anteriorly

1433 directed. A shallow anteroposterior groove is present on the underside of each descending flank  
1434 of the neural arch.

1435 UMMP 13780 is a pair of partial caudal neural arches (Figs. 44B–44C) previously  
1436 identified by Case (1932:p. 28–29) as possible haemapophyses. The ventral margin is convex and  
1437 unossified. There is a small protuberance, here identified as the prezygapophysis, anteriorly from  
1438 the dorsal region. The dorsal extension of the neural spine is incomplete in both arches. These  
1439 caudal neural arches are essentially indistinguishable from those of *Metoposaurus krasiejowensis*  
1440 (Sulej, 2007:figs. 34–35).

1441 UMMP 13779 is two partial right haemal arches consisting of the articular surfaces with  
1442 the ventral intercentrum and missing the more distal portion where the chevron tapers to a  
1443 cylindrical rod (Figs. 44 D–44E).

1444 Nineteen isolated ribs are also identified. Two sets of ribs with no clear association  
1445 (UMMP 13776 and UMMP 13788) and two large individual ribs (UMMP 13778 and UMMP  
1446 13783) are present in the collection. Most of the ribs are essentially complete with both the  
1447 proximal and distal ends preserved, but a few are incomplete missing one or both ends. Sulej  
1448 (2007) categorized metoposaurid ribs by ‘type’, and those ‘types’ are tentatively identified here.  
1449 One issue noted by Sulej (2007:80) is an overlap between ontogenetic change and differences in  
1450 adjacent rib positions. Because of this, all identifications apart from a cervical rib (‘type A’) and  
1451 an anterior caudal rib (‘type J’) should be viewed as generalized morphological assignments and  
1452 not necessarily reflective of axial position.

1453 A single putative cervical rib or ‘type A rib’ is present in UMMP 13788 (Fig. 45A). This  
1454 identification is based on the fully distinct tuberculum and capitulum. This rib is very sharply  
1455 curved and bears a well-defined ridge on the dorsal surface extending and widening distally with  
1456 furrows along the anterior and posterior sides. The anterior margin of the shaft forms a blade-like  
1457 edge. There is a shallow depression on the ventral surface of the proximal end.

1458 Two partial ‘type C’ ribs are present and identified by a broad distal expansion (Fig. 45B)  
1459 or oval proximal end with a modestly differentiated capitulum and tuberculum (Fig. 45C). The  
1460 proximal end of one rib is broken, but a shallow furrow can be seen along the length of the  
1461 ventral surface. On the other rib, a furrow extends to the proximal end on both the dorsal and  
1462 ventral surface (Fig. 45C). The distal end is like a flattened comma in cross-section. However,  
1463 this rib lacks the distinct bend at the midpoint of other ‘type C’ ribs (e.g., Sulej, 2007:fig. 38D<sub>2</sub>)  
1464 but has a gradual curve instead.

1465 UMMP 13778 is a single rib of a large individual in two pieces (Case, 1932:30,  
1466 expressed some uncertainty; Fig. 46A). This rib is mostly straight and with a massively expanded  
1467 proximal end that is damaged but that appears to have a similar cross-section to that of UMMP  
1468 13783. The distal end is not expanded with an oblate cross-section. It appears to be a ‘type E’ or  
1469 ‘type F,’ with a ridge on the proximal end extending to about the mid-shaft. The crest is however  
1470 not well-defined. The size discrepancy is such that it could conceivably be proposed to be an  
1471 ontogenetic variation. Additional potential ‘type E/F’ ribs are similar in size, but often missing  
1472 one or both ends (Figs. 46B–46C).

1473 At least five ‘type H’ ribs are present in the collection with three of similar or transitional  
1474 morphology between rib types adjacent to ‘type H’. Each of these ribs is relatively straight with  
1475 little curvature and with a broadly expanded proximal end. UMMP 13783 is a single rib of a  
1476 large individual (Fig. 47A). It is relatively straight and without uncinate processes, closely  
1477 resembling the ‘type H’ or ‘type I’ of Sulej (2007). The proximal end has a distinct division of  
1478 the tuberculum and the capitulum, forming a kidney-bean-shaped cross-section. This is notably

1479 different from the subtriangular cross-section of the 'type H' ribs, but this rib is about twice the  
1480 size of the same rib types described by Sulej (2007:fig. 38L). The distal end is not expanded and  
1481 has an oblate cross-section. A sharp crest extends for most of the length of the shaft. One border  
1482 also had a thicker ridge that extends for most of the length of the rib. Two of the remaining ribs  
1483 (Figs. 47B–47-C) have a flattened comma-like cross-section of the proximal end with a very  
1484 modest curvature. This may be a transition between the oval cross-section of 'type G' ribs and  
1485 the more exaggerated comma of 'type H' ribs. The cross-section of the proximal end of the  
1486 remaining ribs (Figs. 47D–47H) resembles the more typical comma shape of Sulej's 'type H'  
1487 ribs. Each of the smaller ribs (Figs. 47B–47-H) tapers to a slight constriction at the distal end of  
1488 the shaft. There is some variation in the curvature, which may have been compressed in one  
1489 direction.

1490 The five remaining ribs are likely perisacral or caudal in origin being relatively short and  
1491 straight and with a greatly expanded proximal end. One rib of UMMP 13788 (Fig. 48A) appears  
1492 to be a large 'type I' or 'type J' rib with the proximal end subcircular in cross-section and with a  
1493 slight extension that may represent the attachment of the capitulum. The distal end of this rib is  
1494 incomplete, but a prominent ridge extends down the ventral surface. There is a slight bend just  
1495 prior to the mid-length and a modest curvature in the rib shaft at the distal end. Two putative  
1496 'type I' ribs are present under UMMP 13788 (Figs. 48B–48-C). These ribs are exceptionally  
1497 short although it is not clear if the distal end is entirely complete in the shortest one (Fig. 48B).  
1498 The cross-section of each of these is flattened with a pronounced anterior and posterior  
1499 expansion. The prominent ridge of one rib (Fig. 48D) missing both the proximal and distal end is  
1500 similar to that of the putative large 'type I/J' rib, but this identification is tentative due to a lack  
1501 of informative morphology. A single 'type J' rib was identified under UMMP 13776 (Fig 48E).  
1502 This rib has the comma-shaped cross-section of the proximal end and tapers to a point in the  
1503 distal shaft. The curvature of the 'type J' rib appears greater than the perisacral ribs with the  
1504 possible exception of the 'type I/J' rib (Fig. 48A). A ridge extends down one edge of the 'type J'  
1505 rib (Fig. 48E).

1506  
1507 *Pectoral girdle material.* UMMP 13786 is a fragmentary element identified as a 'puboischium?'  
1508 by Case (1932). However, an ossified pubis has never been identified in a metoposaurid, and it  
1509 probably remained cartilaginous along with the carpals and tarsals. The ischium is a simple  
1510 wedge-shaped element without many distinctive features (e.g., Sulej, 2007). It is relatively  
1511 narrow. Crucially, most of the margins of the element appear damaged, which suggests that the  
1512 wedge-shaped profile, somewhat superficially similar to the metoposaurid ischium, is not  
1513 reflective of the true shape. We propose here that this is not a largely complete 'puboischium'  
1514 (reiterating that there is no evidence for an ossified or co-ossified pubis in metoposaurids) but  
1515 that this is instead a partial scapula, mostly damaged ventrally, that was incorrectly oriented and  
1516 misidentified, likely because of the post-mortem damage. Firstly, a clearly broken, squared-off  
1517 surface that would have to be the dorsally facing articular surface for the ilium under Case's  
1518 interpretation is actually the part of the scapula dorsal to the supraglenoid foramen. This is  
1519 supported by the observation that there is a bifurcation along this surface, with a ridge deviating  
1520 from the main axis of the element (Fig. 49C); in a complete element, this would continue to  
1521 diverge to form a broad glenoid. A groove divides the bifurcation, with a small foramen nestled  
1522 inside. The supraglenoid foramen is large in metoposaurids (e.g., Sulej, 2007:fig. 47), so it is not  
1523 surprising that the element would fracture in that region. The only definitively undamaged  
1524 margin of smooth, finished bone is a short concave surface that leads into this bifurcation. Under

1525 Case's interpretation, this would be adjacent to the acetabulum and thus either the anterior or  
1526 posterior margin of the 'puboischium,' but under our interpretation, it would represent the dorsal  
1527 portion of the posterior margin of the scapula (and is consistent with that of other metoposaurids  
1528 in this regard). The opposing surface (the ventral margin of Case's 'puboischium') is then the  
1529 anterior margin of the scapula, and the roughened, uneven margin reflects the articulation with  
1530 the cleithrum (see also Sulej, 2007). A convex surface of unfinished bone that joins the anterior  
1531 and posterior margins would be the muscular crest of the scapula. In summation, the element was  
1532 incorrectly oriented by Case, leading to his misinterpretation of the element as a wedge-shaped  
1533 'puboischium'; the element instead possesses all the expected features of an incomplete scapula.  
1534 The scapula is rare among North American taxa – for example, none were reported from the  
1535 Rotten Hill bonebed (Lucas et al., 2016) – so it is unsurprising that a fragmentary one was  
1536 misidentified by Case. UMMP 13786 represents the only scapula from this locality.

1537 There are two cleithra, one mistakenly catalogued in an assortment of ribs (UMMP  
1538 13788; Fig. 50B) and a second catalogued with a seemingly random assortment of predominantly  
1539 cranial fragments (UMMP 14099; Fig. 51A). They are mainly identified on the basis of the  
1540 developed rugosities, marked by strong ridges, and a smooth area for articulation with the  
1541 clavicle that is bounded by an elevated longitudinal ridge and that tapers to a point. The other  
1542 end is flat and rounded with a short longitudinal ridge (the scapular crest).

1543 There are a total of twelve clavicles, six left and six right and most entirely complete  
1544 (Figs. 51–54). Several have the dorsal surface embedded in plaster and thus can only be studied  
1545 from the ventral and lateral surfaces. The anatomy is very consistent throughout, in line with the  
1546 relatively minimal variation among metoposaurids at large with the exception of the size of the  
1547 region marked by circular pitting along the posterolateral corner. UMMP 13824 is utilized as a  
1548 representative of the clavicles described here as it is complete and fully exposed. The ventral  
1549 portion of the clavicle is flat and ornamented along the ventral surface (Fig. 51). Ornamentation  
1550 consists of circular pitting near the posterolateral corner that radiates outward into elongate  
1551 grooves. Also of note is the presence of a longitudinal sensory groove in the posterolateral  
1552 region, demarcated by the interruption of the ornamentation pattern. The dorsal surface is mostly  
1553 smooth but bears striations along the medial edge where it would meet the interclavicle (Fig. 52).  
1554 A tall ascending process forms a blade-like structure with the posterodorsally directed process  
1555 for the cleithrum (Figs. 53, 54A–54I); this entire feature is typically lost during preservation in  
1556 North American taxa. The ascending process is mostly straight but deflects slightly medially  
1557 (Figs. 52, 54J–54Q). There is a distinct fossa on the lateral surface and a curved posterior margin  
1558 below the dorsal process (Fig. 53). The primary source of biological variation among the  
1559 clavicles is with respect to an indentation found along the posteromedial border. In some  
1560 specimens (UMMP 13824, UMMP 13898, UMMP 13903; Figs. 51B, 51F, 51K), the indentation  
1561 is deep and thus the margin forms a step. In other specimens (e.g., UMMP 13902; Fig. 51J), the  
1562 indentation is shallow, forming a slightly angled margin, while in others (e.g., UMMP 13825,  
1563 UMMP 13899; Figs. 51C, 51G), it is practically nonexistent and could be readily confused for  
1564 slight taphonomic damage, not uncommon in clavicles. Because this margin articulates with the  
1565 interclavicle, the degree of indentation might prove useful for making tentative associations  
1566 between the ornamented girdle elements, although this was not attempted here. The degree to  
1567 which the sensory groove is developed is also variable. In this sample, it is most apparent in  
1568 UMMP 13898, in which it curves around the posterolateral corner (Figs. 51F, 51N), and is least  
1569 apparent in UMMP 13901 (Figs. 51I, 51P).

1570 There are twelve interclavicles, many of which are relatively complete (Figs. 55–57). As  
1571 with the clavicles, a few specimens are embedded in plaster on the dorsal surface, while a few  
1572 others are held together partially by what appears to be rice paper. Also like the clavicles, there is  
1573 relatively little biological variation among them, and UMMP 13027 is described as a  
1574 representative for its completeness and clear exposure in dorsal and ventral view. The ventral  
1575 surface is largely marked by the typical pits and grooves found on the interclavicle of  
1576 metoposaurids (Figs. 55–56). The region of circular pitting is concentrated at the center and then  
1577 radiates outwards into elongate grooves, especially anteriorly. Unornamented facets for the  
1578 clavicles bear faint striations. The dorsal surface is largely smooth and flat, but there are  
1579 prominent buttresses extending anterolaterally below the articulation facets for the clavicles (the  
1580 ‘trabecula clavicularis’ of Sulej, 2007; Fig. 57). These join at the center, more or less below the  
1581 central pitted region, to form a single longitudinal ridge (the ‘eminentia centralis’ of Sulej, 2007;  
1582 Fig. 57) that extends towards the posterior margin. The lattermost ridge may terminate in a  
1583 visible rugosity, as in UMMP 13915 (Fig. 57F). The anterior process tapers in width to form a  
1584 narrow stylus, while the posterior margin is a bluntly convex curve. There are three sources of  
1585 intraspecific variation noted here. The first is the size of the region of circular pitting (Table 4).  
1586 This has conventionally been utilized as a taxonomic differentiator between North American and  
1587 European taxa, but at least two specimens here (UMMP 13029, UMMP 13911; Figs. 55B, 56A)  
1588 have very small regions of circular pitting, more like that observed in the European taxa (the  
1589 incomplete UMMP 13914 may also have almost no pitting; Fig. 56D). The second source of  
1590 variation follows that noted for the clavicle and corresponds to the contacting edge between these  
1591 elements. The ornamented surface extending anteriorly can have straight lateral margins (e.g.,  
1592 UMMP 13027, UMMP 13912; Figs. 55A, 56B), a slightly stepped margin (e.g., UMMP 13905,  
1593 UMMP 13914; Figs. 55D, 56D), or a prominently stepped margin (e.g., UMMP 13029; UMMP  
1594 13910; Fig. 55B, 55G). The final source of variation is in the posterolateral margins of the  
1595 interclavicle. In some specimens, the margin is more or less straight for its entirety (e.g., UMMP  
1596 13905, UMMP 13907; Figs. 55C, 55E), whereas in others, there is a prominent step posterior to  
1597 the clavicular facet (e.g., UMMP 13906, UMMP 13908; Figs. 55D, 55F). This variability does  
1598 not have a clear connection to the clavicular variation.  
1599

1600 *Forelimb material.* Two humeri are documented from the site (Fig. 58). UMMP 13775 is a  
1601 complete right humerus. The proximal and distal ends are broadly expanded and relatively  
1602 compressed with unossified ends. The supinator process is a small protrusion on the distal end  
1603 above the ectepicondyle (Figs. 58B, 58D). It is noticeably less developed and less protruding  
1604 than in other taxa such that the gap between the process and the proximal head is much larger  
1605 than that seen in other taxa. In this regard, it is quite similar to *Dutuitosaurus ouazzoui* (Dutuit,  
1606 1976:fig. 58). There is also no development of the attachment for the adductor musculature; in  
1607 *M. krasiejowensis*, this forms a discrete ridge-like projection from the ventral margin on the  
1608 proximal head (Sulej, 2007). In UMMP 13775, it is entirely smooth in this region. The  
1609 deltopectoral crest protrudes laterally from the proximal end of the shaft and bears rugosities on  
1610 its anterior and posterior surfaces. The rugose area on the posterior surface of the deltopectoral  
1611 crest has previously been interpreted to be for insertion of the *m. biceps brachii* (Ochev, 1972) or  
1612 the *m. pectoralis major* (Dutuit, 1976), and the rugose area on the anterior surface has been  
1613 interpreted to be for insertion of the *m. deltoideus* (Ochev, 1972; Dutuit, 1976). Other features  
1614 and proportions are in line with those of other metoposaurids. UMMP 13772 is a partial right  
1615 humerus and is longer than UMMP 13775 by about 20%. The shaft and most of the proximal

1616 head are preserved, but most of the ventral region of the distal end is lost. Excepting taphonomic  
1617 damage, there are no differences from UMMP 13775.

1618 Case (1932:fig. 38) figured three putative ulnae (UMMP 13774). However, these  
1619 elements are actually more similar to the tibiae of *Dutuitosaurus ouazzoui* (Dutuit, 1976:fig. 69)  
1620 and *Metoposaurus krasiejowensis* (Sulej, 2007:figs. 65–66) than to the ulnae of these taxa  
1621 (Dutuit, 1976:fig. 60; Sulej, 2007:figs. 56–57). Features more consistent with the tibia include an  
1622 asymmetrically expanded proximal end, resulting in a markedly concave anterior surface;  
1623 proximal and distal cross-sections of a similar oblate profile (rather than markedly disparate  
1624 profiles); and the presence of a rugose area for muscle attachment on the extensor surface of the  
1625 proximal end. UMMP 13774 does resemble the ulnae of *Anaschisma browni* as figured by Sawin  
1626 (1945: fig. 10e-f) and Lucas et al. (2016:fig. 66). While this could be regarded as a taxonomic  
1627 differentiator, it should also be considered that these elements may have been confused for each  
1628 other by some previous workers (see also Warren & Snell, 1991:60). We consider the  
1629 identifications and characterizations of Dutuit (1976) and Sulej (2007, which was based on  
1630 Dutuit) to be more reliable since Dutuit based his identifications on the articulated skeletons of  
1631 *D. ouazzoui*, whereas all other descriptions have been based on isolated bonebed material. Lucas  
1632 et al. (2016) refer to Sawin (1945) in their comparative description and thus probably based their  
1633 identifications largely on Sawin's study of entirely disarticulated material. If Sawin's  
1634 interpretation was informed by Case's misinterpretation, this would account for the discrepancies  
1635 between the 'ulna' and 'tibia' in North American taxa compared to other metoposaurids.  
1636 Therefore, UMMP 13774 is reinterpreted as a trio of tibiae. It is worth noting that these bones  
1637 were originally interpreted as tibiae, as indicated by strikethrough text on the collections card.  
1638 These tibiae are figured and described in additional detail further below in the 'Hindlimb'  
1639 section.

1640 UMMP 13782, originally described by Case as a tibia, is therefore an ulna (Fig. 59). In  
1641 UMMP 13782, the proximal end is massively expanded to have a large circular cross-sectional  
1642 profile. This would represent the olecranon, although there is no development of the olecranon  
1643 process, similar to other metoposaurids (e.g., *Metoposaurus krasiejowensis*; Sulej, 2007:fig.  
1644 56d). The proximal expansion is symmetrical when viewed in anterior or posterior view, unlike  
1645 the asymmetrical proximal expansion (greater anteriorly) of the tibia. This results in a  
1646 proximodistally straight element, rather than one that appears slightly curved. The shaft is  
1647 constricted, more so than in *M. krasiejowensis*, and then expands into a more oblate distal end.  
1648 The distal expansion, while less than the proximal expansion, is prominent compared to the shaft  
1649 (Figs. 59B, 59D), one feature separating it from tibiae (which are essentially unexpanded  
1650 distally). The distal end is also greatly compressed anteroposteriorly to form an oblate cross-  
1651 section at the end (Fig. 59F); this too differs from the circular profile of the uncompressed tibia.  
1652 There are two partially defined facets on the distal surface, presumably for the ulnare and for the  
1653 intermedium, which are unknown in metoposaurids and which were probably cartilaginous. A  
1654 ridge down the proximal surface is a weakly developed extensor keel. The only other feature of  
1655 note is a shallow crest along the posterior surface (the posterior ulnar keel of Pawley & Warren,  
1656 2006) that extends down to the distal end (termed the 'crista musculi extensoris carpi ulnaris' by  
1657 Sulej, 2007 following Ochev, 1972). The cross-sectional profiles of the ends align closely with  
1658 those of *M. krasiejowensis* (Sulej, 2007). The element would represent a right ulna.

1659 A probable radius was originally misidentified as a femur in a set of three putative  
1660 femora, UMMP 13773 (Fig. 60). The element is long and slender. The proximal and distal cross  
1661 sections are similar to the radius of *Metoposaurus krasiejowensis* with a circular proximal cross

1662 section and a subtriangular distal cross section (Sulej, 2007:fig. 55). It is likely that Case's  
1663 misidentification was made due to the presence of the proximal tubercle on the laterally facing  
1664 surface ('anterior tuberculum' of Sulej, 2007); this projection somewhat resembles the trochanter  
1665 of the femur described in more detail below. However, the tubercle in UMMP 13773 forms a  
1666 narrow and gently convex ridge, not an expanded rugose projection (as with the femoral  
1667 trochanter). While similar in overall morphology to the femur, this element lacks the distinct  
1668 dorsal (intercondylar) and ventral (popliteal) fossae on the distal surface of the femur with  
1669 instead a weak medial ridge and a convex lateral surface. Consequently, the cross-sectional  
1670 profiles of the proximal and distal ends are also markedly different; the proximal end is circular,  
1671 and the distal end is triangular (Figs. 60E–60F). In femora, the development of more  
1672 asymmetrical condyles and fossa dividing them produces more complex profiles (see Sulej,  
1673 2007:fig. 64g). Additionally, the tubercle forms only a very shallow continuation with a  
1674 proximodistal ridge on the lateral surface, compared to the 'crista aspera' of the femur.

1675 UMMP 13784 consists of four elements previously identified as radii (Figs. 61A, 61C).  
1676 The identity of these elements should be treated skeptically because they are simple in form, with  
1677 a straight and slender shaft and ends that are slightly expanded and with oval cross-sections.  
1678 There are no diagnostic features on any of the four elements, which could be attributed to  
1679 relative immaturity, and it is obvious that they do not represent other limb elements. The radius  
1680 is typically sided by the asymmetrical position of a proximal tubercle that descends into a ridge  
1681 along the ventral surface, but no such feature is present in any of these elements. The surfaces  
1682 are smooth and without ridges, crests, or grooves. The only real structural feature is the presence  
1683 of some foramina and striations near the ends. The cross-sectional profiles are elongate ovals,  
1684 whereas the proximal end of the radius in *Metoposaurus krasiejowensis* is circular where it  
1685 would meet the correspondingly large articular facet of the humerus, and there does not appear to  
1686 be any compression in UMMP 13784. Therefore, it must be considered whether they represent  
1687 metapodials much larger than a pair of phalanges (UMMP 13785; Figs. 61B, 61D) and that their  
1688 identification was made on the assumption that there must be radii present in the locality because  
1689 virtually all other skeletal elements are confidently represented. The presence of rare, isolated  
1690 elements of much larger individuals indicates that size alone cannot be used to identify these  
1691 elements. These elements are entirely within the range of proportions for the manual phalanges  
1692 of *M. krasiejowensis* (Sulej, 2007). Considering that the material at this locality is entirely  
1693 disarticulated, that isolated elements of much larger individuals occasionally occur (e.g., Fig.  
1694 26G) and that some skeletal elements are represented by only one specimen (e.g., ulna, ischium),  
1695 there is no reason to assume that radii are definitively present. We therefore identify UMMP  
1696 13784 as a set of large metapodial elements. The two previously identified phalanges (UMMP  
1697 13785) were specifically associated with the pes, although the justification for this placement is  
1698 unknown. They are both short and slightly expanded at the ends (more so in the larger one).  
1699 They are otherwise flat and lack any distinctive features like UMMP 13784.  
1700

1701 *Pelvic girdle material.* Following the reidentification of UMMP 13786 as a scapula, the only  
1702 pelvic elements are several ilia (Fig. 62). All six ilia from the site are catalogued under a single  
1703 number, UMMP 13789, four from the left side and two from the right; there is no indication that  
1704 any confidently form a pair from a single individual. The largest of these is about 25% longer  
1705 than the smallest, but their morphology is conserved overall and is similar to that of other  
1706 metoposaurids. There is a dorsal shaft, oval in cross-section and with an unfinished dorsal  
1707 surface. The dorsal end appears to be slightly wider in the largest specimen, as with

1708 *Metoposaurus krasiejowensis* (Sulej, 2007). The anterior margin of the shaft is very slightly  
1709 convex near its base and is otherwise straight in larger specimens, forming a very slightly  
1710 sinusoidal margin that is more like the condition observed in *Anaschisma browni* than in *M.*  
1711 *krasiejowensis*. The two smallest left ilia have an essentially straight margin, despite being about  
1712 the same size as the two right ilia. The medial and lateral surface of the shaft bear the internal  
1713 oblique crest and the external oblique crest ('linea obliqua' of Sulej, 2007), respectively, that are  
1714 expressed as elevated ridges extending down the medial and lateral sides (Figs. 62E–62F). When  
1715 viewed anteriorly, the shaft is more medially deflected in smaller specimens and is essentially in  
1716 line with the ventral base in larger specimens. The base is broadly expanded anteroposteriorly  
1717 and more slightly transversely. It forms a triangular cross-section that is broadest anteriorly. The  
1718 acetabulum is a large, roughened area that becomes increasingly less well-defined in lateral view  
1719 in larger specimens. The orientation of the acetabular face also becomes more vertical in larger  
1720 specimens, as Sulej (2007) noted for *M. krasiejowensis*. Along the anterior margin is a shallow  
1721 groove of variable development across the specimens that is deeper in larger specimens. The  
1722 ventrolateral surface is largely smooth, although there is a shallow depression opposite the  
1723 position of the acetabulum.

1724

1725 *Hindlimb material.* There are four femora, one left and three right (Figs. 63–64). Two of these,  
1726 UMMP 12946 and UMMP 12947 are much larger and would correspond to an individual of a  
1727 much larger size than is represented by the partial to complete skulls and mandibles (Fig. 63).  
1728 UMMP 12946 was labeled as a left femur, and UMMP 12947 as labeled as a right femur, but this  
1729 siding is reversed, which is assessed by the asymmetrical position of the trochanter and by the  
1730 condyles for the tibia and the fibula. In flexor profile, there is a deep, narrow groove (the  
1731 intertrochanteric fossa) extending down the proximal head of UMMP 12946. It lies adjacent to  
1732 the trochanter, which has been partially weathered. No such groove is apparent in UMMP 12947,  
1733 but the external surfaces of the proximal end have been weathered in this specimen. Extending  
1734 from the trochanter is a smooth ridge, the adductor crest (alternatively the 'crista aspera' of some  
1735 workers; e.g., Sulej, 2007). It is not particularly pronounced and merges gradually into the mid-  
1736 shaft. There is a thin groove adjacent to it on the ventral surface. The popliteal fossa is a shallow  
1737 depression on the distal end. The anterior surface bears no major features, although some small,  
1738 elongate foramina are visible on the distal end of UMMP 12946. In extensor view, the  
1739 intercondylar fossa is well defined as a shallow trough extending up the distal head. At least two  
1740 foramina, mostly distally facing, are present near the distal end. Sulej (2007) described a  
1741 depression for the ilium on the proximal end in *Metoposaurus krasiejowensis*, but this surface is  
1742 nearly flat in these specimens. The posterior surface also bears no major features beyond small  
1743 foramina distally. One feature that differentiates these femora is that the anterodistal region  
1744 proximal to the smaller condyle is outwardly swollen in UMMP 12947, thus creating a convex  
1745 margin when viewed in the flexor profile compared to the straight margin of UMMP 12946. This  
1746 might represent a pathological condition, as the margin is straight in specimens of other  
1747 metoposaurids (e.g., Sulej, 2007:fig. 63), but a confident assessment would require examination  
1748 of the internal microanatomy and histology. The other two femora (UMMP 13773; Fig. 64) are  
1749 less than 50% of the length of these large specimens, being more in line with the size class of  
1750 most elements in the bonebed. These femora do not differ greatly from the larger specimens,  
1751 although the articular surfaces are more amorphous in shape, and the intercondylar fossa is much  
1752 shallower. Both of these femora bear a rugosity on the posterior surface of the proximal end (Fig.  
1753 64C) that may correspond to the insertion of *m. ischiotrochantericus* (sensu Pawley & Warren,

1754 2006:fig. 9.4), but this is not as apparent on the larger femora (Figs. 64E–64F) probably due to  
1755 weathering on the external surface. A third putative femur catalogued under UMMP 13773 is  
1756 actually a radius and was described above.

1757 Two fibulae are catalogued under UMMP 13781 (Fig. 65) and were identified as such by  
1758 Case (1932:fig. 40). The smaller one pertains to the right side, and the larger one pertains to the  
1759 left side. The distal end is greatly expanded. There is a weakly developed ridge on the posterior  
1760 margin of this end that is more apparent in the larger of the two fibulae. In flexor view, there is a  
1761 shallow groove near the anterior margin of the distal end; Pawley & Warren (2006) termed this  
1762 the ‘fibular sulcus’ in *Eryops megacephalus*. It extends from the anterior margin toward the  
1763 distal margin but does not contact the intermedial facet (Fig. 65B). No such feature is present in  
1764 the smaller fibula. The other surfaces are essentially smooth, without pronounced ridges or  
1765 depressions. The cross-sections of the ends are slender, elongate ovals. These elements are very  
1766 similar to those of *Metoposaurus krasiejowensis* (Sulej, 2007) and *Dutuitosaurus ouazzoui*  
1767 (Dutuit, 1976) but are markedly different from those of *Anaschisma browni* figured by Sawin  
1768 (1945:fig. 10k-l) in which the proximal end is nearly circular in cross-sectional view. However,  
1769 the profiles shown for *A. browni* by Lucas et al. (2016:fig. 72) are consistent with those of other  
1770 metoposaurids, and these data are considered to be more valid here.

1771 As noted for the forelimb, the tibia and the ulna appear to have been confused for each  
1772 other in Case’s (1932) original publication. There are therefore three tibiae (two left, one right),  
1773 all catalogued under UMMP 13774 (Fig. 66). In these elements, the proximal end is markedly  
1774 expanded from the shaft and is asymmetrically expanded in the anterior direction to form a  
1775 markedly concave margin. In contrast, the distal end is essentially unexpanded compared to the  
1776 shaft (very slight expansion anteriorly to form a slightly convex articular surface). Both ends  
1777 have oblate cross-sectional profiles. There is a distinct trough (the cnemial trough) on the  
1778 extensor surface of the proximal end; this is bordered on the anterior edge by a shallowly defined  
1779 ridge (the cnemial crest). There is a slightly roughened region on the flexor surface (Fig. 66B)  
1780 that would correspond to the tibial tuberosities identified by Sulej (2007) that lies adjacent to a  
1781 longitudinal ridge that would represent the ‘cristae anterior tibiae’ of Sulej. The cross-sections of  
1782 the ends are more elongate than those of *Metoposaurus krasiejowensis*, but the overall  
1783 morphology is not appreciably different (Figs. 66E–66F).

1784  
1785 **Indeterminate material.** There is a large box with a collection of various fragments that lack a  
1786 specimen number or any collections tag. A note in the drawer suggests that they might either  
1787 belong to UMMP 13822 (Figs. 12–15) or to UMMP 9716 (a specimen of *Anaschisma browni*,  
1788 not from the Elkins bone bed, that was cursorily mentioned by Case, 1932). There is no reason to  
1789 strongly associate these fragments with any particular specimen. For example, one is a large  
1790 mandible that does not even appear to belong to a temnospondyl and that is markedly distinct in  
1791 preservation from the Elkins bone bed material, and another is a distinctly smaller and  
1792 fragmentary skull in many pieces. A number of other fragments do appear very similar in  
1793 preservation to the Elkins bone bed material, but there is no associated locality information that  
1794 would allow them to be catalogued in confidence and associated with the bonebed. They are also  
1795 not sufficiently complete to be clearly matched with specimens described and figured by Case  
1796 (1931, 1932) that were documented without specimen numbers (in contrast to the several dozen  
1797 intercentra; see above). These fragments are noted here in description only: two pterygoid  
1798 fragments; fragments of a purportedly extremely small skull (with a label of ‘Snyder 31’);

1799 assorted ornamented fragments; tooth-bearing fragments; the posterior end of a left mandible still  
1800 largely embedded in matrix; an isolated tabular; and other unidentifiable fragments.

## 1801 Phylogenetic analysis

1802 **Novel matrix employed in this study.** The PAUP\* analysis of our matrix recovered nine MPTs  
1803 with a length of 623 steps (distributed across two tree islands; CI = 0.501; RI = 0.551; HI =  
1804 0.705; Fig. 67A). The topology is most similar to that of Buffa, Jalil & Steyer (2019) among  
1805 previously published topologies. Metoposauridae is monophyletic, and the three European  
1806 species of *Metoposaurus* form a clade. The sister group to *Metoposaurus* is the pairing of  
1807 *Buettnererpeton bakeri* and *Anaschisma browni*, which form an intuitive geographic grouping  
1808 that contradicts phenetic placement of *B. bakeri* in *Metoposaurus*. *Panthasaurus maleriensis* is  
1809 the sister taxon to this clade, contradicting Lucas' (2021) supposition that it also belongs in  
1810 *Metoposaurus*. The Moroccan taxa then form a clade, with *Arganasaurus* recovered as  
1811 monophyletic. *Apachesaurus* is recovered as the earliest diverging metoposaurid. The  
1812 relationships of the non-metoposaurids are less resolved. *Sclerocephalus*, *Rhineceps*, and  
1813 *Lydekkerina* form successively diverging branches at the base. This is followed by a trichotomy  
1814 of Capitosauria (*Cyclotosaurus*, *Eocyclotosaurus*, *Quasicyclotosaurus*, *Mastodonsaurus*),  
1815 *Benthosuchus*, and all remaining temnospondyls. In tree island 1 (MPTs 1–6), *Benthosuchus*  
1816 diverges before Capitosauria, whereas this is reversed in tree island 2 (MPTs 7–9). Nominal  
1817 trematosauroids never form a clade, inclusive or exclusive of Metoposauridae (Figs. 68A–68B). In  
1818 tree island 1 (Fig. 68A), *Callistomordax*, *Lyrocephaliscus*, and *Trematolestes* form a clade, with  
1819 *Trematosaurus* as the sister group to a trichotomy of this clade, Metoposauridae, and a clade of  
1820 remaining temnospondyls (*Almasaurus*, *Brachyopoidea*, *Chinlestegophis*, *Gerrothorax*,  
1821 *Rileymillerus*). In tree island 2 (Fig. 68B), these four trematosauroids form a grade between  
1822 *Benthosuchus* and remaining temnospondyls in this order: *Lyrocephaliscus*, *Callistomordax* +  
1823 *Trematolestes*, and *Trematosaurus*. The final clade is formed by *Almasaurus*, *Brachyopoidea*,  
1824 *Chinlestegophis*, *Gerrothorax*, and *Rileymillerus*, and the topology is the same across both tree  
1825 islands. *Gerrothorax* is the sister taxon to *Brachyopoidea*, and this trio forms a trichotomy with  
1826 *Chinlestegophis* and *Rileymillerus*. *Almasaurus* is the earliest diverging taxon in this clade.

1827 We also tested whether leaving all characters unordered, as with Buffa, Jalil & Steyer  
1828 (2019), would affect the topology. The same analysis in PAUP\* recovered four MPTs with a  
1829 length of 604 steps (distributed across two tree islands; CI = 0.507; RI = 0.550; HI = 0.695) and  
1830 with a slightly different strict consensus (Fig. 67B). In this iteration, the strict consensus is more  
1831 (fully) resolved with respect to non-metoposaurids but less resolved with respect to  
1832 metoposaurids. The base of the tree is the same as in the iteration with ordering. Non-  
1833 metoposaurid trematosauroids then form a grade after Capitosauria in this order: *Benthosuchus*,  
1834 *Lyrocephaliscus*, *Callistomordax* + *Trematolestes*, and *Trematosaurus*. The clade formed by  
1835 *Almasaurus*, *Brachyopoidea*, *Chinlestegophis*, *Gerrothorax*, and *Rileymillerus* has the same  
1836 topology as the previous iteration. Regarding Metoposauridae, in the strict consensus,  
1837 Metoposauridae, *Metoposaurus* (sensu Brusatte et al., 2015, and the previous iteration), and  
1838 *Arganasaurus* were recovered as monophyletic. *Apachesaurus* was again recovered as the  
1839 earliest diverging taxon. Resolution has been lost elsewhere. *Anaschisma browni* and  
1840 *Buettnererpeton bakeri* are no longer exclusive sister taxa but instead form individual branches  
1841 of a trichotomy with *Metoposaurus*. *Panthasaurus* is not the exclusive sister taxon to this clade  
1842 and instead forms one branch of a polytomy with branches for *Dutuitosaurus* and *Arganasaurus*  
1843 (the Moroccan taxa do not form a single clade). Tree island 1 (MPTs 1–2; Fig. 68C) recovers *An.*

1844 *browni* as the sister taxon to *Metoposaurus*. The progressively earlier diverging sister taxa that  
1845 bridge this clade to *Apachesaurus* at the base are, in this order: *B. bakeri*, *Arganasaurus*,  
1846 *Panthasaurus*, and *Dutuitosaurus*. Tree island 2 (MPTs 3–4; Fig. 68D) recovers the same  
1847 topology as the previous iteration. These results therefore also support generic differentiation of  
1848 *B. bakeri*.

1849 The MrBayes analysis of our matrix with select character ordering recovered a less  
1850 resolved topology, either when examining the 50%-majority-rule consensus at face value or  
1851 when applying a more stringent threshold for ‘strong’ posterior probabilities (> 70%; Fig. 69A).  
1852 Nodes that were recovered in the majority-rule consensus are largely not incompatible with those  
1853 recovered by the equivalent parsimony analysis. Interestingly, *Almasaurus habbazi*, not  
1854 *Chinlestegophis jenkinsi*, is the exclusive sister taxon to *Rileymillerus cosgriffi*. The all-clades-  
1855 compatible consensus, which forces resolution at every node, recovered low posterior support  
1856 (mostly < 30%) for nodes not recovered in the 50%-majority-rule consensus; this consensus is  
1857 thus not depicted here for either treatment. Only Metoposauridae and two nodes within  
1858 *Metoposaurus* were recovered, with the same relationships between the three species of  
1859 *Metoposaurus* as in the parsimony analyses. The topology was not substantially different when  
1860 all multistate characters were left unordered (Fig. 69B), but the relationships of the small-bodied  
1861 taxa changed drastically, with *C. jenkinsi* and *R. cosgriffi* now forming the sister clade to  
1862 Brachyopoidea, exclusive of *A. habbazi*. However, it should be noted that in both analyses, the  
1863 posterior probabilities for the nodes of these small-bodied taxa were always below 70%.

1864  
1865 **Reanalysis of the matrix of Buffa, Jalil & Steyer (2019).** Reanalysis of the original matrix of  
1866 Buffa, Jalil & Steyer (2019) with ordering of seven characters that we believe occur along a  
1867 morphocline recovered 12 MPTs with length 149 steps (CI = 0.517; RI = 0.589; HI = 0.483; Fig.  
1868 70B). The strict consensus is mostly incongruent with the original topology recovered by Buffa,  
1869 Jalil & Steyer (Fig. 70A). Only three nodes are shared between them: Metoposauridae; all  
1870 metoposaurids to the exclusion of *Dutuitosaurus ouazzoui*; and a polytomy of the three European  
1871 *Metoposaurus* species. All nodes, including Metoposauridae, lack strong Bremer support (> 2),  
1872 but some nodes (e.g., *Metoposaurus*) are strongly supported by bootstrapping (> 50%).

1873 Analysis with the scoring modifications listed in Appendix 2 and all characters unordered  
1874 recovered nine MPTs with a length of 160 steps (one tree island; CI = 0.600; RI = 0.579; HI =  
1875 0.525; Fig. 70C). This analysis recovers a topology that is largely incongruent with the original  
1876 analysis by Buffa, Jalil & Steyer. Metoposauridae is largely unresolved. The only nodes  
1877 recovered within Metoposauridae are (1) all metoposaurids to the exclusion of *Apachesaurus*  
1878 *gregorii*; and (2) a monophyletic *Metoposaurus* sensu Brusatte et al. (2015). Only  
1879 Metoposauridae has both strong Bremer and bootstrap support; *Metoposaurus* has only strong  
1880 bootstrap support, and the clade of all non-*Apachesaurus* metoposaurids has neither.

1881 Analysis with the scoring modifications and ordering of the seven characters listed in  
1882 Appendix 2 recovered 34 MPTs with a length of 164 steps (one tree island; CI = 0.591; RI =  
1883 0.568; HI = 0.537; Fig. 70D). The strict consensus is practically unresolved within  
1884 Metoposauridae, with *Apachesaurus gregorii* recovered as the earliest diverging taxon and all  
1885 other taxa recovered in a polytomy. Bremer support for Metoposauridae is strong, but the node  
1886 for all post-*Apachesaurus* metoposaurids is only strongly supported by bootstrapping.

1887 **Discussion**

1888 **Intra-locality ontogenetic assessment.** Most localities with many individuals of a given taxon  
1889 will likely preserve some range of variably sized individuals, as is the case with the Elkins Place  
1890 bone bed. Assessing such variation is important for phylogenetic work, especially when an OTU  
1891 is constructed from many specimens, and even when producing a composite reconstruction like  
1892 our Figure 5. Among the partial to complete skulls, there is little range in size variation; the  
1893 smallest specimen, UMMP 13822, is estimated to a midline length around 24 cm, and the largest,  
1894 UMMP 13820, is just over 30 cm (~20% longer; Table 3). Despite the incompleteness of UMMP  
1895 13822, a comparison with UMMP 13820 as endmembers of the known ontogenetic range from  
1896 this site (based on skulls) does not indicate any clear ontogenetic differences beyond very minor  
1897 proportional differences that are hard to confidently determine given the limited sample. There  
1898 are no differences in sutural relationships, no measurable difference in suture morphology  
1899 exceeding a reasonable range for intraspecific variation in other taxa (e.g., Sulej, 2007; Lucas et  
1900 al., 2016), no differences in proportions of major qualitative features (e.g., tabular horn length,  
1901 orbit position), and no apparent difference in the relative degree of ossification. Nearly all  
1902 isolated cranial, palatal, and occipital elements are in line with the range bracketed by partial to  
1903 complete skulls except for UMMP 13826 (Fig. 26G), a parietal that is twice as large as any  
1904 articulated within a skull. This element exhibits no clear differences that are attributable to  
1905 ontogeny.

1906 The hemimandibular and postcranial data present a similar narrative. All lower jaws are  
1907 of a similar size and are entirely consistent with the partial to complete skulls from the locality.  
1908 There is a small size range in certain postcranial elements (e.g., fibulae, ilia; Figs. 62, 65), but  
1909 there are few differences between them, practically none of which have phylogenetic import in  
1910 any study. A pair of very large femora (Fig. 63) likely correspond to an individual of a similar  
1911 size to UMMP 13826, but otherwise, all postcrania are in line with the relative size expected for  
1912 specimens with the skull lengths found in the partial to complete skulls (based on the proportions  
1913 established by Sawin, 1945; Dutuit, 1976; and Sulej, 2007). These femora are proportionately  
1914 longer than smaller femora (Fig. 64), but the relative degree of development is similar (e.g.,  
1915 unfinished condylar ends, pronounced trochanter).

1916 In summation, there is undoubtedly a very wide size range, which presumably correlates  
1917 with some measure of ontogenetic variation, at the Elkins Place bone bed. However, nearly all  
1918 specimens in fact pertain to a very narrow size range (individuals with skull length between 24  
1919 and 30 cm), and outliers are represented only by isolated elements that differ in no appreciable  
1920 fashion from smaller elements. From a functional standpoint, these outliers have no influence on  
1921 the phenetic comparisons, the phylogenetic analyses, or the resultant taxonomy.

1922  
1923 **Inter-locality ontogenetic assessment.** Proper comparisons also require some assessment of the  
1924 maturity of specimens of *Buettnererpeton bakeri* from the type locality relative to other  
1925 metoposaurids, both conspecifics from other localities and different species. Therefore, before  
1926 proceeding with such comparisons, it is important to establish whether proper comparisons can  
1927 be made on the ground of relative ontogenetic equivalency. For example, if it was argued that all  
1928 specimens belonged only to markedly immature individuals, the taxon should probably not be  
1929 sampled in a phylogenetic analysis to begin with. It would also complicate phenetic comparisons  
1930 with taxa only represented from larger individuals (e.g., *Panthatasaurus maleriensis*). This is a  
1931 salient point here because the overwhelming majority of specimens from the Elkins Place bone  
1932 bed belong to relatively small metoposaurids with skulls less than approximately 30 cm in length

1933 (Table 3). By comparison, the largest known metoposaurids (of *Anaschisma browni* from Texas  
1934 and *Dutuitosaurus ouazzoui* from Morocco) have skulls exceeding 60 cm. A handful of isolated  
1935 elements from the type locality suggest that *B. bakeri* reached a size closer to this upper bound  
1936 (Figs. 26G, 63); skulls reported by Martz (2008) and Mueller et al. (2016) are also slightly larger  
1937 than those redescribed here (~35–45 cm range).

1938 The most robust means of ontogenetic assessment is bone histology, a method previously  
1939 applied by the first author. Here, a histological analysis was not an objective of the study and  
1940 would have many caveats because of the entirely disarticulated nature of material; no postcrania  
1941 can be confidently associated with a given skull in order to draw a correlation between  
1942 skeletochronological age and various aspects of external cranial anatomy. Given the variation  
1943 between metoposaurids from different geographic regions (Konietzko-Meier & Klein, 2013;  
1944 Teschner et al., 2020), it would also be difficult to contextualize such results without a large  
1945 body of histological data for North American taxa, specifically for limb elements; such work is  
1946 planned by the authors in the future.

1947 What then can be said based on external anatomy? A comparison of YPM VPPU 021742  
1948 from Nova Scotia (the smallest known skull of *Buettnererpeton bakeri*; Fig. 4), our composite  
1949 reconstruction for the Elkins Place bone bed material (representative of all partial to complete  
1950 skulls), and TTU P-10530 from the Boren Quarry (larger than any from the Elkins Place bone  
1951 bed) show practically no differences that can be confidently identified as both biological and  
1952 ontogenetic (Fig. 71). YPM VPPU 021742 appears proportionately wider, but it is important to  
1953 recall that this specimen is a natural 2D mold and therefore some dorsoventral compression has  
1954 occurred. This likely accounts for proportionately wider postorbitals, parietals, supratemporals,  
1955 and jugals in this specimen. By the same token, the very prominent posteriorly projecting  
1956 exoccipitals of the Boren Quarry specimen shown in Figure 71 are also likely taphonomic; the  
1957 larger (more incomplete) specimen figured by Martz (2008:fig. 4.2c) has less protruding  
1958 exoccipitals. The Boren Quarry material also has a slightly more triangular skull, but there is  
1959 clear non-ontogenetic intraspecific variation in skull profile in *Anaschisma browni* (Sawin, 1945;  
1960 Lucas et al., 2016), which may be exaggerated by taphonomic distortion. The only features that  
1961 can be confidently interpreted as ontogenetic differences are the position of the pineal foramen  
1962 and the elements contacted by the infraorbital sensory groove. Regarding the pineal foramen, in  
1963 YPM VPPU 021742, it is closer to the mid-length of the parietals than to the posterior margin of  
1964 these elements. Conversely, in the Elkins Place bone bed and Boren Quarry specimens, it is  
1965 closer to the posterior margin. Regarding the infraorbital groove, the overall contour is the same  
1966 across size classes, but it does not contact the maxilla in YPM VPPU 021742, barely contacts it  
1967 in the Elkins Place bone bed specimens, and has a long contact in TTU P-10530. There is no  
1968 ontogenetic change in the most important features utilized in taxonomy and phylogenetics, such  
1969 as the lacrimal-orbit relationship, and on balance, the Elkins Place bone bed material that we  
1970 redescribe here is more similar to the larger and presumably more mature Boren Quarry material.

1971 Postcranial comparisons are more difficult due to disarticulation and the underdeveloped  
1972 nature of stereospondyl postcrania in general, but nearly every postcranial element that ossifies  
1973 in metoposaurids is known from the type locality. The one exception is the ischium, a loosely  
1974 articulated element that also seems susceptible to taphonomic loss in other bonebeds (e.g., Rotten  
1975 Hill, with an MNI of 68 preserves only three ischia; Lucas et al., 2016). Previous work on  
1976 ossification sequences of temnospondyls with detailed ontogenetic data (e.g., Schoch, 2004;  
1977 Witzmann, 2006; Schoch & Witzmann, 2009) also supports an interpretation of relative skeletal

1978 maturity. The only other elements absent from the type locality are late-stage ossifications not  
1979 known to ossify in any metposaurid, such as the prootic.

1980 Collectively, these comparisons support a hypothesis that the cranial and postcranial  
1981 anatomy was relatively stable (the ‘adult condition’) by the time a skull length of 30 cm was  
1982 reached, as in the Elkins Place bone bed specimens. This is in agreement with the very minor  
1983 changes observed in the only taxon in which features of early ontogeny are definitively known,  
1984 *M. krasiejowensis*, the smallest (published) skull of which is 27 cm in length (Sulej,  
1985 2007:appendix 1). Most of the ontogenetic transformations identified by Sulej (2007:appendix 2)  
1986 are also very slight (e.g., the transverse position of the postparietal-tabular suture) compared to  
1987 more overt ontogenetic changes in other taxa such as marked snout elongation (edopoids,  
1988 eryopoids, many long-snouted stereospondyls; e.g., Warren & Hutchinson, 1988; Steyer, 2003;  
1989 Sequeira, 2003; Schoch, 2021), the appearance or disappearance of lateral exposures of the  
1990 palatal elements (some dissorophoids; e.g., Reisz et al., 2009), or marked changes to cranial  
1991 ornamentation (many non-paedomorphic temnospondyls). These conclusions underscore the  
1992 point that skeletal / somatic maturity and maximum body size need not be treated as correlated; if  
1993 it were, any specimen less than 60 cm in skull length (almost every specimen) would need to be  
1994 regarded as immature to some degree. Therefore, we can be reasonably confident that the  
1995 phylogenetic analysis has not been extremely distorted by ontogenetic immaturity (at least of  
1996 *Buettnererpeton*) and that it can be properly compared to taxa represented by larger individuals.  
1997

1998 **Phylogenetic relationships.** Our analyses (Figs. 67–69) recovered different, but fully resolved,  
1999 topologies depending on whether certain multistate characters were ordered and depending on  
2000 which optimality criterion was used. The only consensus across both parsimony and Bayesian  
2001 analyses is that *Metposaurus* sensu Brusatte et al. (2015), restricted to the three European taxa,  
2002 is monophyletic and that Metposauridae is monophyletic. In no analysis did *Metposaurus* form  
2003 a clade with exclusively *Buettnererpeton bakeri* and *Panthasaurus maleriensis* (i.e., there is no  
2004 support for the expansive concept of *Metposaurus* employed by some workers; e.g., Lucas,  
2005 1998, 2018, 2021). At least based on the parsimony analyses (Figs. 67–68), *Anaschisma browni*  
2006 is as closely related to *Metposaurus* as *B. bakeri* is. No analysis recovered a sister relationship  
2007 between *An. browni* and *P. maleriensis*, supporting Sengupta’s (2002) and Chakravorti &  
2008 Sengupta’s (2018) arguments that the Indian metposaurid is not congeneric with *An. browni*.  
2009 The third North American taxon, *Apachesaurus gregorii*, was usually recovered in a position  
2010 distant to *An. browni* and *B. bakeri*, and in the parsimony analyses, it was recovered as the  
2011 earliest diverging taxon (Figs. 67–68). This differs from the Moroccan taxa, which form an  
2012 exclusive clade in three of the four analyses (Figs. 67A, 69).

2013 The internal conflict among our own analyses underlies broader discord between  
2014 previous metposaurid analyses (Fig. 3). Chakravorti & Sengupta (2018) and Gee, Parker &  
2015 Marsh (2019), using drastically different matrices recovered practically no resolution within  
2016 Metposauridae. Conversely, Buffa, Jalil & Steyer (2019) recovered nearly a fully resolved tree,  
2017 but it is discordant with those that we found except for the monophyly of *Metposaurus* sensu  
2018 Brusatte et al. (2015). Notably, their analysis did recover an exclusive clade of *Metposaurus*,  
2019 *Buettnererpeton bakeri*, and *Panthasaurus maleriensis*, lending support to concepts of a more  
2020 inclusive *Metposaurus*. They also recovered *Apachesaurus gregorii* as the sister taxon of  
2021 *Anaschisma browni* and recovered *Arganasaurus* as a clade. These disparities are further  
2022 compounded when considering the results found upon reanalysis of a modified version of their  
2023 matrix (Fig. 70).

2024 There are two further complications to consider here. All previous analyses and our own  
2025 analyses tend to recover weak statistical support (Bremer index < 3, bootstrap frequency < 50%,  
2026 posterior probability < 70%) for most nodes other than Metoposauridae. As aptly put by  
2027 Sanderson (1995:299), “without some assessment of reliability, a phylogeny has limited value. It  
2028 may still function as an efficient summary of available information on character-state  
2029 distributions among taxa...but it is effectively mute on the evolutionary history of those taxa”.  
2030 Therefore, any node without strong support under any support metric should not be considered  
2031 reliable because it may hinge on a single score. Most discrepancies between resolved topologies  
2032 are found at nodes with weak support. If nodes in either the topology of Buffa, Jalil & Steyer  
2033 (2019) or in our topologies were collapsed if they did not have at least one metric indicating  
2034 strong support, almost all nodes would be collapsed (Fig. 72), and the resultant topologies would  
2035 be nearly identical to each other and nearly identical to the topologies of Chakravorti & Sengupta  
2036 (2018) and Gee, Parker & Marsh (2019): almost complete polytomies.

2037 Our reanalysis of the matrix of Buffa, Jalil & Steyer (2019) also underscores the lability  
2038 of well-resolved topologies. With no scoring changes and only seven multistate characters  
2039 ordered, the tree largely collapses compared to the original (Figs. 70A–70B). Many of the  
2040 remaining nodes are peculiar (e.g., *Anaschisma browni* + *Arganasaurus azerouali*), although the  
2041 pairing of *Apachesaurus gregorii* and *Arganasaurus lyazidi* is intriguing because these taxa are  
2042 known from the smallest specimens among metoposaurids. When scoring changes that we  
2043 consider to meet a high evidentiary standard were implemented (Appendix 3), the topology was  
2044 practically unresolved regardless of character ordering (Figs. 70C–70D). We want to again  
2045 emphasize that our decision to reanalyze this matrix was not out of any personal or professional  
2046 animus against Buffa, Jalil & Steyer. Instead, it was motivated by our desire to further explore  
2047 differences between matrices that recovered fully resolved topologies and by the fact that theirs  
2048 was the only one of three previous studies to recover much resolution at all. Modification of our  
2049 matrix by other workers may produce similar changes in, or loss of, resolution.

2050 Finally, we briefly discuss other discordant results of our analysis. The closer relationship  
2051 of brachyopoids, rather than capitosaurs (e.g., Schoch, 2008, and derivates), to trematosaurs and  
2052 metoposaurids is not surprising considering that ‘short-faced’ stereospondyls often cluster in  
2053 other analyses (e.g., Yates & Warren, 2000; Pawley, 2007; McHugh, 2012; Schoch, 2013;  
2054 Maganuco et al., 2014) – such a similarity sometimes led to phenetic associations between  
2055 dvinosaurs, brachyopoids, and metoposaurids prior to computer-assisted phylogenetics (e.g.,  
2056 Romer, 1947; Dutuit, 1976). It is notable that analyses with the broadest taxon samples tend to  
2057 recover these short-snouted clusters, indicating that taxon inclusion/exclusion contributes to the  
2058 present discrepancies. Rhytidosteids undoubtedly play a role in further resolution of  
2059 Stereospondyli given uncertainty over their monophyly (compare topologies of Dias-da-Silva &  
2060 Marsicano, 2011; Schoch, 2013; Maganuco et al., 2014), and should they not be monophyletic,  
2061 the ‘true’ position of the most commonly sampled members (e.g., *Laidleria*, *Peltostega*,  
2062 *Sangaia*).

2063 Finally, a persistent result of the analysis of our expanded matrix is the separation of  
2064 *Callistomordax kugleri* from Metoposauridae (Figs. 67–69). This result conflicts with most  
2065 previous analyses that have sampled both taxa, including Schoch (2008), the original description  
2066 and analysis of *C. kugleri*; derivates of this matrix (Schoch, 2011, 2019; Sues & Schoch, 2013;  
2067 Schoch, Milner & Witzmann, 2014); and other largely independent matrices (e.g., Schoch, 2013;  
2068 Buffa, Jalil & Steyer, 2019). In addition to our revision of the matrix of Buffa, Jalil & Steyer, we  
2069 also examined some of these other matrices in the hopes of identifying additional characters and

2070 states that support a sister relationship between Metoposauridae and *C. kugleri* and the inclusion  
2071 of this clade within Trematosauria. All of the synapomorphies listed by Buffa, Jalil & Steyer, are  
2072 valid, and we attribute their results in part to the more limited taxon sampling – the only other  
2073 stereospondyls sampled were the rhinesuchid *Rhineceps nyasaensis* and *Almasaurus habbazi*.  
2074 Either features or taxa that might favor a closer relationship of *C. kugleri* with another taxon are  
2075 thus largely unsampled (e.g., the unpaired frontal shared with *Trematolestes hagdorni*, the sister  
2076 taxon in our analysis or the keeled cultriform process purportedly shared with *A. habbazi*).

2077 Conversely, the family of matrices associated with the matrix of Schoch (2008) has a  
2078 richer stereospondyl sample, but we also identified several mischaracterizations or  
2079 overgeneralizations that artificially strengthened the sister relationship of *Callistomordax kugleri*  
2080 and Metoposauridae. Firstly, there is only one metoposaurid OTU in this family of matrices, so  
2081 the relationship is really one between *C. kugleri* and a specific metoposaurid. Originally, it was  
2082 stated to be a composite of *Anaschisma browni*, *Dutuitosaurus ouazzoui*, and *Metoposaurus*  
2083 *diagnosticus*, but the scorings do not appear to account for interspecific differences like the  
2084 pleurocentra ossifications purportedly retained in *D. ouazzoui* and absent in all other  
2085 metoposaurids (Dutuit, 1972, 1976); the prefrontal-jugal contact in *D. ouazzoui*, which is not  
2086 found in any metoposaurid with a lacrimal-orbit contact like *A. browni* and *M. diagnosticus*  
2087 (Dutuit, 1976; Sulej, 2002, 2007; Lucas et al., 2016); and the presence of keeled teeth in some  
2088 specimens of *M. diagnosticus* (Milner & Schoch, 2004). The metoposaurid OTU was  
2089 subsequently changed to *M. diagnosticus* in subsequent studies and could represent a chimera of  
2090 *M. diagnosticus* and *M. krasiejowensis* in the contemporary framework (the *M. diagnosticus* of  
2091 Sulej, 2002). If so, this restriction fails to account for intraspecific variation that is noted  
2092 particularly from Krasiejów, such as in the prefrontal-jugal relationship and the presence or  
2093 absence of symphyseal teeth (Konietzko-Meier & Wawro, 2007; Sulej, 2007). If the OTU is  
2094 restricted to *M. diagnosticus* in the contemporary framework (sensu Brusatte et al., 2015, and  
2095 subsequent workers), the characterization still fails to account for intraspecific variation in  
2096 features like the dentition, notwithstanding that the most recent comprehensive description of *M.*  
2097 *diagnosticus* is more than 130 years old (Fraas, 1889).

2098 Some scores for this composite OTU are also erroneous, irrespective of the composition  
2099 of the OTU. Schoch (2008) listed a vertically oriented iliac shaft (as opposed to a posterodorsally  
2100 oriented shaft) as a synapomorphy of Trematosauria inclusive of Metoposauridae, but all  
2101 metoposaurids have strongly inclined iliac shafts (e.g., Sengupta, 2002:fig. 12C; Sulej, 2007:figs.  
2102 58–59, 71; Lucas et al., 2016:fig. 67; Fig. 62), as does *Callistomordax kugleri* (Schoch, 2008:fig.  
2103 9c therein, compared with that of *Trematolestes hagdorni* in Schoch, 2006:fig. 6A). A second  
2104 example is a purported synapomorphy of Metoposauroidea + *Almasaurus habbazi* +  
2105 *Rileymillerus cosgriffi*: intercentra that are as long as wide in ventral view; this condition is only  
2106 found in *Apachesaurus gregorii* among metoposaurids. In the same vein, *Ap. gregorii* is the only  
2107 metoposaurid without intercentra with an anteriorly convex surface, a purported apomorphy for  
2108 *C. kugleri* + Metoposauridae; those of *Ap. gregorii* are instead concave with a throughgoing  
2109 notochordal canal, a feature likely to represent relative immaturity (Gee, Parker & Marsh, 2017;  
2110 Gee & Parker, 2018). The dense sampling of both metoposaurids and many characters that  
2111 differentiate them in our matrix undoubtedly further exaggerates the topological disparity  
2112 because Metoposauridae is not as homogenous as when depicted as a single OTU of a composite  
2113 nature that does not include all metoposaurids. A final example of a dubious apomorphy of *C.*  
2114 *kugleri* + Metoposauridae is the purported presence of ‘long smooth [occipital] blades as long as  
2115 the dermal portion of the postparietal.’ This feature is genuinely found in *Callistomordax*, but

2116 metoposaurids have anteroposteriorly elongated postparietals that are longer than wide (they are  
2117 wider than long in *Callistomordax*), and the occipital portion (which is not smooth; e.g., Sulej,  
2118 2007:37), is clearly much shorter in height than the roofing portion is long (e.g., Sulej, 2007:fig.  
2119 1; Figs. 9, 11–12, 14, 21, 23).

2120 Erroneous support is then likely compounded by different character sampling – Schoch  
2121 (2008) does not have a character for the medial edge of the palatine ramus, which is inwardly  
2122 convex in *Callistomordax kugleri* and *Almasaurus habbazi* but straight in metoposaurids, or any  
2123 character for coronoid dentition, which is unique in *Callistomordax* in having teeth only on the  
2124 middle coronoid. We have not re-examined this family of matrices in full and consider a full  
2125 retesting of it to be beyond the scope of this study, but the above discussion serves as evidence  
2126 that erroneous or overgeneralized scores have contributed to an artificially strong (or even  
2127 spurious) sister relationship. In short, the sister relationship of *Callistomordax* with  
2128 Metoposauridae has probably been overstated to a degree due to a combination of  
2129 misrepresented apomorphies and limited taxon sampling, although their general relatedness is  
2130 not in question here. Maganuco et al. (2014) recovered *Almasaurus* as the sister taxon to a  
2131 Metoposauridae comprised of two OTUs (*Anaschisma browni* and *Metoposaurus diagnosticus*)  
2132 and then *Callistomordax* as the sister taxon to these three taxa; this clade is then allied with  
2133 brachyopoids and other short-faced temnospondyls and not with other trematosauers.  
2134

2135 **Future directions for metoposaurid phylogenetics.** It should be apparent that the phylogeny of  
2136 the metoposaurids remains without even partial consensus and is highly sensitive to both the  
2137 primary data and to the analytical methods. It is perhaps unsurprising that intrarelationships of  
2138 this clade remain difficult to resolve considering the exceptional morphological conservatism  
2139 within the clade. This is perhaps best exemplified by *Metoposaurus krasiejowensis*, which all  
2140 workers consider valid at the species level (implied by continued usage), but which is  
2141 differentiated from *Metoposaurus diagnosticus* only by a linear equation for the expansion angle  
2142 of the sutures separating the parietal from the supratemporal (Sulej, 2002, 2007).

2143 At present, no topology recovered by a computer-assisted analysis can be used to draw  
2144 robust conclusions regarding the relationships of metoposaurids, and it is better to derive only  
2145 conservative claims from well-supported nodes than to overextend the data where support does  
2146 not exist, creating potentially spurious relationships and narratives. Below, we briefly outline  
2147 some areas where additional study could improve phylogenetic inference. These pertain only to  
2148 the primary data and not to certain analytical approaches (e.g., likelihood versus parsimony,  
2149 character weighting and ordering).

2150 **Polymorphisms.** How polymorphisms (specifically non-ontogenetic intraspecific variations) are  
2151 treated is directly relevant to all studies because they are part of the primary data. Scoring a  
2152 taxon for a single state when it displays at least two misrepresents the data. Despite exhibiting  
2153 non-ontogenetic polymorphism throughout their evolutionary history (e.g., Langston, 1953; Boy,  
2154 1995; Schoch & Rubidge, 2005; Jeannot, Damiani & Rubidge, 2006; Schoch, 2009; Schoch &  
2155 Witzmann, 2012; Morkovin, 2015), temnospondyls are rarely scored as being polymorphic in  
2156 phylogenetic analyses. For example, McHugh's (2012) temnospondyl matrix of 99 taxa and 297  
2157 characters and Schoch's (2013) temnospondyl matrix of 72 taxa and 212 characters both contain  
2158 zero polymorphisms. Therefore, polymorphism is widely recognized phenetically among  
2159 temnospondyls, but it oddly remains overlooked or ignored in phylogenetics. Polymorphisms are  
2160 pervasive in metoposaurids (Table 5), and many pertain to phylogenetic characters, but most  
2161

2162 metoposaurid analyses have not accounted for this variability. This is inherently problematic,  
2163 both as a conceptual overgeneralization of species-level anatomy, as certain characters will  
2164 appear more discrete than they are in reality, and as a methodological shortcoming, as previous  
2165 studies have demonstrated that including polymorphisms outperforms analysis without them  
2166 (e.g., Wiens, 1995, 1998; Wiens & Servedio, 1997). Treatment of polymorphisms has been  
2167 extensively discussed in the literature (e.g., Campbell & Frost, 1993; Kornet & Turner, 1999;  
2168 Wiens, 1999); the underlying point is that there is no strong *a priori* rationale for omitting  
2169 polymorphisms. Therefore, any future metoposaurid analyses will need to account for these. Of  
2170 the 49 scoring changes that we made to the matrix of Buffa, Jalil & Steyer (2019), 16 changes  
2171 (32.6%) involved changing a previously scored cell from a single state to a polymorphism based  
2172 on the literature, and these likely account for some of the discrepancies in topologies (Fig. 70).  
2173

2174 *Missing data.* Given the incompleteness of the fossil record, there will always be missing data  
2175 for extinct taxa, which inherently hampers phylogenetic inference. Missing data may also arise  
2176 from outdated descriptions, especially when they precede the computer-assisted phylogenetics  
2177 era in which descriptions may be conformed around phylogenetics with respect to the types of  
2178 figures and language that are employed. Three metoposaurids would benefit from updated  
2179 documentation to provide a better anatomical characterization that does not necessitate first-hand  
2180 observation.

2181 *Arganasaurus lyazidi* was named and described by Dutuit (1976), but there are no  
2182 interpretive line drawings or reconstructions. The only figures are three low-resolution  
2183 photographic plates (pls. XLVIII-L; Dutuit, 1976). The descriptive osteology itself is less than  
2184 half a page, and Dutuit expressly stated (p. 182 therein) that the material available to him was  
2185 insufficient to diagnose this taxon. Therefore, essentially the entire anatomy has been derived  
2186 from the revised (but in fact novel) diagnosis of Hunt (1993) and his corresponding  
2187 reconstruction of the skull.

2188 *Dutuitosaurus ouazzoui* was conversely described in painstaking detail by Dutuit (1976),  
2189 but the photographic plates are also limited, and there are few interpretive figures that permit an  
2190 assessment of intraspecific variation despite this taxon's large sample size. Recent workers  
2191 (Chakravorti & Sengupta, 2018; Buffa, Jalil & Steyer, 2019) have cited personal observations in  
2192 scoring some characters for this taxon, but its osteology has never been revised, and even recent  
2193 published photographs are those originally published by Dutuit (e.g., Rinehart et al., 2013:fig. 1;  
2194 Khaldoune et al., 2016:fig. 14). The question surrounding *D. ouazzoui* is whether Dutuit's  
2195 characterization is an oversimplification that obscures polymorphisms. The cranial osteology is  
2196 an oversimplification insofar as it does not account for all of the material. Dutuit (1976:41)  
2197 himself remarked on the prohibitively large number and varying degree of preparation, which  
2198 precluded any biometric analysis or characterization of cranial variation. He did provide a  
2199 summary of variation for most postcranial elements, but the cranial data is of greater import  
2200 given the skew towards cranial characters in diagnoses and character matrices.

2201 *Metoposaurus diagnosticus* is characterized from the most dated descriptions among  
2202 metoposaurids. The most thorough description of this taxon is over 130 years old (Fraas, 1889).  
2203 While a reconstruction is ubiquitous throughout the literature, this mostly comprises only the  
2204 dorsal view of a single skull roof. The only recent figures of *M. diagnosticus* include Sulej's  
2205 (2002) interpretive line drawing of the holotype; and photographs without line drawings by  
2206 Milner & Schoch (2004). The palate, occiput, and postcranial anatomy thus remain exceptionally  
2207 poorly characterized.

2208

2209 **The status of “*Metoposaurus*” *bakeri*.** As discussed above, phylogenetic inference is unable to  
2210 confer robust support for the inclusion of this species within *Metoposaurus*, although the  
2211 topologies are so disparate and poorly supported that there is also no strong support for any other  
2212 particular hypothesis (e.g., placement in *Anaschisma* versus erection of a novel genus).  
2213 Therefore, the following section presents a phenetic comparison and rationale for the erection of  
2214 a novel genus to accommodate this species.

2215

2216 *Comparative osteology.* Metoposaurid taxonomy has long hinged on a handful of emphasized  
2217 cranial and postcranial features. The lacrimal is discussed first, as its position and relative length  
2218 produce the most variation in the skull roof of metoposaurids. *Buettnererpeton bakeri* was  
2219 originally placed in *Metoposaurus* following historical interpretations that the lacrimal was  
2220 excluded from the orbit in the latter (e.g., Hunt, 1993). This was subsequently disproven in the  
2221 type species by Sulej (2002), and another two species with the lacrimal entering the orbit were  
2222 named by Sulej (2007) and Brusatte et al. (2015). *Buettnererpeton bakeri* therefore shares a  
2223 lacrimal excluded from the orbit only with *Apachesaurus gregorii*, *Arganasaurus lyazidi*, and  
2224 *Dutuitosaurus ouazzoui*, although this occurs very rarely in *M. krasiejowensis*. The lacrimal of *B.*  
2225 *bakeri* is intermediate in size, being anteriorly truncated such that it does not reach the naris  
2226 (allowing a maxilla-nasal contact). The relative length of the lacrimal is evidenced by its anterior  
2227 extent relative to the prefrontal. It either ends at or just anterior to the anteriormost margin of the  
2228 prefrontal (Figs. 4, 9, 12), compared to *Ap. gregorii* in which the very short lacrimal ends well  
2229 posterior to this level. This differs from *Ar. lyazidi* in which an anteriorly extensive lacrimal  
2230 reaches the naris, fully dividing the maxilla and the nasal, as well as *Panthasaurus maleriensis* in  
2231 which the lacrimal nearly reaches to the naris from the orbital margin (Chakravorti & Sengupta,  
2232 2018). Some previous comparative reconstructions (e.g., Hunt, 1993:fig. 4; Spielmann & Lucas,  
2233 2012:fig. 13) have depicted a lacrimal-nasal contact, which separates the maxilla and the  
2234 prefrontal, in *B. bakeri*. This follows Case’s (1931:fig. 1) original illustration of the holotype, in  
2235 which he depicts a point contact between the four elements, which was modified in Case  
2236 (1932:fig. 2) to a longer lacrimal-nasal suture that definitively separates the maxilla and the  
2237 prefrontal. However, Case (1932:figs. 3–5) illustrates other specimens without a lacrimal-nasal  
2238 contact, which we reaffirmed here (Figs. 4, 9). The holotype is too badly preserved and partially  
2239 reconstructed in this region to verify his interpretations of this specimen (Fig. 6), but one referred  
2240 specimen preserves a broad lacrimal-nasal contact (Fig. 12). Similar variation in both the  
2241 presence of the contact and the degree of sutural overlap when present is documented in  
2242 *Metoposaurus krasiejowensis* in which this may vary within an individual (Sulej, 2007:fig. 13)  
2243 and in *Anaschisma browni* (Lucas et al., 2016). The predominating condition differs between  
2244 these taxa, however. In *M. krasiejowensis*, the lacrimal and nasal usually contact (as is the only  
2245 condition in the type species, *M. diagnosticus*, and in *D. ouazzoui*), whereas they are usually  
2246 separated in *An. browni* (as is the only condition in *Ap. gregorii*).

2247 The only other substantial source of non-ontogenetic interspecific variation among  
2248 cranial sutures is in the premaxilla-nasal suture. In one referred specimen of *Buettnererpeton*  
2249 *bakeri* (Fig. 9), the suture angles slightly posterolaterally to form an oblique contact (the contact  
2250 is unknown in all other specimens). The angle is steeper in *Anaschisma browni* (Lucas et al.,  
2251 2016) but typically shallower in *Metoposaurus* (e.g., Sulej, 2002, 2007); the latter has a nearly  
2252 horizontal contact. *Arganasaurus lyazidi* and *Dutuitosaurus ouazzoui* also have nearly horizontal  
2253 contacts (Dutuit, 1976; Hunt, 1993). That of *B. bakeri* is most similar to *Apachesaurus gregorii*

2254 (Hunt, 1993). Some referred specimens of *Panthasaurus maliensis* have a nearly horizontal  
2255 contact (Chowdhury, 1965; Sengupta, 2002), but Chakravorti & Sengupta (2018) illustrate the  
2256 holotype as having a sinusoidal contact, with a distinct anterior projection of the nasal and a  
2257 smaller posterior projection of the premaxilla adjacent to the midline. This kind of complexity  
2258 with a fully defined projection otherwise only appears rarely in *M. krasiejowensis* (Sulej,  
2259 2007:fig. 9).

2260 Three qualitative features differentiate *Apachesaurus gregorii* from other metoposaurids  
2261 but do little for differentiating among the remaining taxa. *Apachesaurus gregorii* has been  
2262 differentiated from all other metoposaurids by the shallow otic notches without a distinct tabular  
2263 horn, although these features may reflect ontogenetic immaturity (Gee & Parker, 2018), and  
2264 *Arganasaurus* also has relatively shallow otic notches (a bit deeper than in *Ap. gregorii*; Buffa,  
2265 Jalil & Steyer, 2019). The possibility of a correlation with maturity raises the issue of whether  
2266 ontogenetically non-equivalent units are being compared (further discussed below), but the Nova  
2267 Scotia specimen of *B. bakeri* is similarly sized to specimens of *Ap. gregorii* and *Ar. lyazidi* and  
2268 already possesses deep otic notches, so the differentiation from these two taxa on this basis is  
2269 established. Similarly, the occiput is either not exposed in dorsal view or only very slightly in  
2270 *Ap. gregorii*, whereas it projects prominently in all other taxa except some examples of  
2271 *Anaschisma browni* (Kufner & Gee, 2021). Contrary to the revised diagnosis of *Arganasaurus* as  
2272 being unique in having a posteroventrally sloping occiput (Buffa, Jalil & Steyer, 2019), this  
2273 feature occurs in all specimens of *B. bakeri* in which the occiput is preserved (Figs. 6, 9, 12, 17)  
2274 but was not apparent in Case's (1931, 1932) original work. Romer (1947:235) also noted the  
2275 consistent presence of a sloped occiput in metoposaurids like in brachycephalic stereospondyls.  
2276 Finally, *Ap. gregorii* has a narrow cultriform process compared to the broad, flat process found  
2277 in all other metoposaurids; the former is more similar to other stereospondyls.

2278 Emphasized postcranial features have largely related to the clavicle and the interclavicle,  
2279 as these large, plate-like elements are among the most frequently preserved elements. For both  
2280 elements, the relative size of regions of reticulate or circular ornamentation was long employed  
2281 as a means of differentiating North American and European metoposaurids (e.g., Colbert &  
2282 Imbrie, 1956; Hunt, 1993; Sulej, 2002, 2007). However, Lucas et al. (2016) reported one  
2283 probable specimen of *Anaschisma browni* from Rotten Hill with a *Metoposaurus*-like  
2284 interclavicle, and Spielmann & Lucas (2012) documented more evenly distributed variability in  
2285 *Apachesaurus gregorii*. We also documented variability in the relative size of the region of  
2286 circular pitting on the interclavicle in *Buettnererpeton bakeri* (Figs. 55–56), and it appears that  
2287 this feature is of little utility in at least the North American taxa. Similar variation occurs in the  
2288 clavicular ornamentation of *B. bakeri* (Fig. 51) and *M. krasiejowensis* (Antczak & Bodzioch,  
2289 2018), and this feature may also be of reduced utility.

2290 *Dutuitosaurus ouazzoui* has long been diagnosed as having ossified pleurocentra,  
2291 contrary to all other metoposaurids (Dutuit, 1972, 1976; Hunt, 1993), but Sulej (2007:118) has  
2292 pointed out that this occurs only in one of the dozens of known specimens of this taxon and that  
2293 pleurocentra are not found along the entire presacral column despite the articulation of many  
2294 specimens. We further discuss this feature in Appendix 1 as rationale for not scoring this taxon  
2295 for this condition, but the balance of evidence favors Sulej's interpretation of a pathological  
2296 condition given the sparse distribution in the one taxon known from many articulated skeletons  
2297 with complete presacral columns. Furthermore, some taxa have no known axial material, and it is  
2298 inherently difficult to conclude biological absence for taxa represented only by isolated material  
2299 unless it occurs in great abundance in bonebeds (e.g., *Anaschisma browni*, *Buettnererpeton*

2300 *bakeri*, *Metoposaurus krasiejowensis*). A final feature that one of us has cited (Gee, Parker &  
2301 Marsh, 2019) is the contour of the anterodorsal margin of the ilium (more frequently sinusoidal  
2302 in large individuals of *Metoposaurus* than in *Anaschisma*; e.g., Sulej, 2007:fig. 58; Lucas et al.,  
2303 2016:fig. 67), but this feature appears intraspecifically variable in at least small individuals of  
2304 *Buettnererpeton bakeri* (Fig. 62) and may be similarly so in *A. browni* (Kufner & Gee, 2021) and  
2305 in small to medium individuals of *M. krasiejowensis*.

2306 In summary, as with most other metoposaurids, *Buettnererpeton bakeri* lacks distinct  
2307 autapomorphies and is instead differentially diagnosed by a unique combination of characters.  
2308 The full diagnosis is not repeated here, but discrete features like the exclusion of the lacrimal  
2309 from the orbit in all specimens are an immediate differentiator from the other North American  
2310 taxon known from appreciably sized specimens, *Anaschisma browni*. The intermediate length of  
2311 the lacrimal in *B. bakeri* separates it from taxa with much longer lacrimals separated from the  
2312 orbit (sometimes reaching the naris, as in *Arganasaurus lyazidi*) and from taxa with much shorter  
2313 lacrimals separated from the orbit (*Apachesaurus gregorii*). Other discrete features include the  
2314 separation of the splenial from the symphysis and the presence of a clavicular sensory groove in  
2315 at least some individuals (further differentiated from *An. browni*); and the absence of a maxilla-  
2316 orbit contact (differentiated from *Dutuitosaurus ouazzoui*). Most of the other differential features  
2317 are gradational rather than discrete (e.g., the development of the alary process or the otic notch),  
2318 and so while they are considered presently valid, these may prove to be less useful for  
2319 differentiation as larger sample sizes and their intraspecific variation (both ontogenetic and non-  
2320 ontogenetic) are characterized.

2321  
2322 *Rationale for erecting a novel genus.* In light of the lack of consensus from phylogenetic  
2323 analyses, the immediate question is what warrants the placement of *Buettnererpeton bakeri*  
2324 within a new genus, *Buettnererpeton*. Could this species, acknowledged by all workers to be  
2325 distinct, belong to either *Metoposaurus* or *Anaschisma*, the two genera (accounting for  
2326 synonymy and nomenclatural changes of *Anaschisma*) to which it has been previously assigned?  
2327 The immediate answer is no. Diagnoses of both taxa include a lacrimal that enters the orbit (e.g.,  
2328 Sulej, 2007; Brusatte et al., 2015; Gee, Parker & Marsh, 2019; Kufner & Gee, 2021).

2329 One option would be to simply remove the lacrimal character from the diagnosis of one  
2330 of these taxa to create a more inclusive *Anaschisma* or *Metoposaurus*. This could be preferable  
2331 as an explicit means of acknowledging that the lacrimal-orbit relationship is intraspecifically  
2332 variable in *M. krasiejowensis* (Sulej, 2007). There is also a precedent for a genus in which the  
2333 constituent species differ with respect to this character: *Arganasaurus* (Buffa, Jalil & Steyer,  
2334 2019). However, this is untenable because in most diagnoses of *Anaschisma* and *Metoposaurus*,  
2335 the lacrimal-orbit contact is the only diagnostic cranial character (e.g., Hunt, 1993; Schoch &  
2336 Milner, 2000; Milner & Schoch, 2004; Lucas et al., 2016), unlike for *Arganasaurus*, which is  
2337 diagnosed by other cranial features (Buffa, Jalil & Steyer, 2019). Other diagnoses either include  
2338 features susceptible to taphonomic loss (e.g., absence of an opisthotic in *Metoposaurus* sensu  
2339 Brusatte et al., 2015) or features expressly stated to be intraspecifically variable with a majority  
2340 condition (e.g., relative anterior extent of the prefrontal and the lacrimal in *Anaschisma* sensu  
2341 Gee, Parker & Marsh (2019)).

2342 We cannot find an alternative cranial synapomorphy that unites *Buettnererpeton bakeri*  
2343 with either *Anaschisma* or *Metoposaurus* but not with both (i.e., synonymizing *Anaschisma* with  
2344 *Metoposaurus* and placing *B. bakeri* in this expanded genus). Therefore, removing the lacrimal-  
2345 orbit feature from either taxon would eliminate the means of differentiating isolated skulls of

2346 *Anaschisma* and *Metoposaurus* because it would render their constituent species as *nomina dubia*  
2347 as their type specimens (all isolated skulls) would no longer be diagnostic. This conundrum is  
2348 only exacerbated if the Indian *Panthasaurus maleriensis* is considered to belong to  
2349 *Metoposaurus* (Chowdhury, 1965; Lucas, 2021; but see Hunt, 1993; Schoch & Milner, 2000;  
2350 Sengupta, 2002; Sulej, 2002; Brusatte et al., 2015; Chakravorti & Sengupta, 2018). Therefore, it  
2351 is also not possible to diagnose a clade comprised of the three European taxa, *Buettnererpeton*  
2352 *bakeri*, and *Panthasaurus maleriensis* that excludes *Anaschisma browni* (the most similar in  
2353 cranial anatomy to the European *Metoposaurus*) if not all other metoposaurids to form a  
2354 monogeneric family (as with Chowdhury, 1965, and Dutuit, 1976). Buffa, Jalil & Steyer (2019)  
2355 did recover three unambiguous synapomorphies uniting this clade of the European  
2356 *Metoposaurus*, *B. bakeri*, and *P. maleriensis*: an unossified opisthotic, ornamentation of the  
2357 parapophenoid restricted to basal plate, and small posttemporal foramen. However, two of these  
2358 features are disputed by other workers. *Panthasaurus maleriensis* purportedly has an ossified  
2359 opisthotic (Chakravorti & Sengupta, 2018, contra Chowdhury, 1965). The ornamentation on the  
2360 parapophenoid is intraspecifically variable in *Metoposaurus krasiejowensis*, being absent in some  
2361 specimens (Sulej, 2007); Chakravorti & Sengupta also state that ornamentation is absent in *M.*  
2362 *diagnosticus*. All five species share a small posttemporal foramen as defined by Buffa, Jalil &  
2363 Steyer, but it is also found in *Arganasaurus azerouali* and *Anaschisma browni*. This illustrates  
2364 the difference between an unambiguous synapomorphy of a clade and a diagnostic feature of a  
2365 clade. Finally, *B. bakeri* lacks the shallow otic notch with “bulge-like” tabular horns and a  
2366 triangular squamosal that diagnose *Arganasaurus*. It differs from *Panthasaurus maleriensis* in  
2367 lacking the long lacrimal entering the orbit and in several of the more qualitative features listed  
2368 for this taxon by Chakravorti & Sengupta (2018), such as anteroposteriorly short postparietals  
2369 and the lateral expansion of the parietals anteriorly. There is therefore no basis for  
2370 accommodating *B. bakeri* within one of these genera.

2371 An alternative approach would be to accommodate *Buettnererpeton bakeri* into an  
2372 existing genus in which the lacrimal is always excluded from the orbit (*Apachesaurus* or  
2373 *Dutuitosaurus*). The insistence by some workers on the interpretation of *Apachesaurus* as a  
2374 diminutive metoposaurid much smaller than other taxa (e.g., Rinehart & Lucas, 2018; Lucas,  
2375 2021) would bar *B. bakeri* from congenericity because there are typically large metoposaurids  
2376 referred to *B. bakeri* from sites approximately coeval to the Elkins Place bone bed that have a  
2377 lacrimal excluded from the orbit (Houle & Mueller, 2004; Martz, 2008; Mueller et al., 2016). If  
2378 all specimens of *A. gregorii* are considered to be juveniles, numerous features separate similarly  
2379 sized specimens of *B. bakeri* from those of *A. gregorii* (Spielmann & Lucas, 2012), including a  
2380 wide cultriform process, a deep otic notch, a longer lacrimal, and a lacrimal flexure of the  
2381 supraorbital canal that contacts the lacrimal. In *D. ouazzoui*, the maxilla enters the orbit due to a  
2382 truncated jugal (Dutuit, 1976; also found in *Arganasaurus azerouali*; Buffa, Jalil & Steyer, 2019)  
2383 but not in *B. bakeri*. The intercentra of *D. ouazzoui* are also proportionately longer than in non-  
2384 *Apachesaurus* metoposaurids, including *B. bakeri*. Therefore, it is also not possible to  
2385 accommodate *Buettnererpeton bakeri* into either *Apachesaurus* or *Dutuitosaurus*, and we thus  
2386 erect *Buettnererpeton* to accommodate this species.

2387  
2388 **Ontogenetic disparity among metoposaurids.** A previously noted important consideration in  
2389 the discussion of metoposaurid osteology and taxonomy, with an eye towards future work, is  
2390 ontogeny in metoposaurids. These points are not exclusive to *Buettnererpeton bakeri* and are  
2391 expanded on here for Metoposauridae at large.

2392        Although there is a wealth of histological data assessing skeletochronology (e.g., Steyer  
2393 et al., 2004; Konietzko-Meier & Klein, 2013; Konietzko-Meier & Sander, 2013; Gee & Parker,  
2394 2017, 2020; Gee, Parker & Marsh, 2017; Teschner, Sander & Konietzko-Meier, 2017; Teschner  
2395 et al., 2020), these methods remain constrained by gaps in the fossil record and disparity between  
2396 taxa, and as we noted previously, there is little data for North American taxa. The question of  
2397 whether *Buettnererpeton bakeri* might only be represented by immature specimens applies to  
2398 other taxa as well; there is marked size disparity among metoposaurids in general (Fig. 73; Table  
2399 S2). Presumably, size disparity tracks ontogenetic disparity to a degree (i.e., some taxa are not  
2400 represented by mature individuals). However, this assumption can be complicated by  
2401 intraspecific variation and unfounded assumptions about tight correlations between size and  
2402 maturity (e.g., Brinkman, 1988; Brochu, 1996). This complicates qualitative comparisons and  
2403 phylogenetic analyses.

2404        One taxon worth mentioning is *Arganasaurus lyazidi*, which is known from essentially  
2405 the same size range as *Apachesaurus gregorii* (both smaller than *Buettnererpeton bakeri*). Dutuit  
2406 (1976) mentioned the possibility that *Ar. lyazidi* could be a dwarf taxon, but evidence for this has  
2407 never been provided, and this hypothesis has never been adopted by other workers, suggesting an  
2408 implied consensus that this taxon is represented only by juveniles. In naming *Ap. gregorii*, Hunt  
2409 (1993:85) remarked that this taxon “is undoubtedly the smallest metoposaurid – with an adult  
2410 skull length about half of other metoposaurid [sic].” It is unclear why Hunt and others have not  
2411 considered *Ar. lyazidi* a possible diminutive taxon as well (or conversely, why they have so  
2412 forcefully argued that *Ap. gregorii* is a definitive diminutive taxon). It should be noted that our  
2413 parsimony analyses recovered *Ar. lyazidi* in an early diverging position (albeit in a clade with  
2414 other Moroccan taxa, which are represented by larger specimens) after *Ap. gregorii*, the  
2415 predicted position for taxa represented only by immature specimens (Fig. 67). This is one  
2416 instance in which an early diverging position could result from both immaturity and genuine  
2417 phylogeny.

2418        Failure to account for ontogenetic disparity will bias qualitative comparisons, phenetic  
2419 taxonomy, and phylogenetic analyses. In particular, comparisons with small specimens are  
2420 difficult because some are interpreted as dwarfed adults (*Apachesaurus gregorii*) while others  
2421 are implicitly considered as juveniles (*Arganasaurus lyazidi*). Comparison of taxa represented by  
2422 non-overlapping ranges of specimens (e.g., *Ar. lyazidi* and *Panthasaurus maleriensis*; Fig. 73)  
2423 must be very careful to avoid overemphasis of gradational differences like the relative size of  
2424 different features, especially when they are known to be ontogenetically influenced in  
2425 metoposaurids and/or temnospondyls more broadly (e.g., orbit size scales with negative  
2426 allometry in tetrapods). Relative size was sometimes employed in taxonomic diagnoses (e.g.,  
2427 Branson & Mehl, 1929; Schoch & Milner, 2000), with variably sized specimens from the same  
2428 depositional basin serving as the holotypes of taxa now considered to be synonymous (e.g., Gee,  
2429 Parker & Marsh, 2019; Kufner & Gee, 2021). For *Buettnererpeton bakeri*, proper comparisons  
2430 with *Apachesaurus gregorii* and *Arganasaurus lyazidi* are best made with the single Nova Scotia  
2431 specimen, the smallest of *B. bakeri* (Fig. 4).

2432        Ontogenetic disparity remains challenging to address in phylogenetic analyses because  
2433 juvenile individuals may be recovered in an artificially early diverging position (stemward  
2434 slippage) because they appear to “retain” plesiomorphies, when in fact they lack apomorphies  
2435 that only appear at later stages of ontogeny (e.g., Tykoski, 2005; Wiens, Bonett & Chippindale,  
2436 2005; Lamsdell & Selden, 2013, 2015; Sansom & Wills, 2013; Tsai & Fordyce, 2014; Woodruff  
2437 et al., 2018; Carr, 2020; Gee, 2020b; Zietlow, 2020, but see also Mannion, Tschopp & Whitlock,

2438 2021). Most temnospondyls, including metoposaurids, are not known from a sufficiently  
2439 complete sample to conduct separate analyses grouped by ontogenetic stage (e.g., Steyer, 2000).  
2440 Given this, the position of the small-bodied metoposaurids must be carefully scrutinized. The  
2441 recovery of *Apachesaurus gregorii* as the earliest diverging metoposaurid by Chakravorti &  
2442 Sengupta (2018) and our reanalysis of Buffa et al. (2019; Figs. 70C–70D) should be noted in  
2443 light of the debate over whether this taxon represents a dwarfed metoposaurid or simply one  
2444 represented solely by juveniles.  
2445

2446 **Metoposaurid biogeography and biostratigraphy.** Our decision to erect a new genus for the  
2447 species that has most frequently been referred to as “*Metoposaurus*” *bakeri* has implications for  
2448 the use of metoposaurids in biostratigraphy. Metoposaurids have long been of interest for local  
2449 and global Late Triassic biostratigraphy because they occur across Laurasia, often in great  
2450 abundance (e.g., Huber et al., 1993; Lucas et al., 2007; Lucas, 1998, 2015, 2021). However,  
2451 there is substantial controversy regarding global tetrapod biostratigraphic correlations because of  
2452 concerns over the utility of different index taxa and the delimitation of different zones, chrons,  
2453 and assemblages (e.g., Langer, 2005; Lehman & Chatterjee, 2005; Rayfield et al., 2005; Schultz,  
2454 2005; Lucas, Spielmann & Hunt, 2007; Rayfield, Barrett & Milner, 2009; Irmis et al., 2010,  
2455 2011; Lucas, 2010, 2018; Olsen, Kent & Whiteside, 2010; Parker & Martz, 2010; Desojo &  
2456 Ezcurra, 2011; Kammerer, Nesbitt & Shubin, 2011; Butler, 2013; Sues & Olsen, 2015; Martz &  
2457 Parker, 2017). It must be emphasized that taxonomy does not exist for the sake of  
2458 biostratigraphy. While there are many species concepts utilized by neontologists and  
2459 paleontologists (e.g., Simpson, 1951; Mayr, 1976; Donoghue, 1985; Nixon & Wheeler, 1990;  
2460 Wiley & Mayden, 2000; Hausdorf, 2011), one based strictly on geographic or stratigraphic  
2461 distribution is not among them. The most common definition used by paleontologists is to define  
2462 species as monophyletic groups. Other workers have also criticized proponents of a global  
2463 tetrapod biostratigraphic framework for utilizing selective taxonomic schemes that maintain the  
2464 utility of their framework (e.g., Rayfield, Barrett & Milner, 2009; Irmis et al., 2010), and these  
2465 account for countless discrepancies in taxonomy from that employed by other tetrapod workers  
2466 (e.g., Milner & Schoch, 2004; Butler, 2013). The unsupported more exclusive concept of  
2467 *Metoposaurus* also obscures the fact that *Metoposaurus* would only be an index taxon of the  
2468 Otischalkian in North America, as the Krasiejów locality (*M. krasiejowensis*) is likely within the  
2469 Adamanian or Revueltian (Milner & Schoch, 2004; Lucas, 2015; Szulc et al., 2015; Buffa, Jalil  
2470 & Steyer, 2019; contra Lucas, Spielmann & Hunt, 2007). Finally, there is the so-called issue of  
2471 ‘generification’ (see Hendricks et al., 2014, and references therein) in which paleontologists  
2472 prefer to work with genera for numerous reasons (e.g., easier to differentiate higher taxa, greater  
2473 representation of higher taxa in the fossil record) even though it is the species that represents the  
2474 ‘true’ evolutionary unit.  
2475

2476 *Global scale.*—*Metoposaurus* has long been utilized for global biostratigraphy because it has  
2477 been argued to occur on more than one continent (e.g., Chowdhury, 1965; Dutuit, 1976; Hunt,  
2478 1993), and it is considered to be an index taxon of the Otischalkian by some workers (e.g.,  
2479 Lucas, 1998, 2018, 2021). Since Hunt (1993), *Metoposaurus* has been considered to definitively  
2480 occur in western Europe, where the type species, *M. diagnosticus*, occurs. *Metoposaurus* has  
2481 sometimes also included the North American “*Metoposaurus*” *bakeri* (e.g., Hunt, 1993; Lucas,  
2482 2021), the Indian “*Metoposaurus*” *maleriensis* (e.g., Sulej, 2007; Lucas, 2018), and the non-  
2483 diagnostic Malagasy “*Metoposaurus hoffmani*” (Fortuny et al., 2019). When *Metoposaurus* is

2484 conceived of as including the North American and Indian taxa, it becomes an extremely useful  
2485 index taxon because it allows correlation between three of the four major metoposaurid-bearing  
2486 regions. However, the overwhelming majority of workers do not consider *Metoposaurus* to be  
2487 found in all three of Europe, India, and North America (e.g., Hunt, 1993; Schoch & Milner,  
2488 2000; Sulej, 2002, 2007; Schoch & Milner, 2004; Brusatte et al., 2015; Chakravorti & Sengupta,  
2489 2018; Buffa, Jalil & Steyer, 2019; Gee, Parker & Marsh, 2019), nor is this concept supported by  
2490 phylogenetic analyses (e.g., Buffa, Jalil & Steyer, 2019) or by phenetic comparisons (e.g., Case,  
2491 1931, 1932; Colbert & Imbrie, 1956; Brusatte et al., 2015; this study). The more exclusive  
2492 concept of a strictly European distribution employed by most workers (e.g., Sulej, 2002, 2007;  
2493 Brusatte et al., 2015; Chakravorti & Sengupta, 2018; Buffa, Jalil & Steyer, 2019; Gee, Parker &  
2494 Marsh, 2019; Fortuny et al., 2019) renders *Metoposaurus* unavailable for global tetrapod  
2495 biostratigraphy. Consequently, it is not surprising that advocates of global biostratigraphy insist  
2496 on the more inclusive concept of *Metoposaurus* (e.g., Lucas, 1998, 2018, 2021) despite the  
2497 overwhelming consensus that this concept does not reflect best taxonomic practices or  
2498 evolutionary relationships. However, as advocated by us and by most other workers, there is no  
2499 metoposaurid genus that occurs on more than one continent and consequently no basis for the  
2500 use of metoposaurids in global tetrapod biostratigraphy  
2501

2502 *Regional scale*.—The utility of metoposaurids in North American biostratigraphy is greatly  
2503 hindered by a paucity of well-documented, diagnostic specimens with precisely constrained  
2504 stratigraphy, which are inherently necessary for robust biostratigraphic work. Recent studies that  
2505 depict temporal or stratigraphic ranges have not provided the primary data (voucher specimens)  
2506 or the primary literature to justify them (e.g., Buffa, Jalil & Steyer, 2019; Lucas, 2021). This  
2507 casts doubt on the nuances of the long ranges of *Anaschisma browni* (Otischalkian-Revueltian)  
2508 and *Apachesaurus gregorii* (Adamanian-Apachean), especially when there are discrepancies  
2509 between studies (as in the two cited above).

2510 Biostratigraphy inherently requires specimens with both well-characterized anatomy (and  
2511 confident identifications) and well-constrained stratigraphy. Most descriptive work on North  
2512 American metoposaurids is either historical (e.g., Case, 1922, 1931; Branson & Mehl, 1929;  
2513 Sawin, 1945; Colbert & Imbrie, 1956) or based on redescription of historical material (e.g.,  
2514 Lucas et al., 2016; Gee & Jasinski, 2021; Kufner & Gee, 2021). However, most historical  
2515 material is very poorly constrained stratigraphically (below the formation level) and spatially;  
2516 consequently, much of this material holds poor prospects for refinement using modern methods  
2517 and frameworks unless historical localities can be relocated, or sufficient detail can be gleaned  
2518 from historical notes. Given the sheer number of metoposaurid-bearing localities, this is a  
2519 daunting task. Conversely, newer material is often more precisely situated stratigraphically, but  
2520 there is little descriptive work because this is largely viewed as redundant since the osteology of  
2521 metoposaurids is both well-established and highly conserved. Collectively, this means that across  
2522 tens of thousands of specimens from hundreds of localities, only a very small subset of  
2523 specimens has both well-characterized anatomy and well-constrained stratigraphy. The need for  
2524 both is a shortcoming of compendia like Long & Murry (1995), who provided comprehensive  
2525 lists of metoposaurid specimens and localities with member-level stratigraphic precision but very  
2526 few photos and no descriptions. At the time of that publication, over 95% of the listed  
2527 metoposaurid specimens had never been described or figured in any capacity, so it was (is) not  
2528 possible to assess whether they can indeed be referred to a particular taxon without firsthand  
2529 observation or whether identifications were merely based on non-diagnostic features like relative

2530 size or stratigraphic occurrence. This ambiguity is especially poignant because most elements are  
2531 not diagnostic, merely differential, and many of these identifications may be based on circular  
2532 logic (e.g., all small-bodied material belongs to *Apachesaurus gregorii*, even in isolation and  
2533 without association with more diagnostic material; Irmis 2005; Martz et al., 2012). The  
2534 stratigraphic resolution of Long & Murry is also hindered by subsequent, frequent revision to the  
2535 stratigraphy of the North American Late Triassic deposits (e.g., Martz, 2008; Martz & Parker,  
2536 2010; Rasmussen et al., 2020).

2537 These issues cast doubt on the upper and lower bounds of the ranges of *Anaschisma*  
2538 *browni* and *Apachesaurus gregorii*. For example, the highest occurrences of *Anaschisma* are  
2539 based on large isolated postcranial bones (e.g., Hunt & Lucas, 1993; Long & Murry, 1995;  
2540 Ziegler, Heckert & Lucas, 2003; Heckert et al., 2005; Spielmann, Lucas & Heckert, 2007).  
2541 However, there are no postcranial autapomorphies for *Anaschisma*, only a few features that  
2542 differentiate it from a select few other metoposaurids (e.g., relative size of reticulate  
2543 ornamentation on the interclavicle compared to *Metoposaurus*; Colbert & Imbrie, 1956; Lucas et  
2544 al., 2016; Gee, Parker & Marsh, 2019; Kufner & Gee, 2021). The highest tentative report of the  
2545 monospecific *Anaschisma* (as ‘cf. *Buettneria* sp.’) is large isolated intercentra from the Owl  
2546 Rock Member (Revueltian Estimated Holochronozone) of the Chinle Formation in Arizona  
2547 (Spielmann, Lucas & Heckert, 2007). It is therefore only accurate to state that large-bodied  
2548 metoposaurids occur at the end of the Revueltian. If only occurrences of *An. browni* that are  
2549 based on published, diagnostic cranial remains are considered, then the highest occurrence of this  
2550 taxon is at Lamy (lower portion of the Garita Creek Formation; Lucas et al., 2010) or Rotten Hill  
2551 (estimated here to be around the middle portion of the Tecovas Formation based on the age  
2552 estimate of 220–225 Ma by Lucas et al., 2016). This is much lower than the depicted youngest  
2553 occurrence at the Revueltian-Apachean boundary (Lucas, 2021; Fig. 74).

2554 Regarding *Apachesaurus gregorii*, Spielmann & Lucas (2012) stated that all Otischalkian  
2555 and Adamanian records of *A. gregorii* are from isolated intercentra, but at least one partial skull,  
2556 known mostly from figures (TTU-P 9237; Davidow-Henry, 1987, 1989; Long & Murry, 1995;  
2557 Spielmann & Lucas, 2012), occurs at Collier’s Ranch (10 miles SE of Crosbyton, Crosby Co.,  
2558 TX). This site is allegedly low in the Tecovas Formation (Chatterjee, 1991:281, 283) but has  
2559 never been situated more precisely. It could be roughly equivalent to the better constrained  
2560 Kirkpatrick Quarry (MOTT 3628; 12 km SW of Crosbyton), as both occur in a thin carbonate  
2561 nodule layer within mudstone beds (Chatterjee, 1991; Lehman & Chatterjee, 2005). The  
2562 Kirkpatrick Quarry is just above the Otischalkian-Adamanian boundary (e.g., Lehman &  
2563 Chatterjee, 2005; Lessner et al., 2018). The next highest occurrence of cranial material of *A.*  
2564 *gregorii* is TTU-P 9216 from the Post Quarry (Adamanian; Martz et al., 2012).

2565 These quandaries underscore the importance of reporting voucher specimens with  
2566 detailed stratigraphic data and sufficient anatomical documentation to justify taxonomic  
2567 identifications and to permit other workers to assess them without requiring personal  
2568 observation. Poor documentation of specimens is only exacerbated by uncertainty in the  
2569 stratigraphic relationship of localities to each other, which is particularly acute for historical  
2570 localities in Texas. The Otis Chalk quarries represent the lowest definitive occurrence of  
2571 *Anaschisma browni* and perhaps the lowest occurrence of *Apachesaurus gregorii* (Fig. 74), but  
2572 these sites have been famously difficult to place (e.g., Lucas & Anderson, 1993, 1994; Lehman,  
2573 1994; Martz, 2008). They may be close to the level of the Boren Quarry, the highest occurrence  
2574 of *Buettnererpeton bakeri* (Martz, 2008). These issues are further compounded in trying to relate  
2575 different depositional basins (e.g., the Chugwater Group in the Rocky Mountain Region with the

2576 Dockum Group in primarily New Mexico and Texas). There are inherently different narratives  
2577 that emerge from interpretations of stratigraphic ranges (e.g., co-occurrence/competition versus  
2578 succession/anagenesis), which places a premium on publishing diagnostic specimens, with  
2579 defensible rationale and constrained stratigraphy, in order to refine our concepts of temporal and  
2580 stratigraphic ranges of these taxa.

## 2581 Acknowledgments

2582 Thanks to Jeff Wilson, Adam Rountrey, and Kelsey Wiggins for facilitating collections access  
2583 and to Adam Rountrey for assistance sorting out discrepancies in historical collections records.  
2584 Thanks to Hans-Dieter Sues for sharing a high-resolution photograph of the Nova Scotia  
2585 specimen of *Buettnererpeton bakeri* and to Dhurjati Sengupta and Sanjukta Chakravorti for  
2586 sharing photographs of material from the Natural History Museum London. Thanks to Tomasz  
2587 Sulej, an anonymous reviewer, and Claudia Marsicano for comments on the first submission of  
2588 this manuscript, and to Valentin Buffa and Andy Farke for comments on this version.

## 2589 References

2590 Antczak M, Bodzioch A. 2018. Ornamentation of dermal bones of *Metoposaurus krasiejowensis*  
2591 and its ecological implications. *PeerJ* 6:e5267.

2592 Arbez T, Dahoumane A, Steyer J-S. 2017. Exceptional endocranum and middle ear of  
2593 *Stanocephalosaurus* (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed  
2594 by micro-CT scan, with new functional interpretations of the hearing system. *Zoological  
2595 Journal of the Linnean Society* 180:910–929. DOI: 10.1093/zoolinnean/zlw007

2596 Baird D, Olsen PE. 1983. Late Triassic herpetofauna from the Wolfville Fm. of the Minas Basin  
2597 (Fundy Basin) Nova Scotia, Canada. *Geological Society of America, Abstract with  
2598 Program* 15:122.

2599 Bolt JR, Chatterjee S. 2000. A new temnospondyl amphibian from the Late Triassic of Texas.  
2600 *Journal of Paleontology* 74:670–683. DOI: 10.1017/S0022336000032790

2601 Boy JA. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli). 1. Morphologie und  
2602 Paläökologie des *Micromelerpeton credneri* (Unter-Perm; SW-Deutschland).  
2603 *Paläontologische Zeitschrift* 69:429–457. DOI: 10.1007/BF02987805

2604 Branson EB, Mehl MG. 1929. Triassic amphibians from the Rocky Mountain region. *The  
2605 University of Missouri Studies* 4:154–253.

2606 Branson EB. 1905. Structure and relationships of American Labyrinthodontidae. *The Journal of  
2607 Geology* 13:568–610. DOI: 10.1086/621258

2608 Brinkman D. 1988. Size-independent criteria for estimating relative age in *Ophiacodon* and  
2609 *Dimetrodon* (Reptilia, Pelycosauria) from the Admiral and lower Belle Plains formations  
2610 of west-central Texas. *Journal of Vertebrate Paleontology* 8:172–180. DOI:  
2611 10.1080/02724634.1988.10011695

2612 Brochu CA. 1996. Closure of neurocentral sutures during crocodilian ontogeny: implications for  
2613 maturity assessment in fossil archosaurs. *Journal of Vertebrate Paleontology* 16:49–62.  
2614 DOI: 10.1080/02724634.1996.10011283

2615 Broom R. 1915. On the Triassic stegocephalians, *Brachyops*, *Bothriceps*, and *Lydekkerina*, gen.  
2616 nov. *Proceedings of the Zoological Society of London* 1915:363–368

2617 Brusatte SL, Butler RJ, Mateus O, Steyer JS. 2015. A new species of *Metoposaurus* from the  
2618 Late Triassic of Portugal and comments on the systematics and biogeography of

2619 metoposaurid temnospondyls. *Journal of Vertebrate Paleontology* 35:e912988. DOI:  
2620 10.1080/02724634.2014.912988

2621 Buffa V, Jalil NE, Steyer J-S. 2019. Redescription of *Arganasaurus (Metoposaurus) azerouali*  
2622 (Dutuit) comb. nov. from the Upper Triassic of the Argana Basin (Morocco), and the first  
2623 phylogenetic analysis of the Metoposauridae (Amphibia, Temnospondyli). *Papers in*  
2624 *Palaeontology* 5:699–717. DOI: 10.1002/spp2.1259

2625 Butler RJ. 2013. ‘*Francosuchus*’ *trauthi* is not *Paleorhinus*: implications for Late Triassic  
2626 vertebrate biostratigraphy. *Journal of Vertebrate Paleontology* 33:858–864. DOI:  
2627 10.1080/02724634.2013.740542

2628 Campbell JA, Frost DR. 1993. Anguid lizards of the genus *Abronia*: revisionary notes,  
2629 descriptions of four new species, a phylogenetic analysis, and key. *Bulletin of the*  
2630 *American Museum of Natural History* 216:1–128.

2631 Carr TD. 2020. A high-resolution growth series of *Tyrannosaurus rex* obtained from multiple  
2632 lines of evidence. *PeerJ* 8:e9192. DOI: 10.7717/peerj.9192

2633 Case EC. 1920. On a very perfect thoracic shield of a large labyrinthodont in the geological  
2634 collections of the University of Michigan. *Occasional Papers of the Museum of Zoology*  
2635 82:1–3.

2636 Case EC. 1922. New reptiles and stegocephalians from the Upper Triassic of western Texas.  
2637 *Carnegie Institute of Washington* 321:7–84.

2638 Case EC. 1931. Description of a new species of *Buettneria*, with a discussion of the brain case.  
2639 *Contributions from the Museum of Paleontology, University of Michigan* 3:187–206.

2640 Case EC. 1932. A collection of stegocephalians from Scurry County, Texas. *Contributions from*  
2641 *the Museum of Paleontology, University of Michigan* 4:1–56.

2642 Case EC. 1947. Catalogue of the type and figured specimens of vertebrate fossils in the Museum  
2643 of Paleontology, University of Michigan. *Contributions from the Museum of*  
2644 *Paleontology, University of Michigan* 6:319–336.

2645 Case TJ. 1978. On the evolution and adaptive significance of postnatal growth rates in the  
2646 terrestrial vertebrates. *The Quarterly Review of Biology* 53:243–282. DOI:  
2647 10.1086/410622

2648 Chakravorti S, Sengupta DP. 2018 (for 2019). Taxonomy, morphometry and morphospace of  
2649 cranial bones of *Panthasaurus* gen. nov. *maleriensis* from the Late Triassic of India.  
2650 *Journal of Iberian Geology*. 45:317–340. DOI: 10.1007/s41513-018-0083-1.

2651 Chatterjee S. 1991. Cranial anatomy and relationships of a new Triassic bird from Texas.  
2652 *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*  
2653 332:277–346.

2654 Chowdhury TR. 1965. A new metoposaurid amphibian from the Upper Triassic Maleri  
2655 Formation of Central India. *Philosophical Transactions of the Royal Society of London*  
2656 *B: Biological Sciences* 250:1–52. DOI: 10.1098/rstb.1965.0019

2657 Colbert E, Imbrie J. 1956. Triassic metoposaurid amphibians. *Bulletin of the American Museum*  
2658 *of Natural History* 110:399–452.

2659 Cope ED. 1868. Synopsis of the extinct Batrachia of North America. *Proceedings of the*  
2660 *Academy of Natural Sciences of Philadelphia* 1868:208–221.

2661 Cope ED. 1878. Descriptions of extinct Batrachia and Reptilia from the Permian formation of  
2662 Texas. *Proceedings of the American Philosophical Society* 17:505–530.

2663 Dahoumane A, Nedjari A, Aït-Ouali R, Taquet P, Vacant R, Steyer J-S. 2016. A new  
2664 mastodonsauroid temnospondyl from the Triassic of Algeria: implications for the

2665 biostratigraphy and palaeoenvironments of the Zarzaitine Series, Northern Sahara.  
 2666 *Comptes Rendus Palevol* 15:918–926. DOI: 10.1016/j.crpv.2015.09.005

2667 Damiani RJ. 1999. *Parotosuchus* (Amphibia, Temnospondyli) in Gondwana: biostratigraphic  
 2668 and palaeobiogeographic implications. *South African Journal of Science* 95:458–460.

2669 Datta D, Kumar N, Ray S. 2019 (for 2021). Taxonomic identification of isolated phytosaur  
 2670 (Diapsida, Archosauria) teeth from the Upper Triassic of India and their significances.  
 2671 *Historical Biology* 33:272–282. DOI: 10.1080/08912963.2019.161365.

2672 Davidow-Henry B. 1987. New metoposaurs from the southwestern United States and their  
 2673 phylogenetic relationships. M. Sc. Thesis, Texas Tech University. Available at:  
 2674 <http://hdl.handle.net/2346/20188>

2675 Davidow-Henry B. 1989. Small metoposaurid amphibians from the Triassic of western North  
 2676 America and their significance. In Lucas SG, Hunt AP, eds. *Dawn of the Age of*  
 2677 *Dinosaurs in the American Southwest*. Albuquerque: New Mexico Museum of Natural  
 2678 History and Science, 278–292.

2679 Desojo JB, Ezcurra MD. 2011. A reappraisal of the taxonomic status of *Aetosauroides*  
 2680 (Archosauria, Aetosauria) specimens from the Late Triassic of South America and their  
 2681 proposed synonymy with *Stagonolepis*. *Journal of Vertebrate Paleontology* 31:596–609.  
 2682 DOI: 10.1080/02724634.2011.572936

2683 Dias-da-Silva S, Marsicano C. 2011. Phylogenetic reappraisal of Rhytidosteidae (Stereospondyli:  
 2684 Trematosauria), temnospondyl amphibians from the Permian and Triassic. *Journal of*  
 2685 *Systematic Palaeontology* 9:305–325. DOI: 10.1080/14772019.2010.492664

2686 Dias-da-Silva S, Sengupta DP, Cabreira SF, Da Silva LR. 2012. The presence of *Compsocerops*  
 2687 (Brachyopoidea: Chigutisauridae) (Late Triassic) in southern Brazil with comments on  
 2688 chigutisaurid palaeobiogeography. *Palaeontology* 55:163–172. DOI: 0.1111/j.1475-  
 2689 4983.2011.01120.x

2690 Donoghue MJ. 1985. A critique of the biological species concept and recommendations for a  
 2691 phylogenetic alternative. *Bryologist* 88:172–181. DOI: 10.2307/3243026

2692 Dutuit J-M. 1972. Découverte des pleurocentres dans les vertèbres de stégocéphales  
 2693 métoposauridés. *Comptes Rendu de l'Academie des Sciences. Paris, D* 274:536–537.

2694 Dutuit J-M. 1976. Introduction à l'étude paléontologique du Trias continental marocain.  
 2695 Description des premiers stégocéphales recueillis dans le couloir d'Argana (Atlas  
 2696 occidental). *Mémoires du Muséum National d'Histoire naturelle, Paris, Series C* 36:1–  
 2697 253.

2698 Dutuit J-M. 1978. Description de quelques fragments osseux provenant de la région de Folakara  
 2699 (Trias supérieur malgache). *Bulletin du Muséum national d'Histoire naturelle, Paris, 3e*  
 2700 *sér.*, 516, *Sciences de la Terre* 69:79–89.

2701 Fortuny J, Arbez T, Mujal E, Steyer J-S. 2019. Reappraisal of '*Metoposaurus hoffmani*' Dutuit,  
 2702 1978, and description of new temnospondyl specimens from the Middle–Late Triassic of  
 2703 Madagascar (Morondava Basin). *Journal of Vertebrate Paleontology* 39:e1576701. DOI:  
 2704 10.1080/02724634.2019.1576701

2705 Fortuny J, Gastou S, Escuillié F, Ranivoharimanana L, Steyer J-S. 2017 (for 2018). A new  
 2706 extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and  
 2707 palaeobiogeographical implications for trematosaurids. *Journal of Systematic*  
 2708 *Palaeontology* 16:675–688. DOI: 10.1080/14772019.2017.1335805

2709 Fraas E. 1889. Die Labyrinthodonten der schwäbischen Trias. *Palaeontographica* 36:1–158.

2710 Fraas E. 1913. Neue Labyrinthodonten aus der schwäbischen Trias. *Palaeontographica* 36:1–  
2711 158.

2712 Fröbisch NB, Schoch RR. 2009. Testing the impact of miniaturization on phylogeny: Paleozoic  
2713 dissorophoid amphibians. *Systematic Biology* 58:312–327. DOI: 10.1093/sysbio/syp029

2714 Gee BM, Hardy Y, Reisz RR. 2017. Histological characterization of denticulate palatal plates in  
2715 an Early Permian dissorophoid. *PeerJ* 5:e3727. DOI: 10.7717/peerj.3727

2716 Gee BM, Jasinski SE. 2021. Description of the metoposaurid *Anaschisma browni* from the New  
2717 Oxford Formation of Pennsylvania. *Journal of Paleontology*. DOI: 10.1017/jpa.2021.30

2718 Gee BM, Parker WG, Marsh AD. 2017. Microanatomy and paleohistology of the intercentra of  
2719 North American metoposaurids from the Upper Triassic of Petrified Forest National Park  
2720 (Arizona, USA) with implications for the taxonomy and ontogeny of the  
2721 group. *PeerJ* 5:e3183.

2722 Gee BM, Parker WG, Marsh AD. 2019 (for 2020). Redescription of *Anaschisma*  
2723 (Temnospondyli: Metoposauridae) from the Late Triassic of Wyoming and the phylogeny  
2724 of the Metoposauridae. *Journal of Systematic Palaeontology* 18:233–258.

2725 Gee BM, Parker WG. 2017. A juvenile *Koskinonodon perfectus* (Temnospondyli,  
2726 Metoposauridae) from the Upper Triassic of Arizona and its implications for the  
2727 taxonomy of North American metoposaurids. *Journal of Paleontology* 91:1047–1059.

2728 Gee BM, Parker WG. 2018 (for 2020). Morphological and histological description of small  
2729 metoposaurids from Petrified Forest National Park, AZ, USA and the taxonomy of  
2730 *Apachesaurus*. *Historical Biology* 32:203–233. DOI: 10.1080/08912963.2018.1480616.

2731 Gee BM, Parker WG. 2018. A large-bodied metoposaurid from the Revueltian (late Norian) of  
2732 Petrified Forest National Park (Arizona, USA). *Neues Jahrbuch für Geologie und*  
2733 *Paläontologie-Abhandlungen* 287:61–73.

2734 Gee BM, Sidor CA. 2021. First record of the amphibamiform *Micropholis stowi* from the lower  
2735 Fremouw Formation (Lower Triassic) of Antarctica. *Journal of Vertebrate Paleontology*  
2736 e1904251. DOI: 10.1080/02724634.2021.1904251

2737 Gee BM, Makovicky PJ, Sidor CA. 2022. Upside down: ‘*Cryobatrachus*’ and the lydekkerinid  
2738 record from Antarctica. *Journal of Paleontology* 96:658–683. DOI: 10.1017/jpa.2021.115

2739 Gee BM. 2020a. Ecology, ontogeny, and taxonomy of the diverse early Permian dissorophoid  
2740 assemblage from Richards Spur, Oklahoma. D. Phil. Thesis, University of Toronto.  
2741 Available at: [https://search.proquest.com/dissertations-theses/ecology-ontogeny-  
2742 taxonomy-diverse-early-permian/docview/2467471016/se-2?accountid=14784](https://search.proquest.com/dissertations-theses/ecology-ontogeny-taxonomy-diverse-early-permian/docview/2467471016/se-2?accountid=14784)

2743 Gee BM. 2020b. Size matters: the effects of ontogenetic disparity on the phylogeny of  
2744 Trematopidae (Amphibia: Temnospondyli). *Zoological Journal of the Linnean Society*  
2745 190:79–113. DOI: 10.1093/zoolinnean/zlz170

2746 Goldfuß A. 1847. *Beiträge zur vorweltlichen Fauna des Steinkohlengebirges*. Bonn: Henry &  
2747 Cohen.

2748 Grand A, Corvez A, Duque Velez LM, Laurin M. 2013. Phylogenetic inference using discrete  
2749 characters: performance of ordered and unordered parsimony and of three-item  
2750 statements. *Biological Journal of the Linnean Society* 100:914–930. DOI:  
2751 10.1111/bij.12159

2752 Gregory JT. 1980. The otic notch of metoposaurid labyrinthodonts. In Jacobs LL, ed. *Aspects of*  
2753 *Vertebrate History*. Flagstaff: Museum of Northern Arizona, 125–135.

2754 Gruntmejer K, Konietzko-Meier D, Bodzioch A, Fortuny J. 2018. Morphology and preliminary  
2755 biomechanical interpretation of mandibular sutures in *Metoposaurus krasiejowensis*

2756 (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland. *Journal of Iberian*  
2757 *Geology* 45:301–316. DOI: 10.1007/s41513-018-0072-4Hancox PJ, Damiani RJ,  
2758 Rubidge BS. 2000. First occurrence of *Paracyclotosaurus* (Temnospondyli,  
2759 Capitosauridae) in the Karoo Basin of South Africa and its biostratigraphic significance.  
2760 *South African Journal of Science* 96:135–137.

2761 Haughton SH. 1927. On Karroo vertebrates from Nyasaland. *South African Journal of Geology*  
2762 29:69–83.

2763 Hausdorff B. 2011. Progress toward a general species concept. *Evolution* 65:923–931. DOI:  
2764 10.1111/j.1558-5646.2011.01231.x

2765 Heckert AB, Jenkins HS, Lucas SG, Hunt, AP. 2013. Mandibles of juvenile phytosaurs  
2766 (Archosauria: Crurotarsi) from the Upper Triassic Chinle Group of Texas and New  
2767 Mexico, USA. *New Mexico Museum of Natural History & Science Bulletin* 61:228-236.

2768 Heckert AB, Lucas SG, Sullivan RM, Hunt AP, Spielmann JA. 2005. The vertebrate fauna of the  
2769 Upper Triassic (Revueltian: early-mid Norian) Painted Desert Member (Petrified Forest  
2770 Formation: Chinle Group) in the Chama Basin, northern New Mexico. *New Mexico*  
2771 *Geological Society Guidebook* 56:302–318.

2772 Heckert AB, Lucas SG. 2015. Triassic vertebrate paleontology in New Mexico. *New Mexico*  
2773 *Museum of Natural History and Science Bulletin* 68:77–96.

2774 Hendricks JR, Saupe EE, Myers CE, Hermsen EJ, Allmon WD. 2014. The generification of the  
2775 fossil record. *Paleobiology* 40:511–528. DOI: 10.1666/13076

2776 Hewison RH. 2007. The skull and mandible of the stereospondyl *Lydekkerina huxleyi*,  
2777 (Tetrapoda: Temnospondyli) from the Lower Triassic of South Africa, and a reappraisal  
2778 of the family Lydekkerinidae, its origin, taxonomic relationships and phylogenetic  
2779 importance. *Journal of Temnospondyl Palaeontology* 1:1–80.

2780 Hewison RH. 2008. The sacral region, pelvis and hind limb of the stereospondyl *Lydekkerina*  
2781 *huxleyi* (Tetrapoda: Temnospondyli) from the Lower Triassic of South Africa. *Journal of*  
2782 *Temnospondyl Palaeontology* 2:1–26.

2783 Hopson JA. 1984. Late Triassic traversodont cynodonts from Nova Scotia and southern Africa.  
2784 *Palaeontologia Africana* 25:181–201.

2785 Houle M, Mueller B. 2004. A new occurrence of *Buettneria bakeri* (Temnospondyli:  
2786 Metoposauridae) from the Norian (Cooper Canyon Formation, Dockum Group) of west  
2787 Texas. *Journal of Vertebrate Paleontology* 24:73A. DOI:  
2788 10.1080/02724634.2004.10010643

2789 Huber P, Lucas SG, Hunt AP. 1993. Vertebrate biochronology of the Newark Supergroup  
2790 Triassic, eastern North America. *New Mexico Museum of Natural History and Science*  
2791 *Bulletin* 3:179–186.

2792 Hulsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.  
2793 *Bioinformatics* 17(8):754–755. DOI: 10.1093/bioinformatics/17.8.754

2794 Hunt AP, Lucas SG. 1993a. Taxonomy and stratigraphic distribution of late Triassic  
2795 metoposaurid amphibians from Petrified Forest National Park, Arizona. *Journal of the*  
2796 *Arizona-Nevada Academy of Science* 27:89–96.

2797 Hunt AP, Lucas SG. 1993b. Triassic vertebrate paleontology and biochronology of New Mexico.  
2798 *New Mexico Museum of Natural History and Science Bulletin* 2:49–60.

2799 Hunt AP, Lucas SG. 1995. Vertebrate paleontology and biochronology of the lower Chinle  
2800 Group (Upper Triassic), Santa Fe County, north-central New Mexico. *New Mexico*  
2801 *Geological Society Guidebook* 46:243–246.

2802 Hunt AP. 1993. Revision of the Metoposauridae (Amphibia: Temnospondyli) and description of  
2803 a new genus from western North America. *Museum of Northern Arizona Bulletin* 59:67–  
2804 97.

2805 Hunt AP. 1997. EC Case, JT Gregory and early explorations for fossils vertebrates in the Bull  
2806 Canyon Formation (Upper Triassic) of eastern New Mexico: New Mexico Museum of  
2807 Natural History and Science. *New Mexico Museum of Natural History and Science*  
2808 *Bulletin* 11:15–24.

2809 Huxley TH. 1859. On some amphibian and reptilian remains from South Africa and Australia.  
2810 *Quarterly Journal of the Geological Society* 15:642–658. DOI:  
2811 10.1144/GSL.JGS.1859.015.01-02.71

2812 Irmis RB, Martz JW, Parker WG, Nesbitt SJ. 2010. Re-evaluating the correlation between Late  
2813 Triassic terrestrial vertebrate biostratigraphy and the GSSP-defined marine stages.  
2814 *Albertiana* 38:40–52.

2815 Irmis RB, Mundil R, Martz JW, Parker WG. 2011. High-resolution U–Pb ages from the Upper  
2816 Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs.  
2817 *Earth and Planetary Science Letters* 309:258–267. DOI: 10.1016/j.epsl.2011.07.015

2818 Jaeger GF. 1828. *Über die fossile Reptilien, welche in Württemberg aufgefunden worden sind.*  
2819 Stuttgart: J. B. Metzler.

2820 Jeannot AM, Damiani R, Rubidge BS. 2006. Cranial anatomy of the Early Triassic stereospondyl  
2821 *Lydekkerina huxleyi* (Tetrapoda: Temnospondyli) and the taxonomy of South African  
2822 lydekkerinids. *Journal of Vertebrate Paleontology* 26:822–838. DOI: 10.1671/0272-  
2823 4634(2006)26[822:CAOTET]2.0.CO;2

2824 Kammerer CF, Nesbitt SJ, Shubin NH. 2011 (for 2012). The first silesaurid dinosauriform from  
2825 the Late Triassic of Morocco. *Acta Palaeontologica Polonica* 57:277–284. DOI:  
2826 10.4202/app.2011.0015

2827 Khaldoune F, Jalil N-E, Germain D, Steyer J-S 2016. Les vertébrés du Permien et du Trias du  
2828 Maroc (bassin d'Argana, Haut-Atlas occidental): une fenêtre ouverte sur l'évolution  
2829 autour de la grande crise finipaléozoïque. *Mémoires de la Société Géologique de France*  
2830 180:103–167.

2831 Konietzko-Meier D, Klein N. 2013. Unique growth pattern of *Metoposaurus diagnosticus*  
2832 *krasiejowensis* (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów,  
2833 Poland. *Palaeogeography, Palaeoclimatology, Palaeoecology* 370:145–157. DOI:  
2834 10.1016/j.palaeo.2012.12.003

2835 Konietzko-Meier D, Sander PM. 2013. Long bone histology of *Metoposaurus diagnosticus*  
2836 (Temnospondyli) from the Late Triassic of Krasiejów (Poland) and its paleobiological  
2837 implications. *Journal of Vertebrate Paleontology* 33:1003–1018. DOI:  
2838 10.1080/02724634.2013.765886

2839 Konietzko-Meier D, Wawro K. 2007. Mandibular dentition in the Late Triassic temnospondyl  
2840 amphibian *Metoposaurus*. *Acta Palaeontologica Polonica* 52:213–215.

2841 Kornet DJ, Turner H. 1999. Coding polymorphism for phylogeny reconstruction. *Systematic*  
2842 *Biology* 48:365–379. DOI: 10.1080/106351599260346

2843 Kufner AM, Gee BM. 2021. Reevaluation of the holotypes of *Koskinonodon princeps* Branson  
2844 and Mehl, 1929, and *Borborophagus wyomingensis* Branson and Mehl, 1929  
2845 (Temnospondyli, Metoposauridae). *Journal of Vertebrate Paleontology* e1922067. DOI:  
2846 10.1080/02724634.2021.1922067

2847 Kufner AM. 2021. A new metoposaurid bone bed from the Popo Agie Formation (Upper  
2848 Triassic) of Wyoming with implications for vertebrate biochronology. M. Sc. Thesis,  
2849 University of Wisconsin.

2850 Kuhn O. 1961. *Die Familien der Rezenten und Fossilen Amphibien und Reptilien*. Bamberg:  
2851 Meisenbach.

2852 Lamsdell JC, Selden PA. 2013. Babes in the wood—a unique window into sea scorpion ontogeny.  
2853 *BMC evolutionary Biology* 13:1–46. DOI: 10.1186/1471-2148-13-98

2854 Lamsdell JC, Selden PA. 2015. Phylogenetic support for the monophyly of proetide trilobites.  
2855 *Lethaia* 48:375–386. DOI: 10.1111/let.12113

2856 Langer MC. 2005. Studies on continental Late Triassic tetrapod biochronology. II. The  
2857 Ischigualastian and a Carnian global correlation. *Journal of South American Earth  
2858 Sciences* 19:219–239. DOI: 10.1016/j.jsames.2005.04.002

2859 Langston W. 1953. Permian amphibians from New Mexico. *University of California  
2860 Publications in Geological Sciences* 29:349–416.

2861 Lehman T, Chatterjee S. 2005 (for 2006). Depositional setting and vertebrate biostratigraphy of  
2862 the Triassic Dockum Group of Texas. *Journal of Earth System Science* 114:325–351.  
2863 DOI: 10.1007/BF02702953

2864 Lehman, TM. 1994. The saga of the Dockum Group and the case of the Texas/New  
2865 Mexico boundary fault. *New Mexico Bureau of Mines & Mineral Resources Bulletin  
2866* 150:37–51.

2867 Lessner EJ, Parker WG, Marsh AD, Nesbitt SJ, Irmis RB, Mueller BD. 2018. New insights into  
2868 Late Triassic dinosauromorph-bearing assemblages from Texas using apomorphy-based  
2869 identifications. *PaleoBios* 35. DOI: 10.5070/P9351039960

2870 Long RA, Murry PA. 1995. Late Triassic (Carnian and Norian) Tetrapods from the Southwestern  
2871 United States. *New Mexico Museum of Natural History and Science Bulletin* 4:1–254.

2872 Loughney KM, Fastovsky DE, Parker WG. 2011. Vertebrate fossil preservation in blue paleosols  
2873 from the Petrified Forest National Park, Arizona, with implications for vertebrate  
2874 biostratigraphy in the Chinle Formation. *Palaios*, 26:700–719. DOI:  
2875 10.2110/palo.2011.p11-017r

2876 Lucas SG, Anderson OJ. 1993. Stratigraphy of the Permian–Triassic boundary in southeastern  
2877 New Mexico and west Texas. *New Mexico Geological Society Guidebook*, 44:219–230.

2878 Lucas SG, Anderson OJ. 1994. The Camp Springs Member, base of the Late Triassic Dockum  
2879 Formation in West Texas. *West Texas Geological Society Bulletin* 34:1–15.

2880 Lucas SG, Hunt AP, Heckert AB, Spielmann JA. 2007. Global Triassic tetrapod biostratigraphy  
2881 and biochronology: 2007 status. *New Mexico Museum of Natural History and Science  
2882 Bulletin* 41:229–240.

2883 Lucas SG, Hunt AP, Kahle R. 1993. Late Triassic vertebrates from the Dockum Formation near  
2884 Otis Chalk, Howard County, Texas. *New Mexico Geological Society Guidebook* 44:237–  
2885 244.

2886 Lucas SG, Hunt AP. 1993. Tetrapod biochronology of the Chinle Group. *New Mexico Museum  
2887 of Natural History and Science Bulletin* 3:327–329.

2888 Lucas SG, Rinehart LF, Heckert AB, Hunt AP, Spielmann JA. 2016. Rotten Hill: a Late Triassic  
2889 bonebed in the Texas Panhandle, USA. *New Mexico Museum of Natural History and  
2890 Science Bulletin* 72:1–97.

2891 Lucas SG, Rinehart LF, Krainer K, Spielmann JA, Heckert AB. 2010. Taphonomy of the Lamy  
2892 amphibian quarry: a Late Triassic bonebed in New Mexico, USA. *Palaeogeography,*  
2893 *Palaeoclimatology, Palaeoecology* 298:388–398. DOI: 10.1016/j.palaeo.2010.10.025

2894 Lucas SG, Schoch RR. 2002. Triassic temnospondyl biostratigraphy, biochronology and  
2895 correlation of the German Buntsandstein and North American Moenkopi Formation.  
2896 *Lethaia* 35:97–106. DOI: 10.1111/j.1502-3931.2002.tb00071.x

2897 Lucas SG, Spielmann JA, Hunt AP. 2007. Biochronological significance of Late Triassic  
2898 tetrapods from Krasiejów, Poland. *New Mexico Museum of Natural History and Science*  
2899 *Bulletin* 41:248–258.

2900 Lucas SG, Zeigler KE, Heckert AB, Hunt AP. 2003. Upper Triassic stratigraphy and  
2901 biostratigraphy, Chama basin, north-central New Mexico. *New Mexico Museum of*  
2902 *Natural History and Science Bulletin* 24:15–39.

2903 Lucas SG. 1998. Global Triassic tetrapod biostratigraphy and biochronology. *Palaeogeography,*  
2904 *Palaeoclimatology, Palaeoecology* 143:347–384. DOI: 10.1016/S0031-0182(98)00117-5

2905 Lucas SG. 2010. The Triassic timescale based on nonmarine tetrapod biostratigraphy and  
2906 biochronology. *Geological Society, London, Special Publications* 334:447–500. DOI:  
2907 10.1144/SP334.15

2908 Lucas SG. 2015. Age and correlation of Late Triassic tetrapods from southern Poland. In  
2909 *Annales Societatis Geologorum Poloniae* 85:627–635. DOI: 10.14241/asgp.2015.024

2910 Lucas SG. 2018. Late Triassic terrestrial tetrapods: Biostratigraphy, biochronology and biotic  
2911 events. In Tanner L, ed. *The Late Triassic World*. Cham: Springer, 351–405. DOI:  
2912 10.1007/978-3-319-68009-5\_10

2913 Lucas SG. 2021. Biochronology of Late Triassic Metoposauridae (Amphibia, Temnospondyli)  
2914 and the Carnian pluvial episode. *Annales Societatis Geologorum Poloniae* 90:409–418.

2915 Lydekker R. 1889. Note on the occurrence of a species of *Bothriceps* in the Karoo system of  
2916 South Africa. *Journal of Natural History* 4:475–476. DOI: 10.1080/00222938909460569

2917 Lydekker R. 1890. *Catalogue of the fossil Reptilia and Amphibia in the British Museum (Natural*  
2918 *History). Part IV.* London: British Museum of Natural History.

2919 Maddin HC, Reisz RR, Anderson JS. 2010. Evolutionary development of the neurocranium in  
2920 Dissorophoidea (Tetrapoda: Temnospondyli), an integrative approach. *Evolution &*  
2921 *Development* 12:393–403. DOI: 10.1111/j.1525-142X.2010.00426.x

2922 Maddison WP, Maddison DR. 2018. Mesquite: A Modular System for Evolutionary Analysis,  
2923 version 3.6. Available at <http://mesquiteproject.org>.

2924 Mannion PD, Tschopp E, Whitlock JA. 2021. Anatomy and systematics of the diplodocoid  
2925 *Amphicoelias altus* supports high sauropod dinosaur diversity in the Upper Jurassic  
2926 Morrison Formation of the USA. *Royal Society Open Science* 8:210377. DOI:  
2927 10.1098/rsos.210377

2928 Martz JW, Mueller B, Nesbitt SJ, Stocker MR, Parker WG, Atanassov M, Fraser N, Weinbaum,  
2929 J, Lehane JR. 2012. A taxonomic and biostratigraphic re-evaluation of the Post Quarry  
2930 vertebrate assemblage from the Cooper Canyon Formation (Dockum Group, Upper  
2931 Triassic) of southern Garza County, western Texas. *Earth and Environmental Science*  
2932 *Transactions of the Royal Society of Edinburgh* 103:339–364. DOI:  
2933 10.1017/S1755691013000376

2934 Martz JW, Parker WG. 2017. Revised formulation of the Late Triassic Land Vertebrate  
2935 “Faunachrons” of western North America: recommendations for codifying nascent  
2936 systems of vertebrate biochronology. In Ziegler KE, Parker W, eds. *Terrestrial*

2937                    *Depositional Systems*. Amsterdam: Elsevier, 39–125. DOI: 10.1016/B978-0-12-803243-  
2938                    5.00002-9

2939                    Martz JW. 2008. Lithostratigraphy, chemostratigraphy, and vertebrate biostratigraphy of the  
2940                    Dockum Group (Upper Triassic) of southern Garza County, West Texas. D. Phil. Thesis,  
2941                    Texas Tech University.

2942                    Mazin JM, Janvier P. 1983. L'anatomie de *Lyrocephaliscus euri* (WIMAN), trématosaure du  
2943                    Trias Inférieur du Spitsberg: arrière-crâne, squelette axial et ceinture scapulaire.  
2944                    *Palaeovertebrata* 13:13–31.

2945                    McHugh JB. 2012. Temnospondyl ontogeny and phylogeny, a window into terrestrial  
2946                    ecosystems during the Permian-Triassic mass extinction. D. Phil. Thesis, University of  
2947                    Iowa. DOI: 10.17077/etd.bckqmevc

2948                    Milner AR, Schoch RR. 2004. The latest metoposaurid amphibians from Europe. *Neues*  
2949                    *Jahrbuch für Geologie und Paläontologie, Abhandlungen* 232:231–252. DOI:  
2950                    10.1127/njgpa/232/2004/231

2951                    Milner AR, Schoch RR. 2013. *Trimerorhachis* (Amphibia: Temnospondyli) from the Lower  
2952                    Permian of Texas and New Mexico: cranial osteology, taxonomy and biostratigraphy.  
2953                    *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen* 270:91–128. DOI:  
2954                    10.1127/0077-7749/2013/0360

2955                    Milner AR. 1994. Late Triassic and Jurassic amphibians: fossil record and phylogeny. In Fraser  
2956                    NC, Sues H-D, eds. *In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods*.  
2957                    Cambridge: Cambridge University Press, 5–22.

2958                    Morkovin BI. 2015. On the development of surface ornamentation of skull bones in the ontogeny  
2959                    of Early Triassic benthosuchids (Amphibia, Temnospondyli). *Paleontological Journal*  
2960                    49:57–69. DOI: 10.1134/S0031030115010074

2961                    Moulton JM. 1974. A description of the vertebral column of *Eryops* based on the notes and  
2962                    drawings of A. S. Romer. *Breviora* 428:1–44.

2963                    Mueller B, Martz JW, Hungerbuhler A, Nesbitt SJ. 2016. A diverse Late Triassic (Norian)  
2964                    tetrapod fauna and taphonomy of MOTT VPL 3869 from the Tecovas Formation  
2965                    (Dockum Group) in Garza County, Texas, USA. *Society of Vertebrate Paleontology*  
2966                    *Annual Meeting Program and Abstracts* 193.

2967                    Mueller BD. 2007. *Koskinonodon* Branson and Mehl, 1929, a replacement name for the  
2968                    preoccupied temnospondyl *Buettneria* Case, 1922. *Journal of Vertebrate*  
2969                    *Paleontology* 27:225–225. DOI: 10.1671/0272-4634(2007)27[225:KBAMAR]2.0.CO;2

2970                    Nixon KC, Wheeler QD. 1990. An amplification of the phylogenetic species concept. *Cladistics*  
2971                    6:211–223. DOI: 10.1111/j.1096-0031.1990.tb00541.x

2972                    Ochev VG. 1972. Capitosauroid Labyrinthodonts from the Southeast of European part of the  
2973                    USSR. Izdatel'stvo Saratovskogo Universiteta, Saratov, 269 pp. [Russian]

2974                    Olsen PE, Kent DV, Whiteside JH. 2010. Implications of the Newark Supergroup-based  
2975                    astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and  
2976                    mode of the early diversification of the Dinosauria. *Earth and Environmental Science*  
2977                    *Transactions of the Royal Society of Edinburgh* 101:201–229. DOI:  
2978                    10.1017/S1755691011020032

2979                    Pardo JD, Small BJ, Huttenlocker AK. 2017. Stem caecilian from the Triassic of Colorado sheds  
2980                    light on the origins of Lissamphibia. *Proceedings of the National Academy of Sciences*  
2981                    114:E5389–E5395. DOI: 10.1073/pnas.1706752114

2982 Parker WG, Martz JW. 2010 (for 2011). The Late Triassic (Norian) Adamanian–Revueltian  
2983 tetrapod faunal transition in the Chinle Formation of Petrified Forest National Park,  
2984 Arizona. *Earth and Environmental Science Transactions of the Royal Society of*  
2985 *Edinburgh* 101:231–260. DOI: 10.1017/S1755691011020020

2986 Pawley K, Warren A. 2005. A terrestrial stereospondyl from the Lower Triassic of South Africa:  
2987 the postcranial skeleton of *Lydekkerina huxleyi* (Amphibia: Temnospondyli).  
2988 *Palaeontology* 48:281–298. DOI: 10.1111/j.1475-4983.2005.00446.x

2989 Pawley K, Warren A. 2006. The appendicular skeleton of *Eryops megacephalus* Copoe, 1877  
2990 (Temnospondyli: Eryopoidea) from the Lower Permian of North America. *Journal of*  
2991 *Paleontology* 80:561–580. DOI: 10.1666/0022-3360(2006)80[561:TASOEM]2.0.CO;2

2992 Pawley K. 2007. The postcranial skeleton of *Trimerorhachis insignis* Cope, 1878  
2993 (Temnospondyli: Trimerorhachidae): a plesiomorphic temnospondyl from the Lower  
2994 Permian of North America. *Journal of Paleontology* 81:873–894. DOI: 10.1666/pleo05-  
2995 131.1

2996 Polcyn M, Winkler DA, Jacobs LL, Newman K. 2002. Formation at North Stinking Springs  
2997 Mountain Near St. Johns, Arizona. *New Mexico Museum of Natural History and Science*  
2998 *Bulletin* 21:43–50.

2999 Rasmussen C, Mundil R, Irmis RB, Geisler D, Gehrels GE, Olsen PE, Kent DV, Lepre C,  
3000 Kinney ST, Geissman JW, Parker WG. 2020. U-Pb zircon geochronology and  
3001 depositional age models for the Upper Triassic Chinle Formation (Petrified Forest  
3002 National Park, Arizona, USA): Implications for Late Triassic paleoecological and  
3003 paleoenvironmental change. *GSA Bulletin* 133:539–558. DOI: 10.1130/B35485.1

3004 Ray S, Bhat MS, Mukherjee D, Datta PM. 2016. Vertebrate fauna from the Late Triassic Tiki  
3005 Formation of India: new finds and their biostratigraphic implications. *The Palaeobotanist*  
3006 65:47–59.

3007 Rayfield EJ, Barrett PM, McDonnell RA, Willis KJ. 2005. A Geographical Information System  
3008 (GIS) study of Triassic vertebrate biochronology. *Geological Magazine* 142:327–354.  
3009 DOI: 10.1017/S001675680500083X

3010 Rayfield EJ, Barrett PM, Milner AR. 2009. Utility and validity of Middle and Late Triassic ‘land  
3011 vertebrate faunachrons’. *Journal of Vertebrate Paleontology* 29:80–87. DOI:  
3012 10.1671/039.029.0132

3013 Reisz RR, Schoch RR, Anderson JS. 2009. The armoured dissorophid *Cacops* from the Early  
3014 Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.  
3015 *Naturwissenschaften* 96:789–796. DOI: 10.1007/s00114-009-0533-x

3016 Rinehart LF, Lucas SG, Schoch RR. 2015. *Eocyclotosaurus appetolatus*, a new cyclotosaurid  
3017 amphibian from the Middle Triassic (Perovkan) Moenkopi Formation of New Mexico,  
3018 USA. *Journal of Vertebrate Paleontology* 35:e929140. DOI:  
3019 10.1080/02724634.2014.929140

3020 Rinehart LF, Lucas SG, Tanner LH, Spielmann JA. 2013. The functional morphology of dermal  
3021 bone ornamentation in temnospondyl amphibians. *New Mexico Museum of Natural*  
3022 *History and Science* 61:524–532.

3023 Rinehart LF, Lucas SG. 2016. *Eocyclotosaurus appetolatus*, a Middle Triassic amphibian:  
3024 osteology, life history, and paleobiology. *New Mexico Museum of Natural History and*  
3025 *Science Bulletin* 70:1–118.

3026 Rinehart LF, Lucas SG. 2018. Description of a juvenile specimen of the Late Triassic amphibian  
3027 *Apachesaurus gregorii*: Developmental and relative growth. *New Mexico Museum of*  
3028 *Natural History and Science Bulletin* 79:565–583.

3029 Rineau V, Grand A, Zaragueta R, Laurin M. 2015. Experimental systematics: sensitivity of  
3030 cladistic methods to polarization and character ordering schemes. *Contributions to*  
3031 *Zoology* 8:129–148. DOI: 10.1163/18759866-08402003

3032 Rineau V, Zaragueta i Bagils RZ, Laurin M. 2018. Impact of errors on cladistic inference:  
3033 simulation-based comparison between parsimony and three-taxon analysis. *Contributions*  
3034 *to Zoology* 87:25–40. DOI: 10.1163/18759866-08701003

3035 Romer AS, Witter RV. 1942. *Edops*, a primitive rhachitomous amphibian from the Texas red  
3036 beds. *The Journal of Geology* 50:925–960. DOI: 10.1086/625101

3037 Romer AS. 1947. Review of the Labyrinthodontia. *Bulletin of the Museum of Comparative*  
3038 *Zoology* 99:1–368.

3039 Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed  
3040 models. *Bioinformatics* 19:1572–1574. DOI: 10.1093/bioinformatics/btg180

3041 Sanderson MJ. 1995. Objections to bootstrapping phylogenies: a critique. *Systematic Biology*  
3042 44:299–320. DOI: 10.1093/sysbio/44.3.299

3043 Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by  
3044 distorting evolutionary trees. *Scientific Reports* 3:1–5. DOI: 10.1038/srep02545

3045 Säve-Söderbergh G. 1935. On the dermal bones of the head in labyrinthodont stegocephalians  
3046 and primitive Reptilia. *Meddelelser om Grönland* 98:1–211.

3047 Säve-Söderbergh G. 1936. On the morphology of Triassic stegocephalians from Spitsbergen, and  
3048 the interpretation of the endocranum in the Labyrinthodontia. *Kunglik Svensk*  
3049 *Vetenskapsakademiens Handlingar* 16:1–181.

3050 Sawin HJ. 1941. The cranial anatomy of *Eryops megacephalus*. *Bulletin of the Museum of*  
3051 *Comparative Zoology* 88:407–463.

3052 Sawin HJ. 1945. Amphibians from the Dockum Triassic of Howard County, Texas. *University of*  
3053 *Texas Publication* 4401:361–399.

3054 Schoch RR, Milner AR. 2000. *Handbook of Paleoherpetology Part 3B. Stereospondyli*.  
3055 München: Verlag Dr. Friedrich Pfeil.

3056 Schoch RR. 1999. Comparative osteology of *Mastodonsaurus giganteus* (Jaeger, 1828) from the  
3057 Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg,  
3058 Bayern, Thüringen). *Stuttgarter Beiträge zur Naturkunde Serie B* 278:1–175.

3059 Schoch RR. 2000. The status and osteology of two new cyclotosaurid amphibians from the  
3060 Upper Moenkopi Formation of Arizona (Amphibia: Temnospondyli; Middle Triassic).  
3061 *Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen* 216:387–411. DOI:  
3062 10.1127/njgpa/216/2000/387

3063 Schoch RR. 2006. A complete trematosaurid amphibian from the Middle Triassic of  
3064 Germany. *Journal of Vertebrate Paleontology* 26:29–43. DOI: 10.1671/0272-  
3065 4634(2006)26[29:ACTAFT]2.0.CO;2

3066 Schoch RR. 2008. A new stereospondyl from the German Middle Triassic, and the origin of the  
3067 Metoposauridae. *Zoological Journal of the Linnean Society* 152:79–113. DOI:  
3068 10.1111/j.1096-3642.2007.00363.x

3069 Schoch RR. 2009. Life-cycle evolution as response to diverse lake habitats in Paleozoic  
3070 amphibians. *Evolution* 63:2738–2749. DOI: 10.1111/j.1558-5646.2009.00769.x

3071 Schoch RR. 2011. A trematosauroid temnospondyl from the Middle Triassic of Jordan. *Fossil*  
3072 *Record* 42:119–127. DOI: 10.1002/mmng.201100002

3073 Schoch RR. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic  
3074 analysis. *Journal of Systematic Palaeontology* 11:673–705. DOI:  
3075 10.1080/14772019.2012.699006

3076 Schoch RR. 2019. Osteology of the temnospondyl *Trematosaurus brauni* Burmeister, 1849 from  
3077 the Middle Buntsandstein of Bernburg, Germany. *Palaeodiversity* 12:41–63. DOI:  
3078 10.18476/pale.v12.a4

3079 Schoch RR. 2021. The life cycle in late Paleozoic eryopid temnospondyls: developmental  
3080 variation, plasticity and phylogeny. *Fossil Record* 24:295–319. DOI: 10.5194/fr-24-295-  
3081 2021.

3082 Schoch RR, Rubidge BS. 2005. The amphibamid *Micropholis* from the Lystrosaurus assemblage  
3083 zone of South Africa. *Journal of Vertebrate Paleontology* 25:502–522. DOI:  
3084 10.1671%2F0272-4634%282005%29025%5B0502%3ATAMFTL%5D2.0.CO%3B2

3085 Schoch RR, Witzmann F. 2009. Osteology and relationships of the temnospondyl genus  
3086 *Sclerocephalus*. *Zoological Journal of the Linnean Society* 157:135–168. DOI:  
3087 10.1111/j.1096-3642.2009.00535.x

3088 Schoch RR, Witzmann F. 2012. Cranial morphology of the plagiosaurid *Gerrothorax*  
3089 *pulcherrimus* as an extreme example of evolutionary stasis. *Lethaia* 45:371–385. DOI:  
3090 10.1111/j.1502-3931.2011.00290.x

3091 Schoch RR, Milner AR, Witzmann, F. 2014. Skull morphology and phylogenetic relationships of  
3092 a new Middle Triassic plagiosaurid temnospondyl from Germany, and the evolution of  
3093 plagiosaurid eyes. *Palaeontology* 57:1045–1058. DOI: 10.1111/pala.12101

3094 Schultz CL. 2005. Biostratigraphy of the non-marine Triassic: is a global correlation based on  
3095 tetrapod faunas possible?. In Koutsoukos EAM, ed. *Applied Stratigraphy*. New York:  
3096 Springer, 123–145. DOI: 10.1007/1-4020-2763-X\_6

3097 Sengupta DP. 1995. Chigutisaurid temnospondyls from the Late Triassic of India and review of  
3098 the family Chigutisauridae. *Palaeontology* 38:313–339.

3099 Sengupta DP. 2002. Indian metoposaurid amphibians revised. *Paleontological Research* 6:41–  
3100 65.

3101 Sequeira SE. 2003. The skull of *Cochleosaurus bohemicus* Frič, a temnospondyl from the Czech  
3102 Republic (Upper Carboniferous) and cochleosaurid interrelationships. *Earth and*  
3103 *Environmental Science Transactions of The Royal Society of Edinburgh* 94:21–43. DOI:  
3104 10.1017/S0263593300000511

3105 Shishkin MA, Novikov IV. 2017. Early stages of recovery of the East European tetrapod fauna  
3106 after the end-Permian crisis. *Paleontological Journal* 51:612–622. DOI:  
3107 10.1134/S0031030117060089

3108 Shishkin MA, Ochev VG, Lozovskii VR, Novikov IV. 2000. Tetrapod biostratigraphy of the  
3109 Triassic of Eastern Europe. In: Benton MJ, Shishkin MA, Unwin DA, Kurochkin EN,  
3110 eds. *The Age of Dinosaurs in Russia and Mongolia*. Cambridge: Cambridge University  
3111 Press, 120–139.

3112 Shishkin MA, Sennikov AG, Novikov IV, Ilyina NV. 2006. Differentiation of tetrapod  
3113 communities and some aspects of biotic events in the Early Triassic of Eastern Europe.  
3114 *Paleontological Journal* 40:1–10. DOI: 10.1134/S0031030106010011

3115 Shishkin MA, Sulej T. 2009. The Early Triassic temnospondyls of the Czatkowice 1 tetrapod  
3116 assemblage. *Palaeontologia Polonica* 65:31–77.

3117 Sidor CA, Steyer J-S, Damiani R. 2007. *Parotosuchus* (Temnospondyli: Mastodonsauridae) from  
3118 the Triassic of Antarctica. *Journal of vertebrate Paleontology* 27:232–235. DOI:  
3119 10.1671/0272-4634(2007)27[232:PTMFTT]2.0.CO;2

3120 Simpson GG. 1951. The species concept. *Evolution* 5:285–298.

3121 Slowinski JB. 1993. “Unordered” versus “ordered” characters. *Systematic Biology* 42:155–165.  
3122 DOI: 10.1093/sysbio/42.2.155

3123 Spielmann JA, Lucas SG, Heckert AB. 2007. Tetrapod fauna of the Upper Triassic (Revueltian)  
3124 Owl Rock Formation, Chinle Group, Arizona. *New Mexico Museum of Natural History*  
3125 and *Science Bulletin* 41:371–383.

3126 Spielmann JA, Lucas SG. 2012. Tetrapod fauna of the Upper Triassic Redonda Formation east-  
3127 central New Mexico: the characteristic assemblage of the Apachean land-vertebrate  
3128 faunachron. *New Mexico Museum of Natural History and Science Bulletin* 55:1–119.

3129 Steyer J-S. 2003. A revision of the early Triassic “capitosaurs” (Stegocephali, Stereospondyli)  
3130 from Madagascar, with remarks on their comparative ontogeny. *Journal of Vertebrate*  
3131 *Paleontology* 23:544–555. DOI: 10.1671/1740

3132 Steyer J-S, Laurin M, Castanet J, de Ricqlès A. 2004. First histological and skeletochronological  
3133 data on temnospondyl growth: palaeoecological and palaeoclimatological implications.  
3134 *Palaeogeography, Palaeoclimatology, Palaeoecology* 206:193–201. DOI:  
3135 10.1016/j.palaeo.2004.01.003

3136 Stocker MR. 2012. A new phytosaur (Archosauriformes, Phytosauria) from the Lot’s Wife beds  
3137 (Sonsela Member) within the Chinle Formation (Upper Triassic) of Petrified Forest  
3138 National Park, Arizona. *Journal of Vertebrate Paleontology* 32:573–586. DOI:  
3139 10.1080/02724634.2012.649815

3140 Sues H-D, Fitch AJ, Whatley RL. 2020. A new rhynchosaur (reptilia, Archosauromorpha) from  
3141 the Upper Triassic of eastern North America. *Journal of Vertebrate Paleontology*  
3142 40:e1771568. DOI: 10.1080/02724634.2020.1771568

3143 Sues H-D, Olsen PE. 2015. Stratigraphic and temporal context and faunal diversity of Permian-  
3144 Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern  
3145 Canada. *Atlantic Geology* 51:139–205. DOI: 10.4138/atgeol.2015.006

3146 Sues H-D, Schoch RR. 2013. Anatomy and phylogenetic relationships of *Calamops paludosus*  
3147 (Temnospondyli, Stereospondyli) from the Triassic of the Newark Basin, Pennsylvania.  
3148 *Journal of Vertebrate Paleontology* 33:1061–1070. DOI:  
3149 10.1080/02724634.2013.759120

3150 Sulej T. 2002. Species discrimination of the Late Triassic temnospondyl amphibian  
3151 *Metoposaurus diagnosticus*. *Acta Palaeontologica Polonica* 47:535–546.

3152 Sulej T. 2007. Osteology, variability, and evolution of *Metoposaurus*, a temnospondyl from the  
3153 Late Triassic of Poland. *Palaeontologica Polonica* 64:29–139.

3154 Sulej T, Majer D. 2005. The temnospondyl amphibian *Cyclotosaurus* from the Upper Triassic of  
3155 Poland. *Palaeontology* 48:157–170. DOI: 10.1111/j.1475-4983.2004.00430.x

3156 Swofford DL. 2002. PAUP\*. Phylogenetic analysis using parsimony\* 4.0. Sinauer, Sunderland,  
3157 Massachusetts. Available at: <https://paup.phylosolutions.com/>

3158 Szulc J, Racki G, Jewuła K, Środoń J. 2015. How many Upper Triassic bone-bearing levels are  
3159 there in Upper Silesia (southern Poland)? A critical overview of stratigraphy and facies.  
3160 *Annales Societatis Geologorum Poloniae* 85:587–626. DOI: 10.14241/asgp.2015.037

3161 Teschner EM, Chakravorti S, Sengupta DP, Konietzko-Meier D. 2020. Climatic influence on the  
3162 growth pattern of *Panthasaurus maleriensis* from the Late Triassic of India deduced from  
3163 paleohistology. *PeerJ* 8:e9868. DOI: 10.7717/peerj.9868

3164 Teschner EM, Sander PM, Konietzko-Meier D. 2017 (for 2018). Variability of growth pattern  
3165 observed in *Metoposaurus krasiejowensis* humeri and its biological meaning. *Journal of*  
3166 *Iberian Geology* 44:99–113. DOI: 10.1007/s41513-017-0038-y

3167 Tsai CH, Fordyce RE. 2014. Juvenile morphology in baleen whale phylogeny.  
3168 *Naturwissenschaften* 101:765–769. DOI: 10.1007/s00114-014-1216-9

3169 Tykoski RS. 2005. Anatomy, ontogeny, and phylogeny of coelophysoid theropods. D. Phil.  
3170 Thesis, The University of Texas at Austin. Publicly available at:  
3171 <https://repositories.lib.utexas.edu/handle/2152/3992>

3172 University of Michigan. 1957. The President's report to the Board of Regents for the academic  
3173 year 1955–1956. Ann Arbor: University of Michigan.

3174 von Meyer E. 1842. Labyrinthodonten–Genera. *Neues Jahrbuch für Mineralogie, Geographie,*  
3175 *Geologie, Paläontologie* 1842:301–304.

3176 von Zittel KA. 1887–1890. *Handbuch der Paläoentologie. Abteilung 1. Paläozoologie. Band III.*  
3177 *Vertebrata (Pisces, Amphibia, Reptilia, Aves)*. München and Leipzig: Oldenbourg.

3178 Warren A, Rozefelds AC, Bull S. 2011. Tupilakosaur-like vertebrae in *Bothriceps australis*, an  
3179 Australian brachyopid stereospondyl. *Journal of Vertebrate Paleontology* 31:738–753.  
3180 DOI: 10.1080/02724634.2011.590563

3181 Warren A, Snell N. 1991. The postcranial skeleton of Mesozoic temnospondyl amphibians: a  
3182 review. *Alcheringa* 15:43–64. DOI: 10.1080/03115519108619009

3183 Warren AA, Hutchinson MN. 1988. A new capitosaurid amphibian from the Early Triassic of  
3184 Queensland, and the ontogeny of the capitosaur skull. *Palaeontology* 31:857–876.

3185 Watson DMS. 1919. The structure, evolution, and origin of the Amphibia. The ‘orders’  
3186 Rachitomi and Stereospondyli. *Philosophical Transactions of the Royal Society, Series B*  
3187 209:1–72. DOI: 10.1098/rstb.1920.0001

3188 Watson DMS. 1962. The evolution of the labyrinthodonts. *Philosophical Transactions of the*  
3189 *Royal Society of London. Series B, Biological Sciences* 245:219–265. DOI:  
3190 10.1098/rstb.1962.0010

3191 Werneburg R. 1990. Metoposaurier (Amphibia) aus dem Unteren Keuper (Obertrias)  
3192 Thüringens. *Veröffentlichung Naturhistorisches Museum Schleusingen* 5:31–38.

3193 Wiens JJ. 1995. Polymorphic characters in phylogenetic systematics. *Systematic Biology*  
3194 44:482–500. DOI: 10.1093/sysbio/44.4.482

3195 Wiens JJ. 1998. Testing phylogenetic methods with tree congruence: phylogenetic analysis of  
3196 polymorphic morphological characters in phrynosomatid lizards. *Systematic Biology*  
3197 47:427–444. DOI: 10.1080/106351598260806

3198 Wiens JJ. 1999. Polymorphism in systematics and comparative biology. *Annual Review of*  
3199 *Ecology and Systematics* 30:327–362. DOI: 10.1146/annurev.ecolsys.30.1.327

3200 Wiens JJ. 2001. Character analysis in morphological phylogenetics: problems and solutions.  
3201 *Systematic Biology* 50:689–699. DOI: 10.1080/106351501753328811

3202 Wiens JJ, Servedio MR. 1997. Accuracy of phylogenetic analysis including and excluding  
3203 polymorphic characters. *Systematic Biology* 46:332–345. DOI: 10.1093/sysbio/46.2.332

3204 Wiens JJ, Bonett RM, Chippindale PT. 2005. Ontogeny discombobulates phylogeny:  
3205 paedomorphosis and higher-level salamander relationships. *Systematic Biology* 54:91–  
3206 110. DOI: 10.1080/10635150590906037

3207 Wiley EO, Mayden RL. 2000. A defense of the evolutionary species concept. In Wheeler QD,  
3208 Meier R, eds. *Species concepts and phylogenetic theory. A debate*. New York: Columbia  
3209 University Press, 198–208.

3210 Wilson JA. 1941. An interpretation of the skull of *Buettneria*, with special reference to the  
3211 cartilages and soft parts. *Contributions from the Museum of Paleontology, University of*  
3212 *Michigan* 6:71–111.

3213 Wiman C. 1914. Über die Stegocephalen aus der Trias Spitzbergens. *Bulletin of the Geological*  
3214 *Institutions of the University of Uppsala* 13:1–34.

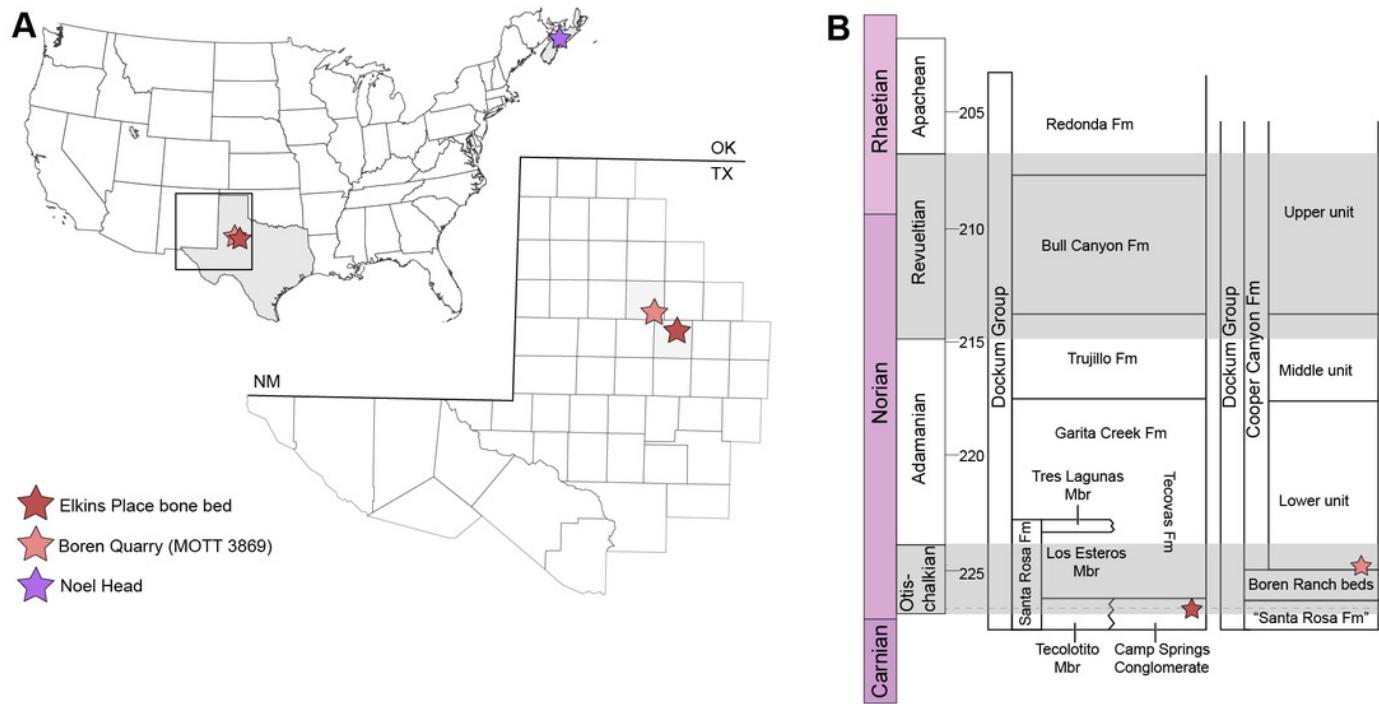
3215 Witzmann F. 2006. Developmental patterns and ossification sequence in the Permo-  
3216 Carboniferous temnospondyl *Archegosaurus decheni* (Saar-Nahe Basin, Germany).  
3217 *Journal of Vertebrate Paleontology* 26:7–17. DOI: 10.1671/0272-  
3218 4634(2006)26[7:DPAOSI]2.0.CO;2

3219 Witzmann F, Gassner T. 2008. Metoposaurid and mastodonsaurid stereospondyls from the  
3220 Triassic–Jurassic boundary of Portugal. *Alcheringa* 32:37–51. DOI:  
3221 10.1080/03115510701757316

3222 Witzmann F, Schoch RR, Hilger A, Kardjilov N. 2012. Braincase, palatoquadrate and ear region  
3223 of the pliosaurid *Gerrothorax pulcherrimus* from the Middle Triassic of Germany.  
3224 *Palaeontology* 55:31–50. DOI: 10.1111/j.1475-4983.2011.01116.x

3225 Woodruff DC, Carr TD, Storrs GW, Waskow K, Scannella JB, Nordén KK, Wilson JP. 2018.  
3226 The smallest diplodocid skull reveals cranial ontogeny and growth-related dietary  
3227 changes in the largest dinosaurs. *Scientific Reports* 8:1–12. DOI: 10.1038/s41598-018-  
3228 32620-x

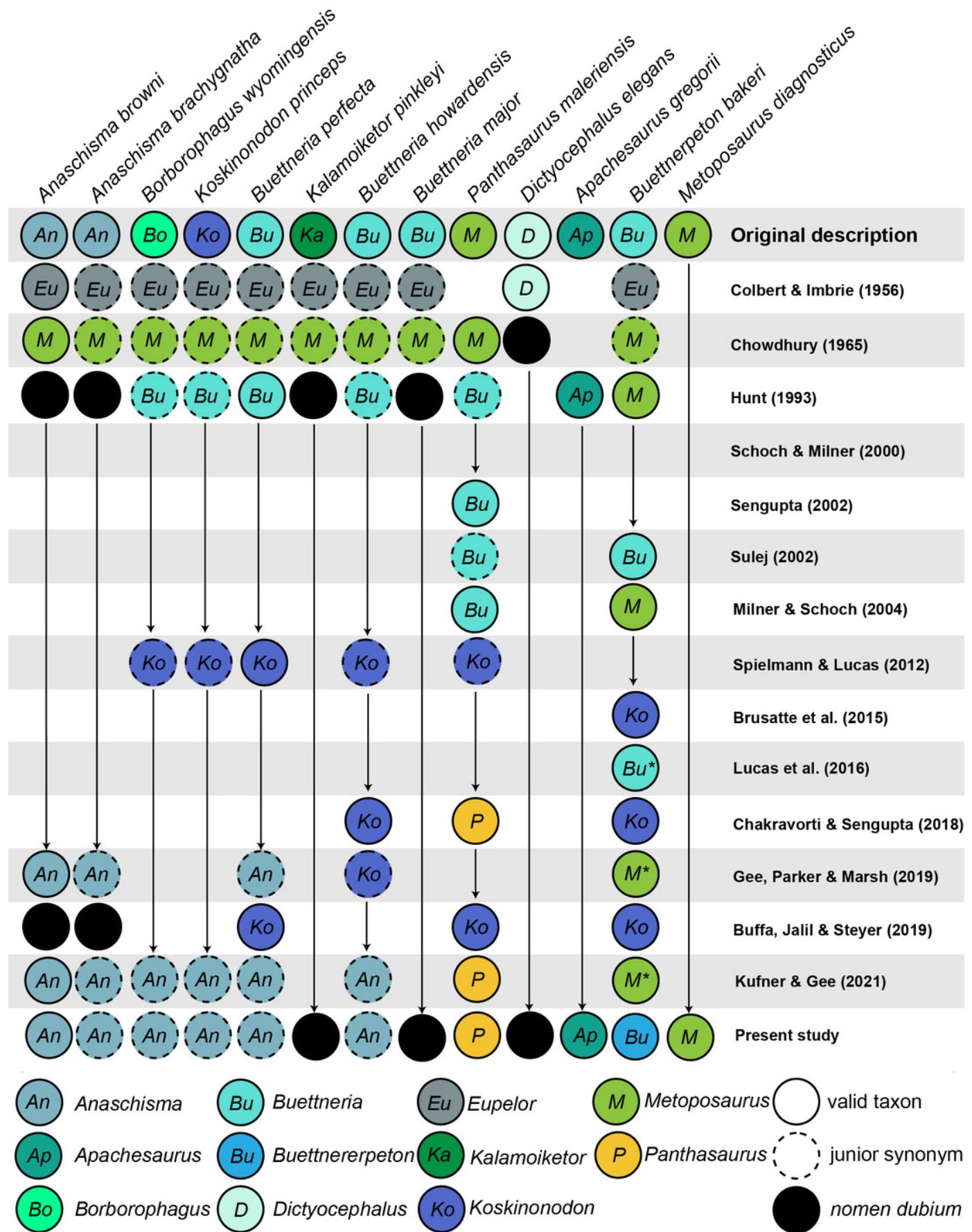
3229 Yates AM, Warren AA. 2000. The phylogeny of the ‘higher’ temnospondyls (Vertebrata:  
3230 Choanata) and its implications for the monophyly and origins of the  
3231 Stereospondyli. *Zoological Journal of the Linnean Society* 128:77–121.


3232 Zeigler KE, Heckert AB, Lucas SG. 2003. The vertebrate fauna of the Upper Triassic  
3233 (Revueltian) Snyder quarry. *New Mexico Museum of Natural History and Science*  
3234 *Bulletin* 24:71–79.

3235 Zietlow AR. 2020. Craniofacial ontogeny in Tylosaurinae. *PeerJ* 8:e10145. DOI:  
3236 10.7717/peerj.10145

# Figure 1

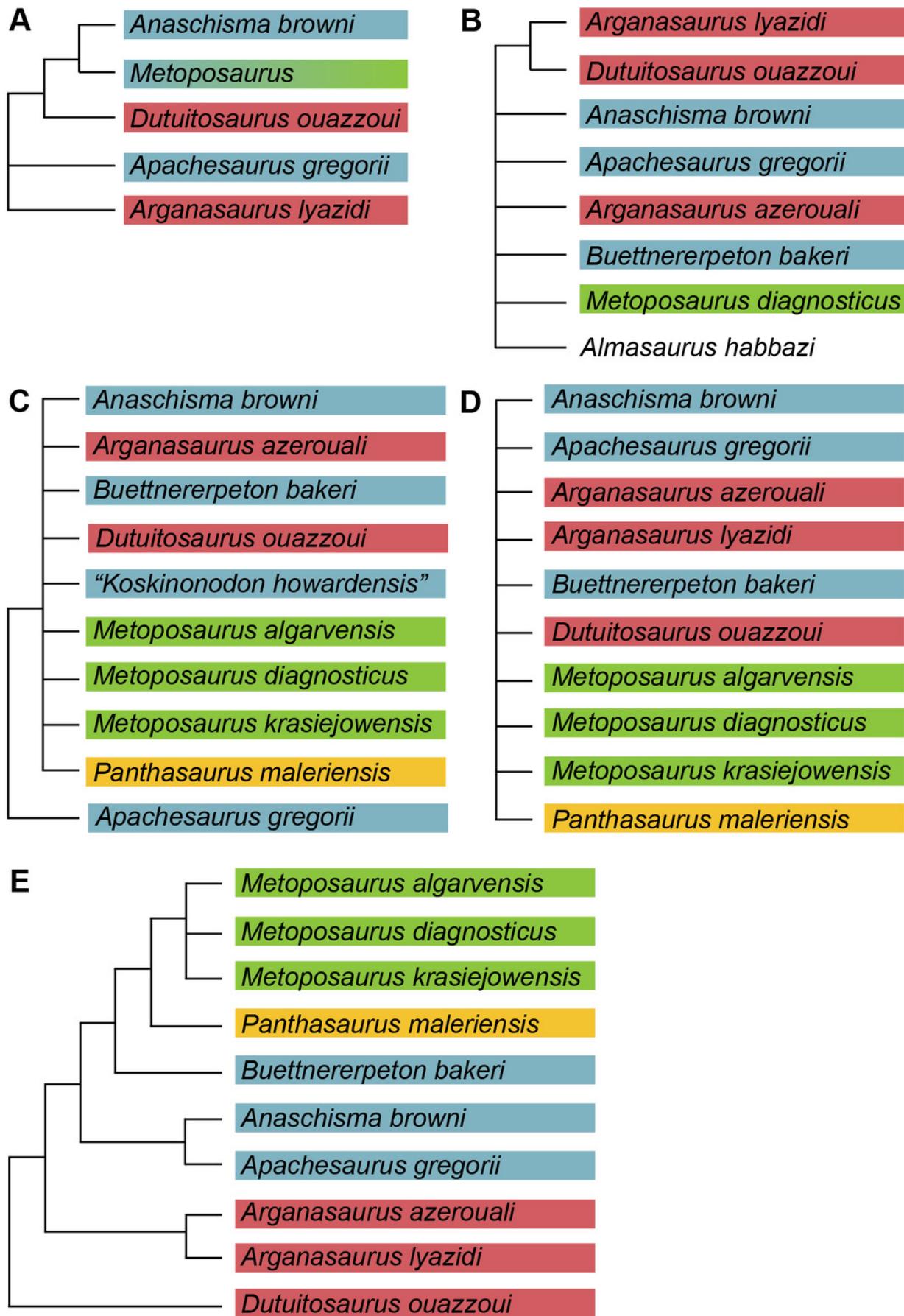
Map showing geographic and stratigraphic distribution of known occurrences of *Buettnererpeton bakeri*.


**(A)** Map of the lower 48 states (U.S.A.) and the province of Nova Scotia (Canada) showing the three published localities from which *B. bakeri* is known; **(B)** inset represents close-up view of northwestern Texas showing localities on a county grid; **(C)** stratigraphic columns showing the approximate position of the two Texas localities. The two columns are based on local stratigraphy in the Dockum Group exposures of New Mexico and the Texas panhandle (on left) and the Dockum Group exposures in Garza County in west Texas (on right); note that the position of the Elkins Place bone bed within the Camp Springs Conglomerate is not well-constrained. Figure adapted from Martz & Parker (2017:fig. 14).



## Figure 2

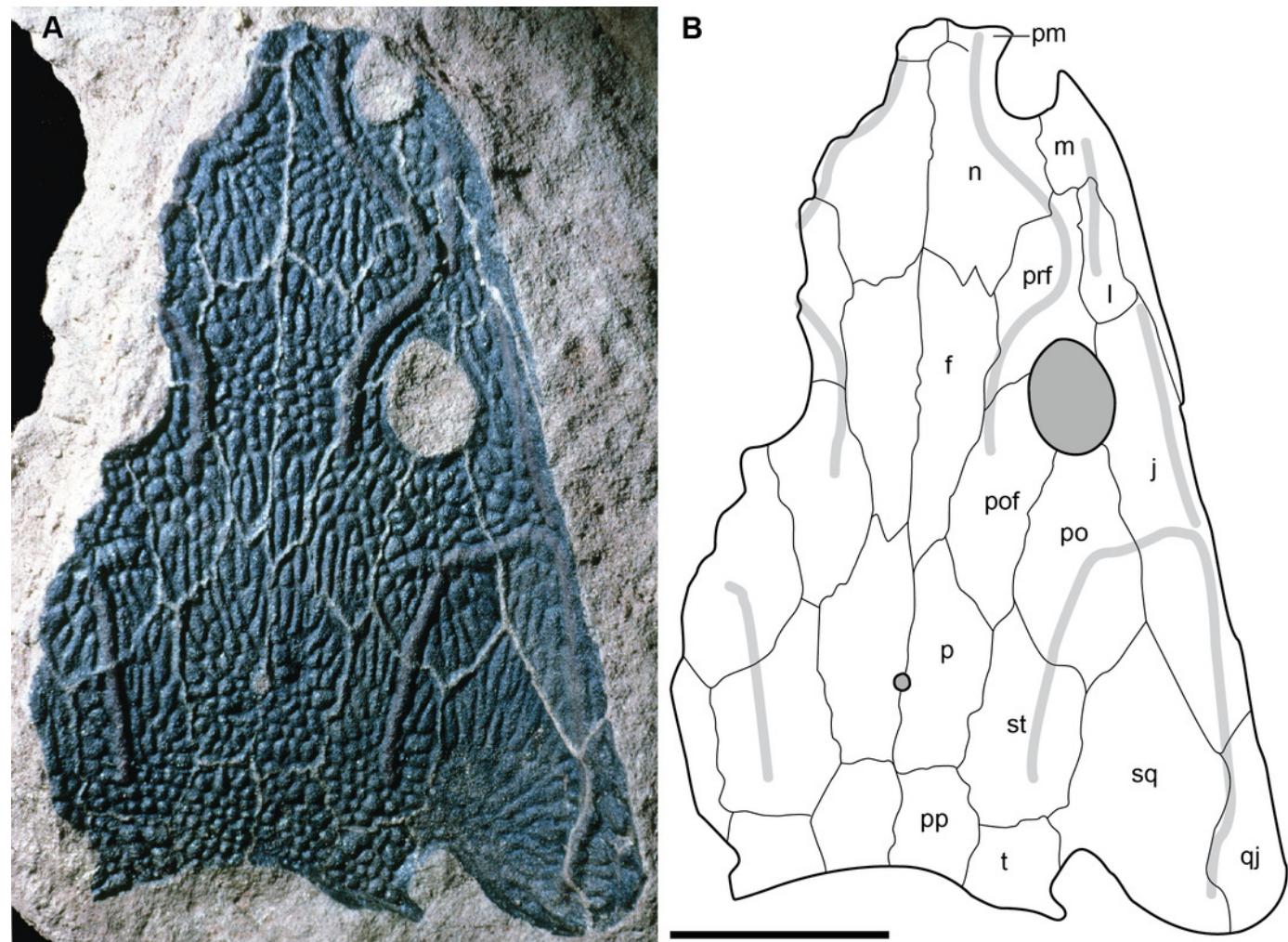
Comparison of genus-level placement of *Buettnererpeton bakeri* relative to other metoposaurids over time, with an emphasis on North American taxa.


Studies are ordered chronologically from top to bottom and are not an exhaustive list. Note that highly fragmentary taxa (*Eupelor durus*, *Metoposaurus fraasi*, *Metoposaurus jonesi*) are excluded due to space constraints. *Metoposaurus diagnosticus* is included as an 'outgroup,' and *Panthasaurus maleriensis* is included because it has sometimes been synonymized with *Anaschisma browni*. Arrows represent implicit or explicit continuity of genus-level placements. Asterisks indicate that the placement was marked as questionable by those authors based on the use of quotation marks.



## Figure 3

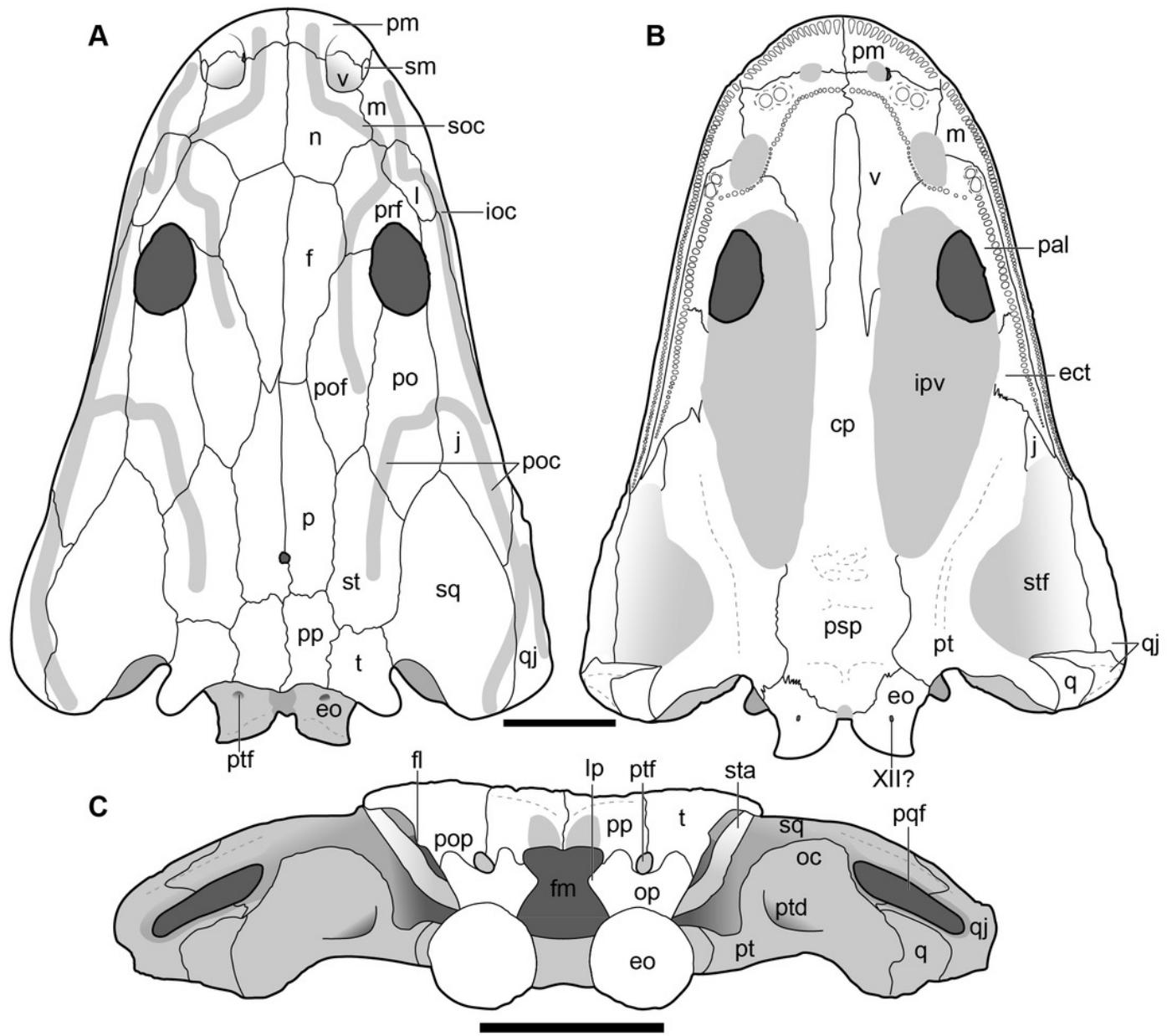
Comparison of previous phylogenetic hypotheses of the Metoposauridae.


**(A)** Non-computer-assisted topology of Hunt (1993); **(B)** pruned clade from the computer-assisted analysis of McHugh (2012); **(C)** topology from the computer-assisted analysis of Chakravorti & Sengupta (2018); **(D)** topology from the computer-assisted analysis of Gee, Parker & Marsh (2019); **(E)** topology from the computer-assisted analysis of Buffa, Jalil & Steyer (2019). Colors represent geographic regions. Names are updated to those employed in the current framework.



## Figure 4

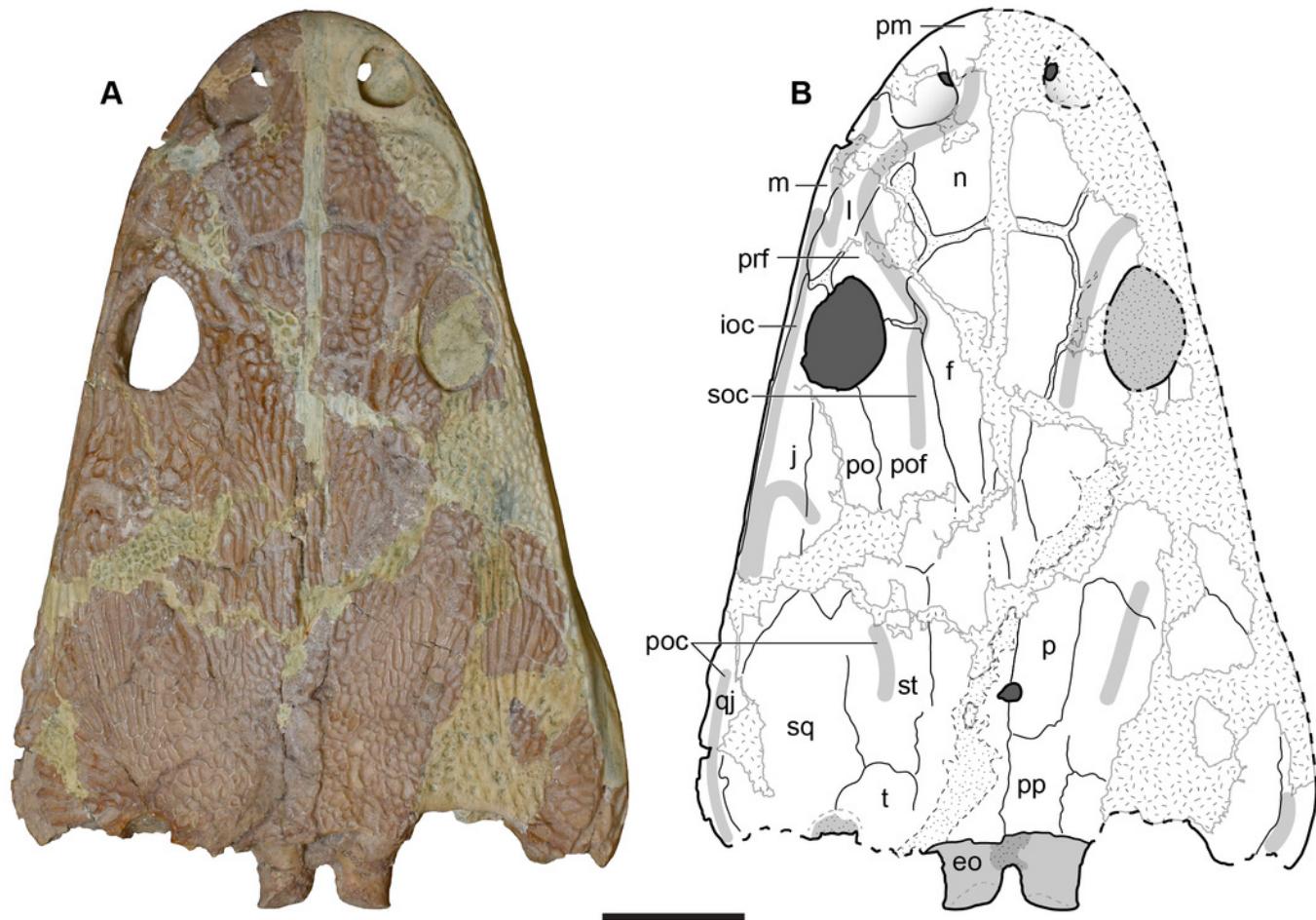
Referred specimen of *Buettnerpeton bakeri* from the Wolfville Formation of Nova Scotia, YPM VPPU 021742.


(A) photograph (image credit: Hans-Dieter Sues); (B) interpretive line drawing. Note that the specimen is a natural mold and is therefore a mirrored impression of the dorsal surface of the skull. Abbreviations: f, frontal; j, jugal; l, lacrimal; m, maxilla; n, nasal; p, parietal; pm, premaxilla; po, postorbital; pof, postfrontal; pp, postparietal; prf, prefrontal; qr, quadratojugal; sq, squamosal; st, supratemporal; t, tabular. Scale bar equal to 5 cm.



## Figure 5

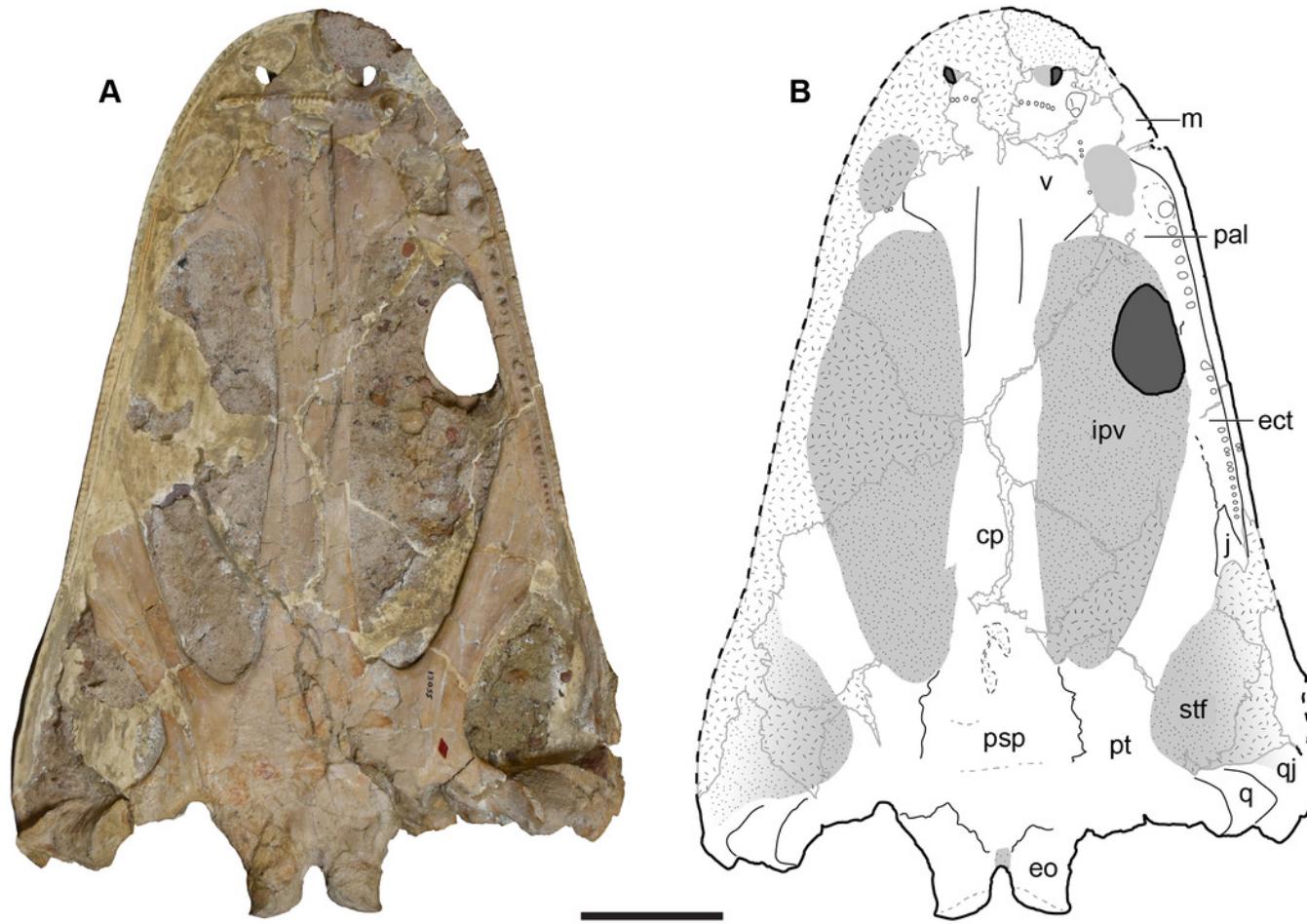
New composite reconstruction of the skull of *Buettnerpeton bakeri*.


**(A)** dorsal view; **(B)** ventral view; **(C)** occipital view. Fine dashed lines represent topographic details like ridges. Abbreviations: eo, exoccipital; f, frontal; j, jugal; l, lacrimal; m, maxilla; n, nasal; p, parietal; pm, premaxilla; po, postorbital; pof, postfrontal; pp, postparietal; prf, prefrontal; qj, quadratojugal; sq, squamosal; st, supratemporal; t, tabular. Scale bars equal to 5 cm.



## Figure 6

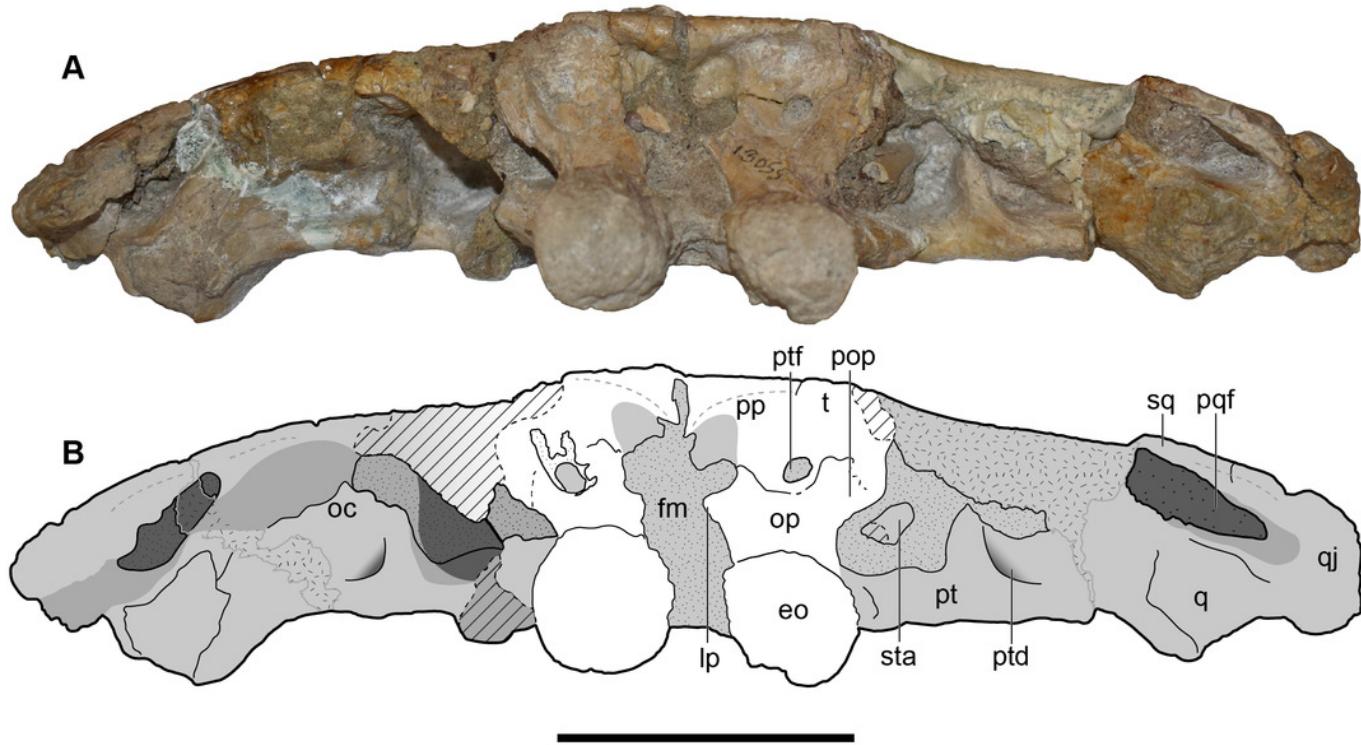
Dorsal view of the holotype skull of *Buettnererpeton bakeri*, UMMP 13055.


(A) photograph; (B) interpretive line drawing. Hatching represents plaster reconstruction; stippling represents residual matrix; dashed gray lines represent raised contours/ridges. Abbreviations: f, frontal; ioc, infraorbital canal; j, jugal; l, lacrimal; m, maxilla; n, nasal; p, parietal; pm, premaxilla; po, postorbital; poc, postorbital canal; pof, postfrontal; pp, postparietal; prf, prefrontal; qj, quadratojugal; soc, supraorbital canal; sq, squamosal; st, supratemporal; t, tabular. Scale bar equal to 5 cm.



## Figure 7

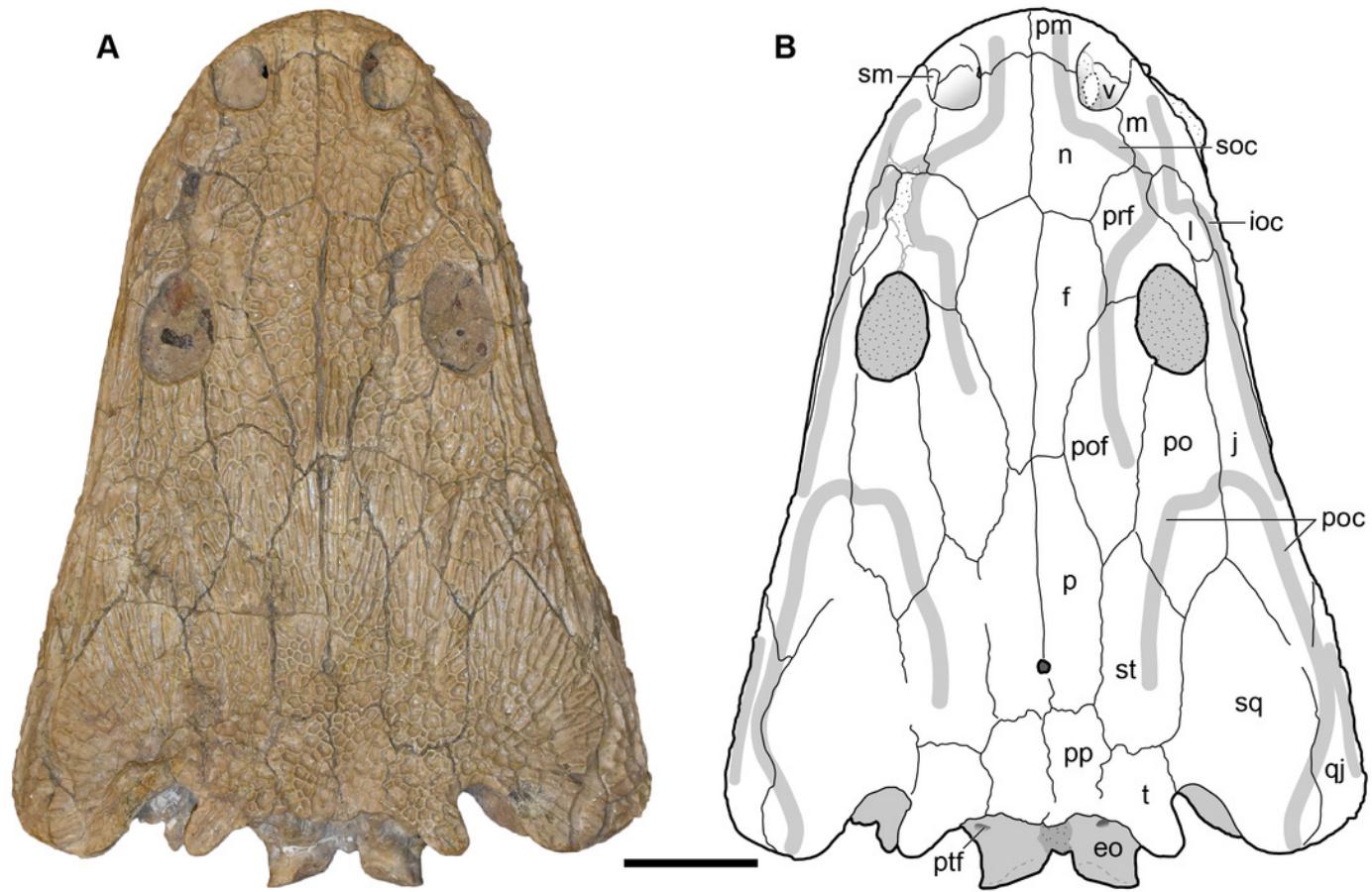
Ventral view of the holotype skull of *Buettnererpeton bakeri*, UMMP 13055.


**(A)** photograph; **(B)** interpretive line drawing. Hatching represents plaster reconstruction; stippling represents residual matrix; dashed gray lines represent raised contours/ridges. Abbreviations: cp, cultriform process; ect, ectopterygoid; eo, exoccipital; ipv, interpterygoid vacuity; m, maxilla; pal, palatine; psp, parasphenoid; pt, pterygoid; q, quadrate; qj, quadratojugal; stf, subtemporal fenestra; v, vomer. Scale bar equal to 5 cm.



## Figure 8

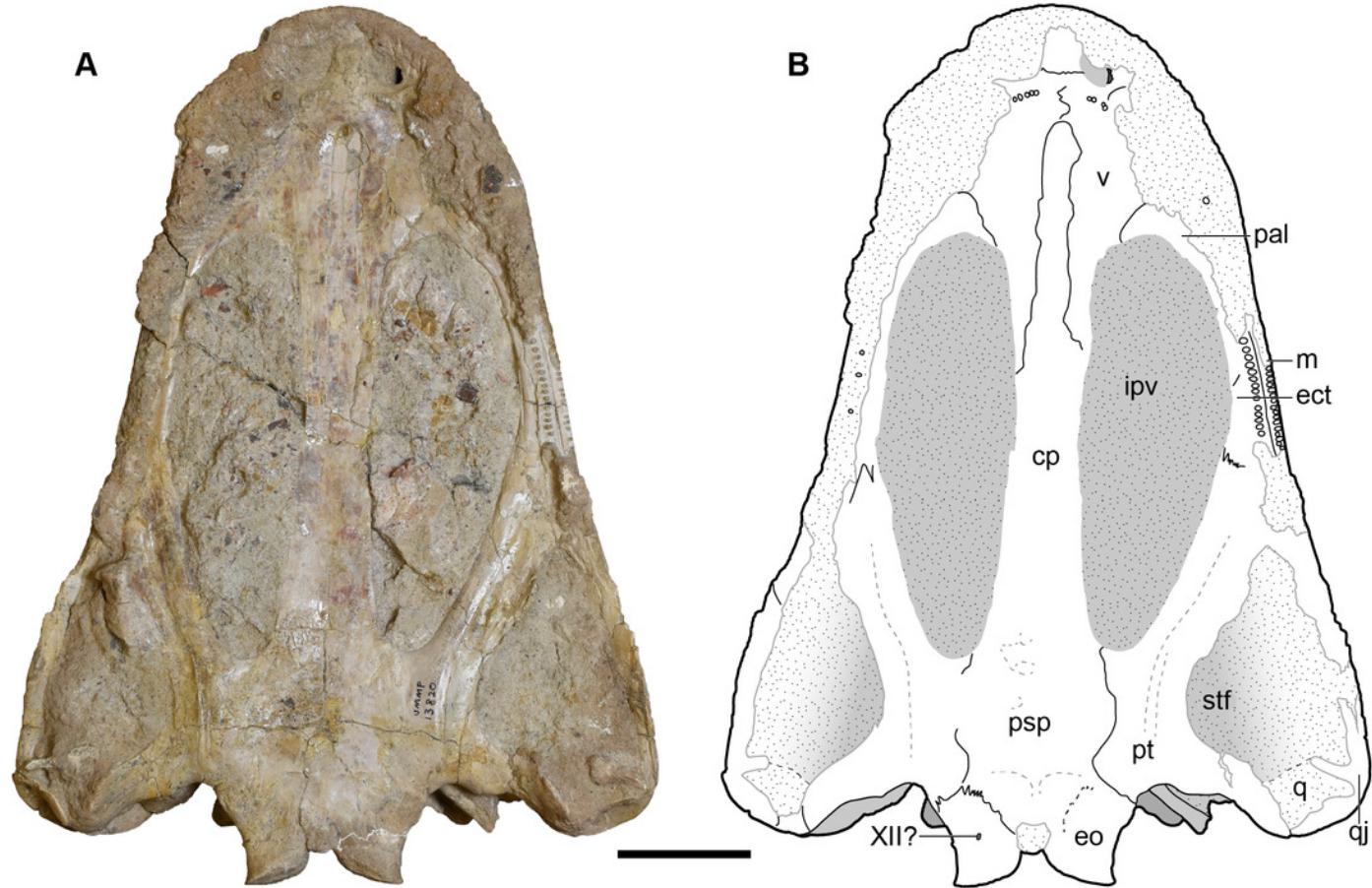
Occipital view of the holotype skull of *Buettnererpeton bakeri*, UMMP 13055.


**(A)** photograph; **(B)** interpretive line drawing. Hatching represents plaster reconstruction; stippling represents residual matrix; dashed gray lines represent raised contours/ridges; diagonal lines represent broken surfaces. Abbreviations: eo, exoccipital; fl, flange on the parotic process of the tabular; oc, oblique crest of the pterygoid; op, occipital pillar; pop, parotic process of the tabular; pp, postparietal; pqf, paraquadrate foramen; pt, pterygoid; ptd, pterygoid depression; ptf, posttemporal foramen; q, quadrate; qj, quadratojugal; sq, squamosal; sta?, stapes?; t, tabular. Scale bar equal to 5 cm.



## Figure 9

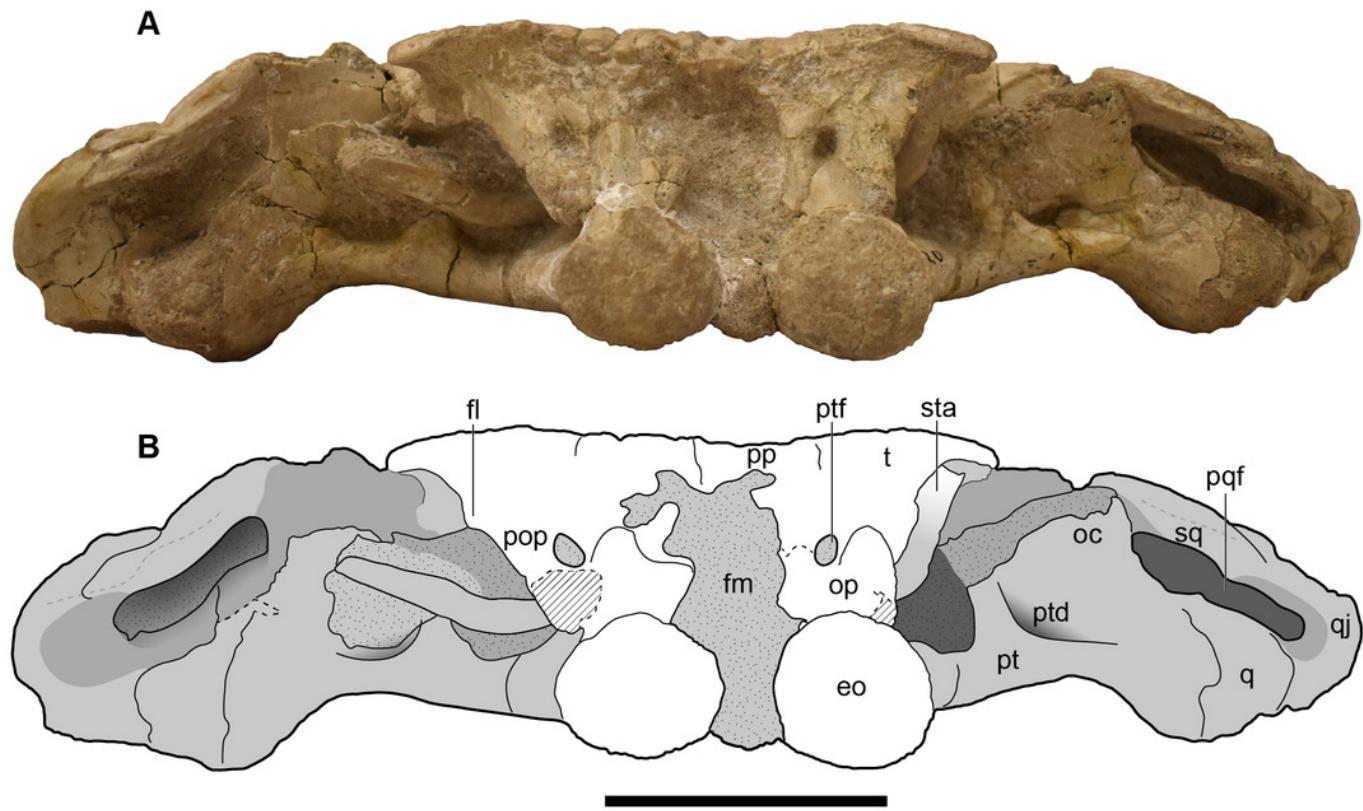
Dorsal view of a referred skull of *Buettnererpeton bakeri*, UMMP 13820.


(A) photograph; (B) interpretive line drawing. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges. Abbreviations: eo, exoccipital; f, frontal; ioc, infraorbital canal; j, jugal; l, lacrimal; m, maxilla; n, nasal; p, parietal; pm, premaxilla; po, postorbital; poc, postorbital canal; pof, postfrontal; pp, postparietal; prf, prefrontal; ptf, posttemporal foramen; qj, quadratojugal; sm, septomaxilla; soc, supraorbital canal; sq, squamosal; st, supratemporal; t, tabular; v, vomer;. Scale bar equal to 5 cm.



## Figure 10

Ventral view of a referred skull of *Buettnererpeton bakeri*, UMMP 13820.

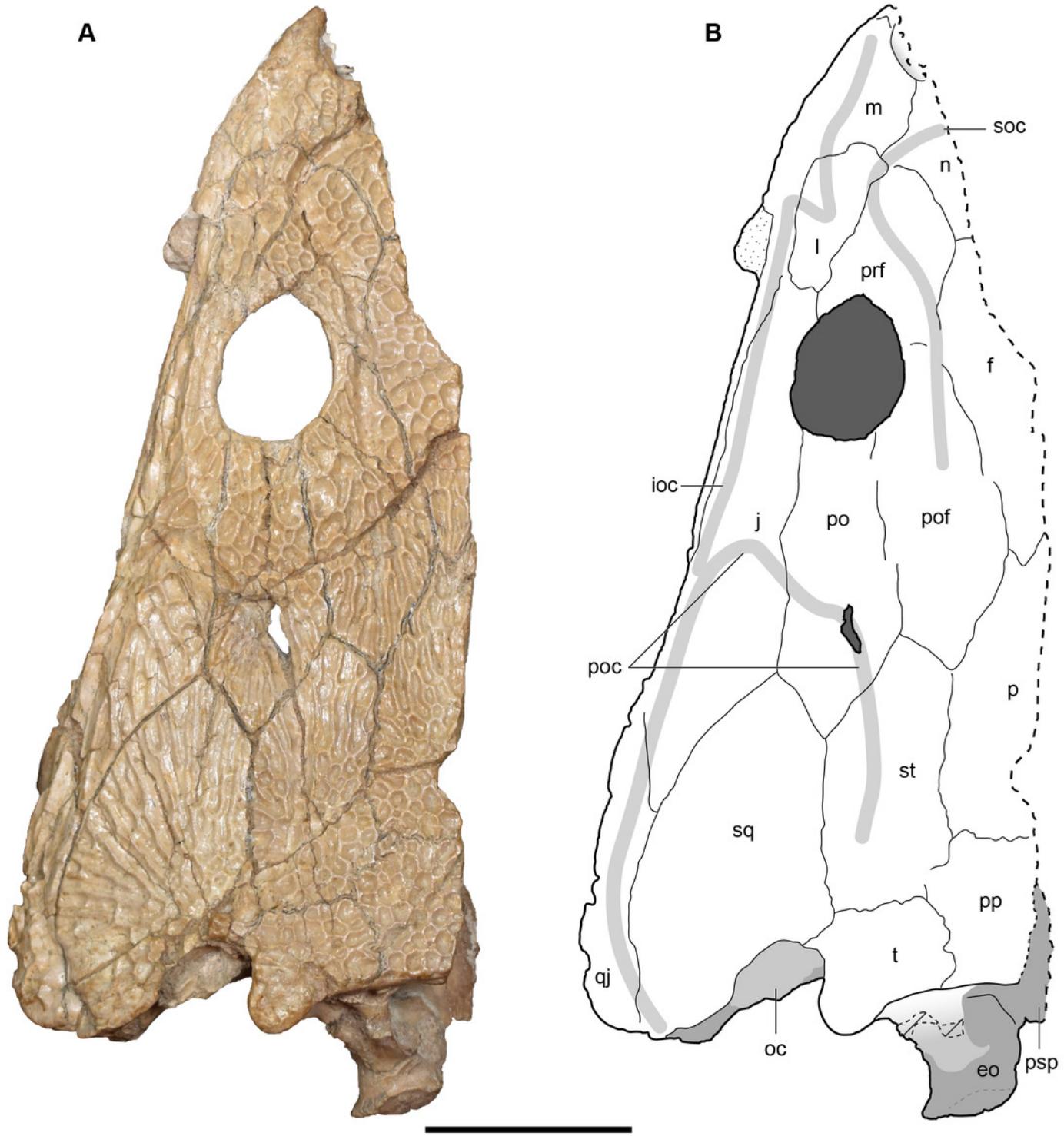

(A) photograph; (B) interpretive line drawing. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges. Abbreviations: cp, cultriform process; ect, ectopterygoid; eo, exoccipital; ipv, interpterygoid vacuity; j, jugal; m, maxilla; pal, palatine; psp, parasphenoid; pt, pterygoid; ptf, posttemporal foramen; q, quadrate; qj, quadratojugal; stf, subtemporal fenestra; v, vomer; XII?, foramen for cranial nerve XII?. Scale bar equal to 5 cm.



## Figure 11

Occipital view of a referred skull of *Buettnererpeton bakeri*, UMMP 13820.

(A) photograph in occipital view; (B) interpretive line drawing of the same. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges; diagonal lines represent broken surfaces. Abbreviations: eo, exoccipital; fl, flange on the parotic process of the tabular; fm, foramen magnum; oc, oblique crest of the pterygoid; op, occipital pillar; pop, parotic process of the tabular; pp, postparietal; pqf, paraquadrate foramen; pt, pterygoid; ptd, pterygoid depression; ptf, posttemporal foramen; q, quadrate; qj, quadratojugal; sq, squamosal; sta, stapes; t, tabular. Scale bar equal to 5 cm.

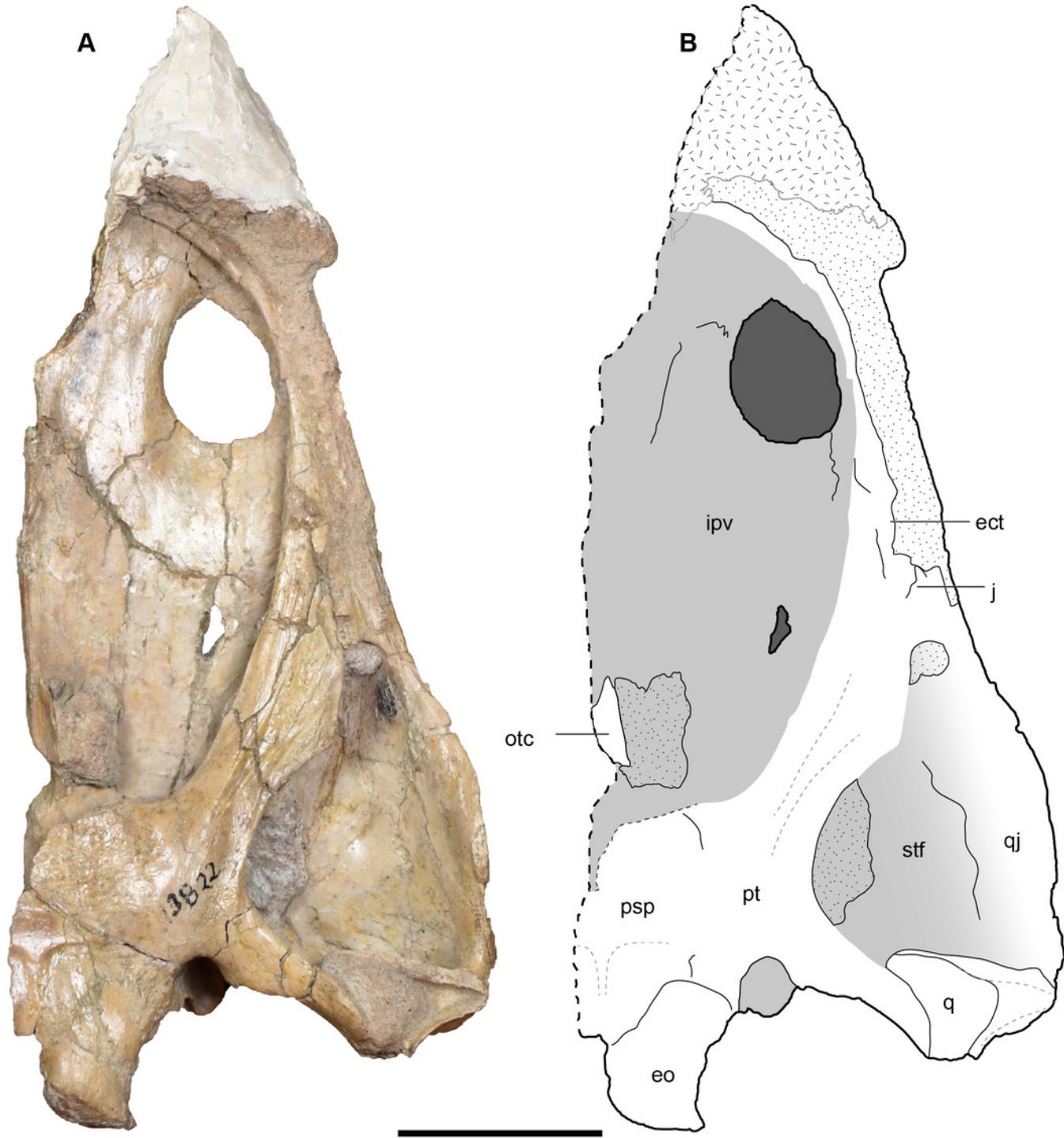



## Figure 12

Dorsal view of a referred partial left skull of *Buettnererpeton bakeri*, UMMP 13822.

(A) photograph; (B) interpretive line drawing. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges; diagonal lines represent broken surfaces.

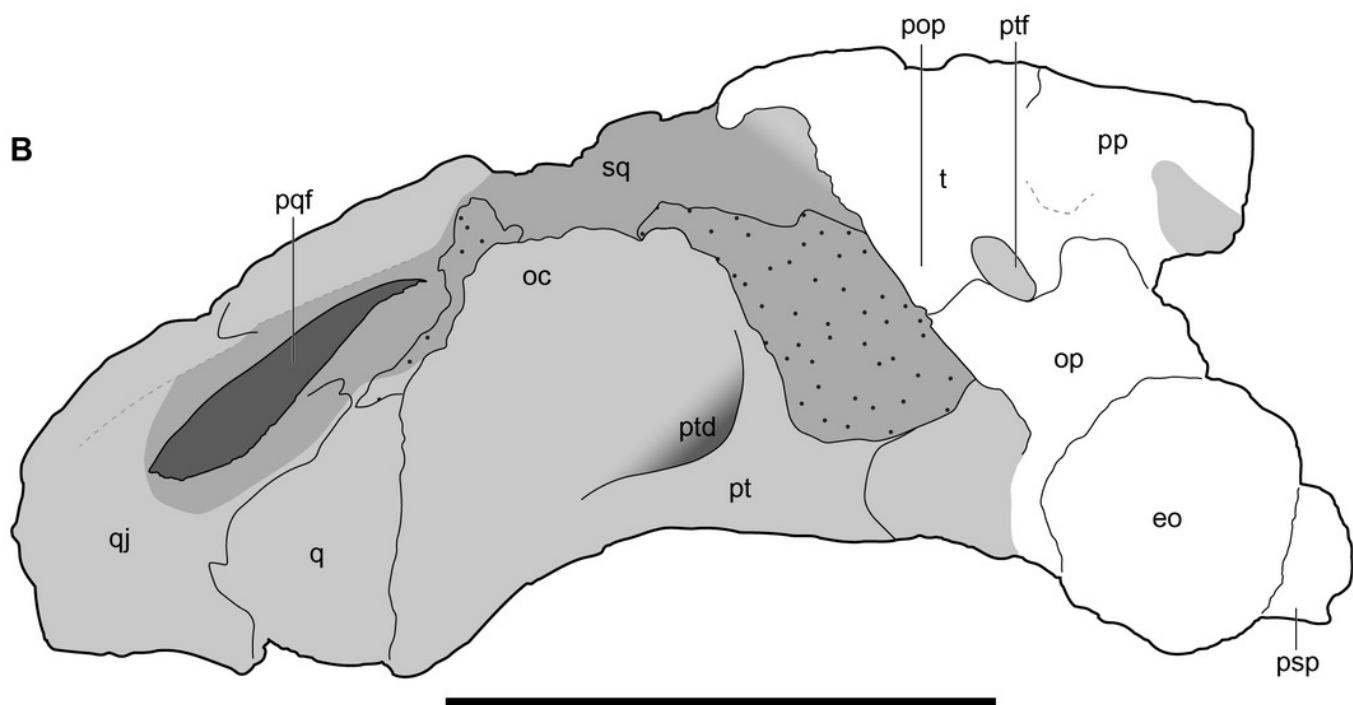
Abbreviations: eo, exoccipital; f, frontal; ioc, infraorbital canal; j, jugal; l, lacrimal; m, maxilla; n, nasal; oc, oblique crest of the pterygoid; p, parietal; po, postorbital; poc, postorbital canal; pof, postfrontal; pp, postparietal; prf, prefrontal; psp, parasphenoid; qj, quadratojugal; soc, supraorbital canal; sq, squamosal; st, supratemporal; t, tabular. Scale bar equal to 5 cm.




## Figure 13

Ventral view of a referred partial left skull of *Buettnererpeton bakeri*, UMMP 13822.

(A) photograph; (B) interpretive line drawing. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges; diagonal lines represent broken surfaces.


Abbreviations: ect, ectopterygoid; eo, exoccipital; ipv, interpterygoid vacuity; j, jugal; otc, orbitotemporal crest; psp, parasphenoid; pt, pterygoid; q, quadrate; qj, quadratojugal; stf, subtemporal fenestra. Scale bar equal to 5 cm.



## Figure 14

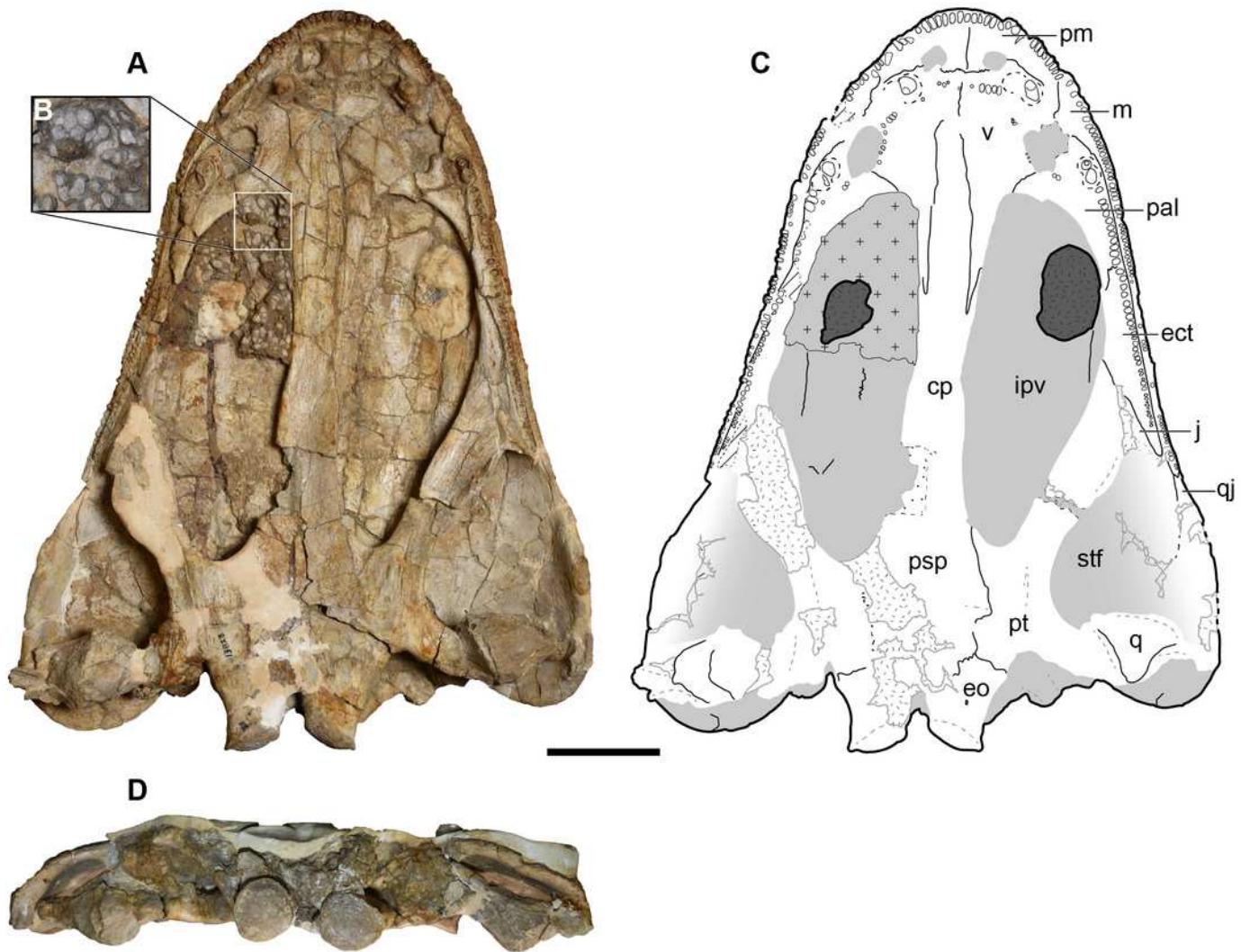
Occipital view of a referred partial left skull of *Buettnererpeton bakeri*, UMMP 13822.

(A) photograph; (B) interpretive line drawing. Stippling represents residual matrix; dashed gray lines represent raised contours/ridges. Abbreviations: eo, exoccipital; oc, oblique crest of the pterygoid; op, occipital pillar; pop, parotic process of the tabular; pp, postparietal; pqf, paraquadrate foramen; psp, parasphenoid; pt, pterygoid; ptd, pterygoid depression; ptf, posttemporal foramen; q, quadrate; qj, quadratojugal; sq, squamosal; t, tabular. Scale bar equal to 5 cm.

**A****B**

## Figure 15

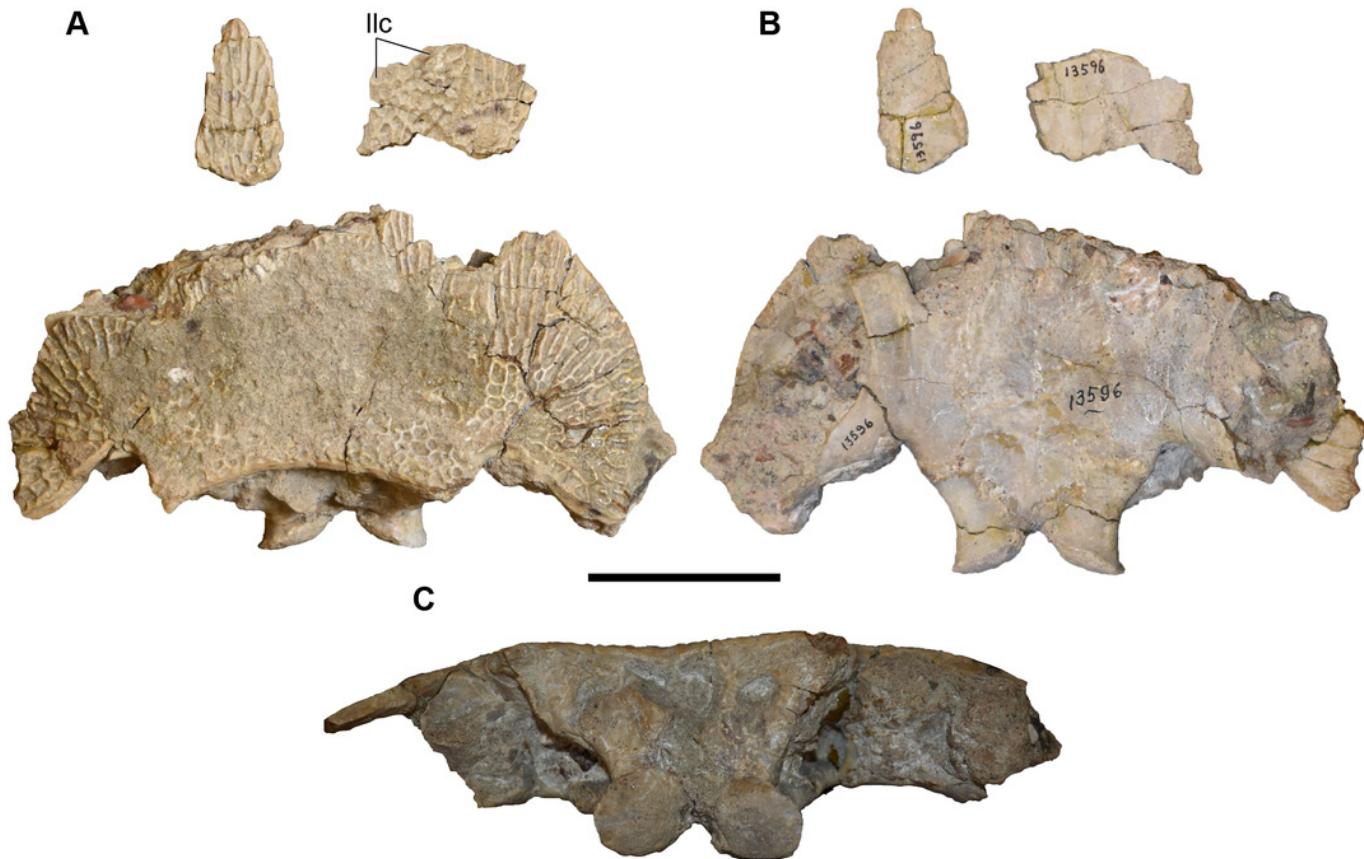
Lateral and medial views of a referred partial left skull of *Buettnererpeton bakeri*, UMMP 13822.


(A) photograph in left lateral view; (B) photograph in medial view. Abbreviation: epi, epipterygoid. 'Clay' indicates a small amount of putty that was used to position the skull for photography. Scale bar equal to 5 cm.



## Figure 16

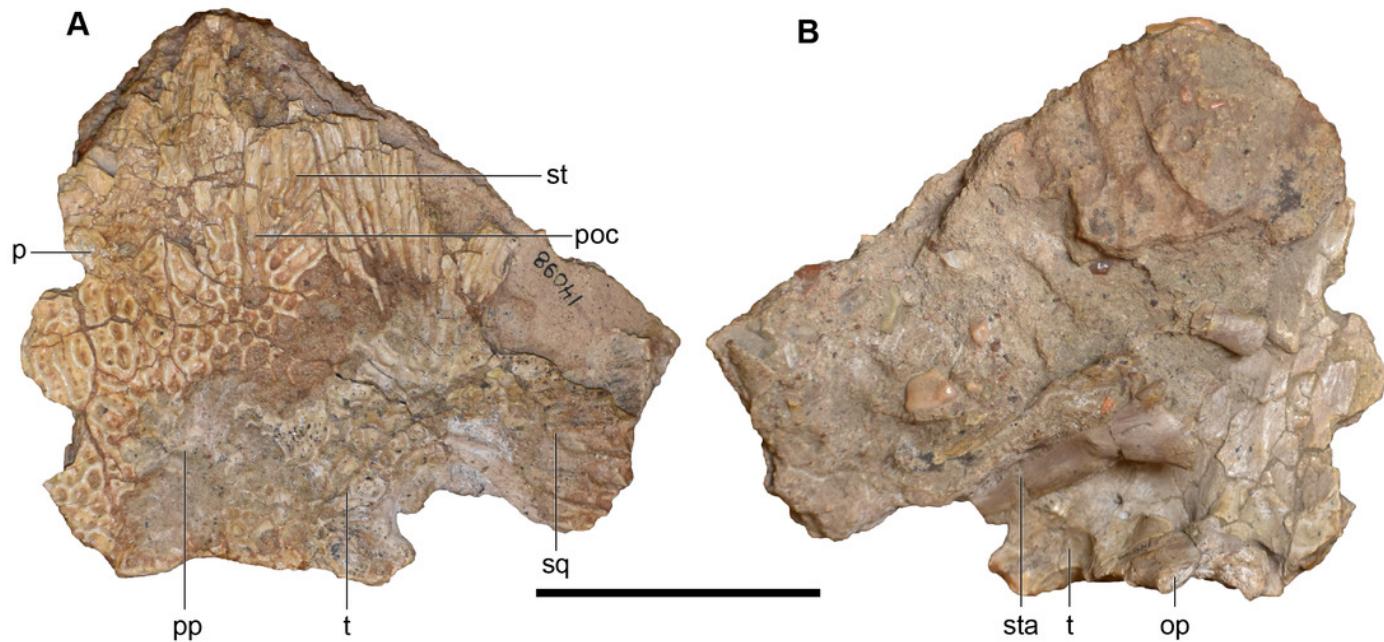
Ventral and occipital views of a referred partial left skull of *Buettnererpeton bakeri*, UMMP 13823.


**(A)** photograph in ventral view; **(B)** inset showing close-up image of the palatal plates in the interpterygoid vacuities; **(C)** interpretive line drawing in ventral view; **(D)** photograph in occipital view. Abbreviations: cp, cultriform process; ect, ectopterygoid; eo, exoccipital; ipv, interpterygoid vacuity; j, jugal; m, maxilla; pm, premaxilla; psp, parasphenoid; pt, pterygoid; q, quadrate; qj, quadratojugal; stf, subtemporal fenestra; v, vomer. Scale bar equal to 5 cm.



## Figure 17

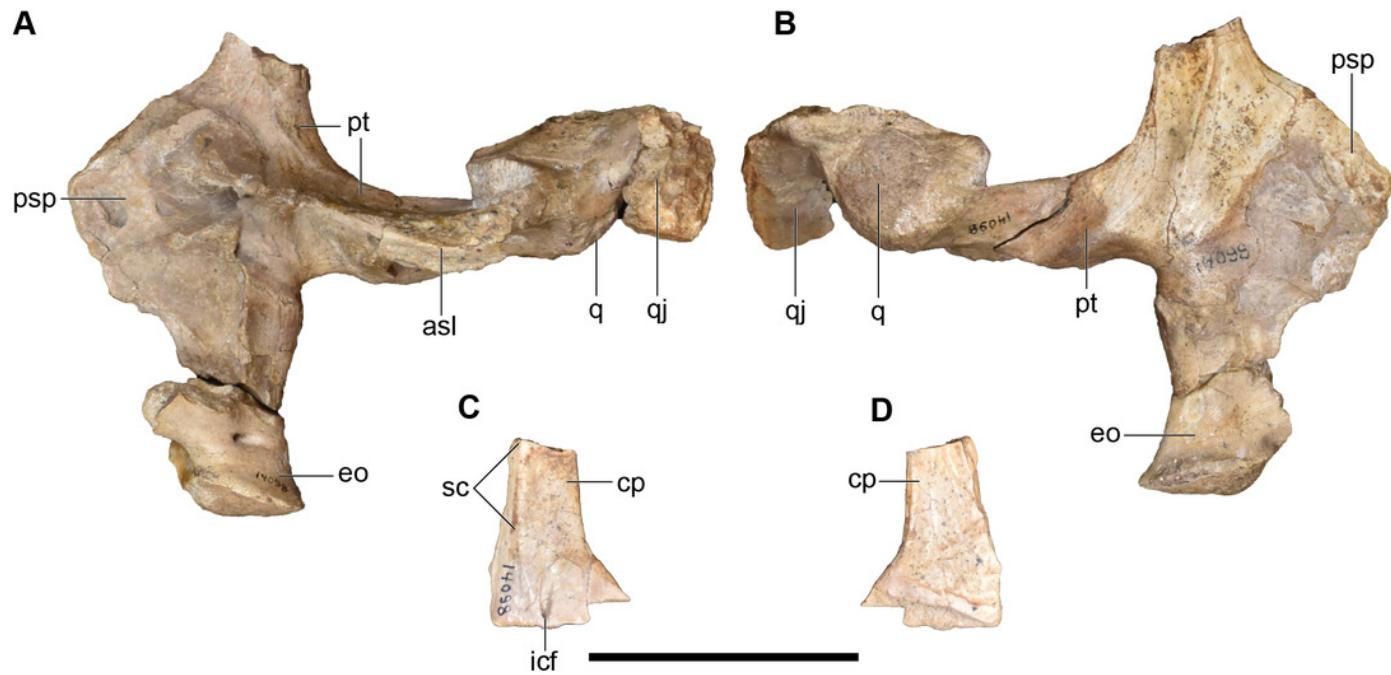
Photographs of a referred posterior skull of *Buettnererpeton bakeri*, UMMP 13956.


(A) dorsal view; (B) ventral view; (C) occipital view. Scale bar equal to 5 cm.



## Figure 18

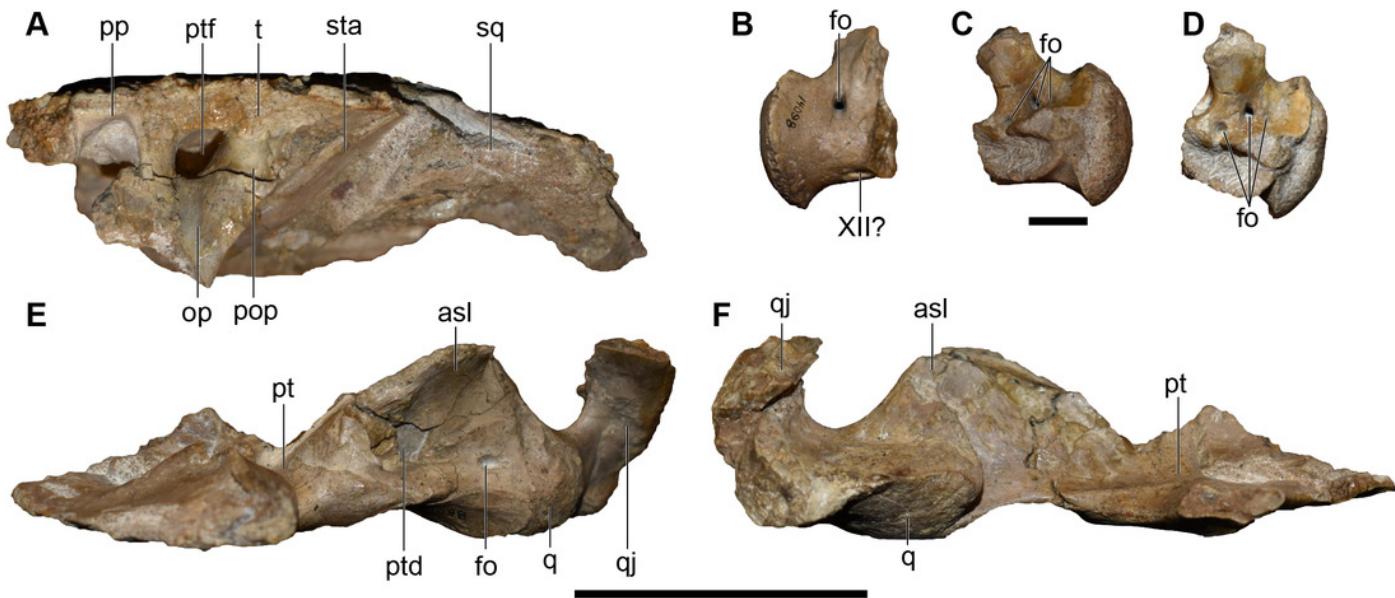
Photographs of the skull roof of a referred partial posterior right skull of *Buettnererpeton bakeri*, UMMP 14098.


(A) photograph in dorsal view; (B) photograph in ventral view. Abbreviations: op, occipital pillar; p, parietal; poc, postorbital canal; pp, postparietal; sq, squamosal; st, supratemporal; sta, stapes; t, tabular. Scale bar equal to 5 cm.



## Figure 19

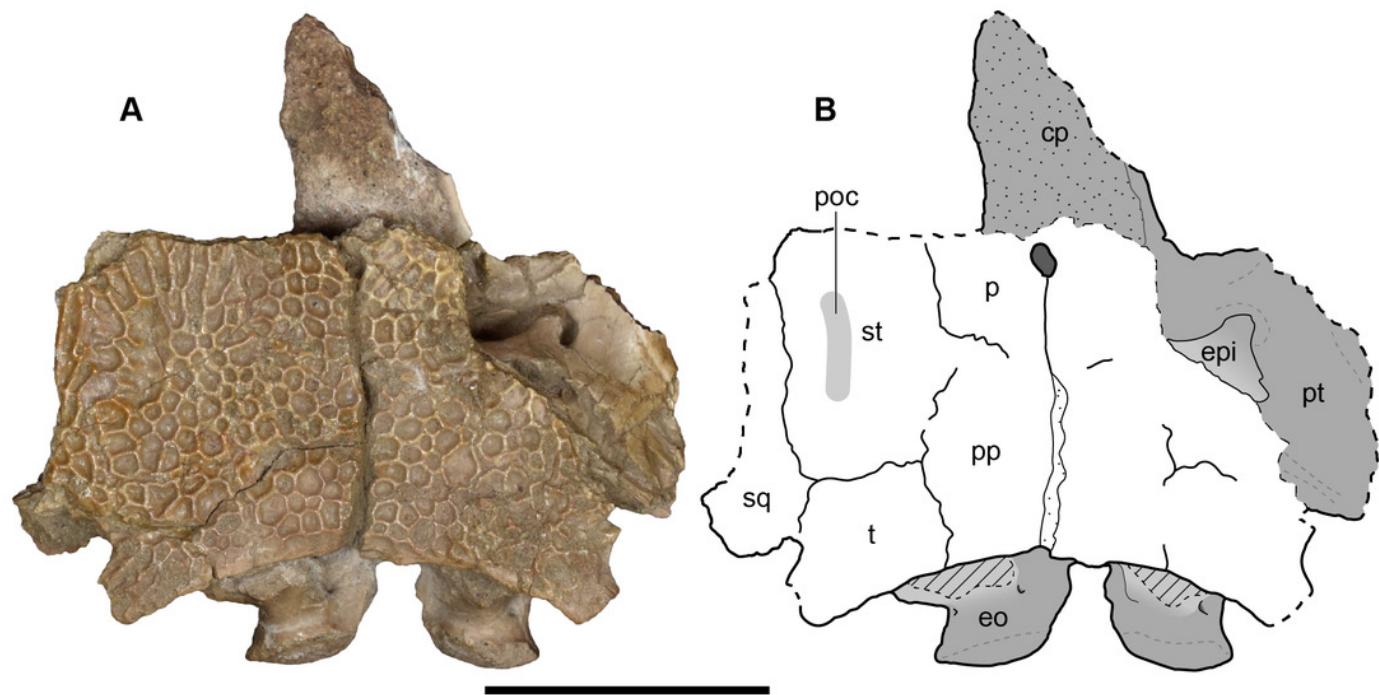
Photographs of the palate and occiput of a referred partial posterior right skull of *Buettnererpeton bakeri*, UMMP 14098


**(A)** palate and occiput in dorsal view; **(B)** palate and occiput in ventral view; **(C)** cultriform process in dorsal view; **(D)** cultriform process in ventral view. Abbreviations: asl, ascending lamina of the pterygoid; cp, cultriform process of the parasphenoid; eo, exoccipital; icf, internal carotid foramen; psp parasphenoid; pt, pterygoid; q, quadrate; qj, quadratojugal; sc, sphenethmoidal crest. Scale bar equal to 5 cm.



## Figure 20

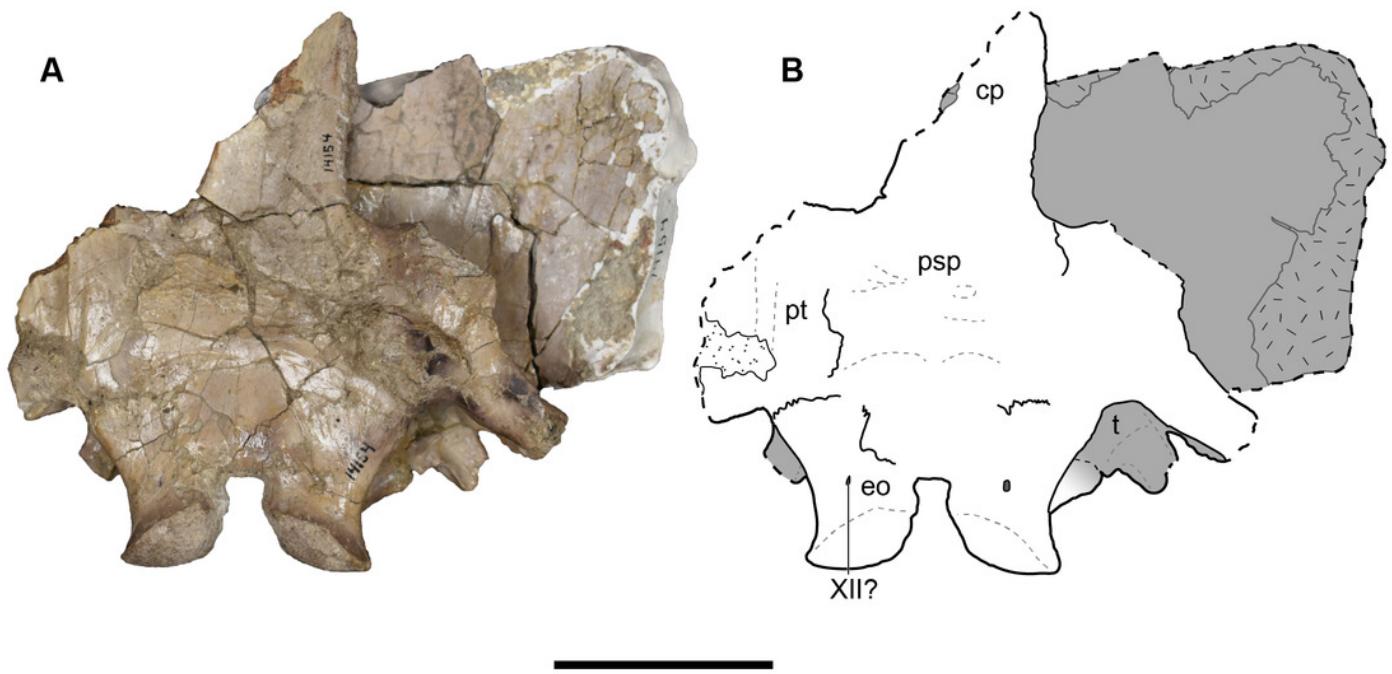
Photographs of the skull roof, palate, and occiput of a referred partial posterior right skull of *Buettnererpeton bakeri*, UMMP 14098.


(A) skull roof in occipital view; (B) exoccipital in lateral view; (C) the same in medial view; (D) the same in oblique posterodorsal view; (E) palate with exoccipital removed in occipital view; (F) partial palate in anterior view. Abbreviations: asl, ascending lamina of the pterygoid; cp, cultriform process of the parasphenoid; fo, foramen; op, occipital pillar; pop, parotic process of the tabular; pp, postparietal; psp parasphenoid; pt, pterygoid; ptd, pterygoid depression; q, quadrate; qj, quadratojugal, ptf, posttemporal foramen; sq, squamosal; sta, stapes; t, tabular; XII?, foramen for cranial nerve XII?. All elements to same scale. Scale bars under (A, E-F) equal to 5 cm; scale bar under (B-D) equal to 1 cm.



## Figure 21

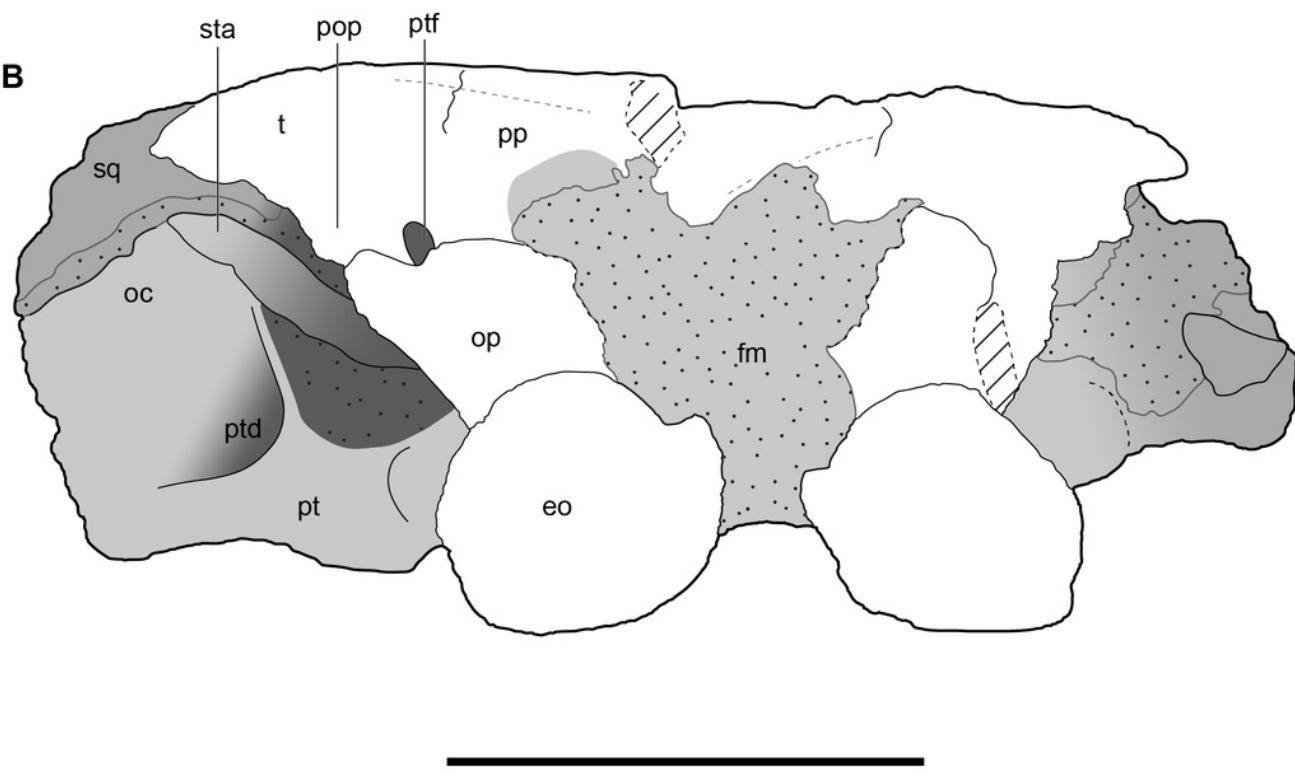
Dorsal view of a referred occiput and posterior skull roof of *Buettnererpeton bakeri*, UMMP 14154.


**(A)** photograph; **(B)** interpretive line drawing. Abbreviations: cp, cultriform process; eo, exoccipital; epi, epipterygoid; p, parietal; poc, postorbital canal; pp, postparietal; psp, parasphenoid; pt, pterygoid; sq, squamosal; st, supratemporal; t, tabular. Scale bar equal to 5 cm.



## Figure 22

Ventral view of a referred occiput and posterior skull roof of *Buettnererpeton bakeri*, UMMP 14154.


(A) photograph; (B) interpretive line. Abbreviations: cp, cultriform process; eo, exoccipital; psp, parasphenoid; pt, pterygoid; t, tabular; XII?, foramen for cranial nerve XII?. Scale bar equal to 5 cm.



## Figure 23

Occipital view of a referred occiput and posterior skull roof of *Buettnererpeton bakeri*, UMMP 14154.

**(A)** photograph; **(B)** interpretive line drawing. Abbreviations: eo, exoccipital; fm, foramen magnum; oc, oblique crest of the pterygoid; op, occipital pillar; pop, parotic process of the tabular; pp, postparietal; pt, pterygoid; ptd, pterygoid depression; ptf, posttemporal foramen; sq, squamosal; sta, stapes; t, tabular. Scale bar equal to 5 cm.

**A****B**

## Figure 24

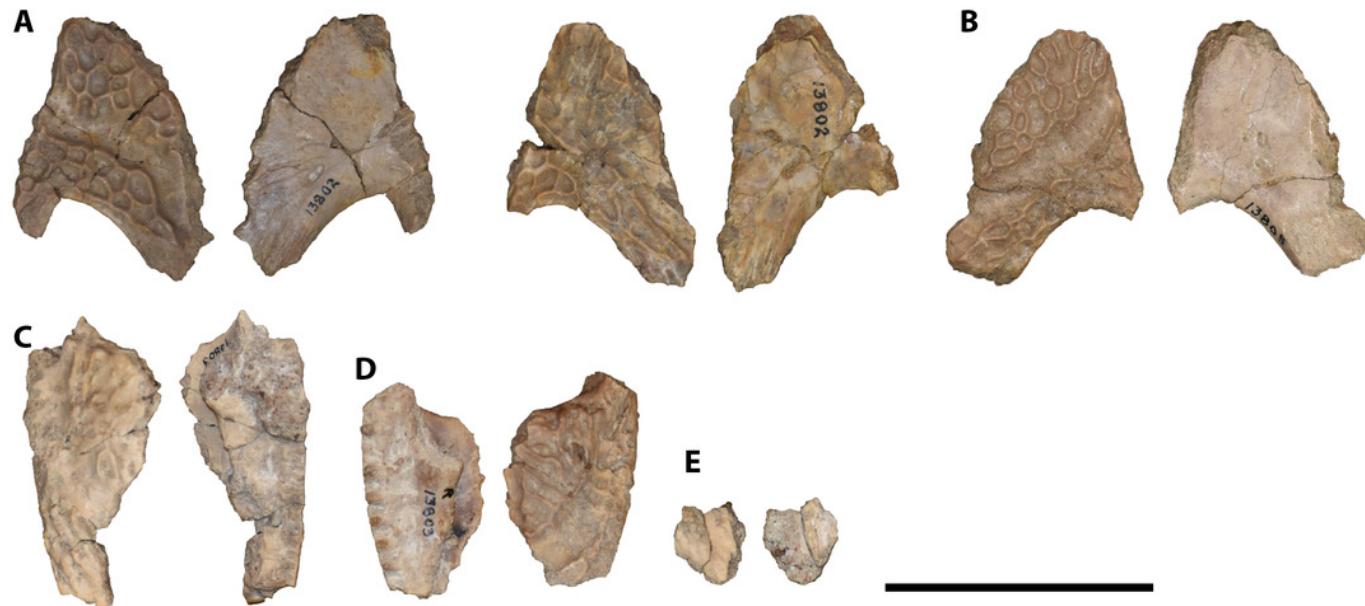
The remaining material associated with UMMP 14262, purportedly the anterior half of a skull of a referred specimen of *Buettnererpeton bakeri*.

(A) the largest remaining fragment in three views; (B) vial containing additional fragments.

Scale bar equal to 1 cm.

**A**




**B**



## Figure 25

Isolated antorbital elements referred to *Buettnererpeton bakeri*.

(A) UMM 13802, two left prefrontals in dorsal (left) and ventral (right) views; (B) UMM 13805, right prefrontal in dorsal (left) and ventral (right) views; (C) UMM 13803 (in part), partial left maxilla in dorsal (left) and ventral (right) views; (D) UMM 13803 (in part), partial right maxilla in dorsal (left) and ventral (right) views; (E) UMM 13803 (in part), maxillary fragment in dorsal (left) and ventral (right) views. Any association between the various parts of UMM 13803 is not apparent. Scale bar equal to 5 cm.



## Figure 26

Isolated median cranial elements referred to *Buettnererpeton bakeri*.


**(A)** UMM 13809, three partial right nasals in ventral (left) and dorsal (right) views; **(B)** UMM 13811, four partial left nasals in dorsal (left) and ventral (right) views; **(C)** UMM 13814, three right frontals in ventral (left) and dorsal (right) views; **(D)** UMM 13815, two left frontals in dorsal (left) and ventral (right) views; **(E)** UMM 13812, three partial right parietals in ventral (left) and dorsal (right) views; **(F)** UMM 13813, two partial left parietals in dorsal (left) and ventral (right) views; **(G)** UMM 13826, partial right parietal in ventral (left) and dorsal (right) views. All elements are oriented with the anterior face pointing up. Scale bars equal to 5 cm.



## Figure 27

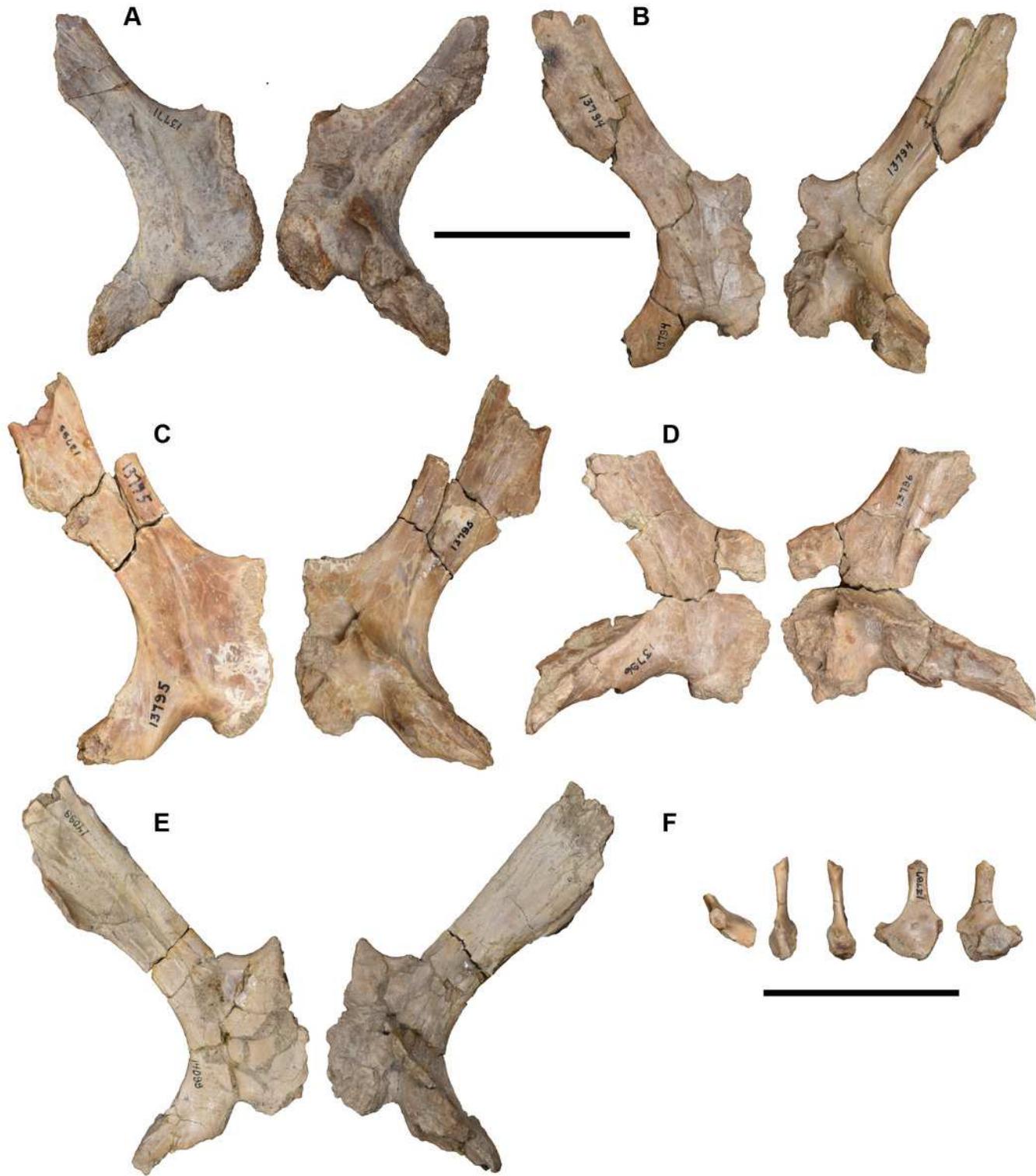
Isolated postorbital cranial elements referred to *Buettnererpeton bakeri*.

(A) UMMP 13816, three partial left squamosals in dorsal (left) and ventral (right) views; (B) UMMP 13817, two partial right squamosals in ventral (left) and dorsal (right) views; (C) UMMP 13829, partial right squamosal in ventral (left), dorsal (right), and posterior (bottom) views; (D) UMMP 13830, partial left squamosal in dorsal (left) and ventral (right) views; (E) UMMP 13968, partial left squamosal in dorsal (left) and ventral (right) views; (F) UMMP 14099 (in part), partial right squamosal in ventral (right) and dorsal (left) views; (G) UMMP 13808, left postfrontal in ventral (left) and dorsal (right) views; (H) UMMP 13807, partial right postorbital in dorsal (left) and ventral (right) views; (I) UMMP 13970, articulated postorbital fragment in ventral view; (J) UMMP 13966, partial right postfrontal in dorsal (left) and ventral (dorsal) views; **UMMP 13793**, four partial supratemporals in ventral (left) and dorsal (right) views. All elements are oriented with the anterior face pointing up. Scale bars equal to 5 cm.



## Figure 28

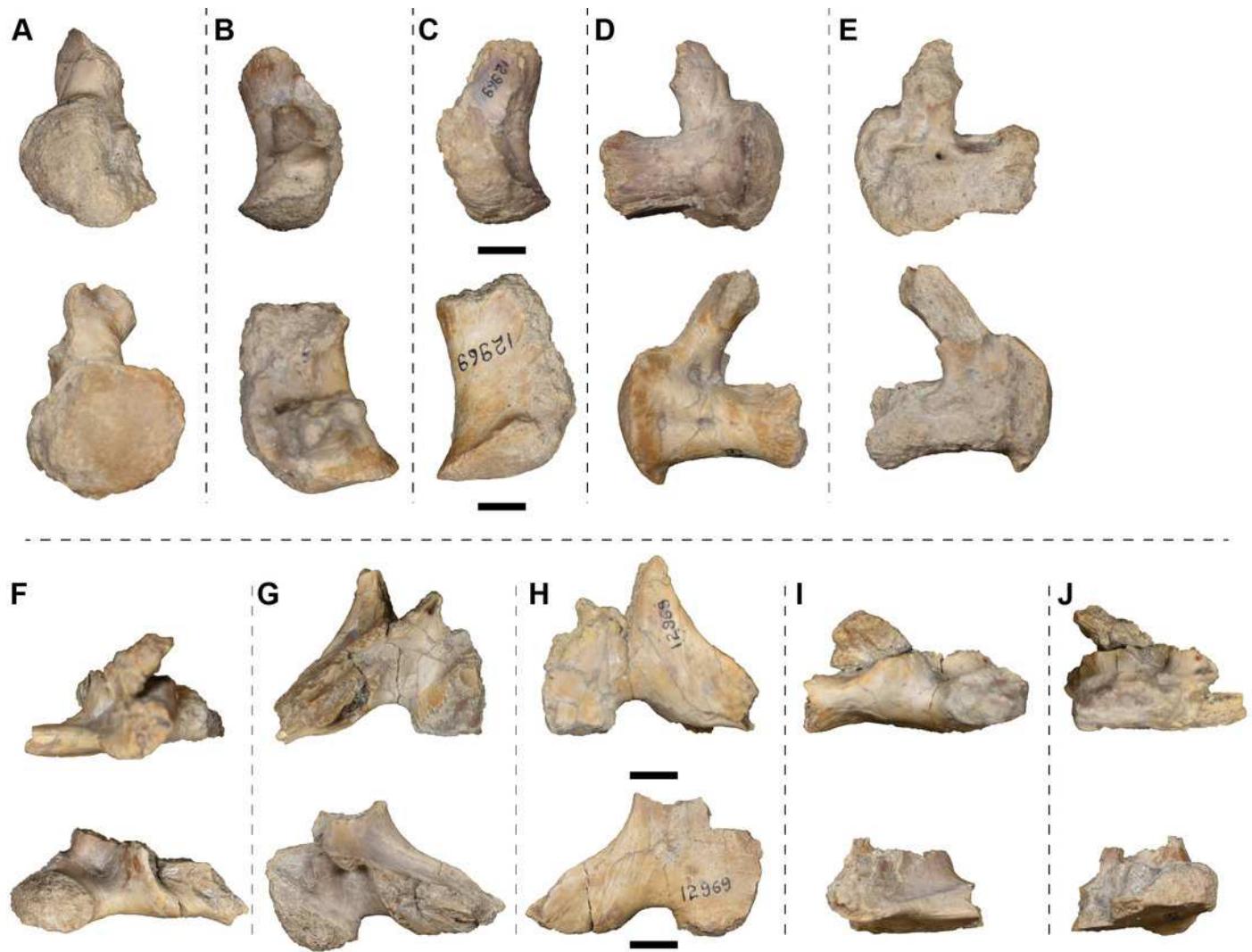
Isolated posterior cranial elements referred to *Buettnererpeton bakeri*.


**(A)** UMM 13797, fragment with mostly complete postparietals and articulated fragments of the parietal in dorsal (left) and ventral (right) views; **(B)** UMM 13798, two partial left postparietals in dorsal (left), ventral (middle), and posterior (right) views; **(C)** UMM 13799, one partial right postparietal and one partial right tabular (association unclear) in dorsal (left) and ventral (right) views; **(D)** UMM 13800, right postparietal and tabular in dorsal (left), ventral (right), and posterior (bottom) views; **(E)** UMM 13801, two partial right postparietals in dorsal (left), ventral (middle), and posterior (right) views; **(F)** UMM 13967, left postparietal and tabular in dorsal (left), ventral (middle), and posterior (right) views; **(G)** UMM 13969, two partial left quadratojugals in dorsal (left), ventral (right), and posterior (bottom) views; **(H)** UMM 13806, two partial right quadratojugals in dorsal (left), ventral (right), and posterior (bottom) views; **(I)** UMM 13818, three partial right quadratojugals in dorsal (left), ventral (right), and posterior (bottom) views; **(J)** UMM 13804, ventral process of a left quadratojugal in dorsal (left) and ventral (right) views. All elements are oriented with the anterior face pointing up. Scale bars equal to 5 cm.



## Figure 29

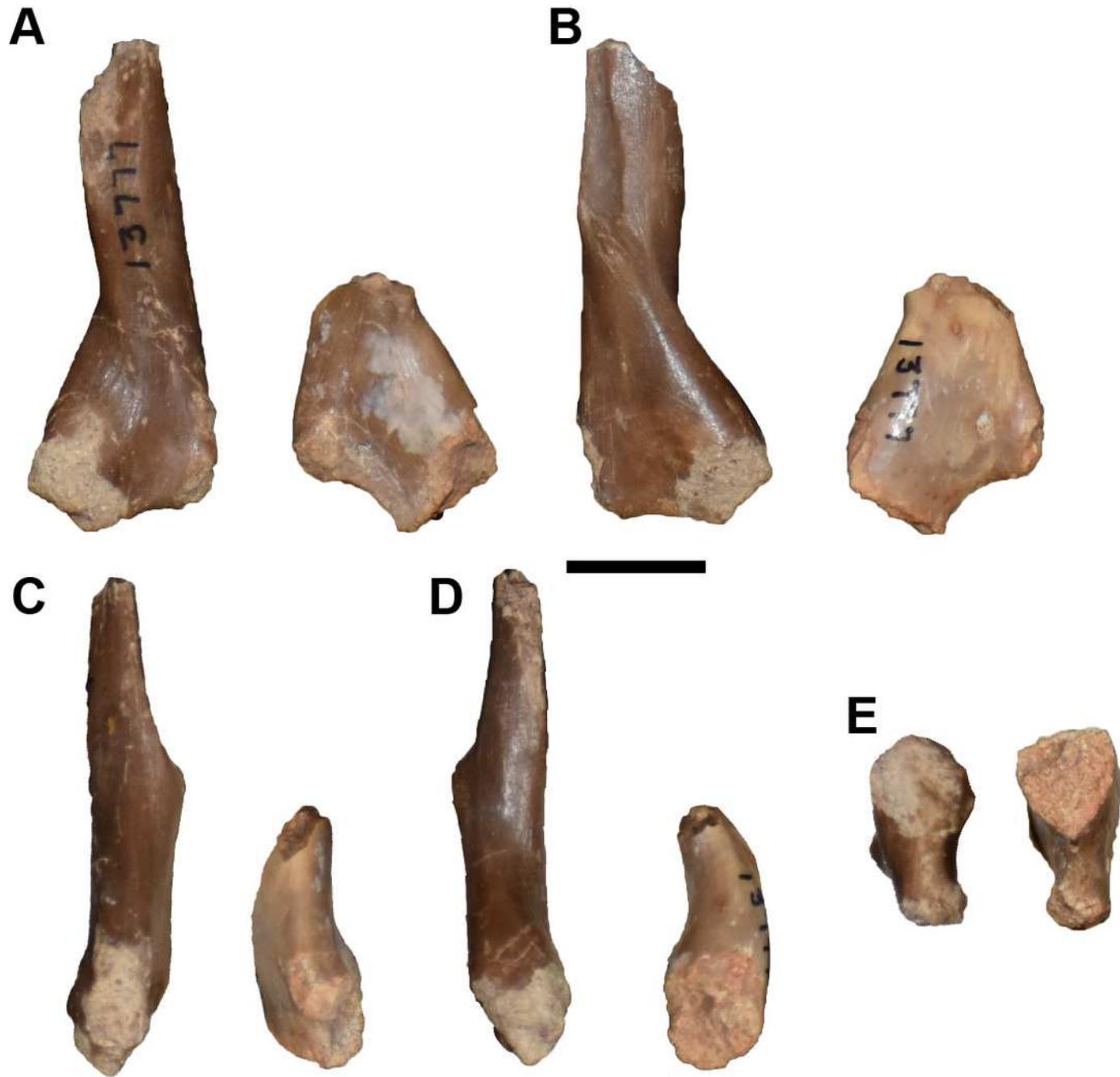
Isolated right pterygoids and left epipterygoid referred to *Buettnerpeton bakeri*.


(A) UMMP 13771 in ventral (left) and dorsal (right) view; (B) UMMP 13794 in ventral (left) and dorsal (right) view; (C) UMMP 13795 in ventral (left) and dorsal (right) view; (D) UMMP 13796 in ventral (left) and dorsal (right) view; (E) UMMP 14099 in ventral (left) and dorsal (right) view; (F) UMMP 13787 in dorsal, anteromedial, posterolateral, anterolateral, and posteromedial view from left to right. Scale bars equal to 5 cm.



## Figure 30

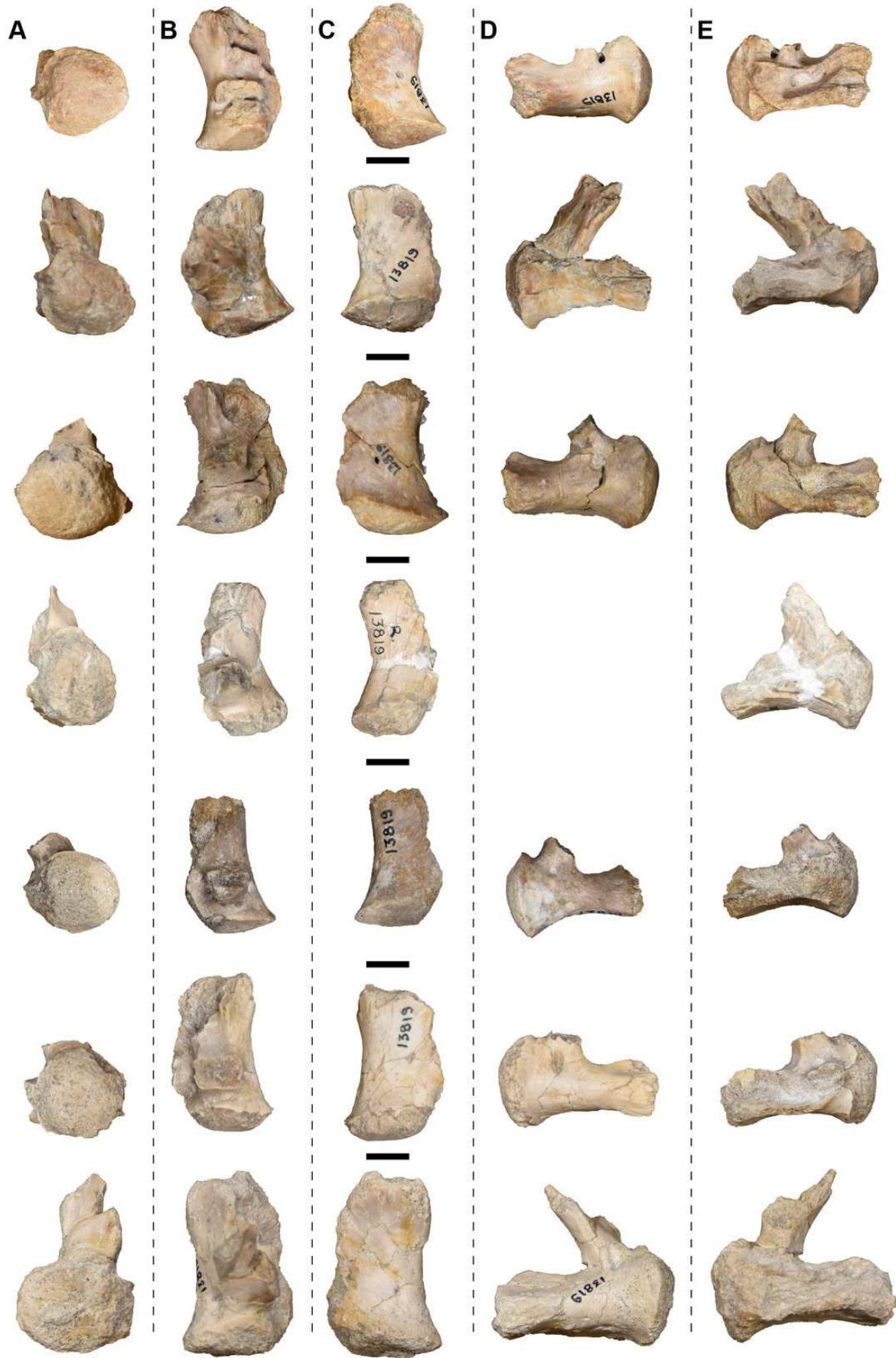
Isolated posterior cranial elements (exoccipitals and partial pterygoids) referred to *Buettnererpeton bakeri*, UMMP 12969.


(A) partial exoccipitals in posterior view; (B) the same in dorsal view; (C) the same in ventral view; (D) the same in lateral view; (E) the same in medial view; (F) partial pterygoids and exoccipitals in posterior view; (G) the same in dorsal view; (H) the same in ventral view; (I) the same in lateral view; (J) the same in medial view. For parts A-E, the left exoccipital is on the top row, and the right exoccipital (not necessarily of the same individual) is on the bottom row. The same siding applies to parts F-J. The same element is imaged in different views horizontally. Scale bars equal to 1 cm.



## Figure 31

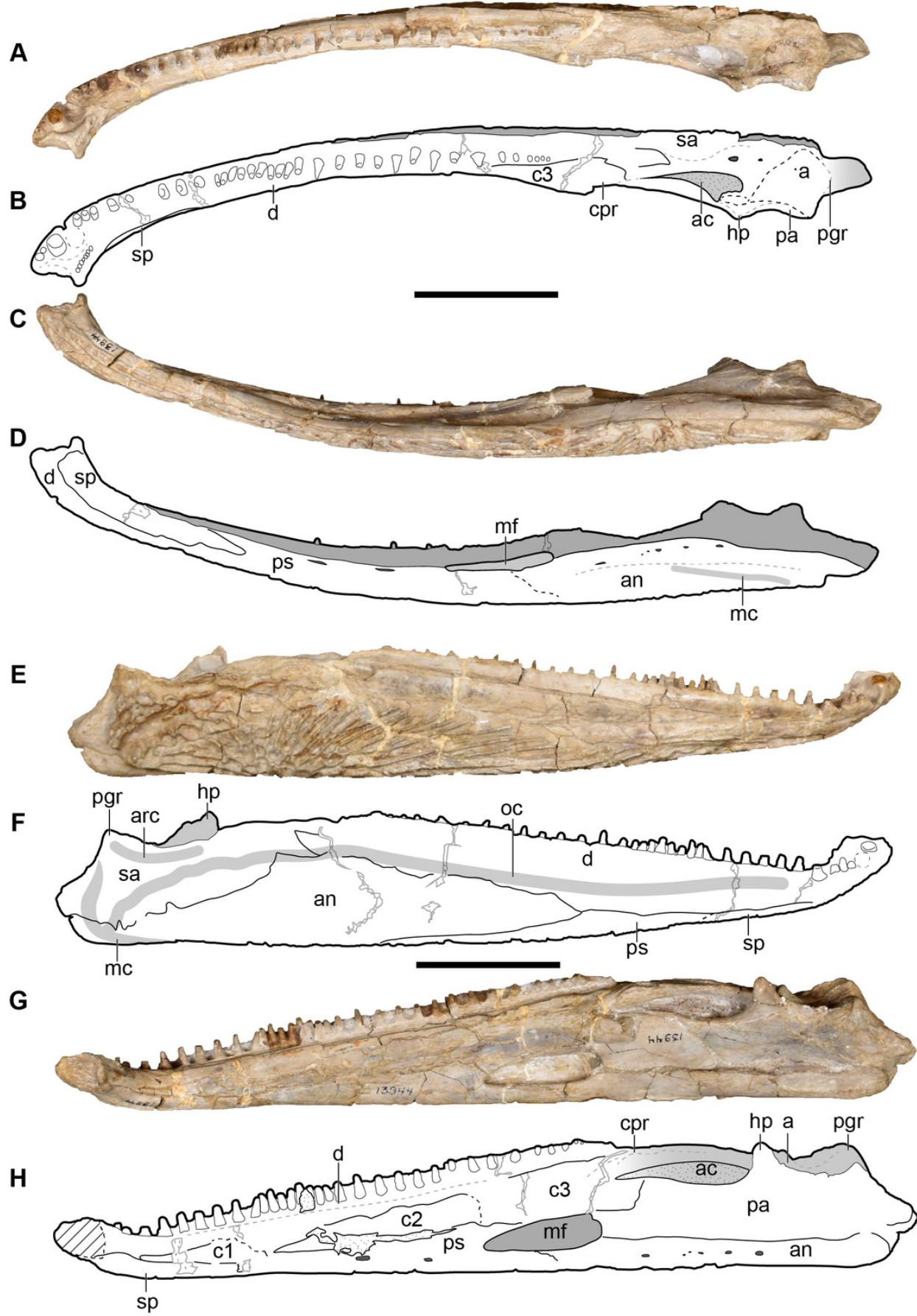
Isolated stapedes referred to *Buettnererpeton bakeri*, UMMP 13777.


(A) photograph in view 1; (B) photograph in view 2 (rotated 180 degrees relative to A); (C) photograph in view 3 (rotated 90 degrees relative to B); (D) photograph in view 4 (rotated 180 degrees relative to C); (E) photograph in proximal view. Scale bar equals 1 to cm.



## Figure 32

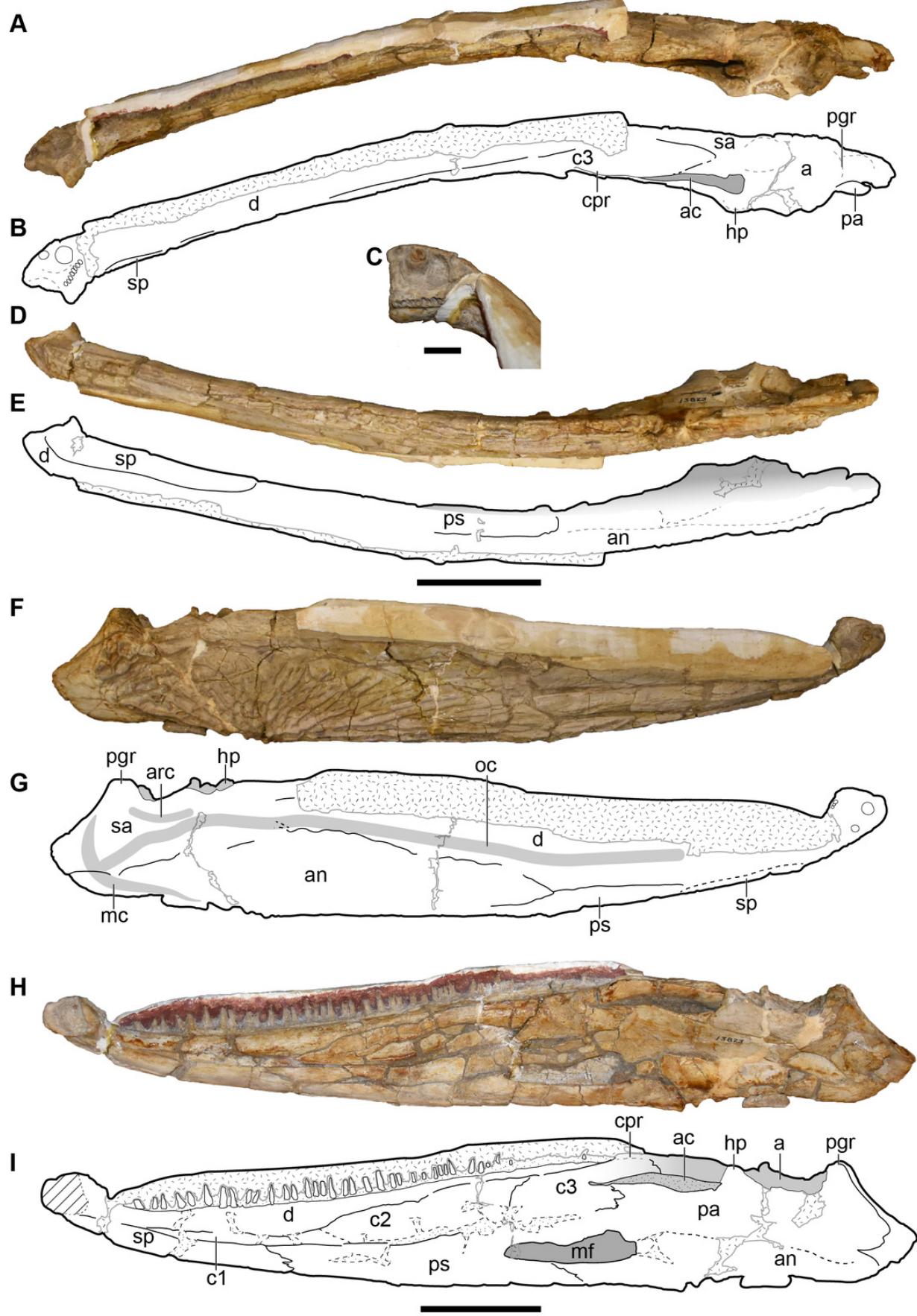
Isolated exoccipitals referred to *Buettnererpeton bakeri*, UMMP 13819.


(**A**) posterior view; (**B**) dorsal view; (**C**) ventral view; (**D**) lateral view; (**E**) medial view. The same element is imaged in different views horizontally. Scale bars equal to 1 cm.



## Figure 33

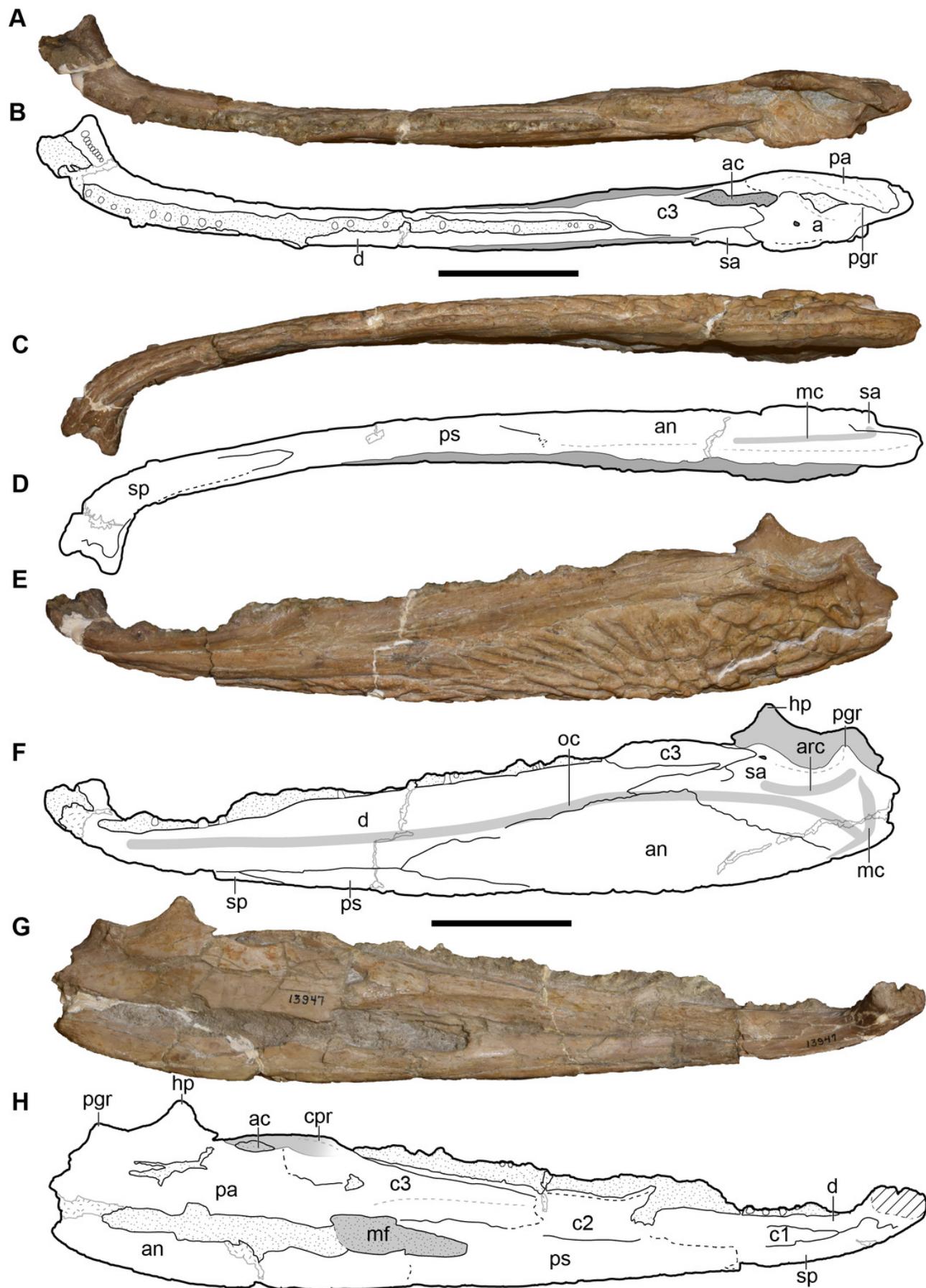
Right hemimandible referred to *Buettnererpeton bakeri*, UMMP 13944.


(**A**) photograph in dorsal view; (**B**) interpretive drawing of the same; (**C**) photograph in ventral view; (**D**) interpretive drawing of the same; (**E**) photograph in labial view; (**F**) interpretive drawing of the same; (**G**) photograph in lingual view; (**H**) interpretive drawing of the same. Abbreviations: a, articular; ac, adductor chamber; amf, anterior Meckelian foramen; an, angular; c1, first coronoid ("precoronoid"); c2, second coronoid ("intercoronoid"); c3, third coronoid ("coronoid"); cpr, coronoid process; d, dentary; hp, hamate process; mf, Meckelian foramen; pa, prearticular; ps, postsplenial; sa, surangular; sp, splenial. Scale bars equal to 5 cm.



## Figure 34

Right hemimandible referred to *Buettnererpeton bakeri*, UMMP 13823.


(A) photograph in dorsal view; (B) interpretive drawing of the same; (C) photograph in ventral view; (D) interpretive drawing of the same; (E) photograph in labial view; (F) interpretive drawing of the same; (G) photograph in lingual view; (H) interpretive drawing of the same. Abbreviations: a, articular; ac, adductor chamber; an, angular; c1, first coronoid (“precoronoid”); c2, second coronoid (“intercoronoid”); c3, third coronoid (“coronoid”); cpr, coronoid process; d, dentary; hp, hamate process; mf, Meckelian foramen; pa, prearticular; ps, postsplenial; sa, surangular; sp, splenial. Note that this hemimandible is associated with the skull in Fig. 12. Scale bars equal to 5 cm.



## Figure 35

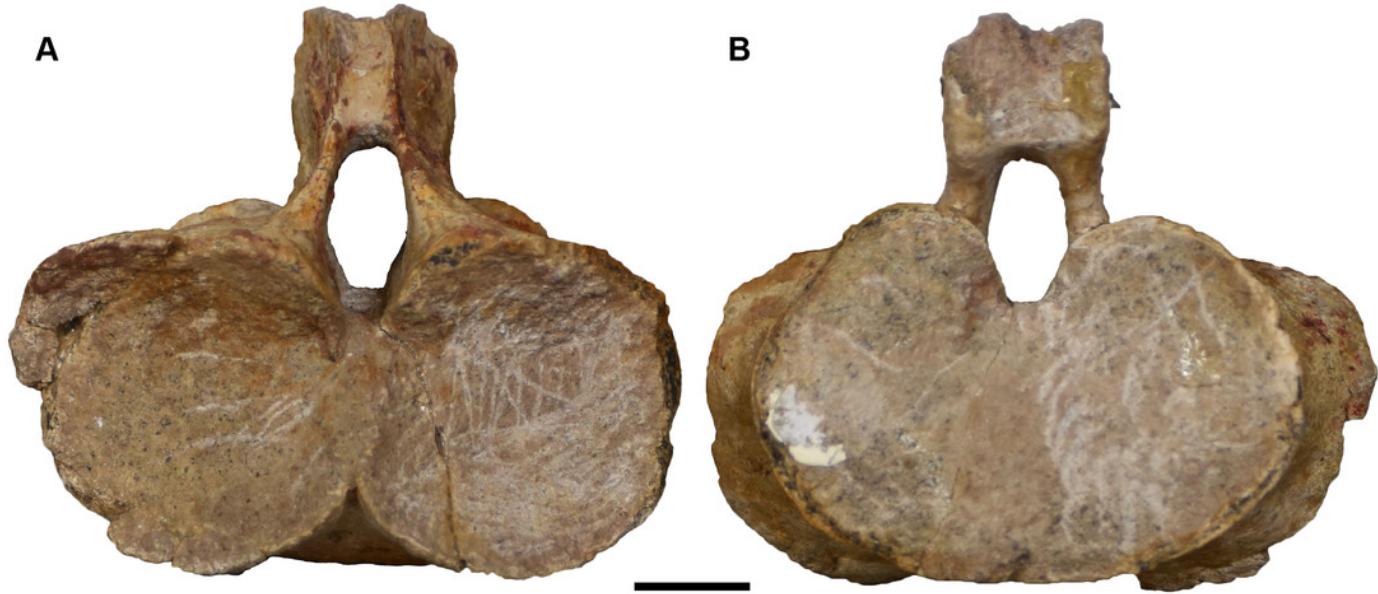
Left hemimandible referred to *Buettnererpeton bakeri*, UMMP 13947.

(A) photograph in dorsal view; (B) interpretive drawing of the same; (C) photograph in ventral view; (D) interpretive drawing of the same; (E) photograph in labial view; (F) interpretive drawing of the same; (G) photograph in lingual view; (H) interpretive drawing of the same. Abbreviations: a, articular; ac, adductor chamber; an, angular; c1, first coronoid (“precoronoid”); c2, second coronoid (“intercoronoid”); c3, third coronoid (“coronoid”); cpr, coronoid process; d, dentary; hp, hamate process; mf, Meckelian foramen; pa, prearticular; ps, postsplenial; sa, surangular; sp, splenial. Scale bars equal to 5 cm.



## Figure 36

Partial hemimandibles in dorsal, ventral, lingual, and labial views (top to bottom) referred to *Buettnererpeton bakeri*.


**(A)** UMMP 13975, nearly complete left hemimandible; **(B)** UMMP 13827, partial right surangular; **(C)** UMMP 13828, partial left surangular; **(D)** UMMP 13949, partial posterior left hemimandible; **(E)** UMMP 13948, partial posterior right hemimandible; **(F)** UMMP 12970, partial anterior left hemimandible; **(G)** UMMP 13945, partial anterior left hemimandible. Scale bars equal to 5 cm.



## Figure 37

Isolated atlas referred to *Buettnererpeton bakeri*, UMMP 13792.

(A) anterior view; (B) posterior view. Scale bar equal to 1 cm.



## Figure 38

Isolated possible axis (A) and postcervical (B-F) intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

(**A, C, F**) UMMP 118525 (in part); (**B**) UMMP 12945 (in part); (**D**) UMMP 118527 (in part); (**E**) UMMP 118526 (in part). For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 39

Isolated anterior dorsal (A-E) and mid-dorsal (F-H) intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

(A-F, H) UMMP 118525 (in part); (G) UMMP 118526 (in part). For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 40

Isolated presacral intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

(**A, C, E**) UMMP 12945 (in part); (**B, D**) UMMP 118527 (in part); (**F-H**) UMMP 118525 (in part).

For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 41

Isolated perisacral intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

**(A, C)** UMMP 12945 (in part); **(B, D)** UMMP 118526 (in part); **(E)** UMMP 118525 (in part). For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 42

Isolated anterior caudal (postsacral) (A-D), caudal (E), and small indeterminate position (F-G) intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

(**A-B, D, F**) UMMP 12945 (in part); (**C**) UMMP 118525 (in part); (**E, G**) UMMP 118527 (in part).

For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 43

Indeterminate intercentra in anterior, posterior, dorsal, ventral, and left lateral views (left to right) referred to *Buettnererpeton bakeri*.

**(A-B, E)** UMMP 12945 (in part); **(C)** UMMP 118525 (in part); **(D)** UMMP 118526 (in part); **(F)** UMMP 118527 (in part). For dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 44

Isolated cervical (type A) and anterior dorsal (type C) ribs in anterior, dorsal, posterior, and ventral views (left to right) and on the far right, in proximal and distal views (top to bottom) referred to *Buettnererpeton bakeri*, UMMP 13788 (in part)

(A) left rib; (B-C) right ribs. (A) type A rib; (B) type C rib; (C) partial, proximal type C rib.


Scale bars equal to 1 cm.



## Figure 45

Isolated neural arches (A-C) and haemal arches (D-E) in (A) dorsal, ventral, anterior, posterior, and left lateral views (left to right) and (B-E) in dorsal, ventral, lateral, and medial views (left to right) referred to *Buettnererpeton bakeri*.

(A) UMMP 14205; (B) left caudal neural arch, UMMP 13780 (in part); (C) partial right caudal neural arch, UMMP 13780 (in part); (D) partial right haemal arch, UMMP 13779 (in part); (E) partial right haemal arch, UMMP 13779 (in part). In dorsal and ventral views, anterior is facing up. Scale bars equal to 1 cm.



## Figure 46

Isolated left, mid-dorsal (type E or F) ribs in anterior, dorsal, posterior, and ventral views (left to right) and on the far right, in proximal and distal views (top to bottom) referred to *Buettnererpeton bakeri*.

(A) UMMP 13778; (B-C) UMMP 13788 (in part). **B** is incomplete on the proximal end and **D** is incomplete on the distal end. Scale bars equal to 1 cm.



## Figure 47

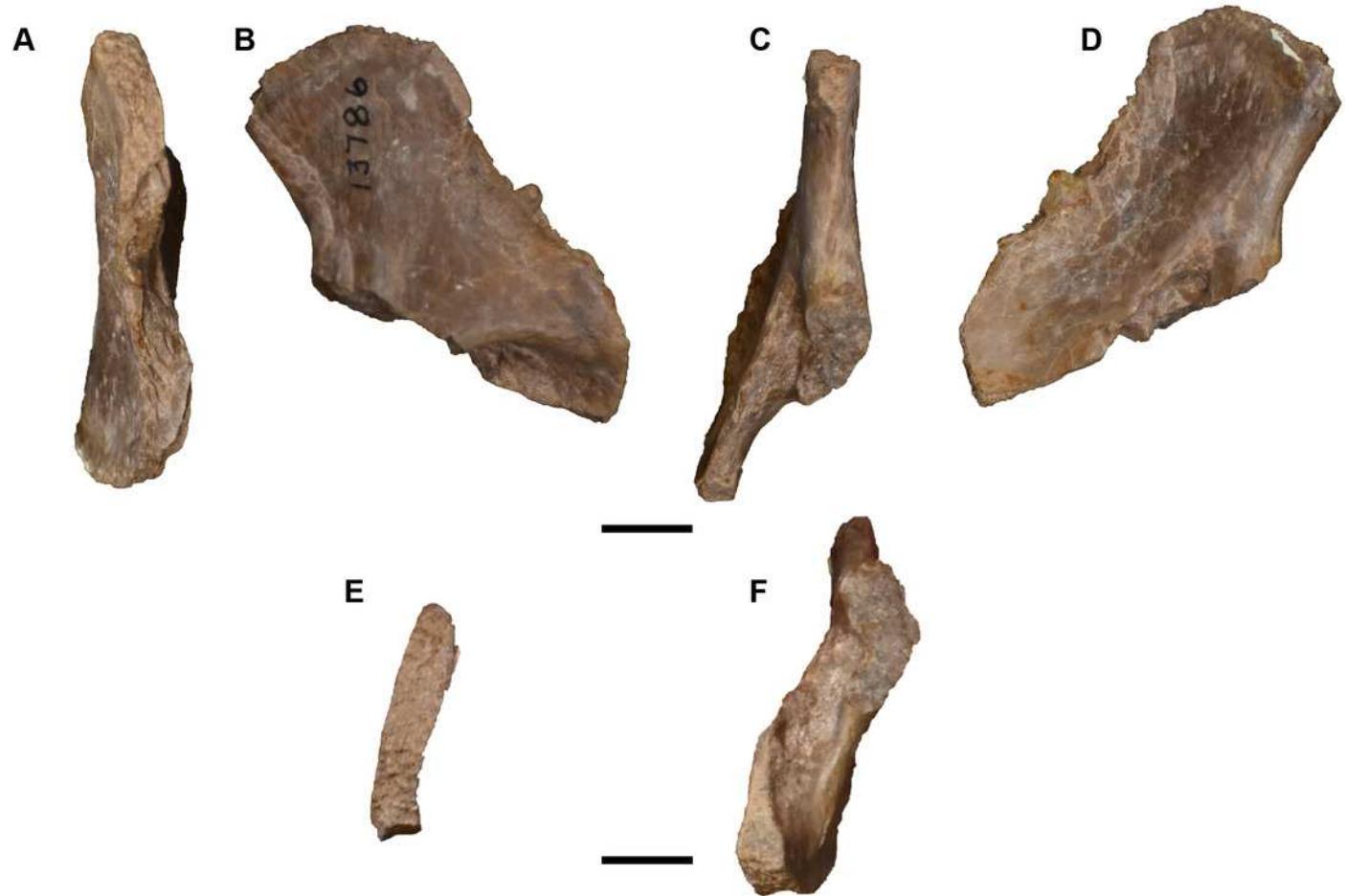
Isolated posterior dorsal (types G and H or H/I) ribs in anterior, dorsal, posterior, and ventral views (left to right) and on the far right, in proximal and distal views (top to bottom) referred to *Buettnererpeton bakeri*.

(**A-D, F, H**) left ribs; (**E, G, I-K**) right ribs. (**A**) type H/I rib; (**B-C**) type G/H ribs; (**D-H**) type H ribs. (**A**) UMMP 13783; (**B-C**) UMMP 13788 (in part); (**D-H**) UMMP 13776 (in part). Scale bars equal to 1 cm.



## Figure 48

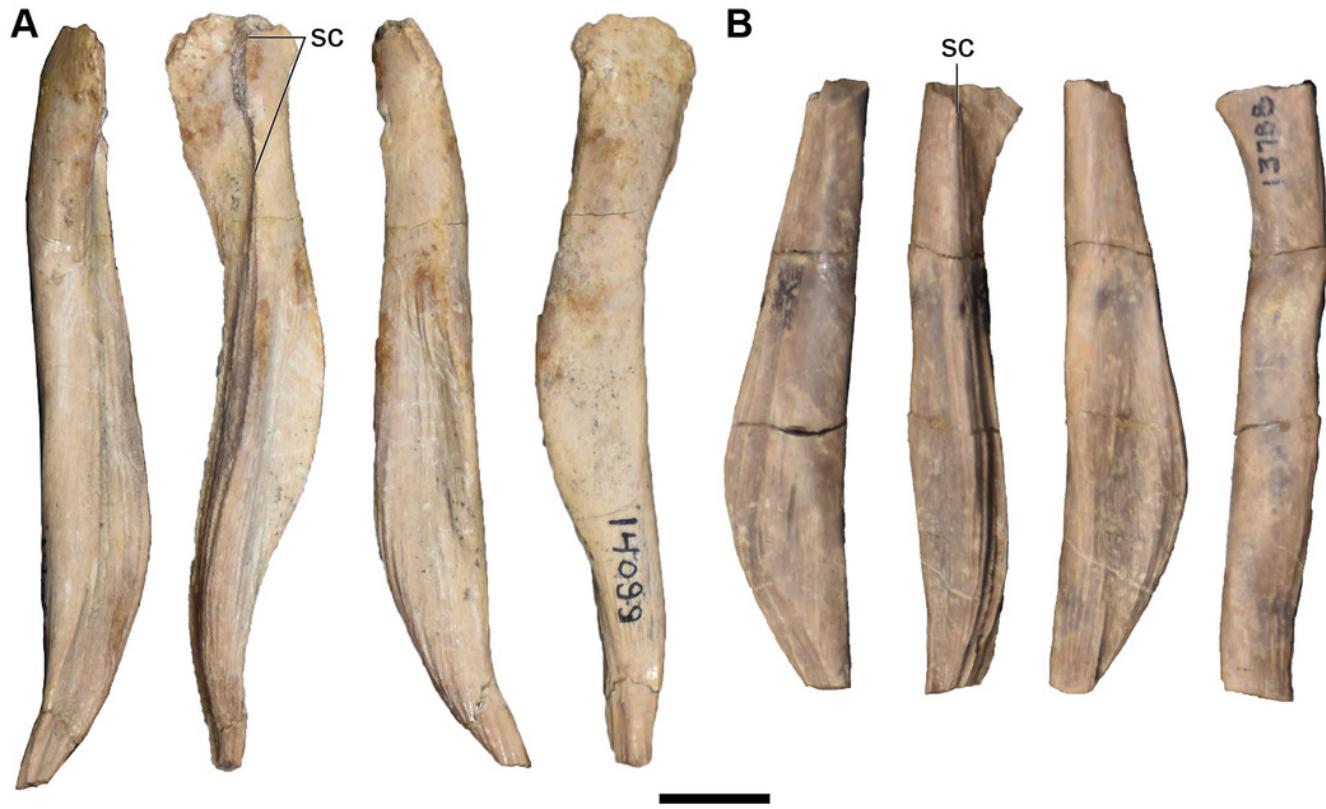
Isolated perisacral (type I) or anterior caudal (type J) ribs in anterior, dorsal, posterior, and ventral views (left to right) and on the far right, in proximal and distal views (top to bottom) referred to *Buettnererpeton bakeri*.


(**A, D-E**) right ribs; (**B-C**) left ribs. (**A**) large type I/J rib; (**B-C**) type I ribs; (**E-F**) type J ribs. (**A-D**) UMMP 13788 (in part); (**E**) UMMP 13776 (in part). **A** is incomplete on the distal end and **D** is incomplete on the proximal and distal ends. Scale bars equal to 1 cm.



## Figure 49

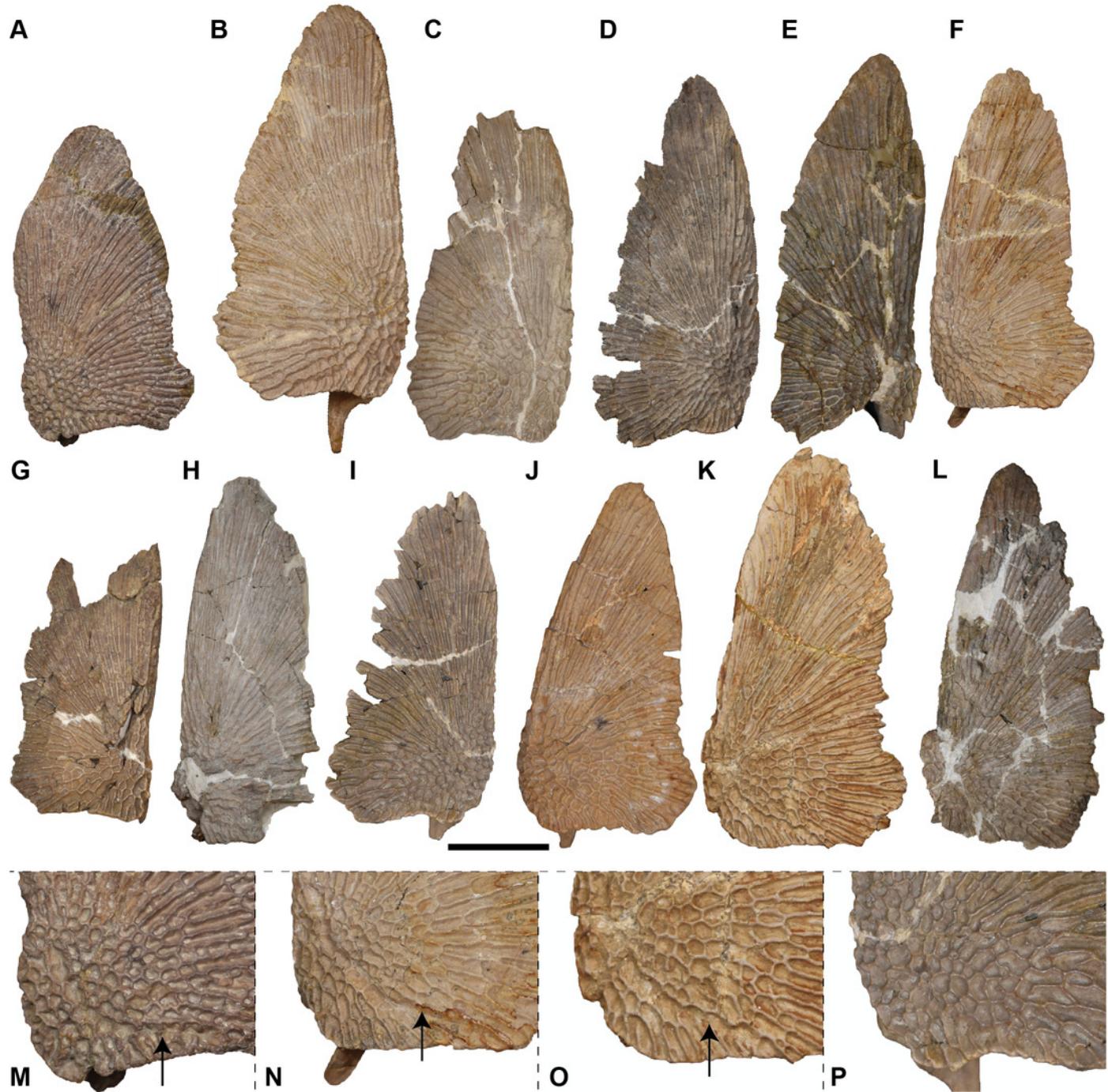
Photographs of partial right scapula referred to *Buettnererpeton bakeri*, UMMP 13786.


(A) anterior view; (B) medial view; (C) posterior view; (D) lateral view; (E) dorsal view; (F) ventral view. Scale bars equal to 1 cm.



## Figure 50

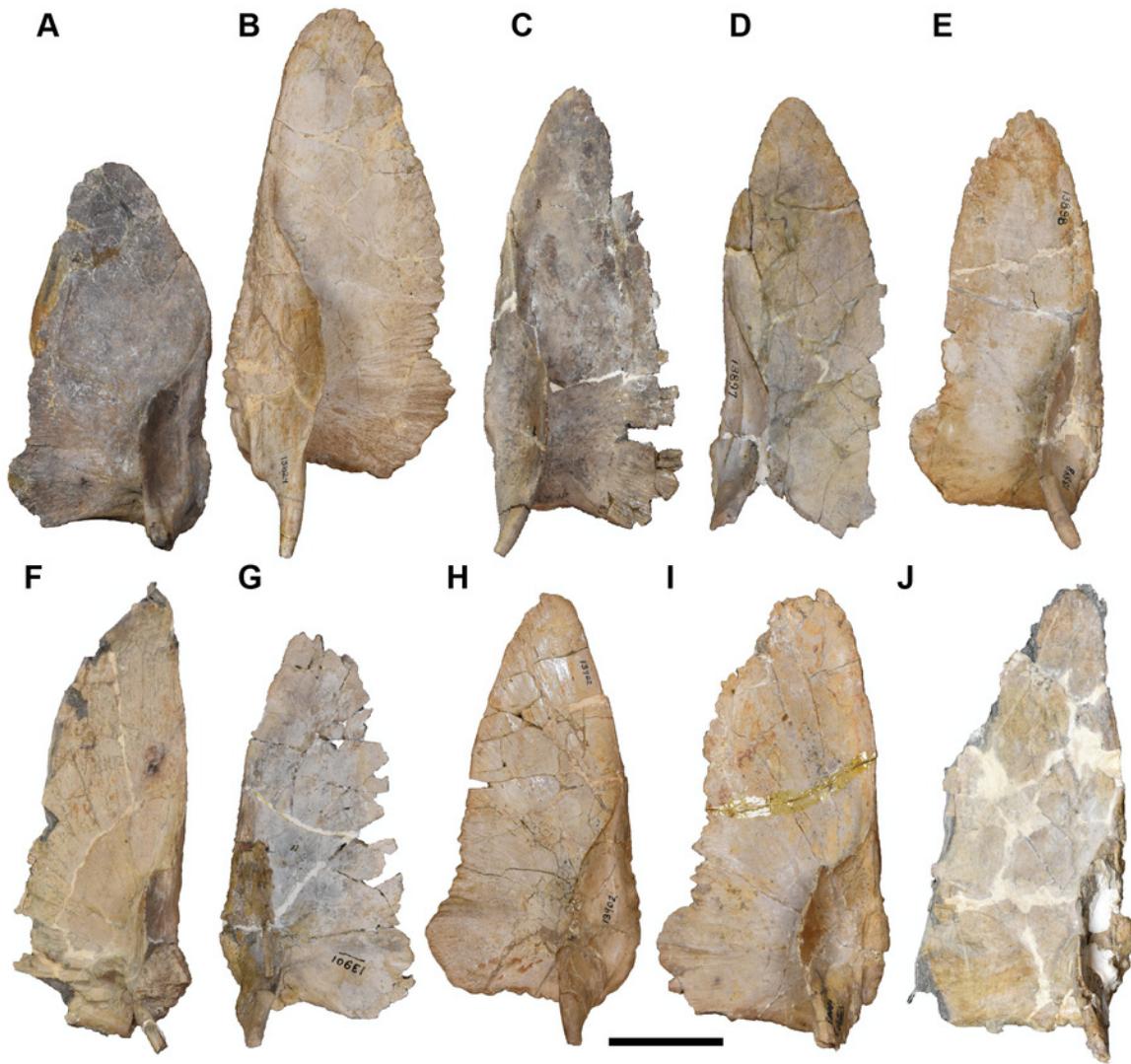
Photographs of isolated cleithra referred to *Buettnererpeton bakeri*.


(A) UMMP 14099 (in part), complete right cleithrum in anterior, medial, posterior, and lateral views (left to right); (B) UMMP 13788 (in part), partial left cleithrum in anterior, medial, posterior, and lateral views (left to right). Scale bar equal to 1 cm.



## Figure 51

Ventral view of isolated clavicles referred to *Buettnerpeton bakeri*.


(A) UMMP 13028; (B) UMMP 13824; (C) UMMP 13825; (D) UMMP 13896; (E) UMMP 13897; (F) UMMP 13898; (G) UMMP 13899; (H) UMMP 13900; (I) UMMP 13901; (J) UMMP 13902; (K) UMMP 13903; (L) UMMP 13904; (M) close-up of sensory groove in UMMP 138028; (N) close-up of sensory groove in UMMP 13898; (O) close-up of sensory groove in UMMP 13902; (P) close-up of equivalent region in UMMP 13901 (reflected for a consistent view) showing the absence of a groove. All elements are oriented with the anterior face pointing up. Arrows in parts M-O point to the sensory groove. Scale bar equal to 5 cm.



## Figure 52

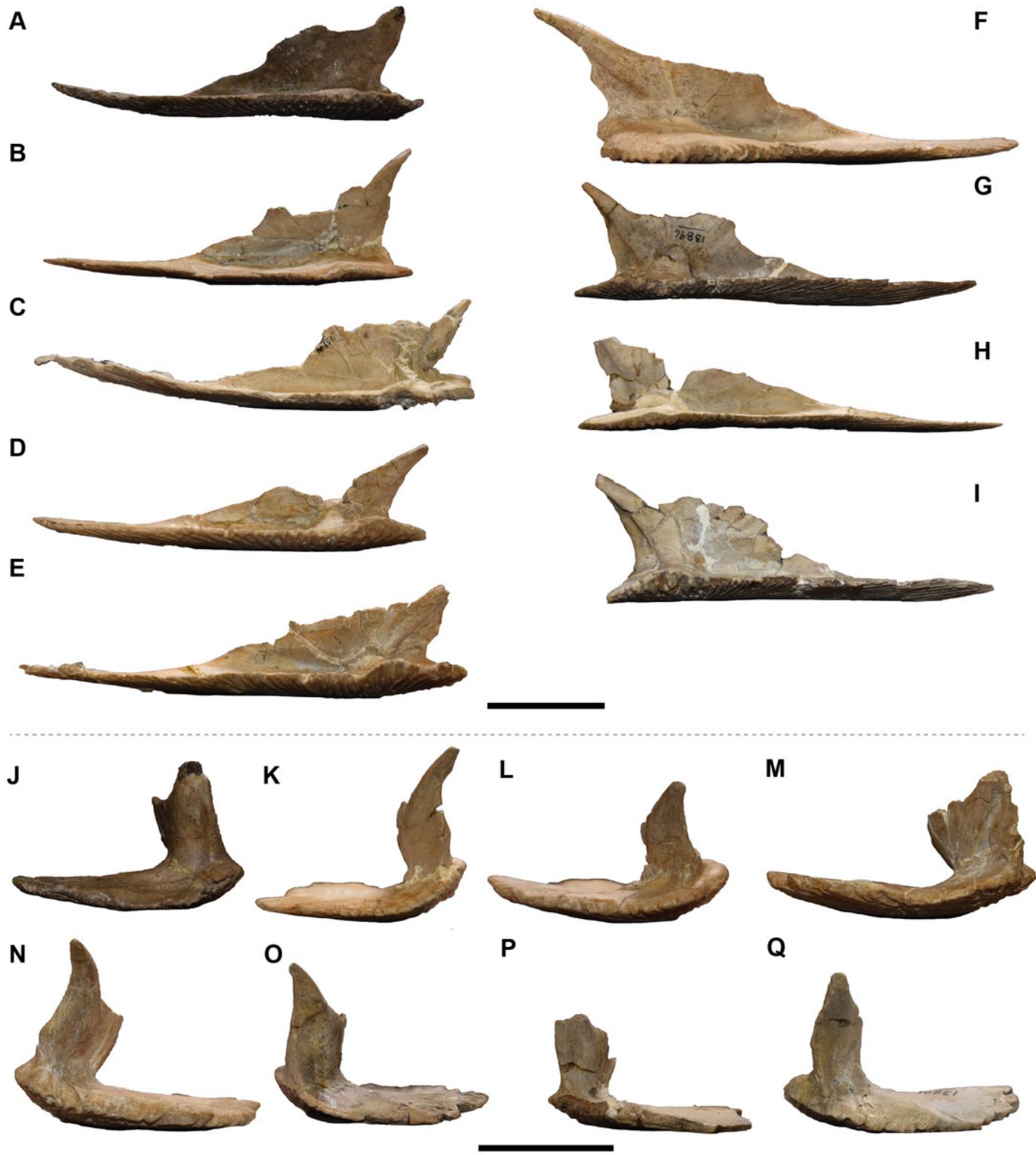
Dorsal view of isolated clavicles referred to *Buettnererpeton bakeri*.

(A) UMMP 13028; (B) UMMP 13824; (C) UMMP 13896; (D) UMMP 13897; (E) UMMP 13898; (F) UMMP 13900; (G) UMMP 13901; (H) UMMP 13902; (I) UMMP 13903; (J) UMMP 13904. All elements are oriented with the anterior face pointing up. Scale bar equal to 5 cm.



## Figure 53

Lateral view of isolated clavicles referred to *Buettnererpeton bakeri*.

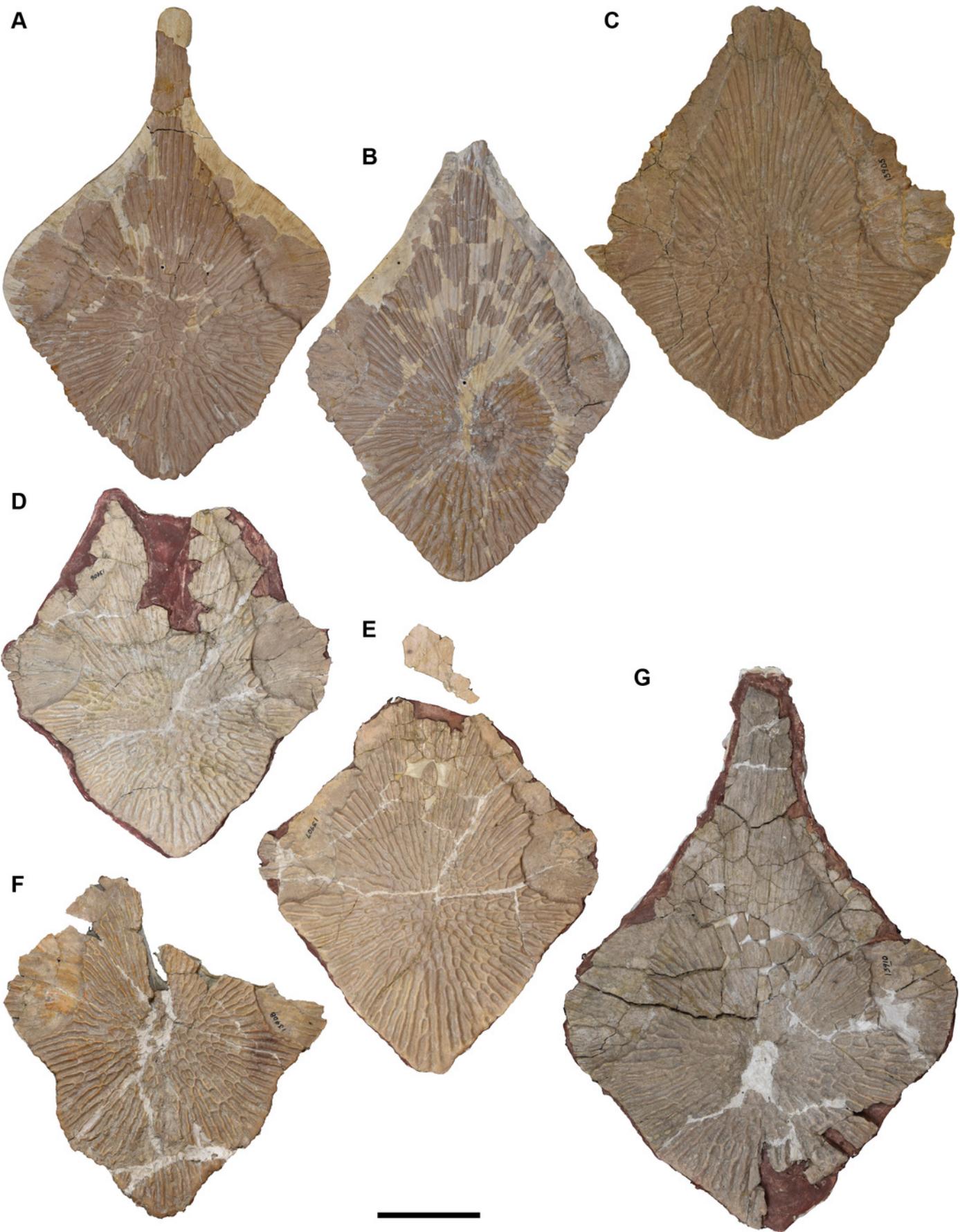

(A-F) left clavicles; (G-L) right clavicles. (A) UMMP 13028; (B) UMMP 13898; (C) UMMP 13900; (D) UMMP 13902; (E) UMMP 13903; (F) UMMP 13904; (G) UMMP 13824; (H) UMMP 13825; (I) UMMP 13896; (J) UMMP 13897; (K) UMMP 13899; (L) UMMP 13901. Scale bar equal to 5 cm.



## Figure 54

Medial and posterior views of isolated clavicles referred to *Buettnererpeton bakeri*.

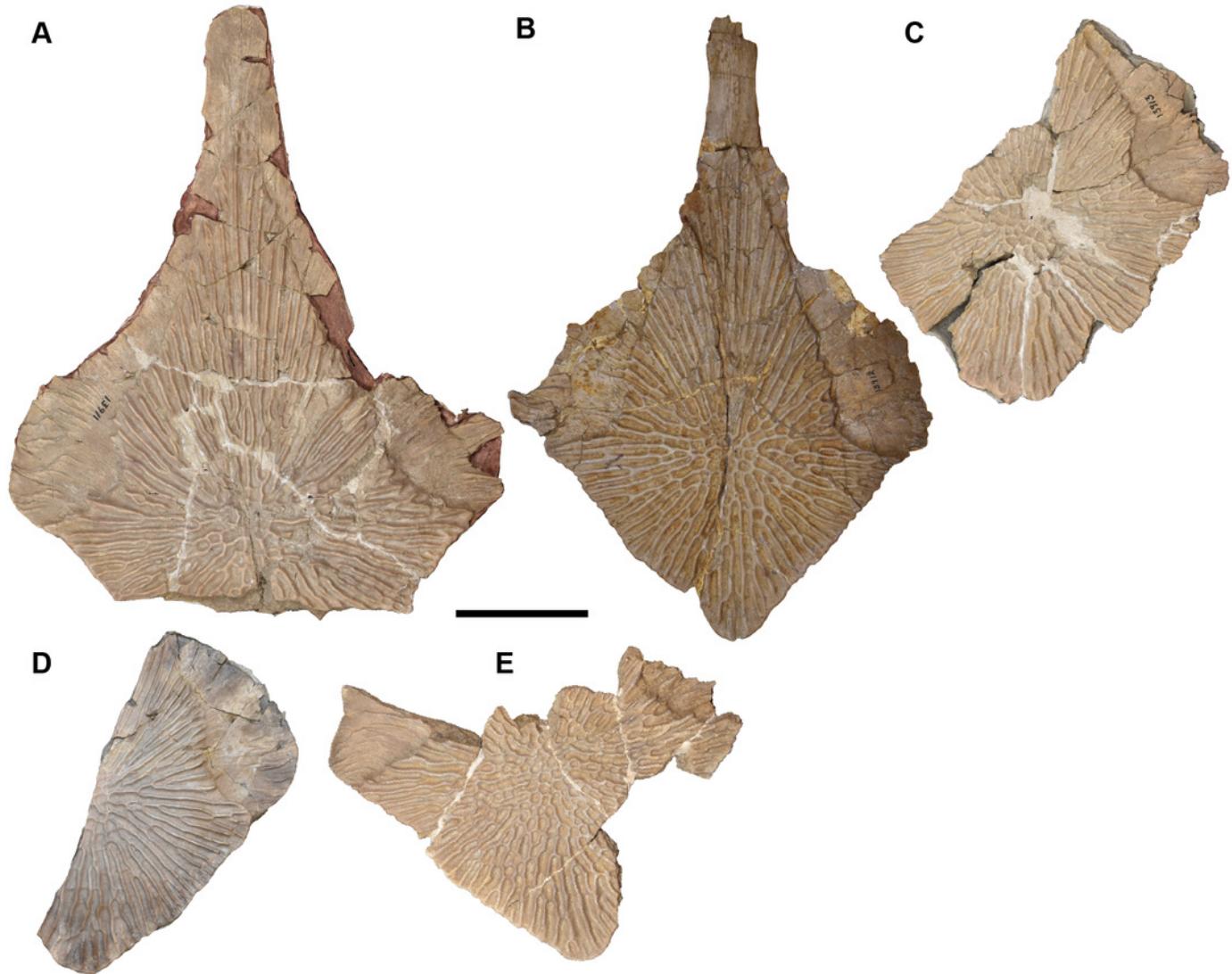
(**A-E**) left clavicles in medial view; (**F-I**) right clavicles in medial view; (**J-M**) left clavicles in posterior view; (**N-Q**) right clavicles in posterior view. (**A**) UMMP 13028; (**B**) UMMP 13898; (**C**) UMMP 13900; (**D**) UMMP 13902; (**E**) UMMP 13903; (**F**) UMMP 13824; (**G**) UMMP 13896; (**H**) UMMP 13897; (**I**) UMMP 13901; (**J**) UMMP 13028; (**K**) UMMP 13898; (**L**) UMMP 13902; (**M**) UMMP 13903; (**N**) UMMP 13824; (**O**) UMMP 13896; (**P**) UMMP 13897; (**Q**) UMMP 13 901 . Scale bars equal to 5 cm.




## Figure 55

Ventral view of isolated interclavicles referred to *Buettnererpeton bakeri*.

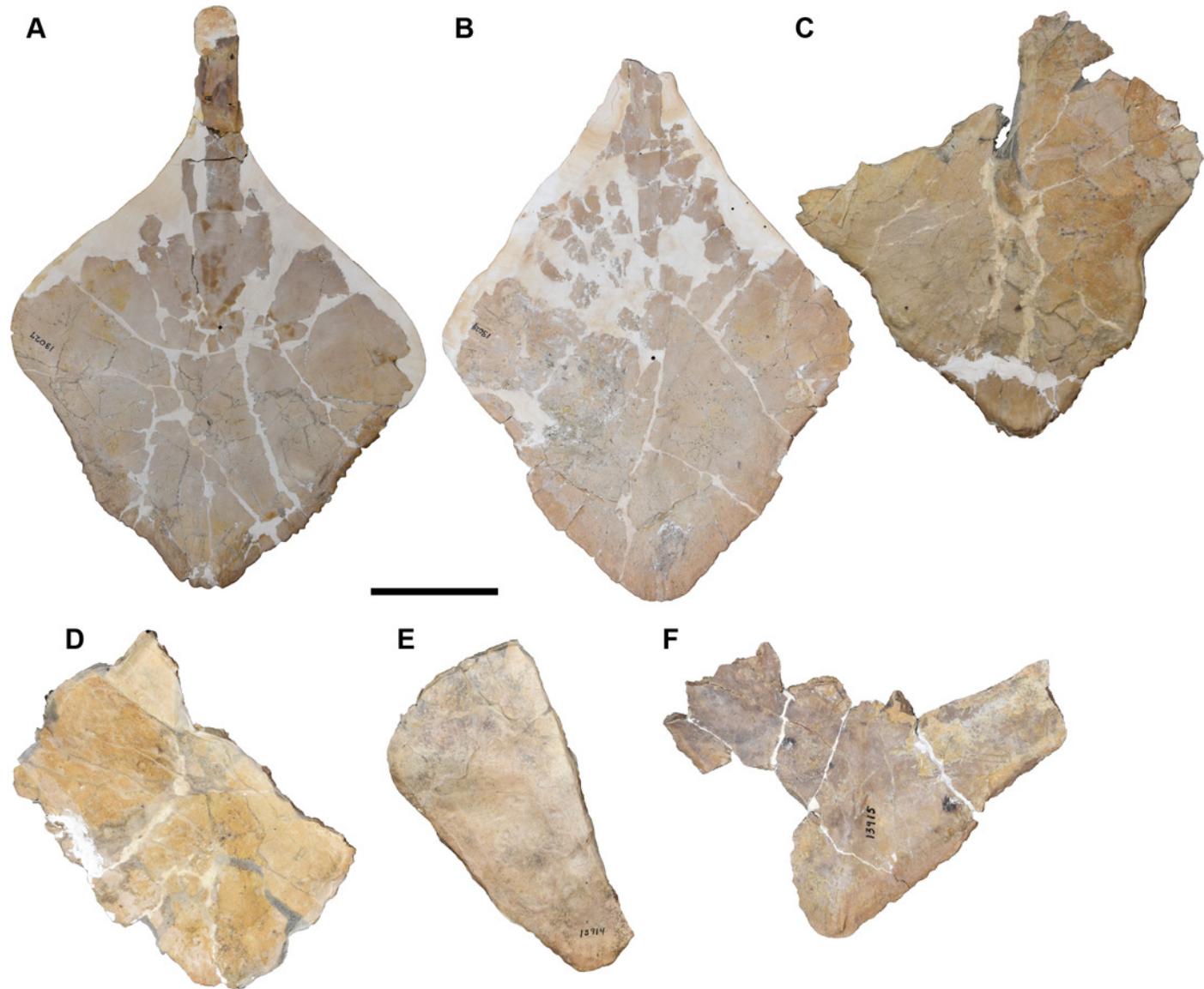
(A) UMMP 13027; (B) UMMP 13029; (C) UMMP 13029; (D) UMMP 13906; (E) UMMP 13907; (F) UMMP 13908; (G) UMMP 13910. All elements are oriented with the anterior face pointing up.


Scale bar equal to 5 cm.



## Figure 56

Ventral view of isolated interclavicles referred to *Buettnererpeton bakeri*.


(A) UMMP 13911; (B) UMMP 13912; (C) UMMP 13913; (D) UMMP 13914; (E) UMMP 13915. All elements are oriented with the anterior face pointing up. Scale bar equal to 5 cm.



## Figure 57

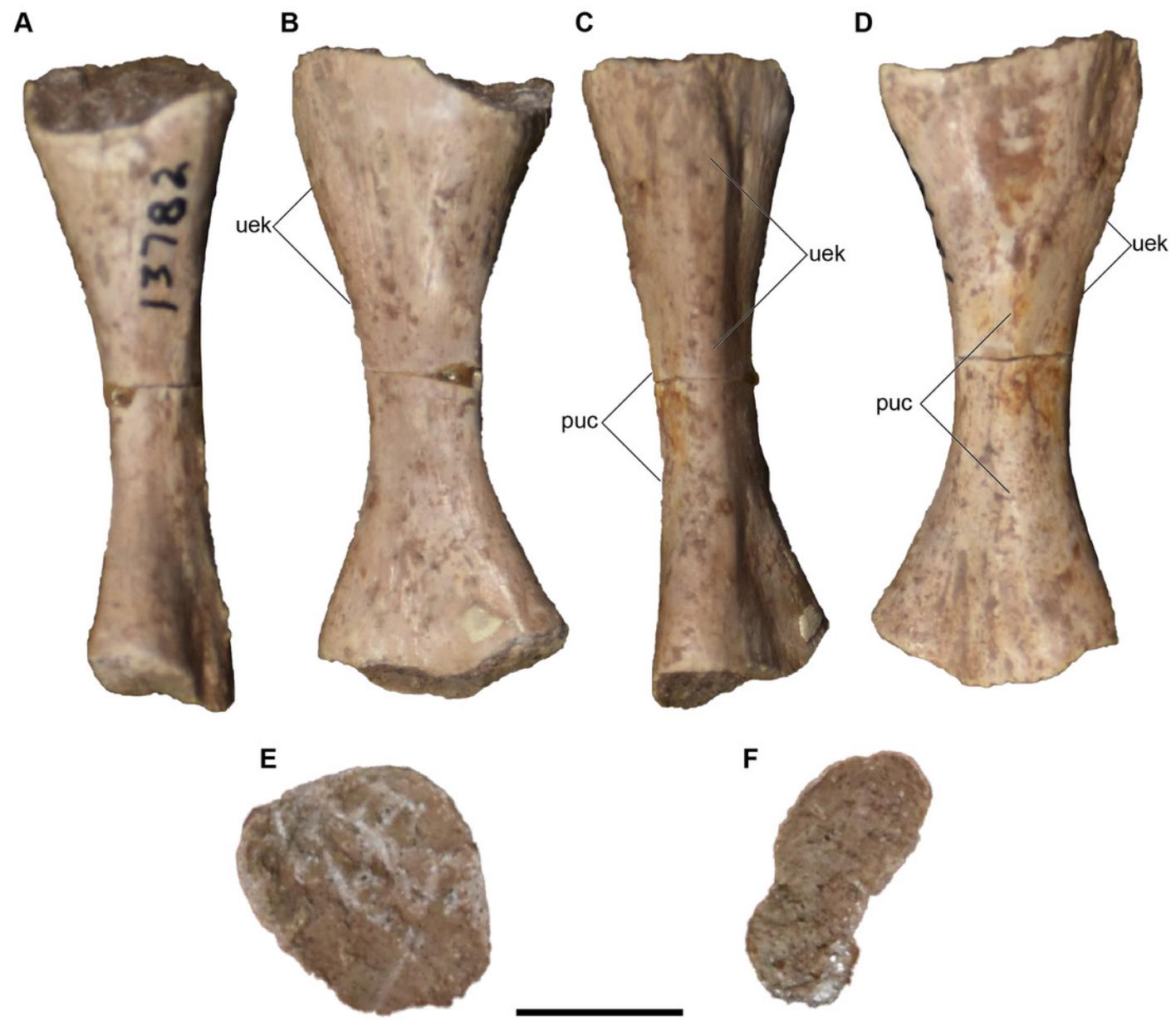
Dorsal view of isolated interclavicles referred to *Buettnererpeton bakeri*.

(A) UMMP 13027; (B) UMMP 13029; (C) UMMP 13908; (D) UMMP 13913; (E) UMMP 13914; (F) UMMP 13915. All elements are oriented with the anterior face pointing up. Scale bar equal to 5 cm.



## Figure 58

Isolated right humeri referred to *Buettnererpeton bakeri*, UMMP 13772 (right) and UMMP 13775 (left).


**(A)** anterior view; **(B)** medial view; **(C)** posterior view; **(D)** lateral view; **(E)** proximal view; **(F)** distal view. Abbreviations: dpc, deltopectoral crest; ec, ectepicondyle; ent, entepicondyle; md; insertion for the *m. deltoideus*; mi, insertion for the *m. biceps brachii* or the *m. pectoralis major*; sup, supinator process. Scale bars equal to 1 cm.



## Figure 59

Isolated right ulna referred to *Buettnererpeton bakeri*, UMMP 13782.

(A) anterior view; (B) medial view; (C) posterior view; (D) lateral view; (E) proximal view; (F) distal view. Scale bars equal to 1 cm.



## Figure 60

Isolated right radius referred to *Buettnererpeton bakeri*, UMMP 13773 (in part).

(A) anterior view; (B) medial view; (C) posterior view; (D) lateral view; (E) proximal view; (F) distal view. Scale bars equal to 1 cm.



## Figure 61

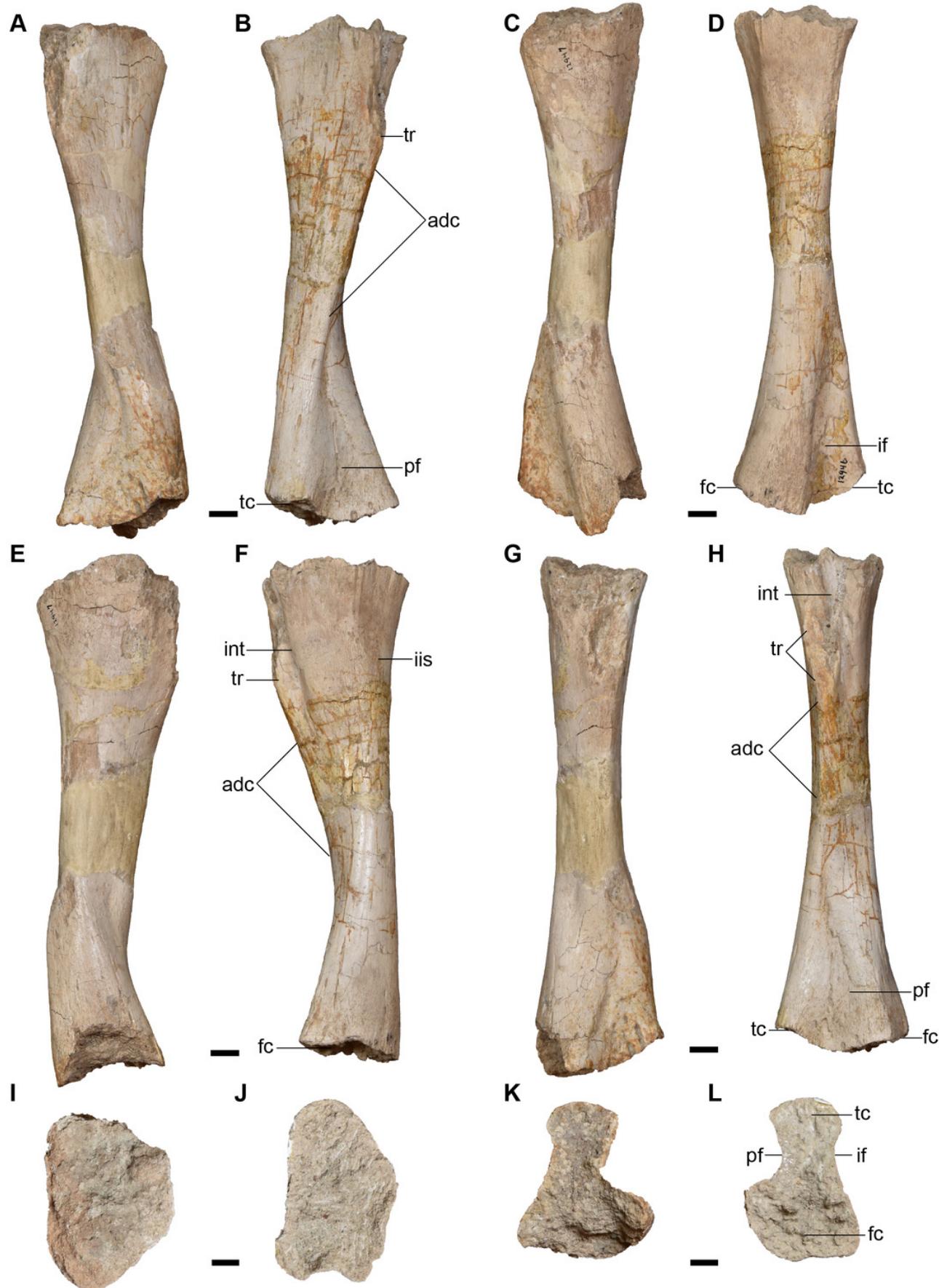
Isolated autopodial elements referred to *Buettnererpeton bakeri*, UMMP 13784 (metapodials) and UMMP 13785 (phalanges).

**(A)** UMMP 13784 in view 1; **(B)** UMMP 13784 in view 2; **(C)** UMMP 13785 in view 1; **(D)** UMMP 13785 in view 2. The different views are not specified by anatomical profile because it is not possible to determine dorsal and ventral based on the preserved anatomy. Scale bar equal to 1 cm.



## Figure 62

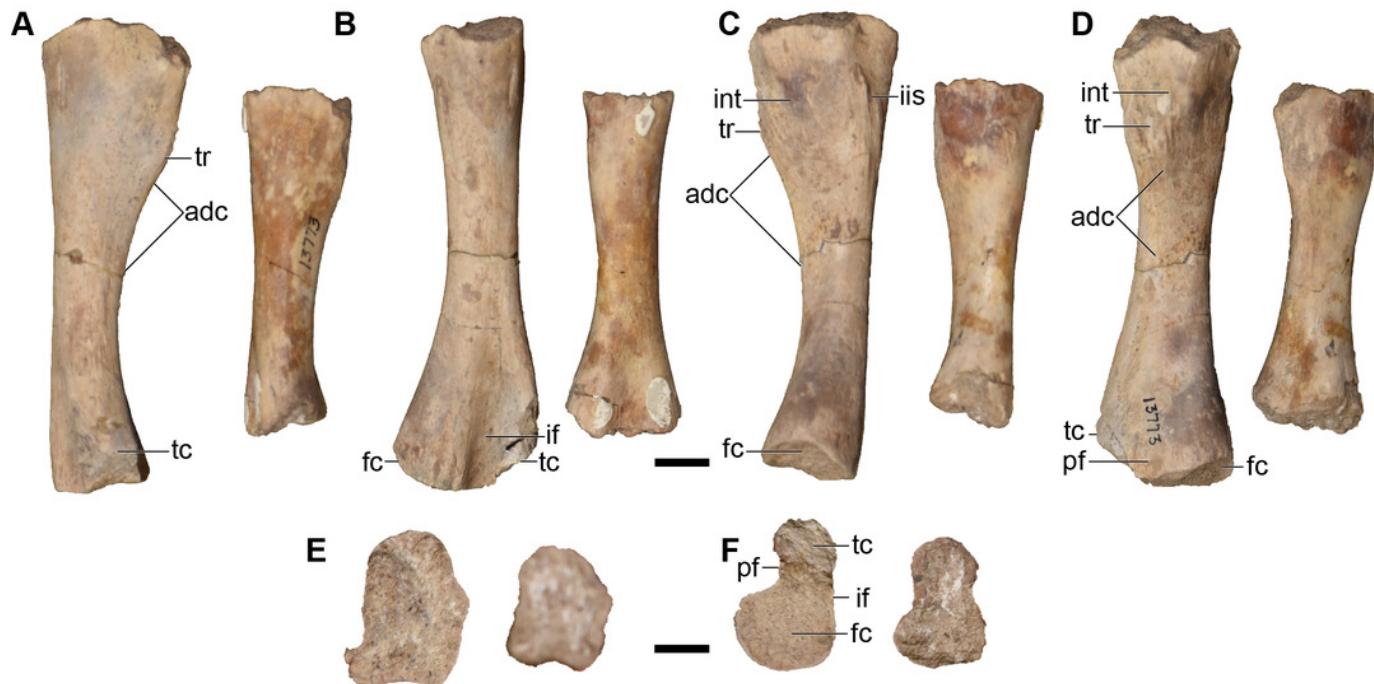
Isolated ilia referred to *Buettnerpeton bakeri*, UMMP 13789.


Four ilia are from the left side of the body, and two ilia are from the right side. **(A)** lateral view; **(B)** medial view; **(C)**, ventral view; **(D)** dorsal view. Scale bars equal to 1 cm.



## Figure 63

Large, isolated femora referred to *Buettnererpeton bakeri*, UMMP 12946 (right femur) and UMMP 12947 (left femur).


(A) UMMP 12947 in anterior view; (B) UMMP 12946 in the same view; (C) UMMP 12947 in dorsal (extensor) view; (D) UMMP 12946 in the same view; (E) UMMP 12947 in posterior view; (F) UMMP 12946 in the same view; (G) UMMP 12947 in ventral (flexor) view; (H) UMMP 12946 in the same view; (I) UMMP 12947 in proximal view; (J) UMMP 12946 in the same view; (K) UMMP 12947 in distal view; (L) UMMP 12946 in the same view. Abbreviations: adc, adductor crest; fc, fibular condyle; if, intercondylar fossa; int, intertrochanteric fossa; iis, insertion of *m. ischiotrochantericus*; pf, popliteal fossa; tc, tibial condyle; tr, trochanter. For I-L, anterior is facing up. Scale bars equal to 1 cm.



## Figure 64

Photographs of isolated small right femora referred to *Buettnererpeton bakeri*, UMMP 13773 (in part).

**(A)** anterior view; **(B)** dorsal (extensor) view; **(C)** posterior view; **(D)** ventral (flexor) view; **(E)** proximal view; **(F)** distal view. Abbreviations: adc, adductor crest; fc, fibular condyle; if, intercondylar fossa; iis, insertion of the *m. ischiotrochantericus*; int, intertrochanteric fossa; pf, popliteal fossa; tc, tibial condyle; tr, trochanter. For **E-F**, anterior is facing up. Scale bars equal to 1 cm.



## Figure 65

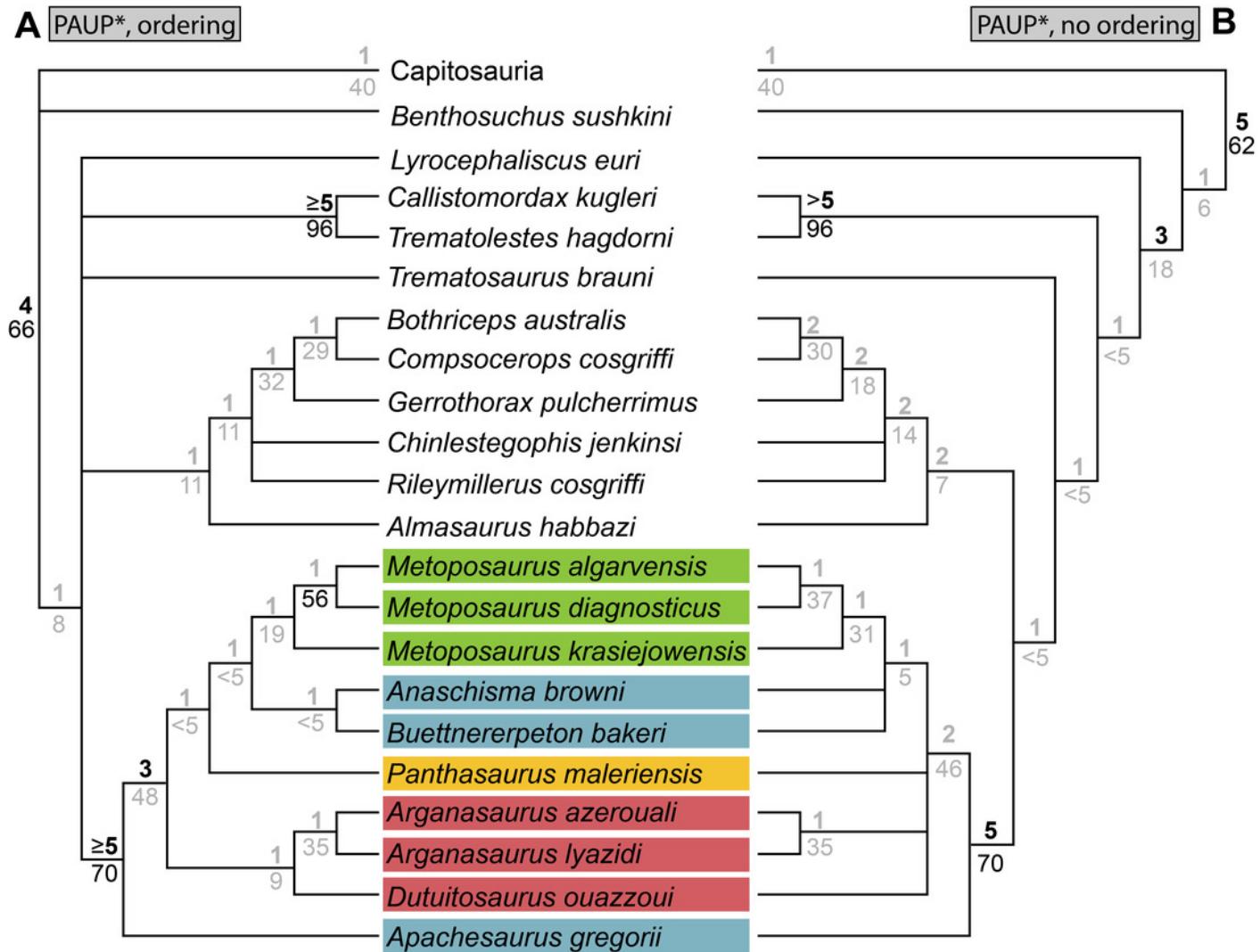
Isolated fibulae referred to *Buettnererpeton bakeri*, UMMP 13781.

(A) anterior view; (B) medial (flexor) view; (C) posterior view; (D) lateral (extensor) view; (E) proximal view; (F) distal view. Abbreviations: fs, 'fibular sulcus'; imf, intermedial facet. For E-F, anterior is facing up. Scale bars equal to 1 cm.



## Figure 66

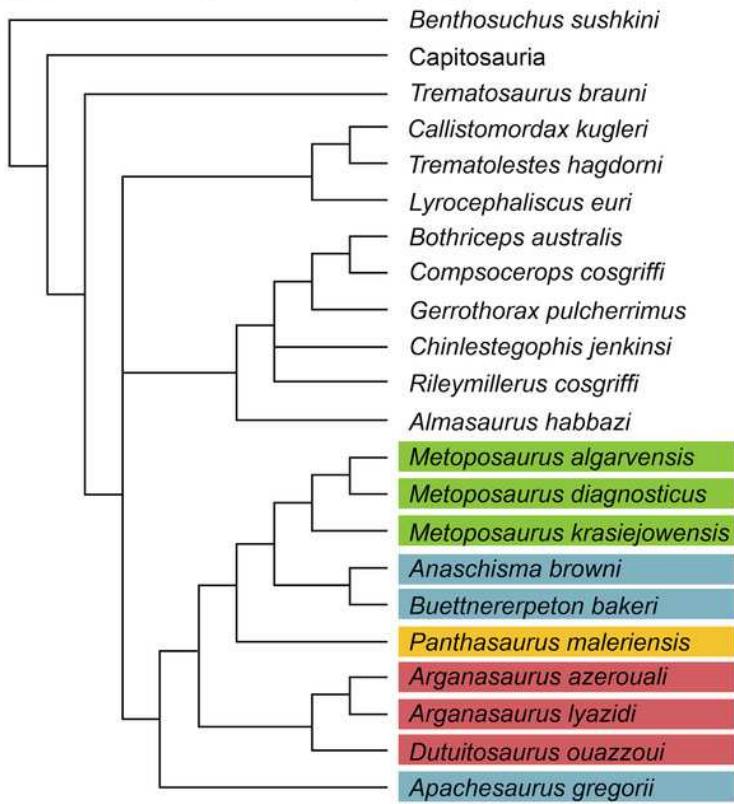
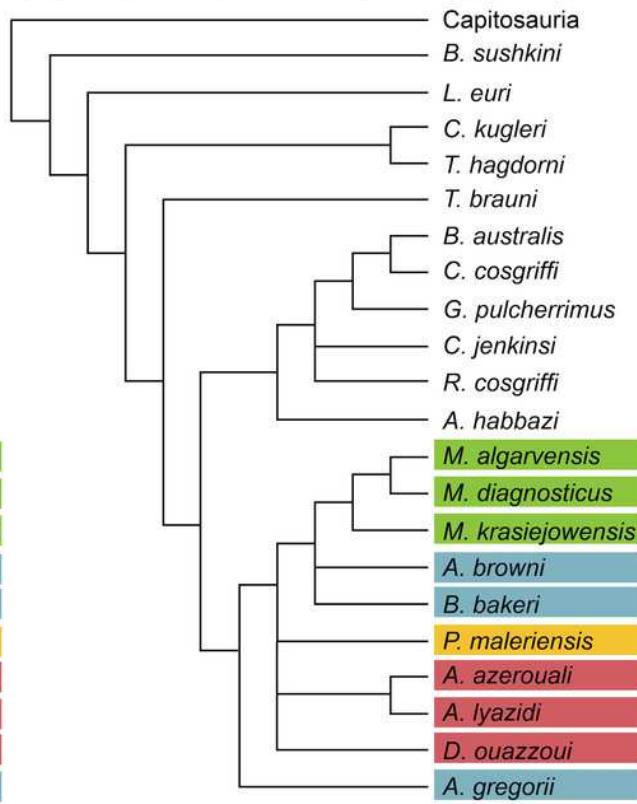
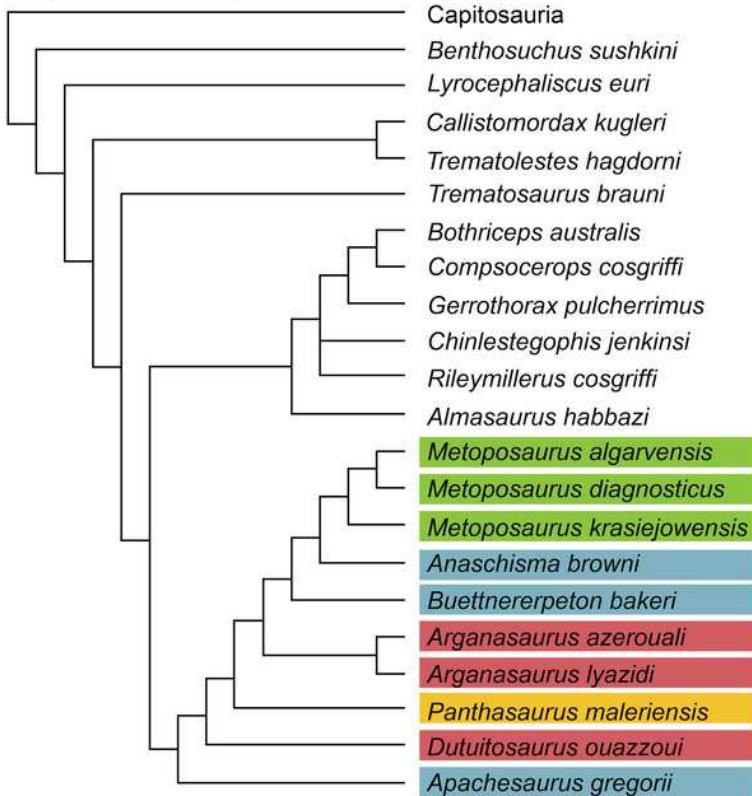
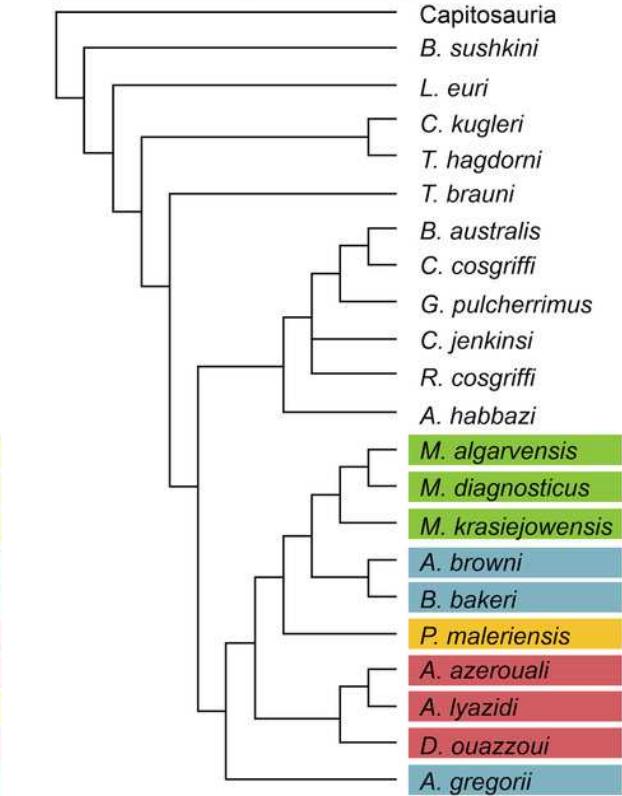
Isolated tibiae referred to *Buettnererpeton bakeri*, UMMP 13774.


One tibia is from the left side and two are from the right side. **(A)** anterior view; **(B)** medial (extensor view); **(C)** posterior view; **(D)** lateral (flexor) view; **(E)** proximal view; **(F)** distal view. Abbreviations: cn, cnemial crest; cnt, cnemial trough; cat, 'crista anterior tibiae'; imf, intermedial facet. Scale bars equal to 1 cm.



## Figure 67

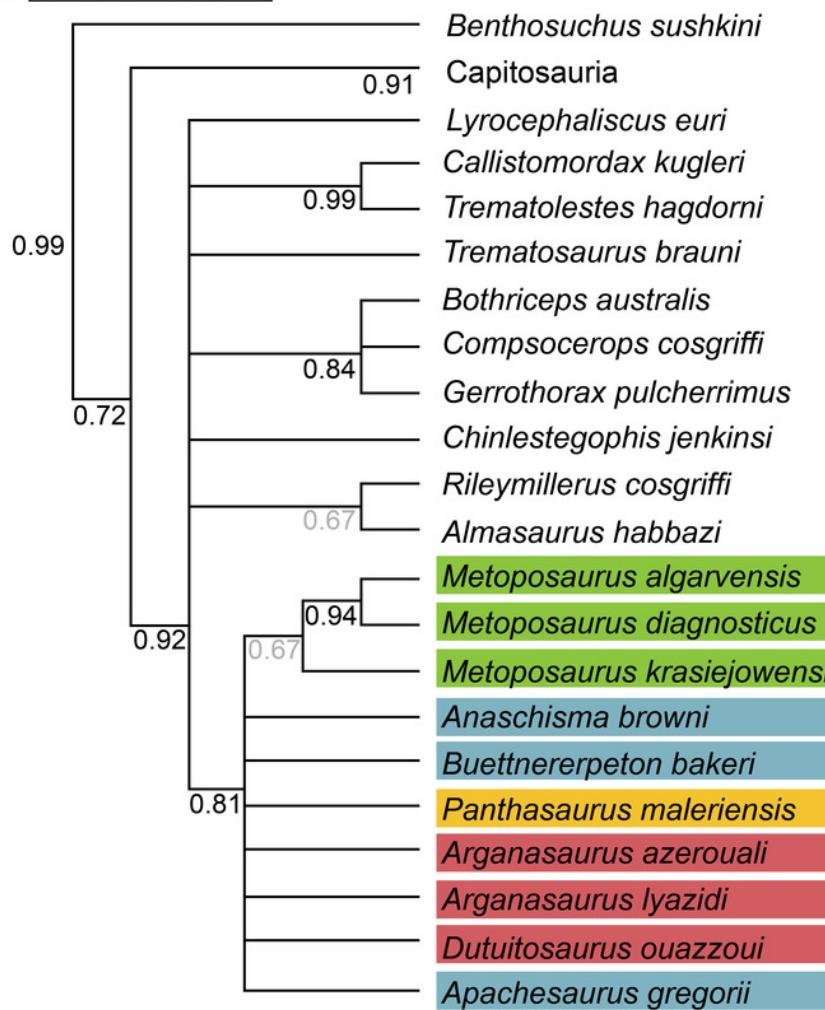
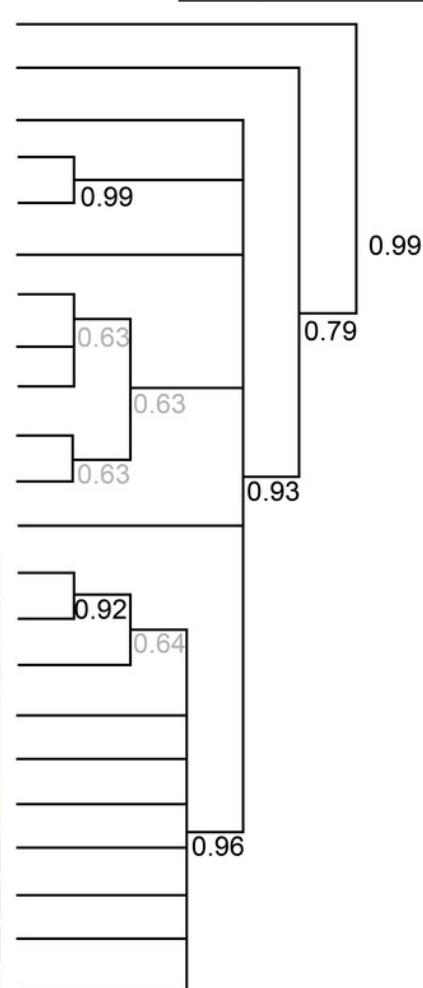
Comparison of topologies recovered with different parsimony analyses of the matrix of this study.





(**A**) strict consensus recovered from analysis in PAUP\* with certain multistate characters ordered; (**B**) strict consensus recovered from analysis in PAUP\* with all multistate characters unordered. Topologies are restricted to higher stereospondyls (post-*Lydekkerina*). Bremer values are above the line, and bootstrap values are below. All values not considered to meet standard thresholds for 'strong support' (Bremer index  $\geq 3$ ; bootstrap value  $\geq 50\%$ ) are in gray text.



## Figure 68

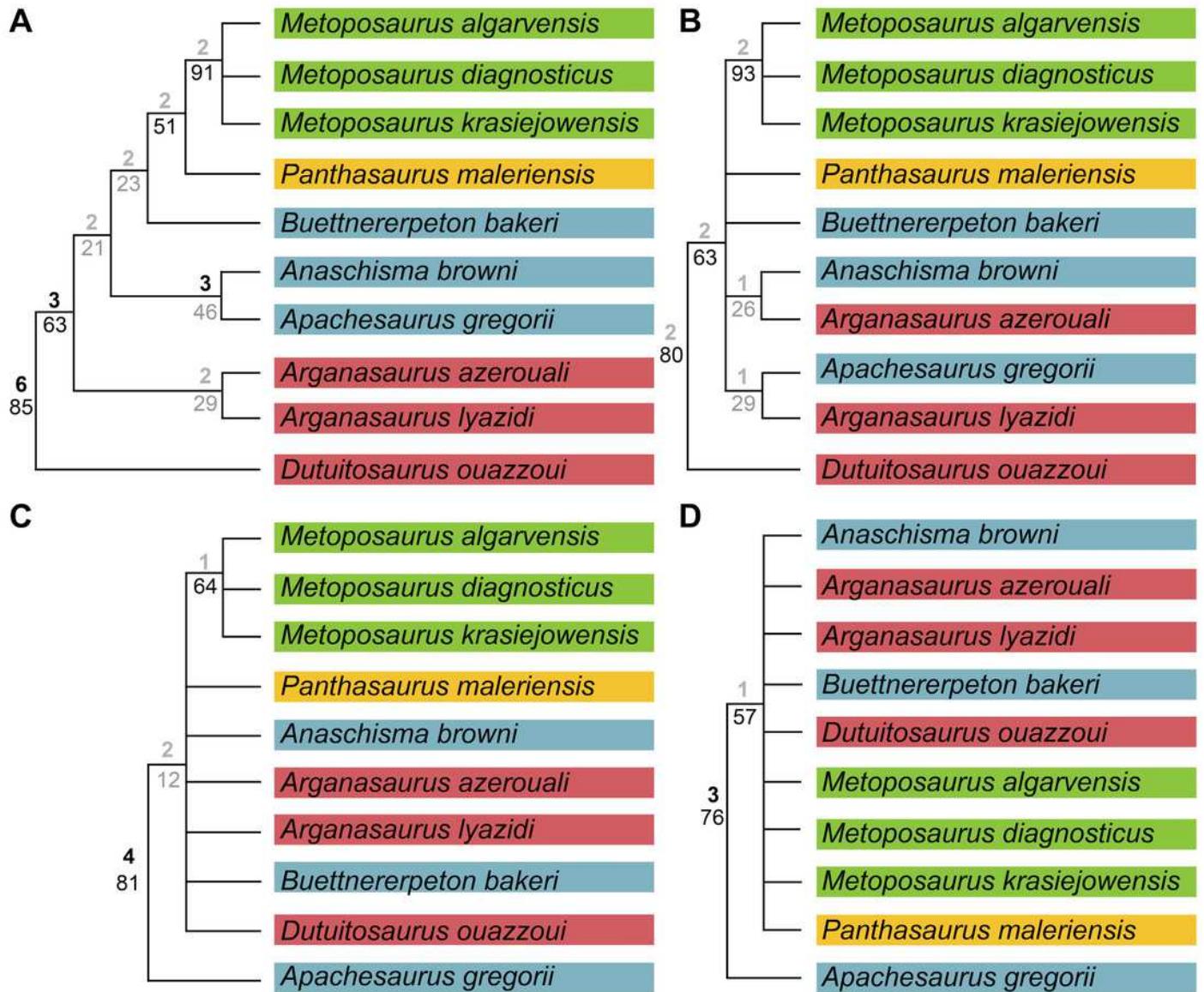
Comparison of tree islands recovered with different parsimony analyses of the matrix of this study.



(**A**) strict consensus of tree island 1 from the analysis with certain multistate characters ordered; (**B**) strict consensus of tree island 2 from the analysis with certain multistate characters ordered; (**C**) strict consensus of tree island 1 from the analysis with all multistate characters unordered; (**D**) strict consensus of tree island 2 from the analysis with all multistate characters unordered. Topologies are restricted to higher stereospondyls (post-*Lydekkerina*).

**A** PAUP\*, ordering, tree island 1 (MPTs 1-6)**B** PAUP\*, ordering, tree island 2 (MPTs 7-9)**C** PAUP\*, no ordering, tree island 1 (MPTs 1-2)**D** PAUP\*, no ordering, tree island 2 (MPTs 3-4)

## Figure 69

Comparison of topologies recovered with different Bayesian analyses of the matrix of this study.


(A) 50%-majority-rule consensus recovered from analysis in MrBayes with certain multistate characters ordered; (B) 50%-majority-rule consensus recovered from analysis in MrBayes with all multistate characters unordered. Topologies are restricted to higher stereospondyls (post-*Lydekkerina*). Posterior probabilities are below the line and italicized. All values not considered to meet standard thresholds for 'strong support' (posterior probability  $\geq 70\%$ ) are in gray text.

**A** MrBayes, ordering**B** MrBayes, no ordering

## Figure 70

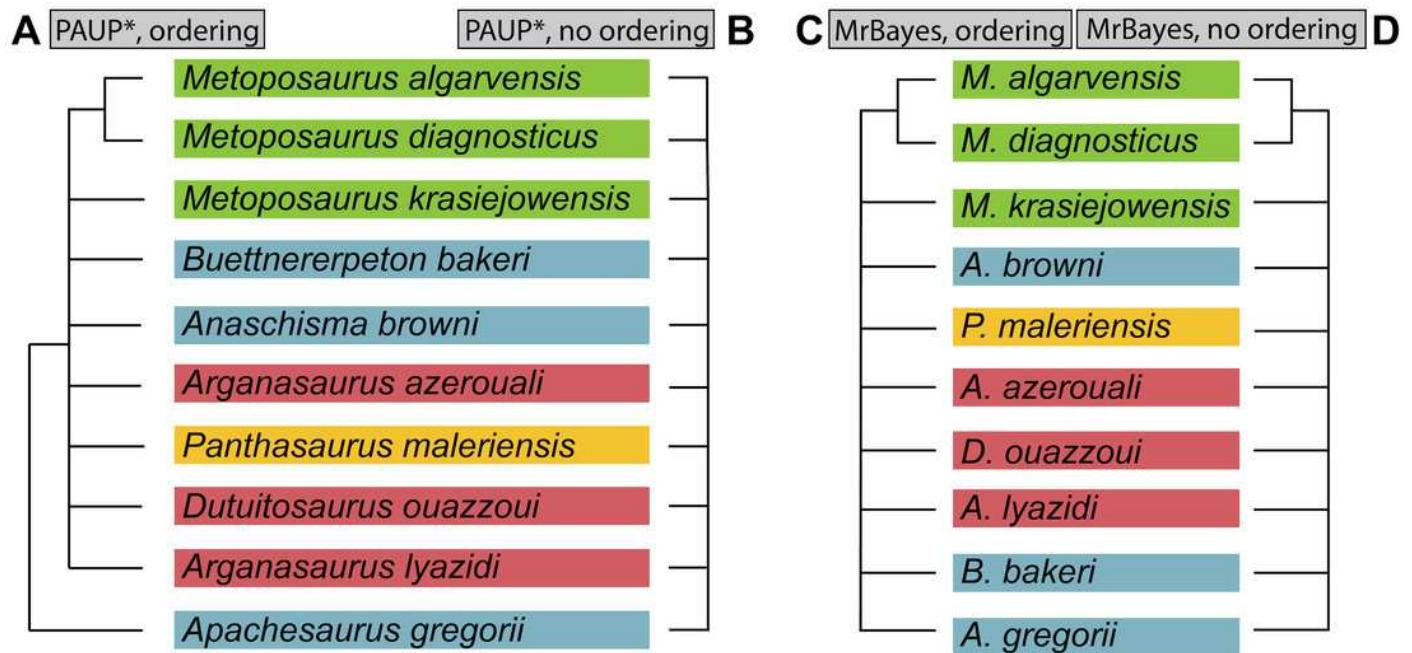
Comparison of topologies recovered with different analyses of the matrix of Buffa, Jalil & Steyer (2019).


(**A**) original strict consensus with newly reported bootstrap and Bremer values; (**B**) strict consensus recovered when seven characters were ordered (Appendix 3) but scores were otherwise left unchanged; (**C**) strict consensus recovered with scoring modifications and no ordering of any characters; (**D**) strict consensus recovered with scoring modifications and seven ordered characters. Bremer values are above the line; bootstrap values are below. All values not considered to meet standard thresholds for 'strong support' (Bremer index  $\geq 3$ ; bootstrap value  $\geq 50\%$ ) are in gray text.



## Figure 71

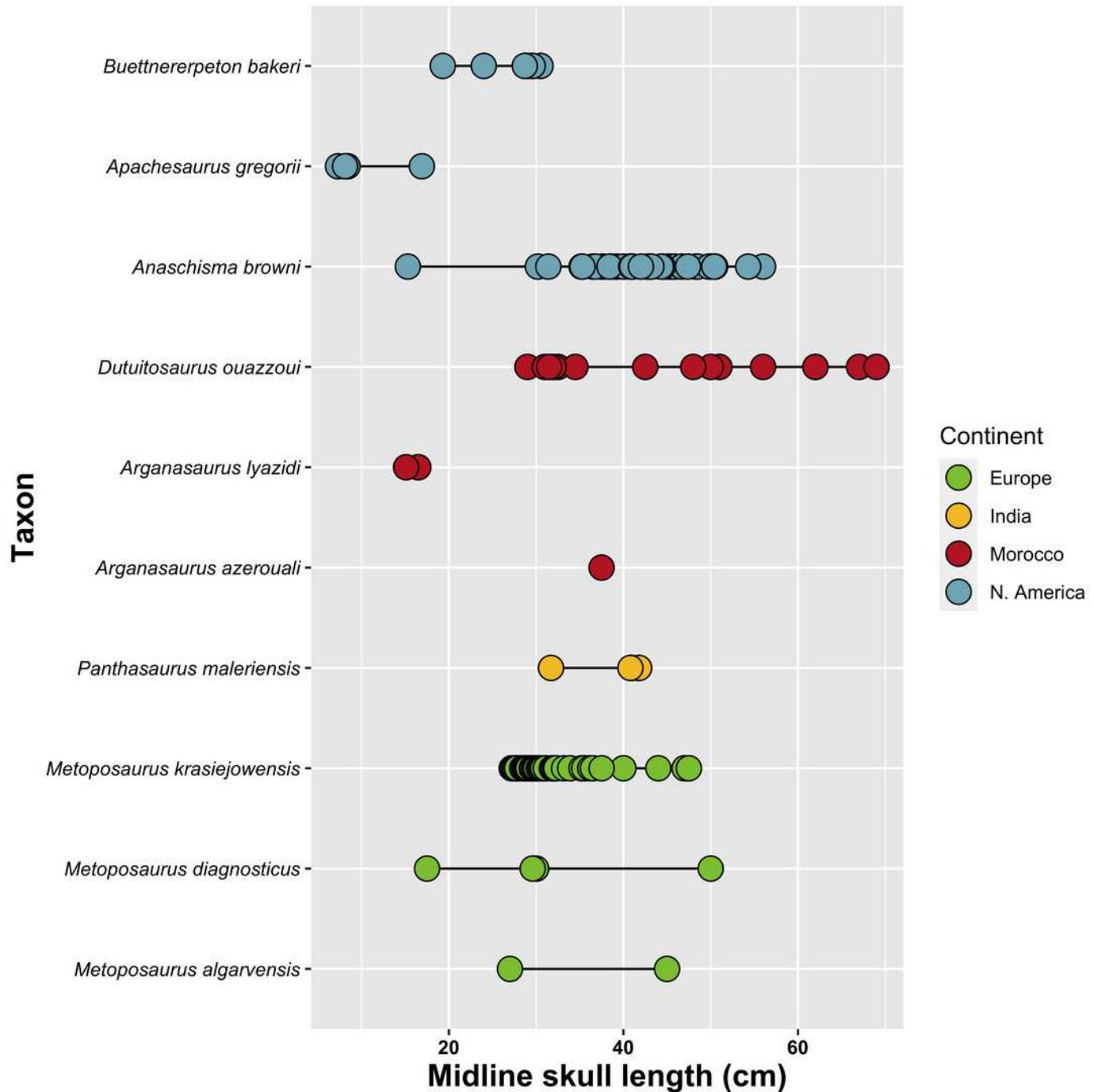
Partial ontogenetic trajectory of *Buettnererpeton bakeri*.


(A) the smallest known partial to complete skull, YPM VPPU 021742; (B) composite reconstruction based on the specimens from the Elkins Place Bonebed; (C) larger specimen from the Boren Quarry, TTU-P 10530 (reproduced from Martz, 2008:fig. 4.2b). Note that Martz figured a slightly larger but slightly more incomplete skull from the Boren Quarry, but only relatively low-resolution photographs that do not permit an interpretive line drawing to be derived from them were provided. Scale bars equal to 5 cm.



## Figure 72

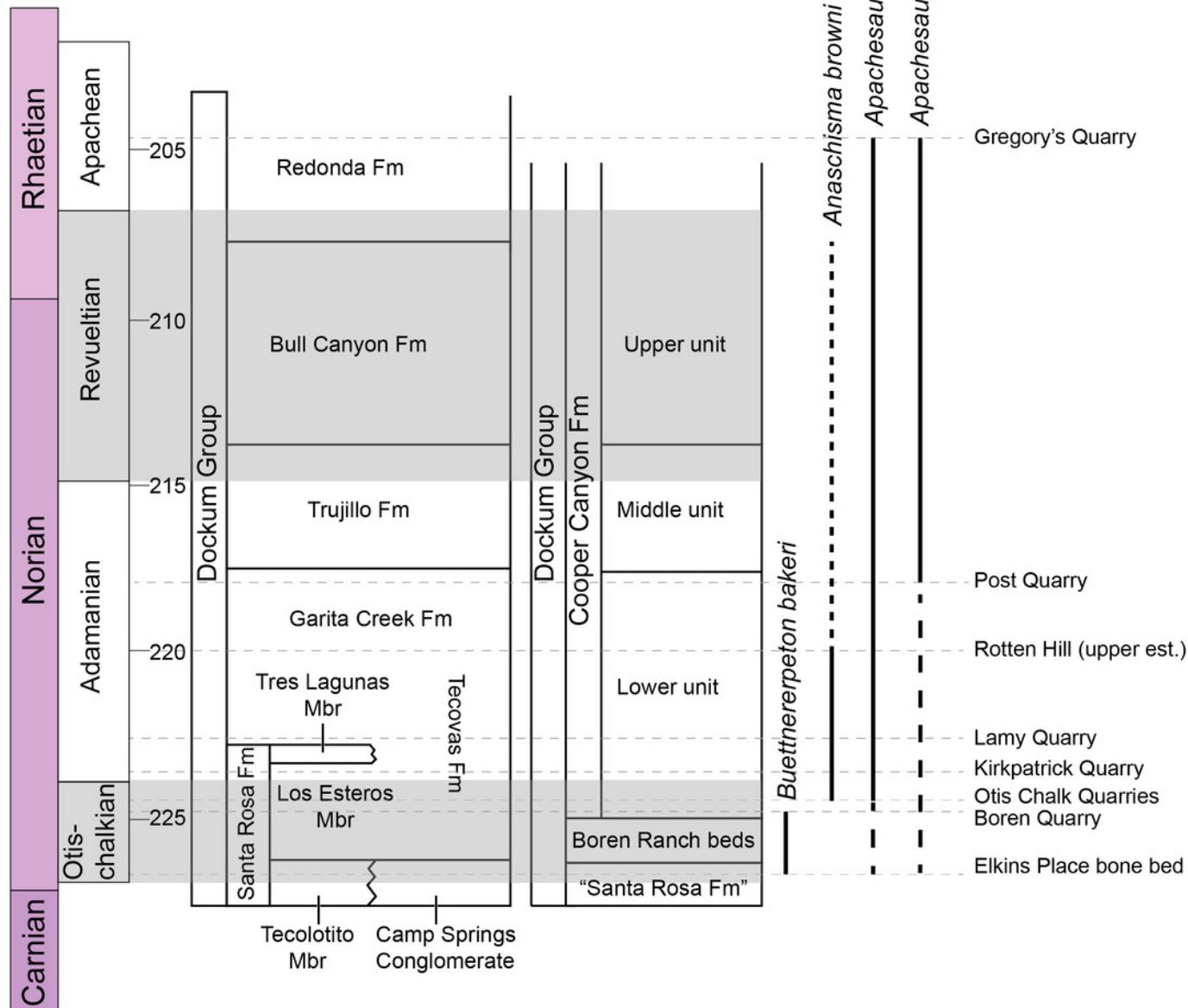
Comparison of topologies recovered with different analyses of the matrix of this study with all nodes that do not meet the standard thresholds for strong support collapsed.


These topologies reflect the only relationships that we feel can be regarded as robust and thus used in broader narratives of metoposaurid evolution. (A) collapsed strict consensus from the analysis in PAUP\* with certain multistate characters ordered; (B) collapsed strict consensus recovered from the analysis in PAUP\* with all multistate characters unordered; (C) collapsed 50%-majority-rule consensus from analysis in MrBayes with certain multistate characters ordered; (D) collapsed 50%-majority-rule consensus from analysis in MrBayes with all multistate characters unordered. Thresholds for 'strong support' were as follows: Bremer index  $\geq 3$ ; bootstrap value  $\geq 50\%$ ; posterior probability  $\geq 70\%$ . A node was collapsed if it did not meet any of these.



## Figure 73

Size chart comparing midline skull lengths between metoposaurids.


Midline skull length is based on the length from the anterior margin of the premaxillae to the posterior margin of the postparietals. Refer to Table S2 for list of measurements and data annotations.



## Figure 74

Comparison of stratigraphic ranges of the North American metoposaurids.

Ranges are based on diagnostic voucher specimens from localities with established stratigraphic position. The lowest occurrence of *Buettnererpeton bakeri* is the Elkins Place bone bed (Case, 1931, 1932; Lehman & Chatterjee, 2005; this study), while the highest occurrence is the Boren Quarry (Martz, 2008). The lowest occurrence of *Anaschisma browni* is the Otis Chalk Quarries (Sawin, 1945), while the highest occurrence is probably Rotten Hill (Lucas et al., 2016). *Anaschisma browni*'s range may be extended considerably to higher stratigraphic units if specimens currently lacking published documentation or apomorphies (e.g., large, isolated intercentra) are included. The lowest occurrence of *Apachesaurus gregorii*, if all referred material (**A**) is considered (following Spielmann & Lucas, 2012; Rinehart & Lucas, 2018), is the Otis Chalk quarries, whereas if only diagnostic cranial material (**C**) is considered (Gee & Parker, 2020), this bound is the Post Quarry. Either range may be extended lower by the cranial material from Collier's Ranch (uncertain position in the Tecovas Formation). The highest occurrence is Gregory's Quarry.



**Table 1**(on next page)

Complete listing of specimens of *Buettnererpeton bakeri* reposed at the University of Michigan Museum of Paleontology (UMMP) that were examined as part of this study.

1 **Table 1. Complete listing of specimens of *Buettnererpeton bakeri* reposed at the University of Michigan**  
2 **Museum of Paleontology (UMMP) that were examined as part of this study.**

| UMMP number | ID                         | UMMP number | ID                         |
|-------------|----------------------------|-------------|----------------------------|
| 12945       | 13 intercentra             | 13800       | R tabular and postparietal |
| 12946       | L femur                    | 13801       | 2 R? postparietals         |
| 12947       | R femur                    | 13802       | 2 L prefrontals            |
| 12969       | 4 exoccipitals             | 13803       | L and R maxillae           |
| 12970       | L mandible                 | 13804       | L quadratojugal            |
| 13027       | Interclavicle              | 13805       | R prefrontal               |
| 13028       | L clavicle                 | 13806       | 2 R quadratojugals         |
| 13029       | Interclavicle              | 13807       | R postorbital              |
| 13055       | Cranium (holotype)         | 13808       | L postfrontal              |
| 13771       | R pterygoid                | 13809       | 3 L nasals                 |
| 13772       | L humerus                  | 13810       | R quadrate                 |
| 13773       | 1 radius, 2 femora         | 13811       | 4 R nasals                 |
| 13774       | 3 tibiae                   | 13812       | 3 R parietals              |
| 13775       | L humerus                  | 13813       | 2 L parietals              |
| 13776       | 6 ribs                     | 13814       | 3 R frontals               |
| 13777       | R and L partial stapes     | 13815       | 2 L frontals               |
| 13778       | Rib                        | 13816       | 3 L squamosals             |
| 13779       | Partial chevron            | 13817       | 2 R squamosals             |
| 13780       | Partial caudal neural arch | 13818       | 3 R quadratojugals         |
| 13781       | L and R fibulae            | 13819       | 4 R and 3 L exoccipitals   |
| 13782       | Ulna                       | 13820       | Cranium                    |
| 13783       | Rib                        | 13822       | Partial cranium            |
| 13784       | 4 metapodials              | 13823       | Cranium                    |
| 13785       | 2 phalanges                | 13824       | L clavicle                 |
| 13786       | L scapula                  | 13825       | L clavicle                 |
| 13787       | Epipterygoid               | 13826       | R parietal                 |
| 13788       | 11 ribs                    | 13827       | R surangular               |
| 13789       | 4 L and 2 R ilia           | 13828       | L surangular               |
| 13792       | Atlas                      | 13829       | R squamosal                |
| 13793       | 4 supratemporals           | 13830       | L squamosal                |
| 13794       | R pterygoid                | 13896       | L clavicle                 |
| 13795       | R pterygoid                | 13897       | L clavicle                 |
| 13796       | R pterygoid                | 13898       | R clavicle                 |
| 13797       | Postparietals              | 13899       | L clavicle                 |
| 13798       | 2 L tabular                | 13900       | R clavicle                 |
| 13799       | 2 pp?/tab?                 | 13901       | R clavicle                 |

|              |               |        |                                                            |
|--------------|---------------|--------|------------------------------------------------------------|
| 13902        | R clavicle    | 13949  | L mandible                                                 |
| 13903        | R clavicle    | 13956  | Cranium                                                    |
| <b>13904</b> | R clavicle    | 13966  | R postfrontal                                              |
| 13905        | Interclavicle | 13967  | L postparietal and tabular                                 |
| 13906        | Interclavicle | 13968  | L squamosal                                                |
| 13907        | Interclavicle | 13969  | 2 L quadratojugals                                         |
| 13908        | Interclavicle | 13970  | R postfrontal and postorbital                              |
| 13910        | Interclavicle | 13975  | L mandible                                                 |
| 13911        | Interclavicle | 14098  | partial skull; R pterygoid, exoccipital, and quadratojugal |
| 13912        | Interclavicle | 14099  | R pterygoid, R exoccipital, R squamosal, and ? cleithrum   |
| 13913        | Interclavicle | 14154  | Cranium                                                    |
| 13914        | Interclavicle | 14205  | Neural arch                                                |
| 13915        | Interclavicle | 14262  | Chunk                                                      |
| 13944        | R mandible    | 118526 | 5 intercentra                                              |
| 13945        | L mandible    | 118527 | 6 intercentra                                              |
| 13947        | L mandible    | 118525 | 17 intercentra                                             |
| 13948        | R mandible    |        |                                                            |

**Table 2**(on next page)

Literature sources used for phylogenetic scoring of matrices. Taxa are listed in alphabetical order.

1 **Table 2. Literature sources used for phylogenetic scoring of matrices.** Taxa are listed in alphabetical order.

| Taxon                              | References                                                                      |
|------------------------------------|---------------------------------------------------------------------------------|
| <i>Almasaurus habbazi</i>          | Dutuit (1976)                                                                   |
| <i>Anaschisma browni</i>           | Lucas et al. (2016); Gee, Parker & Marsh (2019); Kufner & Gee (2021)            |
| <i>Apachesaurus gregorii</i>       | Hunt (1993); Spielmann & Lucas (2012)                                           |
| <i>Arganasaurus lyazidi</i>        | Dutuit (1976); Hunt (1993)                                                      |
| <i>Bothriceps australis</i>        | Warren, Rozefelds & Bull (2011)                                                 |
| <i>Buettnererpeton bakeri</i>      | Case (1931, 1932); this study                                                   |
| <i>Callistomordax kugleri</i>      | Schoch (2008)                                                                   |
| <i>Chinlestegophis jenkinsi</i>    | Pardo, Huttenlocker & Small (2017)                                              |
| <i>Compsocerops cosgriffi</i>      | Sengupta (1995)                                                                 |
| <i>Cyclotosaurus intermedius</i>   | Sulej & Majer (2005)                                                            |
| <i>Dutuitosaurus ouazzoui</i>      | Dutuit (1976)                                                                   |
| <i>Eryops megacephalus</i>         | Sawin (1941); Moulton (1974); Pawley & Warren (2006)                            |
| <i>Eocyclotosaurus appetolatus</i> | Rinehart, Lucas & Schoch (2015); Rinehart & Lucas (2016)                        |
| <i>Lydekkerina huxleyi</i>         | Pawley & Warren (2005); Hewison (2006, 2007); Jeannot, Damiani & Rubidge (2006) |
| <i>Lyrocephaliscus euri</i>        | Säve-Söderbergh (1936); Mazin & Janvier (1983)                                  |
| <i>Mastodonsaurus giganteus</i>    | Schoch (1999)                                                                   |
| <i>Metoposaurus algarvensis</i>    | Brusatte et al. (2015)                                                          |
| <i>Metoposaurus diagnosticus</i>   | Fraas (1889); Sulej (2002)                                                      |
| <i>Metoposaurus krasiejowensis</i> | Sulej (2002, 2007)                                                              |
| <i>Quasicyclotosaurus campi</i>    | Schoch (2000)                                                                   |
| <i>Rhineceps nyasaensis</i>        | Watson (1962)                                                                   |
| <i>Rileymillerus cosgriffi</i>     | Bolt & Chatterjee (2000)                                                        |
| <i>Sclerocephalus haeuseri</i>     | Schoch & Witzmann (2009)                                                        |
| <i>Trematolestes hagdorni</i>      | Schoch (2006)                                                                   |
| <i>Trimerorhachis insignis</i>     | Pawley (2007); Milner & Schoch (2013)                                           |

**Table 3**(on next page)

Comparative measurements of partial to complete skulls of *Buettnererpeton bakeri*.

Asterisk (\*) denotes an estimate; all estimates are made only for relatively complete specimens. Abbreviations for measurements: EW, maximum width across exoccipital condyles; PrO, preorbital length; PrP, prepineal length; PoO, postorbital length; PoP, postpineal length; SL, midline skull length from premaxilla to postparietals; SW, maximum skull width. All measurements are in centimeters.

1 **Table 3. Comparative measurements of partial to complete skulls of *Buettnererpeton bakeri*.**  
2 Asterisk (\*) denotes an estimate; all estimates are made only for relatively complete specimens.  
3 Abbreviations for measurements: EW, maximum width across exoccipital condyles; PrO,  
4 preorbital length; PrP, prepineal length; PoO, postorbital length; PoP, postpineal length; SL,  
5 midline skull length from premaxilla to postparietals; SW, maximum skull width. All  
6 measurements are in centimeters.

| Specimen        | SL    | SW    | PrO  | PoO   | PrP   | PoP  | EW   |
|-----------------|-------|-------|------|-------|-------|------|------|
| UMMP 13055      | 29.1  | 21.8  | 9.4  | 15.7  | 23.7  | 4.8  | 4.7  |
| UMMP 13820      | 30.5  | 24.0  | 9.5  | 16.5  | 24.3  | 5.6  | 6.0  |
| UMMP 13822      | 24.0* | 22.8* | 7.5  | 13.2* | 18.5* | 4.0* | 6.0* |
| UMMP 13823      | 29.6* | 25.4  | 10.0 | 15.2* | ?     | ?    | 5.5  |
| UMMP 13956      | ?     | ?     | ?    | ?     | ?     | ?    | 4.3  |
| UMMP 14154      | ?     | ?     | ?    | ?     | ?     | 6.1  | 5.7  |
| YPM VPPU 021742 | 19.3  | 17.3  | 7    | 9.5   | 14.9  | 4.0  | ?    |
| MCZ 1054        | 28.7  | 22.5* | 9.1  | 15.1  | 22.7  | 5.0  | ?    |

**Table 4**(on next page)

Comparative measurements of partial to complete interclavicles of *Buettnererpeton bakeri*.

Abbreviations for measurements: IL, maximum interclavicle length; IW, maximum interclavicle width; PW, maximum width of region of circular pitting. Note that for practically all specimens, the maximum length represents an incomplete total length; any measurement that is not considered to be a close approximation of the true length is marked with an asterisk (\*). Estimates derived from a half-measurement and an assumption of symmetry are indicated by italics.

1 **Table 4. Comparative measurements of partial to complete interclavicles of**  
2 ***Buettnererpeton bakeri***. Abbreviations for measurements: IL, maximum interclavicle length;  
3 IW, maximum interclavicle width; PW, maximum width of region of circular pitting. Note that  
4 for practically all specimens, the maximum length represents an incomplete total length; any  
5 measurement that is not considered to be a close approximation of the true length is marked with  
6 an asterisk (\*). Estimates derived from a half-measurement and an assumption of symmetry are  
7 indicated by italics.

| Specimen   | IL    | IW   | PW   | PW:IW |
|------------|-------|------|------|-------|
| UMMP 13027 | 23.0  | 16.0 | 4.3  | 0.27  |
| UMMP 13029 | 21.7* | 16.1 | <3.5 | <0.22 |
| UMMP 13905 | 21.3* | 18.0 | 5.5  | 0.31  |
| UMMP 13906 | 17.8* | 16.3 | 4.7  | 0.29  |
| UMMP 13907 | 18.3* | 16.7 | 5.1  | 0.31  |
| UMMP 13908 | 16.8* | 16.1 | 5.0  | 0.31  |
| UMMP 13910 | 26.6  | 19.3 | 6.1  | 0.32  |
| UMMP 13911 | 23.3  | 18.8 | 4.4  | 0.23  |
| UMMP 13912 | 23.6  | 16.1 | 4.2  | 0.26  |
| UMMP 13913 | 14.4* | 15.4 | 2.8  | 0.18  |
| UMMP 13914 | 12.9* | 15.6 | 1.6  | 0.10  |
| UMMP 13915 | 11.8* | 17.1 | 5.6  | 0.33  |

**Table 5**(on next page)

Summary table of sources of non-ontogenetic intraspecific variation (polymorphism) in features that have been historically utilized in taxonomy and phylogenetic analyses.

This is not an exhaustive list of all previously reported polymorphisms; additional sources of intraspecific variation not related to features typically employed for taxonomy or phylogenetic characters are detailed by Dutuit (1976), Sulej (2007:appendix 2), and Lucas et al. (2016).

1 **Table 5. Summary table of sources of non-ontogenetic intraspecific variation (polymorphism) in features**  
 2 **that have been historically utilized in taxonomy and phylogenetic analyses.** This is not an exhaustive list of  
 3 all previously reported polymorphisms; additional sources of intraspecific variation not related to features  
 4 typically employed for taxonomy or phylogenetic characters are detailed by Dutuit (1976), Sulej  
 5 (2007:appendix 2), and Lucas et al. (2016).

| Feature                                         | Taxon                    | Reference                           |
|-------------------------------------------------|--------------------------|-------------------------------------|
| CRANIAL                                         |                          |                                     |
| Lacrimal-orbit                                  | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| Lacrimal contribution to lateral orbital margin | <i>An. browni</i>        | Lucas et al. (2016)                 |
| Lacrimal-nasal                                  | <i>P. maleriensis</i>    | Chowdhury (1965); Sengupta (2002)   |
|                                                 | <i>B. bakeri</i>         | Case (1932); this study             |
| Parietal-postorbital                            | <i>M. krasiejowensis</i> | Sulej (2007)                        |
|                                                 | <i>An. browni</i>        | Lucas et al. (2016)                 |
| Prefrontal-maxilla                              | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| Postfrontal contribution to orbit               | <i>An. browni</i>        | Lucas et al. (2016)                 |
| Anterior extent of jugal                        | <i>An. browni</i>        | Lucas et al. (2016)                 |
| Occiput (dorsal exposure)                       | <i>Ap. gregorii</i>      | Spielmann & Lucas (2012)            |
| Parasphenoid ornamentation                      | <i>An. browni</i>        | Sawin (1945); Gee & Jasinski (2021) |
|                                                 | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| MANDIBULAR                                      |                          |                                     |
| Adsympyseal teeth                               | <i>M. krasiejowensis</i> | Konietzko-Meier & Wawro (2007)      |
| Chorda tympani foramen                          | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| Surangular-prearticular                         | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| Relative length of Meckelian foramen            | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| POSTCRANIAL                                     |                          |                                     |
| Reticulate ornamentation on interclavicle       | <i>An. browni</i>        | Lucas et al. (2016)                 |
|                                                 | <i>Ap. gregorii</i>      | Spielmann & Lucas (2012)            |
| Reticulate ornamentation on clavicle            | <i>M. krasiejowensis</i> | Antczak & Bodzioch (2018)           |
| Interclavicle (posterolateral margin)           | <i>An. browni</i>        | Lucas et al. (2016)                 |
|                                                 | <i>B. bakeri</i>         | Case (1932); this study             |
|                                                 | <i>M. krasiejowensis</i> | Sulej (2007)                        |
| Clavicle (anterolateral margin)                 | <i>P. maleriensis</i>    | Chowdhury (1965); Sengupta (2002)   |
| Clavicle (anteromedial margin/contact)          | <i>M. krasiejowensis</i> | Sulej (2007)                        |
|                                                 | <i>D. ouazzoui</i>       | Dutuit (1976)                       |
| Clavicle (posteromedial margin)                 | <i>B. bakeri</i>         | Case (1932); this study             |
|                                                 | <i>M. krasiejowensis</i> | Sulej (2007)                        |
|                                                 | <i>An. browni</i>        | Lucas et al. (2016)                 |

---

|                                                        |                          |                     |
|--------------------------------------------------------|--------------------------|---------------------|
| Humerus (deltpectoral<br>crest/supinator process size) | <i>An. browni</i>        | Lucas et al. (2016) |
| Ilium shaft (sinuosity)                                | <i>M. krasiejowensis</i> | Sulej (2007)        |

---