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Abstract
The purpose of this study is to investigate the robustness of a commonly used convolutional neural network for image seg-
mentation with respect to nearly unnoticeable adversarial perturbations, and suggest new methods to make these networks 
more robust to such perturbations. In this retrospective study, the accuracy of brain tumor segmentation was studied in sub-
jects with low- and high-grade gliomas. Two representative UNets were implemented to segment four different MR series 
(T1-weighted, post-contrast T1-weighted, T2-weighted, and T2-weighted FLAIR) into four pixelwise labels (Gd-enhancing 
tumor, peritumoral edema, necrotic and non-enhancing tumor, and background). We developed attack strategies based on 
the fast gradient sign method (FGSM), iterative FGSM (i-FGSM), and targeted iterative FGSM (ti-FGSM) to produce effec-
tive but imperceptible attacks. Additionally, we explored the effectiveness of distillation and adversarial training via data  
augmentation to counteract these adversarial attacks. Robustness was measured by comparing the Dice coefficients for the 
attacks using Wilcoxon signed-rank tests. The experimental results show that attacks based on FGSM, i-FGSM, and ti-FGSM 
were effective in reducing the quality of image segmentation by up to 65% in the Dice coefficient. For attack defenses,  
distillation performed significantly better than adversarial training approaches. However, all defense approaches performed 
worse compared to unperturbed test images. Therefore, segmentation networks can be adversely affected by targeted attacks 
that introduce visually minor (and potentially undetectable) modifications to existing images. With an increasing interest in 
applying deep learning techniques to medical imaging data, it is important to quantify the ramifications of adversarial inputs 
(either intentional or unintentional).
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Introduction

Machine learning algorithms have become increasingly 
popular in medical imaging [1–3], where highly func-
tional algorithms have been trained to recognize patterns in 

image data sets and perform clinically relevant tasks such 
as tumor segmentation and disease diagnosis. In particu-
lar, approaches based on deep learning have recently drawn 
widespread attention [4]. However, an oft-repeated criticism 
of deep learning is that it uses a “black-box” approach, giv-
ing rise to decision-making processes that are uninterpret-
able even by domain experts and deep learning researchers 
[5, 6]. Furthermore, it has been demonstrated that neural 
networks can be tricked into misclassifying images when 
they are perturbed by negligible amounts of specific types 
of noise [7].

As more progress has been made by deep learning in 
applications to medical diagnosis and medical reimburse-
ment decisions, concerns have arisen that adversarial exam-
ples may be utilized for fraud [8]. In Paschali et al. [9], the 
robustness of deep learning algorithms is defined as the per-
formance gap created by introducing adversarial examples 
to the test data. Experimental results on skin lesion classi-
fication and whole-brain segmentation with state-of-the-art 
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neural networks demonstrate that although different deep 
learning models have comparable performance on clean 
data, their robustness may vary (with a performance drop 
of as much as 37% for whole-brain segmentation), reveal-
ing the potential vulnerability of deep learning models in 
medical imaging.

The vast majority of existing robustness theory on deep 
learning focuses on classification tasks, where the goal of 
an adversarial attack is to generate a small perturbation to 
an image that causes a highly accurate neural network to 
misclassify the perturbed image. In contrast, image segmen-
tation tasks are more complex. Although image segmenta-
tion may be viewed as a classification procedure operating 
on the individual pixels of an image, adversarial attacks 
typically consist of applying a global perturbation to the 
entire image that simultaneously changes the classes of all 
pixels in an adversarial manner. Additional work is needed 
to study which global perturbations might lead to specific 
types of segmentation errors, particularly for convolutional 
neural networks (CNNs), which are nearly ubiquitous in 
deep learning applications for medical image processing. 
We mention the recent paper [10], which proposed an adap-
tive segmentation mask attack (ASMA) to generate targeted 
adversarial examples for the task of segmentation. Similar 
to our method, ASMA aims at finding a small additive per-
turbation to change the prediction of deep learning models. 
However, our method differs from ASMA in that our general 
approach is to maximize the difference between predicted 
and true labels, whereas the goal of ASMA is to force the 
prediction of models to a specific target output, in which the 
optimization problem is more difficult to solve. Furthermore, 
unlike Ozbulak et al. [10], our paper also presents defense 
techniques to robustify neural networks.

In this paper, we investigate the vulnerability of deep 
learning algorithms in the context of medical image seg-
mentation and propose methods that may be adopted during 
training to make deep learning algorithms more robust. Our 
objective is to study the hypothesis that adversarial attack 
strategies developed for neural network classifiers using 
visually subtle perturbations to input images [7, 11] can 
be adapted to the task of medical image segmentation. Our 
second contribution is to investigate methods for defending 
against such adversarial attacks. It has been shown in recent 
studies that adversarial training [7, 12] and defensive distil-
lation [13] can increase the robustness of neural networks 
when applied to classification tasks for standard computer 
vision data sets such as MNIST and ImageNet [14]. In this 
paper, we will show that these methods are also effective for 
medical imaging segmentation. Both of our defense strate-
gies, based on adversarial training and defensive distilla-
tion, show significantly improved robustness with respect 
to adversarial attacks.

Materials and Methods

Data from the The Cancer Imaging Archive (TCIA) and the 
Medical Image Computing & Computer Assisted Interven-
tion (MICCAI) Brain Tumor Segmentation (BraTS) 2017 
challenge [15–19] were used for this IRB-exempt study. 
These publicly available, retrospective data sets from multi-
institutional studies consist of magnetic resonance (MR) 
images of the brain from 283 subjects with either low-grade 
glioma or glioblastoma multiforme. Each data set includes 
four different MR series: (a) T1-weighted (T1), (b) post-
contrast T1-weighted (T1Gd), (c) T2-weighted (T2), and (d) 
T2-weighted fluid attenuated inversion recovery (FLAIR). 
Segmentation volumes, manually segmented by expert neu-
roradiologists, are provided with the following pixelwise 
labels: (i) Gd-enhancing tumor (ET-label 4), (ii) peritu-
moral edema (ED-label 2), (iii) necrotic and non-enhancing 
tumor (NCR/NET-label 1), and (iv) background (label 0). 
We reserved 20% of the data for testing. We used two rep-
resentative CNN architectures, the 3D-UNet model [20], 
which has demonstrated good performance for segmenta-
tion tasks on this data set, and the classic 2D-UNet model 
[21] for medical image segmentation.

This 3D-UNet model contains 28 convolutional blocks, 
which include 3D convolution, instance normalization, and 
leaky ReLU layers. To make the network more efficient, it 
also has residual connections [22]. The network architecture 
is illustrated in Fig. 1.

The encoder module contains 15 convolutional blocks 
with residual connections. In the convolutional layers of these 
blocks, the size of all kernels is 3 × 3 × 3. The stride is set to 
2 if we want the output size of the convolutional layers to be 
reduced to half the input size; otherwise, the stride is set to 
1. Since the kernel size is odd, the zero-padding strategy is 
different. We add 1 column in the left, 2 columns in the right, 
1 row at the top, and 2 rows at the bottom. There is a 3D 
dropout layer with dropout rate of 0.3 between the two orange 
convolutional blocks to make the training process faster and 
improve the generalization performance of the model.

In the decoder module, after each upsampling layer, there 
is one convolution block with kernel size of 3 × 3 × 3 and 
stride of 1. After each concatenation layer, there are two con-
volution blocks. The first convolution has the same structure 
as the convolution block after upsampling layers. The kernel 
size in the second one is 1 × 1 × 1. In the residual links, there 
are three convolutional layers (colored blue). The kernel size 
for all these convolutions is 1 × 1 × 1. The number of kernels 
in each convolution is the same as the number of labels in 
the ground truth. After the decoder, there is a softmax layer 
to calculate the probability of each label. 2D-UNets are con-
structed in a similar manner, except 3D convolutions are 
replaced by 2D convolutions.
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Attacks

We focused on first-order attacks, which construct perturba-
tions based on the gradient of a loss function evaluated on 
input images for a given trained network. We also studied 
targeted attacks, which encourage the result of a perturbation 
to fall into a specific category. For example, given an input 
tumor image, the goal might be to construct an adversary that 
results in an output that moves the tumor label to a certain 
(incorrect) position. We developed attack strategies based on 
the fast gradient sign method (FGSM) [7], iterative FGSM 
(i-FGSM) [11], and targeted iterative FGSM (ti-FGSM) [11].

FGSM perturbs an image X according to the equation

where � ≥ 0 is the magnitude of perturbation on individual 
pixels, and loss(•) is the loss function with respect to input 
image X and its corresponding ground truth label Y  . In this 
work, we adopt the soft Dice loss, which will be explained 
later.

i-FGSM, which is expected to have a higher success rate 
than FGSM for generating incorrectly classified images, 
consists of applying FGSM for multiple iterations:

where X0 = X , and � ≥ 0 is the magnitude of the perturba-
tion to individual pixels in each iteration.

The ti-FGSM perturbations are defined by the equation:

(1)Xadv = X + � ⋅ sign
(

∇xloss(X, Y)
)

,

(2)Xk+1 = Xk + � ⋅ sign
(

∇xloss(Xk, Y)
)

,

where X0 = X , corresponding to iteratively minimizing the 
loss between the output label and the target label.

A key idea in our approach was to replace the cross-
entropy loss used for usual classification tasks with the 
Dice coefficient loss in the FGSM algorithm. The Dice 
coefficient loss is equal to (1 – Dice coefficient) of the 
model segmented image and the true output, where the 
Dice coefficient is a metric which assesses the spatial over-
lap of two image segmentations [23]. For � , we chose 5% 
of the maximum pixel magnitude of the input image. We 
chose � and the number of steps N  , such that �N = 5% of 
the maximum pixel magnitude of the input image. Typi-
cally, we normalized input image pixel values to be within 
[0,1], so our � was 0.05 and �N = 0.05 . We chose this per-
turbation level at 5% of the maximum pixel magnitude so 
that the perturbed images were not too different from the 
original images and indistinguishable to the human eye.

Defenses

For defenses, we first explored a method based on distilla-
tion [13]. The key idea is to retrain a neural network on a 
data set using vectors of soft labels that are obtained from 
an initial training stage of the neural network. The classi-
fication function of the “distilled” neural network, which 
predicts soft label vectors from inputs, is a continuous func-
tion that is smoother over the domain of input variables than 

(3)Xk+1 = Xk + � ⋅ sign
(

∇xloss(Xk, Ytarget)
)

,

Fig. 1   The 3D-UNet architecture
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the original network, thus is less sensitive to small input 
variations.

Specifically, there are two independent networks with the 
same hyperparameters in this method, which we call F and 
Fd , respectively. Firstly, F is trained by the original data set. 
For classification problems, the label of each input is gener-

ally represented as a one-hot vector. A temperature param-
eter T  , which controls the desired level of smoothness of the 
distilled network, is introduced to the activation function of 
the output layer during training. After the training process is 
completed, the network F will make predictions on all data 
points in the training data set. The outputs of F are consid-
ered as soft labels and replace the original one-hot vectors in 
the training data set. Then, Fd , the distilled network, will be 
trained on the new data set. Since the labels are changed, the 
loss function for training Fd will also be defined differently.

Let F(X) be the model used for distillation, where X is 
the input image. For example, in the 3D-UNet, the output of 
F(X) is a 4D array, and for each pixel (m, n, k) of the input 
3D image X , we have an array of soft labels

where zi,m,n,k(X) is the element with index (i,m, n, k) in the 
4D matrix before the activation function is applied, and N is 
the number of classes in the data set. The temperature T  is a 
constant. If T = 1 , the function above is the usual softmax.

Let N1,N2,N3 be the number of rows, columns, and chan-
nels of X , respectively. Given the one-hot truth matrix Y  
with dimensions 

(

N,N1,N2,N3

)

 , the soft Dice coefficient 
is calculated as

where � is a small positive real number. Unlike the Dice 
coefficient, which is obtained after thresholding the predic-
tion F(X) to convert it to a binary mask for each label class, 
the soft Dice coefficient is differentiable, which is essential 
for backward propagation. Note that by default, we set the 
normal pixels (i.e., the background of the image and the 
part of the tissue that does not have any disease) to class 0 
( i = 0 here), and these pixels are ignored when calculating 
D(X, Y) . Then, the loss function is defined according to the 
soft Dice coefficient

(4)[F(X)]i,m,n,k =
exp

�

zi,m,n,k(X)∕T
�

∑N−1

l=0
exp

�

zl,m,n,k(X)∕T
�
,

(5)D(X, Y) =
1

N

N−1
�

i=1

2
∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0
[F(X)]i,m,n,k ⋅ [Y]i,m,n,k + �

∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0
[F(X)]i,m,n,k +

∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0
[Y]i,m,n,k + �

,

Let Fd be the distilled network, which has the same archi-
tecture as F . When training Fd , the only difference is that 
instead of the one-hot matrix Y , we use the output F(X) from 
the first trained network F . We define

and define the loss function of the distilled network as 
loss(X,F(X)) = 1 − D(X,F(X)).

For adversarial training [7], the goal is to determine a 
model with trainable parameters � that minimizes the popu-
lation risk:

where S is the set of allowed perturbations, D is the data 
distribution, and L is the loss function. In practice, the set 
S is often defined to be the l∞-ball of radius � , meaning that 
each pixel can be perturbed by at most � . To minimize the 
expectation above, a natural strategy is to perform gradient 
descent on the adversarial loss function. It may be shown 
that the gradient of the adversarial loss function at X is iden-
tical to the gradient of the usual loss function evaluated at 
the “worst-case” point in the neighborhood of X [12]. Iden-
tifying this worst-case point is not computationally feasible, 
so a popular alternative is to use an adversarial attack (e.g., 
FGSM), and then train the model by evaluating the gradi-
ent at the adversarial example. In practice, we often use the 
adversarial objective function based on FGSM as an effec-
tive regularizer [7]:

where � is the weight factor. This method works well with 
� = 0.5 , although other values may exist which achieve bet-
ter performance. The goal of adversarial training is to mini-
mize L̃(x, y;𝜃) over the training data set.

Due to memory limitations, we implemented the mini-
mization in an iterative way. For each batch of training data, 
we first generated adversarial examples based on the current 
model, and then performed forward and backward propaga-
tion using these adversarial examples. Then, the model was 
updated according to the original batch of data.

(6)loss(X, Y) = 1 − D(X, Y).

(7)D(X,F(X)) =
1

N

N−1
�

i=1

2
∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0

�

Fd(X)
�

i,m,n,k
⋅ [F(X)]i,m,n,k + �

∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0

�

Fd(X)
�

i,m,n,k
+
∑N1−1

m=0

∑N2−1

n=0

∑N3−1

k=0
[F(X)]i,m,n,k + �

,

(8)min
�

E(x,y)∼D

[

max
�∈S

L(x + �, y;�)
]

,

(9)
L̃(x, y;𝜃) = 𝛽L(x, y;𝜃) + (1 − 𝛽)L

(

x + 𝜀 ⋅ sign
(

∇xL(x, y;𝜃)
)

, y;𝜃
)

,
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Recent work [24–26] has suggested that data augmenta-
tion, which introduces artificially generated images to the 
training set by adding random transformations to training 
images (e.g., random noise from uniform or Gaussian dis-
tributions on pixel magnitudes [24, 26], or random rotations 
to the input image [25]), can produce more robust networks. 
However, previous literature also suggests that data augmen-
tation may have limited benefits for adversarial robustness. 
We compared our distillation strategy to the performance 
of the more straightforward data augmentation technique.

Measuring Robustness

To study the effects of adversarial attacks, we used fixed 
values of � . For FGSM, we chose � to be 0.05, which cor-
responds to 5% of the maximum intensity of the image. For 
i-FGSM, we chose � = 0.05 and the number of iterates to be 
10. For ti-FGSM, the target was all labels in the image equal 
to 1 (i.e., necrotic and non-enhancing tumor). To study the 
effects of network defenses, we used a range of � values from 
0 to 0.010, in increments of 0.001.

We evaluated the robustness of the attacked and defended 
networks by quantifying the effect of adversarial perturba-
tions. The overall robustness of a classifier was obtained by 
comparing the average Dice coefficient of the segmented, 
adversarially perturbed test images with the average Dice 
coefficient of segmented, non-perturbed images. Wilcoxon 
signed-rank tests were used to determine whether the pro-
posed perturbation strategies for inputs resulted in signifi-
cantly different Dice coefficients of segmented outputs. 
Similarly, the peak signal-to-noise ratio (PSNR), Struc-
tural Similarity Index (SSIM), and root mean squared error 
(RMSE) of the perturbed input images were compared to the 
ground truth images for each type of attack.

Results

Analysis was performed on a data set containing 283 sub-
jects. Demographic data is not available for this data set; 
however, for 163 of the subjects, age (60.3 ± 12.1 years) and 
overall survival (423 ± 350 days) were available. All experi-
ments were conducted on one Titan XP GPU with 12 GB 
memory.

For data augmentation, we applied uniform perturbations 
of radius of 0.01 in infinity norm to the input data. For each 
batch of input data, we first trained the model with the per-
turbed images and then trained the model with the clean 
images, in order to obtain a fair comparison to adversarial 
training.

For data preprocessing, we applied N4 bias field correc-
tion [27] and global standardization. The 3D images were 
resized to 128 × 128 × 128 to match the input shape of the 

3D-UNet. For training, we used a batch size of 1 and 100 
epochs. The Adam optimizer was used with a learning rate 
of 1e-4. The training process in the distillation method is 
divided into two parts that share the same hyperparameters: 
When the temperature is high, more iterations are required, 
so we increased the number of epochs to 400 and the learn-
ing rate to 5e-4. To allow improved generalization, data aug-
mentation was performed on the 3D images, which included 
rotation within the axial slices, flips, and matrix transposes.

In the training process of the 2D-UNet, the 3D images 
were converted into 128 axial 2D slices. We used a batch 
size of 64 and 400 epochs. The same Adam optimizer was 
used with a different learning rate of 1e-5 throughout all 
experiments. The same data augmentation methods were 
applied. Although only slice-wise prediction was allowed 
for the 2D-UNet, the predictions were combined for each 
input 3D volume to be evaluated.

Adversarial Attacks

We first present the results for the 3D-UNet. Example adver-
sarial attacks are shown in Fig. 2, where we see that all three 
adversaries successfully inject errors into the segmented 
images, with minimal visual disturbance to the input images. 
This verifies that small adversarial perturbations to the input 
image can indeed have a substantial impact on the resulting 
segmentation.

The average Dice coefficients (mean ± standard devia-
tion) of the predicted output with respect to the ground-truth 
masks and the PSNR, SSIM, and RMSE of the input images 
are shown in Table 1.

A Wilcoxon signed-rank test was used to compare the 
Dice coefficient to the ground truth data for each attack 
type ( p ≤ 0.05 ). A Bonferroni correction was applied to 
correct for multiple comparisons. The attacks were highly 
successful, since all variants of FGSM resulted in a signifi-
cantly lower Dice coefficient. Compared to the “No attack” 
condition, the attacks reduced the Dice coefficient by 
30.5%, 58.3%, and 43.8% in the tumor core; 44.6%, 65.6%, 

Fig. 2   Top row: selected axial slices of input 3D images. Bottom row: 
predicted segmentation for the three adversarial approaches (FGSM, 
i-FGSM, ti-FGSM) compared to the unperturbed input (far left)

1283Journal of Digital Imaging (2021) 34:1279–1293
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and 45.4% in the enhancing tumor; and 26.7%, 47.5%, and 
35.0% in the whole tumor for FGSM, i-FGSM, and ti-
FGSM, respectively. Despite visually subtle changes, the 
image quality metrics PSNR and SSIM suggest measurable 
differences between input images, while RMSE differences 
are low.

In Fig. 3, we show plots of the average Dice coeffi-
cient vs. number of iterations in i-FGSM and ti-FGSM. 
As expected, with an increasing number of iterations, 
we see a steadily decreasing Dice coefficient—indicating 
that with more steps, the adversaries become stronger, 
causing the segmentation output to worsen. The effects 
of i-FGSM iterations on image input quality are shown in 
Fig. 4. The decrease in PSNR is expected; however, note 
that the average PSNR is still reasonably large, imply-
ing that the quality of the perturbed images is relatively 
high. Additionally, as seen in Fig. 2, the effects are barely 
discernible, suggesting that PSNR (and the other image 
quality metrics of SSIM and RMSE) are sensitive to 
FGSM attacks.

Defense via Distillation

The prediction performance of distilled 3D neural networks 
for different training temperatures is shown in Fig. 5. In each 
plot, the robustness of the neural network clearly increases 
with T  . For T = 5000 , the gains are 0.14, 0.27, and 0.22, 
respectively, compared to the network without distilled train-
ing ( T = 1 ) at the worst attack case. This indicates that distil-
lation is indeed effective in defending against the proposed 
adversarial attacks.

It is also notable that the improvement appears to satu-
rate when the temperature exceeds a certain threshold. For 
example, gains in robustness for temperatures over 100 in 
Fig. 5a are negligible. This phenomenon is not observed 
in Fig. 5b, c, because the threshold for the temperature is 
higher than in (a).

Moreover, we observe that increasing the temperature 
makes neural networks more robust, while maintaining a 
test accuracy that is comparable to the original model. This 
corroborates previous findings on non-medical image data 

Table 1   Segmentation results for three different attacks: fast gradient 
sign method (FGSM), iterative FGSM (i-FGSM), and targeted itera-
tive FGSM (ti-FGSM), quantified via the Dice coefficient of the out-
put segmentation and the PSNR, SSIM, and RMSE of the perturbed 

input images. For the Dice coefficient measurements, an asterisk (*) 
indicates statistically significant differences relative to “No attack” at 
the level p ≤ 0.05 , corrected for multiple comparisons

Attack type Dice coef — tumor core Dice coef — 
enhancing tumor

Dice coef — 
whole tumor

Input PSNR Input SSIM Input RMSE

No attack 0.821 ± 0.042 0.668 ± 0.253 0.748 ± 0.043 - - -
FGSM 0.561 ± 0.077* 0.370 ± 0.239* 0.549 ± 0.078* 27.69 ± 0.28 0.646 ± 0.043 0.041 ± 0.001
i-FGSM 0.342 ± 0.087* 0.230 ± 0.162* 0.393 ± 0.090* 27.93 ± 0.13 0.470 ± 0.015 0.040 ± 0.001
ti-FGSM 0.461 ± 0.085* 0.365 ± 0.225* 0.486 ± 0.082* 29.48 ± 0.34 0.735 ± 0.064 0.034 ± 0.001

Fig. 3   Plots of the Dice coefficient vs. number of iterations for all study data using i-FGSM and ti-FGSM. Error bars are also shown. As the 
number of iterations increases, the adversaries become stronger, causing the segmentation output to worsen

1284 Journal of Digital Imaging (2021) 34:1279–1293



1 3

[13]. Defensive distillation also has the potential to improve 
testing accuracy [13]: This phenomenon is more obvious 
in Fig. 5c, in which all distilled networks outperform the 
original model when � is equal to 0. The main drawback 
of using a larger temperature is slower convergence during 
training, leading to a higher computational workload. This 
may impose practical constraints on the magnitude of T  that 
can be used while training.

Similar plots in Fig. 6 can be obtained for the 2D-UNet. 
Although the 2D-UNet has a different architecture, it is also 
sensitive to subtle perturbations, and the distillation method 
can also improve robustness. It is notable the 3D-UNet out-
performed the 2D-UNet, potentially due to its ability to uti-
lize the similarity between continuous axial slices using 3D 
convolutions, whereas the 2D-UNet deals with individual 
slices during both the training and prediction processes.

Adversarial Training

We use the same hyperparameters as in the distillation 
method. Figure 7 shows the Dice coefficients of different 
models by using adversarial training with different val-
ues of � . For all categories, adversarial training is seen 
to enhance the robustness of neural networks. For com-
parison, we also plot the curve (marked with stars) corre-
sponding to data augmentation with random perturbations 
of radius of 0.01 in infinity norm [24–26]. This leads to 
better robustness than the original neural network; how-
ever, the starred curve lies below all other curves, indicat-
ing that more sophisticated defenses will make the trained 
networks more robust.

Similar to defensive distillation, different values of � used 
in adversarial training only have moderate effects on the 
test accuracy, which may be seen by comparing the curves 
in each category when � is 0. However, when we evalu-
ate the performance of each model across all categories, 
the increase of � in the training process does not ensure 
improved robustness. Moreover, the training process may 
diverge for large values of � , making the choice of � crucial. 
Similar observations can be found in Fig. 8 for the 2D-UNet.

Figure 9 shows an example of adversarial images of dif-
ferent 3D UNet models and the corresponding predicted 
labels. The leftmost column contains the original image 
and its true label. Note that all models perform well on the 
unperturbed images, since the Dice coefficient for label = 4 
(enhancing tumor) is around 0.70. Next, we apply FGSM 
with � = 0.03 to generate adversarial images, which are 
shown in the middle row.

We can see that the perturbations are nearly imperceptible 
to the human eye. However, the Dice coefficients in the 5th 
and 6th columns (model with no defense, and distilled model 
with T = 20 ) drop down significantly in the 3rd row, while 
the others remain almost the same.

A Wilcoxon signed-rank test was used to compare the 
Dice coefficient to the ground truth data for each attack type 
( p ≤ 0.05 ), and a Bonferroni correction was applied to cor-
rect for multiple comparisons. A summary of the perfor-
mance of these models on the testing data set can be found 
in Tables 2 and 3 for 3D-UNets and 2D-UNets, respectively. 
Notably, although these defensive models achieve better per-
formance on adversarial examples, they still perform worse 
than the models applied to unperturbed images.

Fig. 4   Average PSNR vs. number of iterations in i-FGSM and ti-FGSM
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Distillation vs. Adversarial Training

Based on the results in Tables 2 and 3, for enhancing tumor 
segmentation, the defensive distillation method yields more 
robust performance than adversarial training for 𝜀 > 0 . 
However, it is not necessarily true that defensive distilla-
tion will always outperform adversarial training in terms of 
a one-step attack. With a more careful choice of � , the per-
formance of adversarial training may exceed that of distil-
lation; however, it may be more difficult to find the optimal 
choice of � , compared to tuning the temperature to obtain 
better performance.

Discussion

We have demonstrated the vulnerability of deep learning 
algorithms for image segmentation tasks to adversarial per-
turbations. Adversarial attacks create imperceptible visual 
differences to the input data, yet have profound effects on the 
segmented output. Furthermore, we have developed meth-
ods for easily constructing adversarial perturbations using 
generalizations of FGSM, and have similarly studied defense 
mechanisms based on distillation and adversarial training. 
We have illustrated the effectiveness of our methods on mag-
netic resonance images from the BraTS data set.

Fig. 5   Performance of distillation in the 3D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and c “Enhancing Tumor” vs. FGSM 
with different �
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In this work, we have mainly focused on one-step 
adversarial attacks that are visually imperceptible. Inte-
grating more sophisticated adversaries during training is 
likely to make the networks more robust, and constitutes 
part of our future work. Furthermore, recent work [11] 
shows that adversarial training may result in label “leak” 
if the original task is difficult, such as classification 
tasks on the ImageNet data set. Label leak occurs when 
a model is trained using adversarial attacks generated 
by FGSM and again evaluated using images with FGSM 
perturbations, producing higher accuracy on adversar-
ial examples than on clean images. A potential expla-
nation is that the gradient added to the original image 

in adversarial training contains extra information from 
the label, making classification of adversarial examples 
easier if a neural network uses that information. We plan 
to investigate whether label leak also occurs for seg-
mentation and classification tasks in medical imaging. 
Lastly, we plan to evaluate the effectiveness of different 
defense techniques beyond standard white-box attacks 
on the trained model. For instance, we are interested in 
examining whether a defense strategy is effective against 
black-box adversarial examples or transferred adversarial 
attacks [28, 29].

This work is not without limitations. First, we 
have focused on two basic UNets for medical imaging 

Fig. 6   Performance of distillation in the 2D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and c “Enhancing Tumor” vs. FGSM 
with different �
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segmentation, a 3D-UNet model and a 2D-UNet. It 
would be interesting to see if other network structures 
also lead to similar trends with respect to adversarial 
attacks and defenses—perhaps specific network struc-
tures could be designed to increase robustness to certain 
types of attacks. However, both UNet models have been 
widely applied and studied for many medical imaging 
segmentation problems, and are thus useful baselines for 
comparison. Second, we have mainly studied adversarial 
attacks based on FGSM, since they generate adversarial 
perturbations in a fast, simple way. However, one could 
similarly adapt other attack methods such as Deepfool 
[30], JSMA [31], and DAG [32] from classification to 

segmentation tasks. These methods could lead to more 
effective attacks, particularly for targeted attack strat-
egies, where our results show that iterative FGSM is 
relatively ineffective. Third, the perturbations we have 
constructed may not correspond to natural variation in 
medical images. The study of physics-based perturba-
tions that may be more prevalent in MR images (e.g., 
motion or other types of image artifacts) will be impor-
tant to study in future work. Other types of contamination 
that might feasibly arise include random noise in train-
ing or testing images, or incorrect labels that are intro-
duced in a random or adversarial manner. Although we 
hypothesize that the defense strategies proposed in this 

Fig. 7   Performance of adversarial training in the 3D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and c “Enhancing Tumor” 
vs. FGSM with different �
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paper may also be more robust with respect to such per-
turbations, their efficacy based on this study is unclear. 
In practice, it may be necessary to devise other defense 
strategies that are specific to these types of perturbations. 
However, this work shows that deep learning segmenta-
tion networks applied to medical imaging are susceptible 
to visually subtle attacks, suggesting that they could be 
prone to intentional manipulation.

With respect to computational complexity, adversarial 
training needs to perform forward and backward propa-
gation twice for each batch of data, compared to three 
forward and two backward processes required for defen-
sive distillation. Therefore, adversarial training is less 

computationally complex given the same configuration. 
Moreover, higher values of T  in distillation require more 
iterations for convergence, leading to higher computational 
costs during the training process. Furthermore, adversarial 
training is generally more interpretable than defensive dis-
tillation: we can check that the perturbed images generated 
during the training process should indeed be segmented 
in the same way as the unperturbed images, provided the 
radius of perturbation is sufficiently small. This provides 
a natural way to bound the magnitude of � , whereas it is 
more difficult to determine the “right” magnitude of T  to 
use without cross-validating the distilled model on test 
data.

Fig. 8   Performance of adversarial training in the 2D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and c “Enhancing Tumor” 
vs. FGSM with different �
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Fig. 9   Top row: true labels and predicted segmentations of each 3D 
UNet model given the original input image. Middle row: original 
input image and adversarial examples for each model generated by 
FGSM with � = 0.03 . Bottom row: true labels and predicted images 
of each model given their corresponding adversarial examples. Mod-

els starting from the 2nd row: adversarial training with � = 0.05 , 
adversarial training with � = 0.01 , adversarial training with � = 0.1 , 
model with no defense, distillation with T = 20 , distillation with 
T = 100 , distillation with T = 500 , and distillation with T = 5000

Table 2   Results of different 3D-UNet models quantified using the Dice coefficient of label 4 (enhancing tumor) when attacked by FGSM with � 
equal to 0, 0.05, and 0.1. An asterisk (*) indicates statistically significant differences at p ≤ 0.05 , corrected for multiple comparisons

Segmentation type Defense type Dice coefficient Dice coefficient difference P-
value

� = 0 � = 0.05 � = 0.1 � = 0 � = 0.05 � = 0.1

Whole tumor No defense 0.890 ± 0.052 0.676 ± 0.189 0.609 ± 0.216 - - -
Distillation (T = 20) 0.893 ± 0.053 0.741 ± 0.162* 0.686 ± 0.180* 0.2287 6.628e-4 0.0013
Distillation (T = 100) 0.891 ± 0.057 0.807 ± 0.123* 0.753 ± 0.149* 0.3714 9.011e-9 9.970e-8
Distillation (T = 500) 0.896 ± 0.056* 0.814 ± 0.153* 0.759 ± 0.174* 0.0224 1.729e-8 3.916e-7
Distillation (T = 5000) 0.885 ± 0.080 0.809 ± 0.161* 0.758 ± 0.182* 0.8706 4.296e-8 1.678e-7
Adversarial training—0.01 0.887 ± 0.075 0.803 ± 0.136* 0.752 ± 0.158* 0.5646 2.176e-8 3.755e-7
Adversarial training—0.05 0.880 ± 0.061* 0.803 ± 0.107* 0.752 ± 0.124* 0.0457 1.991e-7 1.007e-6
Adversarial training—0.1 0.888 ± 0.053 0.809 ± 0.128* 0.765 ± 0.143* 0.3464 6.176e-9 7.119e-9

Tumor core No defense 0.826 ± 0.142 0.467 ± 0.242 0.374 ± 0.233 - - -
Distillation (T = 20) 0.820 ± 0.174 0.603 ± 0.266* 0.521 ± 0.256* 0.2137 1.982e-6 1.950e-5
Distillation (T = 100) 0.801 ± 0.174* 0.633 ± 0.259* 0.543 ± 0.268* 0.0197 2.411e-6 9.801e-6
Distillation (T = 500) 0.823 ± 0.165 0.661 ± 0.279* 0.574 ± 0.289* 0.9968 1.828e-7 7.289e-6
Distillation (T = 5000) 0.810 ± 0.175 0.713 ± 0.236* 0.640 ± 0.247* 0.5486 3.158e-9 3.478e-9
Adversarial training—0.01 0.801 ± 0.181 0.639 ± 0.244* 0.556 ± 0.255* 0.2137 4.699e-8 1.334e-6
Adversarial training—0.05 0.796 ± 0.171* 0.686 ± 0.230* 0.629 ± 0.237* 0.0019 4.216e-9 7.464e-9
Adversarial training—0.1 0.793 ± 0.165* 0.654 ± 0.232* 0.588 ± 0.241* 6.628e-4 2.478e-9 1.250e-8

Enhancing tumor No defense 0.670 ± 0.295 0.380 ± 0.267 0.301 ± 0.242 - - -
Distillation (T = 20) 0.672 ± 0.286 0.506 ± 0.274* 0.425 ± 0.261* 0.0902 1.062e-6 5.837e-6
Distillation (T = 100) 0.693 ± 0.238* 0.517 ± 0.289* 0.425 ± 0.283* 0.0016 0.0012 0.0035
Distillation (T = 500) 0.704 ± 0.261 0.561 ± 0.298* 0.471 ± 0.294* 0.3224 7.785e-8 3.351e-6
Distillation (T = 5000) 0.660 ± 0.286 0.583 ± 0.285* 0.522 ± 0.275* 0.1436 2.345e-8 1.068e-8
Adversarial training—0.01 0.637 ± 0.289 0.525 ± 0.282* 0.462 ± 0.269* 0.6259 4.602e-8 3.648e-6
Adversarial training—0.05 0.656 ± 0.304* 0.531 ± 0.283* 0.445 ± 0.266* 2.979e-5 1.155e-9 2.365e-9
Adversarial training—0.1 0.649 ± 0.283* 0.518 ± 0.283* 0.448 ± 0.269* 0.0057 5.064e-9 7.594e-8
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Conclusion

In summary, we have shown that segmentation networks can 
be adversely affected by the use of targeted attacks which 
utilize visually minor (and potentially undetectable) modi-
fications to existing images. By adding a small perturbation 
calculated by FGSM to the input MR image of a patient, nor-
mal tissue can be regarded as a tumor by the network. With 
increased interest in applying deep learning techniques to 
medical imaging data, it is important to understand the rami-
fications of adversarial inputs (either intentional or unin-
tentional), as these tools may be used in clinical decision-
making. We have demonstrated that defensive techniques 
such as distillation and adversarial training can help combat 
one-step perturbations added to MR images. As the tempera-
ture grows, robustness increases at the cost of computational 
complexity. Therefore, future studies of how deep learning 
networks could be both unintentionally (e.g., as a result of 
artifacts or operator error) or intentionally (e.g., by a bad 
actor) tricked into misclassifying or mislabeling medical 

images is a critically important consideration as deep learn-
ing approaches move toward routine clinical utilization.
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