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Abstract

The purpose of this study is to investigate the robustness of a commonly used convolutional neural network for image seg-
mentation with respect to nearly unnoticeable adversarial perturbations, and suggest new methods to make these networks
more robust to such perturbations. In this retrospective study, the accuracy of brain tumor segmentation was studied in sub-
jects with low- and high-grade gliomas. Two representative UNets were implemented to segment four different MR series
(T1-weighted, post-contrast T1-weighted, T2-weighted, and T2-weighted FLAIR) into four pixelwise labels (Gd-enhancing
tumor, peritumoral edema, necrotic and non-enhancing tumor, and background). We developed attack strategies based on
the fast gradient sign method (FGSM), iterative FGSM (i-FGSM), and targeted iterative FGSM (ti-FGSM) to produce effec-
tive but imperceptible attacks. Additionally, we explored the effectiveness of distillation and adversarial training via data
augmentation to counteract these adversarial attacks. Robustness was measured by comparing the Dice coefficients for the
attacks using Wilcoxon signed-rank tests. The experimental results show that attacks based on FGSM, i-FGSM, and ti-FGSM
were effective in reducing the quality of image segmentation by up to 65% in the Dice coefficient. For attack defenses,
distillation performed significantly better than adversarial training approaches. However, all defense approaches performed
worse compared to unperturbed test images. Therefore, segmentation networks can be adversely affected by targeted attacks
that introduce visually minor (and potentially undetectable) modifications to existing images. With an increasing interest in
applying deep learning techniques to medical imaging data, it is important to quantify the ramifications of adversarial inputs
(either intentional or unintentional).
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Introduction image data sets and perform clinically relevant tasks such

as tumor segmentation and disease diagnosis. In particu-

Machine learning algorithms have become increasingly
popular in medical imaging [1-3], where highly func-
tional algorithms have been trained to recognize patterns in
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lar, approaches based on deep learning have recently drawn
widespread attention [4]. However, an oft-repeated criticism
of deep learning is that it uses a “black-box” approach, giv-
ing rise to decision-making processes that are uninterpret-
able even by domain experts and deep learning researchers
[5, 6]. Furthermore, it has been demonstrated that neural
networks can be tricked into misclassifying images when
they are perturbed by negligible amounts of specific types
of noise [7].

As more progress has been made by deep learning in
applications to medical diagnosis and medical reimburse-
ment decisions, concerns have arisen that adversarial exam-
ples may be utilized for fraud [8]. In Paschali et al. [9], the
robustness of deep learning algorithms is defined as the per-
formance gap created by introducing adversarial examples
to the test data. Experimental results on skin lesion classi-
fication and whole-brain segmentation with state-of-the-art
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neural networks demonstrate that although different deep
learning models have comparable performance on clean
data, their robustness may vary (with a performance drop
of as much as 37% for whole-brain segmentation), reveal-
ing the potential vulnerability of deep learning models in
medical imaging.

The vast majority of existing robustness theory on deep
learning focuses on classification tasks, where the goal of
an adversarial attack is to generate a small perturbation to
an image that causes a highly accurate neural network to
misclassify the perturbed image. In contrast, image segmen-
tation tasks are more complex. Although image segmenta-
tion may be viewed as a classification procedure operating
on the individual pixels of an image, adversarial attacks
typically consist of applying a global perturbation to the
entire image that simultaneously changes the classes of all
pixels in an adversarial manner. Additional work is needed
to study which global perturbations might lead to specific
types of segmentation errors, particularly for convolutional
neural networks (CNNs), which are nearly ubiquitous in
deep learning applications for medical image processing.
We mention the recent paper [10], which proposed an adap-
tive segmentation mask attack (ASMA) to generate targeted
adversarial examples for the task of segmentation. Similar
to our method, ASMA aims at finding a small additive per-
turbation to change the prediction of deep learning models.
However, our method differs from ASMA in that our general
approach is to maximize the difference between predicted
and true labels, whereas the goal of ASMA is to force the
prediction of models to a specific target output, in which the
optimization problem is more difficult to solve. Furthermore,
unlike Ozbulak et al. [10], our paper also presents defense
techniques to robustify neural networks.

In this paper, we investigate the vulnerability of deep
learning algorithms in the context of medical image seg-
mentation and propose methods that may be adopted during
training to make deep learning algorithms more robust. Our
objective is to study the hypothesis that adversarial attack
strategies developed for neural network classifiers using
visually subtle perturbations to input images [7, 11] can
be adapted to the task of medical image segmentation. Our
second contribution is to investigate methods for defending
against such adversarial attacks. It has been shown in recent
studies that adversarial training [7, 12] and defensive distil-
lation [13] can increase the robustness of neural networks
when applied to classification tasks for standard computer
vision data sets such as MNIST and ImageNet [14]. In this
paper, we will show that these methods are also effective for
medical imaging segmentation. Both of our defense strate-
gies, based on adversarial training and defensive distilla-
tion, show significantly improved robustness with respect
to adversarial attacks.
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Materials and Methods

Data from the The Cancer Imaging Archive (TCIA) and the
Medical Image Computing & Computer Assisted Interven-
tion (MICCAI) Brain Tumor Segmentation (BraTS) 2017
challenge [15-19] were used for this IRB-exempt study.
These publicly available, retrospective data sets from multi-
institutional studies consist of magnetic resonance (MR)
images of the brain from 283 subjects with either low-grade
glioma or glioblastoma multiforme. Each data set includes
four different MR series: (a) T1-weighted (T1), (b) post-
contrast T1-weighted (T1Gd), (c) T2-weighted (T2), and (d)
T2-weighted fluid attenuated inversion recovery (FLAIR).
Segmentation volumes, manually segmented by expert neu-
roradiologists, are provided with the following pixelwise
labels: (i) Gd-enhancing tumor (ET-label 4), (ii) peritu-
moral edema (ED-label 2), (iii) necrotic and non-enhancing
tumor (NCR/NET-label 1), and (iv) background (label 0).
We reserved 20% of the data for testing. We used two rep-
resentative CNN architectures, the 3D-UNet model [20],
which has demonstrated good performance for segmenta-
tion tasks on this data set, and the classic 2D-UNet model
[21] for medical image segmentation.

This 3D-UNet model contains 28 convolutional blocks,
which include 3D convolution, instance normalization, and
leaky ReLU layers. To make the network more efficient, it
also has residual connections [22]. The network architecture
is illustrated in Fig. 1.

The encoder module contains 15 convolutional blocks
with residual connections. In the convolutional layers of these
blocks, the size of all kernels is 3 X 3 X 3. The stride is set to
2 if we want the output size of the convolutional layers to be
reduced to half the input size; otherwise, the stride is set to
1. Since the kernel size is odd, the zero-padding strategy is
different. We add 1 column in the left, 2 columns in the right,
1 row at the top, and 2 rows at the bottom. There is a 3D
dropout layer with dropout rate of 0.3 between the two orange
convolutional blocks to make the training process faster and
improve the generalization performance of the model.

In the decoder module, after each upsampling layer, there
is one convolution block with kernel size of 3 X3 x 3 and
stride of 1. After each concatenation layer, there are two con-
volution blocks. The first convolution has the same structure
as the convolution block after upsampling layers. The kernel
size in the second one is 1 X 1 X 1. In the residual links, there
are three convolutional layers (colored blue). The kernel size
for all these convolutions is 1 X 1 X 1. The number of kernels
in each convolution is the same as the number of labels in
the ground truth. After the decoder, there is a softmax layer
to calculate the probability of each label. 2D-UNets are con-
structed in a similar manner, except 3D convolutions are
replaced by 2D convolutions.
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Fig. 1 The 3D-UNet architecture

Attacks

We focused on first-order attacks, which construct perturba-
tions based on the gradient of a loss function evaluated on
input images for a given trained network. We also studied
targeted attacks, which encourage the result of a perturbation
to fall into a specific category. For example, given an input
tumor image, the goal might be to construct an adversary that
results in an output that moves the tumor label to a certain
(incorrect) position. We developed attack strategies based on
the fast gradient sign method (FGSM) [7], iterative FGSM
(i-FGSM) [11], and targeted iterative FGSM (ti-FGSM) [11].
FGSM perturbs an image X according to the equation

X4 =X + £ - sign(V, oss(X, ), (1)

where £ > 0 is the magnitude of perturbation on individual
pixels, and loss(e) is the loss function with respect to input
image X and its corresponding ground truth label Y. In this
work, we adopt the soft Dice loss, which will be explained
later.

i-FGSM, which is expected to have a higher success rate
than FGSM for generating incorrectly classified images,
consists of applying FGSM for multiple iterations:

X1 = X + a - sign(V loss(X, Y)), 2

where X, = X, and a > 0 is the magnitude of the perturba-
tion to individual pixels in each iteration.
The ti-FGSM perturbations are defined by the equation:

I . convolutional block (convolutional layer +
instance normalization + leaky RelLU ) for
downsampling
: convolutional block with equal i/o size
: convolutional layer with equal i/o size
: add operation
: concatenation layer
:upsampling layer

I

(<] II Qmm

X =X +a- sign(Vxloss(Xk, Ytarget))’ (3)

where X, = X, corresponding to iteratively minimizing the
loss between the output label and the target label.

A key idea in our approach was to replace the cross-
entropy loss used for usual classification tasks with the
Dice coefficient loss in the FGSM algorithm. The Dice
coefficient loss is equal to (1 — Dice coefficient) of the
model segmented image and the true output, where the
Dice coefficient is a metric which assesses the spatial over-
lap of two image segmentations [23]. For €, we chose 5%
of the maximum pixel magnitude of the input image. We
chose a and the number of steps N, such that aN = 5% of
the maximum pixel magnitude of the input image. Typi-
cally, we normalized input image pixel values to be within
[0,1], so our € was 0.05 and aN = 0.05. We chose this per-
turbation level at 5% of the maximum pixel magnitude so
that the perturbed images were not too different from the
original images and indistinguishable to the human eye.

Defenses

For defenses, we first explored a method based on distilla-
tion [13]. The key idea is to retrain a neural network on a
data set using vectors of soft labels that are obtained from
an initial training stage of the neural network. The classi-
fication function of the “distilled” neural network, which
predicts soft label vectors from inputs, is a continuous func-
tion that is smoother over the domain of input variables than
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the original network, thus is less sensitive to small input
variations.

Specifically, there are two independent networks with the
same hyperparameters in this method, which we call F and
F?, respectively. Firstly, F is trained by the original data set.
For classification problems, the label of each input is gener-

N—1 ZN]_I ZNZ—I N3—1 [Fd(X)]

loss(X,Y) =1 — D(X, Y). )

Let F? be the distilled network, which has the same archi-
tecture as F. When training F¢, the only difference is that
instead of the one-hot matrix Y, we use the output F(X) from
the first trained network F. We define

Flimme T 7

i,m,n,k (7)

DX, F(X)) = — Z

ZNl_l Z N;—l [Fd(X)]

i,m,nk

+ ZNI—I zNz—l Nz—l [F(X)],mnk + 7

ally represented as a one-hot vector. A temperature param-
eter T, which controls the desired level of smoothness of the
distilled network, is introduced to the activation function of
the output layer during training. After the training process is
completed, the network F' will make predictions on all data
points in the training data set. The outputs of F are consid-
ered as soft labels and replace the original one-hot vectors in
the training data set. Then, F d_the distilled network, will be
trained on the new data set. Since the labels are changed, the
loss function for training F? will also be defined differently.

Let F(X) be the model used for distillation, where X is
the input image. For example, in the 3D-UNet, the output of
F(X) is a 4D array, and for each pixel (m, n, k) of the input
3D image X, we have an array of soft labels

CXp( 1mnk(X)/T)
imnk — N—1

1=0 exXp (Zlmnk(X)/T)

[FXO] 4

where z;, , (X) is the element with index (i, m, n, k) in the
4D matrix before the activation function is applied, and N is
the number of classes in the data set. The temperature 7 is a
constant. If T = 1, the function above is the usual softmax.

Let N;, N,, N; be the number of rows, columns, and chan-
nels of X, respectively. Given the one-hot truth matrix ¥

and define the loss function of the distilled network as
loss(X, F(X)) = 1 — DX, F(X)).

For adversarial training [7], the goal is to determine a
model with trainable parameters 6 that minimizes the popu-
lation risk:

ngn E(x,y)ND r}slea_é( L('x + 5’ y29) s (8)

where S is the set of allowed perturbations, D is the data
distribution, and L is the loss function. In practice, the set
S is often defined to be the /_-ball of radius €, meaning that
each pixel can be perturbed by at most €. To minimize the
expectation above, a natural strategy is to perform gradient
descent on the adversarial loss function. It may be shown
that the gradient of the adversarial loss function at X is iden-
tical to the gradient of the usual loss function evaluated at
the “worst-case” point in the neighborhood of X [12]. Iden-
tifying this worst-case point is not computationally feasible,
so a popular alternative is to use an adversarial attack (e.g.,
FGSM), and then train the model by evaluating the gradi-
ent at the adversarial example. In practice, we often use the
adversarial objective function based on FGSM as an effec-
tive regularizer [7]:

with dimensions (N, N,, N,, N;), the soft Dice coefficient L(x,y:0) = PL(x,y:0) + (1 = HL(x + € - sign(V,L(x,:0)). y:6).
is calculated as )
N-1 Ni—1 N,-1 N;—l
(FEQOLimnie - Yipms 7
D(X.Y) = 1 Z o Z Z k k (5)

N,—-1 N—] Ni—1 aN,—1 N;—1 ’
Zm =0 Z : ’ [F(X) zmnk+z : Z 2 ki Y]i,m,n,k+y

where y is a small positive real number. Unlike the Dice
coefficient, which is obtained after thresholding the predic-
tion F(X) to convert it to a binary mask for each label class,
the soft Dice coefficient is differentiable, which is essential
for backward propagation. Note that by default, we set the
normal pixels (i.e., the background of the image and the
part of the tissue that does not have any disease) to class 0
(i = 0 here), and these pixels are ignored when calculating
D(X,Y). Then, the loss function is defined according to the
soft Dice coefficient

@ Springer

where f is the weight factor. This method works well with
p = 0.5, although other values may exist which achieve bet-
ter performance. The goal of adversarial training is to mini-
mize Z(x, v;0) over the training data set.

Due to memory limitations, we implemented the mini-
mization in an iterative way. For each batch of training data,
we first generated adversarial examples based on the current
model, and then performed forward and backward propaga-
tion using these adversarial examples. Then, the model was
updated according to the original batch of data.
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Recent work [24-26] has suggested that data augmenta-
tion, which introduces artificially generated images to the
training set by adding random transformations to training
images (e.g., random noise from uniform or Gaussian dis-
tributions on pixel magnitudes [24, 26], or random rotations
to the input image [25]), can produce more robust networks.
However, previous literature also suggests that data augmen-
tation may have limited benefits for adversarial robustness.
We compared our distillation strategy to the performance
of the more straightforward data augmentation technique.

Measuring Robustness

To study the effects of adversarial attacks, we used fixed
values of €. For FGSM, we chose € to be 0.05, which cor-
responds to 5% of the maximum intensity of the image. For
1-FGSM, we chose € = 0.05 and the number of iterates to be
10. For ti-FGSM, the target was all labels in the image equal
to 1 (i.e., necrotic and non-enhancing tumor). To study the
effects of network defenses, we used a range of € values from
0 to 0.010, in increments of 0.001.

We evaluated the robustness of the attacked and defended
networks by quantifying the effect of adversarial perturba-
tions. The overall robustness of a classifier was obtained by
comparing the average Dice coefficient of the segmented,
adversarially perturbed test images with the average Dice
coefficient of segmented, non-perturbed images. Wilcoxon
signed-rank tests were used to determine whether the pro-
posed perturbation strategies for inputs resulted in signifi-
cantly different Dice coefficients of segmented outputs.
Similarly, the peak signal-to-noise ratio (PSNR), Struc-
tural Similarity Index (SSIM), and root mean squared error
(RMSE) of the perturbed input images were compared to the
ground truth images for each type of attack.

Results

Analysis was performed on a data set containing 283 sub-
jects. Demographic data is not available for this data set;
however, for 163 of the subjects, age (60.3 + 12.1 years) and
overall survival (423 +350 days) were available. All experi-
ments were conducted on one Titan XP GPU with 12 GB
memory.

For data augmentation, we applied uniform perturbations
of radius of 0.01 in infinity norm to the input data. For each
batch of input data, we first trained the model with the per-
turbed images and then trained the model with the clean
images, in order to obtain a fair comparison to adversarial
training.

For data preprocessing, we applied N4 bias field correc-
tion [27] and global standardization. The 3D images were
resized to 128 x 128 x 128 to match the input shape of the

3D-UNet. For training, we used a batch size of 1 and 100
epochs. The Adam optimizer was used with a learning rate
of le-4. The training process in the distillation method is
divided into two parts that share the same hyperparameters:
When the temperature is high, more iterations are required,
so we increased the number of epochs to 400 and the learn-
ing rate to Se-4. To allow improved generalization, data aug-
mentation was performed on the 3D images, which included
rotation within the axial slices, flips, and matrix transposes.

In the training process of the 2D-UNet, the 3D images
were converted into 128 axial 2D slices. We used a batch
size of 64 and 400 epochs. The same Adam optimizer was
used with a different learning rate of le-5 throughout all
experiments. The same data augmentation methods were
applied. Although only slice-wise prediction was allowed
for the 2D-UNet, the predictions were combined for each
input 3D volume to be evaluated.

Adversarial Attacks

We first present the results for the 3D-UNet. Example adver-
sarial attacks are shown in Fig. 2, where we see that all three
adversaries successfully inject errors into the segmented
images, with minimal visual disturbance to the input images.
This verifies that small adversarial perturbations to the input
image can indeed have a substantial impact on the resulting
segmentation.

The average Dice coefficients (mean + standard devia-
tion) of the predicted output with respect to the ground-truth
masks and the PSNR, SSIM, and RMSE of the input images
are shown in Table 1.

A Wilcoxon signed-rank test was used to compare the
Dice coefficient to the ground truth data for each attack
type (p <0.05). A Bonferroni correction was applied to
correct for multiple comparisons. The attacks were highly
successful, since all variants of FGSM resulted in a signifi-
cantly lower Dice coefficient. Compared to the “No attack”
condition, the attacks reduced the Dice coefficient by
30.5%, 58.3%, and 43.8% in the tumor core; 44.6%, 65.6%,

i-FGSM ti-FGSM

PSNR: 27.93

PSNR: 27.69 PSNR: 29.48

&

Dice: 0.549

O R
' I

Dice: 0.748 Dice: 0.393 Dice: 0.486

Fig.2 Top row: selected axial slices of input 3D images. Bottom row:
predicted segmentation for the three adversarial approaches (FGSM,
i-FGSM, ti-FGSM) compared to the unperturbed input (far left)
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Table 1 Segmentation results for three different attacks: fast gradient
sign method (FGSM), iterative FGSM (i-FGSM), and targeted itera-
tive FGSM (ti-FGSM), quantified via the Dice coefficient of the out-
put segmentation and the PSNR, SSIM, and RMSE of the perturbed

input images. For the Dice coefficient measurements, an asterisk (¥)
indicates statistically significant differences relative to “No attack™ at
the level p < 0.05, corrected for multiple comparisons

Attack type Dice coef — tumor core Dice coef — Dice coef — Input PSNR Input SSIM Input RMSE
enhancing tumor  whole tumor

No attack 0.821+0.042 0.668 +0.253 0.748 £0.043 - - -

FGSM 0.561+0.077" 0.370+0.239" 0.549+0.078" 27.69+0.28 0.646 +0.043 0.041+0.001

i-FGSM 0.342+0.087" 0.230+0.162" 0.393 +0.090" 27.93+0.13 0.470+0.015 0.040+0.001

ti-FGSM 0.461+0.085" 0.365+0.225" 0.486+0.082" 29.48+0.34 0.735+0.064 0.034+0.001

and 45.4% in the enhancing tumor; and 26.7%, 47.5%, and
35.0% in the whole tumor for FGSM, i-FGSM, and ti-
FGSM, respectively. Despite visually subtle changes, the
image quality metrics PSNR and SSIM suggest measurable
differences between input images, while RMSE differences
are low.

In Fig. 3, we show plots of the average Dice coeffi-
cient vs. number of iterations in i-FGSM and ti-FGSM.
As expected, with an increasing number of iterations,
we see a steadily decreasing Dice coefficient—indicating
that with more steps, the adversaries become stronger,
causing the segmentation output to worsen. The effects
of i-FGSM iterations on image input quality are shown in
Fig. 4. The decrease in PSNR is expected; however, note
that the average PSNR is still reasonably large, imply-
ing that the quality of the perturbed images is relatively
high. Additionally, as seen in Fig. 2, the effects are barely
discernible, suggesting that PSNR (and the other image
quality metrics of SSIM and RMSE) are sensitive to
FGSM attacks.

Dice coef vs. i-FGSM iterations (e = 0.005)

0.8 1

0.6 1

Dice Coefficient

0.4

0.3 +— T T T r T
0 2 4 6 8 10
Iteration

Defense via Distillation

The prediction performance of distilled 3D neural networks
for different training temperatures is shown in Fig. 5. In each
plot, the robustness of the neural network clearly increases
with 7. For T = 5000, the gains are 0.14, 0.27, and 0.22,
respectively, compared to the network without distilled train-
ing (T = 1) at the worst attack case. This indicates that distil-
lation is indeed effective in defending against the proposed
adversarial attacks.

It is also notable that the improvement appears to satu-
rate when the temperature exceeds a certain threshold. For
example, gains in robustness for temperatures over 100 in
Fig. 5a are negligible. This phenomenon is not observed
in Fig. 5b, c, because the threshold for the temperature is
higher than in (a).

Moreover, we observe that increasing the temperature
makes neural networks more robust, while maintaining a
test accuracy that is comparable to the original model. This
corroborates previous findings on non-medical image data

Dice coef vs. targeted i-FGSM iterations (e = 0.005)

0.8
0.7
2
[
5 0.6 1
S
o
()]
S05
o
0.4 1
0.3 1— } ] |

0 2 4 6 8 10
Iteration

Fig. 3 Plots of the Dice coefficient vs. number of iterations for all study data using i-FGSM and ti-FGSM. Error bars are also shown. As the
number of iterations increases, the adversaries become stronger, causing the segmentation output to worsen
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PSNR vs. i-FGSM iterations (¢ = 0.005)

47.5
45.0
42.5
40.0
S
wn 37.5
o
35.0
32.5
30.0 1
27.5
2 4 6 8 10
Iteration

Fig.4 Average PSNR vs. number of iterations in i-FGSM and ti-FGSM

[13]. Defensive distillation also has the potential to improve
testing accuracy [13]: This phenomenon is more obvious
in Fig. 5c, in which all distilled networks outperform the
original model when ¢ is equal to 0. The main drawback
of using a larger temperature is slower convergence during
training, leading to a higher computational workload. This
may impose practical constraints on the magnitude of 7" that
can be used while training.

Similar plots in Fig. 6 can be obtained for the 2D-UNet.
Although the 2D-UNet has a different architecture, it is also
sensitive to subtle perturbations, and the distillation method
can also improve robustness. It is notable the 3D-UNet out-
performed the 2D-UNet, potentially due to its ability to uti-
lize the similarity between continuous axial slices using 3D
convolutions, whereas the 2D-UNet deals with individual
slices during both the training and prediction processes.

Adversarial Training

We use the same hyperparameters as in the distillation
method. Figure 7 shows the Dice coefficients of different
models by using adversarial training with different val-
ues of €. For all categories, adversarial training is seen
to enhance the robustness of neural networks. For com-
parison, we also plot the curve (marked with stars) corre-
sponding to data augmentation with random perturbations
of radius of 0.01 in infinity norm [24-26]. This leads to
better robustness than the original neural network; how-
ever, the starred curve lies below all other curves, indicat-
ing that more sophisticated defenses will make the trained
networks more robust.

PSNR vs. targeted i-FGSM iterations (¢ = 0.005)

PSNR

30.0 1

6 8 10
Iteration

Similar to defensive distillation, different values of € used
in adversarial training only have moderate effects on the
test accuracy, which may be seen by comparing the curves
in each category when € is 0. However, when we evalu-
ate the performance of each model across all categories,
the increase of € in the training process does not ensure
improved robustness. Moreover, the training process may
diverge for large values of €, making the choice of € crucial.
Similar observations can be found in Fig. 8 for the 2D-UNet.

Figure 9 shows an example of adversarial images of dif-
ferent 3D UNet models and the corresponding predicted
labels. The leftmost column contains the original image
and its true label. Note that all models perform well on the
unperturbed images, since the Dice coefficient for label =4
(enhancing tumor) is around 0.70. Next, we apply FGSM
with € = 0.03 to generate adversarial images, which are
shown in the middle row.

We can see that the perturbations are nearly imperceptible
to the human eye. However, the Dice coefficients in the Sth
and 6th columns (model with no defense, and distilled model
with T = 20) drop down significantly in the 3rd row, while
the others remain almost the same.

A Wilcoxon signed-rank test was used to compare the
Dice coefficient to the ground truth data for each attack type
(p < 0.05), and a Bonferroni correction was applied to cor-
rect for multiple comparisons. A summary of the perfor-
mance of these models on the testing data set can be found
in Tables 2 and 3 for 3D-UNets and 2D-UNets, respectively.
Notably, although these defensive models achieve better per-
formance on adversarial examples, they still perform worse
than the models applied to unperturbed images.
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Fig.5 Performance of distillation in the 3D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and ¢ “Enhancing Tumor” vs. FGSM

with different &

Distillation vs. Adversarial Training

Based on the results in Tables 2 and 3, for enhancing tumor
segmentation, the defensive distillation method yields more
robust performance than adversarial training for € > 0.
However, it is not necessarily true that defensive distilla-
tion will always outperform adversarial training in terms of
a one-step attack. With a more careful choice of €, the per-
formance of adversarial training may exceed that of distil-
lation; however, it may be more difficult to find the optimal
choice of €, compared to tuning the temperature to obtain
better performance.

@ Springer

Discussion

We have demonstrated the vulnerability of deep learning
algorithms for image segmentation tasks to adversarial per-
turbations. Adversarial attacks create imperceptible visual
differences to the input data, yet have profound effects on the
segmented output. Furthermore, we have developed meth-
ods for easily constructing adversarial perturbations using
generalizations of FGSM, and have similarly studied defense
mechanisms based on distillation and adversarial training.
We have illustrated the effectiveness of our methods on mag-
netic resonance images from the BraTS data set.
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In this work, we have mainly focused on one-step
adversarial attacks that are visually imperceptible. Inte-
grating more sophisticated adversaries during training is
likely to make the networks more robust, and constitutes
part of our future work. Furthermore, recent work [11]
shows that adversarial training may result in label “leak”
if the original task is difficult, such as classification
tasks on the ImageNet data set. Label leak occurs when
a model is trained using adversarial attacks generated
by FGSM and again evaluated using images with FGSM
perturbations, producing higher accuracy on adversar-
ial examples than on clean images. A potential expla-
nation is that the gradient added to the original image

(c)

“Whole Tumor,” b “Tumor Core,” and ¢ “Enhancing Tumor” vs. FGSM

in adversarial training contains extra information from
the label, making classification of adversarial examples
easier if a neural network uses that information. We plan
to investigate whether label leak also occurs for seg-
mentation and classification tasks in medical imaging.
Lastly, we plan to evaluate the effectiveness of different
defense techniques beyond standard white-box attacks
on the trained model. For instance, we are interested in
examining whether a defense strategy is effective against
black-box adversarial examples or transferred adversarial
attacks [28, 29].

This work is not without limitations. First, we
have focused on two basic UNets for medical imaging

@ Springer
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Fig. 7 Performance of adversarial training in the 3D-UNet. Dice coefficients of a “Whole Tumor,” b “Tumor Core,” and ¢ “Enhancing Tumor”

vs. FGSM with different e

segmentation, a 3D-UNet model and a 2D-UNet. It
would be interesting to see if other network structures
also lead to similar trends with respect to adversarial
attacks and defenses—perhaps specific network struc-
tures could be designed to increase robustness to certain
types of attacks. However, both UNet models have been
widely applied and studied for many medical imaging
segmentation problems, and are thus useful baselines for
comparison. Second, we have mainly studied adversarial
attacks based on FGSM, since they generate adversarial
perturbations in a fast, simple way. However, one could
similarly adapt other attack methods such as Deepfool
[30], JSMA [31], and DAG [32] from classification to

@ Springer

segmentation tasks. These methods could lead to more
effective attacks, particularly for targeted attack strat-
egies, where our results show that iterative FGSM is
relatively ineffective. Third, the perturbations we have
constructed may not correspond to natural variation in
medical images. The study of physics-based perturba-
tions that may be more prevalent in MR images (e.g.,
motion or other types of image artifacts) will be impor-
tant to study in future work. Other types of contamination
that might feasibly arise include random noise in train-
ing or testing images, or incorrect labels that are intro-
duced in a random or adversarial manner. Although we
hypothesize that the defense strategies proposed in this
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paper may also be more robust with respect to such per-
turbations, their efficacy based on this study is unclear.
In practice, it may be necessary to devise other defense
strategies that are specific to these types of perturbations.
However, this work shows that deep learning segmenta-
tion networks applied to medical imaging are susceptible
to visually subtle attacks, suggesting that they could be
prone to intentional manipulation.

With respect to computational complexity, adversarial
training needs to perform forward and backward propa-
gation twice for each batch of data, compared to three
forward and two backward processes required for defen-
sive distillation. Therefore, adversarial training is less

computationally complex given the same configuration.
Moreover, higher values of T in distillation require more
iterations for convergence, leading to higher computational
costs during the training process. Furthermore, adversarial
training is generally more interpretable than defensive dis-
tillation: we can check that the perturbed images generated
during the training process should indeed be segmented
in the same way as the unperturbed images, provided the
radius of perturbation is sufficiently small. This provides
a natural way to bound the magnitude of e, whereas it is
more difficult to determine the “right” magnitude of T to
use without cross-validating the distilled model on test
data.

@ Springer
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Fig.9 Top row: true labels and predicted segmentations of each 3D
UNet model given the original input image. Middle row: original
input image and adversarial examples for each model generated by
FGSM with € = 0.03. Bottom row: true labels and predicted images
of each model given their corresponding adversarial examples. Mod-

els starting from the 2nd row: adversarial training with £ = 0.05,
adversarial training with € = 0.01, adversarial training with € = 0.1,
model with no defense, distillation with 7 = 20, distillation with
T = 100, distillation with 7" = 500, and distillation with 7" = 5000

Table 2 Results of different 3D-UNet models quantified using the Dice coefficient of label 4 (enhancing tumor) when attacked by FGSM with ¢
equal to 0, 0.05, and 0.1. An asterisk (*) indicates statistically significant differences at p < 0.05, corrected for multiple comparisons

Segmentation type  Defense type Dice coefficient Dice coefficient difference P-
value
e=0 e =0.05 e=0.1 e=0 e=005 e=0.1
Whole tumor No defense 0.890+0.052 0.676+0.189 0.609+0.216 - - -
Distillation (7T=20) 0.893 +0.053 0.741+0.162*  0.686+0.180*  0.2287 6.628¢-4  0.0013
Distillation (T=100) 0.891+0.057 0.807+0.123*  0.753+0.149* 0.3714 9.011e-9  9.970e-8
Distillation (T=500) 0.896+0.056*  0.814+0.153*  0.759+0.174* 0.0224 1.729¢-8  3.916e-7
Distillation (7=5000) 0.885+0.080 0.809+0.161*  0.758+0.182*  0.8706 4.296e-8  1.678e-7
Adversarial training—0.01  0.887+0.075 0.803+0.136*  0.752+0.158*  0.5646 2.176e-8  3.755e-7
Adversarial training—0.05  0.880+0.061*  0.803+0.107*  0.752+0.124*  0.0457 1.991e-7  1.007e-6
Adversarial training—a0.1 0.888+0.053 0.809+0.128*  0.765+0.143*  0.3464 6.176e-9  7.119e-9
Tumor core No defense 0.826+0.142 0.467+0.242 0.374+0.233 - - -
Distillation (7'=20) 0.820+0.174 0.603+0.266*  0.521+0.256*  0.2137 1.982e-6  1.950e-5
Distillation (7=100) 0.801+£0.174*  0.633+£0.259*  0.543+£0.268* 0.0197 2411e-6  9.801e-6
Distillation (7=500) 0.823+0.165 0.661+£0.279*  0.574+0.289*  0.9968 1.828e-7  7.28%¢-6
Distillation (7=5000) 0.810+0.175 0.713+£0.236*  0.640+0.247*  0.5486 3.158e-9  3.478e-9
Adversarial training—0.01  0.801+0.181 0.639+0.244*  0.556+0.255*  0.2137 4.699¢-8  1.334e-6
Adversarial training—0.05  0.796+0.171*  0.686+0.230*  0.629+0.237*  0.0019 4.216e-9  7.464e-9
Adversarial training—0.1 0.793+0.165%  0.654+0.232*  0.588+0.241* 6.628e-4 2.478e-9  1.250e-8
Enhancing tumor No defense 0.670+0.295 0.380+0.267 0.301+0.242 - - -
Distillation (7=20) 0.672+0.286 0.506+0.274*  0.425+0.261*  0.0902 1.062e-6  5.837e-6
Distillation (7=100) 0.693+£0.238*  0.517+£0.289*  0.425+0.283* 0.0016 0.0012 0.0035
Distillation (7=500) 0.704 £0.261 0.561+£0.298*  0.471+0.294* 0.3224 7.785e-8  3.351e-6
Distillation (7=5000) 0.660+0.286 0.583+0.285*  0.522+0.275* 0.1436 2.345e-8  1.068e-8
Adversarial training—0.01  0.637+0.289 0.525+0.282*  0.462+0.269*  0.6259 4.602e-8  3.648e-6
Adversarial training—0.05  0.656+0.304*  0.531+0.283*  0.445+0.266* 2.979%-5 1.155¢-9  2.365¢-9
Adversarial training—a0.1 0.649+£0.283*  0.518+£0.283*  0.448+£0.269*  0.0057 5.064e-9  7.594e-8

@ Springer



Journal of Digital Imaging (2021) 34:1279-1293

1291

Table 3 Results of different 2D-UNet models quantified using the Dice coefficient of label 4 (enhancing tumor) when attacked by FGSM with £
equal to 0, 0.05, and 0.1. An asterisk (*) indicates statistically significant differences at p < 0.05, corrected for multiple comparisons

Segmentation type = Defense type Dice coefficient Dice coefficient difference
P-value
e=0 e =0.05 e=0.1 e=0 e =0.05 e=0.1
Whole tumor No defense 0.804+0.131  0.607+0.226 0.549+0.236 - - -
Distillation (T=20) 0.831+0.110  0.726+0.185*  0.686+0.201*  0.3568  0.0073 0.0040
Distillation (7= 100) 0.814+0.132  0.718+0.196*  0.684+0.207* 0.5371  0.0132 0.0067
Distillation (7'=500) 0.828+0.113  0.731+0.180*  0.689+0.198*  0.3385  0.0057 0.0039
Distillation (7'=5000) 0.818+0.130  0.760+0.158*  0.729+0.171*  0.5609  5.014e-4  1.844e-4
Adversarial training—0.01 0.816+0.135  0.748+0.168*  0.709+0.190*  0.4259  0.0015 7.943e-4
Adversarial training—0.05 0.809+0.127  0.757+0.151*  0.735+0.164* 0.8300  0.0011 1.657e-4
Adversarial training—0.1 0.805+0.131  0.749+0.160*  0.726+0.173*  0.9929  0.0014 3.701e-4
Tumor core No defense 0.701+0.167  0.481+0.231 0.428 +£0.231 - - -
Distillation (7'=20) 0.723+0.156  0.602+0.207*  0.557+0.214* 0.5914  0.0153 0.0113
Distillation (7'=100) 0.716+0.161  0.611+0.204*  0.572+0.211* 0.7071  0.0085 0.0043
Distillation (7'=500) 0.706+0.176  0.613+0.205*  0.573+0.209* 0.7678  0.0102 0.0048
Distillation (7'=5000) 0.690+0.183  0.631+0.190*  0.600+0.192*  0.8300  0.0053 0.0011
Adversarial training—0.01 0.707+0.180  0.625+0.200*  0.584+0.210*  0.7815  0.0057 0.0026
Adversarial training—0.05 0.695+0.176  0.623+0.196*  0.601+0.200*  0.9216  0.0067 9.328e-4
Adversarial training—0.1 0.695+0.173  0.621+0.192*  0.593+0.199*  0.8933  0.0079 0.0012
Enhancing tumor No defense 0.629+0.278  0.444+0.250 0.376+0.233 - - -
Distillation (7=20) 0.649+0.266  0.535+0.268*  0.481+0.259* 0.8022  0.0432 0.0259
Distillation (7=100) 0.646+0.276  0.554+0.275*  0.500+0.266* 0.7406  0.0178 0.0126
Distillation (7=500) 0.580+0.283  0.509+0.260 0.460+0.249% 02137  0.1329 0.0750
Distillation (7=5000) 0.567+0.275  0.507+0.259 0.457+0.248 0.0961  0.1423 0.0892
Adversarial training—0.01 0.620+0.279  0.483+0.278 0.421+0.276 0.7406  0.2448 0.2377
Adversarial training—0.05 0.611+£0.277  0.488+0.269 0.430+0.266 0.5609  0.2137 0.1739
Adversarial training—0.1 0.593+0.285  0.488+0.266 0.432+0.258 03164  0.2341 0.1977

Conclusion

In summary, we have shown that segmentation networks can
be adversely affected by the use of targeted attacks which
utilize visually minor (and potentially undetectable) modi-
fications to existing images. By adding a small perturbation
calculated by FGSM to the input MR image of a patient, nor-
mal tissue can be regarded as a tumor by the network. With
increased interest in applying deep learning techniques to
medical imaging data, it is important to understand the rami-
fications of adversarial inputs (either intentional or unin-
tentional), as these tools may be used in clinical decision-
making. We have demonstrated that defensive techniques
such as distillation and adversarial training can help combat
one-step perturbations added to MR images. As the tempera-
ture grows, robustness increases at the cost of computational
complexity. Therefore, future studies of how deep learning
networks could be both unintentionally (e.g., as a result of
artifacts or operator error) or intentionally (e.g., by a bad
actor) tricked into misclassifying or mislabeling medical

images is a critically important consideration as deep learn-
ing approaches move toward routine clinical utilization.
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