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Intermittent Private Information Retrieval With
Application to Location Privacy
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Abstract— We study the problem of intermittent private infor-
mation retrieval with multiple servers, in which a user consecu-
tively requests one of K messages from N replicated databases
such that part of requests need to be protected while others do
not need privacy. Motivated by the location privacy application,
the correlation between requests is modeled by a Markov
chain. We propose an intermittent private information retrieval
scheme that concatenates an obfuscation scheme and a private
information retrieval scheme for the time period when privacy
is not needed, to prevent leakage incurred by the correlation
over time. In the end, we illustrate how the proposed scheme for
the problem of intermittent private information retrieval with
Markov structure correlation can be applied to design a location
privacy protection mechanism in the location privacy problem.

Index Terms— Information-theoretic privacy, private informa-
tion retrieval, location privacy.

I. INTRODUCTION

PRIVACY-PRESERVING mechanism [1]–[3] has been
intensively studied because of the upsurge in pri-

vacy concerns. An emerging application is location pri-
vacy, since location-based service becomes an integral
part of daily life. Location privacy has attracted signifi-
cant attention recently [4]–[15], and particularly from an
information-theoretic perspective [11], [12]. However, it has
not been fully addressed that how the correlation between
locations corrodes privacy, especially when a user may not
need privacy all the time due to the overheads incurred by
the privacy-preserving mechanism. To capture the impact of
correlation in location privacy systematically, we formulate a
theoretical problem in the framework of information-theoretic
private information retrieval (PIR) [16], [17]. In particular,
we are interested in the Markov structure correlation, as a
commonly adopted mobility model that models the correlation
between locations is the Markov model [7]–[12].

Private information retrieval (PIR) [16], [17] has attracted
significant attention recently due to its key role in under-
standing privacy in downloading scenarios. The PIR capacity,
that is, the utility metric to measure download cost from
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databases, was characterized by Sun and Jafar [17], in which
the canonical setting is that a user is interested in retrieving
one of the K messages from N replicated database while
hiding the identity of the desired message. Many variants of
the ordinary PIR problem have been studied in [18]–[32].

The new variation to be studied in this paper, namely
intermittent private information retrieval, is motivated by the
fact that privacy usually comes at a cost so a user may not need
privacy all the time. Privacy-preserving mechanisms typically
incur higher overheads in terms of computation, memory, and
delay, etc. These incurred burdens may motivate the user
to choose whether he/she needs privacy or not at certain
times. For example, people may switch between normal and
incognito modes in browsers depending on network connection
and sensitivity of contents, etc.

Under the intermittent PIR setting, when a user needs
privacy, he/she has to use a PIR scheme. The question is
what should be done when the user does not need privacy.
One natural answer is a straightforward scheme, i.e., a scheme
without any concern of privacy, which suffers from the fact
that the user’s behavior is usually correlated over time and
hence a careless downloading at the current time will leak
information about the request at the time instance that needs
privacy. Another natural answer is a PIR scheme, which
surely preserves privacy due to the one-shot nature of the
PIR scheme [17]. However, this conservative strategy generally
sacrifices the efficiency, i.e., increasing the download cost,
since it over-protects a request that does not need privacy.

In this paper, we study the problem of intermittent pri-
vate information retrieval with Markov structure correlation,
in which a user consecutively requests one of K time-varying
messages from N replicated databases at each time, such
that part of requests (at some time periods) need privacy
while others do not need privacy. The requests over time
are correlated and we model the correlation by a first-order
Markov chain as said.

We propose a solution that can be considered as a con-
catenation of an obfuscation scheme and a PIR scheme.
In particular, the scheme can be viewed as a PIR scheme
over a randomized subset of messages, where the subset is
optimized according to the given Markov structure correlation
between requests. Also, we bound the download cost of the
concatenation scheme. The obfuscation scheme that optimizes
the randomly chosen subsets first appeared as a primitive com-
ponent in the ON-OFF privacy problem [33], [34] proposed
by the authors, where the ON-OFF privacy problem can be
regarded as an intermittent PIR problem with a single server
in the language of this paper. Therefore, the proposed scheme
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in this paper can be considered as extending the obfuscation
scheme for the intermittent PIR with a single server therein to
the setting of the intermittent PIR with multiple servers.

To echo the location privacy motivation at the beginning,
we will illustrate how the proposed scheme for the problem
of intermittent PIR with Markov structure correlation can be
applied to design a location privacy protection mechanism in
the location privacy problem at the end.

Organization: The rest of the paper is organized as follows.
In Section II, we formulate the problem of intermittent private
information retrieval with Markov structure correlation. The
canonical case of two requests is discussed in Section III, and
the general case of a Markov chain is discussed in Section IV.
In Section V, we show how to apply the intermittent PIR
scheme to the location privacy application. We conclude the
paper in Section VI.

Notation: Throughout this paper, the probability distribution
for a random variable X that takes values in an alphabet X is
denoted by {pX(x) : x ∈ X} with pX(x) = P {X = x}.
When there is no ambiguity, pX(x) will be abbreviated
as p(x).

II. PROBLEM FORMULATION

We follow the terminology in [17] to introduce the setting of
intermittent private information retrieval with multiple servers
accompanying with the correlation between requests over time.

We assume that there are N servers and K time-varying
messages in the system. At each discrete time t, the messages
W1,t, . . . , WK,t are generated independently by K information
sources. At time t, each of the servers stores a replica of
all K updated messages W1,t, . . . , WK,t. We slightly abuse
the notations by dropping the time index t from Wi,t for
notational simplicity, and the underlying time index t will be
clear in the context. Assume that K messages (at each time)
are mutually independent and each of the messages consists
of L independent bits that uniformly take values in the binary
alphabet {0, 1}.

At each time t, the user is interested in retrieving a message
from {W1, . . . , WK}. Let {X(t) : t = 0, 1, 2, . . .} denote the
requests, where each X(t) takes values in [K] := {1, . . . , K}.
As mentioned in the introduction, the correlation model of
requests is an essential attribute in the problem, and we are
particularly interested in the case where the requests X(t) for
t = 0, 1, . . . form a Markov chain.

The intermittence introduced in this paper is described as
follows. The user may or may not wish to hide the identity of
the message of interest at time t. Specifically, let S(t) denote
the privacy status at time t, where S(t) = 1 means that the
user wishes to keep X(t) private and S(t) = 0 means that
the user is not concerned with privacy. We assume that the
privacy status S(t) is completely chosen by the user, i.e., S(t)

is viewed as a given parameter that is independent of the user’s
request X(t). We also assume that the privacy status S(t) is
shared by both the servers and the user. In other words, we are
not interested in hiding the privacy status in our formulation.
Without loss of generality, we assume that S(0) = 1, i.e., X(0)

needs privacy.
The same as the classical PIR setting, suppose that a user

wants to retrieve a message WX(t) at time t. To retrieve the

message, the user generates N queries Q
(t)
1 , . . . , Q

(t)
N and the

query Q
(t)
i will be sent to the i-th server. To clarify, the user

may generate the query for the request X(t) by utilizing all
the causal information, i.e., all the previous and the current
requests X(j) for j ≤ t, all the previous and the current privacy
status S(j) for j ≤ t, and all the previous queries Q

(j)
i for

j < t. More rigorously, the query at time t is supposed to be
generated by the query function that maps {X(j), S(j) : j ≤
t}, Q

(j)
i for j < t and some random key F(t), to the query

Q
(t)
i , i.e.,

Φi : {1, . . . , K}t+1 × {0, 1}t+1 ×Qt ×F → Q, (1)

where Q is supposed to be a common alphabet of queries
for conciseness, and F(t) denotes the random key1 on the
alphabet F .

Upon receiving the a query Q
(t)
i , the i-th server generates

an answer A
(t)
i to response to the query. We require that

the answer A
(t)
i is a deterministic function of the query

Q
(t)
i provided the stored messages. After receiving answers

A
(t)
1 , . . . , A

(t)
N , the user should be able to decode the desired

message WX(t) with zero error probability.
We would like to clarify two points about the setting. First,

for any given privacy status, the query Q
(t)
i may be viewed

as a stochastic function of all the causal requests. Second,
the messages are assumed to be time-varying, more precisely
independent over time, so the answer A

(t)
i only depends on

the current messages and the query Q
(t)
i .

As said, the user should be able to decode the message of
interest, which is referred to as correctness requirement [17].
The correctness requirement is defined in the same way in this
paper, i.e.,

H(WX(t) |X(t), F(t), Q
(t)
1:N , A

(t)
1:N ) = 0, (2)

where Q
(t)
1:N := {Q(t)

i : i = 1, . . . , N} and A
(t)
1:N := {A(t)

i :
i = 1, . . . , N}.

The other requirement of the system is the privacy require-
ment. For our intermittent PIR setting, we require that for any
time t, given all previous queries received by the i-th server,
the query Q

(t)
i should not reveal any information about the

causal requests that need privacy, i.e.,

[Privacy] I(X(Pt); Q(t)
i |Q(1)

i , . . . , Q
(t−1)
i ) = 0, (3)

for i ∈ [N ], where X(Pt) := {X(j) : j ∈ Pt} and

Pt := {j : S(j) = 1, j ≤ t}. (4)

Note that 0 ∈ Pt for any t from the assumption S(0) = 1.
The conditioning in (3) serves to ensure causality by

design. Barring this conditioning, privacy could be alterna-
tively defined by

I(X(Pt); Q(1)
i , . . . , Q

(t)
i ) = 0. (5)

However, this alternative definition implies that at some point
j < t, the query Q

(j)
i may be required to protect some future

1The key in this paper may be context-dependent, i.e., generated dependent
of the input.
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request X(j′) such that j′ > j and j′ ∈ Pt, i.e.,

I(X(j′); Q(j)
i ) = 0,

induced by (5). This generally means that the adversary may
attempt to infer future requests. Given the correlation between
the requests and the assumption that the user does not know (or
infer) the future requests in advance (adhere to causality in our
formulation), the alternative privacy definition enforces a less
interesting solution that the query Q

(j)
i must be independent

of X(j), i.e., a standard PIR scheme all the time. For this
reason, we adopt (3) as the privacy requirement, which leads
to a theoretically interesting and meaningful problem.

Conventionally, the utility metric is defined by the normal-
ized download cost. Let �

(t)
i denote the length of the answer

A
(t)
i , and the normalized download cost of the i-th server is

given by

α
(t)
i :=

E[�(t)
i ]

L
,

that is the expected amount of downloaded data per bit
desired message from the i-th server. Correspondingly, the
total download cost is

α(t) =
N∑

i=1

α
(t)
i .

Clearly, we are aimed to minimize the total download cost.

III. CANONICAL CASE: TWO REQUESTS

In this section, we start from the canonical case of two
requests, which is the first step to understand the impact of
the correlation in the intermittent private information retrieval
problem. Also, we will see later it indeed serves as the key
component to solve the general problem where the requests
are modeled by a Markov chain.

Let X(0) and X(1) be two random variable taking values in
[K], representing two requests at time t = 0 and t = 1 respec-
tively. Suppose that S(0) = 1 and S(1) = 0, i.e., X(0) at
time t = 0 is a request that needs privacy while X(1) at time
t = 1 is a request that does not need privacy. The initial
probability distribution of X(0) is denoted by π0, and the
transition probabilities p(x(1)|x(0)) for x(0), x(1) ∈ [K] are
known.

By invoking the privacy requirement in (3), the designed
queries Q

(0)
i and Q

(1)
i for i ∈ [N ] at two time periods

t = 0 and t = 1 should satisfy

I(X(0); Q(0)
i ) = 0, (6)

and

I(X(0); Q(1)
i |Q(0)

i ) = 0. (7)

Note that P0 = P1 = {0} provided the privacy status
S(0) = 1 and S(1) = 0.

First, we notice that the sub-problem of minimizing the
download cost α(0) at t = 0, satisfying (6), is exactly a
original PIR problem, and the minimum download cost is
known in [17], i.e., min α(0) = C(N, K), where

C(N, K) := 1 + N−1 + N−2 + · · ·+ N−K+1, (8)

which can be achieved by the PIR-capacity achieving scheme
therein.

Therefore, the interesting part is to ask if there exists a better
retrieval mechanism at t = 1 when the privacy is not needed,
while preserving the privacy of X(0).

Provided that Q
(0)
i is the query of the PIR capacity-

achieving scheme, i.e.,

I(X(0); Q(0)
i ) = 0 and I(Q(1)

i ; Q(0)
i |X(0)) = 0,

where the latter one follows because the query Q
(0)
i of a

PIR scheme only depends on X(0) and some random key,
the privacy requirement (7) can then be written by

I(X(0); Q(1)
i ) = 0, ∀i ∈ [N ], (9)

which is formally stated in the following proposition and the
justification is deferred to the appendix.

Proposition 1: For any i ∈ [N ], given I(X(0); Q(0)
i ) =

0 and I(Q(1)
i ; Q(0)

i |X(0)) = 0, we know that

I(X(0); Q(1)
i |Q(0)

i ) = 0

if and only if

I(X(0); Q(1)
i ) = 0.

Therefore, we will focus on designing queries Q
(1)
i , i ∈

[N ] satisfying the requirement (9) in the sequel. We start by
introducing some necessary notations and stating the result.

Suppose the transition probabilities p(x(1)|x(0)) for
x(0), x(1) ∈ [K] are given. For any i ∈ [K], suppose that

P

{
X(1) = i|X(0) = vi,1

}
≤ · · · ≤ P

{
X(1) = i|X(0) = vi,K

}
, (10)

i.e., ordering the likelihood probabilities of p
(
x(1)|x(0)

)
,

where vi,1, . . . , vi,K are K distinct elements in [K]. Let λj

be the summation of the j-th minimal likelihood probabilities
for each possible value of X(1), i.e.,

λj :=
∑

i∈[K]

P

{
X(1) = i|X(0) = vi,j

}
, j = 1, . . . , K. (11)

Also, let

σ := max{j : λj ≤ 1}, (12)

and

θj := min{1, λj} −min{1, λj−1}, (13)

i.e., λj − λj−1 for j ≤ σ, 1 − λσ for j = σ + 1, and 0 for
j > σ + 1. All these parameters can be obtained from the
given transition probabilities p(x(1)|x(0)) for x(0), x(1) ∈ [K].

Theorem 1: For any given transition probabilities
p(x(1)|x(0)) for x(0), x(1) ∈ [K], there exists an intermittent
private information retrieval scheme with download cost

α(1) = E

[(
1− 1

N

)−1 (
1− 1

N |U|

)]
, (14)
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for some random variable U that takes value in the power set
of [K] such that

P {|U | ≤ i} ≥
i∑

j=1

θj , ∀ i = 1, . . . , K. (15)

To clarify, Theorem 1 states that there exists some U
satisfying (15), such that the download cost of the scheme
at time t = 1 is E[C(N, |U |)], as shown in (14). In fact,
the auxiliary random variable U represents an obfuscation
scheme in our design. Therefore, (14) implies that the down-
load cost of our intermittent private information retrieval
scheme depends on the design of the obfuscation scheme,
and (15) guarantees that there exists an obfuscation scheme
satisfying (15).

As C(N, |U |), i.e., the expression with the expectation in
(14), is increasing with |U | for a given N , it suggests that if the
probability of U of small size is larger, then the download cost
is generally smaller. However, due to the privacy requirement,
it may not be possible to make |U | too small, e.g., the extreme
case is that |U | = 1 with probability 1. Nevertheless, (15)
guarantees the existence of a random variable U such that
the distribution of U satisfies (15), where the worst case
is that

P {|U | = i} = θi, i = 1, . . . , K. (16)

As such, we have the following corollary immediately from
the theorem.

Corollary 1: For any given transition probabilities
p(x(1)|x(0)) for x(0), x(1) ∈ [K], there exists an intermittent
private information retrieval scheme with download
cost

α(1) ≤
K∑

i=1

θi

(
1− 1

N

)−1 (
1− 1

N i

)
. (17)

It is clear that the corollary can be established by show-
ing that (16) is indeed the worst case of (15), in terms
of the corresponding download cost, which is justified
as follows:

E [C(N, |U |)]

=
K∑

i=1

C(N, i) P {|U | = i}

=
K∑

i=1

(C(N, i)− C(N, i− 1))
K∑

j=i

P {|U | = j}

=
K∑

i=1

(C(N, i)− C(N, i− 1)) P {|U | ≥ i} .

Since (15) implies that

P {|U | ≥ i} ≤
K∑

j=i

θj

by the fact that
∑K

j=1 θj = 1 from the defini-
tion of θj (c.f.(13)), and C(N, i) is increasing with i,

we immediately obtain that

E [C(N, |U |)] =
K∑

i=1

(C(N, i)− C(N, i− 1)) P {|U | ≥ i}

≤
K∑

i=1

(C(N, i)− C(N, i− 1))
K∑

j=i

θj

=
K∑

i=1

C(N, i) θi,

which completes the justification.
Another immediate observation of the theorem is that the

right-hand side of (14) is exactly the same as the inverse
of the PIR capacity in [17], when |U | = K certainly, i.e.,
U = [K] with probability 1. As said, the expression within
the expectation is increasing with |U | and a trivial upper bound
on |U | is K , which implies that the download cost specified
by (14) and (15) is always better than the download cost of a
standard PIR scheme in general.

Example: To better illustrate the impact of correlation,
we present an example here to show the relation between
the download cost α(1) and the given transition probabilities
p

(
x(1)|x(0)

)
. We study the simplest case N = K = 2, and

we write p
(
x(1)|x(0)

)
explicitly by the probability transition

matrix

P =
[
1− α α

β 1− β

]
,

such that 0 ≤ α, β ≤ 1. Pi,j denotes P
{
X(1) = j|X(0) = i

}
.

By inspecting the definition (13), we know that

θ1 = min{α + β, 2− α− β}, θ2 = 1− θ1.

Without loss of generality, we assume that α + β ≤ 1. By
(17), we have

α(1) ≤ 3
2
− 1

2
(α + β),

where 3/2 is the download cost of a PIR scheme over
K = 2 messages for N = 2 servers and α + β somehow
represents the correlation. We can clearly see two extreme
cases. If α + β = 1, i.e., requests are independent, then
α(1) = 1, which implies that we can retrieve the desired
message directly (or view it as a PIR scheme for 1 message
and 2 servers). If α + β = 0, i.e., requests are deterministic
by each other, then α(1) = 3/2, which corresponds to the
download cost of a PIR scheme for K = N = 2.

In the next section, we will describe a scheme achieving
the download cost shown in Theorem 1. In particular, we will
show there exists some U (obfuscation scheme) satisfying
(15), such that the average download cost of the resulting inter-
mittent private information retrieval scheme is E [C(N, |U |)].

A. Concatenation Scheme

We consider a concatenation of an obfuscation scheme and
a standard PIR capacity-achieving2 scheme [17], to achieve
the download cost as shown in Theorem 1.

2Any capacity-achieving PIR scheme works, and we choose the pioneering
one [17] for concreteness.
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TABLE I

JOINT PROBABILITY DISTRIBUTION p
�
x(0), x(1)

�

TABLE II

CONDITIONAL PROBABILITIES p
�
u|x(0), x(1)

�

A helpful observation on PIR capacity [17] is that the
capacity is decreasing with the number of messages, so the
general idea here is that we randomly choose a subset U ⊂ [K]
of messages, and implement the PIR scheme over the selected
subset of messages. Generally speaking, the download cost
is smaller when the size of the subset is smaller. However,
privacy may not hold when the size of the subset is too small.
For example, if |U | = 1 certainly, i.e., only downloading the
desired message, the privacy may be broken since the server
immediately knows which message is being retrieved. On the
other hand, if |U | = K certainly, i.e., always using a standard
PIR scheme over K messages, the privacy holds but with
a high download cost. Therefore, we have to optimize the
randomized way of choosing such a subset U to reduce its
size while preserving privacy.

More precisely, we first obfuscate the request X(1) to a set
U ⊆ [K] that includes X(1), and then retrieve the message
WX(1) privately by taking the PIR capacity-achieving scheme
over a subset of messages {Wi : i ∈ U}. In this way, the PIR
scheme preserves the identity of X(1) provided U , i.e., only
information about U is leaked, and the obfuscation is designed
to guarantee that no information about X(0) can be obtained
from U .

Example: Before describing the scheme in details, we study
the simplest example N = K = 2 to illustrate the idea. The
setting of servers is the same as the example in [17], i.e.,
each server stores a full copy two messages (at time t = 1)
(a1, a2, a3, a4) and (b1, b2, b3, b4).

Suppose that the joint distribution of X(0) and X(1) is given
in Table I. The obfuscation set U can be designed according
to the conditional probabilities in Table II.

Assume that X(0) = X(1) = 1. With probability 2
3 , the

user will request the first message via a standard N = K = 2
PIR scheme, e.g., querying for (a1, b1, a3 + b2) from the first
server and (a2, b2, a4 +b1) from the second server, i.e., totally
6 bits downloaded for a message of 4 bits. With probability
1
3 , the user will directly request the message 1 as desired,
e.g., directly querying for (a1, a2) from the first server and
(a3, a4) from the second server. We can check that 16

3 bits
are downloaded on average to retrieve the first message when
X(0) = X(1) = 1.

Similarly, if X(0) = 2 and X(1) = 1, the user will directly
request the message 1 as desired certainly from Table II, e.g.,
querying for (a1, a2) from the first server and (a3, a4) from
the second server.

TABLE III

TIME-SHARING OF TWO SCHEMES FOR X(0) = X(1) = 1 BASED ON U

When one of the servers, e.g., the first server, receives the
queries for (a1, a2), although it immediately knows that the
request at this time is X(1) = 1, the privacy of X(0) is still
preserved, since X(0) = 1 and X(0) = 2 are equally likely
when (a1, a2) is retrieved, i.e.,

P

{
Q

(1)
1 = (a1, a2)|X(0) = 1

}
= P

{
Q

(1)
1 = (a1, a2)|X(0) = 2

}
=

1
4
,

due to the design of U for the given correlation between X(0)

and X(1).
Now, we describe the concatenation scheme in details as

follows.
Obfuscation: Suppose that U is a subset of [K], i.e., U

takes values in the power set of [K], denoted by PK . Choose
U based on X(1) and X(0), more precisely the conditional
probability p

(
u|x(1), x(0)

)
for any given p(x(1), x(0)), to be a

solution to the following “optimization” problem:

minimize
U

E [C(N, |U |)]
subject to X(1) ∈ U,

U is independent of X(0). (18)

Note that U is a random variable and the expectation in the
objective function is over U . A more standard formulation
of this optimization problem, i.e., describing the decision
variables explicitly, is deferred to the end of this section. Here,
we keep this neat formulation to illustrate the basic idea of
the obfuscation scheme. The constraint X(1) ∈ U represents
that X(1) ∈ U certainly, or more precisely p(u, x(1)) = 0 for
x(1) /∈ u. The two constraints are indeed imposed to closely
depict the intuitive idea of the scheme, i.e., obfuscating the
request X(1) to a set U that includes X(1) (necessary for
the next PIR phase) and preserving the privacy of X(0).
The discussion on solving this optimization problem is also
deferred to the end of this section, and now let us just assume
that the problem is solvable and the solution p(u|x(1), x(0))
can be obtained. After obtaining the solution p(u|x(1), x(0)),
sample an obfuscation set u according to p(u|x(1), x(0)) based
on the observed requests x(1) and x(0).

Retrieval: Given the request X(1) and the obfuscation set
U , retrieve the message WX(1) by using the standard PIR
capacity-achieving scheme [17] for |U | messages specified by
U , i.e., constructing queries Q

(1)
i for i ∈ [N ] from a PIR

scheme with N servers and |U | messages.
Let us first examine the correctness and the privacy of

this concatenated scheme. The correctness is an immediate
consequence of the first constraint of (18), since the retrieval
scheme is just a private retrieval scheme to retrieve WX(1)

from |U | messages including the desired message.
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For the privacy requirement, the obfuscation step constructs
U that is independent of X(0) as a constraint, so we have

I(U ; X(0)) = 0. (19)

Since the retrieval scheme is a standard PIR capacity-achieving
scheme, we have

I(Q(1)
i ; X(1)|U) = 0, ∀i ∈ [N ], (20)

by examining the PIR scheme [17], i.e., the query to an
individual server i does not leak any information about the
request given the subset of messages that is of interest.

With (19) and (20), we claim that

I(Q(1)
i ; X(0)) = 0,

which is the privacy requirement to be justified. Towards this
end, consider

I(Q(1)
i ; X(0)) ≤ I(Q(1)

i , U ; X(0))

= I(U ; X(0)) + I(Q(1)
i ; X(0)|U)

≤ I(U ; X(0)) + I(Q(1)
i ; X(0), X(1)|U)

= I(Q(1)
i ; X(0), X(1)|U),

where I(U ; X(0)) = 0 follows from (19). Since

I(Q(1)
i ; X(0), X(1)|U)

= I(Q(1)
i ; X(1)|U) + I(Q(1)

i ; X(0)|X(1), U)
= 0,

where I(Q(1)
i ; X(1)|U) = 0 follows from (20), and

I(Q(X)
i ; X(0)|X(1), U) = 0 follows because Q

(1)
i is only

dependent of the random key given X(1) and U for the private
retrieval scheme, which implies

X(0) → X(1), U → Q
(1)
i ,

and thus I(Q(1)
i ; X(0)|X(1), U) = 0. Hence, we can obtain

that

I(Q(1)
i ; X(0)) = 0,

that is to be proved.
Finally, let us evaluate the download cost of the scheme.

Direct from the capacity result in [17], the download cost for
a given obfuscation set U is

C(N, |U |) = 1 + N−1 + N−2 + · · ·+ N−|U|+1,

i.e., the (inverse) PIR capacity for N servers and |U | messages.
Hence, the download cost of this concatenation scheme is
given by

α(1) = E [C(N, |U |)] = E

[(
1− 1

N

)−1 (
1− 1

N |U|

)]
,

and the probability distribution of U is specified by the
solution to problem (18), which indeed explains why we
choose E [C(N, |U |)] as the objective function in (18).

Therefore, we have justified that the concatenation scheme
satisfies the correctness and the privacy requirements. The
download cost is α(1) = E [C(N, |U |)], where U represents
an obfuscation scheme and can be any feasible solution to

the problem (18). Referring to Theorem 1, the remaining part
is to show the existence of some U satisfying (15), i.e., the
problem (18) has a feasible solution satisfying (15).

B. Existence of an Admissible Obfuscation

As said, the last step is show that there exists a solution
to the problem (18) such that the resulting U satisfies (15).
Towards this end, we first interpret the problem (18) as a linear
programming (LP), and write the decision variables and the
objective function in a more explicit form.

The problem (18) can be viewed as a linear programming
by treating each conditional probability p(u|x(1), x(0)) as a
decision variable for any given p

(
x(1), x(0)

)
, x(0), x(1) ∈ [K]

and u ∈PK . To see this, we first inspect the constraints. The
first constraint X(1) ∈ U can be equivalently written by

p
(
u|x(1), x(0)

)
= 0, ∀x(1) /∈ u. (21)

The second (independence) constraint can be written by∑
x(1)∈[K]

p(u|x(1), x(0))p(x(1)|x(0))

=
∑

x(1)∈[K]

p(u|x(1), x̃(0))p(x(1)|x̃(0)), (22)

for any x(0), x̃(0) ∈ [K] and u ∈PK . For given p
(
x(1), x(0)

)
,

both constraints are clearly linear with decision variables
p(u|x(1), x(0)).

Lastly, let us examine on the objective function. Although
C(N, |U |) seems a power function with |U |, E [C(N, |U |)] is
indeed linear with decision variables p(u|x(1), x(0)), i.e.,

E [C(N, |U |)]
=

∑
u∈PK

p (u)C(N, |u|)

=
∑

u∈PK

∑
x(0),x(1)∈[K]

p(x(0), x(1))p(u|x(0), x(1))C(N, |u|)

=
∑

x(0),x(1)

p(x(0), x(1))
K∑

c=1

C(N, c)

×
⎛
⎝ ∑

u:|u|=c

p(u|x(0), x(1))

⎞
⎠ ,

which is linear with p
(
u|x(0), x(1)

)
for given p

(
x(0), x(1)

)
.

By these interpretations, we write the optimization problem
in a more explicit form:

minimize
p(u|x(1),x(0))

E [C(N, |U |)]
subject to (21), (22)∑

u∈PK

p(u|x(1), x(0)) = 1, ∀x(1), x(0),

p(u|x(1), x(0)) ≥ 0, ∀u, x(1), x(0). (23)

It is worth noting that the problem is always feasible since

p(u|x(1), x(0)) =

{
1, u = [K],
0, u 	= [K],
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for x(1), x(0) ∈ [K] is always a feasible solution for any given
p(x(1), x(0)). In the context of PIR, it indicates that using the
private retrieval scheme over K messages is always feasible
when querying for the request X(1).

It should be noted that a similar LP formulation was first
discussed in [33] when authors studied a so-called ON-OFF
privacy problem that can also be considered as the problem
of intermittent PIR with a single server, although in a slightly
different setting where two random variables X(0) and X(1)

may not have the same alphabet therein.
Due to the exponential blowup in the number of decision

variables and constraints, solving the LP instance numerically
is generally intractable. Nevertheless, the following lemma,
which is borrowed from [33] and interpreted with the notation
in this paper, guarantees the existence of some solution that
corresponds to (15) as claimed in Theorem 1.

Lemma 1 ([33, Lemma 3]): For any given random vari-
ables X(0), X(1) ∈ [K], there exists a random variable
U ∈ PK satisfying that U is independent of X(0),
p

(
u|x(1), x(0)

)
= 0 for x(1) /∈ u, and

P {|U | ≤ i} ≥
i∑

j=1

θj , ∀ i = 1, . . . , K. (24)

In parlance of the optimization, Lemma 1 claims the exis-
tence of some feasible solution to the problem (23) (or equiv-
alently (18)), for any given X(1) and X(0) (or p(x(1), x(0))),
such that the resulting U (or p (u)) satisfies the constraints in
(24). It is clear that (24) is exactly the same as (15), that is to
be proved in Theorem 1.

The lemma is established by a constructive proof, i.e.,
constructing an admissible p

(
u|x(1), x(0)

)
for x(1), x(0) ∈

[K] and u ∈ PK , provided the given p
(
x(1), x(0)

)
,

or p
(
x(1)|x(0)

)
(implying that the lemma holds for any initial

probability distribution π0). Instead of showing the detailed
proof that can be found in [33], we present an example
to illustrate the basic idea of the construction, or roughly
speaking the basic idea of finding some particular feasible
solution to the optimization problem (23).

Example: Suppose that the transition probabilities
p

(
x(1)|x(0)

)
are given by

P =

⎡
⎣0.1 0.3 0.6
0.5 0.4 0.1
0.2 0.5 0.3

⎤
⎦ ,

where Pi,j = P
{
X(1) = j|X(0) = i

}
.

The designed probabilities p
(
u, x(1)|x(0)

)
are represented

in Table IV, where the shaded cells of value 0 come immedi-
ately from the condition p

(
u, x(1)|x(0)

)
= 0 for x(1) /∈ u.

Throughout this example, we will show how to fill in the
values of other cells.

• |U | = 1: For each i ∈ [K], choose U = {i}, and let

P

{
U = {i}, X(1) = i|X(0) = j

}
= P

{
X(1) = i|X(0) = vi,1

}
for all j ∈ [K], i.e., 0.1, 0.3 and 0.1 for i = 1, 2, 3,
respectively, where vi,1 is defined in (10).

• |U | = 2: For each i ∈ [K] and vi,1, find a column index
(of P ) ci such that

P

{
X(1) = ci|X(0) = vi,1

}
≥ P

{
X(1) = ci|X(0) = vci,2

}
+ μi,

where

μi = P

{
X(1) = i|X(0) = vi,2

}
−P

{
X(1) = i|X(0) = vi,1

}
.

Choose U = {i, ci} and let

P

{
U = {i, ci}, X(1) = x|X(0) = vi,j

}
= μi, (25)

for j ≥ 2 and x = i or j < 2 and x = ci. As in
this example, for i = 1, we have μi = 0.1, i.e., the
second minimal value minus the minimum value in the
first column of P , where vi,1 = 1 and vi,2 = 3. Let
ci = 3. Then we can check that

0.6 = P

{
X(1) = 3|X(0) = 1

}
≥ P

{
X(1) = 3|X(0) = v3,2

}
+ 0.1,

where v3,2 = 2 and hence P
{
X(1) = 3|X(0) = v3,2

}
=

0.1. The process for i = 1 finally configures the value
0.1 for U = {1, 3} in the table.
This generally explains why we call it an obfuscation
scheme. For each i ∈ [K], we carefully find an index ci

for vi,1 and mix it with i to form a set U such that when
observing U , there exists a pair (x(1), x(0)) generating U
for all x(0) ∈ [K]. Note that since for different i ∈ [K],
the set U may be the same, e.g., U = {1, 3} for both
i = 1 and i = 3, so p

(
u, x(1)|x(0)

)
is configured in an

augmented way, i.e., the right-hand side of (25) is added
to the left-hand side instead of being overwritten, such as
0.1 + 0.2 in the cell.

• |U | = 3: Configure all remaining values constrained by
p

(
x(1)|x(0)

)
, i.e., the summation of each row in the table.

Remark 1: The general algorithm would basically extend
the above process for |U | = 2. Roughly speaking, for |U | =
c = 1, . . . , σ and each i ∈ [K], find an index ci,j for each vi,j

such that j ≤ c − 1. Then choose U = {i, ci,j : j ≤ c − 1}
and configure

P

{
U, X(1) = x|X(0) = vi,j

}
= P

{
X(1) = i|X(0) = vi,c

}
−P

{
X(1) = i|X(0) = vi,c−1

}
,

for j ≥ c and x = i or j < c and x = ci,j . It is worth noting
that ci,j may be the same for different j, so the size of U
may be smaller than c. This observation indeed leverages the
inequality (24) in the lemma, where the worst case is

P {|U | = i} = θi, ∀ i = 1, . . . , K,

as mentioned.
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TABLE IV

THE CONSTRUCTED p
�
u, x(1)|x(0)

�
FOR THE GIVEN p

�
x(1)|x(0)

�

IV. GENERAL CASE: MARKOV CHAIN

In this section, we will show how to use the two-requests
scheme in Section III-A as a building block to design an
intermittent PIR scheme over time when the requests X(t),
t = 0, 1, . . . form a Markov chain.

First, let

τ(t) := max{j : j ∈ Pt}, (26)

where Pt is defined in (4). We may write τ(t) by τ for
notational simplicity when the time index t is clear in the
context. Note that Pt is completely determined by the privacy
status S(t), which is chosen by the user. Roughly speaking,
τ(t) represents the latest time that the user needed privacy at
time t.

Then the following proposition is a direct but useful con-
sequence of the assumption of Markov structure correlation,
and its proof is deferred to the appendix.

Proposition 2: For any i ∈ [N ], if Q
(t)
i is independent

of X(τ(t)) conditioning on Q
(0)
i , . . . , Q

(t−1)
i , then Q

(t)
i is

independent of X(Pt) conditioning on Q
(0)
i , . . . , Q

(t−1)
i , i.e.,

I(X(τ(t)); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ) = 0, (27)

implies that

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ) = 0. (28)

From Proposition 2, we know that it is sufficient to design
queries Q

(t)
i for i ∈ [N ] satisfying (27), in order to guarantee

the desired privacy (3). Roughly speaking, at time t, we need
to design queries Q

(t)
i , i ∈ [N ] for the request X(t) while

preserving the privacy of the request X(τ).
Recall the scheme for the two-requests case in Section III,

where we design queries Q
(1)
i , i ∈ [N ] for the request X(1)

while preserving the privacy of the request X(0). The roles of
X(0) and X(1) are similar to X(τ) and X(t) in this section,
where the queries are designed for the retrieval purpose of the
current request X(t) but they have to preserve privacy of some
previous request X(τ). Therefore, the scheme for the general
Markov case is indeed similar to the canonical case of two
requests that was discussed, where the main difference is that
the prior distribution (e.g., p(x(1)|x(0)) in the previous section)
as an input has to be updated at each time. In particular, let
U (t) denote the obfuscation set at time t, and

pX(t)|X(τ)(x(t)|x(τ), u(0), . . . , u(t−1)), (29)

which serves the same role as p(x(1)|x(0)) in the two-requests
case, has to be updated according to the generated u(t) at
each time period. For notational simplicity, let U [0:t−1] :=
{U (0), . . . , U (t−1)}.

We summarize the above intuition by presenting a result that
is similar to Theorem 1. Before that, we introduce a necessary
notation that is similar to the one defined in Section III. Let
θj(u([0:t−1])) be defined the same as θj in (13), but for the con-
ditional probabilities pX(t)|X(τ)(x(t)|x(τ), u(0), . . . , u(t−1)) as
shown in (29) for any given realizations u([0:t−1]). Note that
the random variables here are X(t) and X(τ), serving the same
roles as X(1) and X(0) in the definitions (10), (11), (12) and
(13).

Theorem 2: Suppose that requests X(t) for t = 0, 1, . . .
form a Markov chain and the privacy status S(t) for t =
0, 1, . . . are given. There exists an intermittent private infor-
mation retrieval scheme with download cost

α(t) = E

[(
1− 1

N

)−1 (
1− 1

N |U(t)|

)]
, (30)

for some random variable U (t) that takes value in the power
set of [K] such that

P

{
|U (t)| ≤ i|U ([0:t−1]) = u([0:t−1])

}
≥

i∑
j=1

θj(u([0:t−1])),

(31)

for i = 1, . . . , K and any u([0:t−1]).
Remark 2: Similar to Corollary 1, a slightly weaker but

more explicit form of (31) is that

P

{
|U (t)| = j|U ([0:t−1]) = u([0:t−1])

}
= θj(u([0:t−1])), (32)

for j = 1, . . . , K and any u([0:t−1]).
As said, the concatenation scheme that justifies the theorem

can be described in the same manner as we did in the two-
requests case, i.e.,

1) Design an obfuscation set U (t) that includes X(t) and
is independent of X(τ) conditioning on U ([0:t−1]), i.e.,
sampling an obfuscation set u(t) according to

pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1])),

that corresponds to an obfuscation scheme which is
discussed right after the enumeration.

2) Query for the request X(t) by using a standard PIR
scheme over messages specified by U (t).
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In particular, we modify the optimization problem (23)
therein associated with the obfuscation scheme (the first step
of the above) to incorporate the previously released u([0:t−1]),
where (21) and (22) can be correspondingly modified by

pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1]))=0, ∀x(t) /∈ u(t),

(33)

and∑
x(t)

p(u(t)|x(t), x(τ), u([0:t−1])) p(x(t)|x(τ), u([0:t−1]))

=
∑
x(t)

p(u(t)|x(t), x̃(τ), u([0:t−1])) p(x(t)|x̃(τ), u([0:t−1])),

(34)

for any x(τ), x̃(τ) ∈ [K] and u(t) ∈ PK . Note that the
probability simplex (the third constraint in (23)) and the
nonnegativity of probabilities (the fourth constraint in (23))
always have to be guaranteed. For conciseness, we omit to
write them explicitly. Hence, the optimization problem can be
written by

minimize
p(u(t)|x(t),x(τ),u([0:t−1]))

E

[
C(N, |U (t)|)

]
subject to (33), (34). (35)

In short, the problem (35) can be simply modified from
(23) by replacing the given distribution pX(1)|X(0)(x(1)|x(0))
and the decision variables pU|X(1),X(0)(u|x(1), x(0)) in (23) by
pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])) and

pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1])),

respectively.
As we know from Lemma 1, for any given u([0:t−1]),

if pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])) is known, then the problem
(35) has a feasible solution

pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1]))

for u(t) ∈ PK and x(t), x(τ) ∈ [K], such that the resulting
U (t) satisfies that

P

{
|U (t)| ≤ i|U ([0:t−1]) = u([0:t−1])

}
≥

i∑
j=1

θj(u([0:t−1])),

for all i = 1, . . . , K , as shown in (31). Finally, we use the
obtained pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1])) to sample an
obfuscation set u(t).

It should be noted that solving (35), or more pre-
cisely obtaining the obfuscation set sampling distribution
pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1])) as discussed relies
on knowing pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])). However, these
quantities can not be obtained directly from the transition
probabilities of the given Markov chain, since it encompasses
the previously generated obfuscation sets u([0:t−1]). As such,
we need to track pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])) over time
t. Roughly speaking, pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])) is the
“prior” distribution at time t that needs to be updated at each
time t.

Remark 3: If S(t) = 1, i.e., the request X(t) needs privacy,
then we know that τ(t) = t by definition, which implies that

θj(u([0:t−1])) =

{
0, j < K,

1, j = K,

for any u([0:t−1]). Referring to (32), it suggests that

P

{
|U (t)| = K|U ([0:t−1]) = u([0:t−1])

}
= 1,

which is consistent with our early observation, i.e., using
a standard PIR scheme (over all K messages) if privacy
is needed at time t. In other words, the above analysis
of designing an obfuscation set U (t) unifies both cases
S(t) = 0 and S(t) = 1.

Now, we show how to track pX(t),X(τ)(x(t), x(τ)|u([0:t−1])),
that is equivalent to pX(t)|X(τ)(x(t)|x(τ), u([0:t−1])) as we
need, for t = 0, 1, . . .. The process is essentially sim-
ilar to the standard forward algorithm [35] by utiliz-
ing the Markov structure and incorporating the designed
pU(t)|X(t),X(τ)(u(t)|x(t), x(τ), u([0:t−1])).

Recall the assumption that S(0) = 1 (implying τ(0) = 0)
and initial probability distribution π0 of X(0) is known,
so pX(t),X(τ)(x(t), x(τ)|u([0:t−1])) is known for t = 0, i.e.,

pX(t),X(τ)(x(t), x(τ)|u([0:t−1])) = π0.

At each time t = 1, 2, . . ., we consider S(t) = 0 or 1
separately.

If S(t) = 1, then we know that τ(t) = t by the definition
of τ(t). Consider

p(x(t+1), x(τ(t+1))|u([0:t]))
(a)=

∑
x(t)

p(x(t)|u([0:t]))p(x(t+1), x(τ(t+1))|x(t))

(b)=
∑
x(t)

p(x(t), x(τ(t))|u([0:t−1]))p(x(t+1), x(τ(t+1))|x(t)),

where (a) follows because τ(t+1) is either t or t+1 provided
that S(t) = 1, (b) follows because U (t) = [K] that is a
constant and τ(t) = t. Since p(x(t+1), x(τ(t+1))|x(t)) can be
obtained straightforwardly from the transition probabilities of
the Markov chain, p(x(t+1), x(τ(t+1))|u([0:t])) can be updated
from p(x(t), x(τ(t))|u([0:t−1])).

If S(t) = 0, then we know that τ(t) = τ(t−1) by definition.
Consider

p(x(t+1), x(τ(t+1))|u([0:t]))
(a)=

∑
x(t)

p(x(t), x(τ(t))|u([0:t]))p(x(t+1), x(τ(t+1))|x(t), x(τ(t)))

∝
∑
x(t)

p(x(t), x(τ(t)), u(t)|u([0:t−1]))

× p(x(t+1), x(τ(t+1))|x(t), x(τ(t)))

=
∑
x(t)

p(x(t), x(τ(t))|u([0:t−1]))p(u(t)|x(t), x(τ(t)), u([0:t−1]))

× p(x(t+1), x(τ(t+1))|x(t), x(τ(t))),

where (a) follows because τ(t+1) is either τ(t) or t+1. Since
p(u(t)|x(t), x(τ(t)), u([0:t−1])) is the obfuscation sampling dis-
tribution by design, and p(x(t+1), x(τ(t+1))|x(t), x(τ(t))) can
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be directly obtained from the transition probabilities of the
Markov chain, p(x(t+1), x(τ(t+1))|u([0:t])) can be updated
from p(x(t), x(τ(t))|u([0:t−1])).

Therefore, the above process keeps tracking the probabil-
ity distribution pX(t),X(τ(t))(x(t), x(τ(t))|u([0:t−1])) for t =
0, 1, . . ., that is needed for the obfuscation set design.

We summarize the proposed intermittent PIR scheme as
follows: at time t, with the known probability distribution
pX(t),X(τ(t)) (x(t), x(τ(t))|u([0:t−1])), where u([0:t−1]) are pre-
viously generated obfuscation sets from time 0 to t− 1,

1) Design a sampling distribution of the obfuscation set
U (t), i.e.,

pU(t)|X(t),X(τ(t)) (u(t)|x(t), x(τ(t)), u([0:t−1])),

such that P
{
X(t) ∈ U (t)

}
= 1 and U (t) is independent

of X(τ(t)) given the previous obfuscation sets u([0:t−1]),
i.e.,

I(X(τ(t)); U (t)|U ([0:t−1]) = u([0:t−1])) = 0. (36)

The sampling distribution of the obfuscation set U (t)

can be any feasible solution to the optimization problem
(35) for known pX(t),X(τ(t))(x(t), x(τ(t))|u([0:t−1])), and
there is an existence guarantee of a feasible solution
such that the resulting U (t) satisfies (31) for any given
pX(t),X(τ(t)) (x(t), x(τ(t))|u([0:t−1])).

2) Generate an obfuscation set u(t) according to the
designed sampling distribution

pU(t)|X(t),X(τ(t)) (u(t)|x(t), x(τ(t)), u([0:t−1])),

based on the requests x(τ(t)), x(t) and previously gen-
erated u([0:t−1]).

3) Query for the request x(t) by using a standard PIR
scheme over messages specified by u(t).

4) Compute

pX(t+1),X(τ(t+1))(x(t+1), x(τ(t+1))|u([0:t]))

from the known

pX(t),X(τ(t)) (x(t), x(τ(t))|u([0:t−1])),

the given transition probabilities of the Markov chain,
and the designed obfuscation set sampling distribution

pU(t)|X(t),X(τ(t)) (u(t)|x(t), x(τ(t)), u([0:t−1])).

Finally, let us verify that the scheme satisfies the correctness
requirement and the privacy requirement (c.f. (3)) formally.
The proposed scheme guarantees that the desired message
can be retrieved successful by design, since the retrieval
phase is a standard PIR scheme (for the request X(t)) over
messages specified by U (t). From Proposition 2, we know that
if the scheme satisfies (27) then it satisfies the desired privacy
requirement in (3). Since the immediate privacy guarantee of
the scheme is that

I(X(τ); U (t)|U ([0:t−1])) = 0,

which is guaranteed by (36) during the design, we need to
show that it implies that I(X(τ); Q(t)

i |Q(0)
i , . . . , Q

(t−1)
i ) = 0,

that is (27) to be justified. Towards this end, consider

I(X(τ); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i )

= H(X(τ)|Q([0:t−1])
i )−H(X(τ)|Q(t)

i , Q
([0:t−1])
i )

(a)≤ H(X(τ)|Q([0:t−1])
i )−H(X(τ)|U [0:t])

(b)≤ H(X(τ)|U ([0:t−1]))−H(X(τ)|U [0:t])
= I(X(τ); U (t)|U ([0:t−1]))
= 0,

where (a) follows because the fact that Q
(t)
i is generated by

a PIR scheme over messages in U (t) implies the following
chain

X(τ) → X(t) → U (t) → Q
(t)
i ,

and (b) follows because U (t) is deterministic of Q
(t)
i in a

standard PIR scheme, i.e., knowing one of the messages in
U (t) is being retrieved from the query Q

(t)
i to the i-th server,

which finishes the justification.
It is generally hard to obtain a closed-form formula of the

download cost α(t) at time t, since θj(u([0:t−1])) is not simply
a function of the given transition probabilities as in the two-
requests case. For this reason, we present an evaluation at the
end to illustrate the download cost.

Evaluation: We evaluate the download cost α(t) specified
by (30) and (32) for the simplest case N = K = 2 as
an illustration in Figure 1. Similar to the previous example,
suppose that the probability transition matrix of the Markov
chain is

P =
[
1− α α

β 1− β

]
,

such that 0 ≤ α, β ≤ 1. Since the privacy status S(t) affects
the download cost via τ(t)(c.f.(26)), we simulate the download
cost, as a function of t − τ(t) for several values of α + β,
where the maximum value 1.5 of y-axis is the download cost
of a standard PIR scheme for N = K = 2, and the minimum
value 1 corresponds to retrieval of the desired message directly.
We can observe that as α + β approaches 1, the correlation
between the requests decreases, which leads to a decrease in
the download cost. As t−τ goes larger, the correlation between
the current request and the latest request that needs privacy
decreases, which also leads to a decrease in the download cost.

V. APPLICATION TO LOCATION PRIVACY

As said, the reason why we are particularly interested in
the Markov structure correlation is because of the motivating
location privacy application. In this section, we will show how
we apply the proposed intermittent PIR scheme to design an
obfuscation-based location privacy protection mechanism, and
discuss some specific aspects of the location privacy problem.

As we mentioned, a commonly adopted mobility model
of the location trace is the Markov model [7]–[12], i.e.,
the location at time (discrete time-stamp) t is denoted by
X(t) and X(t), t = 0, 1, . . . form a first-order Markov chain.
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Fig. 1. The download cost α(t) for N = K = 2, as a function of t− τ for
different values of α + β.

Assume that each X(t) takes values in a common alphabet
[K] = {1, . . . , K}.

The user may want to share his/her location with some
service providers (SPs), in order to receive location-based
services. In this section, we model the provided service by
an information retrieval, i.e., the user sends his/her location
to a SP, and then the SP responds by sending some contents
according to the location. In other words, we are interested
in the case such that downloading is a concern for the
service quality. Also, we assume that there are multiple service
providers who can provide alternative services, e.g., querying
through a cloud.

To protect the location privacy, a user may send a perturbed
location to the SPs instead of the true location by sacrificing
the service quality to some degree while preserving the privacy
in some range. Many works [11]–[13] have been done to study
the location privacy problem with different notions of privacy
and utility metrics. The closest one to this paper is [11], where
the privacy notion is information-theoretic, i.e., defined by
the mutual information between true location trace and the
released perturbation of locations, and the utility is defined by
a non-specified distortion function.

As we keep motivating in this paper, the user may only be
concerned about the privacy of some locations while others
can be released without any concern about the privacy. For a
time t, let Pt ⊆ [0 : t] be the given set such that X(t) requires
privacy if and only if t ∈ P . The set Pt is supposed to be
determined by the user, and viewed as a given parameter. The
same as our discussion about intermittent PIR, the essential
difference between the situation here and protecting a single
location [15], is that the user has to be careful when releasing
the location he/she does not care about the privacy, since the
location that needs privacy may be inferred due to the temporal
correlation in the location trace.

Our focus is on an extreme operational point such that
privacy leakage is zero and the utility is maximized. Dif-
ferent from the distortion-based mechanism [11], [12], the
location privacy protection mechanism in this section is
obfuscation-based, i.e., mixing the true location with certain

Fig. 2. An obfuscation-based location privacy protection mechanism.

perturbed locations together and requesting the obfuscation set
from SPs.

The application of our proposed intermittent private infor-
mation retrieval scheme to this specific location privacy prob-
lem is straightforward, by viewing the true location X(t) as
the request in previous sections, i.e.,

true location
X(t)←→ request.

Therefore, we can directly transplant the proposed scheme
in previous sections to obtain an obfuscation-based location
privacy protection mechanism, as shown in Figure 2, such that
at time t,

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ) = 0, (37)

where X(Pt) = {X(i) : i ∈ P}, i.e., previous locations (before
time t) that need to be protected.

The mapping from the intermittent PIR scheme to the loca-
tion privacy protection mechanism as illustrated in Figure 2
should be straightforward, so we skip repeating details that
can be found in previous sections. Instead, we discuss some
issues regarding the privacy and utility metric in the location
privacy context.

Privacy Metric: The privacy notion, i.e., left-hand side of
(37), of our approach is essentially the same as the so-called
online privacy in [11], where the privacy is measured by∑

t

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ),

i.e., the accumulation of that in (37). Since we require the
stringent zero leakage, the summation over t makes no dif-
ference due to the nonnegativity of the mutual information.
Roughly speaking, the online privacy (37) guarantees that
given all previously released queries, the current query leaks
zero information of all previous true locations that need
privacy.

A similar privacy notion, namely offline privacy,

I(X(PT ); Q(0)
i , . . . , Q

(T )
i ), (38)
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by assuming a finite time period T for the sake of definition,
was introduced in [11], where the authors argued that offline
privacy is generally intractable to manage.

The online privacy and the offline privacy are indeed the
same as the privacy requirement (3) and (5) discussed in
Section II. As we explained, the online privacy requirement
closely adheres to the causal nature of the scheme, where
the query Q

(t)
i has to be generated at time t instantly with

causal information only. Also, under the stringent privacy
requirement of zero leakage considered in this paper, the
offline privacy metric may induce a trivial solution that the
query is independent of X(t), which generally sacrifices the
service quality too much.

Therefore, we consider the online privacy metric in this
section. However, we have to admit that the offline privacy is
theoretically interesting under a relaxed privacy requirement
where privacy leakage is allowed. Indeed, [12] studied this
notion of privacy in the framework of a Markov decision
process with states X(t). Conceptually, the notion of offline
privacy encompasses the concept of preventing the adversary
from inferring future locations, while the notion of online
privacy only considers the protection of locations that have
been sampled.

Utility Metric: Since we model the provided service
by an information retrieval process that accommodates the
obfuscation-based mechanism, the content associated with the
true location can be obtained perfectly, i.e., query accuracy
is perfect, by downloading more than necessary, which is
different from the distortion-based mechanism that asks for
the content of a perturbed location. In this sense, we consider
the download cost as a utility metric to fit the obfuscation-
based framework.

We would like to slightly clarify the utility metric, as it looks
different from the conventional notion, e.g., [11], [12], where
the utility is measured by a single-letter distortion between
the query and the true location. Since the location privacy
protection mechanism is operated from another perspective in
this paper, where the location privacy protection mechanism
would share an obfuscated version of the true location, the
quality of service is largely decided by the overhead of the
content downloaded from the SPs. A motivating example here
is that the user may download the map information for a larger
range than he/she needs to hide the true location in some
situations, e.g., augmented reality games and self-driving cars.

VI. CONCLUSION

In this paper, we study the problem of intermittent private
information retrieval with Markov structure correlation, where
only part of the requests need privacy. We propose an inter-
mittent private information retrieval scheme concatenating an
obfuscation scheme and a standard PIR scheme to prevent
leakage over time. The download cost is reduced compared
to a standard PIR scheme, at the time when privacy is not
needed. Since the Markov structure correlation is motivated
by the location privacy problem, we end up by applying the
proposed intermittent private information retrieval scheme to
design a location privacy protection mechanism and discussing
some specific issues in the location privacy problem.

APPENDIX A
PROOF OF PROPOSITION 1

Consider

I(X(0); Q(1)
i )

= I(X(0), Q
(0)
i ; Q(1)

i )− I(Q(0)
i ; Q(1)

i |X(0))

= I(X(0), Q
(0)
i ; Q(1)

i )

= I(Q(0)
i ; Q(1)

i ) + I(X(0); Q(1)
i |Q(0)

i )

= I(Q(0)
i ; Q(1)

i ) + I(X(0); Q(1)
i , Q

(0)
i )− I(X(0); Q(0)

i )

= I(Q(0)
i ; Q(1)

i ) + I(X(0); Q(1)
i , Q

(0)
i ).

Since

I(Q(0)
i ; Q(1)

i ) ≤ I(Q(0)
i ; Q(1)

i , X(0))

= I(Q(0)
i ; , X(0)) + I(Q(0)

i ; Q(1)
i |X(0))

= 0,

we know that I(Q(0)
i ; Q(1)

i ) = 0 by the nonnegativity of the
mutual information, and hence

I(X(0); Q(1)
i ) = I(X(0); Q(1)

i , Q
(0)
i ),

which implies that I(X(0); Q(1)
i , Q

(0)
i ) = 0 if and only if

I(X(0); Q(1)
i ) = 0.

APPENDIX B
PROOF OF PROPOSITION 2

The proof follows simply from the Markov structure. Con-
sider

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i )

= I(X(τ(t)); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i )

+ I
(
X(Pt\τ(t)); Q(t)

i |Q(0)
i , . . . , Q

(t−1)
i , X(τ(t))

)
.

The second term can be bounded by

I
(
X(Pt\τ(t)); Q(t)

i |Q(0)
i , . . . , Q

(t−1)
i , X(τ(t))

)
≤ I

(
X(Pt\τ(t)); X(t), Q

(t)
i |Q(0)

i , . . . , Q
(t−1)
i , X(τ(t))

)
= I

(
X(Pt\τ(t)); X(t)|Q(0)

i , . . . , Q
(t−1)
i , X(τ(t))

)
+ I

(
X(Pt\τ(t)); Q(t)

i |Q(0)
i , . . . , Q

(t−1)
i , X(τ(t)), X(t)

)
(a)= I

(
X(Pt\τ(t)); X(t)|Q(0)

i , . . . , Q
(t−1)
i , X(τ(t))

)
(b)= 0,

where (a) follows because Q
(t)
i is a stochastic function of

X(τ(t)), X(t) and Q
(0)
i , . . . , Q

(t−1)
i , and (b) follows because

the Markov structure of X(t) for t = 0, 1, . . . and t ≥ τ(t) ≥
maxPt\τ(t) by the definition of τ(t).

Therefore, we obtain that

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i )

≤ I(X(τ(t)); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ).

Due to the nonnegativity of the mutual information, it is clear
that

I(X(τ(t)); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ) = 0,
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implies that

I(X(Pt); Q(t)
i |Q(0)

i , . . . , Q
(t−1)
i ) = 0,

which completes the proof.
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