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Abstract— We consider the problem of ON-OFF privacy in
which a user is interested in the latest message generated by
one of n sources available at a server. The user has the choice
to turn privacy ON or OFF depending on whether he wants to
hide his interest at the time or not. The challenge of allowing the
privacy to be toggled between ON and OFF is that the user’s
online behavior is correlated over time. Therefore, the user cannot
simply ignore the privacy requirement when privacy is OFF. We
represent the user’s correlated requests by an n-state Markov
chain. Our goal is to design ON-OFF privacy schemes with
optimal download rate that ensure privacy for past and future
requests. We devise a polynomial-time algorithm to construct an
ON-OFF privacy scheme. Moreover, we present an upper bound
on the achievable rate. We show that the proposed scheme is
optimal and the upper bound is tight for some special families
of Markov chains. We also give an implicit characterization of
the optimal achievable rate as a linear programming (LP).

Index Terms— Information-theoretic privacy, private informa-
tion retrieval, Markov chains.

I. INTRODUCTION
A. Motivation

N THE current data-driven world, users’ information is

always being collected online, and its privacy has become
a significant concern. Many users wish to keep private their
personal information, such as their age, sex, political views,
health disorders, etc. Significant research has been devoted to
study algorithms that preserve users’ privacy. Some of the pro-
posed approaches include applying anonymization techniques
[1], differential privacy algorithms [2], and private information
retrieval methods [3].

Privacy, however, comes at a cost. Privacy-preserving algo-
rithms typically incur higher overheads in terms of computa-
tion, memory, and delay. These incurred costs motivate one
to think of privacy as an expensive commodity and, therefore,
to allow the user to request it, i.e.,, turn privacy ON, only
when needed; otherwise, turn it OFF. The user may choose
to switch between privacy being ON and OFF depending
on several criteria, such as location (country, workplace vs.
home, etc.), network connection (public or private network),
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devices (shared vs. personal machines) being used, or service
quality (privacy-preserving algorithms typically induce more
overheads), to name a few.

At a conceptual level, ON-OFF privacy algorithms enable
privacy to be switched between ON and OFF whenever
desired. One of the main challenges in designing such algo-
rithms is correlation. For instance, a user’s online behavior
is personal which creates correlation over time. That is,
by monitoring the user’s behavior when his privacy is OFF,
one may learn about the user’s behavior when his privacy
was ON. Therefore, the user cannot simply ignore the privacy
requirement when privacy is OFF.

Take for example a user who is subscribed to two political
online video channels, one is pro-right, and the other is pro-
left. The user is interested in watching the latest videos posted
by one of these channels. Correlation over time here is due
to the fact that a typical user is more likely to keep watching
videos from the same channel. One may think of a scenario
where the user is more likely to watch the top item in his
recommended list that depends on the previously watched
videos. Therefore, when the user switches his privacy from
ON to OFF, the user cannot openly request the video he is
interested in because this leaks information on what he was
watching right before (when privacy was ON).

In this work, we abstract the previous example into the
information retrieval setting, i.e., downloading messages from
a server. The user may choose to turn privacy ON or OFF at
each instant. When privacy is ON, the user wants to completely
hide, in an information-theoretic sense, his interest from the
server. Otherwise, when privacy is OFF, the user does not
worry about the privacy of his interest at that particular instant.
Nevertheless, he must be careful not to leak information about
his previous or future interests that he wants to keep private.
Our objective is to construct ON-OFF privacy schemes that:

1) Deliver to the user his request while ensuring perfect
information-theoretic privacy against the server. That
is, the observations of the server must be statistically
independent of the user’s interests when Privacy is ON.

2) Maximize the download rate or equivalently minimize
the amount of downloaded information.

B. Related Work

The study of information-theoretic measures for privacy has
received significant interest in the literature (see for e.g. [4]-
[8]). The closest problem to the ON-OFF privacy problem
studied in this paper is the private information retrieval (PIR)
from a single server [3], which can be viewed as a special
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case (when privacy is always ON) of the ON-OFF privacy
problem. In this case, it is known that to achieve information-
theoretic privacy, the user must download all the messages,
except in the case when the user has some side information
[9], [10]. Recently, there has been significant progress on PIR
with multiple servers with a focus on download rate and coded
data (e.g., [11]-[15] and references therein).

A related problem that considers privacy with correlation,
namely location privacy, was studied in [16]—-[24]. The pri-
vacy notions studied therein include k-anonymity [16], [17],
(extended) differential privacy [18]-[20], and distortion pri-
vacy [21], [22], which all differ from the information-theoretic
privacy measure studied in this paper. The works of [23], [24]
recently studied the information-theoretic privacy measure in
location-privacy protection mechanisms, and their privacy met-
ric was defined by the mutual information between the released
data and the true traces. In this paper’s language, it can be
viewed as the case when privacy is always ON. However,
in this paper, we want to prevent the adversary from inferring
a selective part of the requests specified by an ON or OFF
privacy status, and the simple time-sharing (switching between
a private and a non-private scheme according to the privacy
status) approach is not permissible due to the correlation.

The ON-OFF privacy problem was studied by the authors
first in [25]. The focus was on preserving the privacy of past
requests for which privacy was ON. This paper is based on
the setting studied later in [26] which requires privacy of both
past and future requests. The work in [26] studied the special
case when n = 2 sources, and an optimal scheme and a tight
upper bound on the rate were presented therein. The concept
of ON-OFF privacy was also applied to preserve privacy of
sensitive genotypes in genomics in [27].

C. Contributions

To study how correlation affects privacy, we focus in this
paper on the simplest non-trivial correlation model given by a
Markov chain. That is, we assume that the user’s requests to
the server are correlated in time according to a Markov chain.
We also assume that the user knows his future requests into a
window of size w'.

Under this model, our main result is summarized in Theo-
rem 1 which: (i) gives a general upper bound on the download
rate; and (ii) gives an achievable rate obtained by an ON-OFF
privacy scheme having polynomial time complexity in .

We show that our proposed scheme is optimal, i.e., the upper
bound is tight, for a family of Markov chains for n > 2.

For n = 2 sources, this scheme is equivalent to the one
in [26] and therefore is always optimal. Therefore, the results
in this paper can be viewed as a generalization of the earlier
results in [26] on n = 2 sources to any n > 2 sources.

We also give an implicit characterization of the optimal
achievable rate, which relies on solving a linear program (LP)
with an exponential number (in n) of variables and constraints.

IThis can happen in applications where the user places his requests in a
queue of size w. For example, the user may know what he will be watching
next since it is the next item in a playlist or the top recommendation in a
recommended list.
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Thus, it is intractable to tackle it using standard LP solvers
(e.g., [29]). From that perspective, our results can be viewed
as leveraging the special structure of the problem to provide
an efficiently computable upper bound and a polynomial time
scheme.

D. Organization

The rest of the paper is organized as follows. In Section II,
we describe the formulation of the ON-OFF privacy prob-
lem. We present our main result, Theorem 1, in Section III,
and its corollaries in Section IV. In Sections V and VI,
we propose an efficient ON-OFF privacy scheme that gives
the achievable bound in Theorem 1. In Section VII, we derive
the upper bound, in Theorem 1, on the achievable rate.
Finally, we present an implicit characterization of the optimal
achievable rate in Section VIII. We conclude in Section IX.

II. PROBLEM FORMULATION
A. System Model

A single server stores n information sources {¥#; : i € N},
where N := {1, 2, ..., n}. The system is time-varying, and the
time index ¢ is assumed to be discrete, i.e., t € N, throughout
this paper. At each time 7, each source %; generates a new
message W, , of length L, which is independent of previously
generated messages {W,-,j 1 j=0,...,t— 1}. Without loss
of generality, we assume that W;, for i € N and r € N
are independently and identically drawn from the uniform
distribution over {0, 1}£.

At time ¢, the user is interested in retrieving the latest mes-
sage generated by a desired source, i.e., one of the messages
from {W;; : i € N}. In particular, let X; be the source of
interest at time f, which takes values in N. In the sequel,
we will call X; the user’s request at time ¢. For notational
simplicity, we drop ¢ from W;, when the time index ¢ is clear
from context, i.e., W;; will be denoted by W;. To retrieve the
desired message, the user is allowed to construct a query Qy
and send this query to the server. Upon receiving the query,
the server responds to the user by producing an answer A;.
After receiving the answer, the user should be able to recover
the message Wy, that he is interested in.

Meanwhile, the user may wish to hide the identity of his
source of interest at time ¢. Specifically, the user may choose
the privacy status F; to be ON or OFF. When F; is ON,
the user wishes to keep X; private and when F; is OFF
the user is not concerned with hiding X;. We assume that
the privacy status {F; : ¢+ € N} is independent of the user’s
requests, and the user’s privacy status {F; : i < t} is known
and recorded by both the server and the user at time ¢.

We assume in our model that the privacy status is indepen-
dent of the user’s requests because as mentioned in Section I-
A, the user may choose privacy to be ON or OFF depend-
ing on many factors such as location, network connection,
devices or service quality etc, and in general these factors are
independent of the user’s requests.

In this paper, we are particularly interested in the case where
the requests X, form a Markov chain, i.e, {X; : t € N} is
generated by a (discrete) Markov source. The transition matrix
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P of the Markov chain is known by both the server and the
user, and the transition probability from state i to state j is
denoted by P; ;.

Moreover, we assume that the user knows his future requests
in a window of positive size ®?, which means that at time
t, the user knows the future requests {X;y1,..., X;4+o} in
addition to the current and all past requests {Xo,..., X;}.
This models several scenarios where user’s requests are in a
queue. One can think of the situation where the user places
his requests in a playlist when watching videos.

The system mainly consists of two encoding functions,
which we describe below. Let [¢] denote {0, 1, ..., f} and X[
denote {Xo, X1,..., X;} for t € N in the sequel.

1) Query Encoding Function: The query Q,, at time f,
is generated by a query encoding function ¢;. Given the
assumptions that the messages W;; (as well as the answers
A;) are independent over time and the privacy status Fj;] are
known by both the user and the server, we suppose that ¢, is
a probabilistic function of the user’s known requests® X[
for some w € N1, i.e.,

01 = ¢ (Xpi1a), K) (1)

where K is the random key to generate a probabilistic query.

2) Answer Encoding Function: Accordingly, the answer A,
from the server is given by the answer encoding function py,
which is assumed to be a deterministic function of the query
Q; and the latest messages, i.e.,

AI:pt(QT9 Wl"' (2)

In particular, the length of answer A, is assumed to be a
function of the query Qy, and we denote this length by €(Q;).
Then, the average length of the answer A; is given by

tr =Eo, [ (O],

where E[-] is the expectation operator.

After receiving the answer A;, the user should be able to
recover the desired message from the answer with zero-error
probability. This is referred to as the decodability condition.

AN

3)

B. Adversary Model

The adversary is the untrusted server and is assumed to have
full statistical knowledge of user’s requests and the querying
mechanism, that is, the Markov chain’s transition probabilities
modeling the user’s requests and the querying mechanism that
generates the queries for information retrieval, respectively.

We assume that the server has no memory constraint,
so the server can use all the queries it received up to time
t, represented by Qps, and the statistical knowledge of user’s
requests and the querying mechanism, to infer user’s private
requests, i.e., all previous requests of which privacy was ON
and all future requests. We also assume that the adversary has

21f the window size @ = 0, i.e., no future requests are known, we have
to relax the the stringent privacy requirement (4) defined in this work to a
weaker sense where only past requests are protected. This falls into a different
model studied in [28].

30ne may also take all previous queries Q1] as variables of the function.
However, since Q[;_1] is also a probabilistic function of X[;1 ], the variables
of the function can be written as in (1).
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unbounded computational power and can launch any attack to
infer any of the user’s private requests.

Privacy is quantified by the mutual information between
the user’s private requests and the queries released to the
server. It is worth noting that the information-theoretic privacy
measure is preferable in this paper, since it is independent of
specific attacking strategies. We consider the most stringent
privacy constraint, namely information-theoretic perfect pri-
vacy, which requires that absolutely zero information, mea-
sured by the mutual information, about the user’s private
requests is leaked to the server. Formally, it can be written
as

I(Xg; Qi) =0, VieN, 4)

where B, ;= {i :i <t,F; = ON}U{i : i >t + 1} denotes
the user’s private requests, i.e., all previous requests of which
privacy was ON and all future requests, and /(-) denotes the
mutual information. We refer to (4) as the privacy condition.

Remark 1: The privacy requirement in (4) implies that at
time t, only the previous privacy status {F; : i <t} is known,
and the user may not know whether he will choose privacy to
be ON or OFF in the future. For this reason, we have adopted
a worst-case formulation in the privacy constraint by assuming
that privacy is always ON in the future. In other words, at time
t, all previous requests when privacy was ON, as well as all
future requests need to be protected. This is characterized by
the set By :={i :i <t,F; =O0ON}U{i :i >t+ 1} in (4).

For large messages, the upload cost is negligible relative
to the download cost, so in this paper, we are interested in
minimizing the download cost of the answer at each time, i.e.,
the average length £; at time 7. By convention, we measure
the efficiency by the download rate R; = L/{;, and define the
achievable rate region as follows.

Definition 1 (Achievable Rate): The rate tuple (R; : t € N)
is achievable if there exists a scheme with average download
cost €y such that Ry < L/{;.

In the rest of this paper, we will study the achievable region
of (R; :t € N). In particular, the focus of this paper is the
characterization of R; for each r € N.

III. MAIN RESULT

Before stating the main result, we introduce some necessary
notation. Let 7(¢) be the last time privacy was ON, i.e.,

(t) :=max{i : i <t, F; = ON}. 5)

Without loss of generality, we assume that Fy = ON, so 7 (¢)
is always well-defined. Also, when the time index ¢ is clear
from context, we drop ¢ from the notation and write 7 (¢) as
7 for simplicity. For our analysis, it is convenient to define

(6)

which represents the last request when privacy was ON and
the next request of the user at time ¢, so the alphabet size of
U, is N2

Stating our main results calls for the following notation,
which we summarize in Figure 1. The inherent value of this
notation will be apparent when we give the proofs of our main

Ul‘ = (X‘ra Xl‘+1) >
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Ug, 1 p(1|U1,1) p(2|u2,1) p(”\un,l)
Uz | p(llur2)  p(2luze) p(nlun,2)
Uzm | P(Lu1,m)  p(2luz,m) P(nftn,m)

Fig. 1. For a given x, sort the probabilities p (X; = x|U; = u) for u € N2
in an ascending order, and store the values in column x where m = n~. 1; is
the sum of the i’ row.

results in later sections. For any given x € A/, we can order
the likelihood probabilities p (X; = x|U; = u ;) such that
p(Xe = x|Ur = ux )

e = P(Xt =x|U, = ux,m) )

p (Xt =x|U; = ux,l)

=
=

where m = n? and uy,; fori =1,...,m are distinct elements
in V2. Note that probabilities p (X; = x|U; = u) for x € N
and u € N can be determined by the given Markov chain.
These ordered probabilities can be stored in the columns of
a matrix, as shown in Figure 1. Then, for x € N and i =
1,...,m, let A;(¢) be the summation of row i of this matrix,
more formally,

M) =D p(Xi=x|U =uy). ®)
xeN
Also, fori =1,...,n, let
Ai(t) —2i—1(0), i
Hi(l‘)z z() i 1(), l'<l’l, 9)
1_/’{i—1(t)5 L=n,

where g () is assumed to be 0. For notational simplicity, let

n

e ;ieim, (10)
and
1
=7 = Im() =D may, p(X; =x|U =u), (11)

ue
t xeN

where 1,,(¢) is defined in (8). We may drop the time index
t when it is clear from context, that is, we will write ; ()
and 6; (¢) as 4; and 6;, respectively. With this notation, we are
ready to state the main theorem.

Theorem 1: Suppose that {X; : t € N} is a Markov process
with the transition matrix P. The rate tuple (R, : t € N) is
achievable if

1 1

>

R, — Rl”
where 1/ R,I is defined in (10). On the other hand, any
achievable rate tuple (R; : t € N) must satisfy

12)

! > ! (13)
R, — R,O '
where l/RIO is defined in (11).
Remark 2 (Single Server PIR): As  mentioned  earlier,

the single server private information retrieval problem can
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be viewed as a special case of this setting where privacy is
always ON. As a sanity check, if F; = ON for all t € N,
we have Uy = (X;, X;+1) by the definition (6), and then we
can easily see that maxy, p (x;|u;) = 1, for all x; € N. Thus,
we know from Theorem 1 that R; is achievable only if

<rO= 1
Am(t) n

which implies that it is necessary to download all messages

when the privacy is ON. This is consistent with the well- known

result in the literature on PIR [3].

The rest of the paper is dedicated to proving Theorem 1. In
particular, we propose a polynomial-time querying scheme that
achieves R/ in sections V and VI. As discussed in the previous
remark, the user has to query for all the messages when privacy
is ON, so our focus will be on the instances when privacy is
OFF. Roughly speaking, in our proposed probabilistic querying
scheme, the user asks for a subset of the messages containing
the message in which he is interested. The user generates his
query based on his knowledge of his previous requests when
privacy was ON, his current request, and his next request.
Moreover, the proof of the upper bound R,O will be presented
in Section VII.

R;

IV. OPTIMALITY FOR SPECIAL FAMILIES OF MARKOV
CHAINS

Before we proceed to prove Theorem 1, we give two
corollaries that characterize two special classes of Markov
chains for which the bounds in Theorem 1 are tight, i.e.,
RtI = RIO , which means that our proposed scheme is optimal
for these special cases.

Corollary 1 (Optimality for n = 2): For the case n = 2,
the two bounds (12) and (13) match, i.e.,

1 1
— = — = (). 14
R " RO m(t) (14)

In other words, the rate tuple (R, : t € N) is achievable if and
only if
1
R, < T (15)
Definition 2 (Symmetric Markov Chain): A Markov chain
is symmetric if its transition matrix P is given by

b a, ifi=j, (16)
=11—a
L] [P .

1 iFE

where 0 < a < 1 and P, j denotes the transition probability
from state i to state j.

Corollary 2: (Optimality for Symmetric Markov Chain):
For the symmetric Markov chain such that % < a <1, the
two bounds (12) and (13) match. In particular,

1 1 n—1""4+0n—1na—1)°

S . 17
KR a-rma— o P

In other words, the rate tuple (R, : t € N) is achievable if and
only if

1 - n—1""4+m—1)(na —1)°"

R =" =)+ (no— Dy

(18)

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on April 28,2023 at 06:46:37 UTC from IEEE Xplore. Restrictions apply.



2108

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

1
R9, a =025
0.8 ——R/.a=025 -
RY, a=0.6

=-%= R a=06

0 02

(a) A Symmetric Markov Chain.

Fig. 2.

(b) Rf and RY as a function of «.

(c) R! and Rto as a function of time ().

In Figure 2a, we graphically represent the 3-state symmetric Markov chain used in Example 1, where 0 < a < 1. In Figure 2b, we plot the achievable

rate Rt[ (c.f.(12)) and the upper bound Rto (c.f.(13)), as a function of a, when v = 0 and ¢ = 1. In Figure 2c, we plot Rt[ and R,O as a function of time ¢ for

both a = 0.25 and a = 0.6.

The proofs of Corollaries 1 and 2 can be found in Appen-
dix A and Appendix B, respectively.

Example 1: We study a special case described in Corol-
lary 2. Suppose that we are given t = 0, and a 3-state Markov
chain, as represented in Figure 2a, where 0 < o < 1.

In this case, we have two regimes, one for a < % and the
other for o > % This is because the ordering of probabilities
(c.f-(7)) changes at a = %

For o > % the bounds (12) and (13) match, e.g., fort = 1,

1 1 60>
0 pl ~ 3,2 _25 41" (19)
R{ R 30 —2a+1
However; for a < % and t = 1, we have
1 3-3 1 2 4o —2
DT ¢ ~1. (20

R? 3a+1~ Rl 3a+1 3a®—-2a+1
We illustrate (19) and (20) in Figure 2b.

In Figure 2c, we analyze the rate over time for a = 0.25,
and a = 0.6. It is notable that as t grows, the correlation
between X; (the current request) and X, (the request when
privacy was last ON) decreases, which leads to an increase
in the download rate R;.

V. ACHIEVABILITY: LINEAR PROGRAMMING
FORMULATION

Towards finding an ON-OFF privacy scheme, we consider
uncoded queries for retrieving messages, ie., the query Oy
at time ¢ takes values in the power set of A/, denoted by
Z (N). In other words, the user will query for a subset of
the messages Wy, at each time. Later in this section, we will
see that designing an uncoded query scheme is equivalent to
solving a linear programming problem.

Upon receiving the query Q; € N, the server generates a
corresponding answer A, = Wp, € Wys. The length of the
answer can be written as

K(Qt) =10/ L,

where L is the length of a message. Therefore, the average
length ¢; is

Gy =E[Q:] L.

Next, we describe how to construct the query Q; for
each time . The query Q; is a probabilistic function of the
current request X; and U; = (X¢, X;41)(c.f.(6)). Therefore,
the encoding of the query Q; can be equivalently denoted
by the probability distribution w (g¢|x;, u;), where x, € N,
ur = (xe,x41) € N? and ¢; € 2 (N). In other words,
given x; € N and u; = (x;, x,41) € N2, the user will send
q: € P (N) with probability w (g;|x;, u;).

Since A; = Wop,, if X; € O, then the retrieved answer
contains the desired message Wy,. Therefore, if

21

p(qr, xilu;) =0, Vx, & qp, (22)

then decodability is guaranteed. Note that p (g;, x;|u;) can be
written as

D (s, xelur) = p (xrlug) w (ge|xe, ur)

where p (x;|u;) is given by the Markov chain, so p (q;, x|u;)
is completely determined by w (g;|x;, uy).

To guarantee the privacy(c.f.(4)), we introduce the following
lemma. It states that if we design the encoding function
w (g¢)x, uy) such that

P (qilus) = p(qr), VMIENZ, g€ P N),

for all + € N, then the scheme satisfies the required privacy
constraint (4).

Lemma 1: If Q; is a probabilistic function of U; and X;,
and Q; is independent of U; for i = 0,1,...,t, then Q) is
independent of Xp,, where B; = {i : i <t,F; = ON}U{i :
i>t+1}).

Proof: See Appendix C. 0

Since the download cost of the scheme is as given in (21),
ie, £, = E[|Q/]] L, and we desire a scheme with low
download cost (high rate), we would like to design an encoding
function w (q;|x;, u;) that minimizes E[|Q,|].

Hence, it remains to design the distribution w (g;|x;, u;)
that minimizes [E [|Q;|] under the constraints (22) and (23).

(23)
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As such, any feasible solution to the following optimiza-
tion problem corresponds to an admissible encoding function
w (q¢)xs, uy) as desired.

minimize E[|Q;|1= Y p (q:) 4
qr

w(gr|xe,ur)

SUbjeCt to p (-xfa Qt|ut) = O, Xt ¢ qt»
p(gilur) = p(qr) . (24)
Note that the problem is always feasible, as
w(QtZNI.Xt,Mt)Zl, Vul"xl" (25)

is a feasible solution to (24).

One may also notice that if we treat each probability
w (qi|x;,up) for x; € N, u; € N?> and ¢, € 2 (N) as a
decision variable, then both the objective function and two
constraints are linear, and hence the optimization problem (24)
is indeed a linear programming instance. However, this linear
programming problem has 1 2 variables and n 2"~ + n22"
constraints. The scale of the problem is intractable in complex-
ity with any generic linear programming solver. For example,
using the techniques presented in [30], the complexity of
this linear programming is O ((n2 2”)2'5). This makes the
numerical solution impossible when r is large.

Therefore, in the following section, we present a polynomial
time algorithm that gives a feasible solution that might not
always be optimal.

VI. EFFICIENT ON-OFF PRIVACY QUERY SCHEME

Instead of attempting to solve the linear programming
problem (24) numerically, we are going to identify a feasible
solution w* (g¢|x;, u;) to the problem efficiently, and bound the
objective E [|Q¢|] analytically, i.e., a feasible solution attains
an objective such that

n
E[1071] < 1/R = i6i(1),

i=1

(26)

which means there exists a scheme such that the download
cost {; is less than or equal to L/RI, or R,I is achievable.

A key observation on (24) is that any tractable solution
w (g¢|x;, u;) must be sparse, i.e., a few non-zero valued
probabilities w (g;|x;, u;) for x; € N, u; € N? and
q: € P(N). Otherwise, simply initializing or outputting the
solution w (q;|x;, u;) introduces an exponential overhead in
complexity. This observation motivates our algorithm, which
admits a sparse w (q;|x;, uy).

Since the time index ¢ will be clear from context, in the
sequel we drop it from the subscripts. For any given p (x|u),
we recall the optimization problem we are interested in,

minimize E[|Q[] = > p@lal
q

w(qlx,u
subject to p (x, glu) =0,
p(qlu)y=p(q),

where x € N, u e N? and g € Z(N).
Instead of finding a feasible solution to (27) directly,
we introduce an auxiliary random variable Z. Let Z be a

x ¢q,
27)
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multiset (N, f), where A is the ground set and f is the
multiplicity function. The cardinality of the multiset Z is the
summation of multiplicities of all its element, i.e.,

1Zl= D f).

xeN

Let Z be the collection of all multisets such that cardinality
is bounded by n, i.e.,

Z2={Z:ZeWN,[f),lZ| <n}. (28)

Then for any given p (x|u), we can define an alternative
optimization problem:

minimize
w(z]x,u)

E[1Z1=)pQRll

subject to p (x, z|u) =0,
p(zlu) = p(2),

where x e N, u e N2 and z € Z.

One can easily check that any feasible solution to (29) can
be easily transformed to be a feasible solution to (27) by
simply letting Q = Set(Z), i.e., forcing the multiplicity of
elements in Z to be 1. Moreover, the corresponding solution
to (27) attains a better objective value, ie., if w (z|x,u) is a
feasible solution to (29) and w (g|x, u) is a feasible solution
to (27), then E[|Q|] < E[|Z]], where E[|Z]] is the objective
value attained by w (z|x, u) and E[|Q]] is the objective value
attained by w (¢q|x, u), respectively. Therefore, we will study
the feasible region of (29) instead. In particular, we will find
a feasible solution w™* (z|x, u) such that

x ¢z,
(29)

n

E[1z*] =D i6:

i=1

(30)

Then there exists a corresponding feasible solution
w* (q|x,u), by simply letting Q = Set(Z), to the original
problem (27) such that
n
E[10*] <> i, 31)
i=1
which is the same as (26) and is to be proved.
In the remainder of this section, we start by describing the
algorithm in Subsection VI-A. We then analyze its complexity

in Subsection VI-B, and finally in Subsection VI-C, we verify
that the algorithm outputs a feasible solution as desired.

A. Algorithm Description

In this section, we describe the algorithm to construct
a feasible solution w (z|x,u) to (29), ie., for any given
distribution p (x|u), we will give a constructive proof of some
Z, satisfying that

p(z,xlu) =0, Vx ¢z, (32)
and

pGlu)=p(zlu'), YzeZandu, u' e N*. (33)
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In particular, we will show that the feasible solution w (z|x, u)
gives

p(Zl=0)=6, t=1,...,n. (34)

Note that §; > 0 for all i = 1,...,n by the definition (9),
which is stated in the following proposition.
Proposition 1: For any given Markov chain and time index
t, 0 >0, fori =1,...,n.
Proof: See Appendix D. U
One can see that the objective value attained by this feasible
solution is
n
E(1Z]1=D i
i=1
Before describing the steps of the algorithm we give an
intuitive explanation and overview of the algorithm. In order to
minimize E [|Z]|], we would like to construct some w (z|x, u)
that makes the probability p (|Z| = €) larger for smaller ¢, i.e.,
a greedy-like algorithmic approach is appealing. As a result of
the two constraints (32) and (33), one can easily check that the
maximum value of p (|Z] = 1) is 61, and the solution gives

p(z,x|lu) = min p (x|u’), Vu and z =x.
u'eN?

We would like to keep this greedy manner to manage the
probabilities p (z, x|u) for |z| = 2,...,n. However, when
|z] > 2, it becomes more complicated. For instance, when
|z] = 2, one of the two elements of the set z has to be x,
in order to satisfy (32), which corresponds to the decodability
constraint. Roughly speaking, we aim to use the second
element of z to obfuscate each x with another x” in order
to satisfy (33), which corresponds to the privacy constraint.
The challenging part of this algorithm is this choice of x’, and
the corresponding probability p(z, x|u), where z = {x, x'}.

The following algorithm, consisting of five main steps,
rigorously describes how we design this obfuscation. In Step 1,
we calculate preliminaries from the given probability distribu-
tion p (x|u) and initialize the algorithm. In Step 2, we describe
how to properly obfuscate each x with the other £— 1 elements
for a given ¢, and in Step 3, we describe how to design a com-
mon obfuscation (obtain some common sets z of cardinality ¢
and some proper values) for all x € A/ simultaneously. Then,
in Step 4, we augment the configurations to the initialized
variables, and finally in Step 5, we output the configurations
and the values. Details are given as follows:

e Step 1: Preliminaries

For any given distribution p (x|u), by sorting p (x|u) for
each x € N/, we can easily obtain parameters

{ux,,-:xej\/,i :1,...,m},

where u,; is as defined in (7) and m = IN?| = n?. For

notational simplicity, let
Axi=1p (Xt =x|Ur = ux,i) .

Let M be an auxiliary m x n matrix determined by the given
p (x|u). In particular, we initialize M by

M;j =max{p (X = jlU =i) — Ajn-1,0}. (35)
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for i = 1,...,m, and j = 1,...,n. This matrix will
be updated during the following procedure. For the ease of

notation, let M; j=a denote M; ; = M, j —a, i.e., subtracting
a from M; ;.
Fort{=1,...,n—1land x =1,...,n, we access to {uy,; :

i=1,...,¢—1}. For ease of notation, let

Uy, ={uxiti=1,...,0—

1},

and

+ .
Z/{g,xz{ux,i.lzf,...

.m} .
e Step 2:
For each i, or precisely uy ;, we choose a collection of pairs

Irx,ix Vexi={(eexijsvexij) : J=1,2,...,cexi} (36)

such that

0<wvryij =< Mux,i:ef,x,i,j >

(37)

and
Ct,x,i

D Wi = at = At (38)
j=1

where e; i j for j =1,...,cex,; are distinct indices belong-
ing to {1,...,n}, and clearly we have ¢/, ; < n.
Then, we update the matrix M by

ML;,;,e(,X,;,_,‘ = D&X,i:j’ (39)

for all e¢ x ;i j € Ir x,i. We slightly abuse the notation here by
using the same notation M to denote the matrix at different
points. Nevertheless, the underlying ¢, x and i we are dealing
with will be clear from context.

Roughly speaking, we extract Ay ¢ — A (—1 from the u, ;-th
row of the non-negative matrix M for given ¢ and x, where
er,x,i,j and v¢x; ; specify the column indices and values
extracted from each position of uy ;-th row. The matrix M
is always non-negative during the update from (37) and (39),
so the existence of such a collection of Iy ; x V¢ ,,; can
be guaranteed if the summation of the u, ;-th row of the
initialized matrix M (c.f.(35)) is greater than or equal to the
summation of the subtracted values (the right-hand side of
(40)) for all x and ¢ during the process, which is given by the
following proposition.

Proposition 2: For anyu =1,...,m,

Zmax {p (X =x|U =u) —ix,nfl,O}

x=1
n—1
=2 > (e—2ee1). (40)
=1 xueld,
Proof: See Appendix E. 0

e Step 3:

For fixed ¢ and x, after finishing the above process for all
i=1,...,0—1, weobtain I, ;and V¢, ; fori =1,...,{—1.
Provided Iy ; and Vp,; for i = 1,...,¢{ — 1, we pick a
collection of pairs

{(Coxgoves) ik =1,2,...,cox}
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Fig. 3. The rows represents Vg y 1,..., V¢ x¢—1 for given ¢ and x.
Each block represents an element vg y; ; in the set Vg ;, where j =
I,...,cex,i- Bach vy, p can be chosen to be the value of the difference
between two consecutive boundaries of blocks, e.g., vp x 1 = vy 1,1 and
Ve x,2 = V¢x2,1 — V¢x,1,1 etc. The corresponding (7 x x can be chosen to
be ¢r 1 = (et,x,1.15€0,x,2,1> ) and {rx 2 = (eq,x,1,2, €0,0,2,1, ) etc.

such that

Coxk € Iex,t X Ipx o X oo X Ip x o1,

and

>

k:C/’,x,k (i):e[,x,i,j

Vexk =V xi ) (41)

foralli=1,...,6—1and j=1,...,c¢x,i, Where (¢ k(i)
is the i-th element of (7 x k, i.e., (rx k(i) € Ir x.i-

A simple deterministic approach of picking such a collection
of (¢¢.x.k,Vex.k) can be basically illustrated by Figure 3.
Roughly speaking, there is a buffer tracking the front of the
sets Vg x,; fori =1,...,0 — 1. Each time, the buffer pushes
the minimal value among them i.e., vy x, minus the value
from the front, and adds one more value from the same set
Ve,x,; which has been pushed out. The corresponding positions
of values in the buffer form the set (7, . As such, we can
easily see that

Clx
D ek = dut — Axot (42)
k=1
Also, one can easily check that this process returns
-1
Cox =D copi <n(C—1). 43)
i=1
e Step 4: Augment
Foreachk =1,...,cex, let
2x .k = {Ctx ks X} (44)
and
Fe,x k

= {(Z,)E,IZ) I=zap X=X, 0 € UZX}
UG &) i=za F=tean) i=uri ety | . 45)

For each ¢ and x, we can obtain F¢ y x and v for k =
1,...,cex. The tuple (z,x,u) in Fy x is indeed the non-
zero valued position and vy x x is the value that we will assign
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to the probability p (Z, x|u). However, since there may exist
duplicated tuples in F¢ y x for different x, we augment the
value vy x x corresponding to the same tuple (z, X, u), i.e.,

n Ctx
Fo=U U Feus (46)
x=1k=1
and for any (z, x, u) € Fy,
n
gEED=2 D vk (47)
x=1k:(z,x,u)eFrxk
After obtaining Fy for £ =1,...,n — 1, for £ = n, let
]:n:{(z5)zﬁlz):Z:N,Mﬁ,)E>o}, (4’8)
and
gz, x,u) = Mz, (49)

for any (z,x,u) € Fy.
e Step 5: Output
The output of the algorithm is {F, g(F)}, where

f:{F[:le,...,n}.

stores the non-zero valued positions of an admissible distrib-
ution p (z, x|u) for x € N, u € N? and z € Z, and g(F)
stores the corresponding probabilities.

B. Complexity

For the sake of completeness, we discuss the complexity
of the algorithm. As said, the bottleneck is to represent the
solution w (z|x, u) for z € Z, x € N and u € N?, which
has exponential number of values, so the complexity is indeed
dominated by the size of F, i.e., the non-zero valued positions
of the output distribution p (z, x|u).

It is notable that |Fy x x| = m and c¢x < n? from (43),
so we have

n Ctx

n
FEDIDID N AV VAR

(=1 x=1k=1

(50)

i.e., the complexity of the algorithm is O(n®).

The purpose of the complexity analysis here is to justify that
the proposed algorithm is with poly(n) complexity. One may
possibly reduce the complexity by orders by utilizing some
data structures, which is beyond the interest of this paper.

C. Algorithm Verification

In this subsection, we will verify the algorithm, i.e., we will
prove that it outputs a distribution p (z, x|u) satisfying (32),
(33) and (34) for any given distribution p (x|u).

First, we show that the algorithm described in VI-A outputs
a distribution p (z, x|u) satisfying (32) and (33) for any given
distribution p (x|u).

Proposition 3: For any given p (x|u) for u € N? and x
N, {F, g(F)} returns non-zero valued positions and values of
some distribution p (z, x|u) such that p (z,x|u) = 0 for all
x ¢z and p(zlu) = p (zlu') forall z € Z and u,u’ € N2,

Proof:
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As claimed, F and g (F) store the non-zero valued positions
and values of p (z, x|u), so it is equivalent for us to show that

1) For any (z, x,u) € F, we have

X €z (51)

2) For any given Z, u and i’, we have
> gGxi= D gExi). (52

x:(z,x,u)eF x:(z,x,u")eF
3) For any given x and u, we have
> g E i) = p(Eli). (53)
zi(z,x,u)eF

Details can be found in Appendix F. U

Next, we show that the algorithm described in VI-A returns
p (z, x|u) satisfying (34).

Proposition 4: For any given p (x|u) for u € N* and x
N, the algorithm returns some distribution p (z, x|u) such that

p(Zl=0)=6,, ¢=1,...,n (54)
Proof: See Appendix G. (]
VII. AN OUTER BOUND

In this section, we will show that any ON-OFF privacy
scheme must satisfy R, < RC.

First, we define an auxiliary random variable Y; taking
values in &2 (N) based on the decodability of the subset of
messages. Specifically, let ¥; be a function of Q; such that
Y; = D for D € & (N) if the user may decode the messages
Wp but not any message W; for i € N\D from the answer
A;. Roughly speaking, Y; represents the capability of decoding
messages from the query Q;. Note that since the query QO
and messages Wy are independent, the decodability of any
message is known by the server only through Q;, that is, Y;
is a function of Q. In this way, the alphabet Q (may be
infinite if the query is coded) of the query is partitioned into 2"
classes based on the decodability of the subset of the messages.
Clearly, from the definition of Y;, we have that the length of
the answer €(Q;) satisfies

Q) > IV L,

since the answer A; is at least of length |Y;| L if the user can
decode |Y;| messages from the answer A;. Hence, the down-

load cost ¢; is bounded by
& > E[IY ] L (595)

Next, we start to reinterpret the privacy and the decodability

constraints in terms of the auxiliary variable Y;. By the
definition of Y;, the decodability can be written as
p X, y) =0, Vx &y, (56)

where x; € N and y; € Z (N).
Recall the privacy constraint

I (Xp,; Q) =

and we must have

(a) (b)
1(XB,; Q) =1 Q) =1(UsYy),
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where (a) follows from U; = (X;, X;4+1) C Xp, and (b)
follows because Y; is a function of Q;.
Thus, we can relax the privacy constraint by

I (Us; Yr) = 0. (57)

For any given p (x/|u;), if Y; takes values in 22 (N) and
satisfies (56) and (57), then E[|Y;|] is lower bounded by the
following lemma.

Lemma 2: For any random variables U, X and Y, taking
values in the alphabet N?, N and & (N) respectively, if Y
is independent of U, and p(x, y|lu) =0 for x & y, then

E[lY]] > Z max p (x|u).

Proof: See Appendlx H 0
By substituting (58) in (55), we have

¢ > L max p (x;|u
rZ ZNWENP(H 1) -
Xt €
Therefore, for any ON-OFF privacy scheme satisfying the
decobability and privacy constraint, we know that the down-
load cost is lower bounded by the right-hand side of (59). In
other words, any ON-OFF privacy scheme must satisfy
1
R~ RO

(58)

(59)

Z max p (xtlur) = A (2).
Lo N

VIII. LP FORMULATION OF OPTIMAL ACHIEVABLE RATE

In this section, we present an implicit characterization of the
optimal rate, which is formulated by a linear program with an
exponential number (in n) of variables and constraints.

As discussed in Section V, the query design relies on
solving the following linear program:

minimize E[1Q1= " p(q)lql

w(gqlx,u)
subject to p (x, qlu) =0,
p(qlu)=p(q), (60)
where x € N, u € N2, g € Z(N) and probabilities p (x|u)
are given. We know that any feasible solution to the above

problem yields an achievable scheme. In other words, the rate
R, is achievable if

xé¢q,

1
— > Cl R
Ry
where CY is the optimal value to (60).
On the other hand, one may notice that the key lemma, i.e.,
Lemma 2, to show the outer bound, indeed indicates that any
achievable scheme must satisfy that

L > (3,
R,

where C3 is the optimal value to the following problem:

E[Y]1=D p Iyl

minimize
w(y|x,u)

subject to p (x, y|lu) =0,
pOlu)=p©),

X &y,
(61)
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where x € N, u € N2, y € Z(N) and probabilities p (x|u)
are given by the Markov chain.

Although problems (60) and (61) have different physical
meanings, it is easy to see that they have the same optimal
value, i.e., Cj = Cj. Therefore, by letting C; be the optimal
value to both problems, the achievable region can be fully
characterized by

Corollary 3: The rate tuple (R; : t € N) is achievable if and
only if R, < C;.

However, it is notable that Corollary 3 is an implicit charac-
terization, because as we discussed, the exponential blow-up
of the number of variables and constraints makes the linear
programming problem intractable.

Remark 3 (Window Size w): From our earlier discussion,
we know that the feasible region of (60) denotes schemes
that only require a window of size w = 1. Although we
have assumed that the user knows the future requests within
a window of positive size w, increasing the window size
into the future beyond w = 1 does not, in fact, increase
the rate. Intuitively, this phenomenon stems from the Markov
assumption we use to model the user’s requests. If the window
size @ = 0, i.e, no future requests are known, the privacy
defined in (4) has to be relaxed, and only past requests can
be protected, which was studied in [28].

In this paper, we actually proposed an explicit scheme to the
ON-OFF privacy problem by finding a feasible solution that
might not be optimal, to (60), which is of polynomial time
complexity. Moreover, we show that our scheme is optimal
for some cases in Corollary 1 and Corollary 2.

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we continue to look at the problem of turning
privacy ON and OFF in an information retrieval setting when
the user’s interests are correlated over time. We model this
correlation by a Markov chain with n states. Our previous
work in [25] focused on privacy for past interests. Our work
in [26] studied privacy for the past and the future, albeit for the
special case of Markov chains with n = 2 states. In this paper,
we generalize the work in [26] to Markov chains with n >
2 states. We give a new achievable scheme with polynomial
time complexity and a general upper bound on the achievable
rate. We prove the optimality of our scheme for special cases,
namely, a family of symmetric Markov chains, and two-state
Markov chains.

Future directions of this work include finding tighter outer
bounds on the rate and efficient constructions of ON-OFF
privacy schemes that would achieve them. Also, it is worthy
to investigate settings in which the user’s requests follow a
different model than the Markov chain, or the user’s requests
and desired privacy status are correlated.

APPENDIX A
OPTIMALITY FORn =2

The special case when n = 2 was first studied in [26]. For
n = 2, the two bounds (12) and (13) match, i.e., R,I = R,O.
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To see this we write R! by

m

% =060 =2— 1)

t i=1

For a given x;, eg, x; = 1, suppose that
u* = argmin, p (x;|u;). Then we can see that, for x; = 2,
u* = argmax,, p (X/|us) since p (x;|u;) + p (x;|u;) = 1, for

any u; when n = 2. Thus, we have
min p (x|u;) + max p (%efur) = 1,
t t

for any x; and x; = N\ {x;}, which implies that
2

2
() = D minp (xlur) = D (1 —rr;axp(x,mf))

xi=1 x=1

2
=2 z Irllfllxp ()Et|l/tz) =2- /1m(t)-

x=1
Therefore, we can obtain that
1

1
— =2—-41(t) = An(t) = —.
Rtl 1() m() RIO

APPENDIX B
PROOF OF COROLLARY 2

We first take the transition matrix P to the power of ¢, i.e.,

(n— D" — (na — 1)

if =
_ 1)1 ? ’

(P")ij = n(,n D )
’ n—1"—=(ma—-1) . .
Y , it i #E

for all i, j € {1,...,n}.
Then, the probabilities p (x;|u;) can be written as

) . Pj k(P ;
pXy=jlX: =0, X1 =k)= W, (62)
where 6 = t — v and i,j € {l,...,n}. By invoking the

symmetry of the given Markov chain, we notice that the
right-hand side of (62) can only have a few of expressions
depending on the choices of i, j and k, i.e.,

p X =jlXe =i, X101 =k)

7! :Za(("(;_l)l(’);rin(z;_l);&_ 1))» ifi=j=k,

opi (O e =) i)

N 03:0[((n(;:—l)l(;‘_fn(z;_l):)((s’: 1))» if i #j=k,
AN S

AT

e e P Wi £k

(63)

By examining o1 to o5 in (63), we have o1 > 03 > 02 >
05204,f0r%§a§1.
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For a fixed j € {1, ..., n}, by counting the number of times
each condition of (63), eg., i = j =k, i = j # k, etc.,
is satisfied for i, k € N, we can get the following ordering of
n* probabilities p (X; = j| X, =i, X;11 = k) (for a fixed j):

04<--<04<05<--<05=0y < <0
n—1 (n—1)(n—2) n—1
=03=---=03=0].
—_—————
n—1

Due to the symmetry, this ordering remains the same for all

j € {l,...,n}. Given this ordering for any fixed j, we can
check
1
20 = Z p (X, =x|U; = uxjnz) = Z o1 = noy,
t xeN xeN

where p (X, =x|U; = ”x,n2) is defined in (7).

Also, from (9), we can check that 8; = noy, §; = 0 for
i=2,...,n—1,and 6, = 1 — no4, so we have

n
R_,[ = Zie,- =no4+n —n204.
i=1

By substituting the expression of o1 and o4 defined in (63),
one can verify that noy +n — n264 = noy, which implies in
R! = R?. This completes the proof of Corollary 2.
Remark 4: When 0 < a < % we may follow the same steps
as we did but divide the discussion into two cases: 0 =t —t
is even or odd. When ¢ is even, we have oy > 64 > 05 >
o1 > 03, and

1 _ 1 n )
— =noy < — =no3z +n—n‘o3.
R R}
Similarly when d is odd, we have o5 > 04 > 03 > 03 > 0],
and
1 _ 1 @ 2) n
— = Nno5 = — =o03Zn —n — noj n.
RY R/

In both cases, we can see a gap between R,O and R,I , which
is as per our observation in Example 1.

APPENDIX C
PROOF OF LEMMA 1

First, let us recall that B, = {i :i <t, F; = ON}U{i : i >
t+ 1} and Uy = (X, Xy41) where 7 = max{i : i < t, F; =
ON}.

We prove the statement by induction on . Consider the base
case t = 0. From the assumption Fy = ON (assumption of
this paper), we know that Uy = {Xo, X1} and By = {i : i =
0,1,...}. If Qg is a stochastic function of X and X, and Qg
is independent of X( and X, then we have

1 (Qo; XB,) = I (Qo; Xo, X1) + I (Qo; X5, X1, X0) =0,

i.e., Qp is independent of Xp,. The last equality follows
because Qo is independent of Xo and X, and Qq is a
stochastic function of X and X;.

Now, we start the inductive step. Assume that the statement
is true for some t — 1, i.e., if Q; is a stochastic function of U;
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and X;, and Q; is independent of U; fori =0,1,...,¢t — 1,
then Q1) is independent of Xp, .

Next, for the case ¢, if Q; is a stochastic function of U; and
X;, and Q; is independent of U; for i =0, 1,...,¢, then we
know from the inductive assumption that Q[;_1; is independent
of Xp,_,, ie,

I(Qu-11: Xp,_,) = 0. (64)

Then consider

1 (Q[f]; XBI)
= 1(Qu-11; XB,) +1(Qs; Us| Qpi—13)
+1(0; XB\(r,+1)| Qri—11, Us)
(@)

< I(Qu-1:Xp,_,) +1 (01 Uil Q1))
+1(01; XB\(r,+1)| Qri—11, Us)
(b)

= 1(Q1: Uil Qu—11) + 1 (Qs5 XB\(e,e4+1)1 Qri—11, Ur)
= 1(Q: U)+1(Qs: Qu-ylU;) — 1 (Qs; Qri—1))
+1 (01 XB\(r.+1)| Qu—11, Us)

< 1(Qi; U) +1(Q; XB(r.+11> Qu—111Us)

(c)
= 1(0n U+ 1 (Xes XBpjeas1)s Qu—111Ur)

=1(0:U)+1 (Xti XB,\{r,t+1}|Ut)
+1 (Xt§ Q-1 XB\(e,1+1)> Ut)
(d)

=1(0:U)+1 (Xti XB,\{r,t+1}|Ut)

@1y =0,

where (a) follows from B, € B,_; by inspecting the def-
inition of B, (b) follows from (64), (c¢) follows because
Q; is a stochastic function of U, and X;, (d) follows from
XB,_, = {XB\(r.i+1)> Ur, X1} and (64), and (e) follows from
the Markovity of X;.

APPENDIX D
PROOF OF PROPOSITION 1

From the definitions in (8) and (9), we can easily see that
Ai is non-decreasing with i, so 6; > 0 for all i if and only if
An—1 < 1. It is sufficient for us to show that 1, < 1.

For any given distribution p (x;|u;) where x, € A and u; €
N2, we claim that there exists some u such that

p Oy =xluy=u)>p(x; =xluy =ux,), VxeN. (65)

To see this, one can choose any u € N?\{uy; : x € N,i =
1,...,n — 1}. Note that since |[N?| = n? and |{uy; : x €
N,i=1,....,n =1} = n(n — 1), the set N?\{uy; : x €
N,i=1,...,n— 1} is non-empty.

By summing (65) over all x, we have

z p(x; =xluy =u) > Z p (x, =x|u; = ux,n) = .
xeN xeN

Since > . P (x; = x|u; =u) = 1 for a fixed u, we com-
plete showing that 4, < 1.
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APPENDIX E
PROOF OF PROPOSITION 2

Recall that we need to show that for any u = 1,...,m,

n
Zmax{p X =x|U=u) - /1,(,,,_1,0}

x=1
n—1

> D (Aee—Aee1). (66)
¢

=1 x:uEZ/IZX

Assume without loss of generality that u = w4, = -+ =
Un,q,- Then, the left-hand side of (66) can be written as

Zmax {p (X =x|U=u) - ix,,,,l,O}
x=1

= > pX=xU=u)—Aen

X0y >n—1

= > (ha

X0y >n—1

- j~)c,nfl) >

and the right-hand side of (66) can be written as

n—1 n—1
z z Ax,t = Axo—1 = z Z Ax,t — Ax,0—1

=1 xueld; x:ox<n—2 (=o0,+1
= D (w1 —Aea,).
X0 <n—2

Since

Z (ix,ax - /lx,n—l) - Z (ix,n—l - /Ix,ax)

x:ox>n—1 X0y <n—2
n n
= (j«x,ax - j«x,nfl) =1- Zj«x,nfl = en, (67)
x=1 x=1
we can see that (66) is established if and only if 6, > 0,
which is given by Proposition 1. This completes the proof of
Proposition 2.

Remark 5: To benefit the following proof, we give an imme-
diate implication of (67) here. As described, the right-hand
side of (606) is the total values assigned for { =1,...,n — 1
and the left-hand side of (66) is the initialization of the matrix
M, so the remaining values will be assigned for { = n as
described in (48) and (49). As such, we know from (67) that

z g(Zﬂx’u) :6719 (68)
x:(z,x,u)eF,
forany u € {1,...,m} and z ={1,...,n}.
APPENDIX F

PROOF OF PROPOSITION 3

Before proving the proposition, we provide some obser-
vations of Fy , for some x, k and { = 1,...,n — 1 by
examining (45). Let 1{-} be the indicator function.

o If (z,Xx,u) € Fy xk for some ¢, x and k, then z = z¢ x &

is uniquely determined, i.e., if (z, X, it) € F¢ x.k, then

(Z/a -x/’ M/) ¢ f(’,x,k, VZ/ 7& Z (69)

2115

o Forany (z,x,u) € Frxx, |2l =¢, and x € Z.

o The cardinality of each Fy ,  is |F¢ x x| = m. In partic-
ular, all tuples (z, x, i) € F x  have distinct values of
u. In other words, let (z,-,-) € Fy k denote that there
exists some X, i such that (z, x, i) € F i, and then

n

S d)eFeaxy=1{G. ) eFrar}. (70)
x'=1
for any u’ € {1, ..., m}.

1) The first statement is straightforward. Suppose that
(z,x,u) € Fyforsome . If £ =1,...,n—1, we know
from (46) that F; is the union of F¢ . x. For each F¢ , i,
we know that x € z for any (z,x,u) € Fr k. If £ =n,
z=N forall (z,x,i) € Fp, s0 X € Z.

2) For the second statement, when |z| =€ € {1,...,n—1},
> gGx.i)
x:(Z,x,u)eF
= > gGx0
x:(Z,x,u)eFy
n
(a)
=22 2L vk
Y X=lk(@Zx,a)eF, v
®) n Cox
=D D vewa L{E ) € Fros), (D)
x'=1k=1
where (a) follows from (47) and (b) follows from (70).
When |Z| =€ =mn, ie, 7 ={1,...,n}, we have
> sGrnn= Y, gGx.20,. (72)

x:(Z,x,u)eF x:(Z,x,u)eF,

where (c) follows from (68).
Since both the right-hand sides of (71) and (72) are
independent of u, for any given z, i and u’

Z g, x,u)= Z

x:(z,x,u)eF x:(z,x,u")eF

g (z,x,u).

3) As for the third statement, for any given x and u,

Z g(z,%,u)

z:(z,x,u)eF

= z z g(z,x,u)

(=1 z:(z,x,0)eFy

n—1
=> D g@ERD+ D, g,
=1 z:(z,%,u)eF¢ z:(z,x,0)eF,
(73)

For the first term of (73), we have

n—1
Z Z g (z,x,u)

(=1 z:(z,x,u)eFy

n—1 n
23> Y

(=1 7 x=lki(z,x,u)eFr
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n

LYYy

(=1 x=1k:(-,x,ii)eFy i

Ve x ks (74)

where (a) follows by substituting (47), and (b) follows
from (69).
By examining F7  x, we can see two disjoint subsets,

‘: : {(Z_a;_ca u_) : Z_ - Z(’,x,k,f - Cf,x,k(i),
C,x,k
L_t - ux,i € Z"fjx}’

and
+ . e = P +
Frrk = {(z,x,u) 12 =Z¢x kX =X, U E Z/{&x} ,

For a fixed u, assume that & = uyq, = ---
Then, we write (74) as

n—1

> X cwnn

(=1 z:(z,x,u)eFp

n—1 n

=22 2
=1 x=1k:(-,x,0)€F¢ x k
n—1 n—1

S ID D JRTHED 3 St
(=1 x:0, <=1 k:i=¢r 0 1 (0rx) t=lkaz=¢
n—1

=22 X

=1 x:0x <C—1 k:Xx={¢ x k (ax)

= Un,ay,-

Ve x,k

min{n—1,a5}

Ve x ket Z Z‘J(’,i,k«
=1k
(75)

From (42), we know that >, vz x = Az,¢—Az,¢—1, and
hence the second term of (75) can be written as

min{n—1,05}

D D ek = At minin—1as)-
=1 k
For the first term of (75), we know from (41) that

2

kg x k(o) =%

(76)

Ve,x,k = Ut x,ay,j»

and X = e¢ x; j for some j, where vy 4, ; and e v ;
are defined in (36). Then, we know from (39) that

Z Uf,X:k = Uf,x,ax,j = M],;, ax,)? = M,;,ja
kz(f,x,k (0‘)6):)E

i.e., the value subtracted from M; ;z for given ¢ and x.
Thus, we have

ST Y

(=1 x:0x <=1 k:x=(¢ x k (00x)

n—1
=2 2 M
(=1 x:0,<l—1
n—1
=2 2 My an
f=1x[¢eb1[x
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i.e., all values subtracted from M; ; for{ =1,...,n—1
and all x. By substituting (77) and (76) in (75), we have

n—1
> > g Ea

=1 z:(z,x,0)eF
n—1
=D > M+ Atminpn-tas).  (78)
(=1 x:ﬁeugx

Then, substituting (78) in (73), we have

>

2z, x,u)eF

n—1
=> > g@ERD+ > g i)
(=1 z:(z,x,u)eFy z:(z,x,0)eF,

n—1

g(z,x,u)

I
M
M

M,;_,,; + jv)?,min{nfl,oz;} +

(=1 x:el,

>

z:(z,x,0)eF,

gz, x,u).

Recalling that we assign all the remaining values M
to g (z,x,u) in (48) and (49) when £ = n, we know

that

n—1

D Mzt Y gGED
(=1 xuiield;, 2z %, 0)eF,

= max{p (X =x|U =n) —ix,n—l»o},

i.e., the initial value of Mj 5 defined in (35). Therefore,

2

z:(z,x,0)eF

n—1
= Z Z M,;,); + ii,min{nfl,a;}

(=1 x:eld,

>

z:(z, X, 1) eFy
= max {p X =x|U =u) - /1,;,,,_1,0}
+ A%, minfn—1,a5)
= max {p (X|i) = Azn—1,0} +min {1z, 1, p (X|i)}
p(xlu),

g (z,%,u)

g (z, %, u)

which completes the proof.

APPENDIX G
PROOF OF PROPOSITION 4

The proof is quite straightforward from previous interme-
diate steps. As we know that p (zlu) = p(z|u/) for any
u,u’ € N? and z € Z from Proposition 3, for any given
te{l,...,n—1}, we have

SDr@= D pew=> >

z:|z|=¢ z:|z|=¢C z:|z|=C x:(z,x,u)eF

gz, x,u)
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n Sy

DS S vk 1) € e

z:|z|=C x'=1 k=1

n Cox
=D > vewi D, @) € Fraoul
x'=1 k=1 z:|z|=¢C
©) - < © ~
C
=D D vk =D dare = Ao =0,
x'=1k=1 x'=1

where (a) follows from (71), (b) follows from (69), and (c)
follows from (42). For £ = n, we have

n—1 n—1
2. r@=1-2"> p@=1-206=0,
=1

z:|z|=n (=1 z:|z|=¢

by definition, then p (|Z| =€) =6, forall £ = 1,...,n.

APPENDIX H
PROOF OF LEMMA 2

Consider

a)
max > p (x, ylu)

max p (x|u) =
ueN? weN? 520

= max > p(vlu) p(xly, )
yixe€y

max D PO ply.w

yixey

max p (x|y, u
2 P ) max p(x|y.u)

yxey

<> rH.

yixey

~
i3

IA

where (a) follows from p(x, ylu) = O for x ¢ y, and (b)
follows because Y is independent of U. Thus, we obtain that

Zm%p(XIu)SZ SDrm= >, D p
xeNue

xeN yixey yePN) x:xey
= > p D 1=ElY],
yeP(N) Xixey

which completes the proof.
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