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Abstract—We study the ON-OFF privacy problem. At each
time, the user is interested in the latest message of one of N

sources. Moreover, the user is assumed to be incentivized to turn
privacy ON or OFF whether he/she needs it or not. When privacy
is ON, the user wants to keep private which source he/she is
interested in. The challenge here is that the user’s behavior is
correlated over time. Therefore, the user cannot simply ignore
privacy when privacy is OFF, because this may leak information
about his/her behavior when privacy was ON due to correlation.

We model the user’s requests by a Markov chain. The goal
is to design ON-OFF privacy schemes with optimal download
rate that ensure privacy for past and future requests. The user
is assumed to know future requests within a window of positive
size ω and uses it to construct privacy-preserving queries. In this
paper, we construct ON-OFF privacy schemes for N = 2 sources
and prove their optimality.

I. INTRODUCTION

Privacy of online users has become a major concern. With-

out agreeing to it, users unknowingly leak valuable personal

information, such as sex, age, health disorders, political views,

etc., through their daily online activities. Several existing

privacy-preserving solutions can be utilized to ensure a desired

level of privacy for the user, such as anonymity [1], differential

privacy [2], private information retrieval [3], to name a few.

In all the privacy problems above, it is assumed that the user

always wants to be private. Privacy, however, is expensive.

Privacy-preserving protocols incur higher computational costs

on the service provider, and typically lead to degraded quality

of service and larger delays at the user side [4].

This motivates us to think of privacy as an expensive utility,

which should be turned OFF when not needed. Much like

one turns off the lights before leaving home. The user may

want to turn his/her privacy ON or OFF depending on the

internet connection he/she is using, his/her location or his/her

device used to get online, etc. This behavior of the user may be

incentivized by the service providers who encourage him/her

to require privacy only when it is needed.

The challenge in designing algorithms that enable privacy

to be switched between ON and OFF, and vice versa, is that

the user’s behavior is correlated over time. This is essentially

true because the user’s choices are personal and are not

independent over time. For instance, a user watching online

videos, will most likely pick the next video to watch from

a suggested personalized list that is specifically curated for
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him/her. Therefore, the user cannot simply ignore privacy

when privacy is OFF, because this may leak information about

his/her behavior when privacy was ON due to correlation.

To capture this challenge, the authors introduced the ON-

OFF privacy problem in [5]. A user is interested in the latest

message generated by one of N sources. Think, for example,

a user is subscribed to N = 2 political YouTube channels, one

is pro-right and one is pro-left. Occasionally, the user wants to

watch the latest video on one of these channels. He/she has a

choice between turning privacy ON or OFF. When privacy is

ON, the user is not interested in hiding which particular video

he/she wants to watch. Rather, he/she is interested in hiding

the channel on which that video is posted, because he/she does

not want to reveal his/her political interests. In general, when

privacy is ON, the user wants to hide which message of the

N sources he/she is interested in.

In [5], we studied ON-OFF privacy in which it was required

to ensure privacy for past requests for which privacy was

turned ON. In this paper, we consider a more stringent privacy

requirement and want to preserve privacy for both past and

future requests. We follow a setup similar to the one in [5] in

which the user’s request are modeled by a Markov chain, but

with one significant difference. We assume here that the user

knows the requests in a small window of positive size ω > 0 in

the future. In practice, this may happen in applications where

the user can queue up his/her requests, such as when watching

online videos.

Under this new setting, we study the download rate, which is

measured by the ratio of the average length of downloaded data

to the message length. We characterize the optimal download

rate for the system with N = 2 sources and provide explicit

constructions of ON-OFF privacy schemes that achieve it. One

interesting implication of our result, is that the optimal rate

does not depend on the window size. Thus, a window of size

ω = 1 is sufficient to achieve the optimal rate.

II. PROBLEM FORMULATION

There is a single server storing N information sources

indexed by N := {1, . . . , N}. Each source generates an

independent message Wx,t at time t, where x ∈ N . We

assume that t ∈ N throughout this paper.

A user is interested in one of the sources at each time,

and wishes to retrieve the latest message generated by the

corresponding source. In particular, let Xt be the index of the
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desired source at time t, and in the sequel we call Xt the user’s

request. By slightly abusing the notation, we denote the latest

message generated by the desired source Xt by WXt,t, and the

user wishes to retrieve the message WXt,t. We assume that the

messages {Wx,t : x ∈ N , t ∈ N} are mutually independent,

and each message consists of L symbols. Without loss of

generality, we assume that each of the messages is uniformly

distributed over {0, 1}L, i.e., H (Wx,t) = L, and

H (Wx,t : x ∈ N , t ∈ N) =
∑

x,t

H (Wx,t) . (1)

The user’s requests are generated by a discrete-time infor-

mation source {Xt : t ≥ 0}. In this paper, we are particularly

interested in the case where the requests {Xt : t ≥ 0} are

Markov. The transition matrix M of the Markov chain is

assumed to be known by both the server and the user.

At time t, the user may or may not wish to keep the identity

of the source being interested in. Specifically, the privacy mode

Ft at time t can be either ON or OFF, where Ft is ON when

the user wishes to keep Xt private, while Ft is OFF when the

user is not concerned with privacy. The privacy mode is also

assumed to be known by the server.

The user is allowed to generate unlimited local randomness,

and we are not interested in the amount of randomness

used. Therefore, we assume without loss of generality that

the random variables {St : t ≥ 0}, representing the local

randomness, are mutually independent.

All information sources are assumed to be independent, that

is, the user’s requests {Xt : t ≥ 0}, the privacy mode {Ft :
t ≥ 0}, the messages {Wx,t : x ∈ N , t ≥ 0} and the local

randomness {St : t ≥ 0} are mutually independent.

At time t, the user will construct a query Qt and send it to

the server. Upon receiving the query, the server responds by

producing an answer Yt. After receiving the answer, the user

should be able to decode WXt,t correctly.

We assume that the user knows the future requests in a

window of positive size ω. This means at time t, the user

knows the future requests {Xt+1, . . . , Xt+ω} in addition to

all past (including current) requests {X0, . . . , Xt}. In practice,

it often happens that the user has some side information to

predict his/her requests in the near future. Later, we will show

that only a window of size ω = 1 is needed.

The query Qt at time t is generated by the query encoding

function φt, which is assumed to be a function of the causal

information, i.e., previous requests and local randomness

{Xi, Si : i ≤ t}, and future requests {Xt+1, . . . , Xt+ω} for

some ω ∈ N. Hence, we assume that

Qt = φt

(
X[t+ω], S[t]

)
, (2)

where [t+ ω] := {0, 1, . . . , t+ ω}.

Accordingly, the answer Yt of the server is given by the

answer encoding function ρt, which is assumed to be a

function of the query Qt and the latest messages, i.e.,

Yt = ρt (Qt,W1,t, . . . ,WN,t) . (3)

To facilitate our discussion, we define the length function

of the answer as follows. Since the length of the answer Yt

is determined by the query Qt, let `(Qt) be the length of Yt

and the average length of the answer at time t is given by

`t = EQt
[` (Qt)], (4)

where E[·] is the expectation operator.

The query and answer functions need to satisfy the follow-

ing decodable and privacy constraints.

1) Decodability: For any time t, the user should be able

to recover the desired message from the answer with

zero-error probability, i.e.,

H (WXt,t|Yt) = 0, ∀t ∈ N. (5)

2) Privacy: For any time t, the user’s requests over time

where the privacy is required should not be revealed to

the server, i.e.,

I
(
XBt

;Q[t]

)
= 0, ∀t ∈ N, (6)

where Bt := {i : i ≤ t, Fi = ON} ∪ {i : i ≥ t+ 1}, and

[t] := {0, 1, . . . , t}.

We would like to clarify the privacy requirement in (6).

The user does not know whether privacy is ON or OFF in

the future. For this reason, we have adopted a worst-case

formulation in the privacy constraint by assuming that privacy

is always ON in the future.

For any message length L, the tuple (`t : t ∈ N) is said to

be achievable if there exists a code satisfying the decodability

and the privacy constraint. The efficiency of the code can be

measured by L/`t. Hence, we define the achievable region by

the convention as follows:

Definition 1. The rate tuple (Rt : t ∈ N) is achievable if there

exists a code with message length L and average download

cost `t such that Rt ≤ L/`t.

Before proceeding to the results, we would like to mention

that coded retrieval is not helpful in this problem. The point

can be formally argued by dividing the possible queries to 2N

subsets, each of which corresponds to the decodability of a

subset of the latest messages. Details can be found in [5]. For

this reason, we only consider that Qt takes value in Q = 2N

in the following sections.

III. MAIN RESULT

In this section, we present the main result of this paper, that

is, the characterization of the achievable region for the two-

sources system, i.e., N = 2. For clarity, we will use A and

B to denote the two sources, that is, each Xt takes values in

N = {A,B}. Correspondingly, the query Qt takes values in

Q = {{A}, {B}, {A,B}}. We do not distinguish between A
and {A} in our notation, and {A,B} will be written as AB.

Before stating our main result, we need to set up some

useful notations. For simplicity, we assume that F0 = ON.

For any t, let F−(t) := max{i : i ≤ t, Fi = ON}, i.e., F−(t)
is the latest time such that the privacy is ON. For our analysis,
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it is convenient to define Ut :=
(
XF−(t), Xt+1

)
∈ N 2, which

represents the last request when privacy was ON and the next

request of the user at time t.
We will need p (xt|ut), which is given by

p (xt|ut) =
p (xt+1|xt) p

(
xt|xF−(t)

)

p
(
xt+1|xF−(t)

) .

Here, p (xt+1|xt), p
(
xt|xF−(t)

)
and p

(
xt+1|xF−(t)

)
can be

determined from M , M t−F−(t) and M t+1−F−(t) respectively,

where M is the transition matrix of the Markov chain rep-

resenting the user’s requests. Moreover, we introduce the

following definition:

π(xt) := min
ut∈N 2

p (xt|ut) , ∀xt ∈ N . (7)

In other words, if we write p (xt|ut) as a N2 ×N probability

transition matrix, π(xt) is the minimum value of each column.

Now, we are ready to state the main result in the following

theorem.

Theorem 1. Suppose that {Xt : t ≥ 0} is a Markov process

with the transition matrix M . The rate tuple (Rt : t ∈ N) is

achievable if and only if

1

Rt

≥ 2−
∑

xt∈N

π(xt). (8)

To prove the theorem, we will give an explicit scheme that

achieves the rate given in the R.H.S of (8) in Section IV and

prove its optimality in Section V. Before that, we give an

example to illustrate the rate given in (8).

Example 1. Consider (F0, F1) = (ON,OFF) and the transi-

tion matrix of the Markov chain is given by

M =

[
1− α α
α 1− α

]

, 0 ≤ α ≤
1

2
,

where Mi,j is the transition probability from source i to source

j (assuming source 1 is A and source 2 is B).

Consider the rate at t = 1. From (8), we have

1

R1
≥ 2−

2α2

α2 + (1− α)2
,

which means that it is not necessary for the user to download

both messages except when α = 0. When α = 0.5, R1 ≥ 1.

The reason is that at each time the user simply downloads only

his/her desired message when the requests are independent.

Few remarks about the theorem are due here.

Remark 1. In our model, we have assumed that the user

knows the future requests within a window of positive size

ω ≥ 1. An interesting implication of Theorem 1 is that the

optimal rate does not depend on the window size. This means

that increasing the window size into the future beyond one

does not increase the rate. The case when the user does not

know any future requests, i.e., ω = 0, falls into a different

model, which was studied in [5].

Remark 2. If Ft = ON, we have Ut = (Xt, Xt+1), and

then we can easily see that Rt is achievable if and only if

Rt ≤ 1
2 from (7) and (8), which means that it is necessary

to download two messages. This is consistent with the well-

known result [3].

IV. PROOF OF THEOREM 1: ACHIEVABILITY

A. ON-OFF Privacy Scheme

Here, we describe our query encoding function as defined

in Section II. The query Qt is encoded from Xt, Ut and St,

i.e.,

Qt = φt (Ut, Xt, St) .

Since we are not interested in the local randomness used,

instead of writing φt explicitly, the function φt can be com-

pletely described by the probability distribution w (qt|xt, ut),
which is given by

qt xt x̄t AB

w(qt|xt, ut)
π(xt)

p(xt|ut)
0 1−

π(xt)
p(xt|ut)

Here, x̄t is defined as {A,B}\{xt}. Since qt 6= x̄t is always

true, for notational simplicity, we write the encoding function

w(qt|xt, ut) as

w (qt|xt, ut) =

{
π(xt)

p(xt|ut)
, |qt| = 1,

1− π(xt)
p(xt|ut)

, |qt| = 2.
(9)

Example 2. Let us adopt the same setting as in Example 1.

Suppose that at time t = 1, the user wants source A, i.e.,

X1 = A, and we need to determine the query Q1. First, we

determine

π (x1) =
2α2

1 + (1− 2α)
2 .

In our scheme in (9), Q1 will be dependent on X0 and X2.

Suppose that X0 = X2 = A, and then Q1 will be given by

w (q1|x1, u1) =

{
α2

(1−α)2 , |q1| = 1,
1−2α
(1−α)2 , |q1| = 2.

In other words, if X0 = X1 = X2 = A, then the user will

toss a biased coin such that with probability α2

(1−α)2 , he/she

will download only the message generated by source A and

with probability 1−2α
(1−α)2 , he/she will download both messages.

B. Rate

We first show that the given coding scheme achieves the

rate

Rt =
1

2−
∑

xt

π(xt)
.

Since

p (qt) =
∑

xt,ut

p (xt, ut)w (qt|xt, ut) ,
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by substituting (9), we have

p (qt) =







∑

xt,ut

p (ut)π(xt), |qt| = 1,

1−
∑

xt,ut

p (ut)π(xt), |qt| = 2.
(10)

Note that π(xt) is independent of ut, so (10) can be written

as

p (qt) =







∑

xt

π(xt), |qt| = 1,

1−
∑

xt

π(xt), |qt| = 2,
(11)

which immediately gives that

1

Rt

=
`t
L

= E [|Qt|] = 2−
∑

xt

π(xt).

C. Privacy

It remains to show that the encoding function given in

(9) satisfies the privacy constraint in (6). We prove this by

induction on t.

First, consider the base case where t = 0. Since F0 = ON,

we know that Q0 = AB from (9), so we have

I
(
XB0

;Q[0]

)
= 0.

Now, we start the inductive step. Assume that

I
(
XBt−1

;Q[t−1]

)
= 0, (12)

we need to show that

I
(
XBt

;Q[t]

)
= 0.

Towards this end, consider

I
(
XBt

;Q[t]

)
= I

(
XBt

;Q[t−1]

)

︸ ︷︷ ︸

I1

+I
(
XBt

;Qt|Q[t−1]

)
,

where I
(
XBt

;Qt|Q[t−1]

)
, the second term in the summation

above, can be written as

I
(
XBt

;Qt|Q[t−1]

)

= I
(
Ut;Qt|Q[t−1]

)
+ I

(
XBt

\Ut;Qt|Ut, Q[t−1]

)

= I
(
Ut;Q[t]

)
−I

(
Ut;Q[t−1]

)

︸ ︷︷ ︸

I2

+ I
(
XBt

\Ut;Qt|Ut, Q[t−1]

)

︸ ︷︷ ︸

I3

.

Thus, we have

I
(
XBt

;Q[t]

)
= I

(
Ut;Q[t]

)
+ I1 − I2 + I3. (13)

Proposition 1. I1 = I2 = I3 = 0.

This proposition is mainly due to the causality of the

encoding function and the Markovity of the user’s requests.

The proof details will be given at the end of this section.

It remains to show that I
(
Ut;Q[t]

)
= 0, which can be

equivalently written as p
(
ut|q[t]

)
= p (ut). To see this,

consider

p
(
ut|q[t]

)
=

∑

xt

p
(
ut, xt|qt, q[t−1]

)

=
∑

xt

p
(
ut, xt, qt|q[t−1]

)

p
(
qt|q[t−1]

)

=

∑

xt

p
(
ut, xt|q[t−1]

)
p
(
qt|ut, xt, q[t−1]

)

p
(
qt|q[t−1]

)

=

∑

xt

p
(
ut, xt|q[t−1]

)
p
(
qt|ut, xt, q[t−1]

)

∑

xt,ut

p
(
ut, xt|q[t−1]

)
p
(
qt|ut, xt, q[t−1]

)

(a)
=

∑

xt

p
(
ut, xt|q[t−1]

)
w (qt|ut, xt)

∑

xt,ut

p
(
ut, xt|q[t−1]

)
w (qt|ut, xt)

(b)
=

∑

xt

p (ut, xt)w (qt|ut, xt)
∑

xt,ut

p (ut, xt)w (qt|ut, xt)
, (14)

where (a) follows because Qt is a stochastic function of

{Ut, Xt} given in (9), and (b) follows because {ut, xt} ⊆
Bt−1 and the inducative assumption (12).

From (9), we have

p (ut, xt)w (qt|ut, xt) =

{

p (ut)π(xt), |qt| = 1,

p (ut, xt)− p (ut)π(xt), |qt| = 2.

For |qt| = 1, (14) can be written as

p
(
ut|q[t]

)
=

∑

xt

p (ut, xt)w (qt|ut, xt)
∑

xt,ut

p (ut, xt)w (qt|ut, xt)

=

∑

xt

p (ut)π(xt)
∑

xt,ut

p (ut)π(xt)

(a)
=

p (ut)
∑

xt

π(xt)
∑

xt

π(xt)
∑

ut

p (ut)

= p (ut) , (15)

where (a) follows because π(xt) is independent of ut.

Similarly, we can also check for |qt| = 2 that

p
(
ut|q[t]

)
= p (ut) . (16)

From (15) and (16), we can obtain that

I
(
Ut;Q[t]

)
= 0. (17)

Therefore, by plugging (17) into (13) and using Proposition 1,

we obtain

I
(
XBt

;Q[t]

)
= 0,

which concludes our induction proof.

D. Proof of Proposition 1

First, we have

I1 = I
(
XBt

;Q[t−1]

) (a)

≤ I
(
XBt−1

;Q[t−1]

) (b)
=0,
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where (a) follows because Bt−1 = Bt ∪{t} by definition, and

(b) follows from the inductive assumption (12). Second,

I2 = I
(
Ut;Q[t−1]

) (a)

≤ I
(
XBt

;Q[t−1]

)
= I1 ≤ 0,

where (a) follows because Ut ⊆ XBt
by definition.

Finally, we prove that I3 = 0 as follows

I3 = I
(
XBt

\ Ut;Qt|Ut, Q[t−1]

)

(a)

≤ I
(
XBt

\ Ut;Ut, Xt, St|Ut, Q[t−1]

)

(b)
= I

(
XBt

\Ut;Xt|Ut, Q[t−1]

)

= I (XBt
\ Ut;Xt|Ut) + I

(
XBt

\ Ut;Q[t−1]|Xt, Ut

)

− I
(
XBt

\ Ut;Q[t−1]|Ut

)

(c)
= I (XBt

\ Ut;Xt|Ut) , (18)

where (a) follows because Qt is encoded from {Ut, Xt, St},

(b) follows because St is independent of {Xi : i ∈ N} and

Q[t−1], and (c) can be justified because one can check that

I
(
XBt

\Ut;Q[t−1]|Xt, Ut

)
= I

(
XBt

\Ut;Q[t−1]|Ut

)
= 0

from Bt−1 = Bt ∪ {t} and the inductive assumption (12).

To finish proving I3 = 0, we claim that

I (XBt
\ Ut;Xt|Ut) = 0.

Towards this end, by letting B−
t = {i : i ≤ t, Fi = ON} \

{F−(t)}, and B+
t = {i : i ≥ t + 2}, we can easily obtain

from the Markovity of {Xi : i ∈ N} that

I (XBt
\Ut;Xt|Ut) = I

(

XB−

t

, XB+

t

;Xt|X{F−(t),t+1}

)

= 0,

which concludes that I3 = 0.

V. PROOF OF THEOREM 1: CONVERSE

To obtain an upper bound on the rate Rt, we derive a lower

bound on the average downloading cost E [|Qt|], which can

be obtained by solving the following optimization problem:

minimize
p(ut,xt,qt)

E [|Qt|] =
∑

qt

p (qt) |qt|

subject to p (xt, qt) = 0, xt /∈ qt, (decodability)

p (qt|ut) = p (qt) . (relaxed privacy)
(19)

Here, the relaxed privacy constraint is obtained by relaxing our

original privacy requirement I
(
Q[t];XBt

)
= 0 to I (Qt;Ut) =

0. This is a relaxation because {F−(t), t+ 1} ⊆ Bt.

For clarity, we illustrate all feasible p (ut, xt, qt) in Table I

with two auxiliary variables z1 and z2, where

z1 = Pr (Qt = A|Ut = (A,A)) ,

and

z2 = Pr (Qt = B|Ut = (A,A)) .

Clearly, all entries in Table I must be non-negative.

Ut Xt Qt = A Qt = B Qt = {A,B}

(A,A) A z1paa 0 paa
(

pa|aa − z1
)

(A,A) B 0 z2paa paa
(

pb|aa − z2
)

(A,B) A z1pab 0 pab
(

pa|ab − z1
)

(A,B) B 0 z2pab pab
(

pb|ab − z2
)

(B,A) A z1pba 0 pba
(

pa|ba − z1
)

(B,A) B 0 z2pba pba
(

pb|ba − z2
)

(B,B) A z1pbb 0 pbb
(

pa|bb − z1
)

(B,B) B 0 z2pbb pbb
(

pb|bb − z2
)

TABLE I: The joint distribution p (ut, xt, qt) satisfying

the decodability and the privacy constraint, where

paa denotes Pr (Ut = (A,A)), and pa|aa denotes

Pr (Xt = A|Ut = (A,A)). Both are constants given by

the transition matrix of the Markov chain.

Then the optimization problem given in (19) can be re-

written as

minimize
z1,z2

E [|Qt|] = 2− z1 − z2

subject to 0 ≤ z1 ≤ π(A),

0 ≤ z2 ≤ π(B),

(20)

where π(A) and π(B) are defined in (7).

We can easily see that the optimal value to the problem in

(20) is given by

min
z1,z2

(2− z1 − z2) = 2− π(A)− π(B),

which completes the proof that

1

Rt

≥ 2−
∑

xt∈{A,B}

π(xt).
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