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about the factorial range use model theoretic tools related to
the notion of mutual algebraicity.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A hereditary graph property, H, is a class of finite graphs which is closed under
isomorphisms and induced subgraphs. The speed of H is the function which sends a
positive integer n to |Hy,|, where H,, is the set of elements of H with vertex set [n]. Not
just any function can occur as the speed of hereditary graph property. Specifically, there
are discrete “jumps” in the possible speeds. Study of these jumps began with work of
Scheinerman and Zito in the 90’s [27], and culminated in a series of papers from the
2000’s by Balogh, Bollobéas, and Weinreich, which gave an almost complete picture of
the jumps for hereditary graph properties. These results are summarized in the following
theorem.

Theorem 1.1 (/2,6-8,11]). Suppose H is a hereditary graph property. Then one of the
following holds.

(1) There are k € N and rational polynomials p1(x),...,px(x) such that for sufficiently
large n, [Hal = S5 piln)in.

(2) There is an integer k > 2 such that |H,| = nd—%To@)n,

(3) There is an € > 0 such that for sufficiently large n, B, < |Hn| < 2" °, where
B, ~ (n/logn)™ denotes the n-th Bell number.

(4) There is an integer k > 2 such that |H,| = 200~ % Te()n*/2,

The jumps from (1) to (2) and within (2) are from [6], the jump from (2) to (3) is from
[6,8], the jump from (3) to (4) is from [2,11], and the jumps within (4) are from [11].
Moreover, in [7], Balogh, Bollobds, and Weinreich showed that there exist hereditary
graph properties whose speeds oscillate between functions near the lower and upper
bound of range (3), which rules out most “natural” functions as possible jumps in that
range. Further, structural characterizations of the properties in ranges (1), (2) and (4)
are given in [6] (ranges (1) and (2)) and [11] (range (4)).

Despite the detailed understanding Theorem 1.1 gives us about jumps in speeds of
hereditary graph properties, relatively little was known about the jumps in speeds of
hereditary properties of higher arity hypergraphs. The goal of this paper is to generalize
new aspects of Theorem 1.1 to the setting of hereditary properties in arbitrary finite
languages consisting of relations and/or constant symbols (we call such a language finite
relational). Specifically, we consider hereditary L-properties, where, given a finite rela-
tional language L, a hereditary L-property is a class of finite L-structures closed under
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isomorphisms and substructures. This notion encompasses most of the hereditary proper-
ties studied in the combinatorics literature,? including for example, hereditary properties
of posets, of linear orders, and of k-uniform hypergraphs (ordered or unordered) for any
k > 2. We now summarize what was previously known about generalizing Theorem 1.1
to hereditary properties of L-structures.

Theorem 1.2 (/1,10,32,51]). Suppose L is a finite relational language of arity r > 1 and
H is a hereditary L-property. Then one of the following holds.

(i) There are constants C,k € N> such that for sufficiently large n, |H,| < CnF.
(ii) There are constants C,e > 0 such that for sufficiently large n, 26" < [H,| < 2" ".
(iii) There is a constant C > 0 such that |H,| = 90(7)+o(n™)

The existence of a jump to (iii) was first shown for r-uniform hypergraphs in [1,
10], and later for finite relational languages in [31]. The jump between (ii) and (iii)
as stated (an improvement from [1,10,31]) is from [32]. The jump from (i) and (ii)
for finite relational languages is from [32] (similar results were also obtained in [13]).
Stronger results, including an additional jump from the exponential to the factorial range,
have also been shown in special cases (see [5,3,4,16,17]). However, to our knowledge,
Theorem 1.1 encompasses all that was known in general, and even in the special case of
hereditary properties of r-uniform hypergraphs for » > 3 (unordered). Our focus in this
paper is on the polynomial, exponential, and factorial ranges, where we obtain results
analogous to those in Theorem 1.1 for arbitrary hereditary L-properties. The arity of £
is the maximum arity of its relation symbols. By convention, if £ consists of constant
symbols, we say it has arity 0.

Theorem 1.3. Suppose H is a hereditary L-property, where L is a finite relational lan-
guage. Then one of the following hold.

(1) There are k € N and rational polynomials p1(x), ... ,px(x) such that for sufficiently
large n, |[H,| = Zle pi(n)i™.

(2) There is an integer k > 2 such that |H,| = nd—%—oW)n,

(3) [Hn| > nrt—e@),

The most interesting and difficult parts of Theorem 1.3 are the jumps within range
(2) and between ranges (2) and (3), which were not previously known for any hered-
itary property in a language of arity larger than two. Combining Theorem 1.2 with
Theorem 1.3 yields the following overall result about jumps in speeds of hereditary £-
properties.

2 Notable exceptions include hereditary properties of permutations and non-uniform hypergraphs.
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Theorem 1.4. Suppose H is a hereditary L-property, where L is a finite relational lan-
guage of arity v > 0. Then one of the following hold.

(1) There are k € N and rational polynomials p1(x), ..., pp(x) such that for sufficiently
large n, |[H,| = Zlepi(n)i".
(2) There is an integer k > 2 such that [H,| = n"(—% o),

(3) There is € > 0 such that n»1=°(M) < |H,| <27 ",
(4) There is a constant C > 0 such that |H,| = 267 +o("),

We also generalize results of [7] to show there are properties whose speeds oscillate
between functions near the extremes of the penultimate range (case (3) of Theorem 1.4).

Theorem 1.5. For all integers r > 2, and real numbers ¢ > 1/(r — 1) and € > 1/c, there
is a hereditary property of r-uniform hypergraphs H such that for arbitrarily large n,

r—e

[H,| = nen =D=M and for arbitrarily large n, |H,| > 2" .

While there still remain many open problems about the penultimate range, Theo-
rem 1.5 shows that, for instance, there are no jumps of the form n*” for & > 1 or on*
forl <k<r.

Together, Theorems 1.4 and 1.5 give us a much more complete picture of the possible
speeds of hereditary properties in arbitrary finite relational languages. In particular, our
results show the possibilities are very close to those for hereditary graph properties from
Theorem 1.1. Our proof of Theorem 1.4 also gives structural characterizations of the
properties in cases (1) and (2), and we will give explicit characterizations of the minimal
properties with each speed in range (1). Characterizations of the minimal properties in
range (2) are more complicated and will appear in forthcoming work of the authors.

The proofs in this paper owe much to the original proofs from the graphs setting,
especially those appearing in [6,7]. However, a wider departure was required to deal
with the jumps in the factorial range, namely case (2) of Theorem 1.3. Our arguments
use the model theoretic notion of mutual algebraicity, first defined by Laskowski in [21].
A mutually algebraic property can be thought of as a generalization of a hereditary
graph property of bounded degree graphs. On the one hand, we will use the technology
developed in [20,21] to obtain accurate estimates of |H,| when H is a mutually algebraic
property. On the other hand, when H is not mutually algebraic, we will use a theorem
from [19], along with a new result, Proposition 4.24, to obtain an infinite model N of T
that has arbitrarily large finite substructures with enough isomorphic copies to witness
that |H,| > n™1=0(1) Here and elsewhere, we use the compactness theorem, which
allows us to work with infinite structures rather than large finite ones.

The effectiveness of model theoretic tools in the context of this paper can be attributed
to the fact that any hereditary L-property H can be viewed as the class of finite models of
a universal, first-order theory 7. The speed of H is then the same as the function sending
n to the number of distinct quantifier-free types in the variables (z1,...,,) which are
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consistent with 7%, and which imply z; # z; for distinct 7 and j. Problems about
counting types have been fundamental to model theory for many years (see e.g. [29]).
From this perspective it is not surprising that tools from model theory turn out to be
useful for solving problems about speeds of hereditary L-properties. Further, variations of
this kind of problem have previously been investigated in model theory (see for example,
[12,22,23]). We will point out direct connections with this line of work throughout the
paper.

We end this introduction by outlining some problems which remain open around this
topic. First, Theorem 1.1 describes precisely the speeds occurring within the fastest
growth rate (case (4)). A similar analysis in the hypergraph setting would amount to
understanding the possible Turan densities of hereditary hypergraph properties, a noto-
riously difficult question which we have made no attempt to address in this paper (see
e.g. [25]).

There are many questions remaining around the penultimate range. For instance, in
the graph case, Theorem 1.1 gives a precise lower bound for the penultimate range,
namely the n-th Bell number B,,. This is accomplished in [8] by characterizing the min-
imal graph properties in this range, which they show are the properties consisting of
disjoint unions of cliques H;, or disjoint unions of anti-cliques, H;. A general analogue
of this kind of result would be very interesting.

Problem 1.6. Given a finite relational language L, characterize the minimal hereditary
L-properties in the penultimate range.

It is easy to see the answer must be more complicated in general than the graph case.
Indeed, let £ = {R(z,y)} and consider the hereditary L-property H consisting of all
finite, transitive tournaments. Then |[H,| = n! < B, falls into the penultimate range.
Consequently, while H.;, H are the only minimal hereditary graph properties in the
penultimate range, there are other hereditary L-properties in this range with strictly
smaller speed.

Theorem 1.5 rules out many possible jumps in the penultimate range, however, there
does not yet exist a satisfying formalization of the idea that there can be no more
“reasonable” jumps in this range (see [7] for a thorough discussion of this). Finally, while
Theorem 1.5 shows there are properties whose speeds oscillate infinitely often between
functions near the upper and lower bounds, there also exist properties whose speeds lies
in the penultimate range, and for which wide oscillation is not possible (for an example
of this, see [9]). This leads to the following question.

Question 1.7. Suppose L is a finite relational language. Are there jumps within the penul-
timate range among restricted classes of hereditary L-properties (for instance among
those which can be defined using finitely many forbidden configurations)?
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Both authors are grateful to the anonymous referee, who identified a gap in the proof
of Proposition 4.26 in a prior version of this paper, and whose careful reading greatly
improved the exposition.

1.1. Notation and outline

We now give an outline of the paper. In Section 2 we deal with the polynomial/ex-
ponential case, i.e. case (1) of Theorem 1.4. Specifically, we define the class of basic
hereditary properties, and show the speed of any basic H has the form appearing in case
(1) of Theorem 1.4. In Section 3 we prove counting dichotomies for a restricted class
of properties called totally bounded properties, which generalize bounded degree graph
properties. In Section 4 we define mutually algebraic properties, and prove counting di-
chotomies for mutually algebraic properties by showing they are controlled by finitely
many totally bounded properties, after an appropriate change in language. We then show
non-mutually algebraic properties fall into cases (3) or (4). In Section 6, we generalize an
example from [7] to show that for all » > 2, there are hereditary properties of r-uniform
hypergraphs whose speeds oscillate between functions near the upper and lower bounds
of the penultimate range.

We spend the rest of this subsection fixing notation and definitions. We have at-
tempted to include sufficient information here so that the reader with a only a basic
knowledge of first-order logic could read this paper.

Suppose £ > 1 is an integer, X is a set, and T = (x1,...,2¢) € X’ Then [(] =
{1,...,0}, UT = {z1,...,x¢}, and |Z| = £. We will sometimes abuse notation and write
T instead of UT when it is clear from context what is meant. Given T = (z1,...,x¢) and
I C [¢], Ty is the tuple (z; : ¢ € I). We write T C 7 to denote that T is a subtuple of 7,
i.e. T = 7g; for some I. Given a sequence of variables (z1,...,z25), we write Z =T Ay to
mean there is a partition I U J of [s] into nonempty sets such that T = Zy and 7 = Z.
In this case, we call T Ay a proper partition of Z. Set

X
Xt={(x1,...,2) € X" :2; # x; for each i # j} and <€) ={YCX:|Y|=1{(}

Notice that ()j) = {Uz : T € X*}. Given u,v € N> a permutation o : [u] — [u], and a
set X C [v]* let

J(E) = {(UU(I)ﬂ"‘7UU(u)) : (”Ul,...,’Uu) S E}

We say X is invariant under o when o(X) = X.

We say a first order language L is finite relational if it consists of finitely many relation
and constant symbols and no function symbols. Suppose L is a finite relational language.
We let |£| denote the total number of constants and relations in £. By convention, the
arity of L is 0 if £ consists of only constant symbols, and is otherwise the largest arity of
a relation in £. Given an L-formula ¢ and a tuple of variables T, we write ¢(T) to denote
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that the free variables of ¢ are all in the set UZ. Similarly, if p is a set of formulas, we
write p(T) to mean every formula in p has free variables in the set UZ. We will use script
letters for L-structures and the corresponding non-script letters for their underlying set.
So for instance if M is an L-structure, M denotes the underlying set of M.

Suppose M is an L-structure. Given a formula ¢(x1,...,x),

oM ={(m1,...,ms) € M* : M |= p(my,...,m,)}.

A formula with parameters from M is a an expression of the form ¢(Z, @) where ¢(Z,7)
is a formula and @ € M7l The set of realizations of ©(Z,a) in M is

p(M,a) = {m e MI"': M = p(m,a)}.

Given A C M, a set B C M7 is defined by ©(Z,7) over A if there is @ € A¥! such
that B = ¢o(M;a). In this case we say B is definable in M. If B is defined by a formula
without parameters, we say that B is 0-definable. If A(z1,...,xz5) is a set of formulas
(possibly with parameters from M), a realization of A in M is a tuple m € M*® such
that M | ¢(m) for all p(z1,...,zs) € A.

If ¢ is a constant of £, recall that ¢™ denotes the interpretation of ¢ in M. Similarly,
if R is a t-ary relation of £, then RM := {Z € M': M = R(Z)} is the interpretation
of R in M. If C is the set of constants of £, let CM = {cM :ce€ C}. If f: M — N
is a bijection, then f(M) is the L-structure with domain N such that ¢/(M) = f(cM)
for each ¢ € C, and for each relation R € £, RFM) = f(RM). An isomorphism from
M to N is a bijection f: M — N such that N' = f(M). An automorphism of M is an
isomorphism from M to M.

Given X C M containing CM, M[X] is the L-structure with domain X such that for
all ¢ € C, MX] = ¢M and for all relations R(zy,...,z,) € £, RMX] = RM N X5 An
L-structure N is an L-substructure of M, denoted N C, M if and only if N' = M[X]
for some X C M. If L is clear from context we will just write N' C M. The atomic
formulas of L are the formulas of the following forms.

e t1 =ty where each of ¢, ts is either a variable or a constant from L.
e R(ty,...,tn), where R(xy,...,2,) is a relation symbol of £ and each t; is either a
variable or a constant from L.

The quantifier-free L-formulas consist of all boolean combinations of atomic L-
formulas. When we write p(z1,...,x,), we require the variable symbols z1,...,z, be
distinct.

Definition 1.8. Suppose M is a (possibly infinite) £-structure, A C M, and 7 is a subse-
quence of z. For b € M7l

aftp(b/A) = {quantifier-free formulas (%, @) : M |= 0(b,@) and Ua C A}
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A complete quantifier-free type p(T) over A is anything of the form qftp(b/A), where b €
N'IZl for some L-structure N' 2O M. We let Sz(A) denote the set of complete quantifier-
free types over A in the variables 7.

In model theory, it is more common to work with the notion of tp(b/A), which denotes
the set of all formulas (including those with quantifiers) over A satisfied by b. However,
as we will be passing to finite substructures, we work exclusively with quantifier-free
types. Thus, any reference to “types” from here on out refers to quantifier-free types.

It will be convenient in Section 2 to work with the following set of formulas.

Definition 1.9.

Apeg = {p(z1,. .., 25) A /\ x; # xj: p(x1,...,xs) is an atomic L-formula}.
1<i<j<s

For example, if R(z,y) is a relation of £, then both 7(x1,22) = R(x1,22) A 21 #
z9 and ¢(xz) = R(x,z) and are in A,e,. Observe that for any L-structure M and
T(T1y. .y @s) € Apeg, ™™ C M=, Further, M is completely determined by knowing
M for each 7 € Ayeq. Specifically, if A is an L-structure satisfying ™ = M for all
T € Apeq, then M =N

A hereditary L-property is a collection of finite L-structures which is closed under
isomorphism and L-substructures. Every hereditary L-property H can be axiomatized
using a (usually incomplete) universal theory, which we denote by T3,. Specifically, for
every hereditary L-property H, there is a set of universal sentences T4, such that for
any finite L-structure M, M € H if and only if M = T3.

A hereditary L-property H is trivial if there are only finitely many non-isomorphic
M € H. Equivalently, H is trivial if there is N € N such that H,, = () for all n > N.
Since we are interested in the size of H,, for large n, we will be exclusively concerned
with non-trivial hereditary L-properties in this paper.

Definition 1.10. Given an L-structure M, the universal theory of M, Thy(M) is the set of
sentences true in M which are of the form Vay ... Vo,o(x1,...,z,), where (21, ..., z,)
is a quantifier-free L-formula.

The age of M, denoted age(M), is the class of finite models of Thy(M).

The age of M is always a hereditary L-property (but not every hereditary £-property
is the age of a single structure). We will use throughout the paper the following standard
model theoretic facts (see for instance Section 6.5 of [30])

(1) If N C M, and ¢ is a universal sentence, then M = ¢ implies N = ¢.
(2) If N |= Thy(M), then there is M = Th(M) such that N' C M’.
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Together these imply that if H = age(M), then for all n € N, H,, is the set of all
L-structures with domain [n] and which are isomorphic to a substructure of M. More
generally, if A is any hereditary property, and M |= Ty, then age(M) C H.

2. Case 1: polynomial/exponential growth

In this section we give a sufficient condition for a hereditary property to have speed
of the special form appearing in case (1) of Theorem 1.4 (we will see later it is in fact
necessary and sufficient). Throughout this section, £ is a finite relational language, and
r > 0 is the arity of £. We will use the following natural relation defined on any L-
structure.

Definition 2.1. Given an L-structure M and a,b € M, define a ~ b if and only if for
every atomic formula R(x1,...,xs) and ma,...,ms € M \ {a,b},

M (R(a,b, ms,...,ms) <> R(b,a,ms,... ,ms))
A (R(a,mg7 coo,mg) & R(b,ma,. .. 7ms)).
In model theory terms, a ~ b if and only if qftp™ (ab/(M \ {a,b})) = qftp™ (ba/(M \
{a,b})).

We observe that a ~ b holds if and only if the map from M to M fixing M \ {a, b}
and permuting a and b is an automorphism of M.

Example 2.2. Suppose M = (M, E) is a directed r-uniform hypergraph with vertex set
M and edge set £ C M~ Given a,be M an1<i<j <7, let
Nij(a,b) = {(Cl, Ce ,CT,Q) S Mr_2 : (01, ey Ci—1,Q,Chy e ,Cj,b, Cjt1y--- 7CT,Q) € E}
and

Ni(a,b) = {(c1,...,cr1) € (MN\ L))" i (1, ¢ii1,a,¢4,...,¢.) € E}.

Considering M as an £ = {R(z1,...,,)} structure in the usual way yields that for all
a,b € M, a ~ b holds if and only if for all 1 < i < j < r, Nj;(a,b) = N;;(b,a) and
Ni(a, b) = Nl(b, CL).

It is easy to check that for any L-structure M, ~ is an equivalence relation on M.

Definition 2.3. A hereditary L-property H is basic if there is k& € N such that every
M € H has at most k distinct ~-classes.

The main theorem of this section shows that the speeds of basic properties have the
form appearing in case (1) of Theorem 1.4.
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Theorem 2.4. Suppose H is a basic hereditary L-property. Then there is k € N and ratio-
nal polynomials p1(x), ..., pr(x) such that for sufficiently large n, |H,| = Zle pi(n)i™.

We will see later that something even stronger holds, namely that H is basic if and
only if its speed has the form appearing in case (1) of Theorem 1.4 (see Corollary 5.1).
For the rest of this section, 7 is a fixed non-trivial, basic hereditary L-property.

We end this introductory subsection with a historical note. The equivalence relation
of Definition 2.1 also makes an appearance in [15] (see section 2 there). In that paper,
the authors show that for a countably infinite L-structure M, several properties are
equivalent to M having finitely many ~-classes. As a direct consequence, we obtain
equivalent formulations of basic properties. Specifically, in the terminology of [15], a
hereditary L-property H is basic if and only if every countable model of Ty is finitely
partitioned, if and only if every countable model of Ty is absolutely ubiquitous. Observe
that if T is basic, then it is Ny-categorical.

2.1. Infinite models as templates

Our proof of Theorem 2.4 can be seen as a generalization of the proof of Theorem 20
in [6]. One idea used in our proof of Theorem 2.4 is to view countably infinite M = Ty
as “templates” for finite elements of H. In this subsection we fix notation to make this
idea precise, and show that the set of finite structures compatible with a fixed template
can be described using first order sentences. The main advantage of this approach is that
it allows us to leverage the compactness theorem in the next subsection.

Fix a countably infinite M | T3;. We make a series of definitions related to M. First,
by our assumption on H, M has finitely many ~-classes. Fix an enumeration of them, say
Ay, ..., Ay, satisfying 0 < |A;| < ... < |Ag]|, and call this the canonical decomposition of
M. Tt is straightforward to check that for each 7(x1,...,25) € Ayeq, there is BM C [k]*
such that

M= J{(Ai, x oo x A )N M (i, i) € DM

Let t = max{i € [k] : A; is finite} and set K = max{r,|A:|}. Given any set X, let
QM(X) denote the set of ordered partitions (Xi,..., Xz) of X satisfying |X;| = |4;| for
each i € [t], min{|X;| : t <i <k} > K. Note (Ay,..., Ax) € QM(M).

Definition 2.5. An L-structure N is compatible with M if there is (B, ..., Br) € QM(N)
such that for each 7(21,...,75) € Apeg, ™ = U{(Bi, X ... x Bi,) N N=: (i1, ...,is) €
My,

Observe that if AV is compatible with M, witnessed by (B, ..., Bx) € QM(N), then
{Bji,..., By} are the ~-classes of N. It is straightforward to see that if N is finite and
compatible with M, then N is isomorphic to a substructure of M, and is thus in H.
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For this reason we think of M as forming a “template” for the finite structures N which
are compatible with M. We now show that being compatible with M can be defined
using a first-order sentence. We leave it to the reader to check that there is a formula
o(z,y) (with quantifiers) such that for any L-structure G and a,b € G, a ~ b if and only
if G = p(a,b). We will abuse notation and write « ~ y for this formula.

Lemma 2.6. There is a sentence Opq such that for any L-structure N, N \= O if and
only if N is compatible with M.

Proof. Given 7(z1,...,25) € Apeq, let o7 pm(21, ..., 2;) be the following formula.
Vxl...sz<T(w1,...,xs)<—>(( /\ xi;éxj)/\< \/ (/\xjwz“)))
1<i#£j<s (i1,...,is)€ETM =1

Note that for any (a,...,ax) € A1 X ... X A and 7 € Aoy, M E prm(as, ... ax).
Define 04 to be the following L-sentence, where n; = |A;| for each i € [t].

321 ... sz(( /\ I ig(x ~ zl)) A ( /\ FEy(x ~ Zz))

i€ft] i€k]\[t]

/\( /\ cpﬂM(zl,...,zk))).

TEAneq

We leave it to the reader to verify that for any L-structure ', N |= 6 if and only if
N is compatible with M. O

Observe that for any N = 0,4, there is a sufficiently saturated elementary extension
M < M’ such that N is isomorphic to a substructure of M’. Thus N = Thy(M), so
N E Ty, and consequently age(N) C H.

2.2. Proof of Theorem 2.4

In this subsection we prove Theorem 2.4 by showing the speed of H is asymptotically
equal to a sum of the form Zle pi(n)i"™ for some rational polynomials pq,...,pg. Our
strategy is as follows. First, we compute the number of G € H,, compatible with a single
fixed M |= Ty (Proposition 2.10). We then use the compactness theorem to show there
are finitely many M |= T3, which serve as templates for all sufficiently large elements of
H. This will then allow us to compute the speed of H.

The first goal of the section is to prove Proposition 2.10, which shows the number of
elements of H,, which are compatible with a fixed M |= Ty, is equal to C|QM([n])| for
some constant C' depending on M. We give a brief outline of the argument here. Given
a fixed M = Ty and n € N, every element of H,, which is compatible with M can be
constructed by choosing an element of P € Q™ ([n]), then choosing the realizations of
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each T € A,¢q as prescribed by the set M. This gives an upper bound of |Q*([n])|. The
constant factor then arises from considering double counting. Dealing with the double
counting is the motivation for the next definition.

Definition 2.7. Suppose M = Ty is countably infinite and Ay, ..., Ag is its canonical
decomposition. Define Aut*(M) to be the set of permutations o : [k] — [k] with the
property that there is an automorphism f of M satisfying f(A;) = Ay for each i € [k].

We will show in Proposition 2.10 that the number of element of H,, compatible with
a fixed M is |[QM([n])|/|Aut* (M)|. We need the next two lemmas for this.

Lemma 2.8. Let k € N”°, and let o : [k] — [k] be a permutation. Assume My, Ms € H
are countably infinite, both have k distinct ~-classes, and Mo has at least as many finite
~-classes as My. If o(QM2(X)) N QM1 (X) # O for some set X, then o(QM2(Y)) C
QM(Y) for all sets Y.

Proof. Let ny < ... < ng, and m; < ... < my, be the sizes of the finite ~-classes
of M7 and Ma, respectively. Note by assumption, ¢; < t5. Set K1 = max{r,n;, }. By
assumption, there is (X1,..., X)) € QM2(X) such that (X,(),... s Xowk)) € QM1 (X).
By definition, we must have that for each i € [t1], n; = m,(;), and for all i > ¢, mg ;) >
K. Since t; < tg, this implies o([t1]) = [t1], and for all ¢ € [t1], n; = m;. Consequently,
for all j > t;, m; > K;. Clearly this implies that for any set Y, if (Y1, ...,Ys) € QM2(Y),
then (Y, (1, ..., Yox) € QM (Y), Le. o(QM2(Y)) CQMI(Y). O

The next Lemma gives us useful information about elements of Aut*(M).

Lemma 2.9. Suppose M = Ty, is countably infinite, Aq,..., Ay is its canonical decom-
position, and o : [k] — [k] is a permutation. Then o € Aut*(M) if and only if for all
(13 ) € Apeg, S and QM (M) are invariant under o.

Proof. Let ¢ = max{i € [k] : A; is finite}. First, suppose o € Aut*(M). Then there is
an automorphism f of M such that for each i € [k], f(A;) = Ay(;). This implies that for
each 7(z1,...,%s) € Apeg,

™M = U (Ail X...XAiS)ﬂM§: U (Aa(il) X...XAU(iS))ﬂMé,

which implies 0(27'/_\4) = Eﬁ’l, ie. Eﬁ’l is invariant under o. Further, since f is a bijection,
n; = n,(; for each i € [t], and o([t]) = [t]. Therefore QM (M) is invariant under o.

Suppose conversely that for all 7(z1,...,25) € Apegs QM(M) and XM are invariant
under o. Since QM(M) is invariant under o, (Ao(1)s-- -, Aoy) € QM(M). Therefore,
for each i € [t], |Ai| = |Ag(i)|, and for each i € [k] \ [t], |As| = [As@;)| = No. Thus there
is a bijection f: M — M satisfying f(A;) = A, ;) for each i € [K].
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Now fix 7(21,...,25) € Ayeq and (aq,...,as) € M= Suppose M = 7(ai,...,as).
Then (ay,...,as) € A;; x ... x A;, for some (i,...,is) € LM. By definition of f,
(f(a1),..., fas)) € Ay(iyyx. .. X Ag(;,). Since o (M) = ZM (0(iy),...,0(is)) € M, s0
by definition of SM, M = 7(f(a1), ..., f(as)). This shows that M = 7(f(a1), ..., f(as))
if and only if M | 7(a1,...,as) (the “only if” part comes from the same argument
applied to f~1). Thus f is an automorphism of M and consequently o € Aut*(M). O

Proposition 2.10. For any countably infinite M |= Ty and sufficiently large n € N,
N € Ho: N Oadd| = 19 ([n))|/| Aut™ (M))].

Proof. Fix a countably infinite M = Ty and a large n € N. Given P = (X1,..., X)) €
OM([n]), let Np be the structure with domain [n] satisfying, for each 7(z1,...,zs) €
Aneqa

P = (X, xox X)) 0 nl® s (i, i) € BM

By definition, G € H,, is compatible with M if and only if G = Np for some P €
QM ([n]). Thus if we define ®(P) = Np for each P € QM([n]), then ® is a function
@ : QM([n]) — H, satisfying Im(®) = {N € H,, : N |= O} It suffices to show that
for all G € Im(®), |®~1(G)| = |Aut*(M)|, since then

[Im(@)| = {N € Hy e N = Oadd] = [ ([n)|/| Aut™ (M))].
Fix G € Im(®). By definition, there is a P € Q™([n]) so that G = Np. We show
O HG) = {o(P): 0 € Aut*(M)}. (1)

Suppose o € Aut*(M). By Lemma 2.9, QM(M)Na(QM(M)) # 0, so Lemma 2.8 im-
plies o(QM([n])) € QM([n]). Thus o(P) € QM([n]). Then, also by Lemma 2.9, o(2M) =
M for each T € Ayeq, which implies 7V = Vo). Thus ®(0(P)) = N, py = Np =G,
so o(P) € 71(G).

On the other hand, suppose @ € ®71(G). Note G = Np = Ng implies there is a
permutation 7 : [k] — [k] such that Q = n(P). Then Q € QM([n]) N (M ([n])) and
P € QM([n]) Ny~ 1 (QM([n])) imply by Lemma 2.8 that QM (M) = n(QM(M)). Further,
Np = Ng implies that for each 7(z1,...,25) € Apeq, n(XM) = ¥M. Thus by Lemma 2.9,
n € Aut*(M). Since Aut*(M) is clearly closed under inverses and Q = n~}(P), Q €
{o(P) : 0 € Aut*(M)}. Thus we have shown (1) and |®~(G)| = |[Aut*(M)|. O

Lemma 2.11 below, proved in [6], will be used to compute |2 ([n])| for a fixed M |=
Ty
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Lemma 2.11 (Lemma 19 in [6]). Suppose £, s, c1, ..., ci are integers. If ¢y, ..., ¢ < s, then
there are rational polynomials py,...,pe such that the following holds for alln > {s+ c,
where ¢ = Y!_, ci.

R GO I DU

e _
N1,eeey ne>8,3 5 ni=n—c

Further, if £ =1, then py has degree c.

Note that for any M = Ty, |QM([n])| is by definition of the form appearing in the
left hand side of Lemma 2.11. We use this along with Proposition 2.10 to compute the
number of G € H,, compatible with a fixed M | Ty,.

Corollary 2.12. Suppose M |= Ty is countably infinite with ¢ infinite ~-classes. Then
there are rational polynomials p1, ..., pe such that for all sufficiently large n € N,

¢
KN e H, N E O} = Zpl(n)z”
i=1

Further, when £ = 1, the degree of p1(x) is equal to the number of elements of M in a
finite ~-class.

Proof. Let ¢; < ... < ¢; be the sizes of the finite ~-classes of M. Set ¢ = 25:1 c;, and
K = max{r, ¢;}. By definition, if / = k — ¢, then

n
M (n])| = ( ) 3)
’I’Ll,...7ng>K7XZ:fl e NyyeooyNpyCry. .o, Ct

By Lemma 2.11, there are rational polynomials ¢, ..., g, such that for large enough n,
QM ([n])| = Zle g;(n)i™. Further, if £ = 1, then ¢;(z) has degree ¢. Combining this
with Proposition 2.10, we obtain that for sufficiently large n,

N € Hu : N = Oad}| = [QM([])]/| Aut* (M)

L L
= (X atvi) /1 Aut (M) = - piln)i",
i=1 i=1

where each p;(x) is the rational polynomial obtained by dividing the coefficients of ¢;(x)
by the integer |Aut*(M)|. O

We now prove our final lemma, which reduces the problem of counting the number of
G € H,, compatible with finitely many templates to the problem of counting the number
compatible with a single template.
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Lemma 2.13. Suppose £ > 1 is an integer, My, ..., My = Ty are countably infinite, and
Opt, A ... NOn, is satisfiable. Then there is i € [€] such that Op, A ... AN Oa, = Op,.

Proof. By induction it suffices to do the proof for £ = 2. Suppose My, My = T3 are
countably infinite and O, A Opy, is satisfiable. Clearly this implies M; and My must
have the same number of ~-classes, say this number is & > 1. Without loss of generality,
assume M has at least as many finite ~-classes as M.

By assumption, there is an L-structure B satisfying both 0,4, and 6p4,. Since B |=
O, there is (B, ..., By) € QM2(B) so that for each 7(z1,...,75) € Apeg,

= J{(Bj, x ... x B;,)NB*: (j1,...,j.) € B}, (4)

Since B |= 64, , there is a permutation o : [k] — [k] so that (By(1), - - ., Bok)) € QM (B)
and for all 7(x1,...,%s) € Apegs

B _ U{(B,,(jl) X ... X By ) N B (ji,...,js) € SM} (5)
Observe (4) and (5) imply o(XM1) = SM2 for all 7 € A,y Further, o(QM2(B)) N
OMi(B) # (), so Lemma 2.8 implies that o(QM2(Y)) C QM1 (Y) for any set Y.

We now show 0, AOag, = O, Clearly it suffices to show O, = O, . Fix N | Oy, -
Then there is (N1, ..., Ni) € QM2(N) so that for each 7(z1,...,25) € Apeq

N = Wi, x X N ) OVNE (i) € B2 (6)

Since o(QM2(N)) C QM1 (N), we have (Ny(1), ..., Ny@y) € QM1 (N). Further, for each
(21, .., T5) € Apeg, o(SM1) = YM2 50 (6) implies that

’TN = U{(NJ(“) X ... X No’(zg)) N N2 (7;1, . 7’i8) S 27'/_\/11}
Thus by definition, N |= 0prq,. O
We now prove the main result of this subsection. The proof uses the compactness
theorem and the preceding lemma to show the speed of H is a linear combination of

finitely many functions of the form appearing in Corollary 2.12.

Theorem 2.14. There are k € N and rational polynomials p1(x),...,pr(x) such that for
sufficiently large n, |[Hy| = Zle pi(n)i™

Proof. Clearly the following set of sentences is inconsistent.

Ty U{=0pr : M = Ty is countably infinite} U {3xq ... 3z, /\ x; #Fxjin> 1}
i#j
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Thus by compactness, there are finitely many Oa4,,...,0q, such that for sufficiently
large n, any element of H,, must satisfy \/f:1 O ;. Combining this with the inclusion/ex-
clusion principle yields that for large n,

Mol = M € Hp : M= Opq, V...V O, }

k
:Z(—l)uﬂ( 3 |{MEHR:M|:9M“/\.../\HMW}\).
u=1

1<ii<...<in<k

Apply Corollary 2.12 and Lemma 2.13 to finish the proof. O

Theorem 2.14 proves Theorem 2.4, since H was an arbitrary basic non-trivial heredi-
tary L-property. We have actually shown more about basic properties, which we sum up
in Corollary 2.15 below. We leave the proof to the reader, as it follows from the proof of
Theorem 2.14 and the fact that for any M | Ty, {N € H: N E O0pm} C age(M) C H.

Corollary 2.15. Suppose H is a non-trivial basic hereditary L-property. Then there is a
trivial hereditary L-property F and finitely many countably infinite basic L-structures
My, ..., M, such that H =F UL, age(M;).

Moreover the following hold, where for each 1 <i < m, m; is the number of elements
of M; in a finite ~-class and ¢; is the number of infinite ~-classes of M,;.

(1) If £ = max{¥¢; : i € [m]} =1 then for large n, |H,| = p(n) where p(n) is a rational
polynomial of degree ¢ := max{m, : i € [m]}.

(2) If ¢ = max{¥¢; : i € [m]} > 2, then for large n, |H,| = Zlepi(n)i" where each p;(n)
is a rational polynomial.

The structural dichotomy between cases (1) and (2) in Corollary 2.15 also made an
appearance in [15]. Specifically, in the terminology of [15], case (1) in Corollary 2.15
holds if and only if every model M |= Ty is absolutely | M |-ubiquitous.

3. Totally bounded properties

In this section we prove results about a very restricted class of properties, namely
those which are totally bounded. The main result of this section is Theorem 3.9 which
tells us about the speeds of totally bounded properties. Totally bounded hereditary £-
properties behave much like hereditary graph properties with uniformly bounded degree,
and our proofs in this section largely follow the corresponding proofs for these kinds of
graphs (see Lemmas 24 and 25 in [6]). The results of this subsection will be used in
Section 4 to prove counting dichotomies for more general classes.

In this section £ is a finite relational language of arity » > 0. Throughout, C' denotes
the set of constants of L.
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Definition 3.1. An L-structure M is totally k-bounded if for every relation symbol
R(zxq,...,zs) in L and every partition [s] = I U J into nonempty sets I and J,

M ): Vf[3<kaR(CE1, L. ,.QSS).

A hereditary L-property H is totally bounded if there is an integer k such that every
M € H is totally k-bounded.

For example, if £ € N and H is a hereditary graph property, then H is totally k-
bounded if and only if all of the graphs in H have maximum degree less than k. Note
that an L-structure M is totally k-bounded if and only if for every relation R(x1,...,xs)
in £, and every partition [s] = I U J with |I| = 1, M = VZ3<*7;R(z1, ..., z5).

We begin by considering a generalization of the notion of a connected component in
a graph. Given an L-structure M and a,b € M, a path from a to b is a finite sequence,
ai,...,ax, of tuples of elements of M such that the following hold.

(1) For each 1 <7 <k —1, (Ua;) N (Ua41) # 0.
(2) a € Ua; and b € Uay.
(3) M EY1(@) A... ANg(ay) for some relations ¥ (T1), . . ., ¥r(Tk) from L.

The length of the path is k. We say a subset A C M is connected if for all a # b € A,
there is a path from a to b which is contained in A. When M is a graph, then these are
just the usual graph theoretic notions of a path and of a connected set.

Definition 3.2. Suppose M is an L-structure, and A C M. We say that A is a component
in M if it is a maximal connected set, i.e. if A is connected and for alla € A and c € M,
if there is a path from a to ¢, then ¢ € A.

We would like to point out that the notion of components and ~-classes are different.
For example, if M is an infinite graph with no edges, then M has infinitely many
components (since each vertex is in a component of size 1), but only one ~-class. On
the other hand, if M is an infinite path, then it has only one component, but infinitely
many ~-classes.

Given a hereditary £-property H and m € N>°, we say H has infinitely many compo-
nents of size m if there is M |= Ty such that M has infinitely many distinct components
of size m. We say H has infinitely many components if it there is M = T with infinitely
many components. Otherwise we say H has finitely many components. We say H has
finite components if there is K € N such that for every M |= Ty, every component of M
has size at most K. Otherwise H has infinite components. Note that if H is non-trivial
and has finite components, then it must have infinitely many components.

Our first goal is to prove two lemmas about hereditary L-properties with restric-
tions placed on their components. Specifically, Lemma 3.4 will give us lower bounds for
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any hereditary L-property with infinitely many components of a fixed finite size, and
Lemma 3.6 will characterize the speeds of hereditary L-properties with finite compo-
nents. We require the following lemma, which appears within the proof of Lemma 24 in

[6].

Lemma 3.3. Suppose k,n € N>° and k < n. Then the number of ways to partition
k|n/k| into |n/k| parts of size k is at least n™1—1/k=o(1),

Proof. Set m = k|n/k| and let f(n) be the number of ways to partition [m] into ¢ :=
|n/k] parts, each of size k. Clearly f(n) > (,™

.....

k) %. Using Stirling’s approximation and
the definitions of ¢ and m, we obtain the following.

m \1 _ m! - 2rmtaemm
koo k)0 (ROLEN 20T (LRI (2)R+ael =%

— m(=o(D) )y~ (+o(1) _ pn(i—E—o(1))

where the last two equalities are because n — m < k and n > k. Thus f(n) >
nn(l—l/k—o(l)). O

Lemma 3.4. Suppose H is a hereditary L-property and k > 2 is an integer. Assume H
has infinitely many components of size k. Then |H,| > n(t=1/k=o()n,

Proof. Suppose H has infinitely many components of size k. By definition, there is
M |= Ty with infinitely many distinct components, each of size k. Let D = C. Since
L is finite, we can find distinct components {4; : i € N}, each of which has size k and is
disjoint from D (since D is finite, and each element of D is in at most one component).

Fix n > |D| and set £ = [(n — |D|)/k]. Now choose B C Ay of size n — |D| — k¢
and set A = A; U...UA,UBUD. Observe |B| < k, |A] = n and for every bijection
f:A—[n], f(M[A]) € H,. Note that the only components of size k in f(M][A]) which
are also disjoint from f(D) are f(A;),..., f(Ap).

Fix fo : DU B — [n]. Suppose f and f’ are bijections from A to [n] extending fo
with {f(A1),- ., F(A)} # {F/(A)s..., F'(A)}. Then clearly f(MIA]) £ f/(MA]),
since these structures disagree on what are the components of size k disjoint from fo(D).
Therefore |H,| is at least the number of distinct ways to choose ¢ disjoint sets of size k
in [ng] where ng = n — |B| — |D|. By Lemma 3.3, this is at least n30(171/k70(1)). Since
|B| < k, |D| is constant, and n is large, this shows |H,| > n(1=1/k=e()n 4

We now consider the case where H has finite components. We will use the following
fact, which is a consequence of the inequality of arithmetic and geometric means.

Fact 3.5. Suppose ai,...,a; € N>0. Then ay!...as) > ((Xh_, ai)/t))".
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Lemma 3.6. Suppose H has finite components and k is the largest integer such that H

contains infinitely many components of size k. If k = 1 then H is basic. If k > 2 then
|Hn| — n(lfl/kfo(l))n.

Proof. Suppose first that & = 1. Then there is a fixed integer w such that for any
M = Ty, all but w elements of M are in a component of size 1. Fix M |= Ty3. Let
D = CM, and let X C M be the set of elements contained in a component of size
greater than 1. Observe that for alla #b € M\ (X UD), a ~ b if and only if for every
relation R(z1,...,x5) of L, M = R(a,...,a) <> R(b,...,b). Consequently, the number
of distinct ~-classes of M is at most | X| +|D| + 2/*l < w +|C|+ 21, Since this bound
does not depend on M, this shows # is basic.

Suppose now k > 2. That [H,| > n=1/k=o()n ig immediate from Lemma 3.4. We
now show that |#,| < n(*=1/k+e()n By choice of k, there is an integer w such that for
all M = Ty, all but w elements of M are contained in a component of size at most k
in M. Let ¢ = |C], and let d = Zle |#:|. By convention, let Hg consist of the empty
structure, so |Ho| = 1. Suppose now n is large. Then we can construct every G € H,, as
follows.

1. Choose D = CY, the interpretations of the constants in G. There are at most n¢ ways
to do this.

2. Choose a set A C [n] of size at most w and choose G[A]. The number of ways to do
this is at most >_1  (7)|H| < (w + Dnw2lflv”,

3. Choose a sequence of natural numbers (by,...,b,) (some of which may be 0) such
that each b; < k and Y ._, b; = |[n] \ A|. Then partition [n] \ A into parts By, ..., B,
of sizes by, ...,b,, respectively (note some of the B; may be empty). The number of
ways to do this step is at most Z{(bl,u.,bn)e[n]":bigk,zbi:n—\A\} (bl,ﬁ,bn) < k"n™.

4. Choose a sequence (Gy,...,Gy) such that for each 1 < i < n, G; € Hp,. Then make
G[B;] isomorphic to G; via the order-preserving bijection from [b;] to B;. There are at
most (d + 1) ways to do this.

5. For all relations R() in £ and @ € [n]®\ (A7 U], BF'), let G = —R(a). There
is only one way to do this given our previous choices.

This yields the following upper bound (recall ¢, w, |L|,d are all constants).
[Hn| < nf(w + D026 kg n(d + 1) = pr(e), (7)

We now consider how many times each G € H,, was counted. Fix G € H,,, and assume G
is constructed from the sets D = CY (step 1), A (step 2), and the sequences (b1, ..., by,),
(B1,...,Byn),and (G1,...,Gy) (steps 3, 4 and 5 respectively). Let A, ..., Ny enumerate
all the distinct elements of UF_,H;, and for each i € [d], let J; = {j € [n] : G; = N}}
and set a; = |J;|. Then for any permutation o : [n] — [n] satisfying o(J;) = J; for
each i € [d], G is also generated by making the same choices in steps 1 and 2, while in
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steps 3-5 choosing the sequences (by,...,b,), (Bs(1),--->Bo(n)), and (Gi,...,Gn). So G
is counted at least aq!- - - aq! times. Observe n —w <n—|A| = Z?:l |Nila; < k Z?:l a;.

Combining this inequality with Fact 3.5, we obtain

vz (S = ()= (5525) ™ 2

i=1

d

where the last inequality is because n is large and w,c, k,d are constants. Therefore

each G is counted at least n™/*~°(1) many times. Combining this with (7) yields that
|Hn| S nn(1+o(1))n—n/k+o(n) _ nn(l—%-{-o(l))' 0O

Note that by Lemma 3.6, we now understand the speed of hereditary properties with
finite components. The next two lemmas will help us understand the case of a totally
bounded property with infinite components. Specifically, they show that given a totally
bounded M, if M has an infinite component, then by deleting elements, we can find a
substructure of M with infinitely many components of size k for arbitrarily large finite k.
In the proof of Theorem 3.9 we will combine this with Lemma 3.4 to show that if a totally
bounded hereditary L-property H has infinite components, then |H,| > pn(1—o(1))

We will use the following notion of distance in an L-structure M. Given a,b € M,
define the distance from a to b in M, dy(a,b), to be 0 if a = b, to be oo if no path exists
between a and b in M, and otherwise to be the minimum length of a path from a to b
in M. Given a € A, and i € N, define

BM(a) := {e € M : dp(a,e) <i}.
Then for X C A and i € N, set BM(X) = {J,cx B (a). Observe that if M’ C M and
a,b € M', then dp(a,b) < da(a,b).

Lemma 3.7. Suppose t > 1 is an integer, and L has mazimum arity v > 2. Assume M
is an L-structure which contains an infinite connected set A. Then for any a € A, there
ist <t' <tr and a connected set A’ C B{M(a) with |A’| =t'.

Proof. Fix a € A. Since A is connected and infinite, there is a relation 11 (Z1), and @; €
A7l such that 11(a1) and a € @;. Suppose 1 <4 < t and we have chosen @y, . ..,a; such
that (Uay)U...U(Ua;) is a connected subset of A, and ¢ < |(Uay)U...U(Ug;)| < ir. Since A
is infinite and connected, there is some @; 1 € A®+1l and a relation ;41 (F;41), such that
M E Yir1(ai11), (Uaip)N((Uay)U. . .U(Ua;)) # 0, and (Ua+1)\ ((Uap)U. ..U(Ua;)) # 0.
Note i +1 < |(Uay) U ... U (Ua;j41)| < (i 4 1)r. After ¢ steps, A’ := (Uay) U... U (Uay)
will be connected with t < |A’| < tr. By construction, A’ C BM(a). O

Lemma 3.8. Suppose k,t > 1 are integers, and L has mazimum arity r > 2. Assume M
is a totally k-bounded L-structure, and M contains an infinite component. Then there
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ist < t' <tr and a substructure M’ Cz M so that M’ contains infinitely many distinct
components of size t'.

Proof. Let A be an infinite component of M. Observe that since M is totally k-bounded,
we have that for any finite X C M and any s € N, BM(X) is finite. Let D = C™. Then
BM(D) is finite, so M[A \ BM(D)] has finitely many components. One of them must
be infinite, call this Ag.

Since Ay is an infinite component, and since BM(X) is finite for all s € N and finite
X C M, there exists a set {a; : ¢ € N} C Ag such that for each ¢ # j, daq(a;, a;) > 2t+1.
By Lemma 3.7, we may choose for each i € N a connected set C; C B{(a;) with
t < |C;i| < tr. Note that by construction, for all i € N, B{M(C;)N (DUUjen iy C5) = 0.

Let M’ := M[DUJ,cy Ci]. Fix i € N. We show C; is a component of M’. Clearly
C; is connected in M’. Suppose towards a contradiction there is ¢ € C; connected to
some a € M’ \ C; by a finite path by, ...,bs in M’. Then for some 1 < u < s, we have
by NC; # 0 and b, N (M’ \ C;) # 0. But now BM (C;)N (DU Ujen g3 Cj) # 0, which is
a contradiction since BM'(C;) € BM(C;). Thus each Cj is a component of M’. By the
pigeon hole principle, there is some ¢t < ' < #r such that infinitely many C; have size t'.
This finishes the proof. O

We can now prove our counting theorem for totally bounded properties.

Theorem 3.9. Suppose H is totally bounded. Then either H is basic, |H,| > pr(t—o()n
n(l—1/k—o(1))

or for some integer k > 2, |[H,| =n .

Proof. Clearly if £ has maximum arity r < 1, then H is basic. So assume £ has maximum
arity r > 2. Suppose H has infinite components. Then there is M | Ty with an infinite
component. Lemma 3.8 implies that for all ¢, there is ¢ < ¢’ < #r such that H has

n(l—1/tr—o(1)) for all

infinitely many components of size t. By Lemma 3.4, |H,| > n
t > 1, consequently |H,| > nm(1=0(),

Assume now that H has finite components. Then there is an integer m such that for
every M = Ty, every component of M has size at most m and there is a maximal m’ < m
such that H contains infinitely many components of size m’. By Lemma 3.6, if m’ = 1

then A is basic. Otherwise m’ > 2, and Lemma 3.6 implies |H,,| = n*(1=1/m o) g

Note Theorem 3.9 shows that if # is totally bounded, then |H,| > n™(1=°(M) if and
only if ‘H has infinite components. Given ¢ > 2, a hereditary L-property H is factorial
of degree £ if |H,,| = n"(1=1/¢=°() The proof of Theorem 3.9 shows that if H is totally

bounded and factorial of degree £, then ¢ is the largest integer so that #H has infinitely
many components of size £. In fact we can show something stronger.

Corollary 3.10. Suppose H is a totally bounded hereditary L-property with finite compo-
nents and £ > 2 is an integer. The there are finitely many countably infinite L-structures
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My, ..., My, each of which is totally bounded with finite components, and a trivial
property F such that H = F UJ;~, age(M;).

Further, H is factorial of degree ¢ if and only if £ is the largest integer such that for
some i € [m], M; has infinitely many components of size L.

Proof. Since H has finite components there are integers ¢ > 1 and w > 0 such that there
exists M |= Ty with infinitely many components of size ¢, but for all M’ = Ty, there
are at most w elements of M’ in a component of size strictly larger than ¢. Since £ is
finite, this implies there are only finitely many non-isomorphic £-structures with domain
N and satisfying T3, say M1, ..., M,,. Since each M; is totally bounded and has all but
w elements in a component of size at most ¢, it is straightforward to see that Thy(M;)
is finitely axiomatizable, in fact by a single sentence, say ;. Then the following set of
sentences is inconsistent.

Ty U{; i € [m]}U{3z1... 3, /\ x; #x;n > 1}
1<i#j<n

By compactness, there is K such that for all M | Ty of size at least K, M |= 4; for
some i € [m] (thus if M is also finite, then M € age(M,)). Let F be the property
consisting of the elements in H of size at most K. Then H = FUJ;", age(M;). For all
¢ > 2, the proof of Theorem 3.9 shows that H is factorial of degree ¢ if and only if ¢ is
the largest integer such that one of the M; has infinitely many components of size £. O

4. A dividing line: mutual algebraicity

This section contains the remaining ingredients needed for Theorem 1.3. We proceed
by partitioning hereditary properties based on the dividing line of mutual algebraicity
(see Subsection 4.1 for precise definitions). The idea is that mutually algebraic properties
are “well behaved,” allowing a detailed analysis of their structure and speeds, whereas
non-mutually algebraic properties have “bad behavior” implying a relatively fast speed.
Specifically, in Subsection 4.2, we consider the case where H is mutually algebraic. We use
structural implications of this assumption to prove the remaining counting dichotomies.
Namely, either |H,| > n*(t=oM) |3, | = n?(0-1/k=2() for some integer k > 2, or H
is basic, in which case, by Section 2, the speed of H is asymptotically equal to a sum
of the form Z§:1 pi(n)i™ for finitely many rational polynomials p,...,pr. The proofs
in Section 4.2 rely on Section 3 along with the fact that a mutually algebraic property
is always controlled by finitely many totally bounded properties (see Subsection 4.2 for
details).

By contrast, in Subsection 4.3, we show that for any finite relational language L, if H
is a non-mutually algebraic hereditary L-property H, then |H,| > n"(=°(M) To prove
this, we require a model theoretic result, Theorem 4.18, which relies on results from [19].
This theorem describes some properties of large, in fact uncountable, models of T% . This
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allows us to show there is an uncountable model of T3 which has many distinct finite
substructures, yielding the desired lower bound on |H,,|.

Our strategy can be seen as a generalization of the strategy employed by Balogh,
Bollobés, and Weinreich in the graph case [6]. However, executing this strategy is signif-
icantly more complicated when dealing with relations of arity larger than 2. The crucial
new ingredient in our proof, Theorem 4.18, required ideas from stability theory.

4.1. Preliminaries

In this subsection we give the relevant background on mutually algebraic properties.
We begin with the basic definitions, first introduced in [21].

Definition 4.1. Given an L-structure M, an £ formula ¢(Z) = ¢(x1,...,2s,7) and @ €
MW o(F,a) is k-mutually algebraic in M if for every partition [s] = I U J into
nonempty sets I and J,

M EVT 3 T 0(x,. .., x,,0).

Note that an L-structure M is totally k-bounded if and only if all relations of £ are
k-mutually algebraic in M.

Definition 4.2. An L-structure M is mutually algebraic if, for every formula () there
is a finite set A = A(T;7) of L-formulas, an integer k, and parameters a € M such
that the following hold.

(1) For every o(T',y) € A, p(T’,a) is k-mutually algebraic in M (here, T C T is a
subsequence of T, possibly varying with ¢ € A); and

(2) There is a formula, 6(T;7y), which is a boolean combination of elements of A, such
that M = VZ(y(T) < 0(T;a)).

In the definition above, there is no bound on the quantifier complexity of either ¢ or
of the formulas in A. However, detecting whether or not a structure is mutually algebraic
can be seen by looking at quantifier-free formulas. In fact, as we are working in a finite
language £ without function symbols, we have the following characterization.

Lemma 4.3. An L-structure M is mutually algebraic if and only if for some integers
s,k >0, there is a finite set A = A(T,Y) of quantifier-free L-formulas with |g] = s and
parameters a € M?® such that the following hold.

(1) For every o(T',y) € A, ¢(T',a) is k-mutually algebraic in M (here too, T C T is a
subsequence of T, possibly varying with ¢ € A); and

(2) For every relation symbol R(T') of L, there is a formula dr(T',Y), which is a boolean
combination of elements of A, such that
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M EVZ(R(T') «+ 0r(T,a)).

Proof. First, assume M is mutually algebraic. By Proposition 4.1 of [20], every relation is
equivalent in M to a boolean combination of quantifier-free mutually algebraic formulas.
As there are only finitely many relations in £, we can choose a finite set A of quantifier-
free formulas, and a uniform finite k, so that each relation of £ is equivalent in M to a
boolean combination of elements of A, and such that every element of A is k-mutually
algebraic in M.

Conversely, suppose there exist s,k € N, @ € M*, and A(T;7), a set of quantifier-free
L-formulas with || = s, such that (1) and (2) hold. Let M A*(M) denote the set of all
formulas 0(Z;b) with the property that 6(Z;b) is equivalent in M to a boolean combina-
tion of mutually algebraic formulas. By assumption, every relation of £ is in M A*(M).
Clearly M A*(M) is closed under substituting constants for variables, and under taking
boolean combinations. It is closed under existential quantification by Proposition 2.7 of
[21]. It follows that M is mutually algebraic. O

Definition 4.4. We say a (possibly incomplete) theory T is mutually algebraic if every
M = T is mutually algebraic. A hereditary L-property H is mutually algebraic if Ty is
mutually algebraic.

Observe that every totally bounded L-structure is automatically mutually algebraic
(just take A in Lemma 4.3 to be the set of all atomic formulas). We will see that relative
to an appropriate change of language, the converse holds as well. In what follows, a
totally bounded frame, defined precisely below, is an L-formula encoding conditions (1)
and (2) of Lemma 4.3. Given a tuple of variables T and x € UT, let & denote the tuple
obtained from T by deleting x.

Definition 4.5. A totally bounded frame is a universal L-formula 6(y) such that the fol-
lowing holds. There exists k € N, a finite set A(Z,y) of quantifier-free £-formulas, and
for each relation R(z') € L, a corresponding formula (Z'; %), which is a boolean com-
bination of elements from A(Z;7y), so that

0(y) - /\ /\ Vaz3<kio(x, 2,7) </\ VZ'[R(T') <> dr(T, y)])
pEA TEUT ReL

The following Lemma amounts to simply unpacking the definitions, with (2) = (3)
being an instance of compactness.

Lemma 4.6. The following are equivalent for a (possibly incomplete) L-theory T':

(1) T is mutually algebraic;
(2) For every M |=T, there is a totally bounded frame 0(y) so that M = Fyb(y); and
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(8) There is a finite set {0;(y;) : 1 < j < m} of totally bounded frames such that
T+ V;nzl Hyjej(yj)'

4.2. Counting dichotomies for mutually algebraic properties

In this subsection we analyze the possible speeds of mutually algebraic hereditary
L-properties. The main idea is that, via totally bounded frames 6(7), any mutually alge-
braic hereditary L-property H is essentially controlled by finitely many totally bounded
properties Hj, although each of these totally bounded properties will have its own lan-
guage Ly. The new language Ly consists of the constants of £, s new constant symbols,
where s = [g|, and a new relation symbol R, (Z') for each ¢(7',7) € A(Z, 7).

Definition 4.7. Suppose H is a hereditary L-property and s € N. Let L(s) := L U
{c1,...,¢s}, where each ¢; is a new constant symbol not in £. For any N' € H and any
a € N*, let Nz denote the natural expansion of A to an L(s)-structure obtained by
interpreting each ¢; as a;. Let H(s) := {Nz: N € H,a € N*}.

When L(s) is clear from context, we will write ¢ to denote (cq,...,cs), the tuple of
new constant symbols. Clearly, if # is a hereditary £-property, then #(s) is a hereditary
L(s)-property. Moreover, for any integer n,

[Hn| < [H(s)n| < n°[Honl.
Definition 4.8. Given a totally bounded frame 6(7) with [g| = s, let
Ho :={N € H(s) : N E0(c)}.

Observe that for any totally bounded frame 6(y) with |7| = s, since 0(7) is a universal
formula, and since H(s) is a hereditary £(s)-property, we have that Hy is also a hereditary
L(s)-property.

Lemma 4.9. Suppose H is a hereditary L-property H and 6(g) is a totally bounded frame
with [gy| = s. For everyn € N, if n(0) := {M € H, : M = Fg0([®)}|, then n(d) <
|(Ho)n| < n®-n(0).

Proof. The inequalities are obvious, since for any M € H,, with M = 350(7), there is
at least one, and at most n® many @ € M*, such that Mg = 6(a). O

Definition 4.10. Suppose H is a hereditary L-property and 6(%) is a totally bounded
frame with data k, s, A(T, ), and {dr(T',7) : R(T') € L} as in Definition 4.5.

o Let Ax(T) :={p(T',0) : p(T',7) € A}
o Let Ly := {constants of L(s)} U{R,(T') : p(T',¢) € Ag}.
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o If ¢ is a boolean combination of elements of Ag, let ¥* denote the Ly-formula ob-
tained as follows: for each ¢(T';¢) € Ag, replace any instance of ¢(T';¢) in 1 with
R, (T').

o Define a function f : Hg — {Le-structures} as follows. Given M € Hy, let f(M) be
the Lg-structure with underlying set M, where ¢/M) = ¢M for all constants ¢ € Ly,
and where R := (b e MIT'1 . M k= o(b,2)}.

o Let Hj :={f(M): M € Hy}.

We claim that for any M € Hy, any relation R € £, and any relation R, € Ly, RM
is 0-definable in f(M) and R;’;(M) is O-definable in M. Indeed, given a relation R € L,
RM = §r(M;2) = 05(f(M);2), and given a relation R, of L, RSJ;(M) = p(M;3e).
An easy induction on formulas then implies that for any ¢ € N; M and f(M) have
exactly the same O-definable subsets of M* (this also uses the facts that £(s) and L
have the same set of constants, and that M and f(M) have the same realizations of said
constants). These observations make the following lemma straightforward.

Lemma 4.11. Let ‘H be a hereditary L-property and let 0(g) be a totally bounded frame.
Then the following hold.

(1) The function f : He — H} is bijection.

(2) For any integer n, f maps (Hg)n onto (H)n, so [(Ho)n| = |(H)nl-

(3) For every M € Hg, M and f(M) have the same number of ~-classes (in the sense
of Definition 2.1).

(4) Hj is a totally bounded, hereditary Lo-property.

Proof. Proof of (1): That f maps Hg onto Hj is immediate by the definition of Hj. To
see that f is injective, suppose M, N € Hy and f(M) = f(N). Then clearly, M = N,
and M = /M) = fN) = N for each constant symbol ¢ € L(s). Fix any relation
symbol R(Z') € L(s). Since the relation symbols in £(s) are the same as in £, R(Z') € L.

Since M, N = 6(¢), we have
M EVT (R(E@') + 0r(T';¢)) and N VT (R(T') < dr(T,0)).

Thus, RM = {b € MT'1: M |= 6r(b;8)} = {b € MT1: f(M) E 65()}, and dually,
RN ={be NI : N = 6r(0;0)} = {be NTI: f(N) |= 65(b)}. Since f(M) = fF(N),
we have 6%5(f(M);¢) = 0%(f(N);€). Thus, RM = RN so the £(s)-structures M and N/
are equal.

Proof of (2): This follows immediately from (1), since for all M € Hgy, M has under-
lying set [n] if and only if f(M) has underlying set [n].

Proof of (3): This follows from the fact that for every power £, the subsets of M* defined
by quantifier-free £(s)-formulas in M are the same as those defined by quantifier-free
Ly-formulas in f(M) (see the remarks following Definition 4.10).
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Proof of (4): It is clear that #} is closed under isomorphism, since Hy is. To see that
Hj is hereditary, choose any M* € Hj and let N* C M* be an Ly-substructure of M*.
Let N denote the underlying set of N*. We want to show that there is some N € Hy
with f(N) = N*. By definition of Hj, there is some M € Hy so that M* = f(M).
Let M be the L£(s)-substructure of ./\/l with underlying set N (this is possible, since for
each constant ¢ of £(s), M = /M) = N7 € N). As Hy is hereditary by Lemma 4.9,
N € Hg, so f(N) is defined. We claim that N* = f(N). Clearly, N* and N have the same
underlying set, N. For any constant symbol ¢ of Lg, ¢/NV) = N = M = /(M) = N7
with the first and third equalities arising by the definition of f and the second and fourth
by the definition of being a substructure. Now choose any relation symbol R, (Z') € Lg.
Say 7’| = £. Then

N* _ pf(M) L _ M L _ N _ pf(N)
R, =R NN =" NN =¢" =R,

where the first equality is from A”* being an Lg-substructure of f(M) and the underlying
sets of N', '* both being N, the second and fourth equalities are from the definition of
f, and the third equality is from A being an £(s)-substructure of M. Thus, N* = f(N),
so N* € Hj. Therefore, we have shown that H} is a hereditary Ly-property.

That Hj is totally bounded follows from the fact that for every M € Hy, every
©(T',¢) € Ag is k-mutually algebraic in M (since 0(7) is a totally bounded frame),
hence every R, € Ly is k-mutually algebraic in f(M). O

We combine Lemmas 4.6 and 4.11 to get a decomposition of any mutually algebraic
property H.

Proposition 4.12. Suppose H is a mutually algebraic hereditary L-property. Then there
are positive integers s and m, such that for each j € [m], there is a finite relational
language Lj, a totally bounded hereditary L;-property 7—~[j, and a map T; : 7-[j - H
satisfying:

(1) For every M € ’;Zj, the following hold.

(a) M and w;(M) have the same universe M; and
(b) the number of ~-classes of wj(M) is at most the number of ~-classes of M.

(2) For every integer n, the restriction of m; to (7—~l])n s at most n®-to-one.

(8) H=Uj_y{mj(M) : M € Hy}.

[m]} of totally bounded frames such that for every M € H, there is some j

Proof. As T3 is mutually algebraic, Lemma 4.6 implies there exists a set {0;(7y;) :
€ [m
that M = 37,;0;(7;). Set s := max{|y,| : j € [m]}. For each j € [m], let L; :=

]
Lo,
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ﬁj = ng and let f; : Ho, — ﬁj be as in Definition 4.10 applied to 6; (yj). Note that
by Lemma 4.11, each ﬁj is a totally bounded hereditary L£;-property.

- For each j € [m], set H, = ~{./\/l € H: M F,;0;(y;)} and define a map ; :
Hj — H; as follows: given M € H;, let 7;(M) be the L-reduct of the L(|y,|)-structure,
f;l(/\/l) (note f;l(M) is well defined since f; is injective).

Then (1a) holds by definition of 7;, and (1b) holds by Lemma 4.11(3) and the fact
that, in general, the number of ~-classes of a structure is non-increasing when taking
reducts. Property (2) follows from Lemmas 4.9 and 4.11(2). For (3), it suffices to show
that for each j € [m], H; = {m;(M) : M € H,;} (since H = Uj=1 H;)- To this end, fix
J € [m]. We show first that H; C {m;(M): M € 7-[J} Suppose N € H;. By definition of
H,, there exists @ € N1%! such that N = 6;(@). Note Nz € Ho,. Let N* = f;(Ny) € Hj.
Since f; is a bijection (Lemma 4.11), fj_l(/\f*) = fj_l(fj(./\/'a)) = Ng. Clearly the L-
reduct of Ny is A, and thus 7;(N*) = N. This shows N € {m;(M): M € H,}.

We now show H; D {m;(M) : M € #H;}. Suppose N' € {m;(M) : M € H;}. Let
N* € H; be such that N = m;(N*), i.e., N is the L-reduct of N/ := fj_l(./\/'*). By
definition of f;, N' € Hy,. By definition of He,, the L-reduct of N’ must be in #;, so
NeH;. O

We now combine the results of Sections 2 and 3 to prove counting dichotomies for
the speed of a mutually algebraic property. We do this by characterizing their speeds in
terms of the speeds of totally bounded properties.

Theorem 4.13. Suppose H is mutually algebraic. Then one of the following holds: H is

basic, |H,| = n=1E=20n for some € > 2, or [H,| > n=°W)"  More specifically, let

{7-Lj : J € [m]} be as in Proposition J.12. Then one of the following holds:

(a) For some j € [m], H; has infinite components. In this case, [H,| > nm(=o0).

(b) For every j € [m], ’;Zj has finite components, and £ > 2 is mazximal such that for
some j € [m|, Hj has infinitely many components of size £. In this case, |H,| =
nn(lfl/lfo(l))'

(¢) For every j € [m], H; is basic. In this case, H is basic.

Proof. Fix m,s € N, and {[,j,ﬁj,ﬂ'j : j € [m]} be as in Proposition 4.12. For each
j € [m], let 7rj(7-[j) = {miM) : M € 7—73} We split into cases depending on the
complexity of the totally bounded properties 7—~[j.

Suppose first that for each j € [m], ﬁj is basic. Then there is K € N such that for each
j € [m], every element of 7-lj has at most K distinct ~-classes. By Proposition 4.12(1b),
every m;(M) has at most K distinct ~-classes. Since H = U;n:1 7rj(7-£j), this implies H
is basic as well.

Suppose now that for some j € [m], ﬁj has infinite components. Then by Theo-
rem 3.9, |(ﬁj)n| > nn(1=0(1) 50 by Proposition 4.12(2) |(7r]((3q])n)| >n=s.pr—o) =
n(1=eM) Thus, [H,| > n"1=°M) since m;(H;) C H.
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We are left with the case where J := {j € [m] : H; is not basic} # () and for each
j € [m], H; has finite components. For each j € J, let w(j) > 2 be the maximum
integer such that some element of ﬁj has infinitely many components of size w(j). By
Theorem 3.9, |(H;),| = n(1=1/w@=oW) Thus if £ = max{w(j) : j € [m]}, these
observations and Proposition 4.12 imply

n="s. nn(lfl/éfo(l)) < |Hn| < |J|nn(171/€+o(1))’
which implies |H,,| = n*(1=1/¢+e(D) since |.J| < m and s are constants. O

Note that Theorem 4.13 together with Corollary 3.10 give us a strong structural un-
derstanding of the properties in the factorial range, although we are required to consider
properties in other languages. In forthcoming work, the authors consider characteriza-
tions of these properties in terms of the original language, in analogy to the structural
characterizations of the factorial range for graph properties from [6]. This work also
shows the gap between the factorial and penultimate range is directly related to cellu-
larity, a notion with several interesting model theoretic formulations (see for instance
[22,23,28]).

4.3. A lower bound for non-mutually algebraic hereditary classes

The goal of this subsection is to prove Proposition 4.26, which shows that if a heredi-
tary L-property H is not mutually algebraic, then |#,| > n(!=°()" In order to do this,
we need to introduce concepts and quote results from [19] that describe the structure
of large models of T%. Throughout this subsection, assume that £ is a finite relational
language where every atomic formula has free variables among z, with |Z| = r.

In a prior version [18] of this article, there was a gap in the proof of Proposition 4.26
(Proposition 4.10 there). Remedying this required additional model theoretic results,
namely Lemma 4.21 and Proposition 4.25. The interested reader without model theoretic
training may wish to also refer to [18], since the statements of the results there are still
correct and use less model theoretic terminology.

Note that whenever A C B C M, there is a natural projection from Sz(B) onto Sz(A)
given by restriction, i.e. given p € Sz(B), let

ply:={0(Z,a) ep:Ua C A}.

An easy induction on the complexity of quantifier-free formulas shows that for any
two distinct p, ¢ € Sz(A), there is some atomic £-formula (%, 7) and some @ € AlYl such
that «(Z,@) is in the symmetric difference pAg. Tterating this gives a bound on the size
of a separating family for finitely many types.
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Lemma 4.14. Suppose M is any L-structure. For any subset A C M and any T C Z, if
{p:(T) : i € [m]} C Sz(A) are distinct, then there is B C A, such that |B] < mr and
such that {p;| g : i € [m]} are pairwise distinct.

Proof. Given such a set of types, {p;(Z) : ¢ € [m]}, we claim by induction on 0 < j <m
that there is B; C A of size at most jr such that

{pilp, i€ m]} =,

which suffices to prove the Lemma. For j = 0, the claim is trivially by taking By = 0.
So assume 0 < j < m, and suppose by induction that B; is chosen so that |B;| < jr and
{pilp, 1i € [m]}] > j. Let £:= {pilp, :i € [m]}|. If £ > j + 1, then taking Bj,1 = B;
suffices. However, if ¢ = j, then as j < m, there are distinct 4,7’ € [m] such that
i FBJ_ = pi [Bj. As p; # pi, by the observation above, there is an atomic a(Z, @) € p;Ap;r.
Setting B,y := B; U{Ua} then suffices (note |Bji1| < |Bj|+r < (j+1)r). O

Definition 4.15. Suppose M is an L-structure. An infinite array in M is any set of the
form {d; : i € N} C M* for some k > 1, such that (Ud;) N (Ud;) = 0 for distinct i,j € N.

Given A C M and p € Sz(A), we say p supports an infinite array in M there is an
infinite array of realizations of p in M.

Definition 4.16. An L-structure U is Ny -saturated® if, for every countable set A C U, for
every T C %, and for every p(%) € Sz(A), U realizes p, i.e., there is b € U"l such that
U = 0(b,a) for every 0(Z,a) € p.

Suppose U is Nj-saturated. A type p € Sz(U) is called a global type. Such types p
are typically not realized in U, but for any countable set A C U, the restriction p|A is
realized in . In [19], the authors identify three important classes of global types.

Definition 4.17. Suppose U is Ri-saturated and T C Z.

e Supp;(U) = {p € Sz(U) : for every countable A C U, thereisb € (U \
A)I7! realizing p|A}.

e QMA_(U) = {p € Suppz(U) : p contains a mutually algebraic formula of the form
0(z,a)}.

e A type p € Suppz(Uf) is array isolated if there is some 0(Z,a) € p such that p is the
unique element of Supp4(U) containing 0(T;a).

3 This notion usually refers to realizations of types involving quantifiers, but here we consider only
quantifier-free types.
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Global types p € Supp(U) are called supportive types. This is because an easy com-
pactness argument shows that for a global type p, p € Supp,(!/) if and only if for every
countable A C U, p|A supports an infinite array in U.

In Theorem 6.1 of [19], the authors give several equivalents of mutual algebraicity in
a finite, relational language.

Theorem 4.18 (Theorem 6.1 of [19]). Suppose U is an Wi-saturated L-structure. Then
the following are equivalent.

(1) Th(U) is mutually algebraic;

(2) For all T C Z, Suppz(U) s finite;

(8) For allT Cz, QMA_(U) is finite;

(4) For all T C Z, every p € Suppz(U) is array isolated.

Moreover, the proof of Theorem 4.18 in [19] shows the equivalence of (2), (3), and
(4) holds locally for each tuple T C Z. A crucial idea in this section will be, given a
non-mutually algebraic hereditary property H, to consider the shortest T C Z for which
Clause (3) of Theorem 4.18 fails in some Rj-saturated U |= Ty (e.g. this will occur in
the proof of Proposition 4.24). In a related vein, our next lemma, Lemma 4.20, considers
what one can deduce about types in the variables Z, when every proper subtuple 7’ C T
satisfies Clause (3) above. To state Lemma 4.20, we first require a definition and some
further results from [19].

Definition 4.19. Suppose U is an Rj-saturated L-structure and p(Z) € Suppz(U) and
q(y) € Suppy(U) are array isolated, global types in disjoint variables 7,5 C Z. The free
product p®q is defined to be the set of formulas 6(Z,; @), such that for some countable
M < U with Ua C M, some ¢ € Ul! realizing p[,;, and some d € U!Y! realizing q[ e,
it holds that U = 0(c, d;a).

In [19], the authors showed that in the notation of Definition 4.19, p&q € Supp;(U),
and moreover, 0(T,7,a) € p®q if and only if U |= 0(¢,d, @) for every countable M < U
with Ua C M, for every ¢ € Ul realizing pl,,, and for every dd € U'Yl realizing q[ .

We are now ready to state Lemma 4.20. Its proof arises from simply relativizing
the proof of Proposition 5.9 of [19] to a subsequences T C Z with only finitely many
supportive types.

Lemma 4.20 (c¢f. Proposition 5.9 of [19]). Let U be an W -saturated L-structure. Suppose
T C Z is a non-empty subtuple, and QMAL, (U) is finite for allT C T. Then the following
hold.

(1) For all T C T, every p € Suppy (U) is a free product of at most r types from
U{QMA,, () : 7" CZ'}. In particular Suppz (U) is finite.
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(2) Every p € Suppz(U) \ QMA(U) is a free product of at most r types from
UH{QMA,, () : T C T}. Thus, Suppz(U) \ QMA(U) is finite as well.

Proof. For (1), this is a direct consequence of the proof of Proposition 5.9 of [19].

We now show (2). Choose p € Supp4(U)\QMA_(U), and let M < U be any countable
submodel. Choose a realization ¢ of p[,, in U, and fix a maximal mutually algebraic
decomposition ¢ =¢; A--- ACs of € (i.e. for each 1 < i < s, ¢; satisfies a quantifier-free
mutually algebraic formula with parameters from M, and s is as small as possible). Since
gftp(¢/M) is not mutually algebraic, s > 1. For each j, let q; be the global type extending
qftp(¢;/M). Then run the argument from the proof of Proposition 5.9 to conclude that
ifp#q1®---®qs, then qftp(¢/M) would contain a mutually algebraic formula 6(Z, m),
contradicting p ¢ QMA(U). O

Observe that when |Z| = 1, Lemma 4.20 (1) is vacuous, and (2) is immediate (since
in that case, Suppz(U) = QMA_(U)). Further, we point out that if Th(U) is mutually
algebraic, then Lemma 4.20 follows immediately from Proposition 5.9 and Theorem 6.1
of [19].

With the technical machinery above, our next step is to describe an indiscernible
grid (Definition 4.22 below) and show that if # is any non-mutually algebraic hered-
itary property, then there is an indiscernible grid N' = Ty (Proposition 4.24 below).
From this N, we will extract a family of finite substructures that we will use to prove
Proposition 4.26.

Definition 4.21. Suppose M is an infinite L-structure, T C Z is a non-empty subtuple,
and P = {p;(T) : i € N} is a set of distinct types from Sz(M). A grid for M and P is
an L-structure N whose universe has the form N = M U |J{Ub;, : i € N, ¢ € Q}, such
that the following holds.

(1) For each i € N and ¢ € Q, b;, € (N\ M)*, and |Ub; 4| = s, where s = |7|.
(2) For each i € N, {b;,: q € Q} is a set of realizations of p;(7).
(3) Each b € N\ M is contained in exactly one b; ,.

Suppose N is a grid for M and P, in the notation of Definition 4.21. Observe that
(1) implies that for each i € N, and every x # z’ from the tuple Z, we have that the
formula x # 2’ is in p;(T). Given o € Aut(Q, <), note that o induces a permutation o*

on N as follows: o*(m) = m for all m € M and 0*(bi q) = b; o(q)-

Definition 4.22. Suppose N is a grid for M and P, in the notation of Definition 4.21.

(1) We say N is an indiscernible grid for M and P if for every o € Aut(Q, <), o* is an
L-automorphism of N.
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(2) Assuming A is an indiscernible grid for M and P, a hybrid tuple is an s-tuple
d € (N\ M) such that d is not a permutation of any b; ,. A hybrid type is an
element of Sz(M) of the form qftp(d/M), for some hybrid tuple d.

Remark 4.23. Note that if s = 1, then there are no hybrids. This is what makes the s = 1
case much easier than the general case in what follows.

Proposition 4.24. Suppose T is any universal L-theory that is not mutually algebraic.
Then there are 1 < s < r, an integer e, a countable M = T, and an infinite set
P = {p;(T) : i € N} C Sz(M) with |T| = s, such that each p;(T) contains a mutually
algebraic formula 0;(T). Moreover:

(1) There exists an indiscernible grid N for M and P such that N = T; and
(2) {aftp(d/M) :d € N* a hybrid tuple}| < e.

Proof. As T is not mutually algebraic, use Theorem 4.18(3) of [19] to choose 1 < s < r
least such that there exists T C Z with |[Z| = s, and an R;-saturated U = T with infinitely
many distinct global types S = {p;(Z) € QMA_(U) : i € N}. Fix such a U, T, and
S = {p:() € QMA(U) : i € N}. By the minimality of s, for any proper subsequence
7' C 7, there are only finitely many q(z') € QMA_, (U). Thus, by eliminating at most
finitely many types from S, we may assume that for each i € N, (z # 2’) € p;(T) for
all distinct x, 2’ € Z. Since each p;(T) € Suppz(U), (x # m) € p; for all x € T and
m € U. Let M <X U be any countable, elementary substructure such that the restrictions
p:(T) := p; [, are pairwise distinct and set P := {p;(T) : 1 € N}.

To prove (1) holds, choose, for each i € N, an infinite array {d;¢ : £ € N} of
realizations of p;(T) in U. By the pigeon-hole principle, we may assume, possibly af-
ter reindexing, that d;, and dy  are disjoint unless (i,¢) = (i/,¢'). Let M’ < U be
a countable elementary substructure containing M U J{d;, : i,/ € N}. Visibly, M’
contains a grid for M and P, but it might not be indiscernible. We obtain an in-
discernible grid by compactness: Let £* be L, adjoined with new constant symbols
{&m - me M} U{Gq:1€ N,qg € Q} (each ¢ 4 is an s-tuple of new constant symbols)
and let T* be the L*-theory asserting:

o The elementary diagram of M;

o For each i € N, each ¢; 4 realizes p;(T),

o For distinct (4,¢), (i',¢") € N x Q, ; 4 and ¢y o are disjoint;

o For each 0 € Aut(Q, <), o* is an L-automorphism of M U J{UG;,:7 € N,q € Q}.

Arguing by induction on the number of ¢’s mentioned, using Ramsey’s theorem one
shows that every finite subset of T* can be realized in an L*-expansion of M’. By
compactness, T* has a model M*. For each i € N,q € Q, let BW be the realization of
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iy in M*. Set N =M U J{Ubi,:i€N,q € Q}, and N* = M*[N]. Finally, let N’ be
the L-reduct of N'*.

To prove (2), let U = M be an R;-saturated elementary extension. By the minimality
of s, for every proper T C T, there are only finitely many ¢(T') € Sz (M) that contain
a mutually algebraic formula and support an infinite array. It follows that QMA_, (i) is
finite for each proper T C T. Hence, Q := [ J{QMA,, (i) : T C T} is finite as well.

We claim that for every hybrid tuple d € (N \ M)?*, qftp(d/M) is the restriction to
M of a free product of types from Q. To see this, fix d € (N \ M)* that is not contained
in any b; ;. Clearly, qftp(d/M) supports an infinite array (in fact, NV contains an infinite
array of realizations of this type), but the indiscernibility demonstrates that qftp(d/M)
cannot, contain a mutually algebraic formula. Thus, the global extension p of qftp(d/M)
is in Suppz(U) \ QMA_(U). So, by Lemma 4.20(2), p is the free product of at most r
global types from Q. Since Q is finite, this shows (2). O

Lemma 4.25. Suppose H is a hereditary L-property that is not mutually algebraic. Then
there are positive integers s < r and e such that for every positive integer L, there is
N1 E Ty and quantifier-free formulas {:(T,a) : i € [L]} such that N can be partitioned
as

N, =AU {Ugiﬂ NS [L],q S Q},
so that the following hold.

(1) For eachi € [L] and q € Q, b; 4 € N§ and | Ub; 4| = |7| = s.

(2) |AL| < (L + e)r +w, where w is the number of constants from L.
(8) For each constant ¢ of L, Nt € Ap.

(4) Va=Ag.

(5) For alli € [L], the following hold.

(a) For all g € Q, N1, = ¢i(bi;a); and
(b) If d € (N1)* and N1, = ¢;i(d; @), then d is a permutation of some b; ;.

Proof. As T3 is not mutually algebraic, Proposition 4.24 implies there exist positive
integers s < r and e, a countable M |= Ty, an infinite set P = {p;(T) : : € N} C Sz(M),
where |Z| = s, and an indiscernible grid A/ for M and P, with universe

N=Mu| J{Ubiy:i€N,qeQ},

such that there are at most e many hybrid types realized in N over M. Let {g; : j € [e]}
be the hybrid types over M realized in N.

Let A7 be a minimal subset of M containing ¢V for every constant ¢, and such that
the restrictions of the types {p;(Z) : i < L + e} to Ay, are pairwise distinct. In light of
Lemma 4.14, such an Ay, can be found of cardinality at most (L + e)r + w.
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Let A7, be the substructure of A with universe N;, = Ay, U {b;, : i € [L],q € Q}.
As Ay is finite, every complete quantifier-free type over Ay, can be described by a single
formula. For each i € [L], let ¢;(T;@) be the formula describing the restriction p;[ 4, .
Since each b; , realizes p;, we have N7, = ¢;(b; 4;@) for every ¢ € Q. By construction, we
now have properties (1)-(3) as well as (4a).

We just need to verify (4b). To this end, fix d € (Nz)* such that Ny = ¢;(d;a)
for some ¢ € [L]. Since p; implies  # m for every x € T and m € M, and since
¢i(T; @) describes p;| 4, , we must have d € (N, \ Az)®. By definition of Ny and Ay,
this implies d € (N \ M)*. By our choice of Ay, for each j € [e], p;jl4, # qjla,, SO
aftp(d/M) ¢ {q; : j € le]}. Thus d € (N \ M)* is not a hybrid tuple, and consequently
must be a permutation of 52-/7(1/ for some i’ € N and ¢’ € Q. Since d € N7, we must have
i’ € [L]. Finally, because i’ € [L], d FEpila,, and pi[4, # p;jla, forall j e [L]\ {i}, we
must have that i =4'. O

Proposition 4.26. For any hereditary L-property H, if H is not mutually algebraic, then
|H,| > nen,

Proof. Assume H is a hereditary L-property which is not mutually algebraic. Let ¢
denote the number of constants of £. Apply Lemma 4.25 to obtain 1 < s < r and e. We
show that for every integer t > 1, [H,,| > n(!~ % 20" This implies [H,| > n(d—oW)n,

Fix an integer ¢ > 1 and choose n > tre. We will construct a special G € H,,, and
then show there are many distinct elements of H,,, each isomorphic to G.

Set L = [2=2=<|. Let N, A, {i(m;a) : i € [L]} and {biy : i € [L],q¢ € Q} be
as in the conclusion of Lemma 4.25. Let B = (J{Ub;; : i € [L],j € [t|}. Note that
|B| = Lst, so |Ap UB| < Lst + (L + e)r + ¢ < n. Choose X C N, \ (AL U B) so that
|AL| +|Bl + |X]| =n.

Define G := N1 [AL U BU X], and observe that G € H,,. For each i € [L], let 6;(T) be
the formula ¢; (%, @) A\ ez se xua, T # a- Note each 0;(T) has parameters from Ap U X,
and G = /\3-:1 0;(bi ;) Further, for all d € G°, if G |= 0;(d), then there is j € [t] such
that d is a permutation of b; ;.

Let 6(T) = \/f:1 0;(%). Clearly G = /\Z,L:1 /\;:1 0(bi;). Further, for all d € G*, if
G = 0(d), then d is the permutation of b; ; for some ¢ € [L] and j € [t]. We now give a
procedure for constructing many distinct L-structures, each isomorphic to G.

(1) Choose an equipartition W = {W7,..., W} of B into Lt pieces, each of size s. For
each i € [Lt], let w; denote the tuple enumerating W; in increasing order.

(2) Choose an equipartition @ = {Q1,...,Qr} of W into L pieces, each of size t. For
each 1 <i< L, let 1 <of <...<aj <Lt besuch that Q; = {Wyi,..., Wy}

(3) Let fyy. o : [n] = [n] be the function which fixes Ay U X pointwise, and such that,
foreach1 <i< Land1<j<t, fW7Q(57;j) =W,i.

(4) Let Gy o be the L-structure with universe [n] so that fiy.o : G — Gw, o is an
L-isomorphism.
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We now show that if W and W' are distinct choices from step (1), then for any
respective choices of @ and Q' in step (2), we have Ow,o # Gwr,o. Indeed, let W # w’
be distinct equipartitions of B. Then there is some W € W with W ¢ W'. Let w
enumerate W in increasing order. Then by construction, there are i € [L], j € [¢],
such that w = fyy,o(bij), and thus Gy o | 0(w). However, W ¢ W' implies that no
permutation of W can be equal to fyy o/ (birjr), for any i’ € [L], j' € [t]. Consequently,
QW/,Q/ ): —\o(m) Thus QW,Q ;é gw/7Q/.

We now show that for any fixed choice of W = {W71, ..., W;} from step (1), if Q # O’
are distinct choices in step (2), then we have Gy o # Gw, o/. Indeed, suppose Q =
{Q1,...,Q:} and @ = {Q),...,Q;} are distinct equipartitions of . Then there is
some 1 < 4 # ¢/ <t for which @; N Q} # 0, say u € Q; N Q). Let w, enumerate W,
in increasing order. By construction, W, = fyy o(bij) = f.o'(birj) for some j,j’ € [t].
Thus Gw,o = ¢i(Wy; @) while Gy o = i (Wy;a). Since i # i, @;(T;a) b -y (T;a), so
we must have Gy o # Gw . o

Thus |H,| is at least the number of equipartitions of [|B|] = [Lst] into Lt pieces,
times the number of equipartitions of [Lt] into L pieces. By Lemma 3.3 we obtain the
following, where n’ = Lst (note n’ > s,r,e,c).

\’H | > ( ) (1-1/s—0(1)) ( /s)(l 1/t)(n'/s) _ (n/)(l—l/ts—o(l))n’ _ n(l—l/ts—o(l))n/

_ n(1—1/ts—o(1))tgﬁfr

—n(ts+r 13+7‘ —o(1))n

_ (= E—o())n

We have shown that for all ¢ > 1, [H,| > n('~#r o)

p—oWn_

Y

. Consequently, |H,| >

5. Proof of Theorem 1.3 and minimal properties in range 1

In this section we bring together what we have shown to prove Theorem 1.3. We then
characterize the minimal properties of each speed in range 1.

Proof of Theorem 1.3. If H is basic, then by Theorem 2.4 there are finitely many rational
polynomials p1, ..., px such that for all sufficiently large n, |H,| = Zle pi(x)i™, so case
(1) holds. So assume H is not basic. Observe that by definition, this implies r > 2.

If # is also not mutually algebraic, then Theorem 4.26 implies n™*=°(1)) < |, | and
case (3) holds. We are left with the case when # is mutually algebraic and not basic. By
Theorem 4.13, either |H,| > n™(1=°(M) (so case (3) holds), or there is an integer k > 2
such that |H,| = n"(*=1/k=() (case (2) holds). O

An immediate corollary of the proof of Theorem 1.3 is the converse of Theorem 2.4.
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Corollary 5.1. H is basic if and only if there is k > 1 and rational polynomials p1, ..., pg
such that for sufficiently large n, |H,| = Zle pi(x)i™.

Now that we have Corollary 5.1, we can characterize the minimal properties of each
speed in range (1). Suppose H is a hereditary L-property. A strict subproperty of H is any
hereditary L-property H' satisfying H' C H. We say H is polynomial if asymptotically
|H,| = p(n) for some rational polynomial p(z). In this case, the degree of H is the degree
of p(z). We say H is exponential if its speed is asymptotically equal to a sum of the form
Zle p;i(n)i"™, where the p; are rational polynomials and ¢ > 2. In this case, the degree
of H is £. A polynomial hereditary L-property H is minimal if every strict subproperty
of ‘H is polynomial of strictly smaller degree. An exponential hereditary L-property H is
minimal if every strict subproperty of H is either exponential of strictly smaller degree
or polynomial.

Theorem 5.2. Suppose H is a non-trivial hereditary L-property.

(1) H is a minimal polynomial property of degree k > 0 if and only if H = age(M) for
some countably infinite L-structure with one infinite ~-class and exactly k elements
contained in finite ~-classes.

(2) H is a minimal exponential property of degree £ > 2 if and only if H = age(M) for
some countably infinite L-structure with £ infinite ~-classes and no finite ~-classes.

Proof. Fix a hereditary £-property H which is polynomial of degree k > 0 (respectively
exponential of degree £ > 2) and minimal. By Corollary 5.1, # is basic. By Corollary 2.15
there are finitely many countably infinite L-structures My, ..., M,,, each with finitely
many ~-classes, such that H = F U J;~, age(M;), where F is a trivial hereditary £-
property. Since H is minimal, we may assume F = () (since deleting F does not change
the asymptotic speed of H). Further, since age(M;) is a basic hereditary L-property for
each i € [m], Corollary 5.1 and H = |J.", age(M;) implies there is 1 < i < m such
that age(M;) is also polynomial of degree k (respectively exponential of degree ¢). By
minimality, H = age(M,;). Since H = age(M;) is polynomial of degree k (respectively
exponential of degree ¢ > 2), Corollary 2.15 implies M; has one infinite ~-class and
exactly k elements in finite ~-classes (respectively ¢ infinite ~-classes). We now show
further, that in the case when H is exponential of degree ¢ > 2, M; has no finite ~-
classes. Indeed, suppose it did. Let M} be the substructure of M; obtained by deleting
the finite ~-classes. Then age(M/,

%) is a strict subproperty of H which is exponential of

degree £ by Corollary 2.12, a contradiction. This takes care of the forward directions of
both (1) and (2).

Suppose for the converse that M is a countably infinite L-structure with one infinite
~-class and exactly k > 0 elements contained in a finite ~-classes (respectively with ¢
infinite ~-classes and no finite ~-classes). By Corollary 2.15, age(M) is polynomial of
degree k (respectively exponential of degree £). Suppose by contradiction there is a strict
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subproperty H' of age(M) which is also polynomial of degree k (respectively exponential
of degree /).

Corollary 2.15 implies there are finitely many countably infinite L-structures
M, ..., My, each with finitely many ~-classes, such that H' = F U J!~, age(M,),
where F is a trivial hereditary L-property. Again, there must be some ¢ € [m] so that
age(M,;) is itself polynomial of degree k (respectively exponential of degree £). By Corol-
lary 2.15, age(M;) has one infinite ~-class and exactly k elements contained in a finite
~-classes (respectively with ¢ infinite ~-classes an no finite ones). It is straightforward
to check that because age(M;) C age(M), we must have that M; = Thy(M).

Since M; |= Thy(M), by fact (2) from the end of Section 1.1, there is some M’ |=
Th(M) with M; C M’. By downward Léwenheim-Skolem, there is a countable M
with M; € M” < M’. Our assumptions on the structure of M imply that Th(M) is
countably categorical, and thus M” is isomorphic to M. Consequently, we have shown
M has a substructure isomorphic to M;. This along with what we have shown about the
structure of M and M; imply that M; must in fact be isomorphic to M, contradicting
that age(M;) C age(M). O

6. Penultimate range

In this section we show that for each r» > 2 there is a hereditary property of r-uniform
hypergraphs whose speed oscillates between speeds close the lower and upper bounds
of the penultimate range (case (3) of Theorem 1.4). Our example is a straightforward
generalization of one used in the graph case (see [7]). We include the full proofs for
completeness.

Throughout this section r > 2 is an integer and G is the class of finite r-uniform
hypergraphs. We will use different notational conventions in this section, as it requires
no logic. For this section, a property P means a class of finite r-uniform hypergraphs
closed under isomorphism. The speed of a property P is the function n — |P,|. We
denote elements of G as pairs G = (V, E)) where V is the set of vertices of G and E C (V)
is the set of edges. In this notation, we let v(G) = |V| and e(G) = |E|. Given U C V,
G[U] is the hypergraph (U, EN (Z)) Given a hypergraph H = (U, E’), we write H C G
if H is an induced subgraph of G, i.e. if U C V and H = G[U]. We begin by defining
properties which we will use throughout the section.

Definition 6.1. For ¢ € R=9, define
S={GeG:e(G)<cw(@)}and Q°={G € G: H € S for all HC G}.

Suppose G = (V, FE) is a finite r-uniform hypergraph. The density of G is p(G) =
e(G)/v(G), and we say G is strictly balanced if for all V! C V| p(G[V']) < p(G). The
following theorem, proved by Matushkin in [24], is a generalization to hypergraphs of
results about strictly balanced graphs (see [14,26]).
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Theorem 6.2 (Matushkin [2/]). Suppose r > 2 is an integer and ¢ € Q=°. There exists a
strictly balanced r-uniform hypergraph with density c if an only if ¢ > T%l orc= %
for some integer k > 1.

Given an vertex set V and a partition P = {Py,..., Py} of V, an r-matching compatible
with P is a set B C (‘T/) such that for every e € E and 1 < i <k, |en P;| <1, and for
every e #¢e € E, eNe’ = 0. We say P is an equipartition of V if || P;| — |P;|| <1 for all
1 <i,j < k. The following is a straightforward generalization of Theorem 16 in [27].

Proposition 6.3. For any constant ¢ > 1=, S| = p(r=Dleton — Qe |,

Proof. For the upper bound, note that by definition, for large n, both |Q¢| and |S:| are
bounded above by the following.

Len)
(7) n’ NN (r—1)en(i+o(1))
Z( ) <en o §(cn—|—1)<cn) =n .

j=o \J

For the lower bound, it suffices to show |Q¢| > n("=Den=o(n) - Agsume first ¢ is rational.
Then by Theorem 6.2, we can choose a finite, strictly balanced r-uniform hypergraph
H = (V, E) with density c¢. Without loss of generality, say V = [t] for some t € N>, Note
|E| = ¢t and H € Q°. Suppose n > t is sufficiently large, and choose an equipartition
P = {Wi,...,W;} of [n]. For each e € E, choose E. to be a maximal matching in [n]
compatible with P and satisfying E. C |J_., W.. Note the number of ways to choose E,
is at least (|n/t]!) 1.

We claim G := ([n],U.cp Ee) € Q5. Fix X C [n]. We show e(G[X]) < ¢[X]|. For each
1<i<t let X; = XNW,; and n; = |X;|. Foreach 1 <u < mn,let V;, = {i € [t] : n; > u},
and let H,, = H[V,]. Let £ = max{u : V,, # (0}, and observe that £ < [n/t]|. Observe that
|X| = Zi:l v(H,), since

rce

£ £ £
X[ = ulVa \ Vigal = > w(Val = [Vagal) = Vil = [Veral + D (u— (u—1))|Vi|

u=1 u=1 u=2

14
= ZU(Hu),
u=1

where the last equality uses that Vy41 = 0. We now show that e(G[X]) = Zﬁzl e(Hy).

For each 1 <wu < ¢, let V] =V, \ Vg1, and given 1 < idy,... 4, <, let
eVi,....Vi)=l{{ar,...,ar} € E:a1 €V} ,...,a, € V] }|.

i]’

Then by construction,
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- ! /
e(G[X)) = Z ire(Vy,..., V).
1<ip <. <4, <Ux
— / /
On the other hand, for each 1 <u </, e(Hy) =3, ;< < <pe(Vis- . V]), s0
¢ ¢
! ! U
SeH) =D DY eV V)= > ae(VL V).
u=1 u=1u<i; <...<i, <L 1<61 <. <ipn <L

Thus e(G[X]) = 32 w1 €(Hy). Since H is strictly balanced of density ¢, we know that
for each u € [¢], e(H,) < cv(H,). Combining these observations yields that

c(GIX]) =) e(H

u=~¢

u) = | X].

H'MN

Thus G € Qf. Clearly distinct choices for the set {E. : e € E} yield distinct elements
([n], Ueer Ee) of Q. Since for each e € E, the number of ways to choose E, is at least
(In/t]")"—1, this shows that

951> ((ne) )™ = (tnga) " = trenatn,

Assume now c is irrational. Note that for all ¢/ < ¢, QC/ C @Q°. Thus by the calculations
above, for all -1 < ¢/ < ¢, where ¢ € Q, we have |Q%| > p(r=D(~e(W)n  Clearly this
implies |Q¢| > n(r—D(e=eM)n 4

Definition 6.4. Given an increasing (possibly finite) sequence v = (v1,vs,...) of natural
numbers, let

Pre={GeG: it HC G and v(H) = v; for some 4, then e(H) < cv; }.

Lemma 6.5. Let ¢ > —5, € > 1/c, and v = (v;);eN a sequence of natural numbers with
k =sup{y; : i € N} 6 N U{oc}. Then

(1) [Py > I and [P =
(2) if k < oo and n is sufficiently large, then |P}}.| > 2"

—Dleto(n whenever n = v; for somei € N,

r—e

Proof. Note Q¢ C P so by Proposition 6.3, |PS¥| > |Q¢| > nr=D{etel)n When
n = v; for some ¢ € N, then by definition, Q¢ C P C S¢. Consequently Proposition 6.3
implies [PSY| = n(c(r=D+e()n This shows (1) holds.

Assume now k < oo and let (k) = (1,...,k). Note P¥):c C P so it suffices to
show that for large enough n, |P7(Lk)’c| > 27" 7" Choose ¢ satisfying e > § > 1/c and let
p = n~?. Recall that Ghp is the random r-uniform hypergraph on vertex set [n], with

edge probability p. We consider the probability G,, , ¢ Pﬁk)’c, i.e. the probability that
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there is H C G, with v(H) < k and e(H) > cv(H). Given 1 < j < k and S € ([?])7
let Xg: Gy — N be the random variable defined by Xg(G) =1 if e(G[S]) > ¢j. Note

P(Xs=1) < Zi(i)(cﬂ ((i))pl(l —py)D-i< C;p% for some constant C; depending only
on j, r and c. Therefore we have the following.

k

k k
]P(Gn,p ¢ 737(116)7C> < Z Z P(XS = 1) < Z <ZL> ijcj < ch(nl—&)j_
=1 i=1

SG([ ]) j=1

<3

Since dc > 1, we have 1 — dc < 0 and thus P(G,,, ¢ Pr(Lk)’c) — 0 as n — oo. Thus we
may choose ng so that P(G,,, ¢ Pflk)’c) < 1/3 for all n > ny.

Fix any 0 < €9 < 1/6. If n is sufficiently large, P(e(Gr ) < pN/2) < 1/2 + €y, where
N = (:) Combining this with the above, we have shown that for all sufficiently large n,

P(Gnp € PP and (G p) > pN/2) > 1/2 — € —1/3 > 0.

Thus for all sufficiently large n, there exists G = ([n], E) € P such that e(G) > pN/2.
Since ([n], E') € P for all ' C E, we have that

(P)e| > 9pN/2 = gn*(7)/2 > gn™ ™

)

where the last inequality is because n is sufficiently large, and e < 4. O

We now show that for any ¢ > 1/(r — 1) and € > 1/c, there is a property whose speed
oscillates between nc(r=1D1—=o(1)) apd 27",

Theorem 6.6. Let ¢ > — and e > 1/c. There exists sequences v = (V;)ien and p =

(1i)ieN where p; =v; — 1 for all it € N such that the following hold.

(1) |Pye| = pr=Dlete()n ywhenever n = v;,
(2) |PYe| > 27" whenever n = g,
(3) n(r=Deto)n < |pre| < on™™ irp £ 1

Proof. Set vy = r + 1. Assume now k > 0 and suppose by induction we have chosen
Vo, ..., Vg Let v = (v1,..., ) and note by Lemma 6.5, |[P%¢| > 2" for large enough
n. Choose p > vi minimal so that [P)¢| > 21151 and set Vgr1 = pg + 1. O

Proof of Theorem 1.5. Let £ = {R(zy,...,2,)}. Given ¢ > 15 and ¢ > 1/c, let v =

(Vi)ien and p = (1;);en be sequences as in Theorem 6.6. Let T}, . be the universal theory
of P¥¢ and observe that class of models of T, .. is a hereditary L-property # such that for

r—e

arbitrarily large n, |H,| = n("=D(ete()n and for arbitrarily large n, |H,| > 2" . O
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