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Given a finite relational language L, a hereditary L-property
is a class H of finite L-structures closed under isomorphism 
and substructure. The speed of H is the function which 
sends an integer n ≥ 1 to the number of distinct elements 
in H with underlying set {1, ..., n}. In this paper we give 
a description of many new jumps in the possible speeds 
of a hereditary L-property, where L is any finite relational 
language. In particular, we characterize the jumps in the 
polynomial and factorial ranges, and show they are essentially 
the same as in the case of graphs. The results in the factorial 
range are new for all examples requiring a language of arity 
greater than two, including the setting of hereditary properties 
of k-uniform hypergraphs for k > 2. Further, adapting an 
example of Balogh, Bollobás, and Weinreich, we show that 
for all k ≥ 2, there are hereditary properties of k-uniform 
hypergraphs whose speeds oscillate between functions near the 
upper and lower bounds of the penultimate range, ruling out 
many natural functions as jumps in that range. Our theorems 
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about the factorial range use model theoretic tools related to 
the notion of mutual algebraicity.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A hereditary graph property, H, is a class of finite graphs which is closed under 
isomorphisms and induced subgraphs. The speed of H is the function which sends a 
positive integer n to |Hn|, where Hn is the set of elements of H with vertex set [n]. Not 
just any function can occur as the speed of hereditary graph property. Specifically, there 
are discrete “jumps” in the possible speeds. Study of these jumps began with work of 
Scheinerman and Zito in the 90’s [27], and culminated in a series of papers from the 
2000’s by Balogh, Bollobás, and Weinreich, which gave an almost complete picture of 
the jumps for hereditary graph properties. These results are summarized in the following 
theorem.

Theorem 1.1 ([2,6–8,11]). Suppose H is a hereditary graph property. Then one of the 
following holds.

(1) There are k ∈ N and rational polynomials p1(x), . . . , pk(x) such that for sufficiently 
large n, |Hn| =

∑k
i=1 pi(n)in.

(2) There is an integer k ≥ 2 such that |Hn| = n(1− 1
k +o(1))n.

(3) There is an ε > 0 such that for sufficiently large n, Bn ≤ |Hn| ≤ 2n2−ε , where 
Bn ∼ (n/ log n)n denotes the n-th Bell number.

(4) There is an integer k ≥ 2 such that |Hn| = 2(1− 1
k +o(1))n2/2.

The jumps from (1) to (2) and within (2) are from [6], the jump from (2) to (3) is from 
[6,8], the jump from (3) to (4) is from [2,11], and the jumps within (4) are from [11]. 
Moreover, in [7], Balogh, Bollobás, and Weinreich showed that there exist hereditary 
graph properties whose speeds oscillate between functions near the lower and upper 
bound of range (3), which rules out most “natural” functions as possible jumps in that 
range. Further, structural characterizations of the properties in ranges (1), (2) and (4) 
are given in [6] (ranges (1) and (2)) and [11] (range (4)).

Despite the detailed understanding Theorem 1.1 gives us about jumps in speeds of 
hereditary graph properties, relatively little was known about the jumps in speeds of 
hereditary properties of higher arity hypergraphs. The goal of this paper is to generalize 
new aspects of Theorem 1.1 to the setting of hereditary properties in arbitrary finite 
languages consisting of relations and/or constant symbols (we call such a language finite 
relational). Specifically, we consider hereditary L-properties, where, given a finite rela-
tional language L, a hereditary L-property is a class of finite L-structures closed under 
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isomorphisms and substructures. This notion encompasses most of the hereditary proper-
ties studied in the combinatorics literature,2 including for example, hereditary properties 
of posets, of linear orders, and of k-uniform hypergraphs (ordered or unordered) for any 
k ≥ 2. We now summarize what was previously known about generalizing Theorem 1.1
to hereditary properties of L-structures.

Theorem 1.2 ([1,10,32,31]). Suppose L is a finite relational language of arity r ≥ 1 and 
H is a hereditary L-property. Then one of the following holds.

(i) There are constants C, k ∈ N>0 such that for sufficiently large n, |Hn| ≤ Cnk.
(ii) There are constants C, ε > 0 such that for sufficiently large n, 2Cn ≤ |Hn| ≤ 2nr−ε .

(iii) There is a constant C > 0 such that |Hn| = 2C(n
r)+o(nr).

The existence of a jump to (iii) was first shown for r-uniform hypergraphs in [1,
10], and later for finite relational languages in [31]. The jump between (ii) and (iii) 
as stated (an improvement from [1,10,31]) is from [32]. The jump from (i) and (ii) 
for finite relational languages is from [32] (similar results were also obtained in [13]). 
Stronger results, including an additional jump from the exponential to the factorial range, 
have also been shown in special cases (see [5,3,4,16,17]). However, to our knowledge, 
Theorem 1.1 encompasses all that was known in general, and even in the special case of 
hereditary properties of r-uniform hypergraphs for r ≥ 3 (unordered). Our focus in this 
paper is on the polynomial, exponential, and factorial ranges, where we obtain results 
analogous to those in Theorem 1.1 for arbitrary hereditary L-properties. The arity of L
is the maximum arity of its relation symbols. By convention, if L consists of constant 
symbols, we say it has arity 0.

Theorem 1.3. Suppose H is a hereditary L-property, where L is a finite relational lan-
guage. Then one of the following hold.

(1) There are k ∈ N and rational polynomials p1(x), . . . , pk(x) such that for sufficiently 
large n, |Hn| =

∑k
i=1 pi(n)in.

(2) There is an integer k ≥ 2 such that |Hn| = n(1− 1
k −o(1))n.

(3) |Hn| ≥ nn(1−o(1)).

The most interesting and difficult parts of Theorem 1.3 are the jumps within range 
(2) and between ranges (2) and (3), which were not previously known for any hered-
itary property in a language of arity larger than two. Combining Theorem 1.2 with 
Theorem 1.3 yields the following overall result about jumps in speeds of hereditary L-
properties.

2 Notable exceptions include hereditary properties of permutations and non-uniform hypergraphs.



96 M.C. Laskowski, C.A. Terry / J. Combin. Theory Ser. B 154 (2022) 93–135
Theorem 1.4. Suppose H is a hereditary L-property, where L is a finite relational lan-
guage of arity r ≥ 0. Then one of the following hold.

(1) There are k ∈ N and rational polynomials p1(x), . . . , pk(x) such that for sufficiently 
large n, |Hn| =

∑k
i=1 pi(n)in.

(2) There is an integer k ≥ 2 such that |Hn| = nn(1− 1
k −o(1)).

(3) There is ε > 0 such that nn(1−o(1)) ≤ |Hn| ≤ 2nr−ε .
(4) There is a constant C > 0 such that |Hn| = 2Cnr+o(nr).

We also generalize results of [7] to show there are properties whose speeds oscillate 
between functions near the extremes of the penultimate range (case (3) of Theorem 1.4).

Theorem 1.5. For all integers r ≥ 2, and real numbers c ≥ 1/(r − 1) and ε > 1/c, there 
is a hereditary property of r-uniform hypergraphs H such that for arbitrarily large n, 
|Hn| = ncn(r−1)(1−o(1)) and for arbitrarily large n, |Hn| ≥ 2nr−ε .

While there still remain many open problems about the penultimate range, Theo-
rem 1.5 shows that, for instance, there are no jumps of the form nkn for k > 1 or 2nk

for 1 < k < r.
Together, Theorems 1.4 and 1.5 give us a much more complete picture of the possible 

speeds of hereditary properties in arbitrary finite relational languages. In particular, our 
results show the possibilities are very close to those for hereditary graph properties from 
Theorem 1.1. Our proof of Theorem 1.4 also gives structural characterizations of the 
properties in cases (1) and (2), and we will give explicit characterizations of the minimal 
properties with each speed in range (1). Characterizations of the minimal properties in 
range (2) are more complicated and will appear in forthcoming work of the authors.

The proofs in this paper owe much to the original proofs from the graphs setting, 
especially those appearing in [6,7]. However, a wider departure was required to deal 
with the jumps in the factorial range, namely case (2) of Theorem 1.3. Our arguments 
use the model theoretic notion of mutual algebraicity, first defined by Laskowski in [21]. 
A mutually algebraic property can be thought of as a generalization of a hereditary 
graph property of bounded degree graphs. On the one hand, we will use the technology 
developed in [20,21] to obtain accurate estimates of |Hn| when H is a mutually algebraic 
property. On the other hand, when H is not mutually algebraic, we will use a theorem 
from [19], along with a new result, Proposition 4.24, to obtain an infinite model N of TH
that has arbitrarily large finite substructures with enough isomorphic copies to witness 
that |Hn| ≥ nn(1−o(1)). Here and elsewhere, we use the compactness theorem, which 
allows us to work with infinite structures rather than large finite ones.

The effectiveness of model theoretic tools in the context of this paper can be attributed 
to the fact that any hereditary L-property H can be viewed as the class of finite models of 
a universal, first-order theory TH. The speed of H is then the same as the function sending 
n to the number of distinct quantifier-free types in the variables (x1, . . . , xn) which are 



M.C. Laskowski, C.A. Terry / J. Combin. Theory Ser. B 154 (2022) 93–135 97
consistent with TH, and which imply xi �= xj for distinct i and j. Problems about 
counting types have been fundamental to model theory for many years (see e.g. [29]). 
From this perspective it is not surprising that tools from model theory turn out to be 
useful for solving problems about speeds of hereditary L-properties. Further, variations of 
this kind of problem have previously been investigated in model theory (see for example, 
[12,22,23]). We will point out direct connections with this line of work throughout the 
paper.

We end this introduction by outlining some problems which remain open around this 
topic. First, Theorem 1.1 describes precisely the speeds occurring within the fastest 
growth rate (case (4)). A similar analysis in the hypergraph setting would amount to 
understanding the possible Turán densities of hereditary hypergraph properties, a noto-
riously difficult question which we have made no attempt to address in this paper (see 
e.g. [25]).

There are many questions remaining around the penultimate range. For instance, in 
the graph case, Theorem 1.1 gives a precise lower bound for the penultimate range, 
namely the n-th Bell number Bn. This is accomplished in [8] by characterizing the min-
imal graph properties in this range, which they show are the properties consisting of 
disjoint unions of cliques Hcl, or disjoint unions of anti-cliques, Hcl. A general analogue 
of this kind of result would be very interesting.

Problem 1.6. Given a finite relational language L, characterize the minimal hereditary 
L-properties in the penultimate range.

It is easy to see the answer must be more complicated in general than the graph case. 
Indeed, let L = {R(x, y)} and consider the hereditary L-property H consisting of all 
finite, transitive tournaments. Then |Hn| = n! < Bn falls into the penultimate range. 
Consequently, while Hcl, Hcl are the only minimal hereditary graph properties in the 
penultimate range, there are other hereditary L-properties in this range with strictly 
smaller speed.

Theorem 1.5 rules out many possible jumps in the penultimate range, however, there 
does not yet exist a satisfying formalization of the idea that there can be no more 
“reasonable” jumps in this range (see [7] for a thorough discussion of this). Finally, while 
Theorem 1.5 shows there are properties whose speeds oscillate infinitely often between 
functions near the upper and lower bounds, there also exist properties whose speeds lies 
in the penultimate range, and for which wide oscillation is not possible (for an example 
of this, see [9]). This leads to the following question.

Question 1.7. Suppose L is a finite relational language. Are there jumps within the penul-
timate range among restricted classes of hereditary L-properties (for instance among 
those which can be defined using finitely many forbidden configurations)?
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Both authors are grateful to the anonymous referee, who identified a gap in the proof 
of Proposition 4.26 in a prior version of this paper, and whose careful reading greatly 
improved the exposition.

1.1. Notation and outline

We now give an outline of the paper. In Section 2 we deal with the polynomial/ex-
ponential case, i.e. case (1) of Theorem 1.4. Specifically, we define the class of basic
hereditary properties, and show the speed of any basic H has the form appearing in case 
(1) of Theorem 1.4. In Section 3 we prove counting dichotomies for a restricted class 
of properties called totally bounded properties, which generalize bounded degree graph 
properties. In Section 4 we define mutually algebraic properties, and prove counting di-
chotomies for mutually algebraic properties by showing they are controlled by finitely 
many totally bounded properties, after an appropriate change in language. We then show 
non-mutually algebraic properties fall into cases (3) or (4). In Section 6, we generalize an 
example from [7] to show that for all r ≥ 2, there are hereditary properties of r-uniform 
hypergraphs whose speeds oscillate between functions near the upper and lower bounds 
of the penultimate range.

We spend the rest of this subsection fixing notation and definitions. We have at-
tempted to include sufficient information here so that the reader with a only a basic 
knowledge of first-order logic could read this paper.

Suppose � ≥ 1 is an integer, X is a set, and x = (x1, . . . , x�) ∈ X�. Then [�] =
{1, . . . , �}, ∪x = {x1, . . . , x�}, and |x| = �. We will sometimes abuse notation and write 
x instead of ∪x when it is clear from context what is meant. Given x = (x1, . . . , x�) and 
I ⊆ [�], xI is the tuple (xi : i ∈ I). We write x ⊆ y to denote that x is a subtuple of y, 
i.e. x = yI for some I. Given a sequence of variables (z1, . . . , zs), we write z = x ∧ y to 
mean there is a partition I ∪ J of [s] into nonempty sets such that x = zI and y = zJ . 
In this case, we call x ∧ y a proper partition of z. Set

X� = {(x1, . . . , x�) ∈ X� : xi �= xj for each i �= j} and
(

X

�

)
= {Y ⊆ X : |Y | = �}.

Notice that 
(

X
�

)
= {∪x : x ∈ X�}. Given u, v ∈ N>0, a permutation σ : [u] → [u], and a 

set Σ ⊆ [v]u let

σ(Σ) := {(vσ(1), . . . , vσ(u)) : (v1, . . . , vu) ∈ Σ}.

We say Σ is invariant under σ when σ(Σ) = Σ.
We say a first order language L is finite relational if it consists of finitely many relation 

and constant symbols and no function symbols. Suppose L is a finite relational language. 
We let |L| denote the total number of constants and relations in L. By convention, the 
arity of L is 0 if L consists of only constant symbols, and is otherwise the largest arity of 
a relation in L. Given an L-formula ϕ and a tuple of variables x, we write ϕ(x) to denote 
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that the free variables of ϕ are all in the set ∪x. Similarly, if p is a set of formulas, we 
write p(x) to mean every formula in p has free variables in the set ∪x. We will use script 
letters for L-structures and the corresponding non-script letters for their underlying set. 
So for instance if M is an L-structure, M denotes the underlying set of M.

Suppose M is an L-structure. Given a formula ϕ(x1, . . . , xs),

ϕM = {(m1, . . . , ms) ∈ Ms : M |= ϕ(m1, . . . , ms)}.

A formula with parameters from M is a an expression of the form ϕ(x, a) where ϕ(x, y)
is a formula and a ∈ M |y|. The set of realizations of ϕ(x, a) in M is

ϕ(M, a) := {m ∈ M |x| : M |= ϕ(m, a)}.

Given A ⊆ M , a set B ⊆ M |x| is defined by ϕ(x, y) over A if there is a ∈ A|y| such 
that B = ϕ(M; a). In this case we say B is definable in M. If B is defined by a formula 
without parameters, we say that B is 0-definable. If Δ(x1, . . . , xs) is a set of formulas 
(possibly with parameters from M), a realization of Δ in M is a tuple m ∈ Ms such 
that M |= ϕ(m) for all ϕ(x1, . . . , xs) ∈ Δ.

If c is a constant of L, recall that cM denotes the interpretation of c in M. Similarly, 
if R is a t-ary relation of L, then RM := {x ∈ M t : M |= R(x)} is the interpretation 
of R in M. If C is the set of constants of L, let CM = {cM : c ∈ C}. If f : M → N

is a bijection, then f(M) is the L-structure with domain N such that cf(M) = f(cM)
for each c ∈ C, and for each relation R ∈ L, Rf(M) = f(RM). An isomorphism from 
M to N is a bijection f : M → N such that N = f(M). An automorphism of M is an 
isomorphism from M to M.

Given X ⊆ M containing CM, M[X] is the L-structure with domain X such that for 
all c ∈ C, cM[X] = cM and for all relations R(x1, . . . , xs) ∈ L, RM[X] = RM ∩Xs. An 
L-structure N is an L-substructure of M, denoted N ⊆L M if and only if N = M[X]
for some X ⊆ M . If L is clear from context we will just write N ⊆ M. The atomic 
formulas of L are the formulas of the following forms.

• t1 = t2 where each of t1, t2 is either a variable or a constant from L.
• R(t1, . . . , tn), where R(x1, . . . , xn) is a relation symbol of L and each ti is either a 

variable or a constant from L.

The quantifier-free L-formulas consist of all boolean combinations of atomic L-
formulas. When we write ϕ(x1, . . . , xn), we require the variable symbols x1, . . . , xn be 
distinct.

Definition 1.8. Suppose M is a (possibly infinite) L-structure, A ⊆ M , and x is a subse-
quence of z. For b ∈ M |x|,

qftp(b/A) = {quantifier-free formulas θ(x, a) : M |= θ(b, a) and ∪a ⊆ A}



100 M.C. Laskowski, C.A. Terry / J. Combin. Theory Ser. B 154 (2022) 93–135
A complete quantifier-free type p(x) over A is anything of the form qftp(b/A), where b ∈
N |x| for some L-structure N ⊇M. We let Sx(A) denote the set of complete quantifier-
free types over A in the variables x.

In model theory, it is more common to work with the notion of tp(b/A), which denotes 
the set of all formulas (including those with quantifiers) over A satisfied by b. However, 
as we will be passing to finite substructures, we work exclusively with quantifier-free 
types. Thus, any reference to “types” from here on out refers to quantifier-free types.

It will be convenient in Section 2 to work with the following set of formulas.

Definition 1.9.

Δneq := {ϕ(x1, . . . , xs) ∧
∧

1≤i<j≤s

xi �= xj : ϕ(x1, . . . , xs) is an atomic L-formula}.

For example, if R(x, y) is a relation of L, then both τ(x1, x2) = R(x1, x2) ∧ x1 �=
x2 and ϕ(x) = R(x, x) and are in Δneq. Observe that for any L-structure M and 
τ(x1, . . . , xs) ∈ Δneq, τM ⊆ Ms. Further, M is completely determined by knowing 
τM for each τ ∈ Δneq. Specifically, if N is an L-structure satisfying τN = τM for all 
τ ∈ Δneq, then M = N .

A hereditary L-property is a collection of finite L-structures which is closed under 
isomorphism and L-substructures. Every hereditary L-property H can be axiomatized 
using a (usually incomplete) universal theory, which we denote by TH. Specifically, for 
every hereditary L-property H, there is a set of universal sentences TH, such that for 
any finite L-structure M, M ∈ H if and only if M |= TH.

A hereditary L-property H is trivial if there are only finitely many non-isomorphic 
M ∈ H. Equivalently, H is trivial if there is N ∈ N such that Hn = ∅ for all n ≥ N . 
Since we are interested in the size of Hn for large n, we will be exclusively concerned 
with non-trivial hereditary L-properties in this paper.

Definition 1.10. Given an L-structure M, the universal theory of M, Th∀(M) is the set of 
sentences true in M which are of the form ∀x1 . . .∀xnϕ(x1, . . . , xn), where ϕ(x1, . . . , xn)
is a quantifier-free L-formula.

The age of M, denoted age(M), is the class of finite models of Th∀(M).

The age of M is always a hereditary L-property (but not every hereditary L-property 
is the age of a single structure). We will use throughout the paper the following standard 
model theoretic facts (see for instance Section 6.5 of [30])

(1) If N ⊆M, and ϕ is a universal sentence, then M |= ϕ implies N |= ϕ.
(2) If N |= Th∀(M), then there is M′ |= Th(M) such that N ⊆M′.
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Together these imply that if H = age(M), then for all n ∈ N, Hn is the set of all 
L-structures with domain [n] and which are isomorphic to a substructure of M. More 
generally, if H is any hereditary property, and M |= TH, then age(M) ⊆ H.

2. Case 1: polynomial/exponential growth

In this section we give a sufficient condition for a hereditary property to have speed 
of the special form appearing in case (1) of Theorem 1.4 (we will see later it is in fact 
necessary and sufficient). Throughout this section, L is a finite relational language, and 
r ≥ 0 is the arity of L. We will use the following natural relation defined on any L-
structure.

Definition 2.1. Given an L-structure M and a, b ∈ M , define a ∼ b if and only if for 
every atomic formula R(x1, . . . , xs) and m2, . . . , ms ∈ M \ {a, b},

M |=
(

R(a, b, m3, . . . , ms) ↔ R(b, a, m3, . . . , ms)
)

∧
(

R(a, m2, . . . , ms) ↔ R(b, m2, . . . , ms)
)

.

In model theory terms, a ∼ b if and only if qftpM(ab/(M \ {a, b})) = qftpM(ba/(M \
{a, b})).

We observe that a ∼ b holds if and only if the map from M to M fixing M \ {a, b}
and permuting a and b is an automorphism of M.

Example 2.2. Suppose M = (M, E) is a directed r-uniform hypergraph with vertex set 
M and edge set E ⊆ Mr. Given a, b ∈ M an 1 ≤ i < j ≤ r, let

Nij(a, b) = {(c1, . . . , cr−2) ∈ Mr−2 : (c1, . . . , ci−1, a, ci, . . . , cj , b, cj+1, . . . , cr−2) ∈ E}
and

Ni(a, b) = {(c1, . . . , cr−1) ∈ (M \ {b})r−1 : (c1, . . . , ci−1, a, ci, . . . , cr) ∈ E}.

Considering M as an L = {R(x1, . . . , xr)} structure in the usual way yields that for all 
a, b ∈ M, a ∼ b holds if and only if for all 1 ≤ i < j ≤ r, Nij(a, b) = Nij(b, a) and 
Ni(a, b) = Ni(b, a).

It is easy to check that for any L-structure M, ∼ is an equivalence relation on M.

Definition 2.3. A hereditary L-property H is basic if there is k ∈ N such that every 
M ∈ H has at most k distinct ∼-classes.

The main theorem of this section shows that the speeds of basic properties have the 
form appearing in case (1) of Theorem 1.4.
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Theorem 2.4. Suppose H is a basic hereditary L-property. Then there is k ∈ N and ratio-
nal polynomials p1(x), . . . , pk(x) such that for sufficiently large n, |Hn| =

∑k
i=1 pi(n)in.

We will see later that something even stronger holds, namely that H is basic if and 
only if its speed has the form appearing in case (1) of Theorem 1.4 (see Corollary 5.1).
For the rest of this section, H is a fixed non-trivial, basic hereditary L-property.

We end this introductory subsection with a historical note. The equivalence relation 
of Definition 2.1 also makes an appearance in [15] (see section 2 there). In that paper, 
the authors show that for a countably infinite L-structure M, several properties are 
equivalent to M having finitely many ∼-classes. As a direct consequence, we obtain 
equivalent formulations of basic properties. Specifically, in the terminology of [15], a 
hereditary L-property H is basic if and only if every countable model of TH is finitely 
partitioned, if and only if every countable model of TH is absolutely ubiquitous. Observe 
that if TH is basic, then it is ℵ0-categorical.

2.1. Infinite models as templates

Our proof of Theorem 2.4 can be seen as a generalization of the proof of Theorem 20 
in [6]. One idea used in our proof of Theorem 2.4 is to view countably infinite M |= TH
as “templates” for finite elements of H. In this subsection we fix notation to make this 
idea precise, and show that the set of finite structures compatible with a fixed template 
can be described using first order sentences. The main advantage of this approach is that 
it allows us to leverage the compactness theorem in the next subsection.

Fix a countably infinite M |= TH. We make a series of definitions related to M. First, 
by our assumption on H, M has finitely many ∼-classes. Fix an enumeration of them, say 
A1, . . . , Ak, satisfying 0 < |A1| ≤ . . . ≤ |Ak|, and call this the canonical decomposition of 
M. It is straightforward to check that for each τ(x1, . . . , xs) ∈ Δneq, there is ΣM

τ ⊆ [k]s
such that

τM =
⋃
{(Ai1 × . . .×Ais

) ∩Ms : (i1, . . . , is) ∈ ΣM
τ }.

Let t = max{i ∈ [k] : Ai is finite} and set K = max{r, |At|}. Given any set X, let 
ΩM(X) denote the set of ordered partitions (X1, . . . , Xk) of X satisfying |Xi| = |Ai| for 
each i ∈ [t], min{|Xi| : t < i ≤ k} > K. Note (A1, . . . , Ak) ∈ ΩM(M).

Definition 2.5. An L-structure N is compatible with M if there is (B1, . . . , Bk) ∈ ΩM(N)
such that for each τ(x1, . . . , xs) ∈ Δneq, τN =

⋃
{(Bi1 × . . .× Bis

) ∩Ns : (i1, . . . , is) ∈
ΣM

τ }.

Observe that if N is compatible with M, witnessed by (B1, . . . , Bk) ∈ ΩM(N), then 
{B1, . . . , Bk} are the ∼-classes of N . It is straightforward to see that if N is finite and 
compatible with M, then N is isomorphic to a substructure of M, and is thus in H. 
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For this reason we think of M as forming a “template” for the finite structures N which 
are compatible with M. We now show that being compatible with M can be defined 
using a first-order sentence. We leave it to the reader to check that there is a formula 
ϕ(x, y) (with quantifiers) such that for any L-structure G and a, b ∈ G, a ∼ b if and only 
if G |= ϕ(a, b). We will abuse notation and write x ∼ y for this formula.

Lemma 2.6. There is a sentence θM such that for any L-structure N , N |= θM if and 
only if N is compatible with M.

Proof. Given τ(x1, . . . , xs) ∈ Δneq, let ϕτ,M(z1, . . . , zk) be the following formula.

∀x1 . . .∀xs

(
τ(x1, . . . , xs) ↔

(( ∧
1≤i�=j≤s

xi �= xj

)
∧

( ∨
(i1,...,is)∈ΣM

τ

( s∧
j=1

xj ∼ zij

)))
.

Note that for any (a1, . . . , ak) ∈ A1 × . . . × Ak and τ ∈ Δneq, M |= ϕτ,M(a1, . . . , ak). 
Define θM to be the following L-sentence, where ni = |Ai| for each i ∈ [t].

∃z1 . . .∃zk

(( ∧
i∈[t]

∃=nix(x ∼ zi)
)
∧

( ∧
i∈[k]\[t]

∃>Kx(x ∼ zi)
)

∧
( ∧

τ∈Δneq

ϕτ,M(z1, . . . , zk)
))

.

We leave it to the reader to verify that for any L-structure N , N |= θM if and only if 
N is compatible with M. �

Observe that for any N |= θM, there is a sufficiently saturated elementary extension 
M ≺ M′ such that N is isomorphic to a substructure of M′. Thus N |= Th∀(M), so 
N |= TH, and consequently age(N ) ⊆ H.

2.2. Proof of Theorem 2.4

In this subsection we prove Theorem 2.4 by showing the speed of H is asymptotically 
equal to a sum of the form 

∑k
i=1 pi(n)in for some rational polynomials p1, . . . , pk. Our 

strategy is as follows. First, we compute the number of G ∈ Hn compatible with a single 
fixed M |= TH (Proposition 2.10). We then use the compactness theorem to show there 
are finitely many M |= TH which serve as templates for all sufficiently large elements of 
H. This will then allow us to compute the speed of H.

The first goal of the section is to prove Proposition 2.10, which shows the number of 
elements of Hn which are compatible with a fixed M |= TH is equal to C|ΩM([n])| for 
some constant C depending on M. We give a brief outline of the argument here. Given 
a fixed M |= TH and n ∈ N, every element of Hn which is compatible with M can be 
constructed by choosing an element of P ∈ ΩM([n]), then choosing the realizations of 
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each τ ∈ Δneq as prescribed by the set ΣM
τ . This gives an upper bound of |ΩM([n])|. The 

constant factor then arises from considering double counting. Dealing with the double 
counting is the motivation for the next definition.

Definition 2.7. Suppose M |= TH is countably infinite and A1, . . . , Ak is its canonical 
decomposition. Define Aut∗(M) to be the set of permutations σ : [k] → [k] with the 
property that there is an automorphism f of M satisfying f(Ai) = Aσ(i) for each i ∈ [k].

We will show in Proposition 2.10 that the number of element of Hn compatible with 
a fixed M is |ΩM([n])|/|Aut∗(M)|. We need the next two lemmas for this.

Lemma 2.8. Let k ∈ N>0, and let σ : [k] → [k] be a permutation. Assume M1, M2 ∈ H
are countably infinite, both have k distinct ∼-classes, and M2 has at least as many finite 
∼-classes as M1. If σ(ΩM2(X)) ∩ ΩM1(X) �= ∅ for some set X, then σ(ΩM2(Y )) ⊆
ΩM1(Y ) for all sets Y .

Proof. Let n1 ≤ . . . ≤ nt1 and m1 ≤ . . . ≤ mt2 be the sizes of the finite ∼-classes 
of M1 and M2, respectively. Note by assumption, t1 ≤ t2. Set K1 = max{r, nt1}. By 
assumption, there is (X1, . . . , Xk) ∈ ΩM2(X) such that (Xσ(1), . . . , Xσ(k)) ∈ ΩM1(X). 
By definition, we must have that for each i ∈ [t1], ni = mσ(i), and for all i > t1, mσ(i) >

K1. Since t1 ≤ t2, this implies σ([t1]) = [t1], and for all i ∈ [t1], ni = mi. Consequently, 
for all j > t1, mj > K1. Clearly this implies that for any set Y , if (Y1, . . . , Yk) ∈ ΩM2(Y ), 
then (Yσ(1), . . . , Yσ(k)) ∈ ΩM1(Y ), i.e. σ(ΩM2(Y )) ⊆ ΩM1(Y ). �

The next Lemma gives us useful information about elements of Aut∗(M).

Lemma 2.9. Suppose M |= TH is countably infinite, A1, . . . , Ak is its canonical decom-
position, and σ : [k] → [k] is a permutation. Then σ ∈ Aut∗(M) if and only if for all 
τ(x1, . . . , xs) ∈ Δneq, ΣM

τ and ΩM(M) are invariant under σ.

Proof. Let t = max{i ∈ [k] : Ai is finite}. First, suppose σ ∈ Aut∗(M). Then there is 
an automorphism f of M such that for each i ∈ [k], f(Ai) = Aσ(i). This implies that for 
each τ(x1, . . . , xs) ∈ Δneq,

τM =
⋃

(i1,...,is)∈ΣM
τ

(Ai1 × . . .×Ais
) ∩Ms =

⋃
(i1,...,is)∈ΣM

τ

(Aσ(i1) × . . .×Aσ(is)) ∩Ms,

which implies σ(ΣM
τ ) = ΣM

τ , i.e. ΣM
τ is invariant under σ. Further, since f is a bijection, 

ni = nσ(i) for each i ∈ [t], and σ([t]) = [t]. Therefore ΩM(M) is invariant under σ.
Suppose conversely that for all τ(x1, . . . , xs) ∈ Δneq, ΩM(M) and ΣM

τ are invariant 
under σ. Since ΩM(M) is invariant under σ, (Aσ(1), . . . , Aσ(k)) ∈ ΩM(M). Therefore, 
for each i ∈ [t], |Ai| = |Aσ(i)|, and for each i ∈ [k] \ [t], |Ai| = |Aσ(i)| = ℵ0. Thus there 
is a bijection f : M → M satisfying f(Ai) = Aσ(i) for each i ∈ [k].
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Now fix τ(x1, . . . , xs) ∈ Δneq and (a1, . . . , as) ∈ Ms. Suppose M |= τ(a1, . . . , as). 
Then (a1, . . . , as) ∈ Ai1 × . . . × Ais

for some (i1, . . . , is) ∈ ΣM
τ . By definition of f , 

(f(a1), . . . , f(as)) ∈ Aσ(i1)×. . .×Aσ(is). Since σ(ΣM
τ ) = ΣM

τ , (σ(i1), . . . , σ(is)) ∈ ΣM
τ , so 

by definition of ΣM
τ , M |= τ(f(a1), . . . , f(as)). This shows that M |= τ(f(a1), . . . , f(as))

if and only if M |= τ(a1, . . . , as) (the “only if” part comes from the same argument 
applied to f−1). Thus f is an automorphism of M and consequently σ ∈ Aut∗(M). �
Proposition 2.10. For any countably infinite M |= TH and sufficiently large n ∈ N,

|{N ∈ Hn : N |= θM}| = |ΩM([n])|/|Aut∗(M)|.

Proof. Fix a countably infinite M |= TH and a large n ∈ N. Given P = (X1, . . . , Xk) ∈
ΩM([n]), let NP be the structure with domain [n] satisfying, for each τ(x1, . . . , xs) ∈
Δneq,

τNP =
⋃
{(Xi1 × . . .×Xis

) ∩ [n]s : (i1, . . . , is) ∈ ΣM
τ }.

By definition, G ∈ Hn is compatible with M if and only if G = NP for some P ∈
ΩM([n]). Thus if we define Φ(P) = NP for each P ∈ ΩM([n]), then Φ is a function 
Φ : ΩM([n]) → Hn satisfying Im(Φ) = {N ∈ Hn : N |= θM}. It suffices to show that 
for all G ∈ Im(Φ), |Φ−1(G)| = |Aut∗(M)|, since then

|Im(Φ)| = |{N ∈ Hn : N |= θM}| = |ΩM([n])|/|Aut∗(M)|.

Fix G ∈ Im(Φ). By definition, there is a P ∈ ΩM([n]) so that G = NP . We show

Φ−1(G) = {σ(P) : σ ∈ Aut∗(M)}. (1)

Suppose σ ∈ Aut∗(M). By Lemma 2.9, ΩM(M) ∩σ(ΩM(M)) �= ∅, so Lemma 2.8 im-
plies σ(ΩM([n])) ⊆ ΩM([n]). Thus σ(P) ∈ ΩM([n]). Then, also by Lemma 2.9, σ(ΣM

τ ) =
ΣM

τ for each τ ∈ Δneq, which implies τNP = τNσ(P) . Thus Φ(σ(P)) = Nσ(P) = NP = G, 
so σ(P) ∈ Φ−1(G).

On the other hand, suppose Q ∈ Φ−1(G). Note G = NP = NQ implies there is a 
permutation η : [k] → [k] such that Q = η(P). Then Q ∈ ΩM([n]) ∩ η(ΩM([n])) and 
P ∈ ΩM([n]) ∩ η−1(ΩM([n])) imply by Lemma 2.8 that ΩM(M) = η(ΩM(M)). Further, 
NP = NQ implies that for each τ(x1, . . . , xs) ∈ Δneq, η(ΣM

τ ) = ΣM
τ . Thus by Lemma 2.9, 

η ∈ Aut∗(M). Since Aut∗(M) is clearly closed under inverses and Q = η−1(P), Q ∈
{σ(P) : σ ∈ Aut∗(M)}. Thus we have shown (1) and |Φ−1(G)| = |Aut∗(M)|. �

Lemma 2.11 below, proved in [6], will be used to compute |ΩM([n])| for a fixed M |=
TH.
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Lemma 2.11 (Lemma 19 in [6]). Suppose �, s, c1, . . . , ct are integers. If c1, . . . , ct ≤ s, then 
there are rational polynomials p1, . . . , p� such that the following holds for all n ≥ �s + c, 
where c =

∑t
i=1 ci.

∑
n1,...,n�>s,

∑�
i=1 ni=n−c

(
n

n1, . . . , n�, c1, . . . , ct

)
=

�∑
i=1

pi(n)in. (2)

Further, if � = 1, then p1 has degree c.

Note that for any M |= TH, |ΩM([n])| is by definition of the form appearing in the 
left hand side of Lemma 2.11. We use this along with Proposition 2.10 to compute the 
number of G ∈ Hn compatible with a fixed M |= TH.

Corollary 2.12. Suppose M |= TH is countably infinite with � infinite ∼-classes. Then 
there are rational polynomials p1, . . . , p� such that for all sufficiently large n ∈ N,

|{N ∈ Hn : N |= θM}| =
�∑

i=1
pi(n)in.

Further, when � = 1, the degree of p1(x) is equal to the number of elements of M in a 
finite ∼-class.

Proof. Let c1 ≤ . . . ≤ ct be the sizes of the finite ∼-classes of M. Set c =
∑t

i=1 ci, and 
K = max{r, ct}. By definition, if � = k − t, then

|ΩM([n])| =
∑

n1,...,n�>K,
∑�

i=1 ni=n−c

(
n

n1, . . . , n�, c1, . . . , ct

)
. (3)

By Lemma 2.11, there are rational polynomials q1, . . . , q� such that for large enough n, 
|ΩM([n])| =

∑�
i=1 qi(n)in. Further, if � = 1, then q1(x) has degree c. Combining this 

with Proposition 2.10, we obtain that for sufficiently large n,

|{N ∈ Hn : N |= θM}| = |ΩM([n])|/|Aut∗(M)|

=
( �∑

i=1
qi(n)in

)
/|Aut∗(M)| =

�∑
i=1

pi(n)in,

where each pi(x) is the rational polynomial obtained by dividing the coefficients of qi(x)
by the integer |Aut∗(M)|. �

We now prove our final lemma, which reduces the problem of counting the number of 
G ∈ Hn compatible with finitely many templates to the problem of counting the number 
compatible with a single template.
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Lemma 2.13. Suppose � ≥ 1 is an integer, M1, . . . , M� |= TH are countably infinite, and 
θM1 ∧ . . . ∧ θM�

is satisfiable. Then there is i ∈ [�] such that θM1 ∧ . . . ∧ θM�
≡ θMi

.

Proof. By induction it suffices to do the proof for � = 2. Suppose M1, M2 |= TH are 
countably infinite and θM1 ∧ θM2 is satisfiable. Clearly this implies M1 and M2 must 
have the same number of ∼-classes, say this number is k ≥ 1. Without loss of generality, 
assume M2 has at least as many finite ∼-classes as M1.

By assumption, there is an L-structure B satisfying both θM1 and θM2 . Since B |=
θM2 , there is (B1, . . . , Bk) ∈ ΩM2(B) so that for each τ(x1, . . . , xs) ∈ Δneq,

τB =
⋃
{(Bj1 × . . .×Bjs

) ∩Bs : (j1, . . . , js) ∈ ΣM2
τ }. (4)

Since B |= θM1 , there is a permutation σ : [k] → [k] so that (Bσ(1), . . . , Bσ(k)) ∈ ΩM1(B)
and for all τ(x1, . . . , xs) ∈ Δneq,

τB =
⋃
{(Bσ(j1) × . . .×Bσ(js)) ∩Bs : (j1, . . . , js) ∈ ΣM1

τ }. (5)

Observe (4) and (5) imply σ(ΣM1
τ ) = ΣM2

τ for all τ ∈ Δneq. Further, σ(ΩM2(B)) ∩
ΩM1(B) �= ∅, so Lemma 2.8 implies that σ(ΩM2(Y )) ⊆ ΩM1(Y ) for any set Y .

We now show θM1∧θM2 ≡ θM2 . Clearly it suffices to show θM2 |= θM1 . Fix N |= θM2 . 
Then there is (N1, . . . , Nk) ∈ ΩM2(N) so that for each τ(x1, . . . , xs) ∈ Δneq

τN =
⋃
{(Ni1 × . . .×Nis

) ∩Ns : (i1, . . . , is) ∈ ΣM2
τ }. (6)

Since σ(ΩM2(N)) ⊆ ΩM1(N), we have (Nσ(1), . . . , Nσ(k)) ∈ ΩM1(N). Further, for each 
τ(x1, . . . , xs) ∈ Δneq, σ(ΣM1

τ ) = ΣM2
τ , so (6) implies that

τN =
⋃
{(Nσ(i1) × . . .×Nσ(is)) ∩Ns : (i1, . . . , is) ∈ ΣM1

τ }.

Thus by definition, N |= θM1 . �
We now prove the main result of this subsection. The proof uses the compactness 

theorem and the preceding lemma to show the speed of H is a linear combination of 
finitely many functions of the form appearing in Corollary 2.12.

Theorem 2.14. There are k ∈ N and rational polynomials p1(x), . . . , pk(x) such that for 
sufficiently large n, |Hn| =

∑k
i=1 pi(n)in.

Proof. Clearly the following set of sentences is inconsistent.

TH ∪ {¬θM : M |= TH is countably infinite} ∪ {∃x1 . . .∃xn

∧
xi �= xj : n ≥ 1}.
i�=j
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Thus by compactness, there are finitely many θM1 , . . . , θMk
such that for sufficiently 

large n, any element of Hn must satisfy 
∨k

i=1 θMi
. Combining this with the inclusion/ex-

clusion principle yields that for large n,

|Hn| = |{M ∈ Hn : M |= θM1 ∨ . . . ∨ θMk
}|

=
k∑

u=1
(−1)u+1

( ∑
1≤i1<...<iu≤k

|{M ∈ Hn : M |= θMi1
∧ . . . ∧ θMiu

}|
)

.

Apply Corollary 2.12 and Lemma 2.13 to finish the proof. �
Theorem 2.14 proves Theorem 2.4, since H was an arbitrary basic non-trivial heredi-

tary L-property. We have actually shown more about basic properties, which we sum up 
in Corollary 2.15 below. We leave the proof to the reader, as it follows from the proof of 
Theorem 2.14 and the fact that for any M |= TH, {N ∈ H : N |= θM} ⊆ age(M) ⊆ H.

Corollary 2.15. Suppose H is a non-trivial basic hereditary L-property. Then there is a 
trivial hereditary L-property F and finitely many countably infinite basic L-structures 
M1, . . . , Mm such that H = F ∪

⋃m
i=1 age(Mi).

Moreover the following hold, where for each 1 ≤ i ≤ m, mi is the number of elements 
of Mi in a finite ∼-class and �i is the number of infinite ∼-classes of Mi.

(1) If � = max{�i : i ∈ [m]} = 1 then for large n, |Hn| = p(n) where p(n) is a rational 
polynomial of degree c := max{mi : i ∈ [m]}.

(2) If � = max{�i : i ∈ [m]} ≥ 2, then for large n, |Hn| =
∑�

i=1 pi(n)in where each pi(n)
is a rational polynomial.

The structural dichotomy between cases (1) and (2) in Corollary 2.15 also made an 
appearance in [15]. Specifically, in the terminology of [15], case (1) in Corollary 2.15
holds if and only if every model M |= TH is absolutely |M |-ubiquitous.

3. Totally bounded properties

In this section we prove results about a very restricted class of properties, namely 
those which are totally bounded. The main result of this section is Theorem 3.9 which 
tells us about the speeds of totally bounded properties. Totally bounded hereditary L-
properties behave much like hereditary graph properties with uniformly bounded degree, 
and our proofs in this section largely follow the corresponding proofs for these kinds of 
graphs (see Lemmas 24 and 25 in [6]). The results of this subsection will be used in 
Section 4 to prove counting dichotomies for more general classes.

In this section L is a finite relational language of arity r ≥ 0. Throughout, C denotes 
the set of constants of L.
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Definition 3.1. An L-structure M is totally k-bounded if for every relation symbol 
R(x1, . . . , xs) in L and every partition [s] = I ∪ J into nonempty sets I and J ,

M |= ∀xI∃<kxJR(x1, . . . , xs).

A hereditary L-property H is totally bounded if there is an integer k such that every 
M ∈ H is totally k-bounded.

For example, if k ∈ N and H is a hereditary graph property, then H is totally k-
bounded if and only if all of the graphs in H have maximum degree less than k. Note 
that an L-structure M is totally k-bounded if and only if for every relation R(x1, . . . , xs)
in L, and every partition [s] = I ∪ J with |I| = 1, M |= ∀xI∃<kxJR(x1, . . . , xs).

We begin by considering a generalization of the notion of a connected component in 
a graph. Given an L-structure M and a, b ∈ M , a path from a to b is a finite sequence, 
a1, . . . , ak, of tuples of elements of M such that the following hold.

(1) For each 1 ≤ i ≤ k − 1, (∪ai) ∩ (∪ai+1) �= ∅.
(2) a ∈ ∪a1 and b ∈ ∪ak.
(3) M |= ψ1(a1) ∧ . . . ∧ ψk(ak) for some relations ψ1(x1), . . . , ψk(xk) from L.

The length of the path is k. We say a subset A ⊆ M is connected if for all a �= b ∈ A, 
there is a path from a to b which is contained in A. When M is a graph, then these are 
just the usual graph theoretic notions of a path and of a connected set.

Definition 3.2. Suppose M is an L-structure, and A ⊆ M . We say that A is a component 
in M if it is a maximal connected set, i.e. if A is connected and for all a ∈ A and c ∈ M , 
if there is a path from a to c, then c ∈ A.

We would like to point out that the notion of components and ∼-classes are different. 
For example, if M is an infinite graph with no edges, then M has infinitely many 
components (since each vertex is in a component of size 1), but only one ∼-class. On 
the other hand, if M is an infinite path, then it has only one component, but infinitely 
many ∼-classes.

Given a hereditary L-property H and m ∈ N>0, we say H has infinitely many compo-
nents of size m if there is M |= TH such that M has infinitely many distinct components 
of size m. We say H has infinitely many components if it there is M |= TH with infinitely 
many components. Otherwise we say H has finitely many components. We say H has 
finite components if there is K ∈ N such that for every M |= TH, every component of M
has size at most K. Otherwise H has infinite components. Note that if H is non-trivial 
and has finite components, then it must have infinitely many components.

Our first goal is to prove two lemmas about hereditary L-properties with restric-
tions placed on their components. Specifically, Lemma 3.4 will give us lower bounds for 
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any hereditary L-property with infinitely many components of a fixed finite size, and 
Lemma 3.6 will characterize the speeds of hereditary L-properties with finite compo-
nents. We require the following lemma, which appears within the proof of Lemma 24 in 
[6].

Lemma 3.3. Suppose k, n ∈ N>0 and k � n. Then the number of ways to partition 
k�n/k� into �n/k� parts of size k is at least nn(1−1/k−o(1)).

Proof. Set m = k�n/k� and let f(n) be the number of ways to partition [m] into � :=
�n/k� parts, each of size k. Clearly f(n) ≥

(
m

k,...,k

) 1
�! . Using Stirling’s approximation and 

the definitions of � and m, we obtain the following.

(
m

k, . . . , k

)
1
�! = m!

(k!)� n
k 	�n

k �!
≥

√
2πmm+ 1

2 e−m

(k!)� n
k 	(n

k ) n
k + 1

2 e1− n
k

= mm(1−o(1))n− n
k (1+o(1)) = nn(1− 1

k −o(1)),

where the last two equalities are because n − m < k and n � k. Thus f(n) ≥
nn(1−1/k−o(1)). �
Lemma 3.4. Suppose H is a hereditary L-property and k ≥ 2 is an integer. Assume H
has infinitely many components of size k. Then |Hn| ≥ n(1−1/k−o(1))n.

Proof. Suppose H has infinitely many components of size k. By definition, there is 
M |= TH with infinitely many distinct components, each of size k. Let D = CM. Since 
L is finite, we can find distinct components {Ai : i ∈ N}, each of which has size k and is 
disjoint from D (since D is finite, and each element of D is in at most one component).

Fix n � |D| and set � = �(n − |D|)/k�. Now choose B ⊆ A�+1 of size n − |D| − k�

and set A = A1 � . . . � A� � B � D. Observe |B| < k, |A| = n and for every bijection 
f : A → [n], f(M[A]) ∈ Hn. Note that the only components of size k in f(M[A]) which 
are also disjoint from f(D) are f(A1), . . . , f(A�).

Fix f0 : D ∪ B → [n]. Suppose f and f ′ are bijections from A to [n] extending f0

with {f(A1), . . . , f(A�)} �= {f ′(A1), . . . , f ′(A�)}. Then clearly f(M[A]) �= f ′(M[A]), 
since these structures disagree on what are the components of size k disjoint from f0(D). 
Therefore |Hn| is at least the number of distinct ways to choose � disjoint sets of size k
in [n0] where n0 = n − |B| − |D|. By Lemma 3.3, this is at least nn0(1−1/k−o(1))

0 . Since 
|B| < k, |D| is constant, and n is large, this shows |Hn| ≥ n(1−1/k−o(1))n. �

We now consider the case where H has finite components. We will use the following 
fact, which is a consequence of the inequality of arithmetic and geometric means.

Fact 3.5. Suppose a1, . . . , at ∈ N>0. Then a1! . . . at! ≥ (((
∑t

i=1 ai)/t)!)t.
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Lemma 3.6. Suppose H has finite components and k is the largest integer such that H
contains infinitely many components of size k. If k = 1 then H is basic. If k ≥ 2 then 
|Hn| = n(1−1/k−o(1))n.

Proof. Suppose first that k = 1. Then there is a fixed integer w such that for any 
M |= TH, all but w elements of M are in a component of size 1. Fix M |= TH. Let 
D = CM, and let X ⊆ M be the set of elements contained in a component of size 
greater than 1. Observe that for all a �= b ∈ M \ (X ∪D), a ∼ b if and only if for every 
relation R(x1, . . . , xs) of L, M |= R(a, . . . , a) ↔ R(b, . . . , b). Consequently, the number 
of distinct ∼-classes of M is at most |X| + |D| + 2|L| ≤ w + |C| + 2|L|. Since this bound 
does not depend on M, this shows H is basic.

Suppose now k ≥ 2. That |Hn| ≥ n(1−1/k−o(1))n is immediate from Lemma 3.4. We 
now show that |Hn| ≤ n(1−1/k+o(1))n. By choice of k, there is an integer w such that for 
all M |= TH, all but w elements of M are contained in a component of size at most k
in M. Let c = |C|, and let d =

∑k
i=1 |Hi|. By convention, let H0 consist of the empty 

structure, so |H0| = 1. Suppose now n is large. Then we can construct every G ∈ Hn as 
follows.

1. Choose D = CG , the interpretations of the constants in G. There are at most nc ways 
to do this.

2. Choose a set A ⊆ [n] of size at most w and choose G[A]. The number of ways to do 
this is at most 

∑w
i=0

(
n
i

)
|Hi| ≤ (w + 1)nw2|L|wr .

3. Choose a sequence of natural numbers (b1, . . . , bn) (some of which may be 0) such 
that each bi ≤ k and 

∑n
i=1 bi = |[n] \A|. Then partition [n] \A into parts B1, . . . , Bn

of sizes b1, . . . , bn, respectively (note some of the Bi may be empty). The number of 
ways to do this step is at most 

∑
{(b1,...,bn)∈[n]n:bi≤k,

∑
bi=n−|A|}

(
n

b1,...,bn

)
≤ knnn.

4. Choose a sequence (G1, . . . , Gn) such that for each 1 ≤ i ≤ n, Gi ∈ Hbi
. Then make 

G[Bi] isomorphic to Gi via the order-preserving bijection from [bi] to Bi. There are at 
most (d + 1)n ways to do this.

5. For all relations R(x) in L and a ∈ [n]|x| \ ((A|x| ∪
⋃n

i=1 B
|x|
i ), let G |= ¬R(a). There 

is only one way to do this given our previous choices.

This yields the following upper bound (recall c, w, |L|, d are all constants).

|Hn| ≤ nc(w + 1)nw2|L|wr

knnn(d + 1)n = nn(1+o(1)). (7)

We now consider how many times each G ∈ Hn was counted. Fix G ∈ Hn, and assume G
is constructed from the sets D = CG (step 1), A (step 2), and the sequences (b1, . . . , bn), 
(B1, . . . , Bn), and (G1, . . . , Gn) (steps 3, 4 and 5 respectively). Let N1, . . . , Nd enumerate 
all the distinct elements of ∪k

i=1Hi, and for each i ∈ [d], let Ji = {j ∈ [n] : Gj = Ni}
and set ai = |Ji|. Then for any permutation σ : [n] → [n] satisfying σ(Ji) = Ji for 
each i ∈ [d], G is also generated by making the same choices in steps 1 and 2, while in 
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steps 3-5 choosing the sequences (b1, . . . , bn), (Bσ(1), . . . , Bσ(n)), and (G1, . . . , Gn). So G
is counted at least a1! · · · ad! times. Observe n −w ≤ n − |A| =

∑d
i=1 |Ni|ai ≤ k

∑d
i=1 ai. 

Combining this inequality with Fact 3.5, we obtain

a1! · · · ad! ≥
((( d∑

i=1
ai

)
/d

)
!
)d

≥
((n− w

kd

)
!
)d

≥
(n− w

kd

) n−w
k ≥ nn/k−o(n),

where the last inequality is because n is large and w, c, k, d are constants. Therefore 
each G is counted at least nn/k−o(1) many times. Combining this with (7) yields that 
|Hn| ≤ nn(1+o(1))n−n/k+o(n) = nn(1− 1

k +o(1)). �
Note that by Lemma 3.6, we now understand the speed of hereditary properties with 

finite components. The next two lemmas will help us understand the case of a totally 
bounded property with infinite components. Specifically, they show that given a totally 
bounded M, if M has an infinite component, then by deleting elements, we can find a 
substructure of M with infinitely many components of size k for arbitrarily large finite k. 
In the proof of Theorem 3.9 we will combine this with Lemma 3.4 to show that if a totally 
bounded hereditary L-property H has infinite components, then |Hn| ≥ nn(1−o(1)).

We will use the following notion of distance in an L-structure M. Given a, b ∈ M , 
define the distance from a to b in M, dM(a, b), to be 0 if a = b, to be ∞ if no path exists 
between a and b in M, and otherwise to be the minimum length of a path from a to b
in M. Given a ∈ A, and i ∈ N, define

BM
i (a) := {e ∈ M : dM(a, e) ≤ i}.

Then for X ⊆ A and i ∈ N, set BM
i (X) =

⋃
a∈X BM

i (a). Observe that if M′ ⊆M and 
a, b ∈ M ′, then dM(a, b) ≤ dM′(a, b).

Lemma 3.7. Suppose t ≥ 1 is an integer, and L has maximum arity r ≥ 2. Assume M
is an L-structure which contains an infinite connected set A. Then for any a ∈ A, there 
is t ≤ t′ ≤ tr and a connected set A′ ⊆ BM

t (a) with |A′| = t′.

Proof. Fix a ∈ A. Since A is connected and infinite, there is a relation ψ1(x1), and a1 ∈
A|x1| such that ψ1(a1) and a ∈ a1. Suppose 1 ≤ i < t and we have chosen a1, . . . , ai such 
that (∪a1) ∪. . .∪(∪ai) is a connected subset of A, and i ≤ |(∪a1) ∪. . .∪(∪ai)| ≤ ir. Since A
is infinite and connected, there is some ai+1 ∈ A|xi+1| and a relation ψi+1(xi+1), such that 
M |= ψi+1(ai+1), (∪ai+1) ∩((∪a1) ∪. . .∪(∪ai)) �= ∅, and (∪ai+1) \((∪a1) ∪. . .∪(∪ai)) �= ∅. 
Note i + 1 ≤ |(∪a1) ∪ . . . ∪ (∪ai+1)| ≤ (i + 1)r. After t steps, A′ := (∪a1) ∪ . . . ∪ (∪at)
will be connected with t ≤ |A′| ≤ tr. By construction, A′ ⊆ BM

t (a). �
Lemma 3.8. Suppose k, t ≥ 1 are integers, and L has maximum arity r ≥ 2. Assume M
is a totally k-bounded L-structure, and M contains an infinite component. Then there 
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is t ≤ t′ ≤ tr and a substructure M′ ⊆L M so that M′ contains infinitely many distinct 
components of size t′.

Proof. Let A be an infinite component of M. Observe that since M is totally k-bounded, 
we have that for any finite X ⊆ M and any s ∈ N, BM

s (X) is finite. Let D = CM. Then 
BM

1 (D) is finite, so M[A \ BM
1 (D)] has finitely many components. One of them must 

be infinite, call this A0.
Since A0 is an infinite component, and since BM

s (X) is finite for all s ∈ N and finite 
X ⊆ M , there exists a set {ai : i ∈ N} ⊆ A0 such that for each i �= j, dM(ai, aj) > 2t +1. 
By Lemma 3.7, we may choose for each i ∈ N a connected set Ci ⊆ BM

t (ai) with 
t ≤ |Ci| ≤ tr. Note that by construction, for all i ∈ N, BM

1 (Ci) ∩ (D∪
⋃

j∈N\{i} Cj) = ∅.
Let M′ := M[D ∪

⋃
i∈N Ci]. Fix i ∈ N. We show Ci is a component of M′. Clearly 

Ci is connected in M′. Suppose towards a contradiction there is c ∈ Ci connected to 
some a ∈ M ′ \ Ci by a finite path b1, . . . , bs in M′. Then for some 1 ≤ u ≤ s, we have 
bu ∩Ci �= ∅ and bu ∩ (M ′ \Ci) �= ∅. But now BM′

1 (Ci) ∩ (D∪
⋃

j∈N\{j} Cj) �= ∅, which is 
a contradiction since BM′

1 (Ci) ⊆ BM
1 (Ci). Thus each Ci is a component of M′. By the 

pigeon hole principle, there is some t ≤ t′ ≤ tr such that infinitely many Ci have size t′. 
This finishes the proof. �

We can now prove our counting theorem for totally bounded properties.

Theorem 3.9. Suppose H is totally bounded. Then either H is basic, |Hn| ≥ nn(1−o(1))n, 
or for some integer k ≥ 2, |Hn| = nn(1−1/k−o(1)).

Proof. Clearly if L has maximum arity r ≤ 1, then H is basic. So assume L has maximum 
arity r ≥ 2. Suppose H has infinite components. Then there is M |= TH with an infinite 
component. Lemma 3.8 implies that for all t, there is t ≤ t′ ≤ tr such that H has 
infinitely many components of size t′. By Lemma 3.4, |Hn| ≥ nn(1−1/tr−o(1)) for all 
t ≥ 1, consequently |Hn| ≥ nn(1−o(1)).

Assume now that H has finite components. Then there is an integer m such that for 
every M |= TH, every component of M has size at most m and there is a maximal m′ ≤ m

such that H contains infinitely many components of size m′. By Lemma 3.6, if m′ = 1
then H is basic. Otherwise m′ ≥ 2, and Lemma 3.6 implies |Hn| = nn(1−1/m′−o(1)). �

Note Theorem 3.9 shows that if H is totally bounded, then |Hn| ≥ nn(1−o(1)) if and 
only if H has infinite components. Given � ≥ 2, a hereditary L-property H is factorial 
of degree � if |Hn| = nn(1−1/�−o(1)). The proof of Theorem 3.9 shows that if H is totally 
bounded and factorial of degree �, then � is the largest integer so that H has infinitely 
many components of size �. In fact we can show something stronger.

Corollary 3.10. Suppose H is a totally bounded hereditary L-property with finite compo-
nents and � ≥ 2 is an integer. The there are finitely many countably infinite L-structures 
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M1, . . . , Mm, each of which is totally bounded with finite components, and a trivial 
property F such that H = F ∪

⋃m
i=1 age(Mi).

Further, H is factorial of degree � if and only if � is the largest integer such that for 
some i ∈ [m], Mi has infinitely many components of size �.

Proof. Since H has finite components there are integers t ≥ 1 and w ≥ 0 such that there 
exists M |= TH with infinitely many components of size t, but for all M′ |= TH, there 
are at most w elements of M′ in a component of size strictly larger than t. Since L is 
finite, this implies there are only finitely many non-isomorphic L-structures with domain 
N and satisfying TH, say M1, . . . , Mm. Since each Mi is totally bounded and has all but 
w elements in a component of size at most t, it is straightforward to see that Th∀(Mi)
is finitely axiomatizable, in fact by a single sentence, say ψi. Then the following set of 
sentences is inconsistent.

TH ∪ {¬ψi : i ∈ [m]} ∪ {∃x1 . . .∃xn

∧
1≤i�=j≤n

xi �= xj : n ≥ 1}.

By compactness, there is K such that for all M |= TH of size at least K, M |= ψi for 
some i ∈ [m] (thus if M is also finite, then M ∈ age(Mi)). Let F be the property 
consisting of the elements in H of size at most K. Then H = F ∪

⋃m
i=1 age(Mi). For all 

� ≥ 2, the proof of Theorem 3.9 shows that H is factorial of degree � if and only if � is 
the largest integer such that one of the Mi has infinitely many components of size �. �
4. A dividing line: mutual algebraicity

This section contains the remaining ingredients needed for Theorem 1.3. We proceed 
by partitioning hereditary properties based on the dividing line of mutual algebraicity 
(see Subsection 4.1 for precise definitions). The idea is that mutually algebraic properties 
are “well behaved,” allowing a detailed analysis of their structure and speeds, whereas 
non-mutually algebraic properties have “bad behavior” implying a relatively fast speed. 
Specifically, in Subsection 4.2, we consider the case where H is mutually algebraic. We use 
structural implications of this assumption to prove the remaining counting dichotomies. 
Namely, either |Hn| ≥ nn(1−o(1)), |Hn| = nn(1−1/k−o(1)) for some integer k ≥ 2, or H
is basic, in which case, by Section 2, the speed of H is asymptotically equal to a sum 
of the form 

∑k
i=1 pi(n)in for finitely many rational polynomials p1, . . . , pk. The proofs 

in Section 4.2 rely on Section 3 along with the fact that a mutually algebraic property 
is always controlled by finitely many totally bounded properties (see Subsection 4.2 for 
details).

By contrast, in Subsection 4.3, we show that for any finite relational language L, if H
is a non-mutually algebraic hereditary L-property H, then |Hn| ≥ nn(1−o(1)). To prove 
this, we require a model theoretic result, Theorem 4.18, which relies on results from [19]. 
This theorem describes some properties of large, in fact uncountable, models of TH. This 
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allows us to show there is an uncountable model of TH which has many distinct finite 
substructures, yielding the desired lower bound on |Hn|.

Our strategy can be seen as a generalization of the strategy employed by Balogh, 
Bollobás, and Weinreich in the graph case [6]. However, executing this strategy is signif-
icantly more complicated when dealing with relations of arity larger than 2. The crucial 
new ingredient in our proof, Theorem 4.18, required ideas from stability theory.

4.1. Preliminaries

In this subsection we give the relevant background on mutually algebraic properties. 
We begin with the basic definitions, first introduced in [21].

Definition 4.1. Given an L-structure M, an L formula ϕ(x) = ϕ(x1, . . . , xs, y) and a ∈
M lg(y), ϕ(x, a) is k-mutually algebraic in M if for every partition [s] = I ∪ J into 
nonempty sets I and J ,

M |= ∀xI∃<kxJϕ(x1, . . . , xs, a).

Note that an L-structure M is totally k-bounded if and only if all relations of L are 
k-mutually algebraic in M.

Definition 4.2. An L-structure M is mutually algebraic if, for every formula ψ(x) there 
is a finite set Δ = Δ(x; y) of L-formulas, an integer k, and parameters a ∈ M |y| such 
that the following hold.

(1) For every ϕ(x′, y) ∈ Δ, ϕ(x′, a) is k-mutually algebraic in M (here, x′ ⊆ x is a 
subsequence of x, possibly varying with ϕ ∈ Δ); and

(2) There is a formula, θ(x; y), which is a boolean combination of elements of Δ, such 
that M |= ∀x(ψ(x) ↔ θ(x; a)).

In the definition above, there is no bound on the quantifier complexity of either ϕ or 
of the formulas in Δ. However, detecting whether or not a structure is mutually algebraic 
can be seen by looking at quantifier-free formulas. In fact, as we are working in a finite 
language L without function symbols, we have the following characterization.

Lemma 4.3. An L-structure M is mutually algebraic if and only if for some integers 
s, k ≥ 0, there is a finite set Δ = Δ(x, y) of quantifier-free L-formulas with |y| = s and 
parameters a ∈ Ms such that the following hold.

(1) For every ϕ(x′, y) ∈ Δ, ϕ(x′, a) is k-mutually algebraic in M (here too, x′ ⊆ x is a 
subsequence of x, possibly varying with ϕ ∈ Δ); and

(2) For every relation symbol R(x′) of L, there is a formula δR(x′, y), which is a boolean 
combination of elements of Δ, such that
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M |= ∀x′(R(x′) ↔ δR(x′, a)).

Proof. First, assume M is mutually algebraic. By Proposition 4.1 of [20], every relation is 
equivalent in M to a boolean combination of quantifier-free mutually algebraic formulas. 
As there are only finitely many relations in L, we can choose a finite set Δ of quantifier-
free formulas, and a uniform finite k, so that each relation of L is equivalent in M to a 
boolean combination of elements of Δ, and such that every element of Δ is k-mutually 
algebraic in M.

Conversely, suppose there exist s, k ∈ N, a ∈ Ms, and Δ(x; y), a set of quantifier-free 
L-formulas with |y| = s, such that (1) and (2) hold. Let MA∗(M) denote the set of all 
formulas θ(x; b) with the property that θ(x; b) is equivalent in M to a boolean combina-
tion of mutually algebraic formulas. By assumption, every relation of L is in MA∗(M). 
Clearly MA∗(M) is closed under substituting constants for variables, and under taking 
boolean combinations. It is closed under existential quantification by Proposition 2.7 of 
[21]. It follows that M is mutually algebraic. �
Definition 4.4. We say a (possibly incomplete) theory T is mutually algebraic if every 
M |= T is mutually algebraic. A hereditary L-property H is mutually algebraic if TH is 
mutually algebraic.

Observe that every totally bounded L-structure is automatically mutually algebraic 
(just take Δ in Lemma 4.3 to be the set of all atomic formulas). We will see that relative 
to an appropriate change of language, the converse holds as well. In what follows, a 
totally bounded frame, defined precisely below, is an L-formula encoding conditions (1) 
and (2) of Lemma 4.3. Given a tuple of variables x and x ∈ ∪x, let x̂ denote the tuple 
obtained from x by deleting x.

Definition 4.5. A totally bounded frame is a universal L-formula θ(y) such that the fol-
lowing holds. There exists k ∈ N, a finite set Δ(x, y) of quantifier-free L-formulas, and 
for each relation R(x′) ∈ L, a corresponding formula δR(x′; y), which is a boolean com-
bination of elements from Δ(x; y), so that

θ(y) �

⎛⎝ ∧
ϕ∈Δ

∧
x∈∪x

∀x∃≤kx̂ϕ(x, x̂, y)

⎞⎠ ∧
( ∧

R∈L
∀x′[R(x′) ↔ δR(x′, y)]

)
.

The following Lemma amounts to simply unpacking the definitions, with (2) ⇒ (3)
being an instance of compactness.

Lemma 4.6. The following are equivalent for a (possibly incomplete) L-theory T :

(1) T is mutually algebraic;
(2) For every M |= T , there is a totally bounded frame θ(y) so that M |= ∃yθ(y); and
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(3) There is a finite set {θj(yj) : 1 ≤ j ≤ m} of totally bounded frames such that 
T �

∨m
j=1 ∃yjθj(yj).

4.2. Counting dichotomies for mutually algebraic properties

In this subsection we analyze the possible speeds of mutually algebraic hereditary 
L-properties. The main idea is that, via totally bounded frames θ(y), any mutually alge-
braic hereditary L-property H is essentially controlled by finitely many totally bounded 
properties H∗

θ , although each of these totally bounded properties will have its own lan-
guage Lθ. The new language Lθ consists of the constants of L, s new constant symbols, 
where s = |y|, and a new relation symbol Rϕ(x′) for each ϕ(x′, y) ∈ Δ(x, y).

Definition 4.7. Suppose H is a hereditary L-property and s ∈ N. Let L(s) := L ∪
{c1, . . . , cs}, where each ci is a new constant symbol not in L. For any N ∈ H and any 
a ∈ Ns, let Na denote the natural expansion of N to an L(s)-structure obtained by 
interpreting each ci as ai. Let H(s) := {Na : N ∈ H, a ∈ Ns}.

When L(s) is clear from context, we will write c to denote (c1, . . . , cs), the tuple of 
new constant symbols. Clearly, if H is a hereditary L-property, then H(s) is a hereditary 
L(s)-property. Moreover, for any integer n,

|Hn| ≤ |H(s)n| ≤ ns|Hn|.

Definition 4.8. Given a totally bounded frame θ(y) with |y| = s, let

Hθ := {N ∈ H(s) : N |= θ(c)}.

Observe that for any totally bounded frame θ(y) with |y| = s, since θ(y) is a universal 
formula, and since H(s) is a hereditary L(s)-property, we have that Hθ is also a hereditary 
L(s)-property.

Lemma 4.9. Suppose H is a hereditary L-property H and θ(y) is a totally bounded frame 
with |y| = s. For every n ∈ N, if n(θ) := |{M ∈ Hn : M |= ∃yθ(y)}|, then n(θ) ≤
|(Hθ)n| ≤ ns · n(θ).

Proof. The inequalities are obvious, since for any M ∈ Hn with M |= ∃yθ(y), there is 
at least one, and at most ns many a ∈ Ms, such that Ma |= θ(a). �
Definition 4.10. Suppose H is a hereditary L-property and θ(y) is a totally bounded 
frame with data k, s, Δ(x, y), and {δR(x′, y) : R(x′) ∈ L} as in Definition 4.5.

• Let Δc(x) := {ϕ(x′, c) : ϕ(x′, y) ∈ Δ}.
• Let Lθ := {constants of L(s)} ∪ {Rϕ(x′) : ϕ(x′, c) ∈ Δc}.
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• If ψ is a boolean combination of elements of Δc, let ψ∗ denote the Lθ-formula ob-
tained as follows: for each ϕ(x′; c) ∈ Δc, replace any instance of ϕ(x′; c) in ψ with 
Rϕ(x′).

• Define a function f : Hθ → {Lθ-structures} as follows. Given M ∈ Hθ, let f(M) be 
the Lθ-structure with underlying set M , where cf(M) = cM for all constants c ∈ Lθ, 
and where Rf(M)

ϕ := {b ∈ M |x′| : M |= ϕ(b, c)}.
• Let H∗

θ := {f(M) : M ∈ Hθ}.

We claim that for any M ∈ Hθ, any relation R ∈ L, and any relation Rϕ ∈ Lθ, RM

is 0-definable in f(M) and Rf(M)
ϕ is 0-definable in M. Indeed, given a relation R ∈ L, 

RM = δR(M; c) = δ∗
R(f(M); c), and given a relation Rϕ of Lθ, R

f(M)
ϕ = ϕ(M; c). 

An easy induction on formulas then implies that for any � ∈ N, M and f(M) have 
exactly the same 0-definable subsets of M � (this also uses the facts that L(s) and Lθ

have the same set of constants, and that M and f(M) have the same realizations of said 
constants). These observations make the following lemma straightforward.

Lemma 4.11. Let H be a hereditary L-property and let θ(y) be a totally bounded frame. 
Then the following hold.

(1) The function f : Hθ → H∗
θ is bijection.

(2) For any integer n, f maps (Hθ)n onto (H∗
θ)n, so |(Hθ)n| = |(H∗

θ)n|.
(3) For every M ∈ Hθ, M and f(M) have the same number of ∼-classes (in the sense 

of Definition 2.1).
(4) H∗

θ is a totally bounded, hereditary Lθ-property.

Proof. Proof of (1): That f maps Hθ onto H∗
θ is immediate by the definition of H∗

θ. To 
see that f is injective, suppose M, N ∈ Hθ and f(M) = f(N ). Then clearly, M = N , 
and cM = cf(M) = cf(N ) = cN for each constant symbol c ∈ L(s). Fix any relation 
symbol R(x′) ∈ L(s). Since the relation symbols in L(s) are the same as in L, R(x′) ∈ L. 
Since M, N |= θ(c), we have

M |= ∀x′(R(x′) ↔ δR(x′; c)) and N |= ∀x′(R(x′) ↔ δR(x′, c)).

Thus, RM = {b ∈ M |x′| : M |= δR(b; c)} = {b ∈ M |x′| : f(M) |= δ∗
R(b)}, and dually, 

RN = {b ∈ N |x′| : N |= δR(b; c)} = {b ∈ N |x′| : f(N ) |= δ∗
R(b)}. Since f(M) = f(N ), 

we have δ∗
R(f(M); c) = δ∗

R(f(N ); c). Thus, RM = RN , so the L(s)-structures M and N
are equal.

Proof of (2): This follows immediately from (1), since for all M ∈ Hθ, M has under-
lying set [n] if and only if f(M) has underlying set [n].

Proof of (3): This follows from the fact that for every power �, the subsets of M � defined 
by quantifier-free L(s)-formulas in M are the same as those defined by quantifier-free 
Lθ-formulas in f(M) (see the remarks following Definition 4.10).
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Proof of (4): It is clear that H∗
θ is closed under isomorphism, since Hθ is. To see that 

H∗
θ is hereditary, choose any M∗ ∈ H∗

θ and let N ∗ ⊆M∗ be an Lθ-substructure of M∗. 
Let N denote the underlying set of N ∗. We want to show that there is some N ∈ Hθ

with f(N ) = N ∗. By definition of H∗
θ , there is some M ∈ Hθ so that M∗ = f(M). 

Let N be the L(s)-substructure of M with underlying set N (this is possible, since for 
each constant c of L(s), cM = cf(M) = cN ∗ ∈ N). As Hθ is hereditary by Lemma 4.9, 
N ∈ Hθ, so f(N ) is defined. We claim that N ∗ = f(N ). Clearly, N ∗ and N have the same 
underlying set, N . For any constant symbol c of Lθ, cf(N ) = cN = cM = cf(M) = cN ∗ , 
with the first and third equalities arising by the definition of f and the second and fourth 
by the definition of being a substructure. Now choose any relation symbol Rϕ(x′) ∈ Lθ. 
Say |x′| = �. Then

RN ∗

ϕ = Rf(M)
ϕ ∩N � = ϕM ∩N � = ϕN = Rf(N )

ϕ ,

where the first equality is from N ∗ being an Lθ-substructure of f(M) and the underlying 
sets of N , N ∗ both being N , the second and fourth equalities are from the definition of 
f , and the third equality is from N being an L(s)-substructure of M. Thus, N ∗ = f(N ), 
so N ∗ ∈ H∗

θ . Therefore, we have shown that H∗
θ is a hereditary Lθ-property.

That H∗
θ is totally bounded follows from the fact that for every M ∈ Hθ, every 

ϕ(x′, c) ∈ Δc is k-mutually algebraic in M (since θ(y) is a totally bounded frame), 
hence every Rϕ ∈ Lθ is k-mutually algebraic in f(M). �

We combine Lemmas 4.6 and 4.11 to get a decomposition of any mutually algebraic 
property H.

Proposition 4.12. Suppose H is a mutually algebraic hereditary L-property. Then there 
are positive integers s and m, such that for each j ∈ [m], there is a finite relational 
language Lj, a totally bounded hereditary Lj-property H̃j, and a map πj : H̃j → H
satisfying:

(1) For every M ∈ H̃j, the following hold.

(a) M and πj(M) have the same universe M ; and
(b) the number of ∼-classes of πj(M) is at most the number of ∼-classes of M.

(2) For every integer n, the restriction of πj to (H̃j)n is at most ns-to-one.
(3) H =

⋃m
j=1{πj(M) : M ∈ H̃j}.

Proof. As TH is mutually algebraic, Lemma 4.6 implies there exists a set {θj(yj) : j ∈
[m]} of totally bounded frames such that for every M ∈ H, there is some j ∈ [m] so 
that M |= ∃yjθj(yj). Set s := max{|yj | : j ∈ [m]}. For each j ∈ [m], let Lj := Lθj

, 
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H̃j := H∗
θj

, and let fj : Hθj
→ H̃j be as in Definition 4.10 applied to θj(yj). Note that 

by Lemma 4.11, each H̃j is a totally bounded hereditary Lj-property.
For each j ∈ [m], set Hj := {M ∈ H : M |= ∃yjθj(yj)} and define a map πj :

H̃j → Hj as follows: given M ∈ H̃j , let πj(M) be the L-reduct of the L(|yj |)-structure, 
f−1

j (M) (note f−1
j (M) is well defined since fj is injective).

Then (1a) holds by definition of πj, and (1b) holds by Lemma 4.11(3) and the fact 
that, in general, the number of ∼-classes of a structure is non-increasing when taking 
reducts. Property (2) follows from Lemmas 4.9 and 4.11(2). For (3), it suffices to show 
that for each j ∈ [m], Hj = {πj(M) : M ∈ H̃j} (since H =

⋃m
j=1Hj). To this end, fix 

j ∈ [m]. We show first that Hj ⊆ {πj(M) : M ∈ H̃j}. Suppose N ∈ Hj . By definition of 
Hj , there exists a ∈ N |yj | such that N |= θj(a). Note Na ∈ Hθj

. Let N ∗ = fj(Na) ∈ H̃j . 
Since fj is a bijection (Lemma 4.11), f−1

j (N ∗) = f−1
j (fj(Na)) = Na. Clearly the L-

reduct of Na is N , and thus πj(N ∗) = N . This shows N ∈ {πj(M) : M ∈ H̃j}.
We now show Hj ⊇ {πj(M) : M ∈ H̃j}. Suppose N ∈ {πj(M) : M ∈ H̃j}. Let 

N ∗ ∈ H̃j be such that N = πj(N ∗), i.e., N is the L-reduct of N ′ := f−1
j (N ∗). By 

definition of fj , N ′ ∈ Hθj
. By definition of Hθj

, the L-reduct of N ′ must be in Hj , so 
N ∈ Hj . �

We now combine the results of Sections 2 and 3 to prove counting dichotomies for 
the speed of a mutually algebraic property. We do this by characterizing their speeds in 
terms of the speeds of totally bounded properties.

Theorem 4.13. Suppose H is mutually algebraic. Then one of the following holds: H is 
basic, |Hn| = n(1−1/�−o(1))n for some � ≥ 2, or |Hn| ≥ n(1−o(1))n. More specifically, let 
{H̃j : j ∈ [m]} be as in Proposition 4.12. Then one of the following holds:

(a) For some j ∈ [m], H̃j has infinite components. In this case, |Hn| ≥ nn(1−o(1)).
(b) For every j ∈ [m], H̃j has finite components, and � ≥ 2 is maximal such that for 

some j ∈ [m], H∗
j has infinitely many components of size �. In this case, |Hn| =

nn(1−1/�−o(1)).
(c) For every j ∈ [m], H̃j is basic. In this case, H is basic.

Proof. Fix m, s ∈ N, and {Lj , H̃j , πj : j ∈ [m]} be as in Proposition 4.12. For each 
j ∈ [m], let πj(H̃j) = {πj(M) : M ∈ H̃j}. We split into cases depending on the 
complexity of the totally bounded properties H̃j .

Suppose first that for each j ∈ [m], H̃j is basic. Then there is K ∈ N such that for each 
j ∈ [m], every element of H̃j has at most K distinct ∼-classes. By Proposition 4.12(1b), 
every πj(M) has at most K distinct ∼-classes. Since H =

⋃m
j=1 πj(H̃j), this implies H

is basic as well.
Suppose now that for some j ∈ [m], H̃j has infinite components. Then by Theo-

rem 3.9, |(H̃j)n| ≥ nn(1−o(1)), so by Proposition 4.12(2) |(πj((H̃j)n)| ≥ n−s ·nn(1−o(1)) =
nn(1−o(1)). Thus, |Hn| ≥ nn(1−o(1)), since πj(H̃j) ⊆ H.
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We are left with the case where J := {j ∈ [m] : H̃j is not basic} �= ∅ and for each 
j ∈ [m], H̃j has finite components. For each j ∈ J , let w(j) ≥ 2 be the maximum 
integer such that some element of H̃j has infinitely many components of size w(j). By 
Theorem 3.9, |(H̃j)n| = nn(1−1/w(j)−o(1)). Thus if � = max{w(j) : j ∈ [m]}, these 
observations and Proposition 4.12 imply

n−s · nn(1−1/�−o(1)) ≤ |Hn| ≤ |J |nn(1−1/�+o(1)),

which implies |Hn| = nn(1−1/�+o(1)), since |J | ≤ m and s are constants. �
Note that Theorem 4.13 together with Corollary 3.10 give us a strong structural un-

derstanding of the properties in the factorial range, although we are required to consider 
properties in other languages. In forthcoming work, the authors consider characteriza-
tions of these properties in terms of the original language, in analogy to the structural 
characterizations of the factorial range for graph properties from [6]. This work also 
shows the gap between the factorial and penultimate range is directly related to cellu-
larity, a notion with several interesting model theoretic formulations (see for instance 
[22,23,28]).

4.3. A lower bound for non-mutually algebraic hereditary classes

The goal of this subsection is to prove Proposition 4.26, which shows that if a heredi-
tary L-property H is not mutually algebraic, then |Hn| ≥ n(1−o(1))n. In order to do this, 
we need to introduce concepts and quote results from [19] that describe the structure 
of large models of TH. Throughout this subsection, assume that L is a finite relational 
language where every atomic formula has free variables among z, with |z| = r.

In a prior version [18] of this article, there was a gap in the proof of Proposition 4.26
(Proposition 4.10 there). Remedying this required additional model theoretic results, 
namely Lemma 4.21 and Proposition 4.25. The interested reader without model theoretic 
training may wish to also refer to [18], since the statements of the results there are still 
correct and use less model theoretic terminology.

Note that whenever A ⊆ B ⊆ M , there is a natural projection from Sx(B) onto Sx(A)
given by restriction, i.e. given p ∈ Sx(B), let

p�A := {θ(x, a) ∈ p : ∪a ⊆ A}.

An easy induction on the complexity of quantifier-free formulas shows that for any 
two distinct p, q ∈ Sx(A), there is some atomic L-formula α(x, y) and some a ∈ A|y| such 
that α(x, a) is in the symmetric difference p�q. Iterating this gives a bound on the size 
of a separating family for finitely many types.
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Lemma 4.14. Suppose M is any L-structure. For any subset A ⊆ M and any x ⊆ z, if 
{pi(x) : i ∈ [m]} ⊆ Sx(A) are distinct, then there is B ⊆ A, such that |B| ≤ mr and 
such that {pi�B : i ∈ [m]} are pairwise distinct.

Proof. Given such a set of types, {pi(x) : i ∈ [m]}, we claim by induction on 0 ≤ j ≤ m

that there is Bj ⊆ A of size at most jr such that

|{pi�Bj
: i ∈ [m]}| ≥ j,

which suffices to prove the Lemma. For j = 0, the claim is trivially by taking B0 = ∅. 
So assume 0 ≤ j < m, and suppose by induction that Bj is chosen so that |Bj | ≤ jr and 
|{pi�Bj

: i ∈ [m]}| ≥ j. Let � := |{pi�Bj
: i ∈ [m]}|. If � ≥ j + 1, then taking Bj+1 = Bj

suffices. However, if � = j, then as j < m, there are distinct i, i′ ∈ [m] such that 
pi�Bj

= pi′�Bj
. As pi �= pi′ , by the observation above, there is an atomic α(x, a) ∈ pi�pi′ . 

Setting Bj+1 := Bj ∪ {∪a} then suffices (note |Bj+1| ≤ |Bj | + r ≤ (j + 1)r). �
Definition 4.15. Suppose M is an L-structure. An infinite array in M is any set of the 
form {di : i ∈ N} ⊆ Mk for some k ≥ 1, such that (∪di) ∩ (∪dj) = ∅ for distinct i, j ∈ N.

Given A ⊆ M and p ∈ Sx(A), we say p supports an infinite array in M there is an 
infinite array of realizations of p in M.

Definition 4.16. An L-structure U is ℵ1-saturated3 if, for every countable set A ⊆ U , for 
every x ⊆ z, and for every p(x) ∈ Sx(A), U realizes p, i.e., there is b ∈ U |x| such that 
U |= θ(b, a) for every θ(x, a) ∈ p.

Suppose U is ℵ1-saturated. A type p ∈ Sx(U) is called a global type. Such types p
are typically not realized in U , but for any countable set A ⊆ U , the restriction p|A is 
realized in U . In [19], the authors identify three important classes of global types.

Definition 4.17. Suppose U is ℵ1-saturated and x ⊆ z.

• Suppx(U) := {p ∈ Sx(U) : for every countable A ⊆ U, there is b ∈ (U \
A)|x| realizing p|A}.

• QMAx(U) = {p ∈ Suppx(U) : p contains a mutually algebraic formula of the form
θ(x, a)}.

• A type p ∈ Suppx(U) is array isolated if there is some θ(x, a) ∈ p such that p is the 
unique element of Suppx(U) containing θ(x; a).

3 This notion usually refers to realizations of types involving quantifiers, but here we consider only 
quantifier-free types.
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Global types p ∈ Suppx(U) are called supportive types. This is because an easy com-
pactness argument shows that for a global type p, p ∈ Suppx(U) if and only if for every 
countable A ⊆ U , p|A supports an infinite array in U .

In Theorem 6.1 of [19], the authors give several equivalents of mutual algebraicity in 
a finite, relational language.

Theorem 4.18 (Theorem 6.1 of [19]). Suppose U is an ℵ1-saturated L-structure. Then 
the following are equivalent.

(1) Th(U) is mutually algebraic;
(2) For all x ⊆ z, Suppx(U) is finite;
(3) For all x ⊆ z, QMAx(U) is finite;
(4) For all x ⊆ z, every p ∈ Suppx(U) is array isolated.

Moreover, the proof of Theorem 4.18 in [19] shows the equivalence of (2), (3), and 
(4) holds locally for each tuple x ⊆ z. A crucial idea in this section will be, given a 
non-mutually algebraic hereditary property H, to consider the shortest x ⊆ z for which 
Clause (3) of Theorem 4.18 fails in some ℵ1-saturated U |= TH (e.g. this will occur in 
the proof of Proposition 4.24). In a related vein, our next lemma, Lemma 4.20, considers 
what one can deduce about types in the variables x, when every proper subtuple x′ � x

satisfies Clause (3) above. To state Lemma 4.20, we first require a definition and some 
further results from [19].

Definition 4.19. Suppose U is an ℵ1-saturated L-structure and p(x) ∈ Suppx(U) and 
q(y) ∈ Suppy(U) are array isolated, global types in disjoint variables x, y ⊆ z. The free 
product p ⊗q is defined to be the set of formulas θ(x, y; a), such that for some countable 
M ≺ U with ∪a ⊆ M , some c ∈ U |x| realizing p�M , and some d ∈ U |y| realizing q�Mc, 
it holds that U |= θ(c, d; a).

In [19], the authors showed that in the notation of Definition 4.19, p ⊗q ∈ Suppxy(U), 
and moreover, θ(x, y, a) ∈ p ⊗ q if and only if U |= θ(c, d, a) for every countable M  U
with ∪a ⊆ M , for every c ∈ U |x| realizing p�M , and for every dd ∈ U |y| realizing q�Mc.

We are now ready to state Lemma 4.20. Its proof arises from simply relativizing 
the proof of Proposition 5.9 of [19] to a subsequences x ⊆ z with only finitely many 
supportive types.

Lemma 4.20 (cf. Proposition 5.9 of [19]). Let U be an ℵ1-saturated L-structure. Suppose 
x ⊆ z is a non-empty subtuple, and QMAx′(U) is finite for all x′ � x. Then the following 
hold.

(1) For all x′ � x, every p ∈ Suppx′(U) is a free product of at most r types from ⋃
{QMAx′′(U) : x′′ ⊆ x′}. In particular Suppx′(U) is finite.
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(2) Every p ∈ Suppx(U) \ QMAx(U) is a free product of at most r types from ⋃
{QMAx′(U) : x′ � x}. Thus, Suppx(U) \QMAx(U) is finite as well.

Proof. For (1), this is a direct consequence of the proof of Proposition 5.9 of [19].
We now show (2). Choose p ∈ Suppx(U) \QMAx(U), and let M  U be any countable 

submodel. Choose a realization c of p�M in U , and fix a maximal mutually algebraic 
decomposition c = c1 ∧ · · · ∧ cs of c (i.e. for each 1 ≤ i ≤ s, ci satisfies a quantifier-free 
mutually algebraic formula with parameters from M , and s is as small as possible). Since 
qftp(c/M) is not mutually algebraic, s > 1. For each j, let qj be the global type extending 
qftp(cj/M). Then run the argument from the proof of Proposition 5.9 to conclude that 
if p �= q1⊗· · ·⊗qs, then qftp(c/M) would contain a mutually algebraic formula θ(x, m), 
contradicting p /∈ QMAx(U). �

Observe that when |x| = 1, Lemma 4.20 (1) is vacuous, and (2) is immediate (since 
in that case, Suppx(U) = QMAx(U)). Further, we point out that if Th(U) is mutually 
algebraic, then Lemma 4.20 follows immediately from Proposition 5.9 and Theorem 6.1 
of [19].

With the technical machinery above, our next step is to describe an indiscernible 
grid (Definition 4.22 below) and show that if H is any non-mutually algebraic hered-
itary property, then there is an indiscernible grid N |= TH (Proposition 4.24 below). 
From this N , we will extract a family of finite substructures that we will use to prove 
Proposition 4.26.

Definition 4.21. Suppose M is an infinite L-structure, x ⊆ z is a non-empty subtuple, 
and P = {pi(x) : i ∈ N} is a set of distinct types from Sx(M). A grid for M and P is 
an L-structure N whose universe has the form N = M ∪

⋃
{∪bi,q : i ∈ N, q ∈ Q}, such 

that the following holds.

(1) For each i ∈ N and q ∈ Q, bi,q ∈ (N \M)s, and | ∪ bi,q| = s, where s = |x|.
(2) For each i ∈ N, {bi,q : q ∈ Q} is a set of realizations of pi(x).
(3) Each b ∈ N \M is contained in exactly one bi,q.

Suppose N is a grid for M and P , in the notation of Definition 4.21. Observe that 
(1) implies that for each i ∈ N, and every x �= x′ from the tuple x, we have that the 
formula x �= x′ is in pi(x). Given σ ∈ Aut(Q, ≤), note that σ induces a permutation σ∗

on N as follows: σ∗(m) = m for all m ∈ M and σ∗(bi,q) = bi,σ(q).

Definition 4.22. Suppose N is a grid for M and P , in the notation of Definition 4.21.

(1) We say N is an indiscernible grid for M and P if for every σ ∈ Aut(Q, ≤), σ∗ is an 
L-automorphism of N .
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(2) Assuming N is an indiscernible grid for M and P , a hybrid tuple is an s-tuple 
d ∈ (N \ M)s such that d is not a permutation of any bi,q. A hybrid type is an 
element of Sx(M) of the form qftp(d/M), for some hybrid tuple d.

Remark 4.23. Note that if s = 1, then there are no hybrids. This is what makes the s = 1
case much easier than the general case in what follows.

Proposition 4.24. Suppose T is any universal L-theory that is not mutually algebraic. 
Then there are 1 ≤ s ≤ r, an integer e, a countable M |= T , and an infinite set 
P = {pi(x) : i ∈ N} ⊆ Sx(M) with |x| = s, such that each pi(x) contains a mutually 
algebraic formula θi(x). Moreover:

(1) There exists an indiscernible grid N for M and P such that N |= T ; and
(2) |{qftp(d/M) : d ∈ Ns a hybrid tuple}| ≤ e.

Proof. As T is not mutually algebraic, use Theorem 4.18(3) of [19] to choose 1 ≤ s ≤ r

least such that there exists x ⊆ z with |x| = s, and an ℵ1-saturated U |= T with infinitely 
many distinct global types S = {pi(x) ∈ QMAx(U) : i ∈ N}. Fix such a U , x, and 
S = {pi(x) ∈ QMAx(U) : i ∈ N}. By the minimality of s, for any proper subsequence 
x′ � x, there are only finitely many q(x′) ∈ QMAx′(U). Thus, by eliminating at most 
finitely many types from S, we may assume that for each i ∈ N, (x �= x′) ∈ pi(x) for 
all distinct x, x′ ∈ x. Since each pi(x) ∈ Suppx(U), (x �= m) ∈ pi for all x ∈ x and 
m ∈ U . Let M  U be any countable, elementary substructure such that the restrictions 
pi(x) := pi�M are pairwise distinct and set P := {pi(x) : i ∈ N}.

To prove (1) holds, choose, for each i ∈ N, an infinite array {di,� : � ∈ N} of 
realizations of pi(x) in U . By the pigeon-hole principle, we may assume, possibly af-
ter reindexing, that di,� and di′,�′ are disjoint unless (i, �) = (i′, �′). Let M′  U be 
a countable elementary substructure containing M ∪

⋃
{di,� : i, � ∈ N}. Visibly, M′

contains a grid for M and P , but it might not be indiscernible. We obtain an in-
discernible grid by compactness: Let L∗ be L, adjoined with new constant symbols 
{cm : m ∈ M} ∪ {ci,q : i ∈ N, q ∈ Q} (each ci,q is an s-tuple of new constant symbols) 
and let T ∗ be the L∗-theory asserting:

• The elementary diagram of M;
• For each i ∈ N, each ci,q realizes pi(x),
• For distinct (i, q), (i′, q′) ∈ N ×Q, ci,q and ci′,q′ are disjoint;
• For each σ ∈ Aut(Q, ≤), σ∗ is an L-automorphism of M ∪

⋃
{
⋃

ci,q : i ∈ N, q ∈ Q}.

Arguing by induction on the number of σ’s mentioned, using Ramsey’s theorem one 
shows that every finite subset of T ∗ can be realized in an L∗-expansion of M′. By 
compactness, T ∗ has a model M∗. For each i ∈ N, q ∈ Q, let bi,q be the realization of 
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ci,q in M∗. Set N = M ∪
⋃
{
⋃

bi,q : i ∈ N, q ∈ Q}, and N ∗ = M∗[N ]. Finally, let N be 
the L-reduct of N ∗.

To prove (2), let U !M be an ℵ1-saturated elementary extension. By the minimality 
of s, for every proper x′ � x, there are only finitely many q(x′) ∈ Sx′(M) that contain 
a mutually algebraic formula and support an infinite array. It follows that QMAx′(U) is 
finite for each proper x′ � x. Hence, Q :=

⋃
{QMAx′(U) : x′ � x} is finite as well.

We claim that for every hybrid tuple d ∈ (N \M)s, qftp(d/M) is the restriction to 
M of a free product of types from Q. To see this, fix d ∈ (N \M)s that is not contained 
in any bi,q. Clearly, qftp(d/M) supports an infinite array (in fact, N contains an infinite 
array of realizations of this type), but the indiscernibility demonstrates that qftp(d/M)
cannot contain a mutually algebraic formula. Thus, the global extension p of qftp(d/M)
is in Suppx(U) \ QMAx(U). So, by Lemma 4.20(2), p is the free product of at most r
global types from Q. Since Q is finite, this shows (2). �
Lemma 4.25. Suppose H is a hereditary L-property that is not mutually algebraic. Then 
there are positive integers s ≤ r and e such that for every positive integer L, there is 
NL |= TH and quantifier-free formulas {ϕi(x, a) : i ∈ [L]} such that NL can be partitioned 
as

NL = AL ∪ {∪bi,q : i ∈ [L], q ∈ Q},

so that the following hold.

(1) For each i ∈ [L] and q ∈ Q, bi,q ∈ Ns
L and | ∪ bi,q| = |x| = s.

(2) |AL| ≤ (L + e)r + w, where w is the number of constants from L.
(3) For each constant c of L, cNL ∈ AL.
(4) ∪a = AL.
(5) For all i ∈ [L], the following hold.

(a) For all q ∈ Q, NL |= ϕi(bi,q; a); and
(b) If d ∈ (NL)s and NL |= ϕi(d; a), then d is a permutation of some bi,q.

Proof. As TH is not mutually algebraic, Proposition 4.24 implies there exist positive 
integers s ≤ r and e, a countable M |= TH, an infinite set P = {pi(x) : i ∈ N} ⊆ Sx(M), 
where |x| = s, and an indiscernible grid N for M and P , with universe

N = M ∪
⋃
{∪bi,q : i ∈ N, q ∈ Q},

such that there are at most e many hybrid types realized in N over M . Let {qj : j ∈ [e]}
be the hybrid types over M realized in N .

Let AL be a minimal subset of M containing cN for every constant c, and such that 
the restrictions of the types {pi(x) : i ≤ L + e} to AL are pairwise distinct. In light of 
Lemma 4.14, such an AL can be found of cardinality at most (L + e)r + w.
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Let NL be the substructure of N with universe NL = AL ∪ {bi,q : i ∈ [L], q ∈ Q}. 
As AL is finite, every complete quantifier-free type over AL can be described by a single 
formula. For each i ∈ [L], let ϕi(x; a) be the formula describing the restriction pi�AL

. 
Since each bi,q realizes pi, we have NL |= ϕi(bi,q; a) for every q ∈ Q. By construction, we 
now have properties (1)-(3) as well as (4a).

We just need to verify (4b). To this end, fix d ∈ (NL)s such that NL |= ϕi(d; a)
for some i ∈ [L]. Since pi implies x �= m for every x ∈ x and m ∈ M , and since 
ϕi(x; a) describes pi�AL

, we must have d ∈ (NL \ AL)s. By definition of NL and AL, 
this implies d ∈ (N \ M)s. By our choice of AL, for each j ∈ [e], pi�AL

�= qj�AL
, so 

qftp(d/M) /∈ {qj : j ∈ [e]}. Thus d ∈ (N \M)s is not a hybrid tuple, and consequently 
must be a permutation of bi′,q′ for some i′ ∈ N and q′ ∈ Q. Since d ∈ Ns

L, we must have 
i′ ∈ [L]. Finally, because i′ ∈ [L], d |= pi�AL

, and pi�AL
�= pj�AL

for all j ∈ [L] \ {i}, we 
must have that i = i′. �
Proposition 4.26. For any hereditary L-property H, if H is not mutually algebraic, then 
|Hn| ≥ n(1−o(1))n.

Proof. Assume H is a hereditary L-property which is not mutually algebraic. Let c

denote the number of constants of L. Apply Lemma 4.25 to obtain 1 ≤ s ≤ r and e. We 
show that for every integer t ≥ 1, |Hn| ≥ n(1− r+1

ts+r −o(1))n. This implies |Hn| ≥ n(1−o(1))n.
Fix an integer t ≥ 1 and choose n � tre. We will construct a special G ∈ Hn, and 

then show there are many distinct elements of Hn, each isomorphic to G.
Set L = �n−er−c

st+r �. Let NL, AL, {ϕi(x; a) : i ∈ [L]} and {bi,q : i ∈ [L], q ∈ Q} be 
as in the conclusion of Lemma 4.25. Let B =

⋃
{∪bi,j : i ∈ [L], j ∈ [t]}. Note that 

|B| = Lst, so |AL ∪ B| ≤ Lst + (L + e)r + c ≤ n. Choose X ⊆ NL \ (AL ∪ B) so that 
|AL| + |B| + |X| = n.

Define G := NL[AL ∪B ∪X], and observe that G ∈ Hn. For each i ∈ [L], let θi(x) be 
the formula ϕi(x, a) ∧

∧
x∈x,a∈X∪AL

x �= a. Note each θi(x) has parameters from AL∪X, 
and G |=

∧t
j=1 θi(bi,j). Further, for all d ∈ Gs, if G |= θi(d), then there is j ∈ [t] such 

that d is a permutation of bi,j .
Let θ(x) =

∨L
i=1 θi(x). Clearly G |=

∧L
i=1

∧t
j=1 θ(bij). Further, for all d ∈ Gs, if 

G |= θ(d), then d is the permutation of bi,j for some i ∈ [L] and j ∈ [t]. We now give a 
procedure for constructing many distinct L-structures, each isomorphic to G.

(1) Choose an equipartition W = {W1, . . . , WLt} of B into Lt pieces, each of size s. For 
each i ∈ [Lt], let wi denote the tuple enumerating Wi in increasing order.

(2) Choose an equipartition Q = {Q1, . . . , QL} of W into L pieces, each of size t. For 
each 1 ≤ i ≤ L, let 1 ≤ αi

1 < . . . < αi
t ≤ Lt be such that Qi = {Wαi

1
, . . . , Wαi

t
}.

(3) Let fW,Q : [n] → [n] be the function which fixes AL ∪X pointwise, and such that, 
for each 1 ≤ i ≤ L and 1 ≤ j ≤ t, fW,Q(bij) = wαi

j
.

(4) Let GW,Q be the L-structure with universe [n] so that fW,Q : G → GW,Q is an 
L-isomorphism.
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We now show that if W and W ′ are distinct choices from step (1), then for any 
respective choices of Q and Q′ in step (2), we have GW,Q �= GW′,Q′ . Indeed, let W �= W ′

be distinct equipartitions of B. Then there is some W ∈ W with W /∈ W ′. Let w

enumerate W in increasing order. Then by construction, there are i ∈ [L], j ∈ [t], 
such that w = fW,Q(bij), and thus GW,Q |= θ(w). However, W /∈ W ′ implies that no 
permutation of w can be equal to fW′,Q′(bi′j′), for any i′ ∈ [L], j′ ∈ [t]. Consequently, 
GW′,Q′ |= ¬θ(w). Thus GW,Q �= GW′,Q′ .

We now show that for any fixed choice of W = {W1, . . . , Wt} from step (1), if Q �= Q′

are distinct choices in step (2), then we have GW,Q �= GW,Q′ . Indeed, suppose Q =
{Q1, . . . , Qt} and Q′ = {Q′

1, . . . , Q′
t} are distinct equipartitions of W. Then there is 

some 1 ≤ i �= i′ ≤ t for which Qi ∩ Q′
i �= ∅, say u ∈ Qi ∩ Q′

i. Let wu enumerate Wu

in increasing order. By construction, wu = fW,Q(bij) = fW,Q′(bi′j′) for some j, j′ ∈ [t]. 
Thus GW,Q |= ϕi(wu; a) while GW,Q′ |= ϕi′(wu; a). Since i �= i′, ϕi(x; a) � ¬ϕi′(x; a), so 
we must have GW,Q �= GW,Q′ .

Thus |Hn| is at least the number of equipartitions of [|B|] = [Lst] into Lt pieces, 
times the number of equipartitions of [Lt] into L pieces. By Lemma 3.3 we obtain the 
following, where n′ = Lst (note n′ � s, r, e, c).

|Hn| ≥ (n′)(1−1/s−o(1))n′
(n′/s)(1−1/t)(n′/s) = (n′)(1−1/ts−o(1))n′

= n(1−1/ts−o(1))n′

= n(1−1/ts−o(1)) tsn
ts+r

= n( ts
ts+r − 1

ts+r −o(1))n

= n(1− r+1
ts+r −o(1))n.

We have shown that for all t ≥ 1, |Hn| ≥ n(1− r+1
ts+r −o(1))n. Consequently, |Hn| ≥

n(1−o(1))n. �
5. Proof of Theorem 1.3 and minimal properties in range 1

In this section we bring together what we have shown to prove Theorem 1.3. We then 
characterize the minimal properties of each speed in range 1.

Proof of Theorem 1.3. If H is basic, then by Theorem 2.4 there are finitely many rational 
polynomials p1, . . . , pk such that for all sufficiently large n, |Hn| =

∑k
i=1 pi(x)in, so case 

(1) holds. So assume H is not basic. Observe that by definition, this implies r ≥ 2.
If H is also not mutually algebraic, then Theorem 4.26 implies nn(1−o(1)) ≤ |Hn| and 

case (3) holds. We are left with the case when H is mutually algebraic and not basic. By 
Theorem 4.13, either |Hn| ≥ nn(1−o(1)) (so case (3) holds), or there is an integer k ≥ 2
such that |Hn| = nn(1−1/k−o(1)) (case (2) holds). �

An immediate corollary of the proof of Theorem 1.3 is the converse of Theorem 2.4.
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Corollary 5.1. H is basic if and only if there is k ≥ 1 and rational polynomials p1, . . . , pk

such that for sufficiently large n, |Hn| =
∑k

i=1 pi(x)in.

Now that we have Corollary 5.1, we can characterize the minimal properties of each 
speed in range (1). Suppose H is a hereditary L-property. A strict subproperty of H is any 
hereditary L-property H′ satisfying H′ � H. We say H is polynomial if asymptotically 
|Hn| = p(n) for some rational polynomial p(x). In this case, the degree of H is the degree 
of p(x). We say H is exponential if its speed is asymptotically equal to a sum of the form ∑�

i=1 pi(n)in, where the pi are rational polynomials and � ≥ 2. In this case, the degree 
of H is �. A polynomial hereditary L-property H is minimal if every strict subproperty 
of H is polynomial of strictly smaller degree. An exponential hereditary L-property H is 
minimal if every strict subproperty of H is either exponential of strictly smaller degree 
or polynomial.

Theorem 5.2. Suppose H is a non-trivial hereditary L-property.

(1) H is a minimal polynomial property of degree k ≥ 0 if and only if H = age(M) for 
some countably infinite L-structure with one infinite ∼-class and exactly k elements 
contained in finite ∼-classes.

(2) H is a minimal exponential property of degree � ≥ 2 if and only if H = age(M) for 
some countably infinite L-structure with � infinite ∼-classes and no finite ∼-classes.

Proof. Fix a hereditary L-property H which is polynomial of degree k ≥ 0 (respectively 
exponential of degree � ≥ 2) and minimal. By Corollary 5.1, H is basic. By Corollary 2.15
there are finitely many countably infinite L-structures M1, . . . , Mm, each with finitely 
many ∼-classes, such that H = F ∪

⋃m
i=1 age(Mi), where F is a trivial hereditary L-

property. Since H is minimal, we may assume F = ∅ (since deleting F does not change 
the asymptotic speed of H). Further, since age(Mi) is a basic hereditary L-property for 
each i ∈ [m], Corollary 5.1 and H =

⋃m
i=1 age(Mi) implies there is 1 ≤ i ≤ m such 

that age(Mi) is also polynomial of degree k (respectively exponential of degree �). By 
minimality, H = age(Mi). Since H = age(Mi) is polynomial of degree k (respectively 
exponential of degree � ≥ 2), Corollary 2.15 implies Mi has one infinite ∼-class and 
exactly k elements in finite ∼-classes (respectively � infinite ∼-classes). We now show 
further, that in the case when H is exponential of degree � ≥ 2, Mi has no finite ∼-
classes. Indeed, suppose it did. Let M′

i be the substructure of Mi obtained by deleting 
the finite ∼-classes. Then age(M′

i) is a strict subproperty of H which is exponential of 
degree � by Corollary 2.12, a contradiction. This takes care of the forward directions of 
both (1) and (2).

Suppose for the converse that M is a countably infinite L-structure with one infinite 
∼-class and exactly k ≥ 0 elements contained in a finite ∼-classes (respectively with �
infinite ∼-classes and no finite ∼-classes). By Corollary 2.15, age(M) is polynomial of 
degree k (respectively exponential of degree �). Suppose by contradiction there is a strict 
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subproperty H′ of age(M) which is also polynomial of degree k (respectively exponential 
of degree �).

Corollary 2.15 implies there are finitely many countably infinite L-structures 
M1, . . . , Mm, each with finitely many ∼-classes, such that H′ = F ∪

⋃m
i=1 age(Mi), 

where F is a trivial hereditary L-property. Again, there must be some i ∈ [m] so that 
age(Mi) is itself polynomial of degree k (respectively exponential of degree �). By Corol-
lary 2.15, age(Mi) has one infinite ∼-class and exactly k elements contained in a finite 
∼-classes (respectively with � infinite ∼-classes an no finite ones). It is straightforward 
to check that because age(Mi) ⊆ age(M), we must have that Mi |= Th∀(M).

Since Mi |= Th∀(M), by fact (2) from the end of Section 1.1, there is some M′ |=
Th(M) with Mi ⊆ M′. By downward Löwenheim-Skolem, there is a countable M′′

with Mi ⊆ M′′ ≺ M′. Our assumptions on the structure of M imply that Th(M) is 
countably categorical, and thus M′′ is isomorphic to M. Consequently, we have shown 
M has a substructure isomorphic to Mi. This along with what we have shown about the 
structure of M and Mi imply that Mi must in fact be isomorphic to M, contradicting 
that age(Mi) � age(M). �
6. Penultimate range

In this section we show that for each r ≥ 2 there is a hereditary property of r-uniform 
hypergraphs whose speed oscillates between speeds close the lower and upper bounds 
of the penultimate range (case (3) of Theorem 1.4). Our example is a straightforward 
generalization of one used in the graph case (see [7]). We include the full proofs for 
completeness.

Throughout this section r ≥ 2 is an integer and G is the class of finite r-uniform 
hypergraphs. We will use different notational conventions in this section, as it requires 
no logic. For this section, a property P means a class of finite r-uniform hypergraphs 
closed under isomorphism. The speed of a property P is the function n "→ |Pn|. We 
denote elements of G as pairs G = (V, E) where V is the set of vertices of G and E ⊆

(
V
r

)
is the set of edges. In this notation, we let v(G) = |V | and e(G) = |E|. Given U ⊆ V , 
G[U ] is the hypergraph (U, E ∩

(
U
r

)
). Given a hypergraph H = (U, E′), we write H ⊆ G

if H is an induced subgraph of G, i.e. if U ⊆ V and H = G[U ]. We begin by defining 
properties which we will use throughout the section.

Definition 6.1. For c ∈ R≥0, define

Sc = {G ∈ G : e(G) ≤ cv(G)} and Qc = {G ∈ G : H ∈ Sc for all H ⊆ G}.

Suppose G = (V, E) is a finite r-uniform hypergraph. The density of G is ρ(G) =
e(G)/v(G), and we say G is strictly balanced if for all V ′ � V , ρ(G[V ′]) < ρ(G). The 
following theorem, proved by Matushkin in [24], is a generalization to hypergraphs of 
results about strictly balanced graphs (see [14,26]).
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Theorem 6.2 (Matushkin [24]). Suppose r ≥ 2 is an integer and c ∈ Q≥0. There exists a 
strictly balanced r-uniform hypergraph with density c if an only if c ≥ 1

r−1 or c = k
1+k(r−1)

for some integer k ≥ 1.

Given an vertex set V and a partition P = {P1, . . . , Pk} of V , an r-matching compatible 
with P is a set E ⊆

(
V
r

)
such that for every e ∈ E and 1 ≤ i ≤ k, |e ∩ Pi| ≤ 1, and for 

every e �= e′ ∈ E, e ∩ e′ = ∅. We say P is an equipartition of V if ||Pi| − |Pj || ≤ 1 for all 
1 ≤ i, j ≤ k. The following is a straightforward generalization of Theorem 16 in [27].

Proposition 6.3. For any constant c ≥ 1
r−1 , |Sc

n| = n(r−1)(c+o(1))n = |Qc
n|.

Proof. For the upper bound, note that by definition, for large n, both |Qc
n| and |Sc

n| are 
bounded above by the following.

�cn	∑
j=0

((
n
r

)
j

)
≤ cn

(
nr

cn

)
≤ (cn + 1)

(nre

cn

)cn

= n(r−1)cn(1+o(1)).

For the lower bound, it suffices to show |Qc
n| ≥ n(r−1)cn−o(n). Assume first c is rational. 

Then by Theorem 6.2, we can choose a finite, strictly balanced r-uniform hypergraph 
H = (V, E) with density c. Without loss of generality, say V = [t] for some t ∈ N>0. Note 
|E| = ct and H ∈ Qc. Suppose n � t is sufficiently large, and choose an equipartition 
P = {W1, . . . , Wt} of [n]. For each e ∈ E, choose Ee to be a maximal matching in [n]
compatible with P and satisfying Ee ⊆

⋃
x∈e Wx. Note the number of ways to choose Ee

is at least (�n/t�!)r−1.
We claim G := ([n], 

⋃
e∈E Ee) ∈ Qc

n. Fix X ⊆ [n]. We show e(G[X]) ≤ c|X|. For each 
1 ≤ i ≤ t, let Xi = X∩Wi and ni = |Xi|. For each 1 ≤ u ≤ n, let Vu = {i ∈ [t] : ni ≥ u}, 
and let Hu = H[Vu]. Let � = max{u : Vu �= ∅}, and observe that � ≤ #n/t$. Observe that 
|X| =

∑�
u=1 v(Hu), since

|X| =
�∑

u=1
u|Vu \ Vu+1| =

�∑
u=1

u(|Vu| − |Vu+1|) = |V1| − |V�+1|+
�∑

u=2
(u− (u− 1))|Vu|

=
�∑

u=1
v(Hu),

where the last equality uses that V�+1 = ∅. We now show that e(G[X]) =
∑�

u=1 e(Hu). 
For each 1 ≤ u ≤ �, let V ′

u = Vu \ Vu+1, and given 1 ≤ i1, . . . , ir ≤ �, let

e(V ′
i1

, . . . , V ′
ir

) = |{{a1, . . . , ar} ∈ E : a1 ∈ V ′
i1

, . . . , ar ∈ V ′
ir
}|.

Then by construction,
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e(G[X]) =
∑

1≤i1≤...≤ir≤�X

i1e(V ′
i1

, . . . , V ′
ir

).

On the other hand, for each 1 ≤ u ≤ �, e(Hu) =
∑

u≤i1≤...≤ir≤� e(V ′
i1

, . . . , V ′
ir

), so

�∑
u=1

e(Hu) =
�∑

u=1

∑
u≤i1≤...≤ir≤�

e(V ′
i1

, . . . , V ′
ir

) =
∑

1≤i1≤...≤ir≤�

i1e(V ′
i1

, . . . , V ′
ir

).

Thus e(G[X]) =
∑�

u=1 e(Hu). Since H is strictly balanced of density c, we know that 
for each u ∈ [�], e(Hu) ≤ cv(Hu). Combining these observations yields that

e(G[X]) =
n∑

u=�

e(Hu) ≤ c

�∑
i=1

v(Hu) = c|X|.

Thus G ∈ Qc
n. Clearly distinct choices for the set {Ee : e ∈ E} yield distinct elements 

([n], 
⋃

e∈E Ee) of Qc
n. Since for each e ∈ E, the number of ways to choose Ee is at least 

(�n/t�!)r−1, this shows that

|Qc
n| ≥

((
�n/t�!

)r−1)|E|
=

(
�n/t�!

)(r−1)ct

= n(r−1)cn−o(n).

Assume now c is irrational. Note that for all c′ ≤ c, Qc′ ⊆ Qc. Thus by the calculations 
above, for all 1

r−1 ≤ c′ < c, where c′ ∈ Q, we have |Qc
n| ≥ n(r−1)(c′−o(1))n. Clearly this 

implies |Qc
n| ≥ n(r−1)(c−o(1))n. �

Definition 6.4. Given an increasing (possibly finite) sequence ν = (ν1, ν2, . . .) of natural 
numbers, let

Pν,c = {G ∈ G : if H ⊆ G and v(H) = νi for some i, then e(H) ≤ cνi}.

Lemma 6.5. Let c ≥ 1
r−1 , ε > 1/c, and ν = (νi)i∈N a sequence of natural numbers with 

k = sup{νi : i ∈ N} ∈ N ∪ {∞}. Then

(1) |Pν,c
n | ≥ n(r−1)(c+o(1))n and |Pν,c

n | = n(r−1)(c+o(1))n whenever n = νi for some i ∈ N,
(2) if k < ∞ and n is sufficiently large, then |Pn

ν,c| ≥ 2nr−ε .

Proof. Note Qc ⊆ Pc,ν so by Proposition 6.3, |Pc,ν
n | ≥ |Qc

n| ≥ n(r−1)(c+o(1))n. When 
n = νi for some i ∈ N, then by definition, Qc

n ⊆ Pν,c
n ⊆ Sc

n. Consequently Proposition 6.3
implies |Pc,ν

n | = n(c(r−1)+o(1))n. This shows (1) holds.
Assume now k < ∞ and let (k) = (1, . . . , k). Note P(k),c ⊆ Pν,c, so it suffices to 

show that for large enough n, |P(k),c
n | ≥ 2n2−ε . Choose δ satisfying ε > δ > 1/c and let 

p = n−δ. Recall that Gn,p is the random r-uniform hypergraph on vertex set [n], with 
edge probability p. We consider the probability Gn,p /∈ P(k),c

n , i.e. the probability that 
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there is H ⊆ Gn,p with v(H) ≤ k and e(H) > cv(H). Given 1 ≤ j ≤ k and S ∈
([n]

j

)
, 

let XS : Gn,p → N be the random variable defined by XS(G) = 1 if e(G[S]) > cj. Note 

P (XS = 1) ≤
∑(j

r)
i=�cj


((j
r)
i

)
pi(1 − p)(

j
r)−i ≤ Cjpcj for some constant Cj depending only 

on j, r and c. Therefore we have the following.

P (Gn,p /∈ P(k),c
n ) ≤

k∑
j=1

∑
S∈([n]

j )
P (XS = 1) ≤

k∑
j=1

(
n

j

)
Cjpcj ≤

k∑
i=1

Cj(n1−δc)j .

Since δc > 1, we have 1 − δc < 0 and thus P (Gn,p /∈ P(k),c
n ) → 0 as n → ∞. Thus we 

may choose n0 so that P (Gn,p /∈ P(k),c
n ) < 1/3 for all n ≥ n0.

Fix any 0 < ε0 < 1/6. If n is sufficiently large, P (e(Gn,p) < pN/2) ≤ 1/2 + ε0, where 
N =

(
n
r

)
. Combining this with the above, we have shown that for all sufficiently large n,

P (Gn,p ∈ P(k),c
n and e(Gn,p) ≥ pN/2) ≥ 1/2− ε0 − 1/3 > 0.

Thus for all sufficiently large n, there exists G = ([n], E) ∈ P(k),c
n such that e(G) ≥ pN/2. 

Since ([n], E′) ∈ P(k),c
n for all E′ ⊆ E, we have that

|P(k),c
n | ≥ 2pN/2 = 2n−δ(n

r)/2 ≥ 2nr−ε

,

where the last inequality is because n is sufficiently large, and ε < δ. �
We now show that for any c ≥ 1/(r− 1) and ε > 1/c, there is a property whose speed 

oscillates between nnc(r−1)(1−o(1)) and 2nr−ε .

Theorem 6.6. Let c ≥ 1
r−1 and ε > 1/c. There exists sequences ν = (νi)i∈N and μ =

(μi)i∈N where μi = νi − 1 for all i ∈ N such that the following hold.

(1) |Pν,c
n | = n(r−1)(c+o(1))n whenever n = νi,

(2) |Pν,c
n | ≥ 2nr−ε whenever n = μi,

(3) n(r−1)(c+o(1))n ≤ |Pν,c| < 2nr−ε if n �= μi.

Proof. Set ν0 = r + 1. Assume now k ≥ 0 and suppose by induction we have chosen 
ν0, . . . , νk. Let ν = (ν1, . . . , νk) and note by Lemma 6.5, |Pν,c

n | ≥ 2nr−ε for large enough 
n. Choose μk > νk minimal so that |Pν,c

μk
| ≥ 2μr−ε

k+1 and set νk+1 = μk + 1. �
Proof of Theorem 1.5. Let L = {R(x1, . . . , xr)}. Given c ≥ 1

r−1 and ε > 1/c, let ν =
(νi)i∈N and μ = (μi)i∈N be sequences as in Theorem 6.6. Let Tν,c be the universal theory 
of Pν,c and observe that class of models of Tν,c is a hereditary L-property H such that for 
arbitrarily large n, |Hn| = n(r−1)(c+o(1))n and for arbitrarily large n, |Hn| ≥ 2nr−ε . �
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