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MOST(?) THEORIES HAVE BOREL COMPLETE REDUCTS

MICHAEL C. LASKOWSKI AND DOUGLAS S. ULRICH

Abstract. We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a
countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly,
if Th(M) is not small, then M“? has a Borel complete reduct, and if a theory 7 is not w-stable, then the
elementary diagram of some countable model of 7" has a Borel complete reduct.

§1. Introduction. In their seminal paper [1], Friedman and Stanley define and
develop a notion of Borel reducibility among classes of structures with universe w in
a fixed, countable language L that are Borel and invariant under permutations of .
It is well known (see, e.g.. [3] or [2]) that such classes are of the form Mod(®), the
set of models of ® whose universe is precisely w for some sentence ® € L, .,. but
here we concentrate on first-order, countable theories 7. For countable theories 7. .S
in possibly different language. a Borel reduction is a Borel function f : Mod(T) —
Mod(S) that satisfies M = N if and only if /(M) = f(N). One says that T is
Borel reducible to S if there is a Borel reduction f : Mod(7T') — Mod(S). As Borel
reducibility is transitive, this induces a quasi-order on the class of all countable
theories, where we say 7' and S are Borel equivalent if there are Borel reductions
in both directions. In [1], Friedman and Stanley show that among Borel invariant
classes (hence among countable first-order theories) there is a maximal class with
respect to <p. We say @ is Borel complete if it is in this maximal class. Examples
include the theories of graphs, linear orders, groups, and fields.

The intuition is that Borel complexity of a theory T is related to the complexity of
invariants that describe the isomorphism types of countable models of 7. Given an
L-structure M, one naturally thinks of the reducts M, of M to be ‘simpler objects’,
hence the invariants for a reduct ‘should’ be no more complicated than for the
original M, but we will see that this intuition is incorrect. As a paradigm, let 7" be
the theory of ‘independent unary predicates’i.e., T = Th(2®, U,). where each U, is
a unary predicate interpreted as U, = {5 € 2% : y(n) = 1}. The countable models
of T are rather easy to describe. The isomorphism type of a model is specified by
which countable, dense subset of ‘branches’ is realized, and how many elements
realize each of those branches. However, with Theorem 3.2, we will see that 7" has
a Borel complete reduct.

To be precise about reducts, we have the following definition.

DErINITION 1.1. Given an L-structure M, a reduct M’ of M is an L’-structure with
the same universe as M. and for which the interpretation in every atomic L’-formula
a(xy,....x;) is an L-definable subset of M* (without parameters). An L’-theory
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T' is a reduct of an L-theory T if T' = Th(M') for some reduct M’ of some model
M of T.

In the above definition, it would be equivalent to require that the interpretation
in M’ of every L'-formula 0(x;. ... x;) is a 0-definable subset of M*.

§2. An engine for Borel completeness results. This section is devoted to proving
Borel completeness for a specific family of theories. All of the theories 77, are in the
same language L = {E, : n € o} and are indexed by strictly increasing functions
h:w — w\ {0}. For a specific choice of /, the theory T}, asserts that

e Each E,, is an equivalence relation with exactly /(n) classes; and

e The E,’s cross-cut, i.e., for all nonempty, finite F C w, Ep(x,y):=

Nner E,(x, y) is an equivalence relation with precisely I1,cr/(n) classes.

It is well known that each of these theories 77, is complete and admits elimination
of quantifiers. Thus, in any model of 7}, there is a unique one-type. However, the
strong type structure is complicated.! So much so, that the whole of this section is
devoted to the proof of:

THEOREM 2.1. For any strictly increasing h : & — w \ {0}, T}, is Borel complete.

ProoF. Fix a strictly increasing function z : @ — @ \ {0}. We begin by describ-
ing representatives B of the strong types and a group G that acts faithfully and
transitively on B. As notation, for each n, let [#(n)] denote the s (n)-element set
{1,....h(n)} and let Sym([h(n]) be the (finite) group of permutations of [ (n)]. Let

B={f:0—w:f(n)eh(n)foralln € w},

andlet G = Il,c., Sym([1(n)]) be the direct product. As notation, foreachn € w, let
n, : G — Sym([h(n)]) be the natural projection map. Note that G acts coordinate-
wise on B by: For g € G and f € B. g - f is the element of B satisfying g - f(n) =
7 (g)(f (n)).

Define an equivalence relation ~ on B by:
f~f" ifandonlyif {new:f(n)+# f'(n)}isfinite.

For f € B, let [f] denote the ~-class of f and, abusing notation somewhat, for
W CB

(w1:=J{/1: /e w}

Observe that for every g € G, the permutation of 5 induced by the action of g maps
~~classes onto ~-classes, i.e., G also acts transitively on B/~.

We first identify a countable family of ~-classes that are ‘sufficiently indiscernible’.
Our first lemma is where we use the fact that the function % defining 77, is strictly
increasing.

LEMMA 2.2. There is a countable set Y = {f;:i € o} C B such that whenever

i#j{new: fi(n)= f;n)}is finite.

IRecall that in any structure M, two elements a, b have the same strong type, stp(a) = stp(b), if
M [ E(a,b) for every 0-definable equivalence relation. Because of the quantifier elimination, in any
model M |= Ty, stp(a) = stp(b) if and only if M = E,(a.b) for every n € w.
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ProOF. We recursively construct Y in w steps. Suppose { f; : i < k} have been
chosen. Choose an integer N large enough so that #(N) > k (hence h(n) > k for
all n > N). Now, construct f; € B to satisfy f;(n) # f:(n) for all n > N and all
i<k. o

Fix an enumeration (f;:i € w) of Y for the whole of the argument. The
‘indiscernibility’ of Y alluded to above is formalized by the following definition
and lemma.

DEerFINITION 2.3. Given a permutation o € Sym(w), a group element g € G
respects g if g - [ fi] = [f 5] for every i € w.

LEMMA 2.4. For every permutation a € Sym(w), there is some g € G respecting .

Proor. Note that since / is increasing, h(n) >n for every n € w. Fix a

permutation ¢ € Sym(w) and we will define some g € G respecting ¢ coordinate-
wise. Using Lemma 2.2, choose a sequence

0=N <K NI KN < -

of integers such that for all i € w. both f;(n) # f;(n)and f ) (n) # f4;)(n) hold
forallm > N;and all j < i.

Since { N;} are increasing, it follows that foreach i € w and alln > N;, the subsets
{fim):j <itand{f,(n):j <i}of[h(n)]eachhave precisely (i + 1) elements.
Thus, for each i < w and for each n > N;, there is a permutation 6, € Sym([h(n)])
satisfying

J\6u(f (1)) = foi) ().
J<i

(Simply begin defining J,, to meet these constraints, and then complete §, to a
permutation of [k (n)] arbitrarily.) Using this, define g := (6, : n € w), where each
o, € Sym([h(n)]) is constructed as above. To see that g respects o, note that for every
ic€w. (g fi)(n)=foun)foralln > Ni.so(g- fi) ~ fou) .

DEFINITION 2.5. For distinct integers i # j. let d; ; € B be defined by:
;(n) ifneven;
di,j(n) = / ) .
Sfj(n) ifnodd.
LetZ:={d;j:i#j}.

Note that d;; # f for all distinct i, j and all k € w, hence {[f;]:i € w} and
{ld;;]1:i # j} are disjoint.

LEMMA 2.6. For all 6 € Sym(w), if g € G respects o, then g - [d; ;] = (o). ()]
foralli # j.

Proor. Choose g € Sym(w), g respecting o, and i # j. Choose N such that (g -

[fi1)(n) = [f 5»](n) and (g - [f;1)(n) = [f»(;)])(n) for every n > N. Since d; ;(n) =
fi(n) forn > N even,

(g - dij)(n) = ma(g)(di;(n)) = ma(g)(fi(n)) = (g - fi)(n) = foii)(n).

Dually. (g - d;;)(n) = f,(;(n) when n > N is odd. so (g - d;.;) ~ d,(i).4())-
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With the combinatorial preliminaries out of the way, we now prove that 7}, is
Borel complete. We form a highly homogeneous model M* |= T}, and thereafter,
all models we consider will be countable, elementary substructures of M*. Let
A={ay;: f e€B}and B={bs: f € B} be disjoint sets and let M* be the L-
structure with universe 4 U B and each E, interpreted by the rules:

eForall f e Bandn € a),En(af,bf);and
eForall f. f' e Bandn € w. Eq(ay.ap)iff f(n) = f'(n).

with the other instances of E, following by symmetry and transitivity. For any
finite F C w, {f|r: f € B} has exactly IT,crh(n) elements, hence Er(x,y) :=
Nner En(x.y) has IT,cph(n) classes in M*. Thus, the {E, : n € w} cross cut and
M* =T

Let Eo(x.y) denote the (type definable) equivalence relation A, E,(x.y).
Then, in M*, E,, partitions M* into two-element classes {a,.b,}. indexed by
f € B. Note also that every g € G induces an L-automorphism g* € Aut(M*) by

“(x) = a(g.ry if x = ay for some f € B;
& bg.r) if x =by forsome f € B.

Recall the set Y ={f;:i € B} from Lemma 2.2, so [Y]={[f]:i € w}.
Let My C M* be the substructure with universe {a, : f € [Y]}. As T} admits
elimination of quantifiers and as [Y] is dense in B, My < M*. Moreover, every
substructure M of M* with universe containing M, will also be an elementary
substructure of M *, hence a model of T},.

To show that Mod(T},) is Borel complete, we define a Borel mapping from
{irreflexive graphs G = (w, R)} to Mod(T}) as follows: Given G, let Z(R) :=
{dijeZ:GE=R(i.j)}.so[Z(R)]=U{ldijl:di; € Z(R)}.Let Mg < M* bethe
substructure with universe

MyU{ay, by - d € [Z(R)]}

That the map G — Mg is Borel is routine, given that Y and Z are fixed throughout.

Note that in M, every E.-class has either one or two elements. Specifically, for
eachd € [Z(R)]. the E-class [ay]oc = {aq.ba}. while the E-class [a /] = {as}
forevery f € [Y].

We must show that for any two graphs G = (w. R) and H = (w. S). G and H are
isomorphic if and only if the L-structures M and My are isomorphic.

To verify this, first choose a graph isomorphism ¢ : (o, R) — (w, S). Then ¢ €
Sym(w) and, for distinct integers i # j.d;; € Z(R) if and only if d, ) 0(j) € Z(S).
Apply Lemma 2.4 to get g € G respecting ¢ and let g* € Aul(M*) be the L-
automorphism induced by g. By Lemma 2.6 and Definition 2.3, it is easily checked
that the restriction of g* to M is an L-isomorphism between M and My .

Conversely, assume that ¥ : Mg — My is an L-isomorphism. Clearly, ¥ maps
E-classes in Mg to E.-classes in My . In particular, ¥ permutes the one-element
E-classes {{as} : f € [Y]} of both M and M. and maps the two-element E,
classes {{as.b,} : d € [Z(R)]} of M onto the two-element E.-classes {{a,. by} :
d €[Z(S)]} of My. That is, ¥ induces a bijection F : [Y U Z(R)] = [Y U Z(S)]
that permutes [ Y].
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As well, by the interpretations of the E,’s, for f, f' € [Y U Z(R)]and n € w.
f(n)= f'(n) ifandonlyif F(f)(n)=F(f")(n).

From this it follows that F maps ~-classes onto ~-classes. As F permutes [Y] and
as[Y]=U{[f:]:i € }. Finduces a permutation ¢ € Sym(w) given by o (i) is the
unique i* € w such that F([f;]) = [fi+].

We claim that this ¢ induces a graph isomorphism between G = (w, R) and H =
(w.S). Indeed, choose any (i, j) € R. Thus, d;; € Z(R). As F is ~-preserving,
choose N large enough so that F(f;)(n)=F(f,))(n) and F(f;)(n)=F (f,;))(n)
foreveryn > N.Bydefinitionofd, ;.d; j(n)=f;(n) forn > N even.so F(d;;)(n) =
F(fi)(n) = f,()(n) for such n. Dually. for n > N odd. F(d;;)(n) = F(f;)(n) =
fo(j)(n). Hence. F(d; ;) ~ dy ) q(;) € [Z(S)]. Thus. (6(i).a(j)) € S. The converse
direction is symmetric (i.e., use ¥! in place of ¥ and run the same argument).

ReEMark 2.7. If we relax the assumption that % :w — w \ {0} is strictly
increasing, there are two cases. If /2 is unbounded, then the proof given above can
easily be modified to show that the associated T7, is also Borel complete. Conversely,
with Theorem 6.2 of [6] the authors prove thatif 4 : v — w \ {0} is bounded, then
T} is not Borel complete. The salient distinction between the two cases is that when
h is bounded, the associated group G has bounded exponent. However, even in the
bounded case T}, has a Borel complete reduct by Lemma 3.1 below.

§3. Applications to reducts. We begin with one easy lemma that, when considering
reducts, obviates the need for the number of classes to be strictly increasing.

LemMmA 3.1. Let L=A{E,:n € w} andlet f :w — w\ {0,1} be any function.
Then every model M of Ty, the complete theory asserting that each E, is an equivalence
relation with f (n) classes, and that the {E,} cross-cut, has a Borel complete reduct.

ProoF. Given any function f : @ — w \ {0, 1}, choose a partition ® = |_|{F, :
n € w} into non-empty finite sets for which Iycr, (k) < Hier, f (k) whenever
n < m < w.Foreachn, leth(n) := e, f (k) andlet Ej; (x. ) = Nicp, Ex(x. ).
Then, as A is strictly increasing and { E ¥ } is a cross-cutting set of equivalence relations
with each E; having h(n) classes.

Now let M = T be arbitrary and let L' = {E,f : n € w}. As each E,; described
above is 0-definable in M. there isan L’-reduct M’ of M. It follows from Theorem 2.1
that 7/ = Th(M') is Borel complete. so T’y has a Borel complete reduct. -

THEOREM 3.2. Suppose T is a complete theory in a countable language with
uncountably many one-types. Then every model M of T has a Borel complete reduct.

PrOOF. Let M |= T be arbitrary. As usual, by the Cantor-Bendixon analysis of
the compact, Hausdorff-Stone space S1(7T) of complete one-types, choose a set
{¢y(x) : y € 2=} of 0-definable formulas, indexed by the tree (2, <) ordered by
initial segment, satisfying:

1. M | 3xp,(x) for each n € 2<;

2. Forv <n. M EVYx(p,(x) = ¢, (x)):

3. Foreachn € w, {g,(x) : 7 € 2"} are pairwise contradictory.

By increasing these formulas slightly, we can additionally require
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4. Foreachn € o, M = Vx(\/qez,, op(x)).
Given such a tree of formulas, for each n € w, define

52()6) = /\ [SOW(X) — 90,7“()()()] and 5:,(36) = /\ [‘Pq(x) — ‘Pﬂ”l(x)]'

ne22n ne2n
Because of (4) above, M = Vx(6%(x) v J!(x)) for each n. Also. for each n, let
E,(x.y) == [0,(x) < 6, (»)].

From the above, each E, is a 0-definable equivalence relation with precisely two
classes.

CLam: The equivalence relations {E, : n € w} are cross-cutting.

Proor. It suffices to prove that for every m > 0, the equivalence relation
Ex(x.y) = N,<m En(x. ) has 2" classes. So fix m and choose a subset 4,, = {a, :
n € 2"} C M forming a set of representatives for the formulas {¢,(x) : 7 € 2"}.
It suffices to show that M = —E (a,.a,) whenever  # v are from 2™. But this
is clear. Fix distinct # # v and choose any k < m such that 5(k) # v(k). Then
M = —Ei(ay. ay). hence M = —E}(ay.a,). -

Thus, taking the 0-definable relations {E,, }, M has a reduct that is a model of T,
(where f is the constant function 2). As reducts of reducts are reducts, it follows
from Lemma 3.1 and Theorem 2.1 that M has a Borel complete reduct.

We highlight how unexpected Theorem 3.2 is with two examples. First, the
theory of ‘Independent unary predicates’ mentioned in the Introduction has a Borel
complete reduct.

Next, we explore the assumption that a countable, complete theory 7T is not small,
1.e., for some k there are uncountably many k-types. We conjecture that some model
of T has a Borel complete reduct. If k = 1, then by Theorem 3.2, every model of 7'
has a Borel complete reduct. If k£ > 1 is least. then it is easily seen that there is some
complete (k — 1)-type p(x1...., x;_1) with uncountably many complete ¢(x;. ..., xi)
extending p. Thus, if M is any model of T realizing p, say by a = (ai, ..., ax_1),
the expansion (M, aj. ..., a;_1) has a Borel complete reduct, also by Theorem 3.2.
Similarly, we have the following result.

COROLLARY 3.3. Suppose T is a complete theory in a countable language that is not
small. Then for any model M of T, M ! has a Borel complete reduct.

ProoOF. Let M be any model of T and choose k least such that 7" has uncountably
many complete k-types consistent with it. In the language L, there is a sort Uy
and a definable bijection f : M¥ — U,. Hence Th(M¢?) has uncountably many
one-types consistent with it, each extending Uj. Thus, M ¢ has a Borel complete
reduct by Theorem 3.2. 5

Finally, recall that a countable, complete theory is not w-stable if, for some
countable model M of T, the Stone space S;(M) is uncountable. From this, we
immediately obtain our final corollary.

COROLLARY 3.4. Ifa countable, complete T is not w-stable, then for some countable
model M of T, the elementary diagram of M in the language L(M ) = LU {c,,, : m €
M} has a Borel complete reduct.
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Proor. Choose a countable M so that S;(M) is uncountable. Then, in the
language L(M). the theory of the expanded structure Mj, in the language
L(M) has uncountably many one-types, hence it has a Borel complete reduct by
Theorem 3.2. .

The results above are by no means characterizations. Indeed, there are many Borel
complete w-stable theories. In [5], the first author and Shelah prove that any w-stable
theory that has eni-DOP or is eni-deep is not only Borel complete, but also 1-Borel
complete for all 1.> As well, there are w-stable theories with only countably many
countable models that have Borel complete reducts. To illustrate this, we introduce
three interrelated theories. The first, Ty, in the language Lo = {U, V. W, R} is the
paradigmatic DOP theory. T) asserts that:

o U V. W partition the universe;

e RCUXV x W;

o Ty = VxVy3>®zR(x. y. z) [more formally. foreachn, Ty = VxVy3Z"zR(x. y. 2)]:

and

o Ty = VxVx'VyVy'Vz[R(x, y,z) AR(X",y'.z) = (x =x" Ay =)
Ty is both w-stable and w-categorical and its unique countable model is rather
tame. The complexity of T} is only witnessed with uncountable models, where one
can code arbitrary bipartite graphs in an uncountable model M by choosing the
cardinalities of the sets R(a, b, M) among (a.b) € U x V to be either R or |M].

To get bad behavior of countable models, we expand Tytoan L = LoU {f,, :n €
w}-theory T D T that additionally asserts:

eEach f,: UxV — W;

o VxVyR(x, y, fu(x,y)) for each n; and

o for distinct n # m, VxVy (fr(x, ¥) # fm(x.¥)).

This T is w-stable with eni-DOP and hence is Borel complete by Theorem 4.12
of [5].

However, T has an expansion 7* in a language L* := LU {c,d,g.h} whose

models are much better behaved. Let 7* additionally assert:

e U(c)ANV(d):

e g: U — V is abijection with g(c) = d;

o Letting W* :={z: R(c.d.z)}.h: U x V x W* — W isan injective map that
is the identity on W* and, for each (x,y) € U x V., maps W* onto {z € W :
R(x. y,z)}: and moreover

e i commutes with each f,.i.e.. VxVy(h(x,y, fn(c.d)) = fn(x.p)).

Then T* is w-stable and two-dimensional (the dimensions being |U| and
|W*\ {fn(c.d):n € w}|), hence T* has only countably many countable models.
However, T* visibly has a Borel complete reduct, namely 7.

§4. Observations about the theories 7). In addition to their utility in proving
Borel complete reducts, the theories 7}, in Section 2 illustrate some novel behaviors.
First off, model theoretically, these theories are extremely simple. More precisely,

2Definitions of eni-DOP and eni-deep are given in Definitions 2.3 and 6.2, respectively, of [5]. and the
definition of A-Borel complete is recalled in Section 4 of this paper.
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each theory T}, is weakly minimal with the geometry of every strong type trivial
(such theories are known as mutually algebraic in [4]).

Additionally, the theories T, are the simplest known examples of theories that are
Borel complete, but not A-Borel complete for all cardinals 4. For 4 any infinite
cardinal, A-Borel completeness was introduced in [5]. Instead of looking at L-
structures with universe w, we consider X 2 the set of L-structures with universe A.
We topologize X 2 analogously; namely a basis consists of all sets

Uso(al an) = {M S Xi M ': go(al, ,Oz,,)}

for all L-formulas ¢(x;.....x,) and all (ai....,q,) € A". Define a subset of X}
to be A -Borel if it is the smallest A" -algebra containing the basic open sets, and
call a function f : X fl - X fz to be 4 -Borel if the inverse image of every basic
open set is A-Borel. For 7. S theories in languages L, L;, respectively, we say that
Mod,;(T) is A -Borel reducible to Mod;(S) if there is a A-Borel f : Mod;(T) —
Mod,(S) preserving back-and-forth equivalence in both directions (i.e., M =,
N & (M) =co [(N)).

As back-and-forth equivalence is the same as isomorphism for countable
structures, A-Borel reducibility when 4 = w is identical to Borel reducibility. As
before, for any infinite 4, there is a maximal class under A-Borel reducibility, and we
say a theory is A -Borel complete if it is in this maximal class. All of the ‘classical’
Borel complete theories, e.g., graphs, linear orders, groups, and fields, are 1-Borel
complete for all 4. However, the theories 7}, are not.

LemMma 4.1. If T is mutually algebraic in a countable language, then there are at
most 3, pairwise =, o,-inequivalent models (of any size).

PrOOF. We show that every model M has an (co, w)-elementary substructure
of size 2%, which suffices. So. fix M and choose an arbitrary countable My < M.
By Proposition 4.4 of [4], M \ M, can be decomposed into countable components,
and any permutation of isomorphic components induces an automorphism of M
fixing M, pointwise. As there are at most 2% non-isomorphic components over M,
choose a substructure N C M containing M, and, for each isomorphism type of a
component, N contains either all of copies in M (if there are only finitely many) or
else precisely W, copies if M contains infinitely many copies. It is easily checked that
N 2w M. —|

COROLLARY 4.2. No mutually algebraic theory T in a countable language is A-Borel
complete for . > . In particular, T), is Borel complete, but not A-Borel complete for
large A.

Proor. Fix 4 > J,. It is readily checked that there is a family of 2* graphs that
are pairwise not back and forth equivalent. As there are fewer than 2* =, ,-classes
of models of T, there cannot be a A-Borel reduction of graphs into Mod;(T). -

In [7], another example of a Borel complete theory that is not A-Borel complete
for all / is given (it is dubbed TK there) but the T}, examples are cleaner. In order
to understand this behavior, in [7] we call a theory T grounded if every potential
canonical Scott sentence ¢ of a model of T (i.e.. in some forcing extension V[G]
of V, ¢ is a canonical Scott sentence of some model), then ¢ is a canonical Scott
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sentence of a model in V. Proposition 5.1 of [7] proves that every theory of refining
equivalence relations is grounded. By contrast, we have

ProposiTiON 4.3. If T is Borel complete with a cardinal bound on the number of
=oow-classes of models, then T is not grounded. In particular, T}, is not grounded.

Proor. Let k denote the number of =, ,-classes of models of T. If T were
grounded, then x would also bound the number of potential canonical Scott
sentences. As the class of graphs has a proper class of potential canonical Scott
sentences, it would follow from Theorem 3.10 of [7] that T could not be Borel
complete. o
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