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COUNTABLE MODELS OF THE THEORIES OF BALDWIN-SHI
HYPERGRAPHS AND THEIR REGULAR TYPES

DANUL K. GUNATILLEKA

Abstract. We continue the study of the theories of Baldwin—Shi hypergraphs from [5]. Restricting our
attention to when the rank ¢ is rational valued. we show that each countable model of the theory of a
given Baldwin—Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of
the original class used in the construction. We introduce a notion of dimension for a model and show that
there is a an elementary chain {914 : f < w} of countable models of the theory of a fixed Baldwin-Shi
hypergraph with 9ts < 9, if and only if the dimension of Mty is at most the dimension of 91, and
that each countable model is isomorphic to some ;. We also study the regular types that appear in
these theories and show that the dimension of a model is determined by a particular regular type. Further,
drawing on a large body of work, we use these structures to give an example of a pseudofinite, w-stable
theory with a nonlocally modular regular type, answering a question of Pillay in [11].

§1. Introduction. Following Hrushovski’s discovery [7] of a new strongly minimal
set via a generalized Fraisse construction, many authors looked at variants of his
method. In [3], Baldwin and Shi, taking the weight a as a parameter, consider
the theory of a Fraisse limit 91, obtained from classes K, of structures defined
via a dimension function §(A) = |4| — «|E*| and an associated notion of strong
substructure. Here, we consider these theories in the slightly more general context
of a finite, relational language, but under the assumption that

each of the weights a(E) is rational and 0 < «(E) < 1.

Baldwin and Shi [3] prove that these assumptions imply the theory is w-stable. In
[5]. the author proves that the theory is V3-axiomatizable and describes the family of
definable sets, bringing together and extending results from [3]. [9]., and [8]. Here, we
continue the study of Baldwin—Shi hypergraphs from [5] using the tools developed
therein.

We begin in Section 3 by studying the countable models of S5 where S5 denotes
the V3 axiomatization of Th(9g). A key result is Theorem 3.5, where we prove that
all countable models of Sz can be obtained as a generic structures. We then use this
result, along with a notion of dimension for models, to prove Theorem 3.7, which
establishes that the countable spectrum is Y. In Theorem 3.8 we sharpen this result
and show that the countable models of Sz form an elementary chain {9y : f < w}
with My < M, for f <y with each model of Sz isomorphic to some Mig.
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In Section 4 we study the regular types of Sz. A key result is Theorem 4.10 which
identifies certain types as being regular. In Theorem 4.11 we establish that a certain
class of types are nonorthogonal. We also show that there is a regular type whose
realizations determine the dimension of a model that was introduced in Section 3.
We show in Theorem 4.12, that these types are in fact not locally modular. We end
the section with Theorem 4.13, which establishes that a large class of types are not
regular.

In Section 5 drawing on a large body of work, we observe that certain of these
generic structures have pseudofinite theories. Thus we obtain pseudofinite w-stable
theories with nonlocally regular modular types. This answers a question of Pillay in
[11] on whether all regular types in a pseudofinite stable theory are locally modular.

The author wishes to thank Chris Laskowski for all his help and guidance in
the preparation of this article and the referee for his many helpful and insightful
suggestions.

82. Preliminaries. Fix a finite relational language L where each relation sym-
bol has arity at least 2. Let K; denote the class of finite structures where each
relation symbols is interpreted reflexively and symmetrically. Fix a rational val-
ued function & : L — (0.1) and define a rank function 5 : K; — Q by
() = |A] = Y g, a(E)|E™| where |[E®| is the number of subsets of 4 on
which E holds. We include (. the empty structure in K for technical reasons
and note 5()) = 0. Given A,B € K. we say that 2 is strong in 5. denoted
by 2 <% if and only if A C B and 5(A) < J(A') for all A C A CB. Let
Ke={2A€ K, :5') >0forallA’ C 2}.

ReEMARK 2.1. The relation < on K; x K, is reflexive, transitive and has the
property that given 2,.B8.¢ € K7, if A< ¢, B C € then AN B < B (use (1) of
Fact 2.4). The same statement holds true if we replace K; by Kz in the above
equation. Further we note that () € K5 and for any given 2 € K. () < 2.

Typically the notion of < is defined on Kz x K&. However several proofs require
verifying that certain finite hypergraphs constructed over some 2 € Ky are in Kg.
We find that defining the notion of < on K; x K allows us to make the exposition
significantly simpler via the following remark.

REMARK 2.2. Let A,B € K;. Further assume that 2 C B with 2 € K. If
A < B, then B € Kg. (use (1) of Fact 2.4).

Let n be a positive integer. A set {B; : i < n} of elements of K is disjoint over
Aif A C B; foreachi <nmand BiNB; = Afori < j<n If{B,:i<n}is
disjoint over 2, then D is the free join of {B; : i < n}. denoted by © = BB,
if the universe D = | J{B; : i < n}, B; C D for all / and. there are no additional
relations in ®, i.e., E® = [J{E® :i < n} forall E € L. In the case n = 2 we will
use the notation By G B for G5B,

The following fact, in the terminology of Baldwin and Shi in [3], shows that
(Kg. <) has full amalgamation. It is the key to showing that (Kg, <) is a Fraissé class.
i.e.. (Kg. <) has the Joint Embedding Property and the Amalgamation Property. The
generic for (Kg. <). i.e.. the Fraissé limit of (K, <) will be called the Baldwin—Shi
hypergraph for @.
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Fact 23. If B,.C € Kg, A=BNC, and A < DB, then B &y € € Kz and
¢ <8Py ¢

Before proceeding further, we record three easy computations for future use.
Given an L-structure 3 whose finite structures lie in K; and finite A, B C Z, the
relative rank of B over A is obtained by taking §(B/A4) := 6(BA) — d(A) where BA
is is the finite structure with universe B U 4 in 3.
Fact 2.4. Let 3 be an L-structure whose finite structures lie in K; and let
A, B, B;. C C Z be finite.
1. Let A = AN B. Now d(B/A") > 6(B/A) = 6(AB/A). Further if B.C are
disjoint and freely joined over A, then 5(B/AC) = 5(B/A).

2. If {B; : i < n} is disjoint over A and Z = ®;, B; is their free join over A,
then 6(Z/A) = Y,_,0(Bi/A). In particular, if A < B; for each i < n. then
A < BicaB.

3. 6(BiBy.....By/A) =6(B1/A) + ¥ ,6(B;/AB.....B;_1).

A useful notion in the study of these structures is the extension of the notion of <
to arbitrary L-hypergraphs. Fix 3 whose finite structures all lie in K. Given a finite
2 C 3 we say that 21 is strong in X if 2L < 95 for all finite B C 3 with 2l C 9. Given
A, B € K; with 2 C 9B, we say that (2. B3) is a minimal pair if and only if 2 C B,
A< ¢forallAC € C ‘Bbut%lf B. Given X C Z. We say X is closed in 3 if and
only if for all finite 4 C X . if (4, B) is a minimal pair with B C Z, then B C X. It
is easily established that given 3 € K; and 20 C 3 is finite, then 21 < 3 if and only if
2 1s closed in 3 and thus the notion of a closed set generalizes the notion of < on
finite structures.

It is immediate that any such 3, Z is closed in 3 and that the intersection of a
family of closed sets of 3 is again closed. Thus we define the intrinsic closure of X
in Z, denoted by icl3(X) is the smallest set X’ such that X C X' C Z and X' is
closed in Z. As @(E) is rational for all E € L. it follows that for any finite 4 C Z,
icl3(A) is finite. The important definition of the induced dimension function is thus
simplified in our context.

Fix a monster model M of the theory of the generic and let
A,BCM be finite. Then the induced dimension is given by d(A4) =
min{d(A")|]A C A’ C N, A’ is finite.} = icly(A4). Furtherd (B/A) = d(AB)—d(B).
If X C M is infinite, then d(4/X) = min{d(4/X,)|Xo C X is finite}. For finite
A, B, C, it is easily observed that d(4/C) > 0,d(AB/C) =d(A/BC) +d(B/C).

The theory Sy is the smallest set of sentences insuring that if 9t |= S5, then every
finite substructure of 91 is in K& and for all A < B from Kz, every (isomorphic)
embedding f : A — M extends to an embedding g : B — M. Clearly Sz is a
collection of V3 sentences. Further given 2l € K; with a fixed enumeration @
of A, we write Ay (X) for the atomic diagram of 2. Also for A,B ¢ K; with
92l C 9B and fixed enumerations @, b respectively with @ an initial segment of b; we
let Ag s (X.¥) the atomic diagram of B with the universe of 2 enumerated first
according to the enumeration @. Let 2,8 € K and assume 2 C B. Let Wy 3 (¥X) =
A9((F) A 3FA(g08)(X. 7). Such formulas are collectively called extension formulas
(over ). A chain minimal extension formula is an extension formula Wg o3 where
B us the union of a minimal chain over . i.e., there is some sequence (2;);<, with
neaw Ay=2A A, =B and (A;.2A,,) is a minimal pair.

https://doi.org/10.1017/js1.2019.28 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2019.28

1010 DANUL K. GUNATILLEKA

We finish this section by collecting some key results about Sz from various sources.

THEOREM 2.5. 1. The theory Sy is complete and is the theory of the generic for
(Ka. <). (see [8] or [3]).

2. Every L-formula is Sg-equivalent to a boolean combination of chain-minimal
extension formulas. (see [5]. [1]).

3. Sz is w-stable. (see [3]. [13]).

4. Givenany M |= Sz and X C M. X is algebraically closed in M if and only if X
is intrinsically closed in M. (see [3]., [13] or [3]).

5. The theory S has weak elimination of imaginaries, i.e., every complete type over
an algebraically closed set in the home sort is stationary. (see [3]. [5] or [12]).

6. Let M = Sz be No-saturated and let A be a finite closed set of M. Suppose that
7 is a consistent partial type over A such that for any b.¢ |= n. qftp(b/A) =
qftp(¢/A). If any realization b of m in 9 has the property that bA is closed in
9N, then © has a unique completion to a complete type p over A. (see [3]).

7. Sg has finite closures, i.e., given any M |= Sg for any finite A C N, there exists
¢ € Kg such that C € <M.

8. Let M be a monster model of Sg. For algebraically closed X, Y, Z with Z = X N
Y. X | - Y ifandonly if XY is algebraically closed and X, Y are freely joined
over Z if and only if for any finite Xo C X, Yo C Y., d(Xo/Z) = d(Xo/ZY,) and
acl(XoZ) Nacl(YoZ) = acl(Z) (or equivalently icl(XoZ) Nicl(YoZ) = icl(Z):
see [3]. [12] or [13]).

9. Sz does not interpret infinite groups. (see Section 7 of [13]).

2.1. Essential minimal pairs. We now recall essential minimal pairs, which were
introduced in [5].

DEFINITION 2.6. Let 8 € Kz with 5(8) > 0. We call ® € Kz with B C D
an essential minimal pair if (8,®) is a minimal pair and for any ®' C D,
5(D'/D' NB) > 0.

The following, in more general form, appears in [5] as Theorem 3.33. It will
form the backbone of many of the results to follow. Let ¢ be the least common
multiple of the denominators of @(E) (in reduced form). i.e.. ¢ = lem(qg)per. with
a(E) = pg/qr with pg. qg relatively prime.

THEOREM 2.7. Let A € K with6(2) = k/c > 0. There are ® € Kg such that
(U, D) is an essential minimal pair and satisfies 6(D /A) = —1/c.

We immediately obtain the following useful lemma.

Lemma 2.8. Let k € w. Given any B € Ky, there is some © € Kg such that
D DB, 5(D) =k/c and for any A < B withd(A) < k/c, A < D.

ProOF. Given B take D to be the free join of B with a structure with £ 4+ 1 many
points with no relations among them over (). Note that B < . Let / = ¢6(Dy) — k.
Consider a sequence Dy C --- C ©; where each (D;,D;,) is an essential minimal
pair with §(D;,1/D1) = —1/c. We claim that ® = D, is as required. Fix any
2A < B with 6(A) < k/c. We show by induction on i < [ that if 2 < D;, then
A <D;. . Clearly A <D as A <B < D. Fix i < / and consider any § such
that A CFC D,y f =D, then §(F) > k/c > 5(A) and so 5(F/A) > 0. On
the other hand. if § # D, ;. then. 6(F/D;41 NF) since (D;.D;;1) is an essential
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minimal pair and 6(D; NF/2A) > 0asA < D;. Thusd(F/A) =6(F/D;NF) +6(F N
D;/2) > 0 as required. 4

§3. Countable models of Sz. Our goal in this section is to study the countable
models of S5. We begin by defining a notion of dimension for (countable) models.
We then show that this notion of dimension is able to categorize countable models
up to both isomorphism and elementary embeddability. Recall that ¢ is the least
common multiple of the denominators of the @ (in reduced form).

DEFINITION 3.1. Let M = Sg. Let A < M. We let dim(901/2A) = max{d(B/2A) :
A < B <M} If there is no maximum, i.e., given any z > 0, there will be some
B < Mwithd (B/A) > z, we let dim(M/A) = oo. We write dim(90) for dim(01/0).

DEFINITION 3.2. Fix an integer kK > 0 and let Kj). = {2 : 2 € Kz and 6(A) =
k/c}. Let (K. <) be such that < is inherited by Kz i.e.. 2A < B for A. B € Ky, if
and only if for all 2t C B’ C B with B’ € K5, A < B’

We begin with the following technical lemma:

LEmMMA 3.3. Let A,B,€,D € Ky with A < B, €; 5(¢/A) > 5(B/2A) and D =
B @ C the free join of B, € over A. We can construct $) € Kg such that A,B,¢ < §,
D CHandd(H/€) = 0. Further if 5(B/A) = 5(€/A), the $ that was constructed
has the property 6($/9B) = 0.

Proor. This follows from an easy application of Lemma 2.8 on ©. -

We now work toward showing that certain countable models of Sz can be built
as Fraissé limits (Kj.. <). In Theorem 3.7 we show that these are in fact. all of the
countable models up to isomorphism.

LEmMA 3.4, For any fixed integer k > 0. (K .. <). where < is inherited from K
is a Fraissé class.

ProOF. Fix an integer k > 0 and consider Kj /.. Let 2, B. € € Kj /.. Note that
for the purposes of proving amalgamation, we may as well assume ‘B, € are freely
joined over 2 and that 2 < B, €. Note that §(B/2) = J(¢/A) = 0. The required
statement follows by a simple application of Lemma 3.3 on B @y €. For joint
embedding consider () < B, €. Note that 6(B/0) = 6(¢/0) = k/c. Apply Lemma
3.3 on B &y €, the free join of B, € over . =

We now prove the following theorem that the theory of the generic for the Fraissé
class (K .. <) also models Sy and has dimension k/c.

THEOREM 3.5. Let k be a fixed integer with k > 0. Let 9. be the generic for
the Fraissé class (Kyj..<) where < is inherited from Kg. Now M. = Sy and
d1m(£mk/c) = k/C

ProoF. Fix an integer k& > 0. From Lemma 3.4. it follows that (K .. <) where
< is inherited from K7 is a Fraissé class. Let 97/, be the (Kk/c, <) generic. Note
that given B € K7, there is some ® € Kye such that ® O 9 by Lemma 2.8. Thus
it suffices to show that 9/, satisfies the extension formulas in Sz.

Let 2.8 € K5 with 20 < B and assume that 2 C DM /.. As My is the (Ky /.. <)
generic. there is some ¢ < My, with A C ¢ and 6(¢) = k/c. By Fact 2.3, we
have that ® = B @y € is in Ky and that € <. Now using Lemma 2.8, we

IN
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can find & € Kj/. such that ® C & and € < &. But as 9y, is the (Kk/c,g)
generic we can find a strong embedding of & into M. over €. Thus it follows that
My = VXTP(A4(X) = A48(X.7)). Hence it follows that My, |= Ss. Further
as noted above, given any finite 2l C 1, Je+ there is some € < M, /e with 2l C ¢ and
0(€) = k/c. Hence dim(My ) = k/c. 4

We now work toward classifying the countable models of Sz up to isomorphism
using our notion of dimension.

LEMMA 3.6. Let M |= Sz and A < M be finite. Let © € Kg be such that A < D.
Then dim(9/21) > 6(D /) if and only if there is some g that strongly embeds ® into
M over A (i.e., g(D) <M).

Proor. The statement that if there is some g such that g strongly embeds © into
9 over 2, then dim(M/A) > 6(D/2A) is immediate from the definition. Thus we
prove the converse. Let 20 < 9t be finite. Let ® € Kz be such that 2 < ©.

First assume that §(D/A) = 0. Now as Sz F VX33 (Ay(X) = Ao (X.7)).
Thus there is some 24 C D’ C 9 such that ® =y D’. Further as 6(D’/A) = 0,
from (2) of Lemma 2.5, ©' < 9. Thus regardless of the value of dim(91/2A),
if 6(D/2A) = 0 then there is some g such that g strongly embeds © into O
over 2.

Now assume that m/c = §(D/2) < dim(9/2A) with m > 1 and further assume
that dim(9/2A) > k/c with k > m. Let 2 < § < 99 be such that 6(F/A) = k/c.
Let & =D @y §. By Lemma 3.3, there exists $) € Ko with® C $Hand A, D.F < H
and 6($H/F) = 0. Since § < M and 6(H/F) = 0 we are in the setting above. So take
a strong embedding g of § into 91 over §. Clearly g fixes 2 and © has the property
that g(D) < § < M and thus g(D) < M. =

Abusing notation and letting K/, = K3 in the case that kK = oo, we now obtain:

THEOREM 3.7. Let M, N = S5 be countable. Now M = N if and only if dim (M) =
dim(M) and dim(9M) = oo if and only if M is the generic for K. Thus there are
precisely Xy many nonisomorphic models of Sz of size Wy. Further each countable
model of Sz is isomorphic to some (Ky.. <) generic.

PROOF. Since ¢ is invariant under isomorphism, it immediately follows that if
M = N, then dim(M) = dim(91). Now from Theorem 3.5, it follows that the
number of nonisomorphic countable models is at least Xy.

Case 1. dim(9) = dim(N) = k/c for some k € w. Fix enumerations for M, N.
Let A < M with dim(9/2A) = 0. Thus 6 (2A) = dim(9N) = dim(1). Assume that we
have constructed a strong embedding g : A — N. Pick b € 91 — g(2A). where b in the
enumeration corresponds to the element of N with least index notin g(A4). Consider
iclp({b} Ug(A)) =B < M. Now B is finite. Since g(2A) < MNand g(A) = dim(N),
it follows that (8/g(2l)) = 0 and g(A) < B. Now as A = g(2) by Lemma 3.6,
there exists a strong embedding g’ : B — M and g’y o) = g~ . Clearly this allows
us to form a back and forth system between 90t, 91.

Thus all that remains to be shown is that we can find a strong embedding
of A <M where 5(A) = dim(M). To see this first note that ) < 9. Further
dim(91/0) = 5(2A/0). Thus there exists some strong embedding of 2 over () into 9
by an application of Lemma 3.6 as required.
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CASE2. M | Sz and dim(9M) = co. We claim that in this case 90 is isomorphic
to the generic. Clearly 9t has finite closures and hence condition (1) of the generic
is satisfied. Note that if we show that dim(90) = oo implies that for any A < 90,
dim(9M/A) = oo, then condition (2) follows immediately from Lemma 3.6. We
claim that this is indeed the case. By way of contradiction, assume that there is some
A < M such that dim (9)?/2[) is finite. Now there is some 2 < ® < 91 such that
dim(9/2A) = 6(D/A). It is immediate from the definition that dim(9t/D) = 0.
As dim(9M) = oo, fix a B < M with 5(B) > (D). Consider G, the closure of
BD in M. Now G is finite and since B,D < M, B,D < G. Further 6(G/D) =0
as dim(M/D) = 0. So 6(G) = 6(D). But B < M, so 6(G/B) > 0 and hence
6(G) > (B). Thusd(B) < (D), a contradiction to our choice of B that establishes
the claim. Hence it follows that the number of nonisomorphic countable models of
Sa is No.

From Theorem 3.5, it follows that we can construct a countable model of a fixed
dimension (the dim(9%) = oo case being the generic as seen above) as the generic
of a subclass of (K, <). But as the dimension determines the countable model up
to isomorphism, we obtain the result. |

‘We now use our notion of dimension to characterize elementary embeddability.

THEOREM 3.8. Let 9. N be countable models of Sg. If dim(9Mt) < dim . then
there is some elementary embedding f : M — N. Thus there is an elementary chain
My < - XMy -+ < My, of countable models of Sz with each countable model
isomorphic to some element of the chain.

PrOOF. Let 91, 91 be countable models of Sy with dim(901) < dim(1). Note that
if dim(991) = dim(1). then by Theorem 3.7, 91 = N. So assume that dim(MN) <
dim(M) and fix an enumeration {m; : i € w}. Now we have that dim(9) < oo.
Let 2 < 9 be such that §(A) = dim (). Now by Lemma 3.6, there exists a strong
embedding f; of 2 into 91. Let B < 9t be such that Am; C B where i is the least
index such that m; ¢ A. Note that as §(A) = dim(9), 6(B) = 4(A). Again using
Lemma 3.6, we can extend f| to f; so that f is a strong embedding of B into 0N
over 2.

Proceeding iteratively we can find a < chain {2(; : i € @} such that M = J, <w
and f : 9 — N such that /' (A;) < N for each i € w. It is easily seen that / is an
isomorphic embedding. We claim that f" is actually an elementary embedding of 97t
into 91. Note that given € < 9t with C finite, there is some 2(; with € < 2; < 9.
Using the transitivity of <, it easily follows that f(€) < 91. In particular £ (90) is
(algebraically) closed in 91. For notational convenience we will assume that 9t C 91.

Let w(X.7) be an L formula. Let @ € M¢™)_ Assume that N = 37y (@. 7). But
w(X.7) is equivalent to the boolean combination of chain minimal formulas, say
Sz V(X)) 3y (X.7) < A, ¢i(X.7)) where each ¢(X.7) is either a chain minimal
formula or the negation of a chain minimal formula. Suppose that 5 € N7 is such
that 9t = w(@.b). If ; is a chain minimal formula then it follows that b € M2
as M is a closed set. So assume that each ¢; is the negation of a chain minimal
formula. Note that we may split b = bb, where b, is formed via a minimal chain
and A4b, < N. As above, it follows that b; Ce Mie@—lg®) Byt as M E Sz, it

follows that there exists a 5’5 € M€ ~/2(1) that is isomorphic to b, over 4b;. It is
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now easily seen that the 515, € M*¢7) and M |= ¢;(@.bb’5) for each i. Thus N is
an elementary extension of 1.

Note that given an elementary chain 9, < --- < 9, of models of Sz we may
construct 9,1 such that M; < --- < M, < M,,;1. Note that we may also insist
that dim(9;) = k/c. Now given an elementary chain My < --- < M, < -+ < set
Moy = Uyer, M. As elementary embeddings preserve closed sets it is easily seen
that dim(90,,) = co. The rest of the claim now follows from Theorem 3.7. -

84. Regular types. In Section 4 we turn our attention toward the study of regular
types. We fix a monster model M of Sz. Recall the notions of d(4) and d (B/ X ) for
some finite 4 C M and X C M from Section 2. We begin by extending this notion
to a type as follows (see also [2]).

DEFINITION 4.1, Let M be a monster model of Sz and let X be a small subset of
M. Let p € S(X). Weletd(p/X) = d(b/X) for some (equivalently any) realization
b of p.

Now. due to w-stability and weak elimination of imaginaries (see (3) and (5) of
Theorem 2.5), it suffices to restrict our attention to nonalgebraic types over finite
algebraically closed sets in the home sort for the study of regular types. So fix some
finite 4 < M (recall that algebraically closed sets are precisely the intrinsically
closed ones). In what follows we freely use regular types. orthogonality, modular
types etc. and facts about them. The relevant definitions and results can be found
in [10].

REMARK 4.2. Let A < M be _ﬁnite and b be finite such_that bNA=0. Now let
A C C also be finite. Note that b |, C if and only if acl(hA) J/acl(A) acl(C). Since

Sz has finite closures it follows that acl(bA4), acl(C) are both finite. Thus in order to
understand nonforking, it suffices to look at types p € S(A4) such thatx # a € p
for all @ € A such that for any b E p. bA < M. Note that this information, along
with the atomic diagram of some (of any) realization of p is sufficient to determine
p uniquely as noted in (1) of Lemma 2.5. Also such a type p is nonalgebraic and
stationary as A is algebraically closed.

In light of our comments at the beginning of Section 4 and Remark 4.2 it suffices
to study basic types over finite sets in order to understand regular types (i.e.. we can
choose a basic type to represent the required parallelism class).

DEFINITION 4.3. Let A < M be finite and p € S(A4), we say that p is a basic type
if x # a € pforalla € A and for some (equivalently any) b = p, b4 < M.

Recall that ¢ is the least common multiple of the denominators of the & (in
reduced form).

LEMMA 4.4. Let 1 € Kg. Then there exists B € Kg such that A <°*B and
o(B/A) =1/c.
Proor. Consider the structure given by 2* = 2 @y o where 2y € Kg consists

of a single point. Now an application of Lemma 2.8 to 2* yields the required
result. -
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We begin by studying basic types such that d(p/A4) = 0,1/c where 4 < M is
finite. The choice to restrict our attention to such types will be justified by Theorem
4.13, where we show any type p with d(p/A) > 2/c cannot be regular. We begin
our analysis of types that can be regular types by defining nuggets and nugget-like

types.

DErFINITION 4.5. Let A, D € Kz with 2 C © with D = AB. Let k € w. We say
that B is a k/c-nugget over A0if AN B =0, 0(B/A) = k/c and (B’ /A) > k/c for
all A C AB' C AB.

DEFINITION 4.6. Let A < M be finite. We say that a basic type p € S(4) is
nugget-like over A, if given B where B realizes the quantifier free type of p over 2,
then B is a k/c-nugget over A for some k € .

Lemma 4.7, Let A < M be finite and let p € S(A) be nugget-like. Let A C X with
X closed. For any b |= p, either bN X =0 orb C X.

PROOF. Assume that b N X # (). Let 5 = b N X assume that 5’ # b. Then as
5(b'/4) > 6(b/A). it follows that there is some minimal pair (4b'. D) with D C Ab
but D ,@ X . But this contradicts that X is closed. Hence b C X. -

We now explore how the behavior of the d function interacts with nugget-like

types. The following results are well known (see e.g.. Theorem 3.28 of [3] or Lemma
3.13 of [12] and Lemma 2.6 of [2]).

LemMa 4.8. 1. Suppose B is finiteand X C Y. Then d(B/X) > d(B/Y).

2. Let A < M be finite and let p € S(A). Suppose that for somek € w,d(p/A) =
k/c.Let A C X < M. Supposethatq € S(X) extends p. Ifd(q/X) < d(p/A),
then q is a forking extension of p.

We now obtain the following fact about the forking of nugget-like types:

LemMma 4.9. Let A < M be finite and let p € S(A) is nugget-like. Let A C Y CM
with Y closed. Let q be an extension of p to Y. Now q is a forking extension of p if
and only if d(q/Y) < d(p/A) or givenb |=q.b C Y.

Prookr. Ifd(q/Y) < d(p/A), then Lemma 4.8 tells us that ¢ is a forking extension
of p. Further Y is algebraically closed. So if for any b |= ¢. b C Y. it follows that b
is an algebraic type over Y. Since p is not an algebraic type over A, it follows that
q 1s a forking extension of p.

For the converse assume that ¢ is a forking extension of p and that d(¢/Y) =
d(p/A). As q is a forking extension of p, it follows from (8) of Theorem 2.5 that
icl(hA) Nicl(Y) 2 icl(A4). Buticl(4) = 4. icl(Y) = Y and as b realizes p over 4.
icl(hA) =bA. ThushN Y # (). Now by Lemma 4.7, 5 C Y. =

The following theorem allows us to identify certain regular types. Further
it establishes that 0-nuggets are, in some sense., orthogonal to almost all other
types.

THEOREM 4.10. Let A < M be finite and let p € S(A) be nugget-like. Now if
d(p/A) = 0ord(p/A) = 1/c. then p is regular. Further if d(p/A) = 0, then p is
orthogonal to any other nugget-like type over A.

Proor. Under the given conditions p is clearly nonalgebraic and stationary. We
directly establish that it will be orthogonal to any forking extension of itself. Let
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A C X C M with X closed. Since Sz is w-stable and has finite closures we may as
well assume that X is finite, i.e., if ¢ € S(X) with ¢ D p a forking extension, there
is some finite closed Xy C X such that ¢ |y, is a forking extension. Let 5 = p. We
have that b L 4 X. As Ab, X are closed and 4b N X = A, from an application of
(8) of Theorem 2.5, we obtain that X b is closed.

First assume that d (p/A4) = 0. Let p’ be a forking extension of p to X and letf |=
p'. It follows easily from Lemma 4.8. that d (f/4) > d(f/X). Asd(f/4) = 0 and
d(f/X) > 0. it now follows that d(f /X) = 0. Thus by Lemma 4.9. we have that
f CXandhenceb |, fash |, X.

Soassumethatd(p/4) = 1/c.Let p'. f beasabove. By Lemma4.9.d(p’/X) =0
or f C X.Asabove f C X yields thath | ¥ f. So assume that f ¢ X and note
that by Lemma 4.7 we have that £ N X = (). Now by (8) of Theorem 2.5 it suffice to
show that XbNacl(X /) = X toestablish thatb |, /. Consider d (acl(X /) b/X).
On the one hand, as Xb C acl(X f)b. d(acl(X f)b) > d(Xb) and thus we have
that d(acl(X f)b/X) > d(b/X) = 1/c. On the other hand d(acl(X f)b/X) =
d(bjacl(X f)) +d(acl(X )/ X). As d(acl(X f)/X) = d(f/X) = 0. we obtain
that d(b/acl(X f)) > 1/c. In particular b ¢ acl(X f). But then by Lemma 4.7,
bnacl(X f) =0 and thus Xb Nacl(X f) = 0 as required.

For the second half of the claim, assume that d(p/4) = 0. Let ¢ € S(A4)
be nugget-like and distinct from p. Now d(p/4) = d(p|x/X) and d(q/A) =
d(q|lx/X).Let / = q|y. Note that f L, X implies that X f is closed. Now using
Lemma 4.7, we can easily show that b X N f X # X, thenb = f. But this contradicts
p # q. Thus it follows that bX N f X = X. Further 0 = d(b/X) > d(b/X f) > 0.
Again by (8) of Theorem 2.5, we obtain that b Ly f and thus p.q are
orthogonal. -

The following theorem shows that while there are many regular types with
d(p/A) = 1/c, all such types are nonorthogonal. Thus up to nonorthogonality,
there is only one regular type with d(p/A) = 1/c. This is in contrast to distinct
0-nuggets, any two of which are orthogonal to each other. We also show that the
number of independent realizations of a 1/¢ nugget determines the dimension of a
model.

THEOREM 4.11. Let A be closed and finite and let p. q € S(A) be distinct basic types
and satisfy d(p/A) = d(q/A) = 1/c. Then p,q are nonorthogonal. Hence any two
regular types over p'.q' € S(X) where X is closed and d(p'/X) = d(q'/X) = 1/c
are nonorthogonal. Further if we take A = () and let M < M. The dimension of M is
determined by the number of independent realizations of p in M. Thus a single regular
type determines the dimension of .

PrROOF. Let A4 be as given. Consider A4 as a finite structure that lives in K5. Now
consider the finite structures 4 B, AC where B, C realize the quantifier free types of
p. q respectively. Consider D = AB &4 AC. Apply Lemma 2.8 to obtain a finite
G withd(G/D) = —1/c and 4, AB, AC < G. Let f be a strong embedding of G
into M where £ is the identity on 4. From (6) of Theorem 2.5 and the transitivity
of < it follows that f(B) = p and f(C) = ¢. Now from (8) of Theorem 2.5, it
follows that f(B) \LA f(C)andthus p £ q. Now given p’. g’ € S(X), there exists
a finite closed set, which by an abuse of notation we call A, such that p’, ¢’ are based
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and stationary over 4. Since regularity is parallelism invariant both p|4 and ¢| 4 are
regular. Arguing as above we see that p’|4 f ¢'|4 and thus they are nonorthogonal.

Let M < M and assume that 4 = (). Given n € w, consider the finite structure C,
that is the free join of n-copies of the quantifier free type of p over (). If dim (1) >
n/c,by Lemma 3.6, there is a strong embedding of C,, into 9. It is easily checked that
the strong embedding witnesses n-independent realizations of p. The rest follows
easily. -

The following shows that 1/¢ nugget-like types are not locally modular.

THEOREM 4.12. Let A < M be finite and let p € S(A) be a nugget-like with
d(p/A) = 1/c. Then p is not locally modular, in particular it is nontrivial.

Proor. Recall that given a regular type p. the realizations of p form a pregeometry
with respect to forking closure. In order to simplify the presentation, we will let
A=0.

We begin with a proof that p is nontrivial. Let By, By, B, be three finite structures
that has the same quantifier free type as p and are disjoint over (). Consider C =
@6<3Bi. Using Lemma 2.8 we obtain a finite structure D € Kz with 6(D) = 2/c,
B; < Cand Bi®yB; < Cforanyi # j. Notethat C £ Dasd(C) > d(D). Let g be
a strong embedding of C into M. An argument similar to that found in Theorem 4.11
shows that g(By). g(B1). g(B,) are pairwise independent but dependent realizations
of p and thus p is nontrivial.

By well known results of Hrushovski in [6]. any stable theory with a nontrivial
locally modular regular type interprets a group. As these structures do not interpret
groups (see [13] by Wagner for detailed discussion) the result now follows. -

The following result shows that a broad class of types cannot be regular types
and justifies the choice to study types p € S(A4) with d(p/4) = 0, 1/c in our study
of regular types.

THEOREM 4.13. Let A be finite and closed in M. Let p € S(A) be a basic type such
that d(p/A) > 2/c. Then p is not regular.

ProoF. Recall that a regular type has weight 1. We establish the above result by
showing that p has preweight at least 2 and hence weight at least 2. Our strategy is
similar to the one used in Theorem 4.11: we consider A as living inside of K. We
then construct a finite structure G over the finite structure 4 that we then embed
strongly into M over A4 using saturation. Finally we argue that the strong embedding
witnesses the fact that the preweight of p is at least 2.

Consider 4 as a finite structure that lives in K. By Lemma 4.4 we may construct
D € Kz such that the D = AC, AN C = () (as sets), and 4 < D with6(D/A) =
0(C/A) = 1/c. Let AB be such that B realizes the quantifier free type of p over
A. Consider the finite structures F;. i = 1,2 where each F; is the free join of 4B
and an isomorphic copy of D over 4 and F; N F, = AB. We label the isomorphic
copies of D as ACy, AC, and thus F; = ABC;, the free join of AB, AC; over
A. Apply Theorem 2.7 to obtain G; for i = 1,2 such that (F;. G;) is an essential
minimal pair and 6(G;/F;) = —1/c. It is easily verified that 4, AB, AC; < G;. Let
G = G D45 Gy. Note that G € K and that we may now regard the finite structures
A, AB., ACy etc. as substructures of G.
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We claim that G € Kg, A.AB, AC,AC,, AC1C, < G but F}, F5, is not strong
in G. Using Remark 2.2 and the transitivity of <, we obtain that it suffices to show
that AB, AC,C, < G along with Fy, F>, £ G to obtain the claim.

First, as AB < G; and G is the free join of G|, G, over AB, we obtain AB <
G by an application of (4) of Fact 2.4. We now show that AC|C; < G. Let
AC1C, C G' C Gandlet B = BNG', G/ = Gi — AC;. Now 6(G'JAC,C,) =
0((G{ = B")(G5— B")JACC,B") + 6(B'/AC,C,) using (5) of Fact 2.4. Further,
since AB, AC; C, is freely joined over A 6(B’/ACC,) = 6(B’/A) follows from (2)
of Fact 2.4. Arguing similarly we obtain thaté(G/—B’/AC,C,B’') = 5(G!/AB'C}).
Thus it follows that 6(G’/ACC,) = 6(G{/ACB’) +6(G5/AC,B’) + 6(B'/A).
Now as A < AB, it follows that (B’ /A) > 0. The claim now follows by considering
the cases B’ # B and B’ = B using that fact that (4BC;. G;) forms an essential
minimal pair. Finally, and easy calculation shows that 6(G/F\F,) = —2/c. Now
3(G/F;) =6(G/F\Fy) +6(F\F>/F;) = —2/c +1/c = —1/c.

Arguing as we did in Theorem 4.11, we easily obtain that a strong embedding of
G into M over 4 witnesses that the preweight of p is at least 2. We leave the details
to the reader. -

85. A pseudofinite «-stable theory with a nonlocally modular regular type. In this
section we draw on some known results to prove that there are pseudofinite w-
stable theories with nonlocally modular regular types. This answers a question of
Pillay’s in [11] regarding whether pseudofinite stable theories always have locally
modular regular types. We assume that the reader is familiar with basic facts about
pseudofinite theories.

THEOREM 5.1. There is a pseudofinite w-stable theory with a nonlocally modular
regular type.

ProoF. Consider the case where L = {E} contains only one relation symbol
(recall E has arity at least 2). We claim that S has the required properties.

Let {a, } be an increasing sequence of irrationals in (0, 1) that converge to @(E).
By the results of [1], it follows that Th (9, ) can be obtained as a almost sure
theory with respect to a certain probability measure. Thus, in particular, each
theory Th(9M,,) is pseudofinite. Now by Theorem 4.2 of [4], it follows that S; =
Th(ITy M, ) whered is a nonprincipal ultrafilter on w. Since taking the ultraproduct
of structures with pseudofinite theories results in a structure with a pseudofinite
theory, it follows that Sy is pseudofinite. Further as we have shown in Theorem 4.12
that 1/c-nuggets are nonlocally modular, the result follows. -
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