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COUNTABLE MODELS OF THE THEORIES OF BALDWIN–SHI
HYPERGRAPHS AND THEIR REGULAR TYPES

DANULK. GUNATILLEKA

Abstract. We continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our
attention to when the rank � is rational valued, we show that each countable model of the theory of a
given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of
the original class used in the construction. We introduce a notion of dimension for a model and show that
there is a an elementary chain {M� : � ≤ �} of countable models of the theory of a fixed Baldwin–Shi
hypergraph withM� � M� if and only if the dimension ofM� is at most the dimension ofM� and
that each countable model is isomorphic to some M� . We also study the regular types that appear in
these theories and show that the dimension of a model is determined by a particular regular type. Further,
drawing on a large body of work, we use these structures to give an example of a pseudofinite, �-stable
theory with a nonlocally modular regular type, answering a question of Pillay in [11].

§1. Introduction. FollowingHrushovski’s discovery [7] of a new stronglyminimal
set via a generalized Fraisse construction, many authors looked at variants of his
method. In [3], Baldwin and Shi, taking the weight α as a parameter, consider
the theory of a Fraisse limit Mα obtained from classes Kα of structures defined
via a dimension function �(A) = |A| − α|EA| and an associated notion of strong
substructure. Here, we consider these theories in the slightly more general context
of a finite, relational language, but under the assumption that

each of the weights α(E) is rational and 0 < α(E) < 1.

Baldwin and Shi [3] prove that these assumptions imply the theory is �-stable. In
[5], the author proves that the theory is ∀∃-axiomatizable and describes the family of
definable sets, bringing together and extending results from [3], [9], and [8]. Here, we
continue the study of Baldwin–Shi hypergraphs from [5] using the tools developed
therein.
We begin in Section 3 by studying the countable models of Sα where Sα denotes
the ∀∃ axiomatization of Th(Mα). A key result is Theorem 3.5, where we prove that
all countable models of Sα can be obtained as a generic structures. We then use this
result, along with a notion of dimension for models, to prove Theorem 3.7, which
establishes that the countable spectrum is ℵ0. In Theorem 3.8 we sharpen this result
and show that the countable models of Sα form an elementary chain {M� : � ≤ �}
withM� � M� for � ≤ � with each model of Sα isomorphic to someM� .
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In Section 4 we study the regular types of Sα . A key result is Theorem 4.10 which
identifies certain types as being regular. In Theorem 4.11 we establish that a certain
class of types are nonorthogonal. We also show that there is a regular type whose
realizations determine the dimension of a model that was introduced in Section 3.
We show in Theorem 4.12, that these types are in fact not locally modular. We end
the section with Theorem 4.13, which establishes that a large class of types are not
regular.
In Section 5 drawing on a large body of work, we observe that certain of these
generic structures have pseudofinite theories. Thus we obtain pseudofinite �-stable
theories with nonlocally regular modular types. This answers a question of Pillay in
[11] on whether all regular types in a pseudofinite stable theory are locally modular.
The author wishes to thank Chris Laskowski for all his help and guidance in
the preparation of this article and the referee for his many helpful and insightful
suggestions.

§2. Preliminaries. Fix a finite relational language L where each relation sym-
bol has arity at least 2. Let KL denote the class of finite structures where each
relation symbols is interpreted reflexively and symmetrically. Fix a rational val-
ued function α : L → (0, 1) and define a rank function � : KL → Q by
�(A) = |A| − ∑

E∈L α(E)|EA| where |EA| is the number of subsets of A on
which E holds. We include ∅, the empty structure in KL for technical reasons
and note �(∅) = 0. Given A,B ∈ KL, we say that A is strong in B, denoted
by A ≤ B if and only if A ⊆ B and �(A) ≤ �(A′) for all A ⊆ A′ ⊆ B. Let
Kα = {A ∈ KL : �(A′) ≥ 0 for all A′ ⊆ A}.

Remark 2.1. The relation ≤ on KL × KL is reflexive, transitive and has the
property that given A,B,C ∈ KL, if A ≤ C, B ⊆ C then A ∩B ≤ B (use (1) of
Fact 2.4). The same statement holds true if we replace KL by Kα in the above
equation. Further we note that ∅ ∈ Kα and for any given A ∈ Kα , ∅ ≤ A.

Typically the notion of ≤ is defined on Kα ×Kα . However several proofs require
verifying that certain finite hypergraphs constructed over some A ∈ Kα are in Kα .
We find that defining the notion of≤ onKL ×KL allows us to make the exposition
significantly simpler via the following remark.

Remark 2.2. Let A,B ∈ KL. Further assume that A ⊆ B with A ∈ Kα . If
A ≤ B, thenB ∈ Kα . (use (1) of Fact 2.4).
Let n be a positive integer. A set {Bi : i < n} of elements of KL is disjoint over

A if A ⊆ Bi for each i < n and Bi ∩ Bj = A for i < j < n. If {Bi : i < n} is
disjoint over A, then D is the free join of {Bi : i < n}, denoted by D = ⊕i<nA Bi ,
if the universe D =

⋃{Bi : i < n}, Bi ⊆ D for all i and, there are no additional
relations in D, i.e., ED =

⋃{EBi : i < n} for all E ∈ L. In the case n = 2 we will
use the notationB0 ⊕A B1 for ⊕i<2A Bi .
The following fact, in the terminology of Baldwin and Shi in [3], shows that
(Kα,≤) has full amalgamation. It is the key to showing that (Kα,≤) is aFraı̈ssé class,
i.e., (Kα,≤) has the Joint Embedding Property and theAmalgamation Property. The
generic for (Kα,≤), i.e., the Fraı̈ssé limit of (Kα,≤) will be called the Baldwin–Shi
hypergraph for α.
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Fact 2.3. If B,C ∈ Kα , A = B ∩ C, and A ≤ B, then B⊕A C ∈ Kα and
C ≤ B⊕A C.

Before proceeding further, we record three easy computations for future use.
Given an L-structure Z whose finite structures lie in KL and finite A,B ⊆ Z, the
relative rank of B over A is obtained by taking �(B/A) := �(BA) − �(A) where BA
is is the finite structure with universe B ∪A in Z.
Fact 2.4. Let Z be an L-structure whose finite structures lie in KL and let
A,B,Bi , C ⊆ Z be finite.

1. Let A′ = A ∩ B. Now �(B/A′) ≥ �(B/A) = �(AB/A). Further if B,C are
disjoint and freely joined over A, then �(B/AC ) = �(B/A).

2. If {Bi : i < n} is disjoint over A and Z = ⊕i<nBi is their free join over A,
then �(Z/A) =

∑
i<n �(Bi/A). In particular, if A ≤ Bi for each i < n, then

A ≤ ⊕i<nBi .
3. �(B1B2, . . . , Bk/A) = �(B1/A) +

∑k
i=2 �(Bi/AB1, . . . , Bi−1).

A useful notion in the study of these structures is the extension of the notion of≤
to arbitraryL-hypergraphs. Fix Z whose finite structures all lie inKL. Given a finite
A ⊆ Z we say that A is strong in X if A ≤ B for all finiteB ⊆ Z with A ⊆ B. Given
A,B ∈ KL with A ⊆ B, we say that (A,B) is a minimal pair if and only if A ⊆ B,
A ≤ C for all A ⊆ C ⊂ B but A � B. Given X ⊆ Z. We say X is closed in Z if and
only if for all finite A ⊆ X , if (A,B) is a minimal pair with B ⊆ Z, then B ⊆ X . It
is easily established that given Z ∈ KL and A ⊆ Z is finite, then A ≤ Z if and only if
A is closed in Z and thus the notion of a closed set generalizes the notion of ≤ on
finite structures.
It is immediate that any such Z, Z is closed in Z and that the intersection of a

family of closed sets of Z is again closed. Thus we define the intrinsic closure of X
in Z, denoted by iclZ(X ) is the smallest set X ′ such that X ⊆ X ′ ⊆ Z and X ′ is
closed in Z. As α(E) is rational for all E ∈ L, it follows that for any finite A ⊆ Z,
iclZ(A) is finite. The important definition of the induced dimension function is thus
simplified in our context.
Fix a monster model M of the theory of the generic and let

A,B ⊆ M be finite. Then the induced dimension is given by d (A) =
min{�(A′)|A ⊆ A′ ⊆ N,A′ is finite.}= iclM(A). Further d (B/A) = d (AB)−d (B).
If X ⊆ M is infinite, then d (A/X ) = min{d (A/X 0)|X0 ⊆ X is finite}. For finite
A,B,C , it is easily observed that d (A/C ) ≥ 0, d (AB/C ) = d (A/BC ) + d (B/C ).
The theory Sα is the smallest set of sentences insuring that ifM |= Sα , then every
finite substructure ofM is in Kα and for all A ≤ B from Kα , every (isomorphic)
embedding f : A → M extends to an embedding g : B → M. Clearly Sα is a
collection of ∀∃ sentences. Further given A ∈ KL with a fixed enumeration a
of A, we write ΔA(x) for the atomic diagram of A. Also for A,B ∈ KL with
A ⊆ B and fixed enumerations a, b respectively with a an initial segment of b; we
let ΔA,B(x, y) the atomic diagram of B with the universe of A enumerated first
according to the enumeration a. Let A,B ∈ K and assume A ⊆ B. Let ΨA,B(x) =
ΔA(x) ∧ ∃yΔ(A,B)(x, y). Such formulas are collectively called extension formulas
(over A). A chain minimal extension formula is an extension formula ΨA,B where
B us the union of a minimal chain over A, i.e., there is some sequence 〈Ai〉i≤n with
n ∈ �, A0 = A,An = B and (Ai ,Ai+1) is a minimal pair.
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Wefinish this section by collecting somekey results aboutSα fromvarious sources.

Theorem 2.5. 1. The theory Sα is complete and is the theory of the generic for
(Kα,≤). (see [8] or [5]).

2. Every L-formula is Sα-equivalent to a boolean combination of chain-minimal
extension formulas. (see [5], [1]).

3. Sα is �-stable. (see [3], [13]).
4. Given anyM |= Sα andX ⊆M , X is algebraically closed inM if and only if X

is intrinsically closed inM . (see [3], [13] or [5]).
5. The theory Sα has weak elimination of imaginaries, i.e., every complete type over

an algebraically closed set in the home sort is stationary. (see [3], [5] or [12]).
6. LetM |= Sα be ℵ0-saturated and let A be a finite closed set ofM. Suppose that
� is a consistent partial type over A such that for any b, c |= �, qftp(b/A) =
qftp(c/A). If any realization b of � in M has the property that bA is closed in
M, then � has a unique completion to a complete type p over A. (see [5]).

7. Sα has finite closures, i.e., given anyN |= Sα for any finite A ⊆ N, there exists
C ∈ Kα such that A ⊆ C ≤ N.

8. LetM be a monster model of Sα . For algebraically closed X,Y,Z with Z = X ∩
Y , X |�Z Y if and only if XY is algebraically closed and X,Y are freely joined
overZ if and only if for any finiteX0 ⊆ X,Y0 ⊆ Y , d (X0/Z) = d (X0/ZY0) and
acl(X0Z) ∩ acl(Y0Z) = acl(Z) (or equivalently icl(X0Z) ∩ icl(Y0Z) = icl(Z):
see [3], [12] or [13]).

9. Sα does not interpret infinite groups. (see Section 7 of [13]).

2.1. Essential minimal pairs. We now recall essential minimal pairs, which were
introduced in [5].

Definition 2.6. Let B ∈ Kα with �(B) > 0. We call D ∈ Kα with B ⊆ D
an essential minimal pair if (B,D) is a minimal pair and for any D′ � D,
�(D′/D′ ∩B) ≥ 0.
The following, in more general form, appears in [5] as Theorem 3.33. It will
form the backbone of many of the results to follow. Let c be the least common
multiple of the denominators of α(E) (in reduced form), i.e., c = lcm(qE)E∈L, with
α(E) = pE/qE with pE, qE relatively prime.

Theorem 2.7. Let A ∈ Kα with �(A) = k/c > 0. There are D ∈ Kα such that
(A,D) is an essential minimal pair and satisfies �(D/A) = −1/c.
We immediately obtain the following useful lemma.

Lemma 2.8. Let k ∈ �. Given any B ∈ Kα , there is some D ∈ Kα such that
D ⊇ B, �(D) = k/c and for any A ≤ B with �(A) ≤ k/c, A ≤ D.

Proof. GivenB takeD0 to be the free join ofBwith a structure with k+1many
points with no relations among them over ∅. Note thatB ≤ D0. Let l = c�(D0)−k.
Consider a sequence D0 ⊆ · · · ⊆ Dl where each (Di ,Di+1) is an essential minimal
pair with �(Di+1/D1) = −1/c. We claim that D = Dl is as required. Fix any
A ≤ B with �(A) ≤ k/c. We show by induction on i < l that if A ≤ Di , then
A ≤ Di+1. Clearly A ≤ D0 as A ≤ B ≤ D0. Fix i < l and consider any F such
that A ⊆ F ⊆ Di+1. If F = Di+1 then �(F) ≥ k/c ≥ �(A) and so �(F/A) ≥ 0. On
the other hand, if F �= Di+1, then, �(F/Di+1 ∩ F) since (Di ,Di+1) is an essential
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minimal pair and �(Di ∩F/A) ≥ 0 asA ≤ Di . Thus �(F/A) = �(F/Di ∩F)+ �(F∩
Di /A) ≥ 0 as required. �

§3. Countable models of Sα . Our goal in this section is to study the countable
models of Sα . We begin by defining a notion of dimension for (countable) models.
We then show that this notion of dimension is able to categorize countable models
up to both isomorphism and elementary embeddability. Recall that c is the least
common multiple of the denominators of the αE (in reduced form).

Definition 3.1. LetM |= Sα . Let A ≤ M. We let dim(M/A) = max{�(B/A) :
A ≤ B ≤ M}. If there is no maximum, i.e., given any z > 0, there will be some
B ≤ Mwith �(B/A) > z, we let dim(M/A) =∞.Wewrite dim(M) for dim(M/∅).
Definition 3.2. Fix an integer k ≥ 0 and let Kk/c = {A : A ∈ Kα and �(A) =
k/c}. Let (Kk/c ,≤) be such that≤ is inherited by Kα i.e., A ≤ B for A,B ∈ Kk/c if
and only if for all A ⊆ B′ ⊆ B withB′ ∈ Kα , A ≤ B′

We begin with the following technical lemma:

Lemma 3.3. Let A,B,C,D ∈ Kα with A ≤ B,C; �(C/A) ≥ �(B/A) and D =
B⊕ C the free join ofB,C over A. We can construct H ∈ Kα such that A,B,C ≤ H,
D ⊆ H and �(H/C) = 0. Further if �(B/A) = �(C/A), the H that was constructed
has the property �(H/B) = 0.

Proof. This follows from an easy application of Lemma 2.8 onD. �
We now work toward showing that certain countable models of Sα can be built
as Fraı̈ssé limits (Kk/c,≤). In Theorem 3.7 we show that these are in fact, all of the
countable models up to isomorphism.

Lemma 3.4. For any fixed integer k ≥ 0, (Kk/c ,≤), where ≤ is inherited from Kα
is a Fraı̈ssé class.

Proof. Fix an integer k ≥ 0 and consider Kk/c . Let A,B,C ∈ Kk/c . Note that
for the purposes of proving amalgamation, we may as well assume B,C are freely
joined over A and that A ≤ B,C. Note that �(B/A) = �(C/A) = 0. The required
statement follows by a simple application of Lemma 3.3 on B⊕A C. For joint
embedding consider ∅ ≤ B,C. Note that �(B/∅) = �(C/∅) = k/c. Apply Lemma
3.3 onB⊕∅ C, the free join ofB,C over ∅. �
We now prove the following theorem that the theory of the generic for the Fraı̈ssé
class (Kk/c ,≤) also models Sα and has dimension k/c.
Theorem 3.5. Let k be a fixed integer with k ≥ 0. Let Mk/c be the generic for

the Fraı̈ssé class (Kk/c ,≤) where ≤ is inherited from Kα . Now Mk/c |= Sα and
dim(Mk/c) = k/c.

Proof. Fix an integer k ≥ 0. From Lemma 3.4, it follows that (Kk/c ,≤) where
≤ is inherited from Kα is a Fraı̈ssé class. LetMk/c be the (Kk/c ,≤) generic. Note
that givenB ∈ Kα , there is some D ∈ Kk/c such that D ⊇ B by Lemma 2.8. Thus
it suffices to show thatMk/c satisfies the extension formulas in Sα .
Let A,B ∈ Kα with A ≤ B and assume that A ⊆ Mk/c . AsMk/c is the (Kk/c,≤)

generic, there is some C ≤ Mk/c with A ⊆ C and �(C) = k/c. By Fact 2.3, we
have that D = B ⊕A C is in Kα and that C ≤ D. Now using Lemma 2.8, we
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can find G ∈ Kk/c such that D ⊆ G and C ≤ G. But as Mk/c is the (Kk/c,≤)
generic we can find a strong embedding ofG intoMk/c over C. Thus it follows that
Mk/c |= ∀x∃y(ΔA(x) =⇒ ΔA,B(x, y)). Hence it follows thatMk/c |= Sα . Further
as noted above, given any finite A ⊆ Mk/c , there is some C ≤ Mk/c with A ⊆ C and
�(C) = k/c. Hence dim(Mk/c) = k/c. �
We now work toward classifying the countable models of Sα up to isomorphism
using our notion of dimension.

Lemma 3.6. Let M |= Sα and A ≤ M be finite. Let D ∈ Kα be such that A ≤ D.
Then dim(M/A) ≥ �(D/A) if and only if there is some g that strongly embedsD into
M over A (i.e., g(D) ≤ M).

Proof. The statement that if there is some g such that g strongly embeds D into
M over A, then dim(M/A) ≥ �(D/A) is immediate from the definition. Thus we
prove the converse. Let A ≤ M be finite. Let D ∈ Kα be such that A ≤ D.
First assume that �(D/A) = 0. Now as Sα |= ∀x∃y(ΔA(x) =⇒ ΔA,D(x, y)).

Thus there is some A ⊆ D′ ⊆ M such that D ∼=A D′. Further as �(D′/A) = 0,
from (2) of Lemma 2.5, D′ ≤ M. Thus regardless of the value of dim(M/A),
if �(D/A) = 0 then there is some g such that g strongly embeds D into M
over A.
Now assume that m/c = �(D/A) ≤ dim(M/A) with m ≥ 1 and further assume
that dim(M/A) ≥ k/c with k ≥ m. Let A ≤ F ≤ M be such that �(F/A) = k/c.
Let G = D⊕A F. By Lemma 3.3, there exists H ∈ Kα with G ⊆ H and A,D,F ≤ H
and �(H/F) = 0. Since F ≤ M and �(H/F) = 0 we are in the setting above. So take
a strong embedding g of H intoM over F. Clearly g fixes A andD has the property
that g(D) ≤ F ≤ M and thus g(D) ≤ M. �
Abusing notation and letting Kk/c = Kα in the case that k =∞, we now obtain:
Theorem 3.7. LetM,N |= Sα be countable. NowM ∼= N if and only if dim(M) =
dim(N) and dim(M) = ∞ if and only if M is the generic for Kα . Thus there are
precisely ℵ0 many nonisomorphic models of Sα of size ℵ0. Further each countable
model of Sα is isomorphic to some (Kk/c ,≤) generic.
Proof. Since � is invariant under isomorphism, it immediately follows that if

M ∼= N, then dim(M) = dim(N). Now from Theorem 3.5, it follows that the
number of nonisomorphic countable models is at least ℵ0.
Case 1. dim(M) = dim(N) = k/c for some k ∈ �. Fix enumerations forM,N .
LetA ≤ Mwith dim(M/A) = 0. Thus �(A) = dim(M) = dim(N). Assume that we
have constructed a strong embedding g : A → N. Pick b ∈ N− g(A), where b in the
enumeration corresponds to the element ofN with least index not in g(A). Consider
iclN({b} ∪ g(A)) = B ≤ N. NowB is finite. Since g(A) ≤ N and g(A) = dim(N),
it follows that �(B/g(A)) = 0 and g(A) ≤ B. Now as A ∼= g(A) by Lemma 3.6,
there exists a strong embedding g ′ : B → M and g ′|g(A) = g−1. Clearly this allows
us to form a back and forth system betweenM,N.

Thus all that remains to be shown is that we can find a strong embedding
of A ≤ M where �(A) = dim(M). To see this first note that ∅ ≤ N. Further
dim(N/∅) = �(A/∅). Thus there exists some strong embedding of A over ∅ into N
by an application of Lemma 3.6 as required.
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Case 2. M |= Sα and dim(M) =∞. We claim that in this caseM is isomorphic
to the generic. ClearlyM has finite closures and hence condition (1) of the generic
is satisfied. Note that if we show that dim(M) = ∞ implies that for any A ≤ M,
dim(M/A) = ∞, then condition (2) follows immediately from Lemma 3.6. We
claim that this is indeed the case. By way of contradiction, assume that there is some
A ≤ M such that dim (M/A) is finite. Now there is some A ≤ D ≤ M such that
dim(M/A) = �(D/A). It is immediate from the definition that dim(M/D) = 0.
As dim(M) = ∞, fix a B ≤ M with �(B) > �(D). Consider G , the closure of
BD in M . Now G is finite and since B,D ≤ M , B,D ≤ G . Further �(G/D) = 0
as dim(M/D) = 0. So �(G) = �(D). But B ≤ M , so �(G/B) ≥ 0 and hence
�(G) ≥ �(B). Thus �(B) ≤ �(D), a contradiction to our choice ofB that establishes
the claim. Hence it follows that the number of nonisomorphic countable models of
Sα is ℵ0.
From Theorem 3.5, it follows that we can construct a countable model of a fixed
dimension (the dim(M) = ∞ case being the generic as seen above) as the generic
of a subclass of (Kα,≤). But as the dimension determines the countable model up
to isomorphism, we obtain the result. �
We now use our notion of dimension to characterize elementary embeddability.

Theorem 3.8. Let M,N be countable models of Sα . If dim(M) ≤ dimN, then
there is some elementary embedding f : M → N. Thus there is an elementary chain
M0 � · · · � Mn · · · � M� of countable models of Sα with each countable model
isomorphic to some element of the chain.

Proof. LetM,N be countable models of Sα with dim(M) ≤ dim(N). Note that
if dim(M) = dim(N), then by Theorem 3.7, M ∼= N. So assume that dim(M) <
dim(N) and fix an enumeration {mi : i ∈ �}. Now we have that dim(M) < ∞.
Let A ≤ M be such that �(A) = dim(M). Now by Lemma 3.6, there exists a strong
embedding f1 of A into N. Let B ≤ M be such that Ami ⊆ B where i is the least
index such that mi /∈ A. Note that as �(A) = dim(M), �(B) = �(A). Again using
Lemma 3.6, we can extend f1 to f2 so that f2 is a strong embedding of B into N
over A.
Proceeding iteratively we can find a≤ chain {Ai : i ∈ �} such thatM =

⋃
i<� Ai

and f :M → N such that f(Ai) ≤ N for each i ∈ �. It is easily seen that f is an
isomorphic embedding. We claim thatf is actually an elementary embedding ofM
into N. Note that given C ≤ M with C finite, there is some Ai with C ≤ Ai ≤ M.
Using the transitivity of ≤, it easily follows that f(C) ≤ N. In particular f(M) is
(algebraically) closed inN. For notational convenience we will assume thatM ⊆ N.
Let 	(x, y) be an L formula. Let a ∈ Mlg(x). Assume thatN |= ∃y	(a, y). But
	(x, y) is equivalent to the boolean combination of chain minimal formulas, say
Sα � ∀(x)(∃	(x, y)↔ ∧

i<n ϕi(x, y)) where each ϕ(x, y) is either a chain minimal
formula or the negation of a chain minimal formula. Suppose that b ∈ Nlg(y) is such
that N |= 	(a, b). If ϕi is a chain minimal formula then it follows that b ∈ Mlg(y)
as M is a closed set. So assume that each ϕi is the negation of a chain minimal
formula. Note that we may split b = b1b2 where b1 is formed via a minimal chain
and Ab1 ≤ N . As above, it follows that b1 ⊆∈ Mlg(y)−lg(b1). But as M |= Sα , it
follows that there exists a b′2 ∈Mlg(y)−lg(b1) that is isomorphic to b2 over Ab1. It is
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now easily seen that the b1b′2 ∈Mlg(y) and N |= ϕi(a, b1b′2) for each i . Thus N is
an elementary extension ofM.
Note that given an elementary chainM1 � · · · � Mn of models of Sα we may

constructMn+1 such thatM1 � · · · � Mn � Mn+1. Note that we may also insist
that dim(Mk) = k/c. Now given an elementary chainM0 � · · · � Mn � · · · � set
M� =

⋃
n<�Mn . As elementary embeddings preserve closed sets it is easily seen

that dim(M�) =∞. The rest of the claim now follows from Theorem 3.7. �

§4. Regular types. In Section 4 we turn our attention toward the study of regular
types. We fix a monster modelM of Sα . Recall the notions of d (A) and d (B/X ) for
some finite A ⊆ M and X ⊆ M from Section 2. We begin by extending this notion
to a type as follows (see also [2]).

Definition 4.1. LetM be a monster model of Sα and let X be a small subset of
M. Let p ∈ S(X ). We let d (p/X ) = d (b/X ) for some (equivalently any) realization
b of p.

Now, due to �-stability and weak elimination of imaginaries (see (3) and (5) of
Theorem 2.5), it suffices to restrict our attention to nonalgebraic types over finite
algebraically closed sets in the home sort for the study of regular types. So fix some
finite A ≤ M (recall that algebraically closed sets are precisely the intrinsically
closed ones). In what follows we freely use regular types, orthogonality, modular
types etc. and facts about them. The relevant definitions and results can be found
in [10].

Remark 4.2. Let A ≤ M be finite and b be finite such that b ∩ A = ∅. Now let
A ⊆ C also be finite. Note that b |�A C if and only if acl(bA) |�acl(A) acl(C ). Since
Sα has finite closures it follows that acl(bA), acl(C ) are both finite. Thus in order to
understand nonforking, it suffices to look at types p ∈ S(A) such that x �= a ∈ p
for all a ∈ A such that for any b |= p, bA ≤ M. Note that this information, along
with the atomic diagram of some (of any) realization of p is sufficient to determine
p uniquely as noted in (1) of Lemma 2.5. Also such a type p is nonalgebraic and
stationary as A is algebraically closed.

In light of our comments at the beginning of Section 4 and Remark 4.2 it suffices
to study basic types over finite sets in order to understand regular types (i.e., we can
choose a basic type to represent the required parallelism class).

Definition 4.3. Let A ≤ M be finite and p ∈ S(A), we say that p is a basic type
if x �= a ∈ p for all a ∈ A and for some (equivalently any) b |= p, bA ≤ M.

Recall that c is the least common multiple of the denominators of the αE (in
reduced form).

Lemma 4.4. Let A ∈ Kα . Then there exists B ∈ Kα such that A ≤ B and
�(B/A) = 1/c.

Proof. Consider the structure given by A∗ = A ⊕∅ A0 where A0 ∈ Kα consists
of a single point. Now an application of Lemma 2.8 to A∗ yields the required
result. �
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We begin by studying basic types such that d (p/A) = 0, 1/c where A ≤ M is
finite. The choice to restrict our attention to such types will be justified by Theorem
4.13, where we show any type p with d (p/A) ≥ 2/c cannot be regular. We begin
our analysis of types that can be regular types by defining nuggets and nugget-like
types.

Definition 4.5. Let A,D ∈ Kα with A � D with D = AB. Let k ∈ �. We say
that B is a k/c-nugget over A if A ∩ B = ∅, �(B/A) = k/c and �(B ′/A) > k/c for
all A � AB ′ � AB .

Definition 4.6. Let A ≤ M be finite. We say that a basic type p ∈ S(A) is
nugget-like over A, if given B where B realizes the quantifier free type of p over A,
then B is a k/c-nugget over A for some k ∈ �.

Lemma 4.7. LetA ≤ M be finite and let p ∈ S(A) be nugget-like. LetA ⊆ X with
X closed. For any b |= p, either b ∩ X = ∅ or b ⊆ X .

Proof. Assume that b ∩ X �= ∅. Let b′ = b ∩ X assume that b′ �= b. Then as
�(b

′
/A) > �(b/A), it follows that there is some minimal pair (Ab

′
, D) withD ⊆ Ab

but D � X . But this contradicts that X is closed. Hence b ⊆ X . �
We now explore how the behavior of the d function interacts with nugget-like

types. The following results are well known (see e.g., Theorem 3.28 of [3] or Lemma
3.13 of [12] and Lemma 2.6 of [2]).

Lemma 4.8. 1. Suppose B is finite and X ⊆ Y . Then d (B/X ) ≥ d (B/Y ).
2. LetA ≤ M be finite and let p ∈ S(A). Suppose that for some k ∈ �, d (p/A) =
k/c. LetA ⊆ X ≤ M. Suppose that q ∈ S(X ) extendsp. If d (q/X ) < d (p/A),
then q is a forking extension of p.

We now obtain the following fact about the forking of nugget-like types:

Lemma 4.9. LetA ≤ M be finite and let p ∈ S(A) is nugget-like. Let A ⊆ Y ⊆ M
with Y closed. Let q be an extension of p to Y . Now q is a forking extension of p if
and only if d (q/Y ) < d (p/A) or given b |= q, b ⊆ Y .

Proof. If d (q/Y ) < d (p/A), thenLemma 4.8 tells us that q is a forking extension
of p. Further Y is algebraically closed. So if for any b |= q, b ⊆ Y , it follows that b
is an algebraic type over Y . Since p is not an algebraic type over A, it follows that
q is a forking extension of p.
For the converse assume that q is a forking extension of p and that d (q/Y ) =

d (p/A). As q is a forking extension of p, it follows from (8) of Theorem 2.5 that
icl(bA) ∩ icl(Y ) � icl(A). But icl(A) = A, icl(Y ) = Y and as b realizes p over A,
icl(bA) = bA. Thus b ∩ Y �= ∅. Now by Lemma 4.7, b ⊆ Y . �
The following theorem allows us to identify certain regular types. Further
it establishes that 0-nuggets are, in some sense, orthogonal to almost all other
types.

Theorem 4.10. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Now if
d (p/A) = 0 or d (p/A) = 1/c, then p is regular. Further if d (p/A) = 0, then p is
orthogonal to any other nugget-like type over A.

Proof. Under the given conditions p is clearly nonalgebraic and stationary. We
directly establish that it will be orthogonal to any forking extension of itself. Let
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A ⊆ X ⊆ M with X closed. Since Sα is �-stable and has finite closures we may as
well assume that X is finite, i.e., if q ∈ S(X ) with q ⊇ p a forking extension, there
is some finite closed X0 ⊆ X such that q �X0 is a forking extension. Let b |= p. We
have that b |�A X . As Ab, X are closed and Ab ∩ X = A, from an application of
(8) of Theorem 2.5, we obtain that Xb is closed.
First assume that d (p/A) = 0. Let p′ be a forking extension of p toX and letf |=

p′. It follows easily from Lemma 4.8, that d (f/A) ≥ d (f/X ). As d (f/A) = 0 and
d (f/X ) ≥ 0, it now follows that d (f/X ) = 0. Thus by Lemma 4.9, we have that
f ⊆ X and hence b |�X f as b |�A X .
So assume that d (p/A) = 1/c. Letp′,f be as above. ByLemma4.9, d (p′/X ) = 0
or f ⊆ X . As above f ⊆ X yields that b |�X f. So assume that f � X and note
that by Lemma 4.7 we have thatf ∩X = ∅. Now by (8) of Theorem 2.5 it suffice to
show thatXb∩acl(Xf) = X to establish that b |�X f. Consider d (acl(Xf) b/X ).
On the one hand, as Xb ⊆ acl(Xf)b, d (acl(Xf)b) ≥ d (Xb) and thus we have
that d (acl(Xf) b/X ) ≥ d (b/X ) = 1/c. On the other hand d (acl(Xf) b/X ) =
d (b/acl(Xf)) + d (acl(Xf)/X ). As d (acl(Xf)/X ) = d (f/X ) = 0, we obtain
that d (b/acl(Xf)) ≥ 1/c. In particular b � acl(Xf). But then by Lemma 4.7,
b ∩ acl(Xf) = ∅ and thus Xb ∩ acl(Xf) = ∅ as required.
For the second half of the claim, assume that d (p/A) = 0. Let q ∈ S(A)
be nugget-like and distinct from p. Now d (p/A) = d (p|X/X ) and d (q/A) =
d (q|X/X ). Let f |= q|X . Note that f |�A X implies that Xf is closed. Now using
Lemma 4.7, we can easily show that bX ∩fX �= X , then b = f. But this contradicts
p �= q. Thus it follows that bX ∩ fX = X . Further 0 = d (b/X ) ≥ d (b/Xf) ≥ 0.
Again by (8) of Theorem 2.5, we obtain that b |�X f and thus p, q are
orthogonal. �
The following theorem shows that while there are many regular types with
d (p/A) = 1/c, all such types are nonorthogonal. Thus up to nonorthogonality,
there is only one regular type with d (p/A) = 1/c. This is in contrast to distinct
0-nuggets, any two of which are orthogonal to each other. We also show that the
number of independent realizations of a 1/c nugget determines the dimension of a
model.

Theorem 4.11. LetA be closed and finite and letp, q ∈ S(A) be distinct basic types
and satisfy d (p/A) = d (q/A) = 1/c. Then p, q are nonorthogonal. Hence any two
regular types over p′, q′ ∈ S(X ) where X is closed and d (p′/X ) = d (q′/X ) = 1/c
are nonorthogonal. Further if we take A = ∅ and let M � M. The dimension of M is
determined by the number of independent realizations of p inM. Thus a single regular
type determines the dimension ofM.

Proof. Let A be as given. Consider A as a finite structure that lives in Kα . Now
consider the finite structuresAB,AC where B,C realize the quantifier free types of
p, q respectively. Consider D = AB ⊕A AC . Apply Lemma 2.8 to obtain a finite
G with �(G/D) = −1/c and A,AB,AC ≤ G . Let f be a strong embedding of G
intoM where f is the identity on A. From (6) of Theorem 2.5 and the transitivity
of ≤ it follows that f(B) |= p and f(C ) |= q. Now from (8) of Theorem 2.5, it
follows thatf(B) ��|�A f(C ) and thus p �⊥ q. Now given p′, q′ ∈ S(X ), there exists
a finite closed set, which by an abuse of notation we callA, such that p′, q′ are based
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and stationary overA. Since regularity is parallelism invariant both p|A and q|A are
regular. Arguing as above we see that p′|A �⊥ q′|A and thus they are nonorthogonal.
LetM � M and assume thatA = ∅. Given n ∈ �, consider the finite structureCn
that is the free join of n-copies of the quantifier free type of p over ∅. If dim(M) ≥
n/c, byLemma3.6, there is a strong embedding ofCn intoM. It is easily checked that
the strong embedding witnesses n-independent realizations of p. The rest follows
easily. �
The following shows that 1/c nugget-like types are not locally modular.

Theorem 4.12. Let A ≤ M be finite and let p ∈ S(A) be a nugget-like with
d (p/A) = 1/c. Then p is not locally modular, in particular it is nontrivial.

Proof. Recall that given a regular typep, the realizations ofp formapregeometry
with respect to forking closure. In order to simplify the presentation, we will let
A = ∅.
We begin with a proof that p is nontrivial. Let B0, B1, B2 be three finite structures
that has the same quantifier free type as p and are disjoint over ∅. Consider C =
⊕i<3∅ Bi . Using Lemma 2.8 we obtain a finite structure D ∈ Kα with �(D) = 2/c,
Bi ≤ C andBi⊕∅Bj ≤ C for any i �= j. Note thatC � D as �(C ) > �(D). Let g be
a strong embedding ofC intoM. An argument similar to that found inTheorem4.11
shows that g(B0), g(B1), g(B2) are pairwise independent but dependent realizations
of p and thus p is nontrivial.
By well known results of Hrushovski in [6], any stable theory with a nontrivial
locally modular regular type interprets a group. As these structures do not interpret
groups (see [13] by Wagner for detailed discussion) the result now follows. �
The following result shows that a broad class of types cannot be regular types
and justifies the choice to study types p ∈ S(A) with d (p/A) = 0, 1/c in our study
of regular types.

Theorem 4.13. Let A be finite and closed inM. Let p ∈ S(A) be a basic type such
that d (p/A) ≥ 2/c. Then p is not regular.

Proof. Recall that a regular type has weight 1. We establish the above result by
showing that p has preweight at least 2 and hence weight at least 2. Our strategy is
similar to the one used in Theorem 4.11: we consider A as living inside of Kα . We
then construct a finite structure G over the finite structure A that we then embed
strongly intoM overA using saturation. Finally we argue that the strong embedding
witnesses the fact that the preweight of p is at least 2.
Consider A as a finite structure that lives inKα . By Lemma 4.4 we may construct
D ∈ Kα such that the D = AC , A ∩ C = ∅ (as sets), and A ≤ D with �(D/A) =
�(C/A) = 1/c. Let AB be such that B realizes the quantifier free type of p over
A. Consider the finite structures Fi , i = 1, 2 where each Fi is the free join of AB
and an isomorphic copy of D over A and F1 ∩ F2 = AB. We label the isomorphic
copies of D as AC 1, AC 2 and thus Fi = ABCi , the free join of AB,ACi over
A. Apply Theorem 2.7 to obtain Gi for i = 1, 2 such that (Fi ,Gi ) is an essential
minimal pair and �(Gi/Fi) = −1/c. It is easily verified that A,AB,ACi ≤ Gi . Let
G = G1⊕AB G2. Note thatG ∈ KL and that wemay now regard the finite structures
A,AB,AC1 etc. as substructures of G .
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We claim that G ∈ Kα , A,AB,AC 1, AC 2, AC 1C2 ≤ G but F1, F2, is not strong
in G . Using Remark 2.2 and the transitivity of ≤, we obtain that it suffices to show
that AB,AC1C2 ≤ G along with F1, F2 � G to obtain the claim.
First, as AB ≤ Gi and G is the free join of G1, G2 over AB, we obtain AB ≤
G by an application of (4) of Fact 2.4. We now show that AC 1C2 ≤ G . Let
AC 1C2 ⊆ G ′ ⊆ G and let B ′ = B ∩G ′, G ′

i = Gi − AC i . Now �(G ′/AC 1C2) =
�((G ′

1 − B ′)(G ′
2 − B ′)/AC 1C2B ′) + �(B ′/AC 1C2) using (5) of Fact 2.4. Further,

since AB,AC1C2 is freely joined over A �(B ′/AC 1C2) = �(B ′/A) follows from (2)
ofFact 2.4.Arguing similarlyweobtain that �(G ′

i−B ′/AC 1C2B ′) = �(G ′
i /AB

′C i).
Thus it follows that �(G ′/AC 1C2) = �(G ′

1/AC 1B
′) + �(G ′

2/AC 2B
′) + �(B ′/A).

Now asA ≤ AB, it follows that �(B ′/A) ≥ 0. The claim now follows by considering
the cases B ′ �= B and B ′ = B using that fact that (ABCi ,Gi ) forms an essential
minimal pair. Finally, and easy calculation shows that �(G/F1F2) = −2/c. Now
�(G/Fi) = �(G/F1F2) + �(F1F2/Fi) = −2/c + 1/c = −1/c.
Arguing as we did in Theorem 4.11, we easily obtain that a strong embedding of
G intoM over A witnesses that the preweight of p is at least 2. We leave the details
to the reader. �

§5. A pseudofinite�-stable theory with a nonlocally modular regular type. In this
section we draw on some known results to prove that there are pseudofinite �-
stable theories with nonlocally modular regular types. This answers a question of
Pillay’s in [11] regarding whether pseudofinite stable theories always have locally
modular regular types. We assume that the reader is familiar with basic facts about
pseudofinite theories.

Theorem 5.1. There is a pseudofinite �-stable theory with a nonlocally modular
regular type.

Proof. Consider the case where L = {E} contains only one relation symbol
(recall E has arity at least 2). We claim that Sα has the required properties.
Let {αn} be an increasing sequence of irrationals in (0, 1) that converge to α(E).
By the results of [1], it follows that Th(Mαn ) can be obtained as a almost sure
theory with respect to a certain probability measure. Thus, in particular, each
theory Th(Mαn ) is pseudofinite. Now by Theorem 4.2 of [4], it follows that Sα =
Th(ΠUMαn )whereU is a nonprincipal ultrafilter on�. Since taking the ultraproduct
of structures with pseudofinite theories results in a structure with a pseudofinite
theory, it follows thatSα is pseudofinite. Further as we have shown in Theorem 4.12
that 1/c-nuggets are nonlocally modular, the result follows. �
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