
Mega-NeRF:
Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs

Haithem Turki1 Deva Ramanan1,2 Mahadev Satyanarayanan1

1Carnegie Mellon University 3Argo AI

Abstract

We use neural radiance fields (NeRFs) to build interac-
tive 3D environments from large-scale visual captures span-
ning buildings or even multiple city blocks collected pri-
marily from drones. In contrast to single object scenes (on
which NeRFs are traditionally evaluated), our scale poses
multiple challenges including (1) the need to model thou-
sands of images with varying lighting conditions, each of
which capture only a small subset of the scene, (2) pro-
hibitively large model capacities that make it infeasible to
train on a single GPU, and (3) significant challenges for
fast rendering that would enable interactive fly-throughs.
To address these challenges, we begin by analyzing visi-
bility statistics for large-scale scenes, motivating a sparse
network structure where parameters are specialized to dif-
ferent regions of the scene. We introduce a simple geomet-
ric clustering algorithm for data parallelism that partitions
training images (or rather pixels) into different NeRF sub-
modules that can be trained in parallel. We evaluate our ap-
proach on existing datasets (Quad 6k and UrbanScene3D)
as well as against our own drone footage, improving train-
ing speed by 3x and PSNR by 12%. We also evaluate re-
cent NeRF fast renderers on top of Mega-NeRF and intro-
duce a novel method that exploits temporal coherence. Our
technique achieves a 40x speedup over conventional NeRF
rendering while remaining within 0.8 db in PSNR quality,
exceeding the fidelity of existing fast renderers.

1. Introduction
Recent advances in neural rendering techniques have

lead to significant progress towards photo-realistic novel

view synthesis, a prerequisite towards many VR and

AR applications. In particular, Neural Radiance Fields

(NeRFs) [24] have attracted significant attention, spawning

a wide range of follow-up works that improve upon various

aspects of the original methodology.

Scale. Simply put, our work explores the scalability

of NeRFs. The vast majority of existing methods explore

single-object scenes, often captured indoors or from syn-

thetic data. To our knowledge, Tanks and Temples [17] is
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Figure 1. We scale neural reconstructions to massive urban scenes

1000x larger than prior work. To do so, Mega-NeRF decomposes a

scene into a set of spatial cells (left), learning a separate NeRF sub-

module for each. We train each submodule with geometry-aware

pixel-data partitioning, making use of only those pixels whose rays

intersect that spatial cell (top right). For example, pixels from im-

age 2 are added to the trainset of cells A, B, and F, reducing the

size of each trainset by 10x. To generate new views for virtual fly-

throughs, we make use of standard raycasting and point sampling,

but query the encompassing submodule for each sampled point

(bottom right). To ensure view generation is near-interactive, we

make use of temporal coherence by caching occupancy and color

values from nearby previous views (Fig. 4).

the largest dataset used in NeRF evaluation, spanning 463

m2 on average. In this work, we scale NeRFs to capture and

interactively visualize urban-scale environments from drone

footage that is orders of magnitude larger than any dataset

to date, from 150,000 to over 1,300,000 m2 per scene.

Search and Rescue. As a motivating use case, consider

search-and-rescue, where drones provide an inexpensive

means of quickly surveying an area and prioritizing lim-

ited first responder resources (e.g., for ground team deploy-

ment). Because battery life and bandwidth limits the ability

to capture sufficiently detailed footage in real-time [6], col-

lected footage is typically reconstructed into 2D “birds-eye-

view” maps that support post-hoc analysis [42]. We imagine

a future in which neural rendering lifts this analysis into 3D,

enabling response teams to inspect the field as if they were

flying a drone in real-time at a level of detail far beyond the
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Scene Captured

Resolution # Images # Pixels/Rays / Image

Synthetic NeRF - Chair 400 x 400 400 256,000,000 0.271

Synthetic NeRF - Drums 400 x 400 400 256,000,000 0.302

Synthetic NeRF - Ficus 400 x 400 400 256,000,000 0.582

Synthetic NeRF - Hotdog 400 x 400 400 256,000,000 0.375

Synthetic NeRF - Lego 400 x 400 400 256,000,000 0.205

Synthetic NeRF - Materials 400 x 400 400 256,000,000 0.379

Synthetic NeRF - Mic 400 x 400 400 256,000,000 0.518

Synthetic NeRF - Ship 400 x 400 400 256,000,000 0.483

T&T - Barn 1920 x 1080 384 796,262,400 0.135

T&T - Caterpillar 1920 x 1080 368 763,084,800 0.216

T&T - Family 1920 x 1080 152 315,187,200 0.284

T&T - Ignatius 1920 x 1080 263 545,356,800 0.476

T&T - Truck 1920 x 1080 250 518,400,000 0.225

Mill 19 - Building 4608 x 3456 1940 30,894,981,120 0.062

Mill 19 - Rubble 4608 x 3456 1678 26,722,566,144 0.050

Quad 6k 1708 x 1329 5147 11,574,265,679 0.010

UrbanScene3D - Residence 5472 x 3648 2582 51,541,512,192 0.059

UrbanScene3D - Sci-Art 4864 x 3648 3019 53,568,749,568 0.088

UrbanScene3D - Campus 5472 x 3648 5871 117,196,056,576 0.028

Table 1. Scene properties from the commonly used Synthetic

NeRF and Tanks and Temples datasets (T&T) compared to our

target datasets (below). Our targets contain an order-of-magnitude

more pixels (and hence rays) than prior work. Moreoever, each im-

age captures significantly less of the scene, motivating a modular

approach where spatially-localized submodules are trained with a

fraction of relevant image data. We provide more details and ad-

ditional statistics in Sec. H of the supplement.

achievable with classic Structure-from-Motion (SfM).

Challenges. Within this setting, we encounter multiple

challenges. Firstly, applications such as search-and-rescue

are time-sensitive. According to the National Search and

Rescue Plan [1], “the life expectancy of an injured survivor

decreases as much as 80 percent during the first 24 hours,

while the chances of survival of uninjured survivors rapidly

diminishes after the first 3 days.” The ability to train a us-

able model within a few hours would therefore be highly

valuable. Secondly, as our datasets are orders of magnitude

larger than previously evaluated datasets (Table 1), model

capacity must be significantly increased in order to ensure

high visual fidelity, further increasing training time. Finally,

although interactive rendering is important for fly-through

and exploration at the scale we capture, existing real-time

NeRF renderers either rely on pretabulating outputs into a

finite-resolution structure, which scales poorly and signifi-

cantly degrades rendering performance, or require excessive

preprocessing time.

Mega-NeRF. In order to address these issues, we pro-

pose Mega-NeRF, a framework for training large-scale

3D scenes that support interactive human-in-the-loop fly-

throughs. We begin by analyzing visibility statistics for

large-scale scenes, as shown in Table 1. Because only a

small fraction of the training images are visible from any

particular scene point, we introduce a sparse network struc-

ture where parameters are specialized to different regions of

the scene. We introduce a simple geometric clustering algo-

rithm that partitions training images (or rather pixels) into

different NeRF submodules that can be trained in parallel.

We further exploit spatial locality at render time to imple-

Figure 2. Visualization of Mill 19 by Mega-NeRF. The top panel

shows a high-level 3D rendering of Mill 19 within our interactive

visualizer. The bottom-left panel contains a ground truth image

captured by our drone. The following two panels illustrate the

model reconstruction along with the associated depth map.

ment a just-in-time visualization technique that allows for

interactive fly-throughs of the captured environment.

Prior art. Our approach of using “multiple” NeRF sub-

modules is closely inspired by the recent work of DeRF [28]

and KiloNeRF [29], which use similar insights to accel-

erate inference (or rendering) of an existing, pre-trained

NeRF. However, even obtaining a pre-trained NeRF for our

scene scales is essentially impossible with current training

pipelines. We demonstrate that modularity is vital for train-
ing, particularly when combined with an intelligent strategy

for “sharding” training data into the appropriate modules

via geometric clustering.

Contributions. We propose a reformulation of the

NeRF architecture that sparsifies layer connections in a

spatially-aware manner, facilitating efficiency improve-

ments at training and rendering time. We then adapt the

training process to exploit spatial locality and train the

model subweights in a fully parallelizable manner, leading

to a 3x improvement in training speed while exceeding the

reconstruction quality of existing approaches. In conjunc-

tion, we evaluate existing fast rendering approaches against

our trained Mega-NeRF model and present a novel method

that exploits temporal coherence. Our technique requires

minimal preprocessing, avoids the finite resolution short-

falls of other renderers, and maintains a high level of visual

fidelity. We also present a new large-scale dataset contain-

ing thousands of HD images gathered from drone footage

over 100,000 m2 of terrain near an industrial complex.
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2. Related work
Fast rendering. Conventional NeRF rendering falls well

below interactive thresholds. Plenoctree [45], SNeRG [13],

and FastNeRF [12] speed up the process by storing precom-

puted non-view dependent model outputs into a separate

data structure such as a sparse voxel octree. These render-

ers then bypass the original model entirely at render time

by computing the final view-dependent radiance through a

separate smaller multi-layer perceptron (MLP) or through

spherical basis computation. Although they achieve inter-

activity, they suffer from the finite capacity of the caching

structure and poorly capture low-level details at scale.

DeRF [28] decomposes the scene into multiple cells via

spatial Voronoi partitioning. Each cell is independently ren-

dered using a smaller MLP, accelerating rendering by 3x

over NeRF. KiloNeRF [29] divides the scene into thousands

of even smaller networks. Although similar in spirit to

Mega-NeRF, these methods use spatial partitioning to speed

up inference while we use it to enable data parallelism for

scalable training. Both DeRF and KiloNERF are initialized

with a single large network trained on all data which is then

distilled into smaller networks for fast inference, increasing

processing time by over 2x for KiloNeRF. Training on all

available data is prohibitive at our scale. Instead, our cru-

cial insight is to geometrically partition training pixels into

small data shards relevant for each submodule, which is es-

sential for efficient training and high accuracy.

DONeRF [25] accelerates rendering by significantly re-

ducing the number of samples queried per ray. To main-

tain quality, these samples are placed more closely around

the first surface the ray intersects, similar to our guided

sampling approach described in Sec. 3.3. In contrast to

our method, DONeRF uses a separate depth oracle network

trained against ground truth depth data.

Unbounded scenes. Although most NeRF-related work

targets indoor areas, NeRF++ [48] handles unbounded en-

vironments by partitioning the space into a unit sphere

foreground region that encloses all camera poses and a

background region that covers the inverted sphere comple-

ment. A separate MLP model represents each area and per-

forms ray casting independently before a final composition.

Mega-NeRF employs a similar foreground/background par-

titioning although we further constrain our foreground and

sampling bounds as described in Sec. 3.1.

NeRF in the Wild [21] augments NeRF’s model with

an additional transient head and learned per-image embed-

dings to better explain lighting differences and transient oc-

clusions across images. Although it does not explicitly tar-

get unbounded scenes, it achieves impressive results against

outdoor sequences in the Phototourism [15] dataset. We

adopt similar appearance embeddings for Mega-NeRF and

quantify its impact in Sec. 4.2.

Concurrent to us, Urban Radiance Fields [30] (URF),

CityNeRF [43], and BlockNeRF [34] target urban-scale en-

vironments. URF makes use of lidar inputs, while CityN-

eRF makes use of multi-scale data modeling. Both methods

can be seen as complementary to our approach, implying

combining them with Mega-NeRF is promising. Most re-

lated to us is BlockNeRF [34], which decomposes a scene

into spatial cells of fixed city blocks. Mega-NeRF makes

use of geometry visibility reasoning to decompose the set of

training pixels, allowing for pixels captured from far-away

cameras to still influence a spatial cell (Fig. 1).

Training speed. Several works speed up model training

by incorporating priors learned from similar datasets. Pixel-

NeRF [46], IBRNet [40], and GRF [38] condition NeRF on

predicted image features while Tancik et al. [35] use meta-

learning to find good initial weight parameters that converge

quickly. We view these efforts as complementary to ours.

Graphics. We note longstanding efforts within the

graphics community covering interactive walkthroughs.

Similar to our spatial partioning, Teller and Séquin [36] sub-

divide a scene into cells to filter out irrelevant geometry and

speed up rendering. Funkhouser and Séquin [9] separately

describe an adaptive display algorithm that iteratively ad-

justs image quality to achieve interactive frame rates within

complex virtual environments. Our renderer takes inspira-

tion from this gradual refinement approach.

Large-scale SfM. We take inspiration from previ-

ous large-scale reconstruction efforts based on classical

Structure-from-Motion (SfM), in particular Agarwal et al’s

seminal “Building Rome in a Day,” [3] which describes

city-scale 3D reconstruction from internet-gathered data.

3. Approach

We first describe our model architecture in Sec. 3.1, then

our training process in 3.2, and finally propose a novel ren-

derer that exploits temporal coherence in 3.3.

3.1. Model Architecture

Background. We begin with a brief description of Neu-

ral Radiance Fields (NeRFs) [24]. NeRFs represent a scene

within a continuous volumetric radiance field that captures

both geometry and view-dependent appearance. NeRF en-

codes the scenes within the weights of a multilayer percep-

tron (MLP). At render time, NeRF projects a camera ray

r for each image pixel and samples along the ray. For a

given point sample pi, NeRF queries the MLP at position

xi = (x, y, z) and ray viewing direction d = (d1, d2, d3)
to obtain opacity and color values σi and ci = (r, g, b). It

then composites a color prediction Ĉ(r) for the ray using

numerical quadrature
∑N−1

i=0 Ti(1− exp(−σiδi)) ci, where

Ti = exp(−∑i−1
j=0 σjδj) and δi is the distance between

samples pi and pi+1. The training process optimizes the

model by sampling batches R of image pixels and min-
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imizing the loss function
∑

r∈R
∥
∥C(r)− Ĉ(r)

∥
∥2. NeRF

samples camera rays through a two-stage hierarchical sam-

pling process and uses positional encoding to better capture

high-frequency details. We refer the reader to the NeRF pa-

per [24] for additional information.

Spatial partitioning. Mega-NeRF decomposes a scene

into cells with centroids n∈N = (nx, ny, nz) and initializes

a corresponding set of model weights fn. Each weight sub-

module is a sequence of fully connected layers similar to the

NeRF architecture. Similar to NeRF in the Wild [21], we as-

sociate an additional appearance embedding vector l(a) for

each input image a used to compute radiance. This allows

Mega-NeRF additional flexibility in explaining lighting dif-

ferences across images which we found to be significant at

the scale of the scenes that we cover. At query time, Mega-

NeRF produces an opacity σ and color c = (r, g, b) for a

given position x, direction d, and appearance embedding

l(a) using the model weights fn closest to the query point:

fn(x) = σ (1)

fn(x, d, l(a)) = c (2)

where n = argmin
n∈N

∥
∥n− x

∥
∥2 (3)

Centroid selection. Although we explored several

methods, including k-means clustering and uncertainty-

based partitioning as in [44], we ultimately found that tes-

sellating the scene into a top-down 2D grid worked well

in practice. This method is simple to implement, requires

minimal preprocessing, and enables efficient assignment of

point queries to centroids at inference time. As the variance

in altitude between camera poses in our scenes is small rel-

ative to the differences in latitude and longitude, we fix the

height of the centroids to the same value.

Foreground and background decomposition. Simi-

lar to NeRF++ [48], we further subdivide the scene into a

foreground volume enclosing all camera poses and a back-

ground covering the complementary area. Both volumes are

modeled with separate Mega-NeRFs. We use the same 4D

outer volume parameterization and raycasting formulation

as NeRF++ but improve upon its unit sphere partitioning

by instead using an ellipsoid that more tightly encloses the

camera poses and relevant foreground detail. We also take

advantage of camera altitude measurements to further refine

the sampling bounds of the scene by terminating rays near

ground level. Mega-NeRF thus avoids needlessly querying

underground regions and samples more efficiently. Fig. 3

illustrates the differences between both approaches.

3.2. Training

Spatial Data Parallelism. As each Mega-NeRF sub-

module is a self-contained MLP, we can train each in paral-

lel with no inter-module communication. Crucially, as each

Figure 3. Ray Bounds. NeRF++ (left) samples within a unit

sphere centered within and enclosing all camera poses to render

its foreground component and uses a different methodology for

the outer volume complement to efficiently render the background.

Mega-NeRF (right) uses a similar background parameterization

but models the foreground as an ellipsoid to achieve tighter bounds

on the region of interest. It also uses camera altitude measurements

to constrain ray sampling and not query underground regions.

image captures only a small part of the scene (Table 1), we

limit the size of each submodule’s trainset to only those

potentially relevant pixels. Specifically, we sample points

along the camera ray corresponding to each pixel for each

training image, and add that pixel to the trainset for only

those spatial cells it intersects (Fig. 1). In our experiments,

this visibility partitioning reduces the size of each submod-

ule’s trainset by 10x compared to the initial aggregate train-

set. This data reduction should be even more extreme for

larger-scale scenes; when training a NeRF for North Pitts-

burgh, one need not add pixels of South Pittsburgh. We

include a small overlap factor between cells (15% in our ex-

periments) to further minimize visual artifacts near bound-

aries.

Spatial Data Pruning. Note that the initial assignment

of pixels to spatial cells is based on camera positions, irre-

spective of scene geometry (because that is not known at

initialization). Once NeRF gains a coarse understanding

of the scene, one could further prune away irrelevant pix-

els/rays that don’t contribute to a particular NeRF due to an

intervening occluder. For example, in Fig. 1, early NeRF

optimization might infer a wall in cell F, implying that pix-

els from image 2 can then be pruned from cell A and B. Our

initial exploration found that this additional visibility prun-

ing further reduced trainset sizes by 2x. We provide details

in Sec. A of the supplement.

3.3. Interactive Rendering

We propose a novel interactive rendering method in ad-

dition to an empirical evaluation of existing fast renderers

on top of Mega-NeRF in Sec. 4.3. In order to satisfy our

search-and-rescue usecase, we attempt to: (a) preserve vi-

sual fidelity, (b) minimize any additional processing time

beyond training the base model, and (c) accelerate render-

ing, which takes over 2 minutes for a 720p frame with nor-

mal ray sampling, to something more manageable.

Caching. Most existing fast NeRF renderers make use of

cached precomputation to speed up rendering, which may

not be effective at our scene scale. For example, Plenoc-

tree [45] precomputes a cache of opacity and spherical har-
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(a) Fixed Octree (b) Dynamically Expanded Octree (c) Reused Octree (next frame)

Figure 4. Mega-NeRF-Dynamic. Current renderers (such as Plenoctree [45]) cache precomputed model outputs into a fixed octree,

limiting the resolution of rendered images (a). Mega-NeRF-Dynamic dynamically expands the octree based on the current position of the

fly-through (b). Because of the temporal coherence of camera views, the next-frame rendering (c) can reuse of much of expanded octree.

monic coefficients into a sparse voxel octree. Generating

the entire 8-level octree for our scenes took an hour of com-

putation and anywhere from 1 to 12 GB of memory depend-

ing on the radiance format. Adding a single additional level

increased the processing time to 10 hours and the octree size

to 55GB, beyond the capacity of all but the largest GPUs.

Temporal coherence. We explore an orthogonal direc-

tion that exploits the temporal coherence of interactive fly-

throughs; once the information needed to render a given

view is computed, we reuse much of it for the next view.

Similar to Plenoctree, we begin by precomputing a coarse

cache of opacity and color. In contrast to Plenoctree, we

dynamically subdivide the tree throughout the interactive

visualization. Fig. 4 illustrates our approach. As the cam-

era traverses the scene, our renderer uses the cached outputs

to quickly produce an initial view and then performs addi-

tional rounds of model sampling to further refine the image,

storing these new values into the cache. As each subsequent

frame has significant overlap with its predecessor, it bene-

fits from the previous refinement and needs to only perform

a small amount of incremental work to maintain quality. We

provide further details in Sec. C of the supplement.

Guided sampling. We perform a final round of guided

ray sampling after refining the octree to further improve ren-

dering quality. We render rays in a single pass in contrast to

NeRF’s traditional two-stage hierachical sampling by using

the weights stored in the octree structure. As our refined

octree gives us a high-quality estimate of the scene geome-

try, we need to place only a small number of samples near

surfaces of interest. Fig. 5 illustrates the difference between

both approaches. Similar to other fast renderers, we further

accelerate the process by accumulating transmittance along

the ray and ending sampling after a certain threshold.

4. Experiments

Our evaluation of Mega-NeRF is motivated by the fol-

lowing two questions. First, given a finite training budget,

Standard Hierachical Sampling Guided Sampling

Figure 5. Guided Sampling. Standard NeRF (left) first samples

coarsely at uniform intervals along the ray and subsequently per-

forms another round of sampling guided by the coarse weights.

Mega-NeRF-Dynamic (right) uses its caching structure to skip

empty spaces and take a small number of samples near surfaces.

how accurately can Mega-NeRF capture a scene? Further-

more, after training, is it possible to render accurately at

scale while minimizing latency?

Qualitative results. We present two sets of qualitative

results. Fig. 6 compares Mega-NeRF’s reconstruction qual-

ity to existing view synthesis methods. In all cases Mega-

NeRF captures a high level of detail while avoiding the

numerous artifacts present in the other approaches. Fig. 7

then illustrates the quality of existing fast renderers and our

method on top of the same base Mega-NeRF model. Our

approach generates the highest quality reconstructions in

almost all cases, avoiding the pixelization of voxel-based

renderers and the blurriness of KiloNeRF.

4.1. Evaluation protocols

Datasets. We evaluate Mega-NeRF against multiple var-

ied datasets. Our Mill 19 dataset consists of two scenes

we recorded firsthand near a former industrial complex.

Mill 19 - Building consists of footage captured in a grid

pattern across a large 500 × 250 m2 area around an in-

dustrial building. Mill 19 - Rubble covers a nearby con-

struction area full of debris in which we placed human

mannequins masquerading as survivors. We also measure

Mega-NeRF against two publicly available collections - the

Quad 6k dataset [4], a large-scale Structure-from-Motion
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Figure 6. Scalable training. Mega-NeRF generates the best reconstructions while avoiding the artifacts present in the other approaches.

dataset collected within the Cornell Universty Arts Quad,

and several scenes from UrbanScene3D [20] which contain

high-resolution drone imagery of large-scale urban environ-

ments. We refine the initial GPS-derived camera poses in

the Mill 19 and UrbanScene3D datasets and the estimates

provided in the Quad 6k dataset using PixSFM [19]. We

use a pretrained semantic segmentation model [7] to pro-

duce masks of common movable objects in the Quad 6k

dataset and ignore masked pixels during training.

Training. We evaluate Mega-NeRF with 8 submodules

each consisting of 8 layers of 256 hidden units and a final

fully connected ReLU layer of 128 channels. We use hier-

archical sampling during training with 256 coarse and 512

fine samples per ray in the foreground regions and 128/256

samples per ray in the background. In contrast to NeRF,

we use the same MLP to query both coarse and fine sam-

ples which reduces our model size and allows us to reuse

the coarse network outputs during the second rendering

stage, saving 25% model queries per ray. We adopt mixed-

precision training to further accelerate the process. We sam-

ple 1024 rays per batch and use the Adam optimizer [16]

with an initial learning rate of 5 × 10−4 decaying expo-

nentially to 5 × 10−5. We employ the procedure described

in [21] to finetune Mega-NeRF’s appearance embeddings.

4.2. Scalable training

Baselines. We evaluate Mega-NeRF against the original

NeRF [24] architecture and NeRF++ [48]. We also evaluate

our approach against Stable View Synthesis [31], an imple-

mentation of DeepView [8], and dense reconstructions from

COLMAP [33], a traditional Multi-View Stereo approach,

as non-neural radiance field-based alternatives.

We use the same Pytorch-based framework and data

loading infrastructure across all of NeRF variants to dis-

entangle training speed from implementation specifics. We

also use mixed precision training and the same number of

samples per ray across all variants. We provide each im-

plementation with the same amount of model capacity as

Mega-NeRF by setting the MLP width to 2048 units. We

provide additional details in Sec. D of the supplement.

Metrics. We report quantitative results based on PSNR,

SSIM [41], and the VGG implementation of LPIPS [49].
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Mill 19 - Building Mill 19 - Rubble Quad 6k

↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF 19.54 0.525 0.512 59:51 21.14 0.522 0.546 60:21 16.75 0.559 0.616 62:48

NeRF++ 19.48 0.520 0.514 89:02 20.90 0.519 0.548 90:42 16.73 0.560 0.611 90:34

SVS 12.59 0.299 0.778 38:17 13.97 0.323 0.788 37:33 11.45 0.504 0.637 29:48

DeepView 13.28 0.295 0.751 31:20 14.47 0.310 0.734 32:11 11.34 0.471 0.708 19:51

MVS 16.45 0.451 0.545 32:29 18.59 0.478 0.532 31:42 11.81 0.425 0.594 18:55
Mega-NeRF 20.93 0.547 0.504 29:49 24.06 0.553 0.516 30:48 18.13 0.568 0.602 39:43

UrbanScene3D - Residence UrbanScene3D - Sci-Art UrbanScene3D - Campus

↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF 19.01 0.593 0.488 62:40 20.70 0.727 0.418 60:15 21.83 0.521 0.630 61:56

NeRF++ 18.99 0.586 0.493 90:48 20.83 0.755 0.393 95:00 21.81 0.520 0.630 93:50

SVS 16.55 0.388 0.704 77:15 15.05 0.493 0.716 59:58 13.45 0.356 0.773 105:01

DeepView 13.07 0.313 0.767 30:30 12.22 0.454 0.831 31:29 13.77 0.351 0.764 33:08

MVS 17.18 0.532 0.429 69:07 14.38 0.499 0.672 73:24 16.51 0.382 0.581 96:01

Mega-NeRF 22.08 0.628 0.489 27:20 25.60 0.770 0.390 27:39 23.42 0.537 0.618 29:03

Table 2. Scalable training. We compare Mega-NeRF to NeRF, NeRF++, Stable View Synthesis (SVS), DeepView, and Multi-View Stereo

(MVS) after running each method to completion. Mega-NeRF consistently outperforms the baselines even after allowing other approaches

to train well beyond 24 hours.

We also report training times as measured on a single ma-

chine with 8 V100 GPUs.

Results. We run all methods to completion, training all

NeRF-based methods for 500,000 iterations. We show re-

sults in Table 2 along with the time taken to finish training.

Mega-NeRF outperforms the baselines even after training

the other approaches for longer periods.

Diagnostics. We compare Mega-NeRF to several abla-

tions. Mega-NeRF-no-embed removes the appearance em-

beddings from the model structure. Mega-NeRF-embed-

only conversely adds Mega-NeRF’s appearance embed-

dings to the base NeRF architecture. Mega-NeRF-no-

bounds uses NeRF++’s unit sphere background/foreground

partitioning instead of our formulation described in 3.1.

Mega-NeRF-dense uses fully connected layers instead of

spatially-aware sparse connections. Mega-NeRF-joint uses

the same model structure as Mega-NeRF but trains all

submodules jointly using the full dataset instead of using

submodule-specific data partitions. We limit training to 24

hours for expediency.

We present our results in Table 4. Both the appearance

embeddings and the foreground/background decomposition

have a significant impact on model performance. Mega-

NeRF also outperforms both Mega-NeRF-dense and Mega-

NeRF-joint, although Mega-NeRF-dense comes close in

several scenes. We however note that model sparsity accel-

erates rendering by 10x relative to fully-connected MLPs

and is thus essential for acceptable performance.

4.3. Interactive exploration

Baselines. We evaluate two existing fast renderers,

Plenoctree and KiloNeRF, in addition to our dynamic ren-

derer. We base all renderers against the same Mega-NeRF

model trained in 4.2 with the exception of the Plenoc-

tree method which is trained on a variant using spheri-

cal harmonics. We accordingly label our rendering vari-

ants as Mega-NeRF-Plenoctree, Mega-NeRF-KiloNeRF,

and Mega-NeRF-Dynamic respectively. We measure tradi-

tional NeRF rendering as an additional baseline, which we

refer to as Mega-NeRF-Full, and Plenoxels [32] which gen-

erates a sparse voxel structure similar to Plenoctree but with

trilinear instead of nearest-neighbor interpolation.

Metrics. We report the same perceptual metrics as in

4.2 and the time it takes to render a 720p image. We eval-

uate only foreground regions as Plenoctree and KiloNeRF

assume bounded scenes. We also report any additional time

needed to generate any additional data structures needed

for rendering beyond the base model training time in the

spirit of enabling fly-throughs within a day. As our renderer

presents an initial coarse voxel-based estimate before pro-

gressively refining the image, we present an additional set

of measurements, labeled as Mega-NeRF-Initial, to quan-

tify the quality and latency of the initial reconstruction.

Results. We list our results in Table 3. Although Mega-

NeRF-Plenoctree renders most quickly, voxelization has a

large visual impact. Plenoxels provides better renderings

but still suffers from the same finite resolution shortfalls and

is blurry relative to the NeRF-based methods. Mega-NeRF-

KiloNeRF comes close to interactivity at 1.1 FPS but still

suffers from noticeable visual artifacts. Its knowledge dis-

tillation and finetuning processes also require over a day of

additional processing. In contrast, Mega-NeRF-Dynamic

remains within 0.8 db in PSNR of normal NeRF render-

ing while providing a 40x speedup. Mega-NeRF-Plenoctree

and Mega-NeRF-Dynamic both take an hour to build simi-

lar octree structures.

5. Limitations
We discuss limitations and the societal impact of our

work in the supplementary material.
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Figure 7. Interactive rendering. Plenoctree’s approach causes significant voxelization and Plenoxel’s renderings are blurry. KiloNeRF’s

results are crisper but capture less detail than Mega-NeRF-Dynamic and contain numerous visual artifacts.

best second-best Mill 19 Quad 6k UrbanScene3D

Preprocess Render Preprocess Render Preprocess Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)

Mega-NeRF-Plenoctree 16.27 0.430 0.621 1:26 0.031 13.88 0.589 0.427 1:33 0.010 16.41 0.498 0.530 1:07 0.025
Mega-NeRF-KiloNeRF 21.85 0.521 0.512 30:03 0.784 20.61 0.652 0.356 27:33 1.021 21.11 0.542 0.453 34:00 0.824

Mega-NeRF-Full 22.96 0.588 0.452 - 101 21.52 0.676 0.355 - 174 24.92 0.710 0.393 - 122

Plenoxels 19.32 0.476 0.592 - 0.482 18.61 0.645 0.411 - 0.194 20.06 0.608 0.503 - 0.531

Mega-NeRF-Initial 17.41 0.447 0.570 1:08 0.235 14.30 0.585 0.386 1:31 0.214 17.22 0.527 0.506 1:10 0.221

Mega-NeRF-Dynamic 22.34 0.573 0.464 1:08 3.96 20.84 0.658 0.342 1:31 2.91 23.99 0.691 0.408 1:10 3.219

Table 3. Interactive rendering. We evaluate two existing fast renderers on top of our base model, Mega-NeRF-Plenoctree and Mega-

NeRF-KiloNeRF, relative to conventional rendering, labeled as Mega-NeRF-Full, Plenoxels, and our novel renderer (below). Although

PlenOctree achieves a consistently high FPS, its reliance on a finite-resolution voxel structure causes performance to degrade significantly.

Our approach remains within 0.8 db in PSNR quality while accelerating rendering by 40x relative to conventional ray sampling.

Mill 19 Quad 6k UrbanScene3D

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

Mega-NeRF-no-embed 20.42 0.500 0.561 16.16 0.544 0.643 19.45 0.587 0.545

Mega-NeRF-embed-only 21.48 0.494 0.566 17.91 0.559 0.638 22.79 0.611 0.537

Mega-NeRF-no-bounds 22.14 0.534 0.522 18.02 0.565 0.616 23.42 0.636 0.511

Mega-NeRF-dense 21.63 0.504 0.551 17.94 0.562 0.627 22.44 0.605 0.558

Mega-NeRF-joint 21.10 0.490 0.574 17.43 0.560 0.616 21.45 0.595 0.567

Mega-NeRF 22.34 0.540 0.518 18.08 0.566 0.602 23.60 0.641 0.504

Table 4. Diagnostics. We compare Mega-NeRF to various ablations after 24 hours of training. Each individual component contributes

significantly to overall model performance.

6. Conclusion

We present a modular approach for building NeRFs at

previously unexplored scale. We introduce a sparse and spa-

tially aware network structure along with a simple geomet-

ric clustering algorithm that partitions training pixels into

different NeRF submodules which can be trained in parallel.

These modifications speed up training by over 3x while sig-

nificantly improving reconstruction quality. Our empirical

evaluation of existing fast renderers on top of Mega-NeRF

suggests that interactive NeRF-based rendering at scale re-

mains an open research question. We advocate leveraging

temporal smoothness to minimize redundant computation

between views as a valuable first step.
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