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ABSTRACT: Imaging plays an integral role in diagnostics and
treatment monitoring for conditions affecting the brain; enhanced
brain imaging capabilities will improve upon both while increasing
the general understanding of how the brain works. T -weighted
magnetic resonance imaging is the preferred modality for brain
imaging. Commercially available contrast agents, which are often
required to render readable brain images, have considerable
toxicity concerns. In recent years, much progress has been made in
developing new contrast agents based on the magnetic features of
gadolinium, iron, or magnesium. Nanotechnological approaches
for these systems allow for the protected integration of potentially

harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further
improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine
designs for T-weighted contrast agents that have been evaluated for performance in the brain.

KEYWORDS: Magnetic resonance imaging (MRI), brain, contrast agent, polymer

Bl INTRODUCTION

The brain is an incredibly complex organ that plays a role in
every aspect of bodily function. Many conditions are known to
affect it, including cancers and neurodegenerative diseases.
Accurate and timely diagnosis is essential to improving
therapeutic efficacy and patient outlook in any disease. Magnetic
resonance imaging (MRI) is widely regarded as the best imaging
modality for diagnostics and continued monitoring of soft tissue
conditions, including those of the brain. However, in many
cases, brain imaging requires a contrast agent. Gadolinium-
based contrast agents (GBCAs), the only contrast agents
available commercially, raise concerns around toxicity; nano-
medicine approaches for contrast agents show promise for
improving the safety of clinically available contrast agents and
for including additional functionality into their designs.
Nanoparticle (NP) systems exploiting the metallic properties
of gadolinium, iron, or manganese have shown the most promise
for contrast agent applications; those systems lending to contrast
enhancement in T-weighted imaging are generally considered
the most applicable for uses in the brain. This review will present
research on polymeric NP-based T, contrast systems designed
for magnetic resonance imaging of disease conditions within the
brain.

B BACKGROUND
Diseases of the Central Nervous System. The central

nervous system (CNS) is composed of the brain and spinal
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cord—two highly essential and highly protected structures.
Knowledge gaps still exist surrounding the brain’s anatomy,
physiology, and general interworking. Increased understanding
of brain pathology throughout disease is necessary to inform
treatment for neurological conditions, of which there are over
600."

The brain is protected by a series of safeguards that prevent
the entrance of foreign substances, which could upset homeo-
stasis or otherwise cause damage. The most selective aspect of
this system is the blood—brain barrier (BBB) which is primarily
comprised of an endothelial cell (EC) lining surrounding the
blood vessels that supply the brain. Tight junctions connecting
the ECs create a secure seal between cells, preventing most
intercellular transport into the brain. This system prevents the
influx of over 98% of solutes. Although exact size constraints are
disputed, it is known that only small, nonpolar, lipophilic
particles can passively diffuse through the BBB into the brain.”’
The BBB acts as an interface where receptors recognize
necessary substances to allow restricted, receptor-mediated
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Figure 1. Proton spin in MRL'> (A) Nuclear spin of a hydrogen atom in water. (B) Proton alignment with or without a magnetic field. (C) Proton
response to applied RF pulse. (A—C) Adapted from ref 12. Copyright 2019 Broadhouse.

transport (RMT) for large or more complex molecules entering
the brain.

The BBB must be considered in designing diagnostic or
therapeutic tools for the brain. Intracerebral delivery, or
injection directly into the brain, is invasive and therefore
undesirable. The ideal delivery method would be intravenous
(IV), or injection into the bloodstream." A variety of strategies
could make a drug system IV compatible for brain delivery,
including small size or conjugation with targeting moieties that
will be recognized by receptors on ECs for RMT. In particular
diseases, the BBB becomes disrupted and leaky; stroke,
Alzheimer’s Disease (AD), and Parkinson’s Disease (PD) are
all known to result in a compromised BBB." While this is
dangerous for the maintenance of normal brain conditions and
function, it makes brain delivery a more minor hurdle for
delivery vehicle design. In any case, understanding the BBB and
how it functions with respect to the disease state and the delivery
system is essential to a successful design.

Adding to the challenge of diagnostic and therapeutic drug
design is the fact that hundreds of brain-afflicting conditions
exist, and their mechanisms and manifestations can be incredibly
similar in some ways while drastically different in others.
Diseases affecting the brain can have a wide range of symptoms
and severity.

There is a tremendous demand for improved therapeutics and
diagnostics for all brain diseases; an in-depth understanding of
the brain and how it functions in a diseased state is the key to
making necessary advancements. One of the strategies for
expanding knowledge of the brain is improving imaging
capabilities. Sophisticated visualization of the brain results in a
more comprehensive understanding of individual brain diseases.

Magnetic Resonance Imaging. Since its first clinical
application in 1980, magnetic resonance imaging (MRI) has
become the top choice among noninvasive imaging techniques.
It offers high spatial and temporal resolution and can image large
portions of the body at nearly any angle.’ The primary
shortcoming associated w1th MRI is lower sensitivity than
other imaging techniques.” MRI does not use ionizing radiation

and is, therefore, considered to be the most risk-free imaging
option, especially for conditions that may require repeated
imaging.” Extended exposure to ionizing radiation, as employed
in X-rays, computed tomography (CT), and positron emlssmn
tomography (PET), can lead to cancer development.” MRI
instead uses strong magnetic fields to procure a three-
dimensional image based on the intrinsic magnetic properties
of the atoms that make up the human body.

Protons, electrons, and neutrons each possess an intrinsic
property called “spin,” the strength and direction of which are
responsible for its magnetic and electrical properties. The
summation of spins from protons and neutrons, both of which
are housed in the nucleus, yields the nuclear spin. The nuclear
spin is the nucleus’s magnetic moment and is what causes nuclei
to interact with magnetic fields. Not all atoms exhibit a net
nuclear spin; hydrogen atoms do. Hydrogen comprises only one
proton; with only a single spinning body, the nucleus does not
experience competitive influence from other nuclear bodies, so
its nuclear spin is effectively the same as that of the proton.

Hydrogen is abundant in the body and is found in water and
other naturally occurring compounds. The hydrogen atoms in
water are the primary nuclei imaged with MRI. The generation
of magnetic resonance (MR) images relies on water content,
making MRI best suited to imaging soft tissues, such as muscles
or organs, including the brain, due to their high water content.”

In MR, a strong magnetic field By is applied, which causes
hydrogen protons in water molecules to align axially with the
field, either in parallel or perpendicularly. In clinical applications,
this field generally has a strength of 0.5 to 3.0 T, with a higher
strength allowing for more detailed images; for research
purposes, much higher strength scanners are available.'” A
second magnetic field, By, is then applied perpendicular to the
static field at a different radio frequency (RF). As a result of the
second magnetic field, the protons absorb energy, become
excited, and experience an altered spin away from their
equilibrium with By,. The second magnetic field is usually
applied in short pulses, lasting only microseconds. When B, is
turned off, the protons relax and return to equilibrium, releasing
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Figure 2. Signal variation in brain tissue.'> Adapted from ref 12. Copyright 2019 Broadhouse.

the previously absorbed energy. Figure 1 gives a schematic
representation of the proton spin activity involved in MRI. The
energy change generated with each pulse emits a signal detected
by magnetic sensors. The signals are averaged with respect to
relaxation time before being mathematically transformed into an
image.11

Relaxation time, or time taken for equilibrium to be re-
established, is quantified in two ways—longitudinal and
transverse relaxation times, or T| and T,, respectively. T, is a
measure of how long it takes for the longitudinal magnetic vector
to return to its equilibrium state, specifically the time at which
the longitudinal magnetization has returned to 63% of its
equilibrium value. At equilibrium, longitudinal magnetization is
at a maximum. T, is a measure of how long it takes for the
traverse components of magnetization to dephase, specifically
the time at which the traverse magnetization value has returned
to 37% of its equilibrium value. Relaxation time is a function of
magnetic fleld inhomogeneity, as well as the magnetic properties
of the particle; those magnetic properties can, in turn, be
influenced by particle size, shape, composition, morphology, and
more."? T, and T, are tissue specific but T is always shorter than
T,

Different types of images can be generated by adjusting the
sequencing parameters, repetition time (TR), and time to echo
(TE). TR is the time between pulses applied to the same region,
while TE is the time between the RF pulse and the detection of
the resulting signal.'> The two most common MRI sequences
are used to create T -weighted or T,-weighted images. T)-
weighted images are derived from T, relaxation, meaning that
the contrast in the image is determined predominantly by T,
properties, while T,-weighted images are derived from T,
relaxation time. T -weighted images use short TR and short
TE; T,-weighted images use longer TR and TE. T, and T,-
weighted images can be easily differentiated by how different
tissues appear which is a result of signal intensity. On MR
images, low-intensity signals appear dark, and high-intensity
signals appear bright. Signal intensity relies on proton density,
the difference in water content between tissues, and relaxation
time. Differences in these properties generate the contrast
required to yield a readable image with differentiable structures,
as exampled by Figure 2. Water and CSF appear dark on T)-
weighted images while fat appears bright; on T,-weighted
images, the opposite is true.

T, and T, images can both be valuable options for matters of
the CNS. However, based on the better readability achleved by a
brighter image, T-weighted images tend to be preferred."®

Contrast Agents. While MRI is a valuable imaging tool for
various applications, in about 25% of MRI procedures in the
brain and spinal cord the natural tissue-to-tissue contrast is
insufficient to yield a readable image,'” necessitating the use of
contrast agents (CAs). Most risks associated with MRI have to
do with potential allergic reactions or toxicity caused by the CA.
However, CAs are still necessary for many instances to
compensate for the lower sensitivity of MRI. Figure 3 gives an

Figure 3. T; MR image of a brain with a fibromyxoid tumor (a) without
contrast (b) with contrast.”” Reproduced with permission from ref 20.
Copyright 2021 Surgical Neurology International.

example of a T|-weighted MR image of a tumor-afflicted brain
before and after administration of a CA. Most CAs work
indirectly, with the agents themselves not detected by MRI but
instead enhancing image contrast due to their interactions with
the surrounding tissue.

The majority of CAs are relaxation agents, or agents that alter
the relaxation rate (T, or T,™") of water in tissue.”’ CAs are
typically paramagnetic or superparamagnetic metals. Para-
magnetism is a phenomenon in which an atom has a net
magnetic field of zero when under no applied magnetic field.
Paramagnetlc particles exhibit a positive magnetic suscepti-
bility,”> meaning that magnetic fields are strengthened in the
presence of that material. Paramagnetic substances reduce T
and T, relaxation times in surrounding tissues, but T effects
often predominate. Paramagnetic contrast agents are, therefore,
most applicable on T,-weighted images, where a brightening
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effect results from their presence; CAs of this type are referred to
as T) contrast agents. Superparamagnetism is similar to
paramagnetism, with superparamagnetic substances even more
susceptible to magnetization by external magnetic fields.
Superparamagnetic substances decrease the T, relaxation time
primarily, making images darker where they accumulate, and are
mostly used as T, CAs.

° 000

Increasing [Gd]

0000

Increasing [Fe]

Figure 4. Comparison of MRI CAS. (a) Pre- and (b) post-GBCA T,
enhancement of brain metastasis. (c) Brightness effects on T, images
with Gd concentration.”® (d) Pre- and (e) post-IONP T, enhancement
of mammary tumors. (f) Darkening effects on T, images with Fe
concentration.”* Reproduced from ref 77.

Relaxation™ agents are most often described in terms of
relaxivity, 7, (i = 1, 2), which quantifies the extent to which the
CA affects proton relaxation time; this paper will discuss
relaxation CAs exclusively and will therefore refer to them only
as CAs.

Contrast enhancement is linearly related to the concentration
of CA. Relaxivity, then, is the slope of the plot of T, or T,

versus concentration.” The relaxivity ratio, r,/ry, helps evaluate
a CA’s aptitude for use as either a T} or T, CA. CAs with low r,/
r; values (less than 4) are considered good candidates for
enhancing T;-weighted images, while high r,/r, values (10 or
greater) suggest the best compatibility with T,-weighted
images.””** Tt is important to note when comparing different
CAs that relaxivity is dependent on magnetic field strength—
increasing magnetic field strength tends to decrease r, while
increasing r,””—so direct comparisons should only be made
with systems operating under the same MRI conditions.

To date, the only CAs to attain FDA approval and sustain
clinical application are those based on paramagnetic agents and
are T} CAs. Although T, CAs are still being researched, T) CAs
are generally considered more desirable because contrast
enhancement via brightening within an image is easier to
interpret than image darkening.'

Clinical Standard of Care. Gadolinium-based contrast
agents (GBCAs) are the only FDA-approved MRI contrast
agents to have continued clinical use, making them the gold
standard of MRI CAs. Gadolinium (Gd) is a member of the
lanthanide series of metals; it has seven unpaired electrons and is
paramagnetic causing it to be used exclusively as a T} CA.

Gadolinium is not a natural component in normal biological
processes, and ionized gadolinium has been shown to be toxic in
various animal studies.”” Complexes of Gd ions and a chelating
agent have demonstrated reduced toxicity to levels deemed
acceptable for clinical usage. As of 2018, there are eight clinically
approved GBCAs, although only five remain on the market; all
utilize Gd chelates (Table 1).

GBCAs can be categorized into one of two groups based on
the shape of their chelating ligand: linear or macrocyclic. Beyond
these differences or differences in charge, which account for
differences in relaxivity and chemical stability,** all GBCA forms
have broadly similar structural designs and function with the
same mechanism.”*" All but two clinically approved GBCAs,
Ablavar and Eovist, are approved for MRI in the CNS but none
are designed solely for or with brain imaging in mind
specifically.”’ A 2022 meta-analysis examining the use of
approved GBCAs in CNS imaging saw increased diagnostic
confidence in 95% of cases while noting minimal adverse
effects.”” Despite these promising results, GBCAs are severely
limited in applicability. GBCAs cannot cross the BBB and are
only useful for CNS imaging when the BBB is compromised or
leaky, which can result from diseases including multiple
sclerosis, stroke, or cancer but is not characteristic of every
brain disease.”’

Although chelation has rendered GBCAs safe in most cases,
the use of any GBCA is unsuitable for those with decreased
kidney function.”” Normally, Gd chelates are cleared from the

Table 1. Gadolinium-Based Contrast Agents with FDA Approval for Clinical Use®”

Drug Name Active Ingredient Approval Year Market Availability Relaxivity” (mM ™" s7%) Chelating Form
Dotarem (Gd-DOTA)** Gadoterate meglumine 2013 3.4-3.8 Macrocyclic
Gadevist™ Gadobutrol 2011 4.9-5.5 Macrocyclic
Ablavar®® Gadofosveset trisodium 2008 Discontinued 18—-20 Linear
Eovist®’ Gadoxetate disodium 2008 6.5-7.3 Linear
Optimark®® Optimark®® 1999 Discontinued 4.4-5.0 Linear
Magnevist (Gd-DTPA)*» Gadopentatate dimeglumine 1998 Discontinued 3.9-4.3 Linear
Omniscan* Gadodiamide 1993 4.0—-4.6 Linear
Prohance®' Gadoteridol 1992 3.9-43 Macrocyclic

“Measured at a field strength of 1.5 T.
D https://doi.org/10.1021/acsbiomaterials.2c01386
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body via renal filtration within hours of intravenous admin-
istration. For those with reduced kidney function, however,
GBCAs may not be removed effectively, resulting in prolonged
retention. As time in the body increases, the risk of chelate
dissolution and release of the toxic Gd** increases. An additional
risk for those with renal impairment is the development of
nephrogenic systemic fibrosis (NSF), a novel disease associated
with GBCA exposure.””*’ Since 2007, the incidence of the
disease has decreased significantly due to strict adherence to
updated guidelines meant to identify and protect high-risk
patients. Linear chelate GBCAs are considered higher risk for
the disease because the linear ligands are less strongly bonded
than macrocyclic ones and offer less protection to the Gd ion.**

Recently, a new concern has arisen around the repeated use of
GBCAs: deposition of Gd in the brain. As evidenced by areas of
high signal intensity on unenhanced T-weighted MR images as
well as histological analysis, Gd can be retained in the brain
months to years after the administration of a GBCA.””** In
response to these results, the FDA came out with new safety
guidelines and a new class warning for the use of GBCAs in
2017.*° As with NSF, linear Gd chelates have been noted to
present a higher risk. To date, no adverse effects have been
linked to these Gd deposits, however, so the effects are still
largely unknown.*

The concerns around toxicity raised in recent years have
invigorated research for CA alternatives. Even with toxicity
concerns, GBCAs have maintained their FDA approval, albeit
now with black box warnings, so for any alternative to achieve
clinical approval and enter the market, it must be either
noninferior or superior in terms of both safety and performance.

B NANOMEDICINE MRI CONTRAST AGENT

Polymer Enhanced Nanotechnology. Nanotechnology
has seen a sharp rise in interest in recent years across a variety of
fields. Nanomedicine, the application of nanotechnology in
medical settings, is incredibly promising for meeting the strict
requirements of clinically aimed materials. Nanoparticles
present an alternative approach for safer integration of otherwise
toxic molecules and have been shown to be well-suited for the
delivery of diagnostic and therapeutic tools into the brain
making them attractive for use with neurologically applied CAs."
NPs are particles ranging from 1 to 100 nm but are highly
tunable for aspects like size, shape, and composition.*” Given
that the BBB is known to have size-based limitations for
transport, nanomedicine is particularly appealing for use with
brain diseases. NP CAs are also thought to provide faster and
deeper penetration while still being easily cleared by the kidneys,
protecting the body from accumulation effects like those
observed with traditional GBCAs."*

As far as polymeric NP approaches, CAs are often
encapsulated in a polymeric shell or otherwise bound to a
polymer network; various polymeric nanoconstructs have been
developed for these purposes (Figure 5). While all are primarily
promising for their ability to decrease the cytotoxicity of free
drugs, each carrier has its own set of advantages and
disadvantages.”” Micelles and polymersomes are some of the
most common polymeric carriers; both are capable of loading
both hydrophilic and hydrophobic drugs. Micelles require low
polymer concentrations for synthesis, but they suffer from low
stability. Polymersomes have better stability and are highly
tunable and easily functionalized but offer low encapsulation
efficiency. Nanogels are rising in popularity due to their high
loading capacity and stability while dendrimers have garnered
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Figure 5. Common polymeric nanoconstructs.

interest for their ability to encapsulate bioactive drugs. Still, too,
simple polymer conjugation to achieve a coated CA is another
approach that can be seen in recent literature. The advantages
and disadvantages of each polymer-based delivery system have
been reviewed extensively elsewhere.”**~*°

Polymeric NPs are especially attractive for their ability to
increase biocompatibility, stability and half-life as well as
integrate functionalities. Drug targeting is a functionality
common in brain-specific designs that make polymeric NPs
well-suited for contrast-enhanced brain imaging. Perhaps the
most obvious concern with polymeric versions of CAs is the
increased size as compared to traditional CAs, especially given
that BBB transport is so size dependent. To bypass size
limitations, transport for polymeric CAs relies heavily on brain
targeting through RMT. Because polymers have high affinities
for functionalization, polymeric NPs can be conjugated with
targeting moieties that ensure brain internalization.' " In
some cases, the polymer itself may even serve as the targeting
moiety, like with the natural polymer, hyaluronic acid, which is
recognized by LDLR receptors upregulated in the brain.’!
Targeted brain delivery is an improvement upon the size-
dependent diffusion into the brain, anyway, because it is more
specific and less susceptible to premature clearance by the liver
and kidneys.sg’59 Additionally, it makes polymeric CA NPs more
widely applicable as they do not depend on the leakiness of the
BBB for brain entry as traditional GBCAs do.

Reduced toxicity and increased relaxivity are the two major
aims of improved general CA design; the use of polymers can
address both of these. Toxicity is reduced when the contrast-
enhancing metal or metal ion is encapsulated within or
otherwise bound to a polymeric nanoconstruct as metal leakage
is prevented.”” Polymeric CA systems have shown enhanced
relaxivity values over commercial GBCAs or nonpolymeric CAs
of the same kind because the polymer serves as a direct
manipulation of the CA’s environment. Specifically, hydrophilic
polymers are desirable as they facilitate contact between water
molecules and CA which increases the hydration number as well
as the water retention time, both working to boost 0270
Additionally, the size increase of the CA system due to the
polymer works to slow correlation time which increases
relaxivity.”> CA aggregation within the polymeric NP has also
been attributed to better contrast enhancement performance as
it localizes a concentrated dosage.”” Polymer influence on CA
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relaxivity is further tunable through manipulation of factors like
amino acid sequence® and molecular weight.”*

Another challenge that must be addressed with polymeric
CAs is the potential toxicity of the polymer itself. Polymer choice
is paramount to biocompatibility. As with any biomaterial, the
host’s response, behavior in the body, and degradation products
of the foreign body must all be considered and the material and
its properties must be matched to its function and target
environment.”” A polymer that is not sufficiently biocompatible
can trigger a host of undesired responses including infection,
blood clotting, and inflammation response. Biocompatible
polymers can be synthetic or natural or a combination thereof.
Biomimetic and biodegradable polymers are more advanced
approaches at biocompatibility and have shown promise in
biomaterials and carrier-mediated drug delivery applications.®”
Polymer properties like surface composition, hydrophilic—
hydrophobic character, and topography (among others) can
all affect cytotoxicity; likewise, characteristics like the size and
shape of a polymeric nanoparticle also play a role. Several
biopolymers have clinical approval for use in controlled drug
delivery devices but each has its own advantages and
disadvantages.66 These polymers, or chemically similar ones,
tend to receive the most attention for application in new devices
such as with CAs. Biocompatibility of a given polymer can be
further improved by mechanical or physiochemical surface
modifications. In vitro and in vivo evaluation of all components
of a polymeric CA NP (CA, polymer, conjugated ligands, etc.) is
necessary to screen biocompatibility.

Polymers are incredibly versatile with carrier and polymer
type being only the first basic choices in design that must be
followed up with consideration of specific polymer makeup, as
well as carrier conformation, size, shape, and surface
modifications. The design process can be very complicated
especially as choices must be made in the scope of both
biocompatibility and CA performance. With the meticulous
integration of thoughtfully chosen polymers into a NP CA
system, it is, however, possible to achieve lower cytotoxicity
paired with better performance as compared to what is
commercially available today.

Gadolinium-Based Nanoparticles. Instead of developing
a completely novel CA formulation, one strategy is to improve
upon the already-established use of Gd through polymer-
enhanced nanotechnology. The incorporation of Gd with
biocompatible polymers could improve the toxicity profile of
Gd CAs by limiting their release or minimizing direct contact
between Gd ions and tissue. In addition, the barrier to clinical
translation is low given that the CA basis, Gd, already has clinical
approval and physicians already have experience with reading
Gd-enhanced images. For this reason, many studies have
examined commercially available GBCAs within their NP
designs.”’~"* In addition to significant safety improvements, a
NP system could create greater tunability for functionality and
imaging prog)erties and even allow for multimodal imaging
applications.” Although proof of noninferiority in imaging
quality could be sufficient to push Gd-based NP systems to
clinical realization when paired with better biocompatibility,
some studies have also shown greater relaxivity values or
contrast enhancement in imaging. Gd-based NP CA systems
investigated since 2017 are outlined in Table 2.

AGuIX NPs are composed of a polysiloxane shell encapsulat-
ing an inorganic matrix covalently bound to clinically approved
Gd-DOTA chelates. Phase I clinical trials AGulX recently
yielded promising results as combined therapeutic and

diagnostic tools for four types of brain metastasis. The NPs
showed negligible toxicity at the maximum examined dosage of
100 mg/kg and had r; values greater than double that of
unmodified Gd-DOTA, confirmed by enhanced brightness in
T,-weighted images. Additionally, AGuIX NPs act as radio-
sensitizers, increasing the effectiveness of radiotherapy by
enhancing radio wave targeting and magnifying its local
strength.”” Phase II clinical trials began in 2019 and should be
completed in 2023.”*

Recent research on Gd-based NPs focuses heavily on brain
cancer due to the demand for better, earlier diagnostics and
treatment. Effective MRI of brain tumors is essential for reliable
diagnosis and could improve surgical outcomes by more clearly
differentiating tumor edges to ensure complete removal. In a
study aimed at glioma imaging, Patil et al. examined the effects of
structural variation of NP CAs made up of Gd-DOTA bound to
polymalic acid via PEG linkers arranged in a star shape. In all
systems, glioma accumulation resulted, and high | values were
achieved.” Many of the Gd-based NP CA systems under
investigation in recent years take even more advanced
approaches around brain cancer, aiming to add other
functionalities on top of those necessary for enhancing MRI.

The growing field of theranostics, which combines
therapeutics and diagnostics into a single system, is also well-
represented within Gd-based CA research, such as the
previously discussed AGuIX NPs. Another study combining
the imaging and radiosensitization capabilities of Gd was
performed by Shen et al. for orthotopic glioblastomas. Gd oxide
NPs stabilized by poly(acrylic acid) (PAA), conjugated with
lactoferrin and RGD dimers for tumor targeting, accumulated in
glioblastoma tumors and resulted in an over 400% increase in
contrast enhancement to MR images. Radiosensitization studies
performed in vitro suggest that the NPs are both biocompatible
and suitable as a radiosensitizer, further supported by increased
survival time in vivo.”

Multimodal imaging systems have also been investigated
using Gd-based NPs. Multimodal imaging nanotechnology can
be used for more than one imaging modality, such as computed
tomography (CT), positron emission tomography (PET), or
fluorescent imaging, to increase disease investigation and
diagnosis accuracy by expanding upon available information.®
Therefore, the low sensitivity of MRI can be compensated for by
gathering complementary information best suited to the
strengths of each different imaging mode. Clinically approved
Gd-DTPA was applied in a carbon nanodot (NCD) system
coated with polymerized 1-methyl-2-pyrrolidinone (NMP) to
image glioma in a multimodal application combining MRI and
fluorescent imaging. This system showed lower toxicity and had
an r; value 2.2 times greater than that of the commercially
available Gd-DPTA, potentially explained by increased inter-
action with water due to the hydrophilicity of the polymer
coating. When combined with the fluorescent functionality, high
spatial resolution, and sensitivity were achieved in this
synergistic approach.76

While these systems have shown improved biocompatibility
compared to commercially available GBCAs, the toxicity
concerns around using exogenous metallic agents remain. For
systems requiring brain localization, safety concerns are
accentuated by the discovery of Gd deposition in the brain
following GBCA use; concerns for NSF in those with impaired
renal function remain, too. Gd-based agents also tend to have a
short blood half-life, which may require repeated administration
in order to generate desired images which also heightens the risk
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of adverse effects.”” For these reasons, alternate approaches in

U O
N recent research predominantly use endogenous metals.
- Iron-Based Nanoparticles. Iron-based NPs have consis-
B = g tently generated interest as a means of improving MRI because
2 E of their biocompatibility and magnetic properties. As iron (Fe) is
naturally present in the body and can be degraded by natural
g mechanisms,”’ it presents as a safe and more biocompatible
2 alternative to GBCAs.”” The release of iron due to possible
B degradation of the NPs is mostly nontoxic at dosage levels
Bt needed for imaging application; most of the released iron seems
jm g e to integrate into ongoing processes and metabolize in
5 = hemoglobin in the blood.”® Further supporting the development
o of Fe as a CA is its long blood half-life and flexible surface
= chemistry.”””
Fe oxide NPs (IONPs) are the leading form of Fe-based
5 ok imaging nanotechnology. Fe oxide generally refers to magnetite
2 TE (Fe;0,) or the oxidized form, maghemite (y-Fe,O;).'%°
- Coprecipitation from Fe’* and Fe’* ions is the most commonly
g ;§ g used synthesis method for nanoparticles of either structure.'”!
E E é% Alternative synthesis methods include microemulsions, laser
g5 pyrolysis, or thermal decomposition of other iron-containing
” species, such as iron acetyl acetonate.'” Each preparation
method aims to strictly control the size, shape, and magnetic
properties of the iron oxide magnetic core.'’” Size has a
significant impact on IONP MRI performance. IONPs with a
size above S5 nm, termed superparamagnetic iron oxide
nanoparticles (SPIONs), are suited for use in T,-weighted
images where their accumulation causes a darkening of
g surrounding tissue. It has also been observed that Jarger SPIONSs
G exhibit higher magnetization values and, therefore, offer greater
contrast on MRI images, but the darkening effect is hard to
interpret.103 T, CA SPIONs continue to receive significant
attention, but the clinical preference for T-weighted CAs has
shifted efforts toward systems designed for T’ usage or with dual
§ capabilities for T;- and T,-weighted imaging.*®
é IONPs of a diameter less than S nm (often called ultrasmall
superparamagnetic Fe oxide NPs or USPIONs) are advanta-
. geous for use in Tj-weighted MRL'®* The small size of
Sé c USPIONSs allows for a greater surface area-to-volume ratio,
:%g = which has been shown to increase r; which is essential for use as
= a T| CA. Additionally, the small magnetic moment of USPIONSs
suppresses the T, contrast effect.'” A smaller size may also be
2 advantageous for transport into through the BBB and renal
> clearance both known to be limited by size. Despite advantages
3 C of USPION:S, concerns have been raised around their toxicity. In
5 a murine study comparing SPIONs and USPIONs, SPIONs of
p 9.3 nm exhibited no apparent toxicity, while USPIONs of 2.3
E and 4.2 nm were highly toxic, as attributed to the induction of
E reactive oxygen species (ROS).'* Still, some studies reviewed
@ elsewhere cite excellent biocompatibility”" while others suggest
g g § that the biocomépatibility of USPIONS depends on the quality of
© 2 E b=t . . 10 . L
03 % ‘E .thelr coating. ~ Other methods for suppressing I.nagnetllzatlon
S = g in order to reduce r, and allow r, to dominate include
& 2 manipulations of shape, composition, and degree of crystal-
g2 linity.”” Surface coating and doping can also enhance r;. Since
§ ; 'c% CAs of this type generally result in more readable images than
| g g i T,-enhanced images and will resemble the contrast-enhanced
g 2 & 2 images that physicians are already accustomed to seeing, clinical
© Ea % g translation will be an easier transition for clinicians. Accordingly,
2 a % L‘é T, Fe-based CAs have grown as the subject of much research
= _% é 5 now that routes for rendering longitudinal relaxivity their
H © & dominant magnetic factor have been established and explored.
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Most studies focus on spherical IONPs, but other
morphologies are possible through different synthesis strategies
and conditions. Roca et al. note that IONP shape and size can
impact both the magnetic properties and other biomedically
relevant properties, such as colloid ability, cellular uptake, and
toxicity.107

While a few IONP formulations have received FDA approval,
none have been approved for neurologic applications and most
have not remained on the market; in addition, most of them
function as T, CAs.'’”'%*'% However, various formulations
have shown early promise for brightening enhancements to T'-
weighted MR images of the brain. One study utilized single
nanometer iron oxide NPs (SNIOs) coated with zwitterionic
dopamine sulfonate. The small size of the NPs increased brain
permeability and enabled whole-brain visualization on MRI.
The SNIOs were designed at a size comparable to Gd-DPTA,
smaller than most IONPs reported, and yet the per-particle r;
values were approximately 13 times higher than that of Gd-
DPTA under the same magnetic field strength.'”” Du et al.
designed ultrasmall PEGylated SPIONs, with a Fe;O, core
diameter of 3.63 + 0.41 nm, to visualize epileptic regions of the
brain using pepstatin-A, which targets proteins overexpressed
with epilepsy. Use as a T| CA was supported by a high r, value of
4.16 mM™" s7!, comparable to commercially available Gd-
DPTA, paired with highly efficient epileptogenic region
targeting as verified by Prussian blue staining.''’

The majority of Fe-based T neurological CA systems have
been designed to target brain cancers. Angiopep-2 was used to
effectively target PEGylated IONPs with a uniform metallic core
of 3.5 nm into intracranial glioblastoma in a murine model. The
brightening effect observed on T -weighted MR images was
shown to be concentration-dependent; the maximum concen-
tration of IONPs within tumors occurred at 2 h, after which
signal brightening was maintained for another 4 h. The r, was as
high as 4.68 mM ™' 57!, outperforming commercially available
Gd-DPTA."® Many brain cancer targeting systems are also
multifunctional with theranostic or multimodal approaches.
Sukumar et al. synthesized a theranostic, multimodal system for
imaging orthotopic glioblastoma based on gold—iron oxide NPs
(GIONs). GIONs were first coated with p-cyclodextrin-
chitosan onto which T7-peptide was conjugated via PEG linkers
for tumor targeting. The NPs were loaded with tumor-
suppressing miRNAs and the chemotherapeutic drug Temozo-
lomide. Dye labeling to the miRNAs allowed in vivo fluorescent
imaging to be used in conjunction with MRI. Ultimately,
selective accumulation into brain tumors was observed via both
imaging modalities, and treatment efficacy was supported by
prolonged survival time and positive health indicators for treated
versus control mice." "'

Fe-based CAs have generated interest as dual T,/T, CAs
because of the metal’s capacity to enhance T}- or T,-weighted
images depending on the design. Dual CAs aim to reduce T and
T, simultaneously; they aim to overcome shortcomings of each
individual CA type by generating complementary information. A
unique advantage of dual CAs is easy cross-validation because
dual systems can be used in the same MRI scanner, allowing the
images to be spatially and temporally matched. In a study
comparing nanoscale coordination polymers (NCP) containing
different metals (Fe**, Gd**, Mn>*) for feasibility as dual CAs in
brain tumors, it was seen that only the Fe-NCP form showed
promise as a dual T,/T, CA. Relaxivity values of 5.3 mM™" s™!
and 10.9 mM ' s~ were achieved for r; and r,, respectively, and

tumoral accumulation was observed within a matter of minutes
after intravenous administration.''*

Other Fe-based nanotechnology includes metal alloys and
metal doped IONPs. Metal alloys that have been the subject of
imaging research are often bimetallic; some of those include
gold—Fe, nickel-Fe, and Gd—Fe NPs.''® Metals used for
doping IONPs include zinc,""* copper,115 gadolinium,”é’117
and manganese.''® One major strength of these systems is that
the combination of magnetic properties could result in a greater
influence on relaxation time; for this reason, the relaxivity
achieved by multimetal contrast agents is si%niﬁcantly higher
than what can be achieved by IONPs alone.'” In addition, the
combination of differing magnetic and metallic groperties can
increase the potential for multifunctionality.""” Chen et al.
designed a liposome-coated, zinc-doped IONP system function-
alized with PEG and tumor-penetrating peptide (RGERPPR)
for glioma targeting. The zinc doping increased the magnetic
saturation strength of the IONP, resulting in a high r; of 47.4
mM™" s7' at 0.5 T, supporting its use as a T contrast agent.
Furthermore, image enhancement was observed with a 7.29%
signal increase in tumor cells upon that of the control.'*’

Table 4 presents an inclusive list of Fe-based systems recently
explored for use within the brain. Despite increased relaxivity
and functionality in combined metal systems, the inclusion of
non-native metals in the body significantly affects biocompat-
ibility.”” Further research is necessary to address toxicity
concerns before the development of these bimetallic CAs can
be widely pursued. For this reason, these systems are much more
limited in literature than that of IONP systems. IONPs,
however, have been noted to be biocompatible in most studies.

The predominant limitation of Fe-based T| CAs to date is that
the magnetic properties of Fe tend to serve best as T, CAs,
meaning that system design is further complicated to allow
longitudinal relaxation to become the dominant factor in MRI
enhancement. Therefore, the financial incentives for develop-
ment are lacking as the costs of production for complicated or
time-consuming synthesis processes may outweigh the potential
for profit.”” Although toxicity is generally low in Fe-based
systems, biocompatibility concerns associated with ultrasmall
designs may limit some of the feasible strategies for augmenting
relaxivity. For USPIOs or IONPs with complex morphologies,
toxicity and stability concerns arise due to the high surface
energies of systems with such large surface area to volume ratios
which may make them prone to aggregation and oxidation.”’
Oxidation can cause DNA damage and induce cellular cascades
that can lead to an array of adverse effects.*' To that point, the
addition of antioxidants or iron chelators can protect against
oxidative stress.”

Manganese Based Nanoparticles. Manganese-based
contrast systems are of particular interest for MRI application
due to the paramagnetic properties of its divalent ions. Like Gd-
based systems, these systems tend to be most suited to
enhancing T)-weighted images, with a brightening effect
observed in response to accumulated manganese (Mn) ions.
Mn-based NP systems are more biocompatible than the gold
standard, Gd, since manganese is naturally found in the
body."**~"*° Additionally, Mn can cross the BBB since it serves
as a cofactor for various receptors and enzymes.'*®

Early approaches'*” for Mn-based CAs took the form of either
free Mn, administered in an ionic form, or chelated Mn.
Lumenhance, a free ion form of magnesium chloride
(MnCl,),"*® and Teslascan, a dipyridoxyl diphosphate chelated
form of Mn,"*? both received FDA approval as MRI CAs for use
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in the abdomen and pelvis in 1997. Both drugs only remained on
the market for a few years before being discontinued over
toxicity concerns around Mn ion accumulation; for Mn-based
CAs to be realized clinically, a shift in approach became
necessary. Manganese oxide nanoparticles (MONs), which
exhibit negligible toxicity under limited concentrations and can
be cleared from the body via renal filtration, emerged as a
promising option."*”'*" Most commonly, MONs are synthe-
sized by thermal decomposition of manganese-containin

compounds such as manganese oleate or manganese acetate.'*

Size, shape, and composition significantly impact the
magnetic properties of MONs. Greater surface area has been
shown to result in greater r; values'*>'** because the Mn>* ions
interact with surrounding tissue most directly at the surface of
the NP. Smaller particles are, therefore, often considered
desirable as they have a greater surface area-to-volume ratio.
MONs is versatile in terms of composition since Mn has a wide
range of oxidation states. It has been observed that the
paramagnetic payload of MONSs is maximized at lower valence
states of manganese, making MnO (oxidation state: + 2) very
appealing, with Mn;0, (oxidation state: mix of +2 and +3) not
far behind.'" One study showed that faster temperature
ramping paired with shorter aging times for the decomposition
reaction produced the smallest MONSs, but the selectivity for the
desired MON composition suffered under these conditions.'**
Therefore, optimization for synthesis parameters is necessary to
achieve the desired balance of composition and size.

A special category of MONs that do not generate MRI
contrast under standard biological conditions has emerged in
recent years. MONs composed of higher valence state Mn allow
for contrast effects to be activated by the environment itself. In
Mn-based systems, the Mn** ion is predominantly responsible
for altering relaxation time.'*” MRI contrast in a higher valence
MON system is generated by the reduction and release of the
manganese oxide to expose the more strongly paramagnetic
Mn?* components at the surface of the NP. The reduction to the
Mn?* state has been shown to be triggered by acidic pH and
redox agents such as H,0, and glutathione.'** The result is that
under acidic or otherwise reductive conditions, Mn>* ions are
released from MONS, turning the contrast “ON” and activating
the image enhancement in areas containing the paramagnetic
species. The activatable nature of environmentally responsive
MON s offers benefits to static systems such as refined sensitivity
and specificity.*> Responsive MON systems are typically
designed with MnO,, which is highly reactive compared to
other compositions.

The release-triggering conditions for reductive MONs have
been found to be particularly useful in the case of brain tumors as
tumor environments have been shown to be acidic and
concentrated in reducing agents.'** Making responsive MONs
even more appealing is their ability to combat hypoxia, as a direct
result of the reaction with the tumor microenvironment. The
reduction of MnO, not only activates image enhancements by
releasing Mn*" but also produces oxygen and reactive oxygen
species (ROS).'* The oxygen production directly reduces
hypoxia, allowing for increased efficacy for treatments like
chemotherapy or radiotherapy, while the ROS are cytotoxic to
the tumor, inhibiting its growth. Although ROS generation can
be desirable when controlled and applied as a treatment,
oxidative stress resulting from MON reduction can harm healthy
tissue, causing DNA damage or apoptosis.'*’ Addressing these
concerns, it has been shown that MONSs can also act as ROS-
scavengers, with MnO, having the most scavenging potential.

Therefore, a balance of pro- and antioxidation activity must be
accounted for in design considerations to minimize toxicity. *’
Jiang et al. also relieved hypoxia in glioma in using H,O,-
reactive theranostics. The system was coloaded with paclitaxel, a
chemotherapeutic drug, and MnO,; both active agents were
released upon the degradative, oxygen-producing reaction of
MnO, in the tumor. Relaxivity increased from 3.30 mM™ s to
6.02 mM™" s7! at a field strength of 3.0 T when tested under
standard acid or H,0,-containing conditions, respectively,
which was reflected by increased signal intensities of intracranial
glioma in mice on T,-weighted images. The therapeutic efficacy
was confirmed as treated mice experienced increased survival
time and a gradual decrease in tumor size, which was attributed
to the synergistic treatment effects of paclitaxel and MnO,."*’

Manganese in forms other than manganese oxide has been
investigated but is less documented to date. Nanocomposite
structures made up of manganese-doped eumelanin, a natural
polymer, and loaded with curcumin, a neuroprotective agent,
were designed with antineuroinflammatory functionalities and
diagnostic MRI capabilities for traumatic brain injuries (TBI).
The theranostic was targeted to traumatized brain tissue using
Angiopep-2. Eumelanin and curcumin served therapeutic
purposes primarily, working to alleviate oxidative stress,
promote neuro-regeneration, and relieve neuroinflammation.
Magnesium doping rendered the system effective as a dual T,—
T, CA for the visual tracking of drug delivery into TBI lesions, as
evidenced by high r, and r, values of 4.5 and 53.7 mM ™' s™" at
7.0 T, respectively.">’

Table S provides an overview of Mn-based, polymeric
approaches for imaging the brain or disease conditions of the
brain.

The primary factor limiting the widespread clinical
application of Mn-based systems is that the relaxivity values
achieved are generally considered insufficient compared to the
current gold standard. Many MONSs have lower relaxivities than
that of FDA-approved systems, making clinical translation
tricky. Although the biocompatibility of Mn may be greater than
Gd, it can still have toxic effects in high amounts—namely, it can
trigger a neurodegenerative disorder termed “manganism”.'*®
Mn?* jons can be also erroneously recognized as Ca** ions,
which could disturb the regulation and function of many bodily
processes.”>” Mn’s stability is lower than Gd’s. Transmetalation
with endogenous metals like copper, calcium, and zinc can all
trigger Mn ion release to cause the aforementioned effects;'>°
system design and polymer modifications should aim to curb
this. Nonetheless, if high relaxivity was achieved and toxicity
concerns addressed, MONs could be a highly desirable option
given the greater ease for generating T contrast enhancement as
compared to Fe-based systems and greater biocompatibility as
compared to Gd-based systems.

Future Directions. Nanomedicine is the emerging option
for diagnostics of CNS disorders due to the unique properties
and tunability of NPs. The future of CAs relies heavily on the
continued improvements in nanotechnology and therefore will
need to be pursued as a coordinated effort involving en$ineers,
materials scientists, medical researchers, and clinicians.">' Gd,
Fe, and Mn each still present their own set of toxicity concerns,
and addressing these has to be at the forefront of design if clinical
translation is to be achieved. Polymers present as an option to
mask the metal from direct contact with tissue, without
eliminating the necessary water contact, in order to address
any concerns from direct contact. Additionally, polymeric
encapsulation of the metals and/or metal ions can increase
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control over delivery rates, while still allowing the CA to remain
in the body long enough to capture multiple or real-time images.
In general, the addition of a polymer to a metal-based CA system
can enhance stability of these metal ions by increasing
circulation time and controlling metal release rates. Ultimately,
the specific application will drive polymer choice to address
tissue-based or route of administration-based concerns.

A farther-reaching impact, however, is the potential to achieve
higher relaxivity values than any system that has thus far made it
to the clinical realm. Clinically available CAs function based
purely on the magnetic properties of the metal itself. By adding
polymers, those same properties will be in play but magnified by
the additional benefits of the polymer; the polymers will
primarily increase the interaction between water and the metal
beyond what occurs naturally, which increases relaxivity. This
means the brightening effect observed on a contrast-enhanced
MR image will be more extreme, increasing the confidence of
diagnosis by making tissue differences more obvious and images
easier to read. This will be a major stride for diagnostics in
general but is especially exciting in application with CNS
disorders, for which contrast enhanced MRI has only been
clinically available for a select few diseases due to difficulty in CA
delivery.*"">*

The capacity of polymers to improve both biocompatibility
and enhance contrast of magnetic metals is something that will
prove incredibly important in the development of clinically
translatable CAs. Metals like Mn and Fe tend to fail the
superiority test when comparing to GBCAs based on MRI
performance parameters—either the strength or mode of
enhancement—though their cytotoxicity is better. By exploiting
the tunable properties of polymers and maximizing CA contact
with the water content of surrounding tissues, CA performance
can be altered to magnify their already extant magnetic
properties and turn them into high-strength T, MRI enhancers.
Because of this, Mn and Fe could become clinically translatable
when placed in a polymeric delivery system, maintaining the low
cytotoxicity of these metals, while simultaneously improving
contrast and stability due to the presence of the polymer. The
addition of polymers can also improve already existing GBCAs;
by masking GBCAs in larger polymeric delivery systems, this
could decrease interactions with the kidney filtration system
based on size alone'® and decrease the negative effects of
GBCAs on patients with renal impairment.

Other techniques for tuning relaxivity will continue to focus
on the development of the metal itself. The fine-tuning of
different synthesis can allow for augmentation of size and shape
as well as other factors that affect r; like metal composi-
tion.'°”'*> For example, although most CA publications cite a
specific metal composition for their CA, many are mixtures of
various compositions. For example, both magnetite and
maghemite appear in IONPs but maghemite is preferable for
T, usage due to its greater number of unpaired electrons;”’
similar 7, preferences exist for MON compositions.'** Thus,
controlling the extent of metal oxidation to achieve a favorable
compositional ratio through parameters like temperature,
solvent, and reaction extent is a widely relevant technique for
influencing r;.'*”'** Further exploration of multiple-metal CAs
also has potential to improve image-enhancing capabilities,
although the inclusion of additional metals will only add more
toxicity considerations.”” Any improvements made on the
metals used as CAs can be incorporated into polymer delivery
systems, thus enhancing the improvements.

Brain targeting is another point that requires improvement
when designing brain-specific CAs. The brain has long remained
poorly understood and under-treated on account of the BBB.
However, recent advances in targeting mechanisms and
increasing knowledge on brain transport open new doors for
many brain-aimed drugs,'*° including CAs. Techniques for
improving brain transport include surface coating and ligand
bioconjugation. Suitable targeting motifs (natural and synthetic
alike) are continuing to be investigated; the combination of
multiple targeting moieties to a single CA may further improve
brain targeting while also eliminating off-target effects of the
CAs by increasing the likelihood of contact with an appropriate
receptor.'”' The addition of polymers to CAs will allow for
increased bioconjugation functionality without disrupting any
beneficial 1properties of the metal. Brain-targeting li-

ands' """ Tike agoli oprotein E,'~'** apolipoprotein
B,'71%7 transferrin,'*®™'"! and insulin'”>"*"* have all been
used to bypass the BBB in polymer-based delivery systems.
Leveraging these advances using polymer-based systems to
encapsulate and deliver CAs to the brain is a logical next step.
Furthermore, dense PEG coatings themselves have been
demonstrated to lead to increased brain penetration and could
be taken advantage of to improve CA delivery to the brain.'”
Alternate administration routes, such as intranasal, can also be
exploited to improve CA delivery both with and without
polymers.'”" Because the brain is much more complicated for
drug delivery than other organ systems, it follows that medical
advancement in other parts of the body will precede similar
applications in the brain. Therefore, it is also expected that
functionalities that are being developed for application in other
body systems, such as enzyme-activated CAs,"”® will also be
integrated into brain-specific designs. Additionally, new animal
models are being developed that model the pathogenesis of
various CNS diseases as well as the human BBB more accurately
than traditional mouse or rat models and these will prove to be
integral for performance screening and in vivo evaluations
leading up to preclinical trials."*!

Increasing attention has been paid to CAs with multiple or
specialized functionalities. To simplify and personalize the
treatment process with patients in mind, researchers are aiming
to elevate CA design by tackling multiple tasks all within a single
device as in theranostic and multimodal CAs. Multifunctional,
theranostic, and dual-contrast CAs have the potential to not only
streamline therapeutic management, allow for real-time disease
tracking and individualized treatment plans, and improve
diagnostics.'*' Some polymer systems, like polymersomes, can
coencapsulate multiple therapeutic molecules, which eliminates
the need for multifunctional CAs; instead, multiple therapeutic
modalities could be coencaég)sulated in the polymer system to
gain benefits of both."””'”® Specialized applications are also
being developed for neurological diseases that have not been
previously compatible with imaging. CA targeting of disease
biomarkers is attractive for diseases that do not exhibit obvious
structural differences so novel CAs designed for use with specific
diseases other than brain cancers are expected to see a rise in
literature.

B CONCLUSION

MRI of the brain relies heavily on the use of CAs, which enhance
signal differences between tissues. New technology is necessary
to replace the only commercially available contrast agents that
present toxicity concerns and fail to cross the BBB under normal
conditions. Polymeric nanotechnology approaches utilizing the
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magnetic properties of gadolinium, iron, or manganese have
sought to fill this need. The integration of nanomedicine and
polymers into a contrast-enhancing agent allows for a
combination of functionality and design strengths which yield
improved biocompatibility and superior transport and disease
targeting and most importantly, increased relaxivity and image-
enhancing capabilities. While gadolinium-based agents are more
established in clinical settings, options utilizing iron and
manganese offer a greater biocompatibility potential. Various
combinations of these magnetic metals and polymers have been
explored for applications within the brain, with increased
contrast enhancing performance compared to commercially
available agents, as well as better biocompatibility being a
common observance among polymeric CAs. With many of those
systems having seen encouraging levels of success at various
stages (in vitro, in vivo, and in clinical trials), the future of CAs for
MRI shows great promise for more readable images and
increased safety.
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