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We propose hardware acceleration for a new edge computing abstraction called a
Silent Witness. This abstraction embodies a severe asymmetry in the ease of write
versus read operations. Surveillance data from one or more video cameras are
continuously encrypted and recorded, but the decrypting, processing, or
transmission of that data only occurs under stringent privacy controls. For the new
search workloads of such a system, decode-enabled storage alleviates the
scalability bottleneck imposed by frequent decoding of data. Our experiments show
throughput improvements up to 3.5x for typical search workloads of a Silent

Witness.

privacy is a topic of considerable public debate,

especially regarding video surveillance for public
safety. A major concern is that voluminous data col-
lected for an ostensibly benign purpose may be sub-
verted. In this article, we introduce a new computing
abstraction that alleviates this concem by enforcing a
strict “need to know" requirement on data processing.
By construction, this abstraction implies severe runtime
performance degradation. We show that application-
specific integrated circuit (ASIC)-based hardware accel-
eration embedded in storage can greatly reduce this
performance degradation.

Video surveillance is valuable in fighting crime. It
can deter criminal activity,"” give clues for solving
crimes,? and provide forensic evidence for criminal tri-
als.? For example, surveillance videos were crucial to
discovering the Boston Marathon bombers in 2013,
and in successfully prosecuting them.® At the same
time, there are legitimate public concems about the
privacy compromises implicit in widespread video sur-
veillance. For example, in the aftermath of the Boston
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Marathon bombing, a spokesperson for the American
Civil Liberties Union (ACLU) stated”:

“What does trigger privacy concems is the city
of Boston installing a network of cameras, some
in residential neighborhoods, that enable law
enforcement to track individual people from the
moment we leave our homes in the moming until
the moment we return at night, seeing basically
everywhere we went and everything we did."

WE PROPOSE A NEW EDGE
COMPUTING ABSTRACTION CALLED
SILENT WITNESS THAT ENCRYPTS
AND RECORDS DATA CONTINUOUSLY
FROM ONE OR MORE VIDEO
CAMERAS, BUT ONLY DECRYPTS,
PROCESSES, OR TRANSMITS THAT
DATA UNDER STRICT PRIVACY
CONTROLS.

Can we do better? Can we preserve the crime fighting
benefits of video surveillance without compromising pri-
vacy? Toward this goal, we propose a new edge comput-
ing abstraction called Silent Witness that encrypts and
records data continuously from one or more video
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FIGURE 1. Silent Witness system architecture.

cameras, but only decrypts, processes, or transmits that
data under strict privacy controls. We describe this new
abstraction and its use as an edge node of a distribu-
ted system (the “Concept and System Architecture” sec-
tion). The focus of this paper is hardware acceleration of
new input/output (I/O) workloads that arise in this
context (the “Forensic Discard-based Search” and
“Search Workload Attributes” sections). Our analysis
(“The Case For Decode-Enabled Storage” section) shows
that decoding of data from storage is a scalability bottle-
neck for a Silent Witness. To overcome this bottleneck,
we propose (the “Decode-Enabled Storage” section) and
evaluate (the “Evaluation” section) decode-enabled stor-
age. Our experiments show throughput improvements
up to3.5x for typical search workloads of a silent witness.

Concept and System Architecture

Sensor data captured by a Silent Witness are transmit-
ted over a local area network to a nearby cloudlet,®®
where it is immediately encrypted and written to stor-
age. No content-based processing (such as indexing) is
done. This represents an extreme point in the tradeoff
space between privacy and runtime performance. For a
skeptical public that is wary of experts, we conjecture
that a blanket commitment to avoid any form of con-
tent-based processing at data ingest is much easier to
understand than more sophisticated privacy policies.
The brutal simplicity of the commitment, and its ease of
verification by inspection of source code by trusted
third parties, can help in establishing public trust in the
Silent Witness concept. This approach runs counter to
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widely accepted practice in processing surveillance
video today,'®™" but it offers the best chance to thread
a viable path through this sociolegal minefield.

We focus on video data because it is the most chal-
lenging. However, the concept of a Silent Witness is
applicable to any kind of sensor data. Bandwidth scal-
ability forces edge-based realization of this abstraction.
A single 4K-resolution camera at 30 frames per second
(FPS) has a bandwidth demand of roughly 30 Mbps
(https://www.synopi.com/bandwidth-required-for-hd-
fhd-4k-video). Continuously transmitting video from
multiple cameras to the cloud is simply not scalable.
After some retention period, old data on a cloudlet is
overwritten by fresh data from video cameras. Most
data are overwritten without ever being decrypted,
viewed, or processed. Retention periods on the order of
a few weeks to a few months are easily achievable
today. Only a miniscule fraction of captured data is ever
exported from a Silent Witness.

The key used to encrypt fresh incoming data is
changed frequently (e.g., hourly), and only the most
recent key is available locally. A trusted external
authority (TEA) periodically delivers unique random
keys to each Silent Witness. The TEA escrows the
keys, and releases them only under very restrictive
“need-to-know” conditions. For example, a law enfor-
cement agent who obtains a search warrant will only
be given the keys necessary to decrypt data from spe-
cific cameras and time periods. Obtaining a search
warrant is a heavyweight process that typically
involves judicial review in a democratic society. Since
keys are changed frequently and only the latest key is
retained locally, even physical capture of a Silent
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Witness will only compromise the small subset of data
encrypted with the current key. Older data remains
secure, because only the TEA has the keys to decrypt
that data. In addition, technologies such as Intel SGX
(i.e., secure enclaves) can provide an additional level
of security for the current key.

Figure 1 shows how multiple Silent Witnesses can
be integrated with a cloud-based TEA. Transport layer
security-based end-to-end security is assumed for all
communication links. Secure key distribution channels
from the TEA are used to periodically deliver encryp-
tion keys to cloudlets.

Forensic Discard-Based Search

By definition, a Silent Witness does not perform any
processing of video data at capture time. Its value as
a privacy-preserving abstraction relies on this assump-
tion. Even when the TEA releases relevant keys for an
authorized request, access is restricted to the narrow-
est scope of data that meets the “need to know" crite-
rion. These privacy-motivated constraints violate the
basic assumptions underlying cloud-based video proc-
essing today. The norm today is to process raw video
data only at ingest, and to never reprocess it again.

Since indexing is forbidden, how does a solitary user
search through many hours or days of raw video data to
which she is granted keys by the TEA? Crowd-sourcing
is not applicable here because of privacy restrictions—
the right to view the data is only granted to specific
individuals or teams. The only feasible approach under
these constraints is discard-based search.*® This
human-in-the-loop approach uses query-specific con-
tent-based computation for interactive search of visual
data. This approach has been extended to support just-
in-time indexing'® and deep neural networks (DNNs).”
We very briefly summarize this approach here, as back-
ground for the rest of the article.

The central idea in this approach is early discard.
This involves discovering as cheaply as possible in the
pipeline from storage to user whether a data item is
part of the result set for the current query. The con-
tent-based computation for early discard is composed
of code components called filters that map to individ-
ual terms of a search query. Filters span a wide range
from simple features such as color and texture to
more complex features that are expressed as DNNs.
Query execution can be optimized by dynamic filter
reordering, using runtime measurements of filter exe-
cution cost and selectivity.

Figure 1 shows a user obtaining keys from the TEA
(steps @ and @), and then presenting them to a Silent
Witness along with a search query (@); the results
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FIGURE 2. Impact of image decoding on scalability. R: Read files
from disk. D: Decode JPEG to RGB. C: Color filter for redness.
B: Bus detection with DNN. The experiments were run on a
cloudlet consisting of a 4-core slice of a server with two Intel
Xeon E5-2699v3 processors (230 GHz), an NVIDIA GTX 1080
Ti GPU, and a Seagate 4-TB disk drive (7200 RPM, SATAv3). This
configuration reflects the per-drive resources of a typical
2-socket server with 8-12 direct-attached disks. CPU times are
higher than wall-clock times because multiple (4) cores are used.

from the query are streamed directly back to the user
as they are generated (@). A user may abort query
processing once she has seen a sufficient number of
results to refine the query. This iterative process is
referred to as interactive data exploration.'®

Search Workload Attributes

A Silent Witness continuously encrypts and records
video received from cameras. This background work-
load can benefit from hardware acceleration for
encryption, which is assumed without further discus-
sion in this article.

One or more foreground workloads of discard-based
search augment the background workload. Previous
work'™® shows that discard-based search workloads
have similarities and differences relative to well-known
Map-Reduce workloads. The Reduce step involves no
computation, but merely presents results to the user.
Like the Map phase, discard-based search offers embar-
rassing parallelism. However, unlike Map-Reduce, a
discard-based search is not a batch operation that runs
to completion. Rather, it is an interactive operation that
is aborted as soon as the user has gained sufficient
insight to pose a better query. Unlike Map-Reduce,
where a data item is processed exactly once, discard-
based search involves repeated reprocessing of the
same dataitems as the query evolves.

The first step of any early-discard filter pipeline is
decoding the data item from its on-storage format
(e.g., JPEG, PNG, MP4, etc.) to a bitmap representation.
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FIGURE 3. Decode-enabled storage. (a) Implementation. (b) Emulation.

Data volumes are usually too large to retain decoded
data items in memory or on disk. Hence, decoding has
to be done repeatedly: once for each data item, on
each iteration of discard-based search. Decoding
visual data thus becomes a frequent operation, offer-
ing the opportunity for performance optimization
through hardware acceleration.

The performance impact of frequent decoding can
be seen from a simple example. Consider the query
“Show frames that contain red buses.” This query is
expressed using two filters: 1) a color filter tuned to a
broad range of shades of red; and 2) a DNN that
detects the class “bus.” Detecting a red patch of color
is computationally very cheap, while DNN execution is
many orders of magnitude more expensive. Hence, the
obvious early-discard tactic is to check for a red patch
first, and only run the expensive DNN on the subset of
frames with red. The human in the loop can eliminate
false positives: i.e., frames with a red patch and a bus,
but notaredbus.

The filter pipeline for this discard-based search con-
sists of four main operations: (R) reading encoded
images from disk, (D) decoding into pixel arrays,
(C) execution of color filter, and (B) execution of the
bus detection DNN. Figure 2 shows the wall-clock and
central processing unit (CPU) times of these four steps
in processing 50,000 images from the yrec100 m data-
set.’® The small difference between “R+D+C" and "R+D
+C+B" shows the power of early discard: the DNN is
only applied to about 3% of the data items. Step (R)
dominates wall-clock as a result of disk seeks. Step (D)
consumes more than 75% of CPU time, suggesting
decoding as the bottleneck once |/Ois improved.

Factoring both wall-clock time and CPU time into
consideration, the results in Figure 2 suggest that big
wins may be achievable by 1) reducing disk seeks and
2) integrating I/O with decoding. This, in turn, strongly
suggests that acceleration is needed early in the
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processing pipeline where the greatest wins are avail-
able. It also requires cross-layer optimizations that
span application (e.g., JPEG decoding), file system
(e.g., block-to-file mapping), device driver (e.g., detec-
tion and parallelization of accelerators), and hardware
(e.g., disk read head positions). To enable such com-
plex and technology-dependent optimizations while
preserving application simplicity and maintainability,
we present and evaluate a new storage APl in the rest
of the article. We refer to any storage system that sup-
ports this API as decode-enabled storage.

Application Programming Interface

Our new storage application programming interface
(API) extends the well-known object store API,'® which
operates on entire variable-size logical objects rather
than blocks or sectors. Our extension consists of two
new calls that are described in the rest of this section.
The first operates on a single object, while the second
iterates the first call over multiple objects. In these calls,
each object is addressed by an integer object_id.

FetchAndDecodeObject(
int64 object_id,
int32 opcode, void *params,
iovec *where_to_put_decoded_object,
iovec *where_to_put_original_object)

The above uses the opcode field to indicate whether to
obtain the on-storage encoded object, the decoded ver-
sion, or both. The last is useful in a server context,
because it avoids reencoding for network transmission
after early-discard filtering on the server. The scatter—
gather |/O vectors, where_to_put_decoded_object and where_-
to_put_original object indicate the memory locations
where the decoded and original objects are to be placed.
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While decode acceleration is our primary motivation, we
leave open the possibility of opcode indicating use of other
forms of storage intelligence such as cropping around
human faces. Input or output parameters for such oper-
ations can be provided through the params pointer. Since
partial read or write of an object is not supported, very
large videos (gigabytes per second to terabytes per sec-
ond) are stored as a sequence of objects (one per short
video segment), plus an additional directory object to
store the mapping from entire video to short segments.

IterateCollection(
int64 collection_id,
int32 opcode, void *params,
int64 logical_index, int64 *flags,
int64 *returned_object_id,
iovec *where_to_put_decoded_object,
iovec *where_to_put_original_object)

The above iterates over the collection of objects
specified by the first parameter. The storage sys-
tem is free to deliver these objects in any order,
thus enabling it to exploit internal optimizations
such as disk seek minimization and caching. Each
call retrieves one object, with returned_object_id iden-
tifying which object was fetched. The call mandates
exactly-once semantics: exhaustive and nonrepeat-
ing access to all the objects listed in collection_id.
The iterator cursor is logical_index.The flags parame-
ter can be set to the value NEW_ITERATION to abort the
current iteration (if any), and start a new iteration. It
indicates COLLECTION_LAST when the last object is returned.
The other parameters play the same roles as in
FetchAndDecodeObject.

Implementation Considerations

Since visual data formats such as JPEG, PNG, and
MP4 define long-lived standards, fixed-function ASICs
suffice as hardware accelerators for decode-enabled
storage. Their lack of programmability is not a handi-
cap, and their superior energy efficiency is an advan-
tage. ASICs for visual data decoding have been
studied extensively.20%!

A well-known design principle for scalability from
“Big Data” systems and database systems is to mini-
mize data copying. Locating the decode—acceleration
ASIC in a storage device aligns well with this principle.
No new data copies are needed; rather, data are
decoded in a streaming operation as it is read off the
disk surface. This may seem to be a counterintuitive
optimization at first glance, because early decoding
greatly increases the bandwidth demand on the SATA
interconnect from disk. However, this can be overcome

Novernber/Decermnber 2022

ARTIFICIAL INTELLIGENCE AT THE EDGE

FIGURE 4. Thermal heatmap of a typical cloudlet. Numbers in
heatmap indicate temperature (1= hottest, 5 = coolest).

by replacing SATA by the modern NVMe host-storage
interconnect. NVMe was originally created to support
the much higher bandwidth demand of solid state
drives (SSDs). There is industry speculation that NVMe
will become the unified interface for all storage types
in the near future, including SSD and disks. By fortu-
nate coincidence, this trend aligns well with our pro-
posal to place decoding functionality on disks.

The ASIC could be host-attached like graphics proc-
essing units (GPUs) today [left side of Figure 3(a)]. How-
ever, that strategy suffers from at least two deficiencies.
First, it requires some host mediation of the decoding
process, incurring context-switching overheads. Sec-
ond, memory bandwidth demand is high because
encoded objects have to be placed in memory by the
disk, then read by the ASIC, and finally the decoded
objects have to be written to memory. Only the last of
these costs is paid if the ASIC is colocated with
storage [right side of Figure 3(a)].

ASIC placement is also guided by thermal consid-
erations, as shown by Figure 4. Areas in white and yel-
low represent the hottest parts of a typical cloudlet,
while it is processing a visual data pipeline. Adding the
ASIC to these areas would make cooling more diffi-
cult. As the coolest parts of the system (red areas of
Figure 4), storage devices can most easily accommo-
date the thermal load of additional processing.

How much system-level performance improvement
does decode-enabled storage offer to a Silent Wit-
ness? A rigorous answer would require a hardware
implementation of this new abstraction. To gain confi-
dence in the likely win before making this investment,
we have implemented a timing-accurate software
emulation of the new abstraction on top of existing
storage hardware. Since our emulation is conserva-
tive, it likely understates the win achievable in a real
deployment.
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Timing-Accurate Emulation of Decode-
Enabled Storage

We implement timing-accurate emulation of an NVMe-
attached decode-enabled disk that allows execution of
real application code and measurement of wall-clock
time and real operating system (OS)-level statistics (e.g.,
CPU time, bandwidth). The emulation allows us to
experiment with a wide range of parameters that are
otherwise unavailable in existing hardware products.
Event-driven simulation based on precomputation and
modeling is used to emulate hardware decoders, while
disk timing is based on a real disk.

HOW MUCH SYSTEM-LEVEL
PERFORMANCE IMPROVEMENT DOES
DECODE-ENABLED STORAGE OFFER
TOASILENT WITNESS? A RIGOROUS
ANSWER WOULD REQUIRE A
HARDWARE IMPLEMENTATION OF
THIS NEW ABSTRACTION.

Figure 3(b) depicts our emulator. Application pro-
grams are largely unchanged except for the use of the
new application programming interfaces (APIs) to fetch
(decoded) data. The emulator includes critical compo-
nents of adecode-enabled storage device. This includes
the host-disk interconnect bus, potentially parallel hard-
ware accelerators for decoding, and mechanical disk
timings. The controller implements the logic to control
data flow and coordinate different components in order
to service a request from applications.

For each software-emulated component, we con-
struct 1) a model to calculate the (content-dependent)
completion time for operations, and 2) a mechanism to
generate the actual results produced (e.g, the actual
decoded pixel arrays). The latter mechanism must exe-
cute faster than the modeled time; this is achieved by
serving precomputed results from memory. As this
generally runs faster than needed, the system inserts a
high-resolution sleep to achieve the modeled latency.

We use a discrete event-driven approach to model
complex interactions between components. For exam-
ple, requests to the decode ASICs are serialized
through a priority queue sorted by the simulation
timestamp. Thus, requests are ordered “correctly”
even if generated out of order by the concurrently exe-
cuting components. The simulation clock is continu-
ally updated to match the real world time. When a
request’s computed completion time is reached by
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the simulation, we send the response back to the
application.

Prototypes ASIC- and field-programmable gate array
(FPGA)-based image decoders?®?! are typically charac-
terized by a metric specified in MegaPixels per second
(MPixel/s). Hence, we parameterize our emulated
decoder with a targeted MPixel/s. With RGB format,
1 MPixel/s is equivalent to 3 MByte/s of output. In prac-
tice, decoding time may vary based on content and com+
pression level of images. Our emulator accounts for such
variability, while maintaining a target speed. We compute
a global scaling factor that scales the average software
decode time for an entire image dataset to the target
rate; we apply this factor to the software decode time of
each image to obtain its simulated HW decode time.

More concretely, suppose the dataset has N
images, the software decode time of image i is ¢,
and its decoded size is r; MPixel. When simulating an
image decoder parameterized at AS™ MPixel/s, the
simulated decode time of image i is calculated as

N sw
Sim D=0 Tk Mz
i T N sw sim "
Yrotpt MY

To emulate real-time hardware decode, we prede-
code all images and store them in a ramdisk. At run
time, the decoded data are rapidly returmed to the appli-
cation. We emulate video decoding and face detection
hardware in a similar fashion. For simplicity, we parame-
terize them using a target FPS, and scale individual
elapsed times based on profiled software times.

We emulate mechanical disk timing factors, such as
seeks, platter rotations, and block cache by reading files
from a real magnetic hard disk (HDD). Although this will
include overheads of the OS, filesystem, and bus, we
find that these are small by performing similar tests on a
fast SSD. We were careful to clear the OS page cache
before each experiment.

Experimental Setup

We ran experiments on a cloudlet with two Intel Xeon
processors (totaling 36 cores@2.3 GHz), 128-GB
DRAM, and an NVIDIA GTX 1080 Ti GPU. Decode-
enabled storage was provided by the emulator
described above (see the “Timing-Accurate Emulation
of Decode-Enabled Storage” section). Emulated disk
to host connectivity was NVMe (16 Gbps).

We used two datasets in our experiments. The first
was the same dataset that was used in Figure 2 (ran-
dom sampling of 50,000 images from the vrcc100 m
dataset). The corresponding decoded data totals
51 GB, fitting comfortably in the memory of emulated
storage. The second dataset consisted of six videos
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FIGURE 5. Effectiveness of individual optimizations.

from the viraT Release 2.0 Ground dataset,? which are
encoded in H.264 format at 1080p/720p @ 30 FPS.
Based on NVMe bandwidth, the emulation was config-
ured with five JPEG decoders at 140 Mbps each.

Results
Full details of our evaluation, including microbenchmarks
and application-level pipelines, can be found in a recent
technical report.2® Due to limited space, we only present
a summary of results here. We first evaluate a series of
microbenchmarks of early-discard filters of partial analyt-
ics pipelines: 1) Color finds images with many red pixels;
2) PHash calculates an image’s perceptual hash value;
3) ResNet18 is a tiny DNN with 65x65 input and 10 layers;
and, 4) Face detects faces in an image, annotates the
bounding boxes, and drops images with no faces.

Figure 5 reports the benchmark throughputs (image/
s) for three systems: 1) Baseline: uses standard SATA-
connected disk and software decode; 2) Batch Iteration
Only: optimizes multiobject batch read order on a stan-
dard disk; 3) Decode-enabled Storage: combines batch
iteration, on-disk decode, and NVMe. The data labels
show improvement factors relative to baseline. We see
that batch iteration alone is effective (up to 2.5x
improvement) by improving 1/O efficiency, but is not
responsible for all performance gains. Adding on-disk
decode HW and NVMe achieves up to 4.9x improve-
ment over baseline. Face is much slower than the others,
because face detection is computationally expensive.
However, even a single face detection chip at 30 FPS
delivers 2x gain over software detection on the four
CPU cores used in this experiment.

Next, we consider four full analytics pipelines that
are representative of Silent Witness workloads:

» RedBus finds red buses in the yrcc100 m dataset. It
first runs a redness color filter, and then an SSD-
MobileNet DNN running on a GPU to detect buses.

» RedBus-fast trades off accuracy for speed by
replacing object detection with image classifica-
tion using a MobileNet DNN. Classification is

Novernber/Decermnber 2022

ARTIFICIAL INTELLIGENCE AT THE EDGE

vt

YFCC: Obama  VIRAT: Pedestrian

YFCC: Red bus
(a)
I 5SD

S HDD B Decode-Enabled Storage

PRI\
T

FIGURE 6. Full end-to-end visual pipeline performance.
(a) Example results. (b) Pipeline throughput. (c) CPU time.

faster, but may miss images where the bus is not
the dominant object.

» Obama searches for Barack Obama in yrcc100 m.
It first runs face detection to discard images
without faces, and then runs face recognition on
the face patches.

» Pedestrian detects humans in videos from the virat
dataset. It performs frame sampling and uses
image difference to filter sampled frames. It then
runs the candidate frames through a Faster R-CNN
DNN to detect humans. We evaluate this pipeline
with two frame-sampling rates: 10% and 50%.

Figure 6(a) shows an example search result from
each pipeline. The selectivity of the pipelines (i.e., frac-
tion of objects that contain the search target) is as fol-
lows: 0.01% for RedBus and RedBus-fast, 0.004% for
Obama, and 2.45% for Pedestrian.

Our results report two different metrics: pipeline
throughput [see Figure 6(b)] and CPU cost per object
[see Figure 6(c)]. We consider three configurations:
1) [gray] a standard SATA magnetic disk (HDD);
2) [blue] a standard SATA flash drive (SSD); and 3) [red]
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emulated decode-enabled storage with NVMe inter-
connect). The numeric annotations on blue and red
bars are relative to the corresponding gray bar.

These results show significant wins for decode-
enabled storage. In all cases, throughput is increased.
The CPU cost per object is lowered, enabling greater
parallelism and hence better scaling for concurrent
workloads. The win can be as high as 3.5x relative to
HDD, and 2.7 x relative to SSD. These are big wins for a
storage-centric workload. For two reasons, we expect
that HDDs rather than SSDs will be the storage tech-
nology of choice for Silent Witnesses. First, their higher
capacity enables a longer retention period for data.
Second, their lower cost-per-bit makes Silent Wit-
nesses more affordable for widespread deployment.

Preprocessing visual data to create an index is the stan-
dard way to gain orders-of-magnitude speedup for inter-
active search. When preprocessing is impossible, as in
the case of a Silent Witness, there is no option but to
use discard-based search. This is an inherently slower
process because the user is actually conducting two
interleaved searches concurrently: one to converge on
the right query to pose, and the other to examine results
from the current query. In this article, we have shown
throughput speedups up to 3.5x for a typical processing
pipeline in such a system. That is a considerable
increase in productivity for a law enforcement official
who is trying to solve a crime. Instead of spending an
entire workday on a single case, she only needs to
devote a few hours. This speedup from decode-
enabled storage is crucial to making the Silent Wit-
ness abstraction a practical tool.

THE SILENT WITNESS ABSTRACTION
ENABLES THE VALUABLE CRIME-
FIGHTING TOOL OF VIDEO
SURVEILLANCE TO BE USED WITHOUT
COMPROMISING PRIVACY.

Much-hyped “Al at the Edge” will ultimately be
judged by how it improves human lives. The Silent
Witness abstraction enables the valuable crime-fighting
tool of video surveillance to be used without com-
promising privacy. The primary beneficiaries will be the
inhabitants of high-crime areas, who are often the most
economically challenged segments of society.
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