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Abstract—The increasing number of vehicles, the
excessive use of fossil fuels, and the related safety
and environmental issues have motivated studies on
autonomous vehicles and Hybrid Electric Vehicles
(HEVs). In this work, we focus on the control of the
powertrain energy management for an autonomous
HEV. A new powertrain control strategy is enabled
by leveraging one of the uniqueness in the powertrain
management of an autonomous vehicle, i.e., the instan-
taneous power generated by the powertrain does not
need to exactly follow the power demand by the vehicle
motion controller. This is referred to as flexible power
demand, which adds an extra degree of freedom to the
powertrain energy management, and can lead to control
design achieving better fuel economy. The powertrain
control is then formulated under the Approximate Dy-
namic Programming (ADP) framework, and the power
flexibility is incorporated in the ADP formulation. At
last, an example of multiple connected HEVs following
a leader vehicle operating in an off-road scenario is
given to demonstrate the feasibility of the proposed
method.

Index Terms—Autonomous Vehicles, Hybrid Electric
Vehicles, Powertrain Energy Management.

I. INTRODUCTION

HE increasing electrification and autonomy are two

recent trends in the automotive industry. Hybridiza-
tion is an intermediate step on the path toward full electri-
fication aimed to make electric vehicles more competitive
against conventional vehicles with Internal Combustion
Engines (ICEs) [1]. A hybrid vehicle is a system powered
by multiple power sources, usually an ICE and a battery
pack. The potential in reducing fuel consumption and
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emissions enabled by having an extra degree of freedom in
the HEV’s powertrain has drawn research attention over
the last two decades [2]-[11]. The existence of an additional
power source in HEVs necessitates a control strategy
to split power between these power sources optimally,
known as powertrain energy management [12]. A number
of methodologies have been proposed for development of
such control strategies ranging from Dynamic Program-
ming (DP) [13], [14] to rule-based [15], [16], equivalent
consumption minimization strategy [17], [18], fuzzy logic
[19], [20], model predictive control [21], [22], and reinforce-
ment learning [23], [24]. Powertrain energy management
is a critical issue since improper power split management
will cause battery to overcharge or drain, not satisfy the
required power demand, and decrease the power efficiency.

Meanwhile, research on autonomous vehicles has gained
momentum recently. Its combination with powertrain
hybridization results in an autonomous HEV. An au-
tonomous HEV has two levels of control (Fig. 1) [25].
In the upper level (vehicle level), the controller optimizes
external dynamics of the vehicle, including position and
velocity profiles, to satisfy predefined maneuvering goals.
The power needed in the driveline is determined at this
level. In the lower level (powertrain level), the controller
shall decide how to split the power demand among dif-
ferent power supplies efficiently to achieve optimal fuel
economy. Most existing research studies these two levels
separately: some [26]-[31] have only focused on the upper-
level control design, while others [32]-[37] have solely
studied the powertrain-level control strategies. However,
studies have shown that augmenting these two levels offers
increased opportunities to enhance fuel economy by more
than 30% [25], [38].

The benefits of joint optimization of these two trends
have urged the researchers to focus on solving motion
control and power energy management in a unified frame-
work [39]-[45]. While it is possible to integrate the two
levels of controllers as a single controller, the design of
such an integrated controller can be complicated due to
the coupled augmented vehicle and powertrain dynamics
[25]. Also, real-time optimization of high-order dynamics
can be challenging. To mitigate computational burden due
to high coupling between dynamics of the upper level
and lower level, [46]-[48] proposed a hierarchical control
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Fig. 1. Two Levels of Control for Autonomous HEVs [25].

framework to optimize (1) the vehicle’s speed profile, and
(2) powertrain efficiency of the vehicle for the optimal
speed profile derived in (1). Although these studies have
shown promising results, these two levels are still solved
separately, and the full potential of integrated optimiza-
tion in fuel minimization is still unleashed.

Recently, some researchers have applied the emerging
idea of flexible power/torque request [25], [49]. This ap-
proach leverages the uniqueness of powertrain manage-
ment in an autonomous vehicle, i.e., the lower-level con-
troller does not need to exactly meet the power required
by the upper level at every moment. Note that the power
demand in the upper-level controller is determined without
considering the internal powertrain dynamics; thus, the
power demand requested by the upper level may not be
in favor of powertrain management. Giving flexibility to
powertrain management can potentially lead to a more
efficient hybrid power split strategy. In this strategy, the
two control levels are still implemented separately, and
the power demand from the vehicle-level control is given
to the powertrain-level control. Nevertheless, instead of
strictly following this power demand, the powertrain-
level controller is allowed to have a certain amount of
flexibility in the instantaneous power provided (Fig. 2),
while the vehicle still satisfies the maneuver goals set by
the upper-level controller as time reaches a specified time
horizon. This can lead to a better fuel economy since
the powertrain-level controller will have more flexibility
to have the power sources operating in the most efficient
condition. This strategy is not applicable in conventional
vehicles driven by humans, as it would conflict with the
driver’s intentions if the lower-level controller supplies
a power less/more than what the driver has intended.
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Fig. 2. Energy Management Hierarchy with Flexible Power Demand.

However, it is possible to be implemented for autonomous
vehicles, since both vehicle and powertrain controllers
operate in the background.

Nevertheless, methods used in existing works related
to powertrain control with flexible power demand make
them less practical in the application of HEV power man-
agement. [19] proposed an adaptive strategy to optimize
power splits for an autonomous parallel HEV with flexible
power demand. However, the main drawback in [49] is that
the proposed method does not guarantee that the vehicle
reaches the destination set by the upper-level controller
at the end of the time horizon considered. Also, in [25],
Pontryagin’s Minimum Principle (PMP) was deployed
to optimize the powertrain control optimization. PMP
is a powerful method in addressing powertrain energy
management for conventional HEVs. Nevertheless, when
state limitations are included in the definition of the
problem, it can be challenging to implement PMP to
handle them [50]-[52]. Thus, it can lead to some conver-
gence issues when dealing with powertrain management
for autonomous HEVs with flexible driveline power de-
mand wherein state constraints shall be enforced [25]. In
addition, PMP mainly provides an open-loop solution de-
pendent on the initial conditions [53]. Thus, each time the
initial condition changes, a new optimization is required.
Also, trial-and-error is necessary to set the initial profile
of control inputs given to the shooting method [54] used
for PMP [55].

To address these challenges, in this paper, ADP is
adopted to solve the powertrain energy management op-
timization with flexible power demand for the first time.
ADP is a computationally efficient nonlinear optimal con-
trol method that learns the optimal behavior of a sys-
tem using reinforcement learning. In ADP, the dynamical
states are incorporated into the controller through the
neural network, which makes ADP a closed-loop control
solution. Thus, once the controllers are trained, they can
be used for a wide range of initial conditions within the
region in which the controllers have been trained. In this
paper, the powertrain control problem and the flexibility of
the power demand are specifically formulated to accommo-
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Fig. 3. Free Body Diagram of a Vehicle [25].

date the setup needed in the ADP solver. For example, the
non-affine nonlinear powertrain dynamics are converted to
an affine form so the ADP can be efficiently implemented.
The control performance is shown to demonstrate its fuel-
saving benefit.

The outline of this paper is as follows. In Section II, the
vehicle-level’s dynamics and control are discussed. Section
IIT presents the energy management in an HEV and the
incorporation of power flexibility into its formulation.
State Space model and ADP framework are introduced
in Section IV followed by a numerical example in Section
V. At last, concluding remarks are given in Section VI.

II. VEHICLE-LEVEL DYNAMICS AND CONTROL

Consider a typical autonomous rear-wheel-drive vehicle.
To relax the complexities, the effective forces on the rear
side and front side are summed up at their corresponding
mid-axles. Fig. 3 shows the free body diagram. X and Y
consist of an inertial reference frame in which the variables
Xe, Yo, 0c show the horizontal and vertical position of the
vehicle’s mass center C' in the frame and its orientation,
respectively. The kinematics of the vehicle can be written
as below [25]:

Xo = va(t)cos(0c(t)) — dyw(t)sin(c(t)), Xo(0) = Xc(,o)
1
Yo = v (t)sin(0c(t)) + drw(t)cos(0c(t)), Yo (0) = Yoo
(2)
0c(0) = bco (3)
where, v, is the longitudinal velocity, w is the yaw angular
velocity of the vehicle, and d,. is the distance between the

center of mass C' and the rear axle. Besides, the dynamics
of the vehicle are as follows [25]:

éc = w(t)v

_ . 1
Mg (t) = amd,w?(t) — §pcd7'ag‘4fvfc (t) — fumg

# 27u(e) — LT (0,0.00) = v
(4)
To(t) = —mdywvg (1) + Mn@), w(0) =wy (5)

dr

_ Is+I. 7 I(ds+d,)?
where m = m + f:; ,I:I—&—mdaa:l—i—if(}:;d)

m is the total mass of the vehicle, and I is the yaw inertia
moment. I, denotes the equivalent moment of inertia of
the rear wheels and the rear axle plus all internal rotary
components translated at the rear axle about the axis of
the rear axle. Iy denotes the equivalent moment of inertia
of the front wheels and front axle about the axis of the
front axle when the steering angle is zero. d is the distance
between the center of mass C' and the front axle, and r
is the radius of the wheels. T; and T are the driving and
steering torques, respectively. Ay, p, Cgrag, and f,, are the
frontal area of the vehicle, the air density, the drag coef-
ficient, and the rolling resistance coeflicient, respectively.
The control design for this system is a classic problem
and hence not covered in this paper. Interested readers
are referred to [56] for more details. After designing the
upper-level controller, one may find the current and the
future trajectory information of the vehicle plus steering
and driving torques needed for the vehicle to stay on the
predicted path using traffic data from connected vehicles
nearby and the transportation infrastructures. Prediction
of the future trajectory using real-time traffic information
has drawn extensive attention in recent years [57], [58].
Hence, the authors’ focus is more on powertrain energy
management optimization and fuel consumption based on
the generated driveline torque demands from the upper-
level controller.

)

III. ENERGY MANAGEMENT IN POWER-SPLIT HYBRID
ELECTRIC POWERTRAIN

A. Defining the concept of flexibilities

The driveline power and torque demands obtained from
the upper level are used in the lower-level controller. The
controller is in charge of deciding how to supply the
driveline power demand from the ICE and the electrical
machinery. In the majority of the research conducted
in the field of hybrid powertrain energy management,
the convention is to strictly follow the power demand
determined from the vehicle-level controller and try to
optimize the powertrain based on that [33], [35], [30]. To
take advantage of the uniqueness of powertrain energy
management for autonomous vehicles, in this paper, we
allow flexibility in the instantaneous power supplied by
the powertrain. This introduces an extra degree of freedom
in the powertrain control optimization which can further
improve fuel efficiency.

Considering the demand from the upper-level controller
as a reference, certain ranges of deviation are admissible
in instantaneous driveline power demand. Although this
will result in deviation in the desired vehicle speed and
displacement, this deviation will only happen in the in-
termediate time steps, and the final vehicle displacement
and velocity in each considered time horizon will be met.
In other words, it means that the longitudinal position and
velocity plus driveline torque demand might be different
from the baseline at each intermediate time step, but the
deviation in the longitudinal position and velocity must
vanish as time reaches the time horizon.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. #, NO. #, MONTH YEAR 4

Let Az £ Z#—z be deviations of the longitudinal position
of the vehicle where x denotes the baseline longitudinal
displacement obtained from the upper-level controller, and
Z denotes the flexible longitudinal displacement. Also,
define Av, £ ¥, — v, to be deviations of the longitudinal
velocity of the vehicle where 7, denotes the flexible lon-
gitudinal velocity. Rewriting the external dynamics of the
vehicle considering the abovementioned flexibilities yields:

. - 1 -
mi,(t) = amd,&*(t) — §pCdmgAfvi(t) — fumg

aldy +d.) a(t) ~

+ %Td(t) — a ) Ts(t), U5(0) =g

(6)

where @ is the flexible yaw angular velocity and T and T}
are the flexible steering and driveline torques, respectively.

Assumption 1. The generated vehicle-level trajectory is
smooth enough such that one can neglect the effect of
the yaw angular velocity of the vehicle on its longitudinal
dynamics, i.e., w(t) = o(t) = 0 [59], [60].

Subtracting (4) from (6) followed by a division by m
yields:

N (t) = Ba(t) — ta(t) = %[—% PCrag Ay A ()20, (1)

+ Au (1) + LATU(D), Av,(0) = 0.

(7)
Note that:

T3 (t) — 03 (t) = (B2 (t) + 02 () (0o (t) — va (1)) ®)
= Ay (£)(2va (t) + Avg(t)).

Also, Av,(0) = 0 comes from the fact that at the
beginning of the driving cycle, the lower-level controller
starts with the same longitudinal velocity resulting from
the vehicle level. In addition, AT, £ Td — Ty serves as
the control input. Accordingly, the rate of change in the
longitudinal position deviation is as follows:

Ad(t) = Ay (1), Az(0) = 0. 9)

Similarly, Az(0) = 0 comes from the fact that at the
beginning, £(0) = z(0).

B. Powertrain Dynamics

Consider a typical power-split HEV powertrain shown
in Fig. 4. This mechanism, which Toyota introduced for
Prius vehicles, is made up of two gear sets, a planetary and
a coupler one, a battery, an inverter, and two electrical
machines which can serve as a generator or a motor. In
the literature, the one that is usually operating as an
electricity generation unit is called “generator”, and the
one that mostly acts as a motion power output is labeled
as “motor.” The planetary gear set consists of three parts:
sun, carrier, and ring. Here, the sun is connected to the
generator, and the carrier is linked to the engine. GO
connects the ring’s shaft and the electric motor’s shaft
through two identical gears G1 and G2 together to drive

the driveline. Neglecting the inertia of the moving parts
in the powertrain, one can find the following algebraic
equations between different components using the power
balance at the planetary gear set:

Planetary Gear Set

o

o

=

Engine | Q =2

(s :

) © )

g 8

(=] -

= ")

O
Battery Inverter Motor

Fig. 4. Toyota Prius Powertrain Schematic.

Ty(t) =~ (5 )Tel0) (10)
welt) = () (B) + (o Jwe(h) (1)

where T, and T, denote the generator’s torque and the
engine’s torque, respectively. ry and r, are the radii of the
sun gear and the ring gear, respectively. w, is the engine’s
angular velocity, and w, and w, are the corresponding
angular velocity of the ring and the generator, respectively.
Similarly, the power balance in the coupler gear set yields
the following algebraic equations:

Tr
Trs +7p

nﬁﬁﬁinw—<

kC Vg (t)
r

)Te(t) (12)

W (t) = = kowqy(t) (13)
where T, is the motor’s torque. @y is the angular driveline
velocity. Also, k¢ is the gear ratio at the coupler gear set.
Note that (—-)Te(t) is equal to the ring’s torque output
from the planetary gear set. In addition, as G1 and G2 are
identical, it is clear that their angular speeds are the same

since both are attached to GO, hence:

wr(t) = wm(t) (14)

where w,,, represents the motor’s angular velocity. Rewrit-
ing (11) yields:

T'r T's

we(t) = (

Jwm () + (

Jag () (15)

s+ Ty s+ Ty

Remark 1. Usually, in a real power-split HEV powertrain,
the motor is connected directly to the ring without the
help of any coupler gear set. The coupler gear set is
just added here to simplify the demonstration of how the
powertrain drives the vehicle, and it does not change any
of the relations in the real case as G1 and G2 are assumed
to be identical.
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Finally, by considering the power balance at the in-
verter, the algebraic equation is:

Poae(t) = P () + Py(t) = ,uf,;”Tm (t)w7rl(t)+ﬂ];ng(t)wg (t)

(16)
where Pyqit, P, and P, denote the battery power, the
motor power, and the generator power, respectively. Con-
ventionally in electrical machines, a negative power shows
the machine is operating as a generator while a positive
power shows it is functioning as a motor, and both P, and
P, can be positive or negative based on their function. fi,
and p, represent the efficiency coefficients of the motor
and the generator when they are generating electricity,
respectively, and they vary between (0,1). As a result
of mechanical and electrical energy loss, when electrical
machines are functioning as an electric motor, the battery
is discharged more than what is delivered at the output
shaft. When they are functioning as a generator, the bat-
tery is charged less than what is produced by them. Hence,
km and kg are equal to 1 if their corresponding electrical
machines function as generators and equal to -1 when
they function as motors. Also, notice that a negative Ppyy
means the battery is charging while a positive Pyq¢+ shows
it is discharging. Using (10) to (16), Py is formulated as:

Poate (t) =pFr Ta(t)@a(t) — u'g“’Te (t)we()

kcry (Nkm - N§g> ~ (A7)
- =Tt t).
L =15, ()
The dynamics of the battery are as follows [61]:
56 Vet — \/Vb%m — 4Ryt Pyt (t)
Oc(t) - ) 18
2Rbatthatt ( )

SoC(0) = SoCy

where SoC' is the state of the charge of the battery. Also,
Viatt, Rpatt, and Qpqrr represent the battery’s open-circuit
voltage, internal resistance, and capacitance, respectively.

IV. SoLvING OPTIMAL ENERGY MANAGEMENT WITH
ADP

A. State-Space Model

In this section, the State-Space representation is dis-
cussed. Considering (7), (9), (17), and (18), the system
dynamics can be summarized as below:

X() =F(X(1).U1), X(0)=X,  (19)

where the state vector X(t), the input vector U(t), and
the non-affine nonlinear function F are defined as:

X (t) £ [Az(t), Avy(t), SoC(t)]"
U(t) 2 [ATy(t),we(t), Te(t)]"

F = |Auv(t), i[—%pcdmgAfA%(t)(m(t) + Ava(t)+

(20)
(21)

T

_ Viatt — \/Vb%m — 4Rpatt Poare ()
2Rbatthatt

AT,

(22)
Assumption 2. In the study of the power-split HEVs,
given the two degrees of freedom feature of the power-
train, one can assume that for any engine power P.(t) =
T (t)we(t), the solution pair (Te(t),we(t)) will be such that
the engine power lies on the most efficient fuel consumption
curve shown on the engine map [25].

The engine map used in this study is shown in Fig. 5.
It is visible that on the most efficient fuel consumption
curve, for any specific engine power possible, i.e., 0 <
P.(t) < Pemax, & smooth 1-to-1 correspondence exists
between the engine’s angular velocity and the engine’s
torque. To reduce the number of inputs and hence, reduce
the complexities in solving the optimization problem, T, (%)
can be replaced by a function of w(t).

To(t) o we(t) — To(t) = hy (we(t)) (23)

where hy : Ry — R, in which R is the set of nonnegative
real numbers. Also, note that fuel consumption which is a
function of T¢.(t) & we(t), now can be estimated by w,(t)
alone:

mfuel(t) o we(t) = mfuel(t) = ha(we(t)) (24)

where hy : Ry — Ry. Therefore, with Assumption 2,
the vector of inputs will be replaced by U(t) =
[AT,(t), we(t)]".

Remark 2. Under Assumption 2 and using Eq. (23), for
any given we, its corresponding 7, is found by using the
engine map, and thus, the engine torque limit is met.

B. Input Affine Transformation and System Nondimen-
sionalization

To apply the ADP method in [62], the system needs
to be in a control affine form. However, the inputs, we
and AT, appear nonlinearly in Eq. (18) through Py (1),
which makes the powertrain system dynamics be non-
affine. Thus, the system dynamics need to be first trans-
formed. Similar to the method used in [63], a transforma-
tion is applied such that the inputs are taken as the new

i (t) ) . o (t) 1 O O

s (t) W [—§Pcdmgf4f$2\(;)(2@z(t) +a(t) + 3 (2a(1))] 00 (t)

P _ ~ Vbari— V2 i —4Rbatt Poate (t) bt

ngg 2Rbatt Qvatt * (1) 8 |:u2 (t):| (27)
&5 (1) 0 01
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Fig. 5. Engine Map.

states, and their derivatives are taken as the new inputs.
This shifts the nonlinearity of the original inputs to be
states in the newly transformed system, and have the new
inputs appear in the transformed dynamics in an affine
fashion. The new state vector and input vector are:

Xyew(t) = [Ax(t),Avw(t),SoC(t),ATd(t),we(t)]T (25)
Unew(t) = [ATa(t), @ ()] (26)

Eq. (27) shows the transformed input-affine system
dynamics, in which to simplify the notation,
Az, Av,, SoC, ATy, and w, are referred to as x1, T2, T3, X4,
and x5, respectively. In a similar manner, ATy, and .
are referred to as w1, and wus, respectively.

Also, note that each state varies between different
ranges. For instance, x; is expected to vary between zero
and hundreds of meters, while x5 is expected to vary
between zero and tens of meters per second. Thus, Eq.
(28) is used to nondimensionalize the system prior to the
training, to make states vary between [-1, +1] and help
the training process.

where x(t) € R™ is the state vector, and smooth functions
fe : R" — R™ and g, : R™*™ represent the dynamics of
the system. Also, u(t) € R™ is the input vector. Given
the initial conditions x(0) = xo € R™, the cost function is
defined as below:

Jo=2 /0 "x()TQux(t) + u(t)T Rou(t) dt + p(x(t))

2
(31)

where ty is the final time. Matrices Q. € S}*" and R €
ST X™put penalties on the intermediate states x(t) and
inputs u(t) (t # t;). S** and S5*F denote the sets of
k x k positive semi-definite and positive definite matrices,
respectively. ¥ : R™ — R puts a penalty on the terminal
states, and is used to ensure that the system will reach
the desired terminal point x4es(t¢). ¥ can be defined in a
quadratic form as:

B(x(t7)) = 2(xe, — Xaes(t1))TS (%) — Xaen(ts)

: (32)

where S € S’{". Let 6t be a small enough sampling time,

one can discretize (30)-(32) by using the Euler method as:

X1 = f(xk) + 9(xx)ug, k=0,1,2,...N—1 (33)

N-1
1
J = 5 Z x;‘ngk + ufRu;€
k=0
1
+ §(XN - XdSS(N))TS<XN - XdeS(N))
(34)
where k is the discrete time index, N £ % is the total

number of time steps. Xx, and u; denote the state and the
input vectors at time step k, respectively. Also, f(xy) =
X+ 0tfo(xk), g(xk) = 0tge(Xk), @ = 0tQ., and R = 0tR,.

The cost-to-go J(xy, k) is defined as the cost from x;

T = i o190 .. 5 (28) at time step k to the end of the time horizon and is equal
Xmaaj’i ) ) ) ) tO:
where Z;, and X,,,,; denote the ith nondimensionalized N-1
state, and the maximum absolute value of z;, respectively.  J(Xx, k) = 5 Z x2Qx, +ul Ru,
This will convert the system dynamics to Eq. (29). =k
1
+ §<XN XdES(N))TS(XN — Xges(N))
C. Solving Optimal Control Problem Using ADP 1 Tp S L
= —x; Qx +u; Rug + J(xg+1,k+ 1),
For simplicity of derivation, Eq. (29) is referred as: 27k @ kAR (k1 )
. k=0,1,2,..,N — 1.
X(t) = fe(x(t)) + ge(x(@))u(t),  x(0)=x0  (30) (35)
Xmam,? et
1 Xmazit 0 0
s % _%pcdragAfEQ(t)(2vm(t) + Xmaw,2%2(t)) + 77,)(17}(” S (Xmaz,aZa) 0 0
is| = > 0 0 b
T3| =  Vhare—\/ Vi, —ARoati Poart (t) + ! " (29)
Ty 2Rpatt Qvatt Xmax,3 < - 0 2
= max 1
zs5

0
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It can be proven that [62] the optimal control input uj
which minimizes J(xg, k), can be calculated by:

70J(Xpq1,k+1)

*— _R1 X
uy 9(xx) Oxpr1

=—R'g(x1)" Apia

(36)
where A\, £ %r:k) is the costate vector at time step k.

Considering (35), it can be shown that:

n S(Xk—Xdes(N)),k‘:N

T QX+ BN, k=01, N — 1
(37)

It can also be shown that [62] a mapping exists between

Ak+1 and xi, that can be captured by an ADP method

called Single Network Adaptive Critic (SNAC) with a

closed-form given below:

. 8J(xk, k)

A
k 8Xk

Aps1 = WEd(xy). (38)

In this linear-in-weight neural network, the smooth vector-
valued function ® : R™ — RP takes x; as the inputs and
outputs p linearly independent neurons (also called basis
functions). Wy, € RP*™ is the unknown network’s weight
matrix at time step k. The weight matrix is iteratively
solved through the following equations [62]:

WA @locv1) = S(F(xn-1) = glxn-1) R gloxn—1) " x

W]i\j_lq)(XN—l) - Xdes(N))
(39)
W @) = Q(Fxr) — gl R g) WL @i ) +
gxk+2 )TWkTJd(I’(f(Xk) - Q(Xk)R_lg(Xk)TWIf‘I’(Xk))
Xk+1

k=0,1,2,..,N —2
(40)

Once the weight matrix is obtained, A and the optimal
control input uj, can be found from Egs. (38) and (36).
The training algorithm is detailed in Algorithm 1.

Remark 3. As proved in [62], the iterations given in Egs.
(39) and (40) are contraction mappings, meaning that,
starting from any finite initial guess on W2, k={0,1,...N-
1}, they converge to the fixed point solution of the it-
erations. In algorithm 1, the network weights W) are
initialized to zero. Also, to compute the norm of the
difference between two successive iterative weight matrices
in steps (7) and (15), mean absolute error performance is
used. For more details, refer to [62].

Remark 4. In Algorithm 1, if the battery power is out of
the limit for a sample in any step of training, the searching-
based ADP process will discard that sample from the set of
training samples before training the corresponding neural
network in steps 6 and 14.

Remark 5. Egs. (36) and (38) yield that uj can be
calculated by having R, g(xx), Wy, and ®(xy). Thus, after
the convergence of the weights using Algorithm 1, the
optimal control input uj, can be found given the system

state (i.e., xx), providing a closed-form solution to the
problem.

Algorithm 1: Training Neural Network

_ tr.
1 Let N = 34;

2 Select a small positive number €, and a big enough
integer Iter Max;

Select ¢ random training samples XE\’;)—U

h={1,2,...,C¢} in your region of interest;
Guess an initial weight matrix W5 _;
for i = 1: IterMax do
Find W},_, using (39) with least squares on the
entire set of training samples;
if |[Wi_, — Wi || <ethen

‘ Break;
end
end

9 Set Wy_1=W}_;
10 for k = N-2:-1: 0 do

w

[ I B

11 Select ¢ random training samples x,(gh),
h={1,2,...,C} in your region of interest;

12 Guess an initial weight matrix W;
13 for i = 1: IterMax do
14 Find W} using (40) with least squares on

the entire set of training samples;
15 if |[Wi— W, !|| <ethen
16 ‘ Break;

end
end
17 | Set Wy =W},
end

V. SIMULATION RESULTS

In this section, a motivating example in which a mul-
tiagent system (MAS) of four off-road HEVs that are fol-
lowing a leader is considered. Vehicles are autonomous and
connected together through vehicle-to-vehicle communica-
tions. The vehicles are assumed identical. Specifications of
the environment and vehicles are presented in Table A.I
in Appendix A. The goal is to form a desired formation,
as depicted in Fig. 6, while following the leader whose
velocity and position profiles are known and shown in Fig.
7. Following [25], the vehicles’ upper-level velocity profiles
are shown in Fig. 8. Interested readers are referred to [25]
for more details. In this paper, we mainly focus on the
lower-level control problem, which deals with powertrain
energy management.

The battery power is limited to —60.5kW < Py <
60.5kW . The initial and the final SoC of all vehicles are
set to 60% to have a charge sustaining condition. The
simulation time, t¢, is 200 sec, and the penalty matrices
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Fig. 6. Desired Formation in the MAS.

are as follows:

R = diag([10; 10]) (41)
S = diag([10%;10%; 10%; 0;0]) (42)
Q = diag([0;0;0;0;10%)). (43)

Note that the region of interest is selected based on the
expected range of states to be visited during the operation
of the system, i.e., system constraints [(64]. The region of
interest in this study is defined as:

AZpmin < Az(t) < AZpmas (44)
Ay min < Avy(t) < Avg mag (45)
S0Cmin < SoC(t) < SoCmax (46)
ATy min < ATy(t) < ATgmax (47)

We,min < We(t) < We,maz (48)

where diag([a; b]) is a diagonal matrix with values of a and
b on the main diagonal and zero elsewhere. The reason for
selecting such S & @ matrices is to minimize w,, which
correlates with the fuel consumption [49]. Thus, only the
corresponding array of w, on @ is set to a nonzero value,
i.e., there is no penalty associated with any value for Ax,
Av,, SoC, and AT, in the intermediate steps. Similarly,
the S matrix is chosen to enforce the final conditions on
Az, Av, and SoC. Note that since w, and ATy are inher-
ently inputs (before transformation), no desired values are
considered for them by setting their corresponding arrays
in matrix S to zero. Also, the elements of ® function
are chosen to be non-repeating polynomials of the form
Ty %2,”, where m,n € {1,2,...,5} and a,b € {0, 1,2} such
that a + b < 2. In addition, the measure of the flexibility
for Ty can be constrained by the maximum torque of the
engine and the motor at the current speed. For simplicity,
the limitations of the flexibilities remain constant [19].
The powertrain control performance using the proposed
control method for the first vehicle is shown in Figs. 9-
17. The rest of the vehicles behave in a similar manner.
To show the efficacy of the “Flexible Driveline Power

30

Vo (m/s)
10w (rad/s)

20

-10 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Time (s)
Fig. 7. Leader Linear & Angular Velocity Profile.
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o

10 I I I I I I | I
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Time (s)

Fig. 8. Upper-Level Velocities for MAS Vehicles.

Demand” concept, the same problem is solved with the
“Fixed Driveline Power Demand” scenario (meaning no
deviation is allowed for driveline torque after the upper
level), and the results of both cases are shown in Figs.
11-17 for comparison.

As can be seen from the simulation results, during the
driving cycle considered, Av (the difference between the
actual vehicle velocity and the planned velocity from the
vehicle-level controller) is negative at the beginning and
then rises to be positive at around 60 seconds. This means
that the vehicle lags behind the planned vehicle velocity
profile (by the vehicle-level controller) initially and then
quickly ramps up speed to compensate for the gap in a
later phase of the controlled period. This is also reflected
by the position deviation Az from the planned trajectory
(Fig. 9), which indicates that the vehicle lags behind at
the beginning and then gradually catches up. This is
because, in the first 25 seconds, the vehicle accelerates
quickly (refer to Fig. 8), and therefore, the vehicle-level
controller requests a high power demand. But this can
overload the engine and cause the powertrain to operate
in an inefficient condition. Given the flexibility of power
provided by the powertrain control, the powertrain-level
controller optimizes the power output by considering the
optimal powertrain operating region and outputs less
power than requested. This results in an expected instan-
taneous position deviation in the allowable margin at the
beginning. After the high power demand phase is passed,
the controller quickly compensates for the deviations in
both velocity and longitudinal position towards the end
of the driving cycle. Also, note that as we are considering
an off-road scenario, having a deviation larger than usual
deviations in on-road cases are expected. For instance,
refer to [25].
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Flexible power demand has also improved the driveabil-
ity of the ride. As shown in Fig. (11), the acceleration
profile of the vehicle has been smoothed compared to the
fixed power demand case, specifically, during the first 50
seconds in which the vehicle initially accelerates quickly
(from 0 to 25 s) and then decelerates sharply (from 25 to
50 s). For the rest of the drive cycle, the acceleration is
almost the same as the fixed power demand case. Thus,
the overall drivability has improved.

During the high power demand phase (first 60 seconds),

both the battery and the engine have to operate to supply
the power requested by the vehicle. This is evident in Fig.
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12, where during the first 25 seconds, the battery state
of charge (SoC) decreases, indicating that the battery
is discharged to supply electrical power. Meanwhile, the
power output from the ICE is also at its high end. After
passing the high power demand phase, the generator starts
to charge the battery, resulting in a rising SoC, as shown
in Fig. 12. The corresponding engine working points,
engine power, and battery power are shown in Figs. 13-15,
respectively. The relative distance between Vehicle 1 and
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the leader is shown in Fig. 16. Considering the desired for-
mation represented in Fig. 6, the desired distance between
Vehicle 1 and the leader should be 400v/2 = 565.7(m).
Starting from the same given initial relative distance, the
relative distance in the flexible power demand scenario is
more relaxed due to the added degree of freedom to the
vehicle dynamics. However, the desired relative distance is
met in both scenarios from the last 40 seconds of the drive
cycle.

Fuel consumption histories using the fixed power de-
mand strategy and flexible power demand strategy for the
drive cycle are shown in Fig. 17. Since the final SoC may
not reach exactly the desired value in practical imple-
mentations, the fuel consumption compensation method
proposed in [65] is used (Eq. (49)) to account for the SoC
variation.

FCy=FC —0oASoC (49)

where F'C, FCy, and ASoC represent the measured fuel
consumption, the fuel consumption corresponding to a
zero SoC' variation, and the final SoC variation, respec-
tively. Also, o is a curve-fitting coefficient that converts
ASoC into a corresponding amount of fuel [65]. Compar-
isons between the compensated fuel consumption using the
two strategies for this drive cycle (case 1) and a commonly
used drive cycle known as FTP-75 (case 2) for the same
time horizon and off-road assumption are shown in Table
L.

TABLE I
COMPARISONS OF DIFFERENT ENERGY MANAGEMENT STRATEGIES.

Strategy Initial Final FCy (g)
SoC (%) | SoC(%)

Case 1 Fixed 60.00 60.19 192.0
Demand

Case 1 Flexible 60.00 59.62 179.7
Demand

Case 2 Fixed 60.00 59.78 60.6
Demand

Case 2 Flexible 60.00 59.84 52.3
Demand

This table shows that the concept of the “Flexible Drive-
line Power Demand” improves the fuel efficiency by close
to 6.4 % and 13.7% in case 1 and case 2, respectively.
Finally, the computational efficiency of the proposed
algorithm is shown in Fig. 18. Five cases of different

200

160

120

80

40 I
L =

Case 2 Case 3 Case 4
M Duration of the Drive Cycle M Calculation Time(s)

Case 1l Case 5

Fig. 18. Computational Time Needed for Driving Cycles of Different
Durations.

durations of the driving cycle of case 1 are presented in
the figure, which indicates that the time needed for the
controller computation is much less than the duration of
the driving cycles. This demonstrates that the proposed
controller can be potentially used for real-time solutions.

VI. CONCLUSION

This paper studies the powertrain optimal control for an
autonomous hybrid electric vehicle. A novel control strat-
egy is explored by taking advantage of a unique feature in
the powertrain management of an autonomous HEV, i.e.,
the instantaneous power generated by the powertrain does
not need to strictly follow the power demand from the ve-
hicle motion controller. This feature adds an extra degree
of freedom to the optimization problem and can lead to a
better fuel economy. Approximate Dynamic Programming
is used to solve this optimal control problem with flexible
power demand for the first time, and provides a closed-
form control solution. Finally, to verify this method, a
motivating numerical example of connected HEVs follow-
ing a leader vehicle in an off-road scenario is presented.
In our future work, we will explore the extension of this
study to include the engine’s shut-off command by means
of switched systems [66].

APPENDIX A

The vehicles considered in this study are identical.
Table A.I displays the specifications of the environment
and vehicles.

ACKNOWLEDGMENT

This research was partially supported by the National
Science Foundation under Grant No. 1826410. The au-
thors would like to thank the reviewers and Dr. Masood
Ghasemi for their time and constructive comments con-
cerning our manuscript.

REFERENCES

[1] W. Wang, X. Guo, C. Yang, Y. Zhang, Y. Zhao, D. Huang, and
C. Xiang, “A multi-objective optimization energy management
strategy for power split hev based on velocity prediction,”
Energy, vol. 238, p. 121714, 2022.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. #, NO. #, MONTH YEAR

TABLE A.I

ENVIRONMENT SPECIFICATIONS & VEHICLE SYSTEM PARAMETERS

Parameter Value ‘ Parameter Value
m 1350 kg | I 1850 kgm?
Iy 2 kgm? | I 7 kgm?
dys 1.5m | d 0.9 m
r 0.28 m | fu 0.007
p 1.225 kgs/m? | Cy 0.3
Ay 22m? | ke 3.9
Ts 0.030 m | Ty 0.078 m
g 0.9 | Lm 0.9
Vo 330 V | Qb 23400 A.s
Ry 0.45 Q |  Azges(N) 0m
Avg ges(N) 0 m/s ‘ SoC4es(N) 60 %
AZmin -300 m \ AZmaz 300 m
AvVz,min 6m/s | Avemae 6 m/s
SoConin 40 % | SoCmazx 70 %
ATy min 150 Nm | ATy max 150 N.m
We,min 50 rad/s | We,maz 450 rad/s
€ 0.05 | IterMax 10
¢ 1000 |

2]

[5]

6

[7]

8

[9]

[10]

11]

J. Liu and H. Peng, “Modeling and control of a power-split hy-
brid vehicle,” IEEFE transactions on control systems technology,
vol. 16, no. 6, pp. 1242—-1251, 2008.

Y. L. Murphey, J. Park, L. Kiliaris, M. L. Kuang, M. A. Masrur,
A. M. Phillips, and Q. Wang, “Intelligent hybrid vehicle power
control—part ii: Online intelligent energy management,” IEEE
Transactions on Vehicular Technology, vol. 62, no. 1, pp. 6979,
2012.

R. Langari and J.-S. Won, “Intelligent energy management
agent for a parallel hybrid vehicle-part i: system architecture
and design of the driving situation identification process,” IEEE
transactions on vehicular technology, vol. 54, no. 3, pp. 925-934,
2005.

Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, “Energy
management for a power-split plug-in hybrid electric vehicle
based on dynamic programming and neural networks,” IEEE
Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1567—
1580, 2013.

S. Delprat, J. Lauber, T.-M. Guerra, and J. Rimaux, “Control
of a parallel hybrid powertrain: optimal control,” IEEFE trans-
actions on Vehicular Technology, vol. 53, no. 3, pp. 872-881,
2004.

G. Buccoliero, P. G. Anselma, S. A. Bonab, G. Belingardi, and
A. Emadi, “A new energy management strategy for multimode
power-split hybrid electric vehicles,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 1, pp. 172-181, 2019.

B. Sampathnarayanan, S. Onori, and S. Yurkovich, “An optimal
regulation strategy with disturbance rejection for energy man-
agement of hybrid electric vehicles,” Automatica, vol. 50, no. 1,
pp- 128-140, 2014.

A. A. Malikopoulos, “Supervisory power management control
algorithms for hybrid electric vehicles: A survey,” IEEE Trans-
actions on intelligent transportation systems, vol. 15, no. 5, pp.
1869-1885, 2014.

E. Silvas, T. Hofman, N. Murgovski, L. P. Etman, and M. Stein-
buch, “Review of optimization strategies for system-level design
in hybrid electric vehicles,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 1, pp. 57-70, 2016.

X. Zeng and J. Wang, “A parallel hybrid electric vehicle energy
management strategy using stochastic model predictive control

(12]

(13]

(14]

(15]

[16]

(17)

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

(26]

27]

(28]

29]

11

with road grade preview,” IEEE Transactions on Control Sys-
tems Technology, vol. 23, no. 6, pp. 2416-2423, 2015.

J. T. Kessels, M. W. Koot, P. P. Van Den Bosch, and D. B.
Kok, “Online energy management for hybrid electric vehicles,”
IEEE Transactions on vehicular technology, vol. 57, no. 6, pp.
3428-3440, 2008.

Y. Yang, H. Pei, X. Hu, Y. Liu, C. Hou, and D. Cao, “Fuel
economy optimization of power split hybrid vehicles: A rapid
dynamic programming approach,” Energy, vol. 166, pp. 929—
938, 2019.

L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. Garcia, “Op-
timization of power management in an hybrid electric vehicle
using dynamic programming,” Mathematics and Computers in
Simulation, vol. 73, no. 1-4, pp. 244-254, 2006.

N. Jalil, N. A. Kheir, and M. Salman, “A rule-based energy man-
agement strategy for a series hybrid vehicle,” in Proceedings of
the 1997 American Control Conference (Cat. No. 97CH36041),
vol. 1. IEEE, 1997, pp. 689-693.

B. ékugor, J. Deur, M. Cipek, and D. Pavkovié¢, “Design of a
power-split hybrid electric vehicle control system utilizing a rule-
based controller and an equivalent consumption minimization
strategy,” Proceedings of the Institution of Mechanical Engi-
neers, Part D: Journal of Automobile Engineering, vol. 228,
no. 6, pp. 631-648, 2014.

G. Paganelli, S. Delprat, T.-M. Guerra, J. Rimaux, and J.-J.
Santin, “Equivalent consumption minimization strategy for par-
allel hybrid powertrains,” in Vehicular Technology Conference.
IEEE 55th Vehicular Technology Conference. VI'C Spring 2002
(Cat. No. 02CH37367), vol. 4. IEEE, 2002, pp. 2076-2081.

S. Nazari, R. Middleton, J. Siegel, and A. Stefanopoulou,
“Equivalent consumption minimization strategy for a power
split supercharger,” SAFE Technical Paper, Tech. Rep, pp. 01—
1207, 2019.

S. G. Li, S. Sharkh, F. C. Walsh, and C.-N. Zhang, “Energy and
battery management of a plug-in series hybrid electric vehicle
using fuzzy logic,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 8, pp. 3571-3585, 2011.

N. J. Schouten, M. A. Salman, and N. A. Kheir, “Fuzzy logic
control for parallel hybrid vehicles,” IEEE transactions on con-
trol systems technology, vol. 10, no. 3, pp. 460—468, 2002.

C. Xiang, F. Ding, W. Wang, and W. He, “Energy management
of a dual-mode power-split hybrid electric vehicle based on
velocity prediction and nonlinear model predictive control,”
Applied energy, vol. 189, pp. 640-653, 2017.

H. A. Borhan, C. Zhang, A. Vahidi, A. M. Phillips, M. L. Kuang,
and S. Di Cairano, “Nonlinear model predictive control for
power-split hybrid electric vehicles,” in 49th IEEE Conference
on Decision and Control (CDC). IEEE, 2010, pp. 4890-4895.
J. Wu, H. He, J. Peng, Y. Li, and Z. Li, “Continuous reinforce-
ment learning of energy management with deep q network for
a power split hybrid electric bus,” Applied energy, vol. 222, pp.
799-811, 2018.

Y. Li, H. He, A. Khajepour, H. Wang, and J. Peng, “Energy
management for a power-split hybrid electric bus via deep rein-
forcement learning with terrain information,” Applied Energy,
vol. 255, p. 113762, 2019.

M. Ghasemi and X. Song, “Powertrain energy management for
autonomous hybrid electric vehicles with flexible driveline power
demand,” IEEE Transactions on Control Systems Technology,
vol. 27, no. 5, pp. 2229-2236, 2018.

S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma,
“An optimal-control-based framework for trajectory planning,
threat assessment, and semi-autonomous control of passenger
vehicles in hazard avoidance scenarios,” International Journal
of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 190-216,
2010.

G. Foderaro, S. Ferrari, and T. A. Wettergren, “Distributed
optimal control for multi-agent trajectory optimization,” Au-
tomatica, vol. 50, no. 1, pp. 149-154, 2014.

P. Jantapremjit and P. A. Wilson, “Control and guidance for
homing and docking tasks using an autonomous underwater
vehicle,” in 2007 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE, 2007, pp. 3672-3677.

J. Ma, Y. Zheng, and L. Wang, “Lqr-based optimal topology
of leader-following consensus,” International Journal of Robust
and Nonlinear Control, vol. 25, no. 17, pp. 3404-3421, 2015.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. #, NO. #, MONTH YEAR 12

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

(43]

[44]

[45]

[46]

[47)

(48]

[49]

H. Zhang, T. Feng, G.-H. Yang, and H. Liang, “Distributed
cooperative optimal control for multiagent systems on directed
graphs: An inverse optimal approach,” IEEE Transactions on
Cybernetics, vol. 45, no. 7, pp. 1315-1326, 2014.

H. Zhang, J. Zhang, G.-H. Yang, and Y. Luo, “Leader-based
optimal coordination control for the consensus problem of mul-
tiagent differential games via fuzzy adaptive dynamic program-
ming,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 1, pp.
152-163, 2014.

M. A. M. Zulkefli, J. Zheng, Z. Sun, and H. X. Liu, “Hybrid pow-
ertrain optimization with trajectory prediction based on inter-
vehicle-communication and vehicle-infrastructure-integration,”
Transportation Research Part C: Emerging Technologies,
vol. 45, pp. 41-63, 2014.

S. J. Kim, K.-S. Kim, and D. Kum, “Feasibility assessment and
design optimization of a clutchless multimode parallel hybrid
electric powertrain,” IEEE/ASME Transactions on Mechatron-
ics, vol. 21, no. 2, pp. 774786, 2015.

A. Panday and H. O. Bansal, “A review of optimal energy man-
agement strategies for hybrid electric vehicle,” International
Journal of Vehicular Technology, vol. 2014, 2014.

N. Kim, S. W. Cha, and H. Peng, “Optimal equivalent fuel
consumption for hybrid electric vehicles,” IEEE Transactions on
Control Systems Technology, vol. 20, no. 3, pp. 817-825, 2011.
H. Kim and D. Kum, “Comprehensive design methodology
of input-and output-split hybrid electric vehicles: In search of
optimal configuration,” IEEE/ASME Transactions on Mecha-
tronics, vol. 21, no. 6, pp. 2912-2923, 2016.

N. Kim, A. Rousseau, and D. Lee, “A jump condition of pmp-
based control for phevs,” Journal of Power Sources, vol. 196,
no. 23, pp. 10380-10 386, 2011.

C. Atkinson, A. Lewis, A. Salvia, and G. Vishwanathan, “Pow-
ertrain innovations for connected and autonomous vehicles,” in
Proc. Powertrain Innov. Workshop, Adv. Res. Projects Agency-
Energy, 2015, pp. 1-8.

Y. Kim, M. Figueroa-Santos, N. Prakash, S. Baek, J. B. Siegel,
and D. M. Rizzo, “Co-optimization of speed trajectory and
power management for a fuel-cell/battery electric vehicle,” Ap-
plied Energy, vol. 260, p. 114254, 2020.

G. Heppeler, M. Sonntag, and O. Sawodny, “Fuel efficiency
analysis for simultaneous optimization of the velocity trajectory
and the energy management in hybrid electric vehicles,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 6612-6617, 2014.

D. Chen, M. Huang, A. Stefanopoulou, and Y. Kim, “A
receding-horizon framework for co-optimizing the velocity and
power-split of automated plug-in hybrid electric vehicles,”
ASME Letters in Dynamic Systems and Control, vol. 1, no. 4,
2021.

B. Chen, S. A. Evangelou, and R. Lot, “Series hybrid electric ve-
hicle simultaneous energy management and driving speed opti-
mization,” IEEE/ASME Transactions on Mechatronics, vol. 24,
no. 6, pp. 2756-2767, 2019.

G. Ma, M. Ghasemi, and X. Song, “Integrated powertrain
energy management and vehicle coordination for multiple con-
nected hybrid electric vehicles,” IEEE Transactions on Vehicu-
lar Technology, vol. 67, no. 4, pp. 2893-2899, 2017.

H. Zheng, J. Wu, W. Wu, and Y. Wang, “Integrated motion
and powertrain predictive control of intelligent fuel cell/battery
hybrid vehicles,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 5, pp. 3397-3406, 2019.

X. Pan, B. Chen, and S. A. Evangelou, “Optimal vehicle follow-
ing strategy for joint velocity and energy management control
of series hybrid electric vehicles,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 14161-14 166, 2020.

L. Zhang, X. Ye, X. Xia, and F. Barzegar, “A real-time energy
management and speed controller for an electric vehicle powered
by a hybrid energy storage system,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 10, pp. 6272—6280, 2020.

L. Zhao, A. I. Mahbub, and A. A. Malikopoulos, “Optimal
vehicle dynamics and powertrain control for connected and
automated vehicles,” in 2019 IEEE conference on control tech-
nology and applications (CCTA). IEEE, 2019, pp. 33-38.

A. Mahbub and A. A. Malikopoulos, “Concurrent optimization
of vehicle dynamics and powertrain operation using connectivity
and automation,” arXiv preprint arXiv:1911.038475, 2019.

F. Zhang, X. Hu, R. Langari, L. Wang, Y. Cui, and H. Pang,
“Adaptive energy management in automated hybrid electric ve-

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

(62]

[63]

[64]

[65]

[66]

hicles with flexible torque request,” Energy, vol. 214, p. 118873,
2021.

M. Sanchez, S. Delprat, and T. Hofman, “Energy management
of hybrid vehicles with state constraints: A penalty and implicit
hamiltonian minimization approach,” Applied Energy, vol. 260,
p. 114149, 2020.

Q. Jiang, F. Ossart, and C. Marchand, “Comparative study of
real-time hev energy management strategies,” IEEE Transac-
tions on Vehicular Technology, vol. 66, no. 12, pp. 10 875—10 888,
2017.

L. Serrao, S. Onori, and G. Rizzoni, “Ecms as a realization
of pontryagin’s minimum principle for hev control,” in 2009
American control conference. IEEE, 2009, pp. 3964-3969.

N. W. Kim, D. H. Lee, C. Zheng, C. Shin, H. Seo, and S. W. Cha,
“Realization of pmp-based control for hybrid electric vehicles
in a backward-looking simulation,” International Journal of
Automotive Technology, vol. 15, no. 4, pp. 625-635, 2014.

D. E. Kirk, Optimal control theory: an introduction. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1970, pp. 343-356.

S. Han, F. Zhang, and J. Xi, “A real-time energy management
strategy based on energy prediction for parallel hybrid electric
vehicles,” IEEFE access, vol. 6, pp. 70313-70 323, 2018.

M. Ghasemi and X. Song, “Control and powertrain management
for multi-autonomous hybrid vehicles,” Journal of Dynamic
Systems, Measurement, and Control, vol. 141, no. 7, 2019.

J. Pei, Y. Su, D. Zhang, Y. Qi, and Z. Leng, “Velocity forecasts
using a combined deep learning model in hybrid electric vehicles
with v2v and v2i communication,” Science China Technological
Sciences, vol. 63, no. 1, pp. 55-64, 2020.

Y. Zhang, L. Chu, Z. Fu, N. Xu, C. Guo, X. Zhang, Z. Chen,
and P. Wang, “Optimal energy management strategy for parallel
plug-in hybrid electric vehicle based on driving behavior analysis
and real time traffic information prediction,” Mechatronics,
vol. 46, pp. 177-192, 2017.

N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid
electric vehicles based on pontryagin’s minimum principle,”
IEEE Transactions on control systems technology, vol. 19, no. 5,
pp. 1279-1287, 2010.

S. Stockar, V. Marano, G. Rizzoni, and L. Guzzella, “Optimal
control for plug-in hybrid electric vehicle applications,” in Pro-
ceedings of the 2010 American control conference. IEEE, 2010,
pp- 5024-5030.

H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kol-
manovsky, and S. Di Cairano, “Mpc-based energy management
of a power-split hybrid electric vehicle,” IEEE Transactions on
Control Systems Technology, vol. 20, no. 3, pp. 593-603, 2011.

A. Heydari and S. N. Balakrishnan, “Fixed-final-time optimal
tracking control of input-affine nonlinear systems,” Neurocom-
puting, vol. 129, pp. 528-539, 2014.

T. Sardarmehni and X. Song, “Sub-optimal control of au-
tonomous wheel loader with approximate dynamic program-
ming,” in ASME 2019 Dynamic Systems and Control Con-
ference.  American Society of Mechanical Engineers Digital
Collection, 2019.

A. Heydari, “Stability analysis of optimal adaptive control using
value iteration with approximation errors,” IEEE Transactions
on Automatic Control, vol. 63, no. 9, pp. 3119-3126, 2018.

S. Onori, L. Serrao, and G. Rizzoni, “Hybrid electric vehicles:
Energy management strategies,” 2016.

T. Sardarmehni and X. Song, “Sub-optimal tracking in switched
systems with fixed final time and fixed mode sequence using
reinforcement learning,” Neurocomputing, vol. 420, pp. 197-209,
2021.



	Introduction
	Vehicle-Level Dynamics and Control
	Energy Management in Power-Split Hybrid Electric Powertrain
	Defining the concept of flexibilities
	Powertrain Dynamics

	Solving Optimal Energy Management with ADP
	State-Space Model
	Input Affine Transformation and System Nondimensionalization
	Solving Optimal Control Problem Using ADP

	Simulation Results
	Conclusion
	Appendix A
	References

