
Integrated Optimization of Powertrain Energy
Management and Vehicle Motion Control for

Autonomous Hybrid Electric Vehicles
Mohammadali Kargar, Chen Zhang and Xingyong Song

Abstract—Hybrid Electric Vehicles (HEVs) and
autonomous vehicles have been widely studied re-
cently for on-road transportation. In the study of
autonomous HEVs, the control of vehicle’s external
dynamics and powertrain dynamics are often treated
separately. Optimizing these two problems together
can significantly improve fuel economy. In this paper,
a customized control strategy based on Approximate
Dynamic Programming (ADP) is explored to optimize
these dynamics together. At last, a case study shows
that the examined control strategy outperforms the
one with the separated optimization method by an
additional 15% improvement in fuel consumption.

Index Terms—Autonomous vehicles; Hybrid elec-
tric vehicles; Energy Management.

I. Introduction
More than 65 percent of U.S. transportation oil con-

sumption is for personal vehicles [1]. This figure reveals
the importance of applying new technologies to improve
fuel efficiency in conventional vehicles. Hybridization and
autonomy are the top two technological trends to achieve
enhanced fuel consumption in recent years.

An HEV is a vehicle powered by both an Internal Com-
bustion Engine (ICE) and a battery pack through electric
motors. By having an extra degree of freedom in the vehi-
cle’s powertrain system enabled by the alternative power
source (battery), HEVs can significantly reduce emissions
and improve fuel economy. Since multiple power sources
exist in an HEV, a question arises intuitively that is
how to optimally manage the power split between the
power sources which is referred to as powertrain energy
management [2].

Meanwhile, research on autonomous vehicles has
gained momentum recently. An autonomous HEV com-
bines autonomy and powertrain hybridization together
and is considered to further enhance the fuel economy
through this synergy. However, most existing research
studies autonomy and power hybridization separately [3,
4]. Studies have shown augmenting these two optimiza-
tion problems can offer a significant fuel-saving potential
that cannot be achieved by powertrain optimization alone
[5]. Recently, a few works have been published integrating
the external vehicle dynamics and powertrain dynamics
together [5]. However, the proposed methodology (for-
ward DP) depends on the system’s initial condition, and
also is computationally intensive.

This study explores a sub-optimal powertrain energy
management strategy to optimize both the powertrain
dynamics and the external vehicle dynamics in an in-
tegrated fashion under the Approximate Dynamic Pro-
gramming (ADP) framework for the first time. Solving
this problem using ADP is independent of the initial
condition of the system and requires much less memory
storage capacity compared to the conventional DP. First,
a customization to the ADP method is proposed to
enable its application to a non-quadratic cost function
with non-affine dynamics and nonlinear constraints on
control inputs. Second, the concept of the reachable set
[6] is adopted when implementing ADP. To the best
of the authors’ knowledge, this concept has not been
implemented in any ADP method before.
The outline of this paper is as follows. In Section

II, the HEV modeling is discussed. Section III presents
the integrated optimization problem. Reachable sets and
ADP framework are introduced in Section IV, followed
by a numerical example in Section V. At last, concluding
remarks are given in Section VI.

II. HEV Modeling

A. Powertrain Modeling

In this study, a power-split hybrid powertrain is con-
sidered, as shown in Fig. 1. This mechanism comprises an
ICE, a battery pack, a planetary gear set, a coupler gear
set, an inverter, and two electric machines. The planetary
gear set is used as the power-split device consisting
of three main elements: the sun, the carrier, and the
ring. Neglecting the inertia of the moving parts in the
powertrain, the power balance at the inverter yields:

Pbatt(t) = µkm
m Tm(t)ωm(t) + µkg

g Tg(t)ωg(t) (1)

where Pbatt, ωg, and ωm denote the power of the battery,
and the angular velocity of the generator and the motor,
respectively. Likewise, Tg, and Tm represent the torque
of the generator and the motor, respectively. Also, µg
and µm depict the efficiency coefficients of the genera-
tor and the motor when they are acting as generators,
respectively. Thus, km & kg are equal to 1 if their
corresponding electrical machines operate as generators
and -1 otherwise.



Fig. 1: Powertrain Schematic.

0 100 200 300 400 500 600

e
 (rad/s)

0

20

40

60

80

100

120

T
e
 (

N
.m

)

Fig. 2: Engine Map [5].

B. Battery Modeling
The battery is modeled as an equivalent circuit model

given below [5]:

˙SoC(t) = −
Vbatt −

√
V 2
batt − 4RbattPbatt(t)

2RbattQbatt
,

SoC(0) = SoC0

(2)

where SoC is the state of the charge of the battery. Also,
Vbatt, Rbatt, andQbatt represent the battery’s open-circuit
voltage, internal resistance, and capacitance, respectively.
C. Engine Modeling

An engine map (Fig. 2) generated from the experi-
mental data is used in this study to model the engine
and to calculate the fuel consumption ṁf . The fuel
consumption is generally calculated by having engine’s
angular velocity, ωe, and engine’s torque, Te, as below:

ṁfuel(t) = γ(ωe(t), Te(t)) (3)

where γ : R+ ×R+ → R+. R+ is the set of nonnegative
real numbers. Given the two degrees of freedom feature
in the power-split HEV’s powertrain, one can assume
that the solution pair (Te(t), ωe(t)) for any engine power
Pe(t) , Te(t)ωe(t) will be such that the engine power
lies on its most efficient point on the engine map[5].
Therefore, to reduce the dimension of the input space,
Te(t) can be written as a function of ωe(t):

Te(t) ∝ ωe(t)→ Te(t) = h1(ωe(t)) (4)

Fig. 3: Free Body Diagram of the Follower and the Interaction
Topology.

where h1 : R+ → R+.

D. Vehicle Modeling
Fig. 3 shows a vehicle following a leader in a straight

path in an inertial frame. Let x be the horizontal position
of the center of mass of the follower C, and xleader be the
horizontal position of the center of mass of the leader C ′.
Also, let xdesired be the desired position of the follower
with respect to the leader defined as below:

xdesired(t) = xleader(t)− L (5)

where L is the desired constant distance between C&C ′.
The follower’s longitudinal position error z is defined as:

z(t) = x(t)− xdesired(t) (6)

The kinematics of the follower can be written as below:

ẋ(t) = v(t), x(0) = x0 (7)
ż(t) = v(t)− vleader(t), z(0) = z0 (8)

where vleader is the velocity of the leader. In addition,
the external dynamics of the follower is as follows:

v̇(t) = 1
m

[
−fdrag − ffriction + 1

r
Td(t)

]
fdrag(t) = 1

2ρCdragAfv(t)2

froll = µrollmg (9)

where m, Af , fdrag, froll, and µroll are the follower’s
mass, frontal area, air drag force, rolling resistance force,
and rolling resistance coefficient, respectively. Besides, ρ
and Cdrag denote the air density and the coefficient of
drag, respectively.

III. Problem Formulation
Integrated optimization requires the state vector to

augment both external vehicle level and powertrain level
dynamics. To keep track of the follower’s position error
and velocity and the SoC of the battery, the following
state vector is defined:

X(t) , [z(t), v(t), SoC(t)]T . (10)



The augmented input vector is also defined as:

U(t) , [ωe(t), Td(t)]T (11)

Considering Eqs. (1), (2), (8), and (9), the system dy-
namics can be summarized as:

Ẋ(t) = F(X(t),U(t)), X(0) = X0 (12)

where F is defined as below:

F ,

 v(t)− vleader(t)
1
m

[
− 1

2ρCdragAfv(t)2 − µrollmg + 1
rTd(t)

]
−Vbatt−

√
V 2

batt
−4RbattPbatt(t)

2RbattQbatt
.


(13)

Given the initial condition X(0) = X0, the cost function
Jc in its most general form is defined as below:

Jc =
∫ tf

0
λ(X(t),U(t)) dt+ ψ(X(tf )) (14)

where tf is the final time, and λ(X(t),U(t)) is the cost
of intermediate states and inputs. Also, ψ : R3 → R+
puts a penalty on the terminal state vector to ensure the
system will reach the desired terminal point Xdes(tf ). In
this study, to minimize the fuel consumption during the
drive cycle and to keep the distance between the follower
and the leader within the desired range, λ is set to be:

λ(X(t),U(t)) = βṁfuel(t) + αz(t)2. (15)

where α and β are two positive weights. Let δt be a small
enough sampling time, one can discretize Eq. (12) by
using the Euler method:

X(k + 1) = X(k)+δtF(X(k),U(k)), k = 0, 1, 2, ..., N−1
(16)

Similarly, Eq. (14) can be discretized as:

J =
N−1∑
k=0

δt (λ(X(k),U(k))) + ψ(X(N))

=
N−1∑
k=0

δt
(
βṁfuel(k) + αz(k)2)+ ψ(X(N))

(17)

where N , tf
δt .

The cost-to-go J(X(k)) is defined as the cost from the
system state X(k) at time step k to the end of the time
horizon and is equal to:

J(X(k)) =
N−1∑
τ=k

δt
(
βṁfuel(τ) + αz(τ)2)+ ψ(X(N))

=δt
(
βṁfuel(k) + αz(k)2)+ J(X(k + 1)),

k = 0, 1, 2, ..., N − 1.
(18)

Also, note that:

J(X(N)) = ψ(X(N)). (19)

The optimal cost-to-go J∗(X(k)) is defined as the min-
imum cost if the system starts at the state X(k) in

time step k. Based on Bellman’s principle of optimality,
J∗(X(k)) is defined in a recursive manner:

J∗(X(N)) = ψ(X(N)) (20)
J∗(X(k)) =

min
U(k)∈U(k)

(
δt
(
βṁfuel(k) + αz(k)2)+ J∗(X(k + 1))

)
subject to


X(k) ∈ X(k)

Pbatt(k) 6 V 2
batt

4Rbatt
(21)

where X(k) and U(k) are the time-variant state grid and
input grid, respectively:

X(k) = {X(k) | Xmin(k) 6 X(k) 6 Xmax(k)} (22)
U(k) = {U(k) | Umin(k) 6 U(k) 6 Umax(k)} (23)

Xmin(k) and Xmax(k) denote the minimum and the max-
imum range for X(k), respectively. Similarly, Umin(k)
and Umax(k) denote the minimum and the maximum
range for U(k), respectively. Besides, the control input by
which J∗(X(k)) is attained is called the optimal control
input U∗(X(k)). Note that the last constraint in Eq. (21)
is introduced to ensure the SoC remains a real number.

IV. Solving Integrated Optimization Using a
Customized ADP

DP is an optimization method that provides globally
optimal solutions to an optimization problem. Based on
Eq. (21), known as Hamilton–Jacobi–Bellman equation,
the necessary and sufficient condition for optimality is
that each period’s decision is made by acknowledging that
all future decisions will be optimally made. Therefore, in
DP, the problem is solved backward from the last time
step toward the first time step. In each time step, the
optimal input U∗(X(k)) and the corresponding optimal
cost-to-go J∗(X(k)) for every point in the state grid are
cached in tables. Storing U∗(X(k)) & J∗(X(k)) for every
point in the state grid requires a vast amount of memory,
which is one of the significant drawbacks of DP.
Consider a general control-affine discrete dynamical

system shown in Eq. (24) with the corresponding cost
function I defined in Eq. (25).

x(k + 1) = f(x(k))+g(x(k))u(k), k = 0, 1, 2, ..., N−1
(24)

I = 1
2

N−1∑
k=0

x(k)TQ x(k) + u(k)TR u(k) + θ(x(N)) (25)

where f and g represent the dynamics of the system. The
positive semi-definite matrix Q and the positive definite
matrix R put penalties on the intermediate states x(k)
and inputs u(k). θ(x(N)) also makes sure the system
reaches the desired final state. Note that lowercase x(k)
and u(k) defined here are not confused with X(k) and
U(k) defined before.



The optimal control input u∗(x(k)) satisfies the Bell-
man optimality condition ∂I(x(k))

∂u∗(x(k)) = 0, and can be
calculated as [7]:

u∗(k) = −R−1g(xk)T ∂I(x(k + 1))
∂x(k + 1) (26)

To solve the equation above, mainly two approaches
exist in ADP: heuristic dynamic programming, and dual
heuristic programming. However, the inputs found by
these methods are not constrained as they are propor-
tionally dependent on the magnitude of ∂I(x(k+1))

∂x(k+1) , and
they can be unreasonably high. Besides, to formulate the
problem under the available ADP algorithms, the cost
function needs to be a quadratic function of the states
and the inputs. However, the fuel consumption is not a
quadratic function of the states and the inputs.

In this study, a customized ADP algorithm is proposed
which 1) can be applied to both control-affine and non-
affine systems, 2) can take care of complex constraints
of inputs, and 3) handles non-quadratic nonlinear cost
function of the states and the inputs. Specifically, this
algorithm approximates the optimal cost-to-go at each
time step using a deep neural network:

J̄∗(X(k)) = φk(X(k)) (27)

where the deep neural network φk(.) takes the current
state X(k) as the input and outputs the approximated
optimal cost-to-go J̄∗(X(k)). Fig. 4 shows the structure
of φk(.). The method then proceeds backward in time.
We first define the desired terminal set R (N) that en-
compasses all of the desired terminal points Xdes(N) at
the time step N :

R (N) = {Xdes(N) ∈ R3 |
Xdes,min(N) 6 Xdes(N) 6 Xdes,max(N)} (28)

where Xdes,min(N) and Xdes,max(N) denote the mini-
mum and the maximum range for Xdes(N), respectively.
To start the learning procedure at k = N , one can define:

J̄∗(X(N)) =


ψ(X(N), for X(N) ∈ R (N)

∞, elsewhere
(29)

and train the network accordingly. The points that are
outside of the desired set are not favorable, and there-
fore, have been assigned the infinite cost. However, this
definition will result in numerical issues in the learning
process since high gradients will be derived between the
points in the vicinity of the boundary of the desired set.
Replacing∞ to a large enough number can help mitigate
this issue, but the effectiveness is limited [6]. To solve
this numerical issue, the network φN (.) is only trained
through the points inside the desired set, and thus the
achieved approximate cost-to-go is only optimized within
the desired set through the trained network. Without

Fig. 4: Structure of the Deep Neural Network.

considering the points out of the desired region, the
numerical issue mentioned can be avoided.
Following the same idea, the desirable reachable sets

should be found for other steps too (from step N − 1 to
step 1) to find the desirable states in any step k that can
be projected to the admissible states in step k+ 1, given
the constraints on control inputs [6] and the constraints
set by the system dynamics. The reachable set R (k) at
step k can be mathematically defined as:

R (k) = {X(k) | ∃ π(k)

such that



X(k + 1) = X(k) + δtF(X(k),π(k))
X(k + 1) ∈ R (k + 1)

X(k) ∈ X(k)
π(k) ∈ U(k)

Pbatt(k) 6 V 2
batt

4Rbatt
} (30)

Obtaining the reachable set allows us to only train the
network using data within the reachable sets, which
eliminates the potential numerical issue mentioned above.
The reachable sets are also found backward in time.
The network first learns the approximated optimal

cost-to-go at the final step using Eq. (29) for the points
inside R (N). Then, it iterates backward in time. At each
step k, random samples for the states X(k) inside the
reachable set R (k) are generated as shown in the Table
of Algorithm 1, the algorithm finds the optimal control
input U∗(X(k)) and the minimum approximated cost-
to-go J̄∗(X(k)) for each sampling states following steps
shown in the Table of Algorithm 1. To find the optimal
control U∗(X(k)), the standard ADP method needs to
analytically solve Eq. (25) to reach Eq. (26). This requires
the cost function to be quadratic and the dynamics
equation to be affine. To resolve this issue, instead of
analytically solving for the control input U∗(X(k)), we
numerically solve this step by comparing the cost val-
ues of different inputs within its range (Steps 4 and
5 in the Table of Algorithm 1). This modification on
the algorithm is not a computation-heavy step in ADP,
but it brings significant practical value to enable the



ADP application to this complex energy co-optimization
problem. Once the optimal control inputs U∗(X(k)) and
approximated cost to go J̄∗(X(k)) are obtained for the
sampling state points, the neural network φk(.) will be
trained to fit the manifold of J̄∗(X(k)) in the state space.

J̄∗(X(k)) = φk(X(k)) =
ψ(X(N), for k = N & X(N) ∈ R (N)

min
U(k)∈U(k)

δt
(
βṁfuel(k) + αz(k)2)+ φk+1(X(k + 1))

for k 6= N & X(k) ∈ R (k).
(31)

The training algorithm is detailed in Algorithm 1. Once
the learning procedure is done, it can be implemented in
the forward simulation to find the sub-optimal bounded
control sequence given the initial condition X(0). The
implementation algorithm is explained in Algorithm 2.

Algorithm 1: Training Neural Network
1 Select a small positive number ζ, and a big

enough integer IterMax;
2 for k = N : -1 : 0 do
3 Choose h different random training samples

Xp(k) in the reachable set R (k) where
p ∈ {1, 2, ..., h} ;

4 Discretize the input grid into m points such
that Umin(k) 6 Uj(k) 6 Umax(k) for
j ∈ {1, 2, ...,m} ;

5 For each training sample Xp(k) find
J̄∗(Xp(k)) using Eq. (31) ;

6 Initialize φ0
k(.) with random parameters;

7 for i = 1 : IterMax do
8 Update the neural network φik(.) and find

the parameters to approximate J̄∗(Xp(k))
using backpropagation on the entire
training samples;

9 if ‖φik(.)− φi−1
k (.)‖ ≤ ζ then

10 Break;
end

end
11 φk(.) ← φik(.);

end

Algorithm 2: Implementation
1 for k = 0 : N − 1 do
2 U∗(X(k)) =

argmin
U(k)∈U(k)

δt(βṁfuel(k)+αz(k)2)+φk+1(X(k+1))

3 X(k + 1) = X(k) + δtF(X(k),U∗(X(k)))
end

V. Simulation Results
In this section, a motivating case study in which an

autonomous HEV is following a leader is considered.
Vehicles are connected together through V2V communi-
cations with negligible delay. Specifications of the envi-
ronment and the follower are presented in Table I. One
of the most commonly used drive cycles is selected as
the leader’s velocity profile: FTP 75 Urban Drive Cycle
(UDC). Also, the time horizon is set to be 100 seconds.

Parameter Value Parameter Value Parameter Value

m (kg) 1350 r (m) 0.28 µroll 0.007

ρ
(kgs/m3)

1.225 Cdrag 0.3 Af

(m2)
2.2

kc 3.9 rs (m) 0.030 rr (m) 0.078

µg 0.9 µm 0.9 Vbatt

(V)
202

Qbatt

(A.s)
23400 Rbatt

(Ω)
0.45 L (m) 15

δt (s) 1 ζ 0.05 IterMax 10

TABLE I: Environment & Vehicle System Parameters

The cost function in Eq. (17) consists of two parts. The
first part considers the cost of the intermediate states and
the corresponding inputs. A relatively large α will make
the follower to move closely at the desired distance from
the leader most of the time at the expense of potential
increase in the fuel cost. However, a relatively large β
will urge the follower to minimize the fuel consumption
while the follower might be following the leader in a
more relaxed fashion. In both cases, the second part of
the cost function ensures that the follower will reach the
desired terminal point, finish the drive cycle in a safe
distance with respect to the leader, and satisfy the charge
sustaining condition.

0 20 40 60 80 100

Time(s)

-15

-10

-5

0

5

10

15

z
 (

m
)

Integrated Optimization

Separate Optimization

Fig. 5: Longitudinal Position Error History of the Follower.

0 20 40 60 80 100

Time(s)

0

5

10

15

20

v
 (

m
/s

)

Integrated Optimization

Separate Optimization

Leader

Fig. 6: Velocity History of the Leader and Follower.



0 20 40 60 80 100

Time(s)

40

50

60

70

80

S
o

C
 (

%
)

Integrated Optimization

Separate Optimization

Fig. 7: Battery State of Charge History of the Follower.

0 20 40 60 80 100

Time (s)

0

10

20

30

40

50

60

E
n

g
in

e
 P

o
w

e
r 

(k
W

a
tt

) Integrated Optimization

Separate Optimization

Fig. 8: Engine Power History of the Follower.

The control performance of the system using
the customized ADP method for X(0) =
[−10(m), 0(m/s), 60%]T is shown in Figs. (5) - (8).
To show the efficacy of the method, the performance of
the system under the baseline approach is also presented
for comparison in Figs. (5) - (8). In the baseline
approach, the follower’s vehicle level and powertrain
level dynamics are optimized separately. First, the
vehicle level dynamics are optimized where the states
are [z v]T and the input is [Td]. Secondly, the powertrain
level is optimized by strictly following the power demand
from the vehicle level control in which [SoC] is the
state and [ωe] is the input. As seen in Fig. (5), the
proposed integrated optimization based controller has
a looser regulation to follow the leader to achieve a
better fuel economy. However, in the baseline approach,
the controller has less degree of freedom to solve for
the powertrain dynamics to minimize fuel consumption.
This is evident in fuel consumption where an additional
15% fuel economy improvement was achieved by the
proposed algorithm as compared with the value achieved
by the baseline strategy (Table II).

Method α β Terminal
SoC(%)

Terminal
z (m)

Fuel
(g)

ADP 0.01 1 59.03 -0.20 30.46

Separate − − 60.17 -0.62 35.82

TABLE II: Summary of Results for FTP 75 UDC
VI. Conclusion

Conventionally, in the study of hybrid electric vehicles,
vehicle coordination optimization and powertrain energy
management are studied separately. This paper explores

the integrated optimization of vehicle coordination and
powertrain energy management which can result in con-
siderable fuel economy improvement. Then, the optimiza-
tion problem is formulated under the framework of a
customized ADP. Finally, to examine the efficacy of the
method, a numerical example is studied, which shows a
15% improvement in fuel consumption compared to the
separated optimization method.

Acknowledgment

This research was partially supported by the National
Science Foundation under Grant No. 1826410.

References

[1] X. Qu, Y. Yu, M. Zhou, C.-T. Lin, and X. Wang,
“Jointly dampening traffic oscillations and improv-
ing energy consumption with electric, connected and
automated vehicles: a reinforcement learning based
approach,” Applied Energy, vol. 257, p. 114030, 2020.

[2] H. A. Borhan, A. Vahidi, A. M. Phillips, M. L.
Kuang, and I. V. Kolmanovsky, “Predictive energy
management of a power-split hybrid electric vehicle,”
in 2009 American control conference. IEEE, 2009,
pp. 3970–3976.

[3] H. Kim and D. Kum, “Comprehensive design
methodology of input-and output-split hybrid elec-
tric vehicles: In search of optimal configuration,”
IEEE/ASME Transactions on Mechatronics, vol. 21,
no. 6, pp. 2912–2923, 2016.

[4] H. Zhang, T. Feng, G.-H. Yang, and H. Liang, “Dis-
tributed cooperative optimal control for multiagent
systems on directed graphs: An inverse optimal ap-
proach,” IEEE Transactions on Cybernetics, vol. 45,
no. 7, pp. 1315–1326, 2014.

[5] G. Ma, M. Ghasemi, and X. Song, “Integrated pow-
ertrain energy management and vehicle coordination
for multiple connected hybrid electric vehicles,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 4,
pp. 2893–2899, 2017.

[6] P. Elbert, S. Ebbesen, and L. Guzzella, “Implementa-
tion of dynamic programming for n-dimensional op-
timal control problems with final state constraints,”
IEEE Transactions on Control Systems Technology,
vol. 21, no. 3, pp. 924–931, 2012.

[7] F. L. Lewis and D. Vrabie, “Reinforcement learning
and adaptive dynamic programming for feedback con-
trol,” IEEE circuits and systems magazine, vol. 9,
no. 3, pp. 32–50, 2009.


	Introduction
	HEV Modeling
	Powertrain Modeling
	Battery Modeling
	Engine Modeling
	Vehicle Modeling

	Problem Formulation
	Solving Integrated Optimization Using a Customized ADP
	Simulation Results
	Conclusion

